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ABSTRACT

This thesis proposes a secondary collision avoidance algorithm for micro aerial vehicles
based on luminance-difference processing exhibited by the Lobula Giant Movement Detector
(LGMD), a wide-field visual neuron located in the lobula layer of a locust’s nervous system.
In particular, we address the design, modulation, hardware implementation, and testing of
a computationally simple yet robust collision avoidance algorithm based on the novel con-
cept of quadfurcated luminance-difference processing (QLDP). Micro and Nano class of un-
manned robots are the primary target applications of this algorithm, however, it could also be
implemented on advanced robots as a fail-safe redundant system. The algorithm proposed in
this thesis addresses some of the major detection challenges such as, obstacle proximity, col-
lision threat potentiality, and contrast correction within the robot’s field of view, to establish
and generate a precise yet simple collision-free motor control command in real-time. Ad-
ditionally, it has proven effective in detecting edges independent of background or obstacle
colour, size, and contour. To achieve this, the proposed QLDP essentially executes a series of
image enhancement and edge detection algorithms to estimate collision threat-level (spike)
which further determines if the robot’s field of view must be dissected into four quarters
where each quadrant’s response is analysed and interpreted against the others to determine
the most secure path. Ultimately, the computation load and the performance of the model is
assessed against an eclectic set of off-line as well as real-time real-world collision scenarios
in order to validate the proposed model’s asserted capability to avoid obstacles at more than
670 mm prior to collision (real-world), moving at 1.2 ms-1 with a successful avoidance rate
of 90% processing at an extreme frequency of 120 Hz, that is much superior compared to the
results reported in the contemporary related literature to the best of our knowledge.
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1

Introduction

“Those who are inspired by a model other than Nature,

a mistress above all masters, are labouring in vain.”

– Leonardo da Vinci

The manoeuvring capability of autonomous flying robots are not yet comparable to that
of insects in a complex cluttered environment. Inspired by this observation, this research
presents the development of a reactive autonomous collision avoidance algorithm for aerial
and ground robots based on insect neuronal vision architecture. To achieve a fully au-
tonomous navigation capability, a micro/nano robot requires an efficient, brisk, and proac-
tive navigation system despite its limited hardware resources due to weight and energy con-
straints. In order to address such rather contradictory challenges, our approach is inspired by
flying insects, which possess effective flight controllability in complex environments despite
their limited weight (payload) and minuscule nervous system (processing power).

1.1 Motivation

Unmanned autonomous system’s (UAS) existence solely depends on its superiority over
manned systems with respect to cost, maintainability, and expendability. A system is de-
signed from the outset to perform a particular role, thus the designer must decide the nature
and type of system most suitable to perform the role and, in particular, whether the role may
be better achieved with a manned or an unmanned solution, hence, it is futile to conclude
that a UAS always has an advantage or disadvantage over its counterpart manned system.

1



1. Introduction 2

An old military dictum links the use of UAS to roles which are dull, dirty or dangerous
(Austin 2010). Nevertheless, for an extensive assessment, we must consider the economi-
cal, covert, diplomatic, research and environmentally critical roles as the prominent practical
aspects of a UAS. Although in most applications a UAS proves preferable, the unfledged
automation technology causes their efficiency and robustness to be weak when compared to
their manned counterpart. Hence, the hankering to improve the robustness and reliability of
unmanned systems has expanded incredibly over the recent years. The boundaries of techno-
logical development in the field of Artificial Intelligence (AI) is not limited to mimicking of
human capabilities but also to mitigate the prevailing pilot errors and deficiencies in manual
systems. One of the most arduous elements of the machine-autonomy development is formu-
lating a robust collision avoidance algorithm to prevent catastrophic mission failure due to a
dynamic/static obstacle collision.

Inspired by nature to address the aforementioned challenge in this research, a simple yet
reliable collision avoidance system is designed based on an insect’s vision architecture which
has been proven to possess a simple anatomy thus eliminating the computational complexity
of the system. Insects’ elementary techniques to orientate in space and accomplish com-
plex tasks such as obstacle avoidance, escape from predators and landing, with such limited
neuronal resources provides sufficient evidence to bolster the desire to explore this area of
research.

Hence, the fundamental source of motivation for this research is the simple yet agile ar-
chitecture of an insect (locust) nervous system which lays the foundation for the development
of this computationally simple yet effective collision avoidance algorithm to detect obstacle
edges and establish collision-threat-level within the vehicle’s field of view.

1.2 Aims and Objectives

This research aims to develop a collision avoidance algorithm that is inspired by an insect’s
vision-based collision detection system. This algorithm is designed to serve as a secondary
reactive collision avoidance for micro and nano class of UAVs, and as an auxiliary collision
avoidance for Remotely Piloted Aircraft (RPAs), or autonomous UAVs in order to enable
collision-free flight in GPS-denied complex cluttered environments. Hence to achieve this,
the following objectives have been formulated:

1. The design and development of a computationally efficient algorithm to detect complex
obstacle/background edges biologically-inspired by a locust visual neuron known as



3 1.3. Research Challenges

Lobula Giant Movement Detector (LGMD).

2. Modulation and adaptation of the above computational model for aerial/ground robot
applications considering primary constraint such as limited payload delivery (process-
ing power, sensor technology).

3. Interpretation of the collision alarms (spikes generated by the collision detection model)
in terms of flight control commands based on an indigenous quartet image correlation
processing called QLDP.

4. Testing and performance assessment of the finalised algorithm implemented on a fab-
ricated ground robot to validate the claimed capabilities for real-world real-time appli-
cations.

1.3 Research Challenges

One of the most compelling challenges in development of an autonomous navigation system
for micro robots is establishing a consistent design trade-off between computational power,
size and cost. In autonomous systems, integration of processing units and their respective
sensors within a confined micro sized block compromises a substantial amount of function-
ality. However, biological systems on the other hand, overcome size constraints without
compromising performance by eliminating unsuccessful individuals through more than 350
million years of evolution. Similarly, this thesis is inspired by the basic computational model
of an evolved visual neuron to address an engineering problem (autonomous navigation) with
bare minimum processing resources. In particular, we are keen to understand the biological
mechanisms bolstering a vision-based collision detection and avoidance with an ultimate
goal of designing an autonomous aerial robotic system that can generate safe manoeuvres
through a GPS-denied indoor cluttered environment.

Vision-based navigation is a challenging task that necessitates real-time processing of an
input dataset that is acquired from an imaging sensor. In many cases, conventional process-
ing units are implemented in autonomous navigation. However, the requirement of an agile
analogue to digital converter (ADC) to communicate the data from a serial digital proces-
sor to a high-resolution sensor (like CMOS) convolves the system architecture, that further
necessitates an advanced algorithm capable of real-time image-data processing in order to
generate flight control commands. A system that is required to operate on a limited com-
putation power, as in an autonomous micro aerial vehicle, the particular task of fast data
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transfer and computation is the primary constraint. However, an insect visual system where
the micro sized sensors and processing neurons are carefully arranged in a dense architecture,
introduces an exquisite alternative concept for both sensory data acquisition and processing.
This system has evolved over millions of years to provide us with an extremely advanced
neuronal architecture that can be implemented in autonomous navigation algorithm design.

1.4 Proposed Methodology

Flying insects are the most promising model systems to address the optimum computation
demands for vision-based navigation tasks, such as obstacle avoidance. They inspire develop-
ment of faster and economical algorithms that eliminates the need for computation extensive
methodologies such as Lucas-Kanade optic-flow model, or expensive devices and hardware
technologies such as 3D laser range finders.

Flies perform brisk manoeuvres to avoid a predator or an obstacle within a fraction of a
second. Reactive avoidance decisions are generated and interpreted as evasive manoeuvres
within only a few milliseconds in fly’s brain (limited computation resources) (Armstrong &
van Hemert 2009). As such, the locust of Acrididae, a predominant family of grasshoppers
possess similar brisk reactions using their wide-field visual neuron located in the Lobula
layer of their nervous system that essentially executes a series of edge detection processes
to detect obstacles or predators across its field of view. Inspired by these processes, an
algorithm named Quadfurcated Luminance-Difference Processing (QLDP) is designed and
implemented on a robot to address one of the most challenging robotic-navigation problems
that is reactive collision avoidance.

1.5 Tools and Software Requirements

Design, analysis, modulation and implementation of the proposed algorithm are compara-
tively economical, hence, its experimental validation does not necessitate exceptional sim-
ulation tools and software. The software requirement for design and development of the
algorithm is,

1. MathWorks MATLAB Simulink with the following toolboxes:

• Computer Vision System

• Image Acquisition
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• Image Processing

• Embedded Coder

• MATLAB Coder

• Control System Toolbox

And the system implementation requires the following hardware,

1. Ground robot (with Ackermann steering).

2. Micro-controller development board (Arduino Nano3)

3. CMOS sensor (USB camera)

4. 9g Servo motor and a Motor shield

5. Ground Station PC

1.6 Thesis Organization and Contributions

The structure of this thesis constitutes 7 chapters including the introduction chapter that de-
fines the fundamental concept of the project followed by,

• Chapter 2, delivers insights in a detailed literature review of nature-inspired vision-
based UAV collision avoidance systems, and the contemporary related work.

• Chapter 3, introduces target research platforms for our proposed algorithm that in-
volves flight control-command generation and dynamics of a quadrotor UAV, and fab-
rication of a ground robot used in chapter 6 for validation purposes.

• Chapter 4, describes the anatomy of a locust LGMD neuron and its computational
model proposed in associated research that inspires the fundamental design of QLDP
introduced in this chapter.

• Chapter 5, proposes the modulation, adaptations and modifications required to achieve
the apt collision avoidance model, further visualising layer-by-layer processing of the
QLDP.

• Chapter 6, presents the implementation and validation of the QLDP assessment results
for both off-line as well as real-world real-time applications.
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• Chapter 7, discusses the conclusion and summary of results, the model limitations, and
the scope for future work.

The most important contribution of this thesis being an optimised algorithm to execute au-
tonomous collision avoidance onboard micro and nano robots is submitted for publication as
the following article,

• Hamid Isakhani, Nabil Aouf, Odysseas Kechagias-Stamatis and James F. Whidborne,
“A Quadfurcated Visual Collision Avoidance System for an Autonomous Micro Aerial
Vehicle”, IEEE Transactions on Robotics, submitted, February, 2017.



2

Literature Review

“The real danger is not that computers will begin to think like men,

but that men will begin to think like computers.”

– Sydney Harris

2.1 Introduction

This thesis aims to present a solution to the challenging task of collision-free indoor mi-
cro UAV flying through complex cluttered environment with limited resources onboard, this
task remains a fundamental research inquest as its applicability extends to the entire field of
robotics (ground, aerial, marine), control theory, and computer vision. The system introduced
here, fuses an indigenous control command generator based on a quartet image correlation
processing, with an insect-inspired perception to control and manoeuvre a micro sized robot
towards a collision-free path.

In this research, a ground robot (with Ackermann steering) is used to implement and
validate the developed algorithm, this platform is fabricated to save time and resources (con-
straints) during the preparation of this thesis. The robot exhibits dynamics similar to a four-
wheeled vehicle thus only 3 degrees of freedom necessitating adaptation of the algorithm to
bifurcate the field of view (explained in the following chapters) instead of quadfurcation.

The core of this data processing algorithm is highly efficient and is based on an insect-
inspired visual perception due to the fact that insects possess an extremely simple yet effec-

7
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tive neural network actively processing information and generating brisk responses at high
rates making them the most suitable solution for aerial robot navigation in GPS-denied un-
known environments.

2.2 Vision-Based Collision Avoidance Systems

Collision avoidance is a multi-tier mechanism at the core of automotive and aviation safety
where the key tiers are See and Avoid (SAA) capabilities (Mcfadyen & Mejias 2015) ac-
counting for crucial challenges in autonomous aerial navigations. Pilot’s vision, a fail-safe
feature, is considered to be one of the fundamental characteristics required during flight to
avoid an abrupt catastrophe when all the primary and secondary communication, navigation
and collision avoidance systems fail. In short, it is a form of decentralised agile collision
avoidance system in which the pilot identifies and avoids any unplanned static or dynamic
collision threat. This relies solely on the pilot’s visual system, knowledge, skills, experience
and composure to conduct regulatory procedures accurately. Thus the function of SAA is to
ensure a particular type of CAS constrained by pilot behaviour and potential, further agglom-
erating a subset of objectives including Observe, Orient, Decide and Act (OODA) or Detect,
Decide and Act (DAA) (Hutchings et al. 2007), which are the subsystems of a generic see
and avoid unit where seeing or detection function involves the acquisition of visual cues and
identifying any potential collision threat, but avoidance on the other hand, involves the deci-
sion making and execution in order to effectively respond to the threat. Figure 2.1 illustrates
a collision avoidance system based on a generic human vision.

However, with all its complexity and astuteness, a human-supervised collision avoidance
system exhibits a number of deficiencies which must be addressed within an emulated au-
tonomous model. Hutchings et al. (2007) investigated the pilot reaction time to collision
threat and found that an average human pilot requires 40.4 seconds to initiate a rescue ma-
noeuvre from the moment a potential collision threat is noticed, further considering other
prominent deficiencies of a pilot controlled CAS, we can conclude,

• Prolonged response time with a limited line of sight and blind spots

• Narrow field of view with a constricted response frequency

• Necessitating optimum brightness and contrast ratio

Hence, emulation of a vertebrate’s vision system is proven inconsistent and to overcome
the afore mentioned shortcomings, simpler yet effective vision architectures of invertebrates
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Figure 2.1: See and Avoid Architecture (from Hutchings et al. (2007))

must be decoded and implemented, for example, the model of a locust (Locusta migratoria)

visual system presented in Rind & Bramwell (1996) (detailed demonstration in the following
sections). Similarly, potential insects such as Condylostylus have proven to possess brisk
reflexes with an average response time of 5 milliseconds which is 50× faster compared to an
average reaction time of a human being (Sourakov 2011).

2.3 Invertebrate’s Vision

Several distinct optic lobe architectures have been identified in the animal kingdom, where
the vertebrates possess only one of these designs and invertebrates feature all ten, ranging
from simple arrangement of elementary photoreceptors, to advanced and sophisticated com-
pound eyes bolstered by a convoluted range of vision-based behaviours. Further, inverte-
brates can recognise high-speed obstacles as they possess an impeccable set of light sensors,
a wide spectrum of colour perceivers, and an ingenious polarised-light cue detectors (Wolf
et al. 1980). The basic principles involved in visual data acquisition and processing are nec-
essarily identical across the entire animal kingdom, involving neural plots and plans, some
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of which have inspired successful neuromorphic designs for robotic navigation (Horridge
1980). Hence invertebrate vision architecture, insect in particular, is a comprehensive fusion
of our contemporary knowledge regarding how they perceive their surrounding environment,
their processing principles, and how visual perception is implemented in their daily struggle
to survive.

Figure 2.2: Compound Eye Optic Lobe (from
Eichner (2011))

In flies, visual cues are processed ini-
tially by the photoreceptors that detect
light, followed by successive computa-
tions performed by the optic lobes con-
cealed within each eye as shown in Fig-
ure 2.2 (Eichner 2011). The photore-
ceptors detect illuminations, hyperpolar-
ize and communicate luminance informa-
tion to parallel processing pools in the pri-
mary neuropil (lamina). Further, the detec-
tion circuit located in the secondary neu-
ropil (medulla) receives majority of in-
put signals from lamina monopolar cells,
the medulla. Here, a circuit picks up the
information to perform detection of mo-
tion. The tertiary neuropil (lobula com-
plex) consists of lobula and lobula-plate
which receives the signals from previous layer to detect motion direction using the Large-
Field Tangential Cells (LFTCs) via Elementary Motion Detectors (EMDs). LFTCs spatially
integrate the output of presynaptic local circuits (Single & Borst 1998).

This neural network is implemented symmetrically on both sides of the insect’s nervous
system involving a comprehensive heterolateral contact among the lobula plates. In addi-
tion to the elementary connections within lobula plates, LFTCs synapse onto the descending
neurons and neck muscle motor neurons to provide control command signals to neck, legs,
and flight manoeuvring motor neurons (Strausfeld & Gronenberg 1990). However, to make
this literature more specific, in the following section we review the locust wide-field visual
neuron that decisively detects motion (Lobula Giant Movement Detector), and the neural
network’s physiological behaviour which has been decoded and implemented in computer
vision by scientists over the past two decades.
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2.4 Lobula Giant Movement Detector

Figure 2.3: LGMD Neural Network (from Rind
& Bramwell (1996))

A locust visual neuron consists of an ac-
tive neural network called the Lobula Gi-
ant Movement Detector (LGMD) that re-
sponds selectively to an approaching ob-
ject on collision course. LGMD facilitates
flights in vast and dense swarms without
colliding, simultaneously escaping an ap-
proaching predator (Cuadri et al. 2005). It
is a reciprocally paired motion sensitive
neuron that responds robustly to images of
objects approaching on a collision course
by integrating input signals from the pho-
toreceptors. More than two decades ago,
Rind & Bramwell (1996) pioneered the de-
coded computational model of an LGMD , illustrated in Figure 2.3.

This model has continued to evolve ever since, with the contemporary version being
implemented in ground robot vision and autonomous cars involving eclectic set of adapta-
tions and modifications with respect to their applied field. One of the outstanding features
of LGMD is the neuron’s capability to detect direction of an obstacle’s motion involving
approach, translation, and recession (Blanchard et al. 2000), which is achieved by the inte-
gration of a feed-forward inhibition, and ON/OFF channels. However, greater robustness,
precision, and computational simplicity is achieved by enhancing these connections with
complementary modules that emulate the exact intricate behaviour of an effective insect vi-
sion suitable for UAS applications, which ultimately inspires the core design of the data
processing demonstrated in this thesis.

2.5 LGMD Optimisation Modules

To develop an optimised computer vision algorithm, the previous model flaws must be enu-
merated and the techniques to overcome those challenges, investigated. Continuous attempts
are being made to contribute towards modification of the LGMD, including the pioneers
of the original model, Rind et al. whose work in 2014 claimed that, apart from the con-
ventional DCMD (Descending Contralateral Movement Detector) and LGMD, there are ad-
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ditional neurons in the locust’s optic lobe that respond to looming stimuli and have been
implicated in triggering evasive responses, naming the additional neural network, LGMD2
(Sztarker & Rind 2014), further they provide evidences to prove that the two share many key
features including selective responses to looming stimuli, but neither its role in overall be-
haviour nor its postsynaptic target neurons have been studied in detail yet, offering a potential
subject of research for neuromorphic engineers.

Figure 2.4: LGMD Model from Silva et al. (2014)

In Silva et al. (2014), a modified
LGMD architecture is proposed, in-
tegrating two previous LGMD mod-
els to implement features such as
noise immunity introduced in Yue &
Rind (2006) and motion direction de-
tection demonstrated in Meng et al.
(2009). The optimised model is val-
idated against a set of eclectic test
cases (visual stimuli), where a suc-
cessful filtering of isolated excita-
tions is performed to prevent the per-
turbations from contributing to the
excitation of the LGMD cell. Silva goes on to demonstrate that the neural architecture in-
troduced in Yue & Rind (2006) was ineffective when tested for receding obstacle scenarios
whereas the model in Meng et al. (2009) detected obstacle motion direction in depth. How-
ever, the latter is not immune to signal noise, which could cause faulty collision alarms in
case of a perturbed scenario. Hence, fusing the advantages of the two models, a modified
model is achieved that can distinguish an approaching from a receding object while ignoring
any noise in the input signal. Figure 2.4 illustrates Silva et al.’s modified LGMD model.

Cuadri et al. (2005), among others, introduced two complementary modules called the At-
tention Focusing Mechanism and Topological Feature Estimator to increase original model’s
versatility and efficiency, where the first module aims to optimise the use of computational
power, by limiting the processing core to focus only on the frame zones that exhibit maximum
activity at a given time step, and the second module aims to derive further information about
the contemporary alarming status, particularly making a quick categorisation of the looming
object. Similarly, modules such as ‘Contrast Corrector’ module for operation in darkness
(night vision), a ‘Proximity Detection’ module to differentiate between a large faraway ob-
ject and a small one close to the robot, and an ‘Image Stabilisation’ module to eliminate the
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vibration induced noise (airborne UAV), are to be introduced in this thesis to attain further
system robustness. It can be noted that the models in Yue & Rind (2006) and Meng et al.
(2009) which are integrated in Silva et al. (2014), were already modified models of the orig-
inal LGMD architecture which implies that models based on insect vision are continuously
evolving and yielding wider research focus.

2.6 Associated Research

Collision avoidance is an intricate and vital block within an autonomous system for which,
eclectic hardware and software solutions are being tested and studied in order to develop
a reliable and robust autonomous system capable of generating collision-free control com-
mands independent of human supervision and control. The most relevant research in this
field includes,

2.6.1 Advanced Unmanned Aerial Vehicles

Limited payload delivery of the smaller UAVs hinders the development of their autonomous
control systems, though certain algorithms implemented on micro-sized processors deliver
a reasonably efficient collision-free manoeuvring capability (Floreano et al. 2011), but the
substantial hardware advancements are emerging in development of large UAVs (<20kg)
bolstered by their massive payload capacity accommodating sophisticated sensors and com-
puters to perform fully autonomous take-off and landing (Johnson et al. 2005, Saripalli et al.
2002), stabilisation and localisation (Kanade et al. 2004), collision avoidance (Scherer 2007),
and aerobatic flight (Gavrilets 2002). Hence, the software developments for micro class of
UAVs must be pushed further to compensate for hardware deficiencies.

2.6.2 Vision Based Techniques

Smaller category unmanned aircrafts deliver a very limited payload which in turn limits the
researchers’ available technological solutions for collision sensing and avoidance, as an ex-
ample, Planar laser range finders (LIDAR) are much heavier than the available payload on
a small category unmanned aircraft making it unfit to invest on. Other active range find-
ers also, such as the Microsoft Kinect 2 are incapable of operating outdoors, limiting their
applications to indoor navigations, hence the most feasible solution remaining imminent is,
lightweight cameras and computer vision algorithms.
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Monocular Vision

The most outstanding advantages of monocular vision technology specifically for UAV appli-
cations includes, its simplicity, reduced weight and cost, justifying the researchers’ increas-
ing focus on this technique. Michels et al. (2004) designed an obstacle avoidance learning
algorithm for a remote controlled car navigating autonomously at 5ms−1 in a complex clut-
tered environment. Processing images at 7 Hz, the rate of fatal errors (∼ 2%) were relatively
satisfactory. However, Dey et al. (2015) presented a much advanced solution, demonstrating
flights over 2km in cluttered wooded environments using a fast non-linear regression (ma-
chine learning approach) to perform monocular depth estimation in real-time. Nevertheless,
all afore mentioned algorithms are computationally expensive (compatible only on small and
medium sized UAVs) thus inadequate for micro aerial robotic applications.

Stereo Vision

There is an intense focus on stereo vision technology applied in UAV navigations. For ob-
stacle detection, Byrne et al. (2006) illustrate the working of augmented stereo vision on
embedded flight systems. To reduce false-positive detections from correspondence, they im-
plement an image segmentation technique which executes at 10 Hz maximum, which is not a
desirable capacity for a redundant collision avoidance system. Hrabar et al. (2005) introduced
an additional technique in which, both optical flow and stereo vision were fused to deliver
an exceptionally robust navigation performance of 100% success rate. Yang & Pollefeys
(2003), among others, eliminated the need for per-frame rectification to increase computa-
tion efficiency and maximize frame rate, and also used a graphics processing unit (GPUs)
to process their stereo vision algorithm with further precision and speed. Autonomous way-
point navigation and an obstacle detection using stereo vision integrated within a full suite
of Inertial Measurement Unit (IMU) and vision-based state estimation is introduced in Meier
et al. (2012). Nevertheless, Goldberg & Matthies (2011) present a methodology performing
46 Hz stereo vision processing that is much superior compared to the former method’s 15
Hz processing speed. However, the most recent developments in stereo vision algorithms
include Barry (2016) high-speed autonomous obstacle avoidance algorithm onboard a small
fixed-wing UAV flying at 14ms−1 in a wooded cluttered environment, avoiding collisions
with trees by processing captured stereo images at 120 Hz in real-time. Also in micro-sized
category, Wagter (2014) introduced a 4 g ultra-light flapping UAV equipped with a 168 MHz
embedded processor executing a line-based stereo algorithm at up to 40 Hz with an input
resolution of 128 × 32 pixels. Among others, Honegger (2012), Honegger et al. (2014),
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Oleynikova et al. (2015) achieved successful processing of 376×240 pixel images at 127 Hz
using optical flow matching on a small Field Programmable Gate Array (FPGA) facilitating
real-time obstacle avoidance at 5 ms-1.

Optic Flow

Optic flow is an exceptionally efficient vision-based solution to achieve stable flight, take-
off, landing and performing successful collision avoidance (Barber et al. 2005, Beyeler et al.
2009a,b, Zufferey et al. 2008). As a result of their computational simplicity, it is possible
to achieve reduction in size, power, weight and an astonishing processing speed of around
4500 Hz (40 × 30 pixels) using dedicated sensors. Although optic flow algorithms are even
commercialised as a result of their efficiency, yet they remain futile as their high framerate
processing comes at the cost of computation load which makes them less attractive when
implemented on an extremely low power processors aboard micro UAVs.

Visual Simultaneous Localization and Mapping (VSLAM)

VSLAM has gained ground in robotic navigation over the past decade particularly in mapping-
based navigation where the robot builds a map of its surrounding environment to perceive its
situation and position subsequently manoeuvring safely in that environment (Davison 2007,
Harris & Pike 1988, Sim et al. 2005), the VSLAM based algorithms are successfully tested
on UAVs as well (Kim & Sukkarieh 2003), however, in these algorithms, the map built could
be dubious despite exploiting loads of computational power. Although Lee et al. (2011) in-
troduced a plane constraint in their algorithm to minimise the required processing power, this
limited their navigation system to operate only in structured environments.

Klein & Murray (2007) introduced another variation of this technique called the Parallel
Tracking and Mapping (PTAM). This technique also aims at reducing the computational load
by authorising the mapping function to execute at lower framerate while the tracking runs at
higher processing speeds, nevertheless, the algorithm fails to reduce computational load in
case of a large map tracking.

Visual Odometry

Early applications of this technique include ground vehicle navigations at a reasonable fram-
erate accompanied by a comparatively low error rate (Nistér et al. 2004). Visual odometry
is particularly advantageous in GPS-denied environments where the vehicle’s position and
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orientation must be tracked, Scaramuzza & Fraundorfer (2011) presented a tutorial on vi-
sual odometry summarising current scope of the field. Additionally, Forster et al. (2014)
demonstrate the latest advancement of this technique called the Semi-direct Visual Odom-
etry (SVO) where a downward facing monocular camera is used to map and track features
in real-time, however these techniques are not yet validated on small high speed UAVs in
real-world scenarios.

2.6.3 Stabilization and Localization

Stabilising flying robots using vision-based techniques (Roberts et al. 2003) is not a new
problem statement in engineering since the techniques mentioned in previous sections such
as optical flow, visual odometry, angular-rate-based technique (Srinivasan 2004), Image-IMU
data fusion technique (Engel et al. 2012, Sa 2013), and bio-inspired methodology (Netter &
Franceschini 2002) have continuously strived to address the UAV stabilisation and locali-
sation challenges, evolving over the time. Following sections explain vision-based flight
stabilisation further in detail.

Vision-aided Inertial Navigation Systems (VINS)

Feature’s location estimates in a captured image is predicted by a single unit that integrates
monocular images with the position estimates derived from Inertial Measurement Unit (IMU)
sensor of the onboard Inertial Navigation System (INS) (Chowdhary et al. 2013, O’Sullivan
et al. 2013, Weiss 2012). Recent developments in VINS include Shen et al. (2013) dual sys-
tem featuring a fast-monocular VINS processing at 25 Hz and a slow-stereo VINS operating
at 1 Hz to generate stable state-estimates for a slow moving quadrotor. In parallel, Li et al.
(2013), Li & Mourikis (2013) introduced visual INS capable of tracking within 0.5 to 0.8%
of the travelled distance for significant distances using an on-line calibration technique on a
commodity cellphone.

2.6.4 Trajectory Planning

Optimum trajectory planning algorithms remain a major challenge in development of au-
tonomous UAVs due to manoeuvring constraints, these algorithms must be simplified ex-
haustively to reduce further load on the onboard processor which must execute parallel com-
putations in real-time. These challenges are addressed in Langelaan & Rock (2005), which
introduces a fair trade-off between the computational power and performance by using a po-
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tential field method to simplify the system where obstacles are considered to be electrical
charges imparting a force on the UAV, however, they are prone to errors such as, speculating
dynamic obstacles (other UAVs) as points, ignoring contact geometries, system ceasing in
local minimums relying on redundancy to rescue the flight.

Shooting and Collocation Methods

To determine an optimal path for the UAV given a cost function, an exhaustive search over the
state and action space of the vehicle could be considered (Diehl et al. 2006), although this
method is not suited for high-speed flight applications due to its computation costs, Diehl
et al. (2006) do not perform a complete simulation, but instead simulate the system forward
(usually a small amount) to find an optimal trajectory (Bock & Plitt 1984). Collocation
methods on the other hand, force the optimiser to find both a feasible state and action set,
simultaneously minimising a cost function (Stryk 1993).

Probabilistic Roadmaps (PRMs)

The trajectory generation in Probabilistic Roadmaps (PRMs) is achieved in two sessions,
initially the off-line session generates paths that transit a substantial portion of the state space,
after which the PRM commences the on-line operation by processing a quick optimisation in
order to connect the initial state to its graph of trajectories, the on-line session further runs
another simple optimisation to branch from the existing paths to the final state (Kavraki 1996)
increasing the processing speed by connecting the states that are far apart using its existing
highways. Nevertheless, this methodology is yet, computationally expensive and arduous to
integrate if directed routes are not mandated (Svestka & Overmars 1997).

Rapidly-Exploring Random Trees (RRTs)

LaValle (1998) introduced a solution for a broad class of path planning problems, known
as the RRTs, specifically designed to handle nonholonomic constraints (including dynamics)
and high degrees of freedom. The RRTs randomly explore state space through small extended
operations that add to an existing tree. Further, this technique has experienced extensive
advancements, as in Karaman & Frazzoli (2010) RRT* methodology, that derives asymptotic
optimality by rewiring an RRTs’ internal structure.
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Trajectory Libraries

This methodology helps to generate a sequence of pre-built library of small trajectories to
form a consistent protracted path. Each pre-built library may contain small trajectories of
a certain flight direction which are chosen individually at each time-step. Atkeson (1993)
introduced a trajectory planning technique to reduce the computational load of dynamic pro-
gramming, by using second order local trajectory optimisation, which was later used in a
learning context for planning with humanoids (Atkeson & Morimoto 2003), but when the
technique was implemented on marble-maze navigation, the implementation challenges high-
lighted were, trajectory generation, choice of distance function, and dependency on model
performance (Stolle & Atkeson 2006).

Frazzoli et al. (2000) among others, demonstrate a computationally efficient and highly
stable control system based on trajectory libraries, in which, the planning is done for ma-
noeuvres and trim trajectories individually where motion plans are the former and stable
regions of state space are the latter trajectories. Similarly, Bachrach uses bundles of tra-
jectories to map the environment in addition to using them for control system (Bachrach
2013). However, recent developments of this technique aim to solve the challenging task of
safe transitioning between trajectories in libraries which can be achieved by ensuring that
the next controller is capable of stabilising the ending state of the previous controller (Ma-
jumdar & Tedrake 2012), developing on this concept, Majumdar & Tedrake (2016) recently
presented a fail-safe obstacle avoidance system.

Differentially Flat Systems

In a differentially flat system, it is possible to find a set of flat outputs from which the full
state and input vectors can be determined without integration (LaValle 2006, Sira-Ramirez &
Agrawal 2004), this technique helps to reduce the computational load of trajectory planning
algorithms.

Mathematically, given a system of the form, ẋ = f(x, u) with x ∈ Rn and u ∈ Rm,
one can find flat outputs y = h(x, u, u̇, ü, ..., u(k)) such that the following g and g’ exist as:
x = g(y, ẏ, ÿ, ..., y(j)) and u = g′(y, ẏ, ÿ, ..., y(j)).

Prominent applications of this methodology includes Alturbeh & Whidborne (2014), Cowl-
ing et al. (2001, 2007), Mellinger & Kumar (2011) introducing findings on minimum snap
trajectories where the positions x, y, z and the yaw angle ψ are considered as the flat outputs,
further disabling the control over pitch and roll, that in turn makes the knife-edge manoeu-
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vres (cluttered environment flight) almost impossible without switching between controllers.
Hence, not recommended for underactuated plants such as quadrotors since they require all
the state variables to be specified within the system.

2.6.5 System Identification

To implement a powerful feedback control technique, system dynamics identification is nec-
essary, which is generally performed in three parts, namely, model identification, followed
by determination of flat plate dynamics, and parameter selection. For the first task, the iden-
tification model presented in Sobolic (2009) is reliable, but for the second task, flat plate
dynamics from Cory & Tedrake (2008), Tedrake (2009) could be implemented, and for the
final task of parameter selection, there exists a plethora of techniques discussed in Tobenkin
(2014), and as an example the grey-box technique introduced in Ljung (2007).

2.6.6 Feedback Control Algorithms

No flight controller system is complete without a robust feedback control algorithm, since ex-
ternal disturbance, modelling errors, wind gusts etc., cause plant’s deviation from the planned
trajectory irrespective of how optimum it might be. To explore the full potentials of our plant,
real-time feedback controls are necessary onboard. There exists a vast literature on the feed-
back control algorithms to be considered while designing a non-linear system, explained in
the following sections.

Linear Quadratic Regulators

LQR is one of the eminent feedback control techniques to deliver optimal controls with a
linear dynamic model and quadratic cost (Lewis & Syrmos 1995). Many of the control
tasks mentioned in previous sections (Abbeel et al. 2006, Barry 2012, 2014, Cory 2010, Ritz
2012), either implemented directly or variations of LQR, with Time Varying Linear Quadratic
Regulator (TVLQR) being one such variation, it involves taking Taylor approximations along
an open-loop trajectory to generate a linear time-varying dynamics model along the trajectory
(Tedrake 2009), however, optimal control can be applied, even on non-linear systems about
known trajectories using the same Taylor approximations.



2. Literature Review 20

Model Predictive Control

Model Predictive Control (MPC) make direct use of an explicit and separately identifiable
model. Robustness (Bemporad & Morari 1999) and autonomy (Garcia et al. 1989) are the
salient features of these controllers since they can yield high performance, independent of
expert intervention for long periods of time. To generate optimal input for the given system
with a reference trajectory, an optimisation program (model class and robustness require-
ments define the type of this program) must be executed. After the optimisation program
the system’s response is observed for the first input values, the simulation and optimisation
process are repeated at time t+ 1 (Garcia et al. 1989). Another major advantage of MPCs is
their agility which is applicable for linear form of MPCs (Wang & Boyd 2008). Nevertheless,
as suggested in Singh & Fuller (2001), linearisation of the non-linear MPCs could simplify
these systems as well.

Robust Control Methods

One of the robust control methods based on system uncertainty is the H-infinity method that
characterises worst-case scenario using H∞ norm for a system whose uncertainty is given
as, ||G(s)||∞ = maxω σ̄(G(jω)), where σ̄ denotes the largest singular value of the frequency
response andG(jω) describes the system’s frequency response (Bates & Postlethwaite 2002).
To build a linear control system that is stable under bounded uncertainty, the system’s most
vulnerable portions of the maximum frequency response must be characterised on the largest
singular value, and if the system is found to be stable to a bounded uncertainty, then it can be
concluded that the entire system shall possess fairly stable frequency response to uncertainty.

Gain Scheduling

Gain scheduling is a process of creating a hybrid of multiple controllers (same or different)
with specific desired characteristics fused to form a single versatile system. In such a hy-
brid system, the ‘scheduling variable’ decides the gain values for each controller within the
system, hence a slow moving scheduling variable is preferred (Shamma & Cloutier 1993).
Depending on the individual characteristics and complexity of the fused controllers, a system
with significant flexibility, robustness and a rich feedback control can be achieved.
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2.6.7 Flight in Cluttered Environment

Flying small UAVs in a complex cluttered environment is not yet possible, an early work
on autonomous flight through forests was introduced in Langelaan & Rock (2005), which
demonstrates experiments on a ground vehicle in an artificial forest since their vision-based
SLAM algorithm (without range estimates) consumed significant computation power to build
maps, eventually making it infeasible for flying robot applications (Langelaan 2007, 2006).
Further advanced research such as Roberts (2012) vision-based range estimation overcomes
the earlier shortcomings by using range estimates to predict tree distances focusing compu-
tation on the closest trees, however, their algorithm is limited to tractable forests since they
consider trees as perfectly vertically oriented objects. More recent work such as Dey et al.
(2015), present flight data for their vision-based algorithm that uses the captured monocular
features such as Budgeted near-optimal feature selection and fast non-linear regression to
extract depth cues.

2.6.8 Neuromorphic Engineering

The neuro-biological architecture of various living creatures has been studied over the past
decades to find bioinspired solutions to the prevailing computation problems, one such ex-
ample is the study of chemotaxis in ants (Webb 1996), demonstrated by a Lego robot fitted
with a pair of gas sensors and an elementary processor performing an ant-like trailing be-
haviour with the help of a small network of neurons. However, the architecture implemented
by Webb was not based on identified neurons as in LGMD models. Other bioinspired robots,
have also implemented abstract models of neural architectures, for instance, Lambrinos et al.
(1997) introduce a polarised light compass possessed by a desert ant called Cataglyphis. The
compass has been implemented on a ground robot (Sahabot) where three light polariser sen-
sors inspired by the polarisation-opponent interneurons of a cricket’s optic lobe provide the
input to the compass. However, due to ambiguity of the neural network, consecutive com-
putations were carried out mathematically. On the other hand, fly motion detection abilities
have been implicitly applied in robotic navigations based on Reichardt & Egelhaaf (1988)
correlation-type elementary motion detector that is inspired by fly optic lobe, cloned using
neuromorphic engineering techniques. Furthermore, the control algorithms based on optic
flow methods also manoeuvre robots through complex environments successfully. However,
these techniques succumb to the challenging requirements of this research such as, knife-edge
manoeuvres, complex backgrounds, underactuation, irregular contrast, and limited payload
delivery.
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2.7 Summary

It can be concluded that the proposed QLDP based on LGMD luminance-difference comput-
ing feature to detect and avoid static obstacles during a high speed flight through complex
GPS-denied environments is one of the highly apt solutions available for Micro/Nano class
of robots due to its computational simplicity yet robust brisk manoeuvre generation satis-
fying our research objectives. This chapter provides evidences to bolster the preference of
implementing a biologically inspired vision-based collision avoidance system on a flying
robot to achieve a fail-safe mission accomplishment. Several salient accomplishments of the
proposed system briefly includes,

• Operation in GPS-denied environments

• Obstacle direction detection using motion cues

• Distant obstacle detection using proximity estimator

• Noise/blur immunity and high vibration resistance

• Compact, economical (no active sensors) and low power rating

• Computational simplicity satisfying micro robotic constraints

• Indigenous reactive controller facilitating brisk knife-edge manoeuvres

• High frequency processing (120Hz) facilitating high-speed flights
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Research Platform

“The human condition is not perfect. We are not perfect

specimens, any of us. We’re not robots.”

– Michael Ovitz

A comprehensive research is always performed on a reliable platform and validated against
a set of well established metrics. To accomplish this goal, this chapter presents a test plant
that is standardised regardless of the type of collision avoidance model implemented. This
system features a genuinely fabricated ground robot with dynamics similar to that of a four-
wheeled vehicle capable of validating our algorithm in a near-exact real-world application.
Prior to platform implementation, the collision avoidance model is calibrated through simula-
tions and off-line testing to minimise errors before risking damage to hardware components.
The robot is also capable of storing the data collected from collision tests such that further
analysis and modulations could be performed on the proposed algorithm. To conclude, the
platform designed satisfies the following requirements:

1. Standardisation of the controls and dynamics involved

2. Simple setup and calibration of onboard collision avoidance algorithm

3. Perform laboratory tests and simulations

4. Conduct field tests for real-world scenarios

5. Collect and store test data, system response, and performance

23
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6. Autonomous waypoint assignment and trajectory generation capability

Figure 3.1: Ground Testing Platform Architecture

Figure 3.1 illustrates the testing
platform circuit architecture which
comprises of mainly two parts be-
ing, the ground station (PC run-
ning the proposed algorithm in MAT-
LAB) and the robot communicat-
ing through a universal serial bus
connection. A brief description of
the proposed experimental setup in-
volves a CMOS sensor capturing
digital images of robot’s forward
field of view which are transmitted
to the ground station for processing
in real-time and thus generation of
avoidance motor control commands.
Further, the generated control commands are transmitted to the microcontroller development
board onboard the robot to drive the motor shield and a servo motor steering and manoeu-
vring the robot safely through obstacles. However, this thesis also proposes an aerial testing

Figure 3.2: Aerial Testing Platform Architecture

platform architecture shown in Fig-
ure 3.2 for UAV applications for fu-
ture development of this research.
The architecture involves an ad-
vanced UAV control system with two
layers of processors (high and low
level) thus implementing the pro-
posed collision avoidance algorithm
as an auxiliary fail-safe system on-
board this robot. However, mi-
cro and nano UAVs with elemen-
tary computation power being the
primary application target of this the-
sis may exploit this system to acquire collision-free autonomous manoeuvring capabilities
efficiently. To setup the proposed platform for model implementation and performance val-
idation, certain fundamental hardware and software components are required, which are ex-
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plained in the following sections.

3.1 Tools and Components

According to standard research practice, validation of any proposed algorithm must be con-
ducted practically to record, assess, and compare its performance for real-world scenarios
involving several hardware and software systems operating in real-time, namely;

• Ground Control Station

• Robotic Platform

3.1.1 Ground Control Station

The most important hardware consideration is the Ground Control Station (GCS) which ex-
ecutes the processing and supervises the core of operation; It must simultaneously visualise
and record robot operation data, while generating trajectory autonomously. This section
presents the hardware and its role involved in the GCS. For a GCS, the most significant
component is the field computer which is essentially the core of the GCS responsible for
communicating, guiding and navigating robots according to visual inputs it receives. There-
fore, a lightweight, transportable, yet high specification mobile PC (laptop) is preferable for
this purpose.

Figure 3.3: Ground Control Station (PC)

In this thesis, a normal PC with
an Intel Core i5-6500 processor and
8 GB of RAM shown in Figure 3.3
is used. The test platform is a mi-
cro ground robot capable of operat-
ing indoors. The GCS can operate on
a Windows, MAC, or a Linux oper-
ating system to execute MathWorks
MATLAB software, however, Linux
is preferred to accommodate Robot Operating System (ROS). Here, MATLAB is used as
the platform to develop the QLDP due to, (a) user-friendliness and ease of use, (b) wider
applications, (c) easier debugging capability, and (d) no memory management requirements.
Further, the GCS computer requires XBee telemetry module (recommended) to establish
wireless communication with the robots in real-time. The XBee modules are lightweight
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Arduino-based radio communication boards featuring point-to-point, point-to-multipoint,
and multipoint-to-multipoint communication facilitating control over multiple robots from
a single GCS. Ultimately, the GCS computer must be loaded with the test-field map data for
visualisation and way-point assignment purposes. Nevertheless, in this thesis universal serial
bus connection is used and the implementation of wireless communication is suggested for
future work.

3.1.2 Ground Robotic Platform

The proposed model is implemented on a 3-DOF ground robot designed and fabricated at
the Unmanned Autonomous Systems Laboratory (UASL), Cranfield University, to meet the
specific requirements of the experimentation discussed in Chapter 6. It exhibits the neces-
sary agility to accomplish successful collision avoidance using a DC motor, 9g servo motor
controlling steering, Arduino Nano development board interfacing software and hardware
components, motor shield, and a 2-Megapixel CMOS sensor capturing input data.

Figure 3.4: Ground Robot (with Ackermann Steering)

The Atmel ATmega328 8-bit
AVR micro-controller with a maxi-
mum of 20 MHz operating frequency
built into an Arduino development
board is implemented to interface
the robot with the proposed algo-
rithm developed in MATLAB. Image
frames captured by the CMOS sen-
sor are transmitted through a USB
cable to the ground station where
the images are processed and motor
control commands generated. These
commands are transmitted through
the micro-controller to the servo and
motor shield to control the robot’s lo-
comotion. In this platform, the conventional robotic differential steering was substituted
with an Ackermann steering to replicate a near-exact real-world four wheel vehicle dynam-
ics. This poses greater manoeuvring challenges as a result of underactuation. The schematic
illustration of the assembled robot is shown in Figure 3.4.

In this thesis, a standard motor control algorithm is designed to meet the requirements
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of every individual test explained in Chapter 6, which is fused with the proposed QLDP
facilitating stable autonomous navigation through obstacles to reach the assigned waypoints.
Large input data acquisition frequencies (∼120Hz) necessitates not only a fast processing
algorithm, but also an efficient, precise, and an extremely agile control generation block
within the collision avoidance algorithm since even a minute error or delay may cause a
catastrophic instability and collision. Complete technical specifications of the test platform
proposed to be assembled for the experimentation are listed in Table 3.1.

Table 3.1: Platform Technical Specification

Dimensions 12x5x4.5cm
Maximum Total Weight 150g

Battery 500mAh LiPo
Motors 2x12W

Telemetry System (recommended) XBee 2.4GHz
Input Data Capture 2-Megapixel HP CMOS Sensor

Field of View (FOV) 90◦

Data Acquisition Frequency 30Hz
Vehicle linear velocity 0.2-2.0 ms-1

Input Data Resolution 2D RGB 320x240 Pixels
Central Processing Unit Intel(R) Core(TM) i5-6500
CPU Clock frequency 3.20 GHz

Random Access Memory 8.00 GB
Operating System MS Windows 7 (64-bit)

For testing and system validation purposes, smaller platforms are preferred to minimize
the time to test new algorithms since the required material and test-epochs are reduced dras-
tically. Further, experiments can be conducted indoors, or even on a workbench without the
need for any legal testing authorisations. The microcontroller used on the robotic platform
generates signal pulses with a simple servo write command that essentially interprets the al-
gorithm’s response (spiking alarm) in terms of servo motor’s shaft position controlling the
Ackermann steering. Shaft position ranges from 0◦ to 18◦, where the former is extreme right
steering and the latter, extreme left. Dynamics involved in control and manoeuvring of a
ground robot are fairly simple due to fewer degrees of freedom and governing equations of
motion. However, aerial robots exhibit much complex dynamics and control discussed in the
following section.
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3.1.3 Aerial Robot Dynamics

Since the application of the collision avoidance algorithm proposed in this thesis primarily
extends to aerial robots, therefore for future work purposes, it is necessary to briefly discuss
the dynamics and control of a quadrotor that can be considered as a robot capable of quasi-
stationary or hover flight similar to conventional helicopters. This platform consists of four
rotors configured in a symmetrical cross pattern about its centre. Each rotor consists of a
propeller blade directly attached to a motor located at the extremity of each arm. The platform
centre houses the avionics and payload including telemetry links, autopilot and cameras.

The rotors are arranged in counter-rotating pairs such that the front and rear rotate counter-
clockwise and the left and right rotate clockwise. The propellers have a fixed pitch and their
axes of rotation are parallel to each other and the vertical axis. A vertical thrust and a hori-
zontal drag acting through the centre of each rotor is thus produced at each arm. As a result,
a torque is also produced about each axis from the platform centre. The net force and torque
on the quadrotor results in translational and rotational movement. Therefore, it can be con-
cluded that the motors are the only platform actuators simplifying dynamics to a fair extent.
At a low-level, the control inputs required are variations in motor speed Ωn for n = 1, 2, 3, 4

rotors. The thrust force Fn from each rotor depends on the blade configuration and physical
parameters (k), and is directly proportional to the square of the motor speed such that,

Fn = kΩ2
n (3.1)

The torque τn produced at each motor depends, in part, on the propeller drag force F̄n and
propeller radius rp, but can be simplified as

τn = rpF̄n = kτΩ
2
n (3.2)

At a higher level, a mixture of rotor speed variations can be used to construct four separate
control inputs Ui for i = 1, 2, 3, 4. The input controls consist of a force U1 and three input
torques U2, U3 and U4. Although the platform is still under-actuated, the controls provide
a more direct correspondence to changes in roll, pitch, yaw and vertical acceleration which
is more useful for controlling position and attitude. A set of simplified diagrams depicting
the various forces and torques acting on the platform resulting from changes in control input
is given in Figure 3.5. The rotors are labelled 1-4 starting at the front rotor and moving
clockwise through to the left rotor.

If all motor speeds are identical such that Ω1 = Ω2 = Ω3 = Ω4, a net upward force FT
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is produced. The net torque τc = 0 as the effects from each rotor cancel due to the counter
rotating arrangement. If the speeds are decreased or increased by the same amount and the
pitch and roll angles are zero, the platform will descend, hover or ascend depending on the
relative magnitude of FT compared to the platform weight mg. For all other attitudes, a
lateral and longitudinal force will also be induced causing movement in the horizontal plane.
Setting U1 = FT ensures the magnitude of the thrust can be directly controlled such that,

U1 = F1 + F2 + F3 + F4 (3.3)

U1 = k(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4) (3.4)

Figure 3.5: Quadrotor Control Inputs (from Mcfadyen (2015))

The orientation of the thrust vector is controlled by changing the platform attitude by
inducing a non-zero torque. Increasing the right motor speed and decreasing the left motor
speed by the same amount ∆Ω results in a positive torque τx about the lateral axis whilst
retaining the overall thrust such that FT = F1+(F2+∆F )+F3+(F4−∆F ). An acceleration
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in roll angle is thus induced. Setting U2 = τx

U2 = rm(F4 − F2) (3.5)

U2 = rmk(Ω2
4 − Ω2

2) (3.6)

Increasing the front motor speed and decreasing the rear motor speed by the same amount
∆Ω results in a positive torque τy about the longitudinal axis whilst retaining the overall
thrust such that FT = (F1 + ∆F ) + F2 + (F3 −∆F ) + F4. An acceleration in pitch angle is
thus induced. Setting U3 = τy

U3 = rm(F3 − F1) (3.7)

U3 = rmk(Ω2
3 − Ω2

1) (3.8)

The torque produced by each motor is required to maintain the propellers spin and provide the
necessary thrust force. It also induces a drag force F̄n perpendicular to the associated thrust
force such that each rotor contributes some torque about the body vertical axis. Increasing
the right and left motor speed and decreasing the front and rear motor speed by the same
amount ∆Ω results in a positive torque τz about the vertical axis whilst retaining the overall
thrust such that FT = F1 + (F2 + 2∆F ) + F3 + (F4 − 2∆F ). An acceleration in yaw angle
is thus induced. Setting U4 = τz

U4 = rp(F̄2 + F̄4 − F̄1 − F̄3) (3.9)

U4 = kτ (Ω
2
2 + Ω2

4 − Ω2
1 − Ω2

3) (3.10)

The equations describing the control inputs can then represented in matrix form as
U1

U2

U3

U4

 =


k k k k

0 −rmk 0 rmk

−rmk 0 rmk 0

−kτ kτ −kτ kτ




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (3.11)

The model for the quadrotor control inputs derived above has been simplified. The simplifi-
cations include the following well-founded assumptions:

• The effects of blade flapping resulting from deformation of the propeller moving at
high velocity are neglected.

• Each rotor is identical. The associated drag force on each propeller is assumed to act
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at the tip of the blades to produce the rotor torque. The associated propeller velocity is
such that an approximately constant thrust is induced.

• The platform is symmetrical about the zx and zy planes.

• The principles of conservation of energy apply to each rotor such that all input energy
is transferred to a thrust and drag force.

3.2 Summary

This chapter aims at introducing a research test platform that is implemented in Chapter 6
to validate the asserted capabilities of the proposed collision avoidance algorithm. Every
required software and hardware components of the test platform are described briefly along
with the dynamics and control theory involved.

Last section of the chapter provides a general description of an aerial robot (quadrotor)
control principle in order to review an overall understanding of such robotic control inputs
which can be embedded in the proposed algorithm to generate apt flight control commands
as suggested in future work Chapter 7.
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Biomimetic Vision Architecture

“I see insect level behaviour as a noble goal for

artificial intelligence practitioners. I believe it

is closer to the ultimate right track than are

the higher level goals now being pursued.”

– Rodney A. Brooks

4.1 Introduction

It has been over four centuries since the fascinating structure of a compound eye was unveiled
using the earliest microscopes, captivating the concern of scientists from different fields of
study across the world. Today an extensive range of research is conducted on insect vision,
stretching from the study of genetics using the visual mutants of Drosophila through elec-
trophysiological investigation of the properties of many visual neurons to the modelling and
simulation of visual circuits and functions.

This chapter describes the inspiring biological structure and principles of flying insect
vision with a focus on Lobula Giant Movement Detector (LGMD), a wide-field visual neuron
located in the Lobula layer of the locust’s nervous system which inspires the QLDP model
proposed in this thesis. Salient developments in LGMD neural network aggregated over the
years along with the original model pioneered by Rind & Bramwell (1996), are also presented
in the following sections. Electrophysiological decoding of the LGMD was accomplished
with the ultimate aim of designing a simple computational model performing the near-exact
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biological behaviour of a locust visual neuron to obtain a set of processing layers sequenced
to deliver an efficient yet robust obstacle detection algorithm. An overview of this chapter
can be summarised as follows,

• Anatomy and biological behaviour (operation-principles) of invertebrates (flying in-
sects) visual neuron.

• Detailed study on elements of a locust visual neuron, focusing on the photoreceptor
cells of the compound eye, processing in the lamina region of the optic lobe, and spik-
ing responses of the LGMD neuron.

• Techniques used to design neural architectures, including single cell models, large
neural networks and neuromorphic engineering.

• Computational modelling of the LGMD neurobiological model using published elec-
trophysiological study reports.

4.2 Locust Visual Neuron Anatomy

Figure 4.1: Locust Visual System. (from Rind &
Simmons (1999))

Insect visual systems in general, includ-
ing several species of locust (notably Lo-

custa migratoria and Schistocerca gre-

garia), have been studied extensively
and many similarities in anatomy and
neuronal responses have been found.
This section depicted from Blanchard
(1998), focuses mainly on the visual pro-
cessing performed by an insect move-
ment detection system that is the locust

LGMD. The locust visual system com-
prises two compound eyes, one located
on each side of the head, with three neu-
ropiles (Lamina, Medulla and the Lob-
ula) behind each eye. Known collec-
tively as the optic lobe, these neuropiles
process the visual information as it passes from the photoreceptors to the brain (the proto-
cerebrum). Figure 4.1 shows the structure of the optic lobe behind one eye. In Locusta,



35 4.2. Locust Visual Neuron Anatomy

each compound eye constitutes an estimated 8500 ommatidia (Shaw 1978) packed into a
hexagonal array measuring approximately 3x2 mm (Wilson et al. 1978). The eyes use simple
apposition optics where each ommatidium samples a discrete point in space (Nilsson 1989).
The spatial resolution (acuity) is determined by both the angular separation of the omma-
tidia and their receptive field (acceptance angle). The angular separation is not uniform:
there is an acute zone at the front of the eyes looking ahead of the animal (Horridge 1978)
while in a region at the dorsal rim of the eyes the ommatidial lenses are smaller and fused
(Eggers & Gewecke 1993). Structural changes within the ommatidia (Tunstall & Horridge
1967, Horridge et al. 1981) increase the acceptance angle as the ambient light intensity falls
(Wilson 1975). The increase in acceptance angle allows light from a wider area to be cap-
tured by the ommatidium, improving sensitivity at low light levels (Williams 1983). Within
each ommatidium there are eight photoreceptor (retinula) cells which combine to form a
fused rhabdom with their microvilli (Wilson et al. 1978). Six of the photoreceptors (R1-6,
also known as short visual fibres (SVFs) because their synaptic terminals are in the lam-
ina) contribute to the rhabdom along the full length of the ommatidium while the remaining
two photoreceptors (R7-8, or long visual fibres (LVFs) which have synaptic terminals in the
medulla), once thought to be second order cells (Scholes 1965), contribute a small amount
in the proximal third of the rhabdom. The rhabdom is the photosensitive structure within the
ommatidium, with rhodopsin molecules embedded in the microvillar membranes of the pho-
toreceptors (Williams 1983). At the proximal end of an ommatidium the photoreceptor axons
form into a bundle which passes through the basement membrane and projects to the first op-
tic neuropile, the lamina (Meinertzhagen 1976). The neurons in the lamina are grouped into
cartridges and there is a precise retinotopic mapping from the ommatidia to these cartridges
which preserves the spatial information of the visual image.

There are many anatomical similarities between the neurons identified in the locust lam-
ina and those in other insects (Nowel & Shelton 1981, James & Osorio 1996, Strausfeld
1976, Shaw 1984). The terminals of the six SVFs are found in the cartridge: the axons of
the LVFs pass through the lamina and project to the medulla. There are six monopolar cells,
two of which, M1 and M2, have thickened axons and dendrites confined within the cartridge.
These correspond to the large monopolar cells (LMCs) found in flies which receive extensive
synaptic input from the six SVF terminals (Nicol & Meinertzhagen 1982). Twelve cell types
have been observed in flies (Strausfeld & Campos-Ortega 1977), including the monopolar
cells, amacrine cells whose dendrites project across many cartridges and efferent cells from
the medulla: it is reasonable to assume that similar cells are present in the locust. A number
of glial cell processes are found around the cartridges which electrically isolate neighbouring
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cartridges (Shaw 1984). In addition the locust lamina is isolated from the eye and the optic
lobe by glial cells and trachea which fill the extracellular space, forming diffusion barriers
(Shaw 1978). As with the lamina the second optic neuropile, the medulla, has a retinotopic
arrangement of neuronal cartridges. However the visual information is reversed horizontally
by the projections from the lamina which cross at the first optic chiasma.

The anatomy of medulla cartridge in the locust is not clearly identified, but the estimates
suggest that each cartridge contains at least 40 distinct cell types (Osorio 1992) and a few
of these cell types have been identified (O’Carroll et al. 1992, James & Osorio 1996). The
anatomy of the fly medulla has been studied in greater detail and many more cell types
have been found and identified (Strausfeld 1976). The third optic neuropile, the lobula,
has a coarse retinotopic arrangement with the positions of the cartridges reverting to their
original positions after the second optic chiasma. However, many of the neurons found in
the lobula have dendritic trees which cover large areas of the neuropile and hence the visual
field. These wide-field neurons can be identified reliably in different individuals from their
anatomy. A variety of neurons of this type has been identified in the locust (Rind 1987)
including the LGMD (O’Shea & Williams 1974), the neuron at the heart of our collision
avoidance algorithm. In addition to the flow of information down the optic lobe from the
eye to the brain there are neurons which project in the opposite direction. All of the optic
neuropiles receive inputs from the brain and the contralateral eye via efferent neurons with
large axonal arborizations which cover large areas of the visual field (Gewecke & Hou 1993).
Other neurons project centrifugally between regions of the optic lobe (Strausfeld 1976, Shaw
1984).

4.3 Lobula Giant Movement Detector

Figure 4.2: LGMD Anatomy (from
O’Shea & Williams (1974))

The LGMD neuron of the locust optic lobe has
been studied for many years and its responses
and functions have been the subject of contro-
versy constantly. The LGMD is a unique, iden-
tified, wide-field neuron in the lobula neuropile
behind each eye of a locust. The anatomy of the
LGMD is shown in Figure 4.2. It has three den-
dritic subfields, a large dendritic fan which ex-
tends across the full width of the lobula and two
smaller subfields protruding from the base of the
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fan (O’Shea & Williams 1974). Its axon projects to the brain where synapses are made with
the DCMD neuron (O’Shea et al. 1974). In turn the axon of the DCMD projects down the
contralateral nerve cord to form synapses with interneurons and motorneurons in the thoracic
ganglia (Simmons 1980).

Initially the DCMD was studied owing to the ease with which recordings could be made
with extracellular electrodes from the nerve cord, where spikes from the DCMD are eas-
ily identified due to their large amplitude (Rowell 1971). A later study using intracellular
recordings established a one-to-one correspondence between spikes in the DCMD and the
LGMD (O’Shea et al. 1974), which led to the proposal that the synapse between the two
cells was electrical (O’Shea & Rowell 1975). This was disproved by a detailed examination
of the properties of the synapse which revealed a short transmission delay and a slight gain,
both of which are characteristics of a chemical synapse (Rind 1984). The one-to-one corre-
spondence between spikes in these neurons, which persists up to frequencies of 400Hz (Rind
1984), allows the responses of the LGMD to be inferred from those of the DCMD.

An early experiment revealed responses in the nerve cord, probably from the DCMD,
to increases and decreases of light intensity (ON and OFF) and to movement of illuminated
objects (Burtt & Catton 1952). Subsequent experiments using striped stimuli caused a con-
troversy by hinting that the acuity of the visual system was significantly better than expected
from the optics of the eye, but these results were later attributed to artefacts in the stimuli
(Horridge 1975). Experiments where small stimuli moved horizontally or vertically produced
a short burst of spikes in the LGMD/DCMD. This response habituated if the movement was
repeated and showed that the receptive fields of the cells covered the whole field-of-view of
the eye. The idea that the neurons were tuned to detect novel movements of small objects was
proposed but, despite the suggestion that they may play a role in initiating escape behaviour
via the thoracic ganglia, the value to the animal of this non-directional movement detection
was questioned (Rowell 1971).

Nevertheless due to a lack of functional reference, a detailed study was undertaken to
determine the neuronal circuit underlying this response. The responses to changes in the
intensity of a small light source were attributed to the proper ties of the photoreceptor cells
(Rowell & O’Shea 1976b) but a lateral inhibitory network was proposed as the mechanism
responsible for the dependence of these responses on the intensity of the surrounding area
(Rowell & O’Shea 1976a). Input to the dendritic fan was found to be from transient ON/OFF
cells and these cells or their synapses were predicted to be the site of LGMD habituation
(Rowell & O’Shea 1976a). Finally, experiments were conducted with stimuli comprising
small objects and large-field moving stripes, and these showed that the response to a small
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object was reduced by movement of a stripe pattern behind the object and large stimuli pro-
duced inhibitory responses (Rowell et al. 1977).

Figure 4.3: Input Circuit to the LGMD from
Rowell et al. (1977))

Taken as a whole, these findings led to
the proposal of the model shown in Fig-
ure 4.3 for the input circuit of the LGMD.
In this circuit lateral inhibition between
the inputs to the dendritic fan, believed to
involve amacrine cells in the medulla re-
gion of the optic lobe (Rowell et al. 1977),
prevents habituation during movement of
the whole visual field (O’Shea & Rowell
1975). Feed-forward inhibition from sep-
arate populations of ON and OFF sensi-
tive cells projecting onto the smaller den-
dritic sub-fields suppresses responses to
large stimuli and changes of the whole visual image generated by movements of the ani-
mal (Zaretsky & Rowell 1979). Neurons thought to be responsible for the OFF feed forward
connection were identified anatomically in the medulla and the connection was broken by
lesioning the dorsal uncrossed bundle of axons which projects from the medulla to the lob-
ula (Rowell et al. 1977). Neurons with properties matching the other proposed cell types
have since been found in the medulla (Osorio 1987, O’Carroll et al. 1992, James & Osorio
1996), although recent findings using electron microscopy have unveiled a novel synaptic
architecture within the dendrites of the LGMD which may mediate lateral inhibition directly.

Recordings of the responses of the LGMD to objects moving towards or away from the
animal showed an increasing spike rate for an approaching object but only a brief burst of
spikes for a receding object, and it was suggested that the neuron is in fact tuned to detect
approaching objects, a more relevant stimulus for triggering escape behaviour (Schlotterer
1977). Although this idea was not accepted initially (Pinter et al. 1982) it has now been
verified (Rind & Simmons 1999). In addition, the spike rate has been found to be well
correlated with the angular acceleration of the edges of the objects. An increase in the object
edge length and an increase in edge velocity are necessary for the cell to distinguish an
approaching object from a receding object (Rind & Simmons 1999). The neuron is precisely
calibrated to looming objects on a collision course (Judge & Rind 1997): objects moving on
a path which deviates from the direct collision trajectory by only a few degrees produce a
much weaker response.
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The responses to approaching objects occur due to an exponential build-up of excitation
in the dendritic fan whereas the responses to receding objects show brief excitation followed
by prolonged inhibition. likely to be due to feed-forward inhibition (Rind & Bramwell 1996).
A neural network model produces responses which match the spike rate of the LGMD and
demonstrates the contributions of excitation and inhibition.

Hatsopoulos et al. (1995) suggest that the spike rate peaks before the object reaches the
eye which contradicts earlier findings that show the response continuing to rise until after
the collision would have occurred (Rind & Bramwell 1996). Although the difference was
attributed to the stimulus system used (Rind & Simmons 1999), a repeat of the experiments
with different equipment has produced similar results to the initial study (Krapp et al. 1998).
The results of these studies have been fitted with an equation that relates the response to
the stimulus and predicts that during responses to objects looming on a collision course, the
LGMD spike rate peaks when the stimulus subtends a fixed angular size on the eye.

4.4 Modelling of Neural Networks

Computational models of insect neural network are often used to explore the properties of
neural systems which are rather difficult to discover experimentally. There are many tech-
niques to build a model of a neural system, ranging from very detailed models of single
neurons to large scale networks with simple neurons, and the neuromorphic engineering ap-
proach, which are briefly reviewed in this section,

A crucial decision when developing a model of a neural system is the level of complexity
to include (Rall 1995), and as the number of neurons in a model increases, their complexity
typically decreases. Here, neuromorphic engineering is employed to model the LGMD neural
network by applying the design principles of neurobiological systems in electro-mechanical
engineering. Neurobiological architecture and models inspire the design of intelligent sys-
tems by implementing the elementary analogue blocks and novel neural circuits to clone a
particular behaviour. Carver Mead was the pioneer of neuromorphic engineering as he first
embedded a neural circuit within a silicon chip (Mead 1989) whose first application was re-
alised in the implementation of a spiking neuron in a silicon retina using an analogue circuit
(Mahowald & Mead 1991). Visual, auditory, and other bio-sensors have since been designed
and implemented successfully (Andreou et al. 1991, Mahowald & Mead 1991, Liu 1996,
Lazzaro & Wawrzynek 1997, Harrison & Koch 1998, Kumar et al. 1998).

However, vision-based models are the most popular sensory circuits implemented, and as
the complexity of these systems increased, the computation load was uniformly distributed
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among several processing nodes to form modular architectures (Higgins & Koch 1999, Hig-
gins & Shams 2002, Ozalevli & Higgins 2005). Such bioinspired asynchronous communica-
tion protocols are implemented by several researchers to establish a multi-node contact in a
multiprocessor system (Boahen 1998, Landolt et al. 2001). However, Sarpeshkar et al. (1996)
addresses basic challenges such as dense, parallel architecture, and low power consumption
while designing and prototyping motion processing system. Higgins et al. conducted a sur-
vey on three individual motion detector based models to illustrate each one’s performance
against an identical test case and condition (Higgins et al. 2005). Nevertheless, successful
design of bioinspired computational models for collision detection, time to collision, and tar-
get tracking using VLSI processors are described in Etienne-Cummings et al. (1996), Indiveri
et al. (2002), Etienne-Cummings et al. (2000), Higgins & Pant (2004), Harrison (2005). Ana-
logue circuit architecture is advantageous as it can replicate near-exact neuronal processing
by running the algorithm in continuous time, additionally, power consumption on an ana-
logue processor operating at sub-threshold regime of the MOSFET is minimal thus making
it the most suitable alternative to be implemented in an autonomous sensor system.

4.5 Computational LGMD Model

Figure 4.4: Original LGMD Model (from Rind &
Bramwell (1996))

The original LGMD model described
in Blanchard (1998), Blanchard et al.
(2000), Yue & Rind (2006) emulates the
input organisation and data processing
of a locust visual interneuron, which in-
spires the core of obstacle detection al-
gorithm proposed in this thesis. The
LGMD architecture described in this
study is an enhanced version of the
models discussed in [13, 15 and 16]. It
constitutes four groups of cells namely,
photoreceptor cells (P layer), excita-
tory cells (E layer), inhibitory cells (I
layer), and summing cells (S layer). Be-
sides that, it constitutes two single cells
namely, the feed-forward inhibition cell (FFI cell) and the LGMD cell. The model architec-
ture is illustrated in Figure 4.4
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The input signal is a grey scale 2 dimensional image at a very low resolution and limited
field of view. The image is represented as an array of values zero to 255, forming the input
data to photoreceptor nodes (P-layer), which computes the absolute difference between the
previous and current input image-luminance, mathematically represented as,

Pf (x, y) = |Lf (x, y)− Lf−1(x, y)| (4.1)

where Pf is the result of layer-P processing at frame f, Lf and Lf−1 are the image luminance
of current and previous frames denoted as f and f − 1, respectively. The signal from layer-
P provides an input to two layers namely, the inhibition (I) and excitation (E) layer. The
excitations coming from layer-P transfer to the retinotopic counterparts directly, whereas the
inhibition performs a convolution on the P signal to achieve a blur effect described by the
equation,

If (x, y) =
1∑

i=−1

1∑
j=−1

Pf−1(x+ i, y + j)wI(i, j), (i&j 6= 0) (4.2)

where wI is the 3x3 local inhibition weight, further the excitation layer passes the luminance
difference directly as,

Ef (x, y) = Pf (x, y) (4.3)

where If is the inhibition signal at current time-step (frame f ), and Pf−1 is the delayed
signal from layer-P denoted by f − 1. Further, the excitation and inhibition signals are
retinotopically summed in the S-layer represented as,

Sf (x, y) = [Ef (x, y)−WI .If (x, y)] (4.4)

where Sf is the summed output signal at current frame f , with a global inhibition weight
WI that is set as 0.35. However, Yue & Rind (2006) introduced a noise removal layer that
eliminates background noise by clustering the excitations in layer-S used to compute the
membrane potential for LGMD cell. The process of clustering provides greater individual
inputs than the isolated excitations in layer-S. These clusters of excitation are further multi-
plied by a transient coefficient Cef , whose value directly depends on the neighbouring pixels
represented as,

Cef (x, y) = 1/9
1∑

i=−1

1∑
j=−1

Sf−1(x+ i, y + j).we(i, j) (4.5)
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where we(i, j) is the transient weight (convolution mask) representing the influence of neigh-
bouring pixels in form of a 3× 3 all-ones matrix. Now the LGMD cell for current time-step,
Gf is summed along rows and columns to produce,

Gf =
n∑
x=1

m∑
y=1

|Sf (x, y)|.Cef (x, y).ω−1 (4.6)

where n is the number of rows, m is the number of columns, and ω is a scale that is computed
at every time-step (frame),

ω = max(Cef ).C
−1
w + ∆c (4.7)

where ∆c is empirically set as 0.01 and Cw as 4.0 to prevent zero values of ω as Cef and
ω differ for every time-step. Further, spiking mechanism is introduced by computing the
sigmoid transformation of LGMD cell’s membrane potential as,

gf = (1 + e−Gf/ncell)−1 (4.8)

where ncell represents the total count on summing cells, and the normalised membrane po-
tential gf ∈ [0.5 1.0] since Gf > 0. Finally the model response and avoidance decision is
represented by a spiking mechanism depending on an adaptable threshold Ts introduced in
Yue & Rind (2006), which begins with an initial value of Tin and updates for every m-frames
during the process formulated as,

Ts =


Ts + ∆t, if gav > Π and (Ts + ∆t) ∈ [Tl, Tu]

Ts −∆t, if gav < Π and (Ts −∆t) ∈ [Tl, Tu]

Ts, Otherwise

(4.9)

where Tl and Tu represent the lower and upper adaptation limits respectively, ∆t represents
the step increments, and Π denotes a threshold to determine the average of membrane poten-
tial (gav) from the frame f − n to f − k given as,

gav = (n− k + 1)−1
n∑
i=k

gf−i (4.10)

Exceeding of the membrane potential Gf beyond a threshold Ts generates a spike whose
appearance over 4 consecutive time-steps is interpreted as a potential collision threat. Once
a collision is detected, the vehicle initiates avoidance manoeuvres which in turn causes large
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excitation in the input signal. These excitations are mitigated by the feed forward inhibition
layer (Yue & Rind 2006) to avoid haphazard control generation by masking undesirably huge
perturbations. The FFI is delayed by one time-step represented as,

FFIf =
n∑
x=1

m∑
y=1

|Pf−1(x, y)|.n−1cell (4.11)

Once the feed forward inhibition for the current frame (FFIf ) exceeds an empirically deter-
mined threshold level, the LGMD response is mitigated immediately.

4.6 Quadfurcated Luminance-Difference Processing

The proactive collision avoidance model proposed here is inspired by the luminance dif-
ference processing exhibited by an LGMD neuron. The algorithm architecture called the
quadfurcated luminance-difference processing (QLDP) illustrated in Figure 4.5, is carefully
structured and enhanced to attain maximum robustness required onboard a robot. Every layer
performs a significant computation of data within the model where each node represents an
individual process.

Figure 4.5: Quadfurcated Luminance-Difference Processing (QLDP) Model

The proposed architecture constitutes five layers of processing (L1,L2,...,L5) namely, lin-
ear time-invariant filter layer (W), excitation layer (E), adaptive histogram equalization layer
(AHE), threshold layer (T), and quadfurcation layer (Q), preceded by six single processing
nodes (N1,N2,...,N6) namely, the direction detector, depth estimator, summation, sigmoid
transformer, AND logic gate, and flight control command generator node.
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Figure 4.6: Schematic Illustration of a Sample Input Data

4.6.1 Input Image

As shown in Figure 4.5, the input image af is a sequence of f number of 2D arrays with a
dimension k × l pixels, where each pixel value (u, v) ∈ [0 − 255] distributed panoramically
along u(horizontal axis) and v(vertical axis) representing grey scale image frames of the input
collision movie illustrated in Figure 4.6.

4.6.2 Layer-W

Since UAVs exhibit vibrations over various frequencies, a linear time-invariant filter such as
a Wiener filter (Lim 1990) is introduced as the first layer to eliminate noise (undesirable blur)
adaptively within the input image exerting a minute computation load by estimating the local
mean and variance around each pixel as,

µf =
1

NM

N∑
u=1

M∑
v=1

af (u, v) (4.12)

and

σ2
f =

1

NM

N∑
u=1

M∑
v=1

[af (u, v)− µf ]2, (4.13)

where N and M are the local neighbourhood of each pixel along horizontal and vertical axis
respectively in the input image, which further creates a pixel-wise filter using,

bf (u, v) = µf +
σ2
f − w2

σ2
f

[af (u, v)− µf ] (4.14)

where w2 is the noise variance that is considered as the average of all the locally estimated
variances.
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4.6.3 Layer-E

The filtered signal is then fed to the excitation layer that estimates the luminance difference of
two consecutive input image frames by computing the absolute difference of the value of each
pixel within the 2D array of an image with respect to its previous time-step, mathematically,

Ef (u, v) = |bf (u, v)− bf−1(u, v)| (4.15)

where Ef is the output of the excitation layer at frame-f , bf and bf−1 are the filtered lumi-
nance at current and previous frames f and f − 1, respectively.

4.6.4 Layer-AHE

The next processing node is the adaptive histogram equalizer (AHE) (Zuiderveld 1994) that
enhances the excited frame’s contrast, facilitating a fine boundary separation between the
background and the edges of an obstacle by subdivision and interpolation scheme. As shown

Figure 4.7: Contextual Regions of a Sample Point in an Image Frame.

in Figure 4.7, grey-level attribute (denoted by a white dot) is determined by the grey-value
distribution in its neighbouring contextual regions of a sample point in an image frame with
centres denoted as L, M, N, and O where local grey-level mappings (gL(c), gM(c), gN(c),
and gO(c)) are based on the histogram of the contained pixels. Considering c as the original
pixel intensity for the sample point, we compute its new value by bilinear interpolation of the
grey-level mappings that were calculated for each of the neighbouring contextual zones as,

c′(u′, v′) = {(1− v′)((1− u′)gL(c) + u′gM(c))

+ v′((1− u′)gN(c) + u′gO(c))}
(4.16)
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Here u′ and v′ are the normalized distances with respect to the point L. The optimal contrast is
thus calculated by dividing the entire image frame into such rectangular contextual elements
shown in Figure (b) 4.7 (a sample zone), and then integrated to attain a whole contrast-
equalized image, Cf .

4.6.5 Layer-S

The obtained contrast-corrected image Cf is added to the excited image Ef to get,

Sf = ρs × |Ef + Cf | (4.17)

We introduce the summed output with a sensitivity factor, ρs that is an empirically determined
coefficient to help mitigate the undesirable excitations due to perturbations.

4.6.6 Layer-T

Furthermore, the resulting summed data Sf are treated with a simple binary thresholding
image segmentation,

Tf (u, v) =

1 (White) , if Sf (u, v) ≥ Tr

0 (Black) , if Sf (u, v) < Tr
(4.18)

Here the output Tf converts the input matrix Sf into binary dataset and replaces all pixels
with luminance greater than the defined threshold (Tr= empirically determined) with the
value 1 (white) and replaces all other pixels with the value 0 (black).

4.6.7 Response Generation Node

Ultimately the excited (white) pixels that have passed the threshold (Tr) are summed along
both dimensions of the array to generate a system response as,

Rf (u, v) =
k∑

u=1

l∑
v=1

|Tf (u, v)| (4.19)
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which is then fed to the spike generator to interpret the model response (collision alarms) as
spikes. This is accomplished by transforming the response signal into a sigmoid function as,

Af = (1 + e−Rf/scell)−1 (4.20)

where scell is the total number of the response nodes, and since Rf is greater than zero, the
normalized spiking response, Af ∈ [0.5− 1.0].

4.6.8 Direction and Proximity Estimation Nodes

The generated spiking responses are then interpreted to decipher the nature of collision alarm,
that is whether or not an obstacle is a potential collision threat. This is achieved by estimating
the direction of an obstacle’s motion relative to the vehicle and assigning it with a binary
value ∈ [0,1] using the condition,

Direction =


Approaching = 1, if avgAf > avgAf−1

Receding = 0, if avgAf < avgAf−1

Stagnant = 0, otherwise

(4.21)

and its proximity estimator condition given as,

Depth =

Imminent = 1, if avgAf > (δ × avgAf−1)

Distant = 0, otherwise
(4.22)

where avgAf is an average value of Af over 4 time-steps, and δ is an empirically estimated
coefficient that determines the nature of generated spikes implying if a threat is distant or
imminent which in turn facilitates a prudent avoidance-decision making.

4.6.9 Quadfurcation Node

Direction and proximity estimation nodes lay the foundation of the quadfurcation process
where an AND logic gate decides whether or not to initiate the process of quadfurcation
(avoidance) by boolean multiplication expressed as,

Quadfurcate = Direction AND Proximity (4.23)
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Following the AND gate truth table, the quadfurcation process is not initiated if either of
the parameters ‘direction’ or ‘proximity’ is OFF, whereas if both parameters are excited ex-
hibiting state 1, the algorithm quadfurcates the output of thresholding layer to form four
individual image frames each representing one quadrant of the observer’s field of view, il-
lustrated in Figure 4.8. It must be noted that the quadfurcation process introduced in this
paper can be substituted by a bifurcation process for ground robots where the vehicle’s field
of view is dissected in two equal halves (left and right) since there are only 3 degrees of
freedom. Further processing is similar to the previous section but performed on four quarter

Figure 4.8: Quadfurcation process, where the input image frames are dissected to form four
individual image frames each representing one quadrant of the vehicle’s field of view namely,
upper-left (UL), upper-right (UR), lower-left (LL), and lower-right (LR).

images in parallel. Quadfurcation of Tf array is represented as,

Tf1(x1, y1) = Tf (
−u
2
,
v

2
) (4.24)

Tf2(x2, y2) = Tf (
u

2
,
v

2
) (4.25)

Similarly Tf3 and Tf4 are computed to be fed simultaneously to the spike generator as,

Rf1(x1, y1) =

k1∑
x1=1

l1∑
y1=1

|Tf1(x1, y1)| (4.26)

and
Af1 = (1 + e−Rf1

/mcell)−1 (4.27)

where mcell is the total number of the response nodes and since Rf1 is greater than zero, the
normalized spikes, Af1 ∈ [0.5− 1.0].
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4.6.10 Motor Command Generation

Further their average over four time-steps (frames) is computed by,

avgAf1 =

∑4
j=0A(f−j)1

4
(4.28)

Similarly, the average response of the remaining three quadrants are computed in parallel
which are further compared against each other to estimate the most secure path as,

MotorCmd = avgAf1 − avgAf2 − avgAf3 − avgAf4 (4.29)

where ‘MotorCmd’ is expressed in terms of flight control commands involving various com-
bination of basic manoeuvres such as left, right (pitch, yaw, and roll,) trimmed to navigate
the robot through the estimated secure path. Detailed experimental results and analysis of the
proposed algorithm for different scenarios, velocities, and test environments are described in
the following chapter.

4.7 Summary

This chapter demonstrates that it is possible to achieve both simplicity and precision simulta-
neously using biological solutions. Inspired by these design trade-off strategies, the proposed
QLDP in this thesis exploits such computational simplicity to address the intricate task of ob-
stacle detection and avoidance for micro/nano robots. Major collision avoidance challenges
addressed in this thesis are,

• Vibrational noise resistance (blurring)

• Irregular contrast (lighting) correction

• Obstacle size, colour, and shape independence

• Obstacle proximity and direction estimation

• Extreme computational efficiency

Although the contemporary software and hardware technologies are far from comparison
with regard to their biological counterparts, researchers are continuously striving to gain
momentum in this field, and this thesis similarly attempts for the same.
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QLDP Visualisation & Modulation

“When we try to build autonomous robots, they are almost literally

puppets acting to illustrate our current myths about cognition.”

– Inman Harvey

In order to conduct a prudent experimental analysis in the next chapter, a comprehensive
set of input data is congregated here to test the model for various possible scenarios prepar-
ing the algorithm for a successful real-world real-time application. Input dataset collection is
performed systematically considering every vital parameter such as field of view (FOV), data
acquisition frequency (Hz), input data resolution, dimension, and format. Similarly, the colli-
sion scenarios are orchestrated precisely by defining sample trajectories, various constraints,
obstacles, and backgrounds to emulate near-exact real-world conditions.

Further, the model in its simplest form is fed with a sample input data to visualise the per-
formance of each processing node individually and calibrate them consistently. A MATLAB
user interface (UI) is designed for this purpose facilitating much straightforward analysis and
calibration process that further helped establishing a precise trade-off strategy. The strategy
involved elimination of insignificant processing nodes and layers increasing the available
computation power that could accommodate the incorporation of advantageous complemen-
tary modules such as contrast corrector and proximity estimator layers in the finalised algo-
rithm.

51



5. QLDP Visualisation & Modulation 52

5.1 Input Dataset

As mentioned earlier, for a systematic experimental analysis there is always a need for a
comprehensive input dataset prepared according to a established standard procedure reported
in the contemporary literature, this requires a clear definition of input data parameters and
configuration listed in Table 5.1,

Table 5.1: Off-line Test Input Data Specifications

Field of View (FOV) 90°
Data Acquisition Frequency 30Hz
Linear Forward Velocity Range 0.2-2.0 ms-1

Input Data Dimension 2D
Image Resolution 320x240 Pixels
Recorded Colour Space Grey Scale
Data Format .mpg

Once the input parameters are established, the next step involves collision scenario emulation
for various assessment parameters such as constant looming velocities, obstacle/background
size, colour, and contour.

5.1.1 Collision Avoidance Scenarios

The collision scenarios emulated in this section are further implemented in model analysis.
These involve assessment of specific modules introduced within the proposed system, hence,
a precise validation of the claimed functionalities is performed by testing the model against
a particular scenario to challenge potentialities that include,

1. Static Obstacle Detection: This scenario involves movement of the robot at a constant
velocity of ∼1 ms-1 on a straight trajectory that involves two static obstacles of 0.5
m and 1 m width placed consecutively at a 5 m separation, which must be detected
and avoided successfully by the robot. Since these tests are off-line, a short epoch is
considered for the algorithm to respond to the detected objects and generate collision-
free manoeuvres.

2. Obstacle Direction Detection: This involves a relatively similar scenario but the
obstacles on collision course are static where the first obstacle recedes the observer
(robot) but the second obstacle is on collision course approaching the vehicle on a lat-
eral path. The ability of the system to distinguish a potential threat (approaching) from
a non-threatening obstacle (receding) is tested using this input dataset.
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3. Proximity Estimation: This scenario is recorded solely to test the algorithm’s ability
to determine obstacle proximity, that is, to differentiate between a large distant obstacle
approaching and a small imminent one. This involves a looming velocity of 1.2 ms-1

towards two static obstacles of 0.5 and 1 m width placed consecutively 5 and 12 m
away from the robot’s initial position, respectively.

5.1.2 Simulation and Recording

The above described scenarios are orchestrated with varying combinations of hardware con-
figurations that are setup on the robot and data-capture device. Ultimately, the collision
videos are recorded and montaged in accordance to the described requirements considering
standard procedures reported in current literature.

5.2 Collision Avoidance Model Analysis

Analysis of the proposed model to assess its performance for varying test cases/scenarios
is extremely crucial to establish a precise trade-off strategy achieving the asserted system
capability or contribution to the respective field. This section demonstrates a detailed analysis
of QLDP against a sample off-line collision scenario to visualise the performance of each
processing node individually. This analysis involves,

• Description and demonstration of a sample off-line collision scenario (described in
previous section) imposing individual challenges to the asserted capabilities of the pro-
posed QLDP.

• Detailed demonstration of the QLDP response and results obtained for each individual
complementary module and processing layer tested with the same sample trial.

• Presentation of model response interpretation and motor command generation to cali-
brate the QLDP accordingly and thus establish a precise trade-off strategy.

Here, a sample input data is selected to visualise the model performance where each process-
ing layer and node within the proposed model is tested against its effective contribution to
the overall response and its share of computation load, which is further studied and taken into
design-trade consideration when compared to reference performance parameters published in
the associated research. The inference made with respect to the analysed performance of the
system serves as the evidence to implement and validate the model for real-world real-time
applications in the following chapter.
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5.2.1 Sample Input Dataset

The input data presented here is a sample representation of the collision scenarios orches-
trated to test individual prospects of the proposed model. This sample data involves an ob-
server (robot) moving at a constant forward velocity of 1.2 ms-1 towards two static obstacles
of 0.5 and 1 m width on the left and and right side of the vehicle’s field of view (90°), re-
spectively. These obstacles are placed clearly on the collision course and must eventually be
avoided by the robot with a short epoch between each turn considered for off-line analysis
purposes. Figure 5.1 illustrate sample image frames snapped from the input collision movie.

(a) Frame-15 (b) Frame-45 (c) Frame-115

Figure 5.1: Sample Input Dataset (Collision Video)

5.2.2 Wiener Filter Layer

As mentioned earlier, the input image af is a sequence of f number of 2D arrays with a
dimension kxl pixels, where each pixel value (u, v) ∈ [0 − 255], distributed panoramically
along u(horizontal axis) and v(vertical axis) representing grey scale image frames of the
captured collision video. As robotic platforms (particularly aerial) exhibit vibrations due to
high speed rotors on various frequencies, a constant time-invariant filter such as a Wiener
filter (Lim 1990) is introduced as the first layer to filter noise (undesirable blur) adaptively
within the input image imposing a minute computation load (∼4 milliseconds to process 1
frame) by estimating the local mean and variance around each pixel as,

µf =
1

NM

N∑
u=1

M∑
v=1

af (u, v) (5.1)

and

σ2
f =

1

NM

N∑
u=1

M∑
v=1

a2f (u, v)− µ2
f , (5.2)
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where N and M are the local neighbourhood of each pixel along horizontal and vertical axis
respectively in the input image, which further creates a pixel-wise filter using,

bf (u, v) = µf +
σ2
f − w2

σ2
f

(af − µf ) (5.3)

where w2 is the noise variance that is considered as the average of all the locally estimated
variances. However, since the representative trial data is collected in laboratory conditions,
the extreme vehicular vibrations offered by high-speed rotors does not exist and only when
observed closely, the figures illustrated in previous section possess minute noise and blur due
to camera motion which are clearly eliminated and mitigated by the Wiener filtering at this
stage shown in Figure 5.2.

(a) Frame-15 (b) Frame-45 (c) Frame-115

Figure 5.2: Linear Time-Invariant (Wiener) Filtered Frames.

5.2.3 Excitation Layer

One of the significant processing layers inspired by the original LGMD model is the excita-
tion layer (luminance-difference processing). Here the absolute difference of two consecutive
mitigated input image frames are determined to identify the changes occurred in the previous
time-step, that is for an observer with 60 Hz acquisition frequency, any change in its field of
view within 0.016 seconds is detected and passed on to next processing layer as an excited
pixel, thus this method is particularly meant for machines whose position with respect to the
surrounding changes continuously. Mathematically,

Ef (u, v) = |bf (u, v)− bf−1(u, v)| (5.4)

where Ef is the output of the excitation layer at frame-f , bf and bf−1 are the filtered lumi-
nance at current and previous frames f and f − 1, respectively. This layer involves minimal
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computations as every pixel value of a image frame is subtracted from its corresponding pixel
value at the previous time-step.

(a) Frame-15 (b) Frame-45 (c) Frame-115

Figure 5.3: Luminance-Difference Processed Image Frames.

Figure 5.4: Model Response without E-Layer

Figure 5.3 illustrates the visualisa-
tion of luminance-difference process-
ing. The excitation layer is also known
as the QLDP’s luminance-difference
processing layer that performs a fun-
damental image segmentation to detect
static obstacle edges. The response of
the system without the excitation layer
(which is one of the fundamental pro-
cessing elements of the QLDP) is ex-
tremely vague as illustrated in Figure
5.4. The elevated spiking response
shown (spike generation explained in
section 4.6.8), is unnecessary due to the
absence of the fundamental processing layer (luminance-differencing), passing every pixel
as an excited (white) cell.

5.2.4 Inhibition Layer

The inhibition is yet another processing layer within the computational model of a locust

LGMD. This layer basically introduces a convolution with an empirically set kernel to inhibit
excited (white) pixels from the output of excitation layer. It states that the convolution spreads
only to the nearest neighbouring pixels thus an excited pixel does not inhibit itself, which
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is depicted from the biological model of locust visual system. From the Figure 5.5, it is

(a) Frame-15 (b) Frame-45 (c) Frame-115

Figure 5.5: Inhibited Image Frames.

evident that the layers contribution is not substantial. The justification for elimination of
this processing layer from the model is bolstered by the Figure 5.6 which illustrates system
response with and without the inhibition layer proving its contribution to be unnecessary as
the excitations that are inhibited are already dismissed due their lower-than-unity spiking
value.

(a) With I-Layer (b) Without I-Layer

Figure 5.6: Inhibition-Layer Processing Response.

5.2.5 Contrast Correction

As a result of inhibition-layer elimination, there is an increase in the available computation
power accommodating a rather more effective and pragmatic processing layer to perform
contrast correction facilitating model operation in environments with an irregular lighting.
This layer performs Adaptive Histogram Equalisation (AHE) (Zuiderveld 1994) by creating a
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fine boundary separation between the background and the edges of an obstacle by subdivision
and interpolation scheme.

Figure 5.7: Schematic Illustration of Con-
textual Regions of a Sample Point in an
Image Frame.

As shown in Figure 5.7, grey-level attribute
(denoted by a white dot) is determined by the
grey-value distribution in its neighbouring con-
textual regions of a sample point in an image
frame with centres denoted as L, M, N, and O
where local grey-level mappings (gL(c), gM(c),
gN(c), and gO(c)) are based on the histogram of
the contained pixels. Considering c as the origi-
nal pixel intensity for the sample point, we com-
pute its new value by bilinear interpolation of
the grey-level mappings that were calculated for
each of the neighbouring contextual zones as,

c′(u′, v′) = {(1− v′)((1− u′)gL(c) + u′gM(c))

+ v′((1− u′)gN(c) + u′gO(c))}
(5.5)

Here u′ and v′ are the normalised distances to L. The optimal contrast is thus calculated by
dividing the entire image frame into such rectangular contextual elements shown in Figure
5.7, and then integrated to attain a whole contrast-equalized image, Cf shown in Figure 5.8.

(a) Frame-15 (b) Frame-45 (c) Frame-115

Figure 5.8: Contrast Corrected Image Frames.

5.2.6 Non-uniform Illumination Correction

Illumination correction is another complementary module that could enhance the model per-
formance. However, the trade-off strategy necessitated the elimination of this layer due to its
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massive computation load exerted on the algorithm. In this layer, a morphological-opening
is performed to estimate the background illumination of the contrast corrected image by di-
lating its eroded form (Marques 2011) as,

Cf ◦Of = (Cf 	Of )⊕Of (5.6)

which is then subtracted from the equalised image frame represented as,

If = Cf − (Cf ◦Of ) (5.7)

To generate a uniformly illuminated output image frame that is immune to shadowing and
irregular lighting effects. Although the representative input data does not exhibit severe shad-
owing, the results of this processing layer can be seen in Figure 5.9,

(a) Frame-15 (b) Frame-45 (c) Frame-115

Figure 5.9: Illumination Corrected Image Frames

5.2.7 Summing Layer

An intermediate processing layer called the summing layer is introduced immediately af-
ter generating contrast-corrected pixels whose values are summed with the excited pixels
and depreciated to mitigate the effects of unprecedented abrupt motion causing large pertur-
bations, or huge receding objects producing enormous excitations within the excited-frame
pixel values. The obtained contrast-corrected image Cf is added to the excited image Ef
mathematically represented as,

Sf = ρs × |Ef + Cf | (5.8)

The summed output is introduced with a sensitivity factor, ρs that is an empirically deter-
mined coefficient to help mitigate the afore mentioned undesirable excitations due to pertur-
bations.
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(a) Frame-15 (b) Frame-45 (c) Frame-115

Figure 5.10: Summed Image Frames

Figure 5.11: Model Response without S-Layer.

Figure 5.10 shows the summing
layer effect on the contrast corrected
images. The contribution of sum-
ming layer to the overall response is
significant despite its simple opera-
tion as it provides a mild mitigation
for undesirably large perturbations.
As shown in Figure 5.11, the absence
of summing layer results in an in-
crease in the number of false colli-
sion alarms due to undesirable exci-
tations making the overall system re-
sponse futile.

5.2.8 Thresholding Layer

Ultimately a significant image segmentation layer is introduced where the layer converts
an input array of pixel values into binary dataset, and replaces all the values with lumi-
nance greater than the empirically (trial and error) determined threshold (Tr) with the value
1 (white), and replaces all other pixels with the value 0 (black) as,

Tf (u, v) =

1 (White) , if Sf (u, v) ≥ Tr

0 (Black) , if Sf (u, v) < Tr
(5.9)

This helps to establish distinct and sharp obstacle edges within the image frames, that can
further be implemented in proximity and direction detection nodes. Overall system response
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is generated using the output pixel values of this layer shown in Figure 5.12. Elimination or

(a) Frame-15 (b) Frame-45 (c) Frame-115

Figure 5.12: Threshed Image Frames.

an ineffective threshold value Tr fails to block undesirable excitations, which would even-
tually lead to a leakage of mildly excited pixels causing generation of false collision alarms
shown in Figure (b) 5.13. However, Figure (a) 5.13 illustrates contribution of an empirically
determined threshold maintaining the undesirable excitations below unit-spike level.

(a) With Thresholding (b) Without Thresholding

Figure 5.13: Model Response with and without Thresholding Layer.

5.3 Response Generation and Interpretation

In this section a MATLAB based user interface (UI) is designed and presented to facilitate a
coherent visualisation of the system behaviour, response, and decision making. It consists of
five major elements each representing a component of the system namely, data visualisation
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(robot’s field of view dissected according to the robot’s degree of freedom), motor control
command, obstacle approach direction, obstacle proximity, and the spiking response (colli-
sion alarm). Figure 5.14 illustrates a typical view of the interface visualising system response
during the program execution. Detailed definition and role of each element is described in
following sections.

Figure 5.14: Model assessment-visualisation interface. Consists of five major elements
namely, quadfurcated images, motor control command, obstacle direction, proximity esti-
mation, and the spiking response.

5.3.1 Processed Data Visualisation

Figure 5.15 illustrates the visualisation element within the designed user interface which
monitors the output image data from the final processing layer (thresholding) in real-time.
Implementation of quadfurcation methodology is rather displayed in this window where the
output frames from thresholding layer are dissected into four equal quarters along vertical
and horizontal axes respectively emulating the field of view of each upper left, upper right,
lower left, and lower right eye in clockwise order. It must be noted that the quadfurcation
process introduced in this paper can be substituted by a bifurcation process for ground robots
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Figure 5.15: Processed Data Visualisation. Each quadrant represents one quarter of the
robot’s field of view that is quadfurcated.

where the vehicle’s field of view is dissected in two equal halves (left and right) since there
are only 3 degrees of freedom.

5.3.2 Direction Detection

Direction in which the vehicle drifts with respect to an obstacle is estimated by comparing
the spiking response of the model over three consecutive time-steps to check if the size of
the object is increasing (approaching) or decreasing (receding) implying its course and threat
potentiality. This is achieved by estimating the direction of an obstacle’s motion relative to
the robot and assigning it with a binary value ∈ [0,1] using the condition,

Direction =


Approaching = 1, if avgAf > avgAf−1

Receding = 0, if avgAf < avgAf−1

Stagnant = 0, otherwise

(5.10)

where avgAf is an average value ofAf over 4 time-steps (determined empirically), that helps
in estimating the change in obstacle size (growing/reducing) to determine if the obstacle is
approaching or receding facilitating a better avoidance-decision making. A collision test
case (scenario) was orchestrated solely to evaluate the direction detection capability of the
model, where an obstacle of 1 m height recedes the robot’s field of view at 1.2 ms-1 causing
a decaying response shown in Figure (b) 5.16 that is interpreted as a receding obstacle.
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(a) Robot Receding an Obstacle

(b) Output Spiking Response

Figure 5.16: Model Test to Evaluate Direction Detection Capability.

Figure 5.17: Obstacle Motion Direction Indicator

Figure (a) 5.16 illustrates 1st,
25th, 50th image frames extracted
from the direction-detection input
test video. The detected direction is
a triad denoted by either Approach-
ing, Receding, or Stagnant annotated
in blue font enclosed in rectangular boxes within the user-interface, shown in Figure 5.17.

5.3.3 Depth Detection

Depth at which obstacles approach the robot is estimated by comparing the nature of growth
of obstacle size that is on collision course and approaching the robot against an empirically
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determined coefficient δ. This is given by,

Depth =

Near = 1, if avgAf > (δ × avgAf−1)

Far = 0, otherwise
(5.11)

where δ is an empirically estimated coefficient that determines the nature of generated spikes
implying if a threat is Far (distant) or Near (imminent) further facilitating an improved
avoidance-decision making. To evaluate the proximity estimation capability of the model,
a scenario is orchestrated where two obstacles approach the robot on collision course at 5
m separation, with the closer obstacle-A being 1/3rd of the farther obstacle-B causing the
generation of a motor control command to lead the vehicle towards the obstacle-B (though
larger) the rate of growth of its size remains smaller than obstacle-A that is imminent.

(a) Robot Approaching Obstacles of Varying Sizes at Varying Separations

(b) Output Spiking Response

Figure 5.18: Model Test to Evaluate Proximity Estimation Capability.
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Figure 5.19: Obstacle Proximity Indicator

Figure 5.18 demonstrates loom-
ing of the obstacles at 1st, 25th

and 50th time-step along with its
generated spiking response depicting
the approach of a potential collision
threat starting from frame-13, hence
providing more than 5 seconds long epoch to avoid the obstacle. The rationale is based on
the two possible outcomes namely, obstacle is distant (logarithmic spike growth), obstacle is
imminent (growth by a factor ‘δ’). The output notation for this element is annotated in blue
font enclosed in rectangular boxes within the UI, shown in Figure 5.19.

5.3.4 Spiking Response

Sigmoid transformation of the excited pixels that passed the threshold layer determines the
spiking response of the model. This mechanism is employed here to generate spikes as
collision alarms by summing the threshed cells along both horizontal and vertical axis,

Rf (u, v) =
k∑

u=1

l∑
v=1

|Tf (u, v)| (5.12)

Which is then fed to the spike generator to interpret the model response (collision alarms) as
spikes. This is accomplished by transforming the response signal into a sigmoid function as,

Af = (1 + e−Rf/scell)−1 (5.13)

where scell is the total number of the response nodes, and since Rf is greater than zero,
the normalized spiking response, Af ∈ [0.5 − 1.0], where 1.0 (spike) corresponds to an
ON signal and every other value is OFF. Figure 5.20 illustrates the graphical visualisation

Figure 5.20: Spiking Response Plot
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of the spiking mechanism that is built within the UI to represent the behaviour of each eye
(quadrant) in response to stimuli. It is clear from the figure that upper-left and upper-right
quarters of robot’s field of view is experiencing greater threats thus causing the system initiate
the quadfurcation process to generate collision-free motor control command.

5.3.5 Motor Control Command

The interpretation of spiking response from the algorithm is performed by comparing the
nature and intensity of spikes generated by each quadrant of the robot’s field of view, and
based on the comparison results over at least five time-steps the motor control (elevator and
aileron) commands are generated with respect to robot’s control surfaces. This process is
represented as,

avgAf1 =

∑4
j=0A(f−j)1

4
(5.14)

Similarly, the average response of the remaining three quadrants are computed in parallel
which are further compared against each other to estimate the most secure path as,

MotorCmd = avgAf1 − avgAf2 − avgAf3 − avgAf4 (5.15)

Figure 5.21: Motor Control Command

The decision making (motor control) block
exhibits either of the four possible outcomes cor-
responding to the four quarters of the robot’s
field of view towards which the robot is guided
using its respective control surfaces (for aerial
robot, aileron and elevator) that is visualised in
real-time by annotating the commands in green font enclosed in a rectangular box within the
UI, shown in Figure 5.21.

5.4 Summary

In this chapter, a comprehensive set of input data was congregated under a standard procedure
reported in the associated literature, prepared for implementation in the off-line testing and
performance assessment of the algorithm, in the following chapter. A detailed analysis of the
proposed collision avoidance model is conducted and briefly demonstrated in this chapter.
Based on the analysis results and system response, modulation of the model is carried out
further to achieve maximum system robustness and reliability.
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A successful representation and visualisation of the proposed algorithm’s layer-by-layer
processing, specifically the advantageous layers such as direction and proximity estimation
facilitated a prudent modulation of the model, and assisted in establishing an efficient design
trade-off strategy to acquire the most optimum performance versus computation load ready
to be validated in the following chapter.
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QLDP Performance Validation

“Vision is the process of discovering from images

what is present in the world and where it is.”

– David Marr

This chapter deals with the off-line and the real-world real-time implementation and test-
ing of the proposed algorithm to assess and validate its performance and asserted capabilities.
This is achieved by a systematic approach where the off-line collision scenarios orchestrated
in the previous chapter are supplied to the model in form of a recorded input data, and the
obtained system response is recorded for performance analysis. Further, for the real-world
real-time testing, the robotic platform demonstrated in Chapter 3, is prepared and tested with
a number of standard and arbitrary collision scenarios to challenge the algorithms specific
claimed capabilities.

Ultimately, the performance of the algorithm for both the off-line and the real-world real-
time tests are recorded and graphically compared to the contemporary associated literature
to deliver a contrasting conclusion of the merits and demerits of the proposed algorithm in
specific categories of (1) the number of detection errors, (2) exerted computation load, and
(3) robustness and agility to respond to a potential collision threat.

69



6. QLDP Performance Validation 70

6.1 Off-line Experimentation

A comprehensive off-line analysis of the proposed collision avoidance model is conducted
and briefly demonstrated along with the inferences drawn for a wide range of collision scenar-
ios. In order to conduct a prudent off-line analysis, a complete set of input data are gathered
(Chapter 5) to test the model for various possible scenarios preparing the algorithm for a suc-
cessful real-time real-world application. Input dataset collection is performed systematically
considering every vital parameter such as field of view (FOV), data acquisition frequency
(Hz), image resolution, dimension, and format listed in Table 6.1. Similarly, the collision
scenarios are orchestrated precisely by defining sample trajectories, various constraints, ob-
stacles, and backgrounds to emulate near-exact real-world conditions.

Table 6.1: Input Dataset Configuration and Setup

Input Data Capture 2-Megapixel HP CMOS Sensor
Field of View (FOV) 90◦

Data Acquisition Frequency 30Hz
Robot Constant Forward Velocity 0.2-2.0 ms-1

Input Data Resolution 2D RGB 320x240 Pixels
Central Processing Unit Intel(R) Core(TM) i5-6500
CPU Clock frequency 3.20 GHz

Random Access Memory 8.00 GB
Operating System MS Windows 7 (64-bit)

6.1.1 Collision Scenarios and Test Setup

The input data presented here is a sample representation of the collision scenarios orches-
trated to test individual prospects of the proposed model. This sample involves an observer
(robot) moving at a constant forward velocity of 1.2 ms-1 towards two static obstacles of 0.5
m and 1 m width on the left and right side of the robot’s field of view (90◦), consecutively.
These obstacles are placed clearly on the collision course and must eventually be avoided.
Figure (a) 6.1 illustrates the processed image frames (lower row) and raw input image frames
(upper row) extracted from the input collision video. Figure (b) 6.1 represents the spiking
response for the input collision video, where the spikes exceed 0.95 border from 40th and
135th frame for the first and second obstacle, respectively, implying that the obstacles are
detected more than 3 seconds prior to contact.

In order to validate the proposed model, a number of collision scenarios are orches-
trated with varying input parameters such as constant looming velocities, obstacle dimen-
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(a) Processed Image Frames (lower row) and Raw Input Image Frames (upper row)

(b) Spiking Response for the Input Collision Video

Figure 6.1: Sample Off-line Experimentation.

sion, colour, and complex backgrounds. The collision scenarios represented in this section
are implemented in model analysis involving assessment of specific modules introduced as
the proposed model’s novelties including, (1) Algorithm consistency and (2) Operation in
complex backgrounds.

6.1.2 Model Consistency

A simple scenario is designed to evaluate the QLDP’s response agility for various forward
velocities. Here the robot approaches a brightly coloured static obstacle with an initial sepa-
ration of 1.2 m at 0.24, 0.48, and 1.2 ms-1 corresponding to black cross, blue circle and red
square, shown from top to bottom in Figure (a) 6.2, respectively. The spiking response for all
three cases are presented in Figure (b) 6.2, which illustrates the black cross, blue circles, and
red squares spike level rise to unity from the 200th, 130th, and 70th frame. Using the equation
6.1 from section 6.3.3, we compute distances prior to a potential collision as 0.66, 0.51, and
0.3 m, for the velocities in ascending order, respectively. Graphics in Figure 6.12.
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(a) Image frames at 50 frame intervals extracted from the consistency-evaluation video

(b) Output spiking response of the model over 250 frames

Figure 6.2: Consistency Evaluation Setup.

6.1.3 Complex Indoor Scenario

To evaluate the proposed model’s capability to operate indoors, a complex-background sce-
nario was orchestrated involving a brightly coloured column (pillar) surfaced with the exact
same granite used on the background wall. The vehicle (robot) approaches the granite col-
umn at a constant velocity of 1.4 ms-1 travelling a distance of 5.6 m in 4 seconds. The model
responds to the looming obstacle by increasing the collision alarm (spikes) shown in Figure
6.3, as the column impends, gradually the right half of the vehicle’s field of view is activated,
elevating the spike levels in the right neuron response coloured in red crosses. Further, the
spike interpreter generates left-steering motor control commands to manoeuvre the vehicle
away from the pillar. It is evident that the model successfully detects like-coloured obstacles
and differentiates edges independent of their size, colour and contour.
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(a) Image frames extracted from the column detection video (90Hz)

(b) Output spiking response of the model for the left and right half of the robot’s field of view

Figure 6.3: Model Response to Evaluate Edge Detection Capability.

6.2 Real-time Real-World Experimentation

In this section, experimental setup and demonstration of model’s real-world real-time im-
plementation on a ground robot is presented. The algorithm is tested against a number of
different collision scenarios involving multiple obstacles of varying colour, background, di-
mension, and contour.

The proposed model is implemented on a 3-DOF (degree of freedom) ground robot de-
signed and fabricated at the Unmanned Autonomous Systems Laboratory (UASL), Cranfield
University, to meet the specific requirements of the afore mentioned experimentations. It ex-
hibits the necessary agility to accomplish successful collision avoidance using a DC motor,
9g servo motor, Arduino nano development board, motor shield, and a 2-Megapixel CMOS
sensor. The Atmel ATmega328 8-bit AVR micro-controller with a maximum of 20 MHz op-
erating frequency built into an Arduino development board is implemented to interface the
robot with the proposed algorithm developed in MATLAB. Image frames captured by the
CMOS sensor are transmitted through a USB cable to the ground station where the images
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are processed and motor control commands generated. These commands are transmitted
through the micro-controller to the servo and motor shield to control the robot’s locomotion.

(a) Assembled Robot (b) Circuit Connection

Figure 6.4: Robotic Platform.

The conventional robotic differential steering was substituted with an Ackerman steering to
replicate a near-exact real-world four wheel vehicle dynamics posing greater manoeuvring
challenges as a result of underactuation. The schematic illustration of the designed robot,
test platform and circuit connections are shown in Figure 6.4.

6.2.1 A Sample Real-World Scenario

As mentioned in Section 4.6.9, the vehicle’s field of view is bifurcated here (3-DOF Robot).
A top-view camera and a screen recorder is setup to record the experimental arrangement.
Initially the algorithm is executed in MATLAB and the vehicle launched along a pre-defined
trajectory. The robot is assigned to travel through two waypoints 2 m apart steered au-
tonomously with the help of the QLDP’s collision-free motor commands interfaced through
an Arduino Nano microcontroller. The path of the vehicle is impeded with two obstacles,
0.15 m and 0.2 m high, laid 0.7 m apart. The robot moves with a constant forward velocity
of 1.5 ms-1 traversing the assigned 2 m distance in 1.33 seconds. However, this mission is
accomplished without a collision at a success rate of ∼90% shown in Figure (a) 6.5. The
robot’s field of view is bifurcated and processed to create a comparison between either direc-
tions (left-right) facilitating collision-free motor control command generation.
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(a) Blended frames of the top-view movie captured while robot travels the trajectory

(b) Robot’s field of view where random obstacles are detected and avoided

(c) Spiking response of the algorithm with respect to potential collision threats

Figure 6.5: Real World Experimentation.

The spiking response of the processed images for either half of robot’s field of view is il-
lustrated in Figure (c) 6.5. The entire process of consecutive obstacle avoidance is completed
in 20 frames (0.6 seconds), initiated at frame-20 and completed by frame-40. Substituting the
equations 6.1 and 6.2 with, initial obstacle-robot separation (I =1m), frame number at which
the avoidance is initiated (x =20th)(Figure (c) 6.5), velocity of the robot (v =1.5ms-1), pro-
cessing frequency (f =90Hz), we obtain the proposed model’s capability to avoid arbitrary
real-world obstacles at 670 millimetres prior to collision.
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6.2.2 Arbitrary Standard Collision Scenarios

In order to realise the ultimate objective of our proposed algorithm, an arbitrary set of con-
ventional collision scenarios were orchestrated. Figure 6.6 illustrates four individual scenar-
ios tested for various trials indicating successful collision-free manoeuvring of the vehicle
through obstacles laid in eclectic formations. For these tests, the robot is assigned to traverse
a straight trajectory connecting two waypoints from extreme left to extreme right hand side.
The velocity of the vehicle remains constant at ∼1 ms-1 travelling an approximately 1.5 m
distance crammed with 0.1 m high obstacles (∼40 g crisps packets) whose flexible profile
proved that the algorithm remains independent of obstacle contour, dimension, and colour.
The illustrated test cases involve conventional scenarios and obstacle setup such as, right-
angled path necessitating sharp manoeuvres, a 45◦ junction splitting trajectory, chequered-
pattern-laid obstacles crammed to convolute the test, and ultimately the most challenging
scenario considering the robot’s underactuation (Ackerman steering) to make a steep turn
demanding a correct sequence of consecutive motor control commands.

(a) Right-angle inclined path (b) Obstacles splitting path ahead

(c) Obstacles laid in chequered pattern (d) A challenging steep turn

Figure 6.6: Standard Collision Scenarios.



77 6.3. Performance Assessment

6.3 Performance Assessment

A number of tests were executed to obtain a detailed and comprehensive conclusion on the
model’s performance and capabilities. In order to draw valid inferences, a set of established
reference parameters such as,

• Computation Load

• Detection Error

• Detection Time and Distance Prior to Collision

are systematically studied in this section to assess and validate performance of the proposed
model in off-line as well as real-world real-time scenarios.

6.3.1 Computation Load

One of the most important performance assessment parameters in this thesis includes the al-
gorithm’s processing power and memory requirements, since the designed system’s primary
target applications are micro UAVs, it is crucial to assess the system’s required processing
power and memory. For the computation load assessment, all the visualisation elements such
as response plot, playback object, and processed frames are eliminated to minimise unneces-
sary load.

Figure 6.7: MATLAB-Program Timing Chart

Timing the model execution in
MATLAB with the specifications de-
scribed in 6.1, deduced the Figure
6.7 as the time distribution chart for
each function. The timing chart
clearly indicates the total required
time to process an eight seconds
video, with the ‘contrast and illumi-
nation correction’ layers consuming
the greatest portions of processing
time which leads to elimination of
illumination-correction layer to fur-
ther increase efficiency of the model.



6. QLDP Performance Validation 78

An additional load test was performed using MATLAB’s built-in stopwatch to time every
individual processing layer of the algorithm deducing a time distribution table and a pie chart
illustrated in Figure 6.8.

Time to Process 1 Frame (milliseconds)

Noise Filter 4

Contrast Correction 3

Luminance Disparity 0.4

Binary Thresholding 0.3

Others 0.8

Figure 6.8: The table lists epoch for different layer processing of 1 image frame, and the pie
chart illustrates the graphical distribution of computation load

It is evident that on average the total required time to process a single image frame of
320 × 240 pixels is ∼8.5 milliseconds, which implies that a maximum of 120 Hz process-
ing speed can be achieved that is highly superior compared to the contemporary associated
literature. However, greater frequencies are feasible by eliminating processing layers with
a slightly lesser significance such as contrast correction, which introduces a rather potential
future research topic to conduct a prudent performance trade-off by analysing these layers’
significance with respect to their computation cost.

(a) CPU Usage

(b) RAM Usage

Figure 6.9: MS Windows Resource Monitor
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Nevertheless, the test setup configuration presented here, is substantially beyond the
model’s actual requirements as the MS Windows Resource Monitor shown in Figure 6.9
demonstrates usage of resources being infinitesimally small, which can be briefly listed as,

1. Percentage CPU Usage = 4.3% of Core i5 3.20-GHz

2. Percentage Used Physical Memory = 0.25% (21 MB)

3. Storage Disk Usage = 4.5 KB

These requirements hint at the fact that the proposed model is computationally simple, hence
feasible to be successfully implemented and executed on a basic single core ARM micropro-
cessor.

6.3.2 Detection Errors

The proposed model was analysed for its consistency and performance robustness by testing
it against a number of different scenarios involving static obstacles of sizes within a range of
0.5 to 1 m wide sequentially obstructing the robot’s path which is moving at an approximate
forward velocity of 0.8 to 1.2 ms-1.

Figure 6.10: System Detection Errors

To draw a clear inference in
this section, a graph of the per-
centage of obstacles; missed (col-
lided), avoided, and false detections
were plotted against the robot’s (ob-
server) constant velocity in ms-1 re-
spectively, shown in Figure 6.10. A
detailed assessment result for differ-
ent off-line scenarios is illustrated
in Figure 6.12. The model remains
highly effective at lower (0.10-0.20
ms-1) velocities, although efficiency
drops causing slight rise (2%) in generation of false collision alarms at higher forward veloc-
ities (1-1.2 ms-1), yet it remains highly feasible for indoor applications since robots do not
operate at elevated velocities within confined environments. Also considering the model’s
computational simplicity, the delivered efficiency is reasonably high compared to the litera-
ture reported in the associated research (Yue & Rind 2013, Hu et al. 2016, Silva et al. 2014).
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6.3.3 Distance and Time to Collision

One of the most common reference parameters for examining the performance of a colli-
sion avoidance algorithm is the distance and time before which a potential collision threat
is successfully detected and avoided. This is particularly important for aerial applications
as flying robots exhibit underactuation that requires quicker detections providing sufficient
time to initiate successful avoidance manoeuvres. The related contemporary research works
provide performance assessments of LGMD model on ground vehicles which we compare
with the capabilities and performance of the model proposed in this thesis.

These assessments involve the study of results from Hu et al. (2016), Yue & Rind (2013)
and Silva et al. (2014), which are slightly contrasting, as they implement different approaches
to summarise their results by demonstrating that an increase in vehicle velocity results in
greater distances before which an avoidance manoeuvre can be initiated. However, the con-
stant looming velocities involved in these experiments does not quite suffice aerial applica-
tions where the vehicle velocity exceeds a minimum of 1 ms-1 most of the time, and due to
their underactuation, the distance prior to collision must be much greater than ground vehi-
cles to accommodate safe manoeuvres. Nevertheless, their rate of correct detection remains
higher (95%) due to the lower forward velocities used in their experimentation.

Figure 6.11: Detection Distance and Time Prior to Col-
lision (model from Hu et al. (2016))

On the other hand, Silva et al.
(2014) present their model per-
formance based on four simulated
collision scenarios and one real-
world recorded video involving
approach of a rectangular box at
constant velocities in the range of
1 ms-1 whose distance prior to col-
lision is estimated to remain be-
tween 0.25 to 0.35 m with min-
imum consistency caused by the
simulation methodologies and en-
vironment. However, for the off-
line real-world video analysis in-
volving a dark ball on a white background, the looming velocity implemented is much
smaller (∼0.24 ms-1) where the detection distance prior to collision still remains approxi-
mately the same as simulated results (0.2 meters).
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Further to draw a contrast with respect to the related methodologies proposed by different
authors, the collected input dataset was tested with a collision avoidance model with inhibi-
tion (main processing layer in LGMD) as described in Hu et al. (2016), Yue & Rind (2013)
to deduce a set of results illustrated in Figure 6.11. In line with their published results, the
time to collision in these models remain fairly greater than 1 second when compared to our
>3 seconds response shown in Figure 6.5 and 6.12. Hence the distance prior to collision is
almost 1/3rd of the corresponding results deduced in our proposed model for the same sce-
nario and settings explained in detail below. Similarly, the behaviour of the system varies
inconsistently as well, where the rise in forward velocity causes increase in distance prior to
collision slightly up to an approximately 0.5 ms-1, however, at higher velocities (>1 ms-1)
the model fails to cope as a result of increasing false collision alarms (50%).

Figure 6.12: Detection Distance and Time.

Now to correlate the assess-
ment results of the proposed
model with the above references,
we approximate the growth of
model’s spiking response to a col-
lision threat by an exponential
curve whose slope directly de-
pends on, (1) processing power,
(2) memory, (3) data acquisition
frequency (Hz), (4) robot’s con-
stant forward velocity, and (5) ob-
stacle’s distance from the robot.
To establish testing standards, the
above specifications are approximated to the nearest values with respect to the associated
research, and tests are performed at near-exact laboratory conditions. The distance (D) and
time (T ) at which the model successfully detects a potential threat prior to collision and fires
spiking response is computed using the robot’s constant forward velocity, initial obstacle
distance from vehicle, and the frame at which the first avoidance command is generated,
expressed as,

D = I − (x.v.f−1) (6.1)

T = D.v−1 (6.2)

where, I is the initial obstacle distance from robot at 0th frame, v is the robot’s constant
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forward velocity, f is the data acquisition frequency, and × is the frame number at which
avoidance is initiated. Using the above relations, time and distances were computed and
plotted on a graph of robot’s constant velocity illustrated in Figure 6.12,

Avoidance manoeuvres are initiated prior to at least five times the detected obstacle’s size
providing sufficient distance and time for a successful avoidance manoeuvre which is ex-
tremely favourable in aerial robotics where underactuation is a significant concern. Although
the manoeuvring and control command generation is performed on an entirely different prin-
ciple when compared to the methodologies implemented by the afore described associated
research, nevertheless, required objectives are achieved successfully as Figure 6.12 and 6.5
represent the time before collision for higher forward velocities as (1) 500 mm for off-line
tests, and (2) 670 mm for real-time real-world tests, which evidently bolsters the briskness
of the proposed model for indoor aerial collision avoidance. Hence it can be claimed that
using this system, flight control commands may be generated well prior to the occurrence of
a collision providing secure path for the vehicle with an infinitesimally small computation
load.

6.4 Summary

This chapter successfully describes a comprehensive and systematic approach to a brief over-
all assessment of the proposed model’s performance. The results demonstrated in this chap-
ter provide sufficient evidence to support the model’s following list of claimed capabilities to
successfully detect and avoid obstacles in real-time real-world conditions. The algorithm is
fairly advanced and robust compared to its peer models addressing a number of indoor robot
navigation-specific challenges highlighted as:

• Brisk response (∼700 mm prior to collision at 1.5 ms-1)

• Irregular contrast (lighting) correction

• Motion direction detection

• Simplified proximity estimation

• Minimal computation load

• Optimised performance (elimination of insignificant processing nodes)
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Conclusions and Future Work

“One machine can do the work of fifty ordinary men.

No machine can do the work of one extraordinary man.”

– Elbert Hubbard

7.1 Salient Achievements

This thesis presents a novel methodology and its performance assessment to achieve a com-
putationally efficient and robust collision avoidance system for micro and nano class of
robots. This is primarily aimed at assisting the development of autonomous navigation
systems requiring minimum computation power that is a challenging constraint in compact
robots. A biologically-inspired vision based collision avoidance system was studied in Chap-
ter 4 which inspired an original algorithm coined as the Quadfurcated Luminance-Difference
Processing (QLDP), modulated and enhanced (Chapter 5) during the course of this research,
whose performance assessment results inferred, (1) QLDP was capable of achieving an obsta-
cle detection time of more than 500 milliseconds prior to collision in off-line testing scenarios
(Chapter 6), and (2) it was capable of achieving an obstacle detection distance of more than
600 mm prior to a collision in Real-world real-time testing scenarios (Chapter 6), processing
at 120 Hz which is much superior compared to its peer models reported in the contemporary
literature. Major detection challenges that were successfully addressed in this thesis are,

• Brisk response

83
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• Edge detection in complex background

• Operation in GPS-denied environments

• Irregular contrast (lighting) correction

• Motion direction detection

• Proximity estimation and

• Optimised performance and minimal computation load

Over the past few decades, biological approaches to address engineering problems have
evolved continuously gaining momentum rapidly. This is because of the simple yet robust
structure of the biological beings we observe in nature. For instance, optic flow algorithms
used in autonomous navigation of aerial robots are far more efficient when compared to the
conventional computer vision algorithms that require extensive computational power to per-
form the same task. Similarly, in this thesis, the simple luminance-differencing behaviour
of a locust visual neuron (LGMD) lays the foundation of the proposed algorithm to address
challenging tasks such as edge detection in complex backgrounds. Such efficient solutions
offered by the biological models are particularly favourable in micro and nano robotics whose
payload delivery is strictly limited due to underdeveloped hardware technologies.

In line with the simplicity and efficiency of biologically-inspired algorithms, vision-based
solutions on the hardware end, offer far better prospects in further simplifying the overall un-
manned autonomous system (UAS) as they are much lighter in weight, operate on a broader
bandwidth, require minimal power, and are compact in size when compared to their peer
hardware technologies such as LIDARS. Therefore it is evident that vision-based technolo-
gies would emerge as primary preference for robotic researchers similar to the evolution of
biological beings implementing vision as their primary navigation sensory organ.

Although the methodology proposed in this thesis addresses only a see-and-avoid aspect
of a navigation system, it contributes crucially towards elevation of autonomy level in a UAS
applied on micro/nano robots operating in a complex GPS-denied environment. Augmenting
the autonomy level of autonomous system is a vast and trending research topic particularly in
aerial robotics since their applications are expanding rapidly including, inspection and main-
tenance of infrastructures, agricultural seeding, imaging, pest-management, transportation
and logistics, search and rescue organisations, disaster management, surveillance, military
and many other fields. UAS are particularly suitable for the afore mentioned tasks due to
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the fact that they eliminate the requirement of direct human interaction and supervision thus
greater the autonomy levels, greater would be the mission success rate at reduced cost.

7.2 Limitations

Although the proposed algorithm performs admirably better than its peer models, there exists
major limitations to this methodology on different grounds that could perhaps unveil a range
of potential future research topics to achieve further efficiency and robustness. Some of these
important limitations worth perceiving are explained systematically below.

7.2.1 Environmental Conditions

Autonomous navigation in a complex cluttered environment is an arduous task that is cur-
rently possible to address only by computationally expensive algorithms capable of differen-
tiating, tracking and identifying the nature, origin, and type of a detected obstacle which is
not facilitated in simpler algorithms such as the QLDP presented in this thesis. However, the
model proposed here detects edges and establishes a correlation among segments of its field
of view to differentiate a distant from an imminent object or a receding from an approaching
one simply by computing the nature of expansion/contraction of the detected object edge.
Thus further development of the edge detection processing layer within this model may im-
prove the performance drastically.

There exists many other operation-environment limitations to our proposed algorithm,
such as extremely dark, rainy, misty, poorly-visible, and basically any possible environmen-
tal condition that impedes the operation of a visual sensor (camera) limits the successful
implementation and operation of the algorithm proposed in this thesis.

7.2.2 Forward Velocity

One of the fundamental constraints particularly in aerial robotic navigation is operating suc-
cessfully at high-speed flights and extreme accelerations due to powerful propulsion systems
capable of producing a vertical lift against the gravitational force. To perform successful col-
lision avoidance at higher approach velocities, the algorithm must be capable of processing
at higher frequencies likewise. This is achieved by optimising and increasing efficiency of
the system exhaustively, however, due to hardware limitations and computational power con-
straints onboard micro robots, high speed processing at high success rate is currently almost
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impossible. Similarly, the algorithm proposed in this thesis does not serve its purpose suc-
cessfully at extreme looming velocities such as post 2 ms-1 as the number of false collision
alarms increase exponentially, demonstrated in Figure 6.12.

7.2.3 Planning and Mapping

As mentioned earlier, the methodology proposed in this thesis is based on see-and-avoid
principle involving only a sensing and reacting elements to avoid obstacles across its field
of view. These reactive systems may not satisfy the computation intensive processes such as
environmental mapping and planning optimised trajectories to reach its destination. Mapping
and planning are two of the fundamental elements of robotic navigation particularly in com-
plex cluttered environments where the need for perceiving and comprehending details of the
surrounding is crucial to traverse and plan the most optimised trajectories. However, as men-
tioned earlier, the contemporary methodologies executing these processes are computation-
ally expensive demanding powerful processors onboard larger robots, hence, not facilitated
in the QLDP presented in this thesis.

7.2.4 Dynamic Obstacle Tracking

This is yet another advantageous feature possessed by sophisticated processing algorithms
capable of tracking moving (dynamic) objects to map and plan an optimised safe trajectory
far ahead. Contemporary tracking algorithms such as Lucas-Kanade-Tomasi, Kalman Filter-
ing are computation expensive and require dedicated processing power that is not available
onboard micro/nano aerial robots. However, designing and incorporating a simple tracking
algorithm to increase the proposed model’s robustness is a potential area of development as
future work, this may be achieved by sensor-fusion and computation coupling, dedicating an
individual processing module to track and anticipate future positions of the detected dynamic
obstacles on collision course.

7.3 Future Work

The ultimate goal of an unmanned autonomous system is to accomplish its assigned tasks at
highest possible success rate absolutely independent of human supervision. Contemporary
automation technologies are capable of performing basic tasks autonomously, nevertheless
complex tasks and missions particularly in aerial robotics, such as take-off, landing, and non-
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cooperative collision avoidance are yet to be executed by UAVs completely autonomously.
Therefore, investigating the methodologies to perform such missions are blazing topics of
ongoing research benefiting from a large capital and resource investment.

For the future developments of the model particularly proposed in this thesis, address-
ing all the afore mentioned limitations without compromising computational simplicity is
highly recommended. Specifically, design and integration of an advanced image segmen-
tation methodology (that is currently based on luminance-difference and thresholding) may
facilitate successful operation in high-speed flights through complex cluttered environments.
Introduction of complementary modules to process dynamic obstacle tracking is another pos-
sible advancement to achieve greater robustness. Incorporation of a simple optimised trajec-
tory generator fused with the tracking data may facilitate a proactive collision avoidance,
thus greater system autonomy.

Man-made autonomous systems or any technological advancement in general, are far
inferior to their biological counterparts in a number of different aspects; efficiency, agility,
compactness, ergonomics, resilience, and robustness. Such biological superiority is self ex-
planatory compelling the researchers to focus further on such novel solutions and stimulate
the future research to accomplish the same.

7.4 Concluding Remarks

This thesis successfully demonstrates a secondary vision-based collision avoidance system
for micro aerial vehicles, whose performance is validated against an eclectic set of off-line
(recorded) as well as real-world real-time collision scenarios. Contribution of every individ-
ual processing layer is illustrated to bolster the claimed capabilities of the system such as,
brisk response, irregular contrast (lighting) correction, direction and proximity estimation,
and optimised performance and minimal computation load. Ultimately, the performance as-
sessment results validate the proposed model’s capability to detect obstacles at more than
670 mm (real-world) prior to collision, pacing at 1.2 ms-1 with a successful avoidance rate
of greater than 90% processing at 120 Hz independent of obstacle colour, dimension, and
contour, sufficient to conclude the system success to effectively avoid obstacles in real-time
and real-world robotic applications.
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