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Abstract
A Multimodal Micro Air Vehicle for Autonomous Flight in Near-Earth

Environments

William Edward Green

Advisor: Paul Yu Oh, Ph.D.

Reconnaissance, surveillance, and search-and-rescue missions in near-Earth en-

vironments such as caves, forests, and urban areas pose many new challenges to

command and control (C2) teams. Of great significance is how to acquire situational

awareness when access to the scene is blocked by enemy fire, rubble, or other occlu-

sions. Small bird-sized aerial robots are expendable and can fly over obstacles and

through small openings to assist in the acquisition and distribution of intelligence.

However, limited flying space and densely populated obstacle fields requires a vehicle

that is capable of hovering, but also maneuverable. A secondary flight mode was

incorporated into a fixed-wing aircraft to preserve its maneuverability while adding

the capability of hovering. An inertial measurement sensor and onboard flight con-

trol system were interfaced and used to transition the hybrid prototype from cruise

to hover flight and sustain a hover autonomously. Furthermore, the hovering flight

mode can be used to maneuver the aircraft through small openings such as doorways.

An ultrasonic and infrared sensor suite was designed to follow exterior building walls

until an ingress route was detected. Reactive control was then used to traverse the

doorway and gather reconnaissance. Entering a dangerous environment to gather

intelligence autonomously will provide an invaluable resource to any C2 team. The

holistic approach of platform development, sensor suite design, and control serves as

the philosophy of this work.
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1. Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) such as the Predator and Global Hawk have

been used extensively in Bosnia since 1995 and more recently in Iraq and Afghanistan

for intelligence, surveillance and reconnaissance (ISR) gathering (see Figure 1.1a-b).

These large-scale UAVs fly at high altitudes (e.g. 8-20 kms) in vast open airspace.

Typically, flight routes are preprogrammed Global Positioning System (GPS) way-

points and can be modified and updated in mid-flight. The success of these UAV

drones resulted in a congressional mandate in 2001 which stated that one-third of all

deep strike aircraft are to be unmanned by the year 2010. In addition, UAV support

at the tactical level seemed like a promising extension of the Predator and Global

Hawk programs.

Providing support at the tactical level meant that the platform size of their pre-

decessors had to be scaled down dramatically such that it could be transported with

minimal effort. Such a platform, when equipped with a wireless imaging device, could

be rapidly deployed to provide close range (e.g. over-the-hill) surveillance and recon-

naissance in real-time. AeroVironment’s Pointer UAV is one of the most successful

platforms of this size regime (see Figure 1.1c). With a 2.75 meter wingspan and a

gross takeoff weight of 4.3 kg, the Pointer UAV is hand-launched and has an en-

durance of ninety minutes. Initially controlled as a remotely piloted vehicle, it has

since been upgraded (and renamed Puma) to autonomously follow preprogrammed

waypoint routes. Even though the UAV flies at extremely low altitudes (e.g. 30-152

meters), the flight control system (FCS) does not possess any collision avoidance capa-

bilities; its only responsibilities are to stabilize the aircraft and keep it on course with
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Figure 1.1: (a) Northrop Grumman’s Global Hawk high altitude UAV. Reprinted from
www.af.mil. (b) General Atomics’ Predator medium altitude UAV. Reprinted from
www.af.mil. (c) AeroVironment’s Pointer UAV, used for close range reconnaissance.
Reprinted from www.afa.org/magazine/feb2006.

its predefined target. However, the success of miniature UAVs, or mini-UAVs, like

the Pointer in conjunction with recent homeland security missions have resulted not

only in a paradigm shift in flight control system responsibilities, but also in platform

requirements.

Homeland security and disaster mitigation efforts leading to the paradigm shift

have been occurring in unforeseen environments which include caves, tunnels, forests,

cities, and even inside urban structures. Ground-based robots have had many suc-

cesses in these closed quarter environments [38], however, they move slowly, have

trouble traversing rugged terrain, and can still put the operator at risk. As such,

there is a need for mini-UAV platforms to be scaled down even further to maneu-

ver through cluttered terrain. Originally defined by the Defense Advanced Research
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Projects Agency (DARPA) as being less than 15 cm in length, width, and height,

the term Micro Air Vehicle (MAV) has since evolved to include platforms ranging

from insect-sized to bird-sized. MAVs can be designed for compactness (e.g. capa-

ble of fitting in a single backpack) and maneuverability to provide surveillance and

reconnaissance in more cluttered environments. However, their small size imposes a

limit on payload capacity. This makes autonomous attitude regulation and navigation

extremely challenging tasks.

To climb the ladder of autonomy, the flight control system must first be able

to regulate the aircraft’s attitude using feedback from inertial sensors. In addition,

it must process proximity sensor data to detect imminent collisions and maneuver

the aircraft around them. With faint or nonexistent GPS signals, limited payload

capacities, and densely populated obstacle fields, such tasks require unconventional

platforms and sensing technologies to achieve them autonomously.

1.2 Preliminary Design Specifications

Complete UAV autonomy in near-Earth environments requires a novel platform

in conjunction with sophisticated sensing, control, and collision avoidance method-

ologies. The platform’s size, weight, payload capacity, flight speed, maneuverability,

and endurance all have significant roles when designing a vehicle that can fly through

cluttered areas. Sensors have to be small, lightweight, and robust to changing envi-

ronmental conditions such as lighting levels.

1.2.1 Airframe

When choosing between different platform configurations such as fixed or rotary

wing, the flying environment is of primary importance. Near-Earth environments

include urban areas, caves, and tunnels and thus a vehicle is needed that can fly both
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outdoors and in closed quarters. Therefore, the platform must be small enough to

fly through narrow openings such as doorways 1. As such, the platform’s width in

its primary flight configuration should be less than this baseline dimension. For fixed

wing aircraft and helicopters, this results in a wingspan and rotor diameter of under

0.9 meters, respectively.

The platform’s cruise velocity and weight are also critical parameters. For closed

quarters, a cruise velocity of 2 m/s (or less) was desired based on sensor performance

and aircraft maneuverability. That is, with a collision avoidance maneuver estimated

to take one second, a sensor would have to detect an approaching obstacle two meters

in advance. This was assumed to be reasonable since most small scale ultrasonic (e.g.

MaxSonar EZ-1) and infrared (e.g. Sharp GP2Y0A02YK) proximity sensors have

maximum ranging capabilities close to two meters. Furthermore, the MAV must

have enough substance such that it is controllable in windy conditions (i.e. 5-10

m/s).

Flight characteristics such as maneuverability and endurance are equally as im-

portant when selecting a MAV platform. When entering hostile or structurally unsafe

environments, a dash capability is desired in order to avoid enemy fire or falling de-

bris. Additionally, the MAV will most likely be launched from a remote location and

thus will require high endurance capabilities.

The airframe design specifications laid out thus far do not reveal an optimal

platform configuration. For example, maneuverability and endurance are well known

characteristics of fixed wing aircraft. However, designing a fixed wing MAV to fly at

speeds of less than 2 m/s and also being capable of flying outdoors in windy conditions

may not be feasible. A helicopter or other rotary wing vehicle has the ability to

hover but because the lift is provided solely by the main rotor, the endurance is

1A standard doorway is 0.9 meters in width and will be used as a baseline.
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less than their fixed wing counterparts. One possible solution is a hybrid platform

which incorporates the advantages between fixed and rotary wing vehicles, and would

meet all design specifications. For example, a fixed wing airframe with a secondary

flight mode for hovering preserves the endurance and maneuverability characteristics

of fixed wing aircraft while incorporating the advantages of helicopters for flight in

cluttered spaces.

1.2.2 Sensing

Upon designing a platform which is capable of flying in near-Earth environments,

different sensing techniques will be investigated for autonomous flight. The first is

the sensing for low level attitude control. Before high level control strategies such

as navigation and collision avoidance can be looked at, the aircraft must be capable

of autonomous attitude regulation. The constraint on the size of the platform also

imposes a limitation on the payload capacity. Therefore, attitude measurement must

be performed with a lightweight sensor, such as Micro-Electro-Mechanical Systems

(MEMs) gyros and accelerometers, and be robust to drift vulnerabilities. In addition

to attitude regulation, altitude hold in the absence of GPS will also be examined.

For high-level sensing, biomimetic principles will be investigated. Flying insects

and bats perform a variety of tasks in complex environments by using their natural

sensing capabilities. Flying insects make heavy use of vision, especially optic flow,

for perceiving the environment [15]. Optic flow refers to the apparent movement of

texture in the visual field relative to the insect’s velocity. In comparison, bats emit

ultrasonic pulses to determine the distance to nearby obstacles and other bats when

flying in and around caves [44]. With optic flow and ultrasonic sensing, efficient

and robust navigational sensor suites for MAVs can be developed by mimicking the

natural behaviors of insects and bats.
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1.3 Thesis Organization

The rest of this work is organized in the following manner:

Related Work. Chapter 2 reviews the relevant platform configurations including

fixed, flapping, and rotary wing vehicles as well as vertical takeoff and landing aircraft.

In addition, the autonomous capabilities of each platform is described. Finally, an

analysis of the research literature is performed along with a summary of this work’s

contributions.

Prototype Design. Chapter 3 details the fixed wing MAV prototype and describes

its secondary flight mode for hovering like a helicopter. Manual operation of the

aircraft, including hovering and the transition between flight modes, is also described.

Aircraft Attitude Representation. Chapter 4 presents an alternative approach to

the representation of the aircraft’s orientation. Conventional approaches such as Euler

angles cannot be used because of the singularities present at pitch angles of ninety

degrees. As such, quaternions will be used to describe the aircraft orientation and

calculate the angular errors to drive the aircraft to a commanded flight mode.

Attitude Control of the Hybrid Platform. Chapter 5 details the onboard flight con-

trol system, attitude sensor, and control algorithm used in the experiments portion of

this chapter. Also, the experimental procedures and results for autonomous hovering

and the transition from cruise to hover flight are described. Finally, flight data is

presented and analyzed during each experiment.

Sensing and Control in Near-Earth Environments. Chapter 6 discusses high-level

sensing and control and details various sensors for collision avoidance and navigation

in near-Earth environments. Optic flow, ultrasonic, and infrared sensors as well as

laser scanners and rangers are evaluated. An infrared and ultrasonic sensor suite

is developed and interfaced with the onboard flight control system. An embedded,

multimodal control algorithm is used to autonomously achieve a mission in a near-
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Earth environment.

Conclusions and Future Work. Finally, Chapter 7 summarizes the work presented

in this thesis. Furthermore, this chapter also discusses some promising new areas of

research relevant to autonomous MAV flight in near-Earth environments.
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2. Related Work

In this chapter, several different platform configurations and sensing techniques

are detailed including fixed, flapping, and rotary wing aircraft as well as optic flow

and LADAR for collision avoidance. The chapter concludes with an analysis of the

research literature.

2.1 Fixed-Wing

One of the most common platform configurations for small unmanned aircraft is

a fixed wing design. Because lift is generated by the airfoil and not directly by the

gas or electric powered engine, the fixed wing configuration ranks high in endurance.

They are also highly maneuverable and capable of a dash maneuver to avoid enemy

fire or falling debris in dangerous environments. There are several research groups

looking at fixed wing platforms [10] [37] [27], but the most relevant to near-Earth

environments are discussed in this section.

2.1.1 AeroVironment Black Widow

Funded by DARPA, AeroVironment Inc. developed the Black Widow Micro Air

Vehicle (MAV) into one of the most successful prototypes of this size regime. During

this time frame, there was a big push from DARPA to develop a MAV less than

15 cm in length, width, and height. Because the Black Widow was among the first

vehicles of this magnitude, there was no design standards (e.g. propeller dimensions,

wing configuration, airframe materials, etc.). AeroVironment therefore utilized a

design process known as a Multidisciplinary Design Optimization (MDO) Matrix.

The MDO, which originated in the automobile industry, was used to incorporate
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Figure 2.1: AeroVironment, Inc.’s Black Widow is flown under human-control from
a remote location. The human pilots the MAV by looking at raw video transmitted
from the wireless camera onboard the MAV. Reprinted from [16].

many different combinations of motors, batteries, propellers, etc. and output the

most optimal configuration. The net result was a 15-cm, disc-shaped, fixed wing

platform which flies at speeds of 15 m/s and is capable of carrying a 2 gram wireless

video camera [16]. The wireless images are fed back to the control station and viewed

by the pilot to remotely fly the aircraft (see Figure 2.1).

While the design of the Black Widow was remarkable, its two gram payload capac-

ity eliminates any possibility for additional attitude or navigational sensors. Further-

more, the 15 m/s cruise velocity makes flying in cluttered environments unrealistic.

2.1.2 NRL Micro Tactical Expendable (MITE)

The goal of the Naval Research Lab (NRL) was to develop a micro air vehicle for

Navy-specific applications. They were not funded by DARPA and were therefore, not

constrained by the 15 cm platform dimension. The NRL began developing prototypes

of the Micro Tactical Expendable (MITE) Micro Air Vehicle in 1996 [30]. The MITE
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Figure 2.2: (a) NRL’s MITE MAV design was one of the first MAV prototypes.
Reprinted from [39]. (b) EPFL’s Microflyer is designed for flight indoors and is
capable of flying at speeds of less than 2 m/s. Reprinted from [63].

consisted of a dual-propeller, fixed-wing platform which after being hand-launched,

had an endurance of 20 minutes at speeds of 5 to 10 m/s (see Figure 2.2a). Depending

on the payload requirements of the mission, the wingspan ranged from 20 to 45 cm

enabling it to carry a wireless camera up to 30 grams in weight.

In addition to developing a platform to transmit wireless video back to a remote

location, the NRL began looking at autonomous MAV navigation. At that time,

typical autopilot systems weighed in excess of 4 pounds which easily exceeded the

payload capacity of MAVs. Unconventional approaches were required to create a

sensor suite small enough for MAVs to perceive their environment. The NRL looked

at different types of sensors, including vision-based methods but was unable to come

up with a solution within the payload constraints of the aircraft. Additionally, while

the cruise velocity was significantly less than the Black Widow, 5 m/s is still too fast

for flight in near-Earth environments.
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2.1.3 EPFL Microflyer

Zufferey et al from Ecole Polytechnique Federale de Lausanne (EPFL) have de-

signed a fixed wing vehicle for flight indoors. Figure 2.2b shows the prototype which

weighs 30 grams and can fly at speeds of less than 2 m/s. Its slow flight speed

enabled it to maneuver around dense obstacle fields found inside urban structures.

EPFL is also one of the leading research groups in the development of optic flow

sensing for collision avoidance indoors. Combining optic flow sensing with their ex-

tremely lightweight platform, Zufferey et al demonstrated autonomous flight inside a

gymnasium [62]. However, the experiment was performed in an artificially textured

environment (i.e. alternating white and black sheets were used as walls). Walls are

often homogeneous and have little texture. Although impressive, this method on its

own is not sufficient in more realistic environments. Furthermore, near-Earth envi-

ronments also include outdoor areas and a lightweight platform like the Microflyer

cannot be controlled in any type of wind.

2.1.4 BYU UAV

Beard et al from Bringham Young University are also developing a vehicle to fly

in urban areas. They are using a flying wing platform to evaluate different sensing

techniques (see Figure 2.3). In [22], the flying wing was equipped with a Laser De-

tection and Ranging (LADAR) sensor to detect obstacles in front of the aircraft and

ADNS optical flow sensors (found in optical computer mouses) for lateral collision

avoidance. An experiment was described where the UAV was programmed to fly a

GPS waypoint route which passed directly through an urban structure on campus.

The building was detected by the LADAR sensor and the flight control system redi-

rected the flight path around the building. This experiment was impressive, but the

flying wing platform must maintain flight speeds of greater than 10 m/s to remain
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Figure 2.3: (a) BYU’s flying wing MAV is used as a testing platform for autonomous
collision avoidance in urban environments. (b) Optic flow and LADAR sensors are
mounted on the belly of the aircraft. Reprinted from [22].

airborne. Furthermore, the platform has a wingspan of 1.2 meters and thus would

not be able to fit through small openings such as doorways. Beard et al are currently

looking into more suitable aircraft. They have just begun testing a fixed wing aircraft

which is capable of vertical takeoff and landing (VTOL) [31].

2.2 Flapping Wing

Introducing a motor to the base of the fixed wing platform (i.e. where the wing

meets the fuselage) for rotation enables the flying motion of insects and birds to be

mimicked. Theoretically, the flapping motion creates more lift than a fixed wing and

can be leveraged to hover the vehicle. Again there are many groups investigating

this type of platform [46] [36], but only two of the most relevant are described in this

section.
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Figure 2.4: (a) The University of Delaware’s Sparrow II mimics a hummingbird with
its mechanism for biaxial wing rotation. Reprinted from [34]. (b) UC Berkeley’s
Micromechanical Flying Insect (MFI) weighs just 0.1 grams and has a wingspan of
50 mm. Reprinted from [55].

2.2.1 UD MHP

Agrawal et al out of the University of Delaware are working on a Mechanical

Hummingbird Project (MHP), where the goal is to develop a flapping wing MAV that

generates enough lift to hover like a hummingbird. Working towards this goal, the

group has created some novel designs. Figure 2.4a shows their most successful Sparrow

II prototype which has a 50 cm wingspan and weighs in at 50 grams. The simulations

of their next generation MHP prototype show that the wing design generates enough

lift to hover, however, the prototype has not yet been tested in tether-free flight [34].

Although the mechanism for biaxial wing rotation is quite impressive, it is currently

limited to forward flight. Furthermore, they have focused their research effort solely

on platform design and currently have no autonomous capabilities.

2.2.2 UCB Micromechanical Flying Insect

On an even smaller scale, Fearing et al from UC Berkeley are developing a Mi-

cromechanical Flying Insect (MFI). The idea is that hundreds of these insect-sized
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robots can be released to cover more ground than a single unmanned aircraft. Fig-

ure 2.4 shows the MFI prototype which has a mass of just 0.1 grams and a wingspan of

25 mm [11]. While flight experiments have shown promising results, the MFI project

still remains in the developmental stages. Furthermore, it is hard to imagine sensors

at that scale which will enable autonomous flight in the near future.

2.3 Rotary Wing

Rotary wing is another traditional platform for small UAVs. Rotorcraft include

everything from single rotors to quadrotors [8] [13] [14] [29] [35] [47], as well as ducted

fan engines [6]. The main advantage of rotary wing aircraft is their ability to hover,

however, they typically cannot fly for long periods of time because the main engine

must balance the weight of the vehicle. Two notable rotary wing research groups are

discussed in this section.

2.3.1 ANU X4-Flyer

Mahony et al out of the Australian National University have developed a quadrotor

vehicle with vertical takeoff and landing (VTOL) capabilities (see Figure 2.5a). The

X4-Flyer uses differential throttle control between the front and rear motors to control

pitch and similarly between the left and right motors to control yaw [25]. Altitude

is controlled by collectively increasing the thrust to all four motors. With an overall

dimension of 0.7 meters, the platform is small enough to fit through a standard

doorway. The aircraft was designed as a testbed for visual servoing algorithms and

was used to demonstrate position-controlled hovering by servoing on a ground fiducial.

While this experiment showed great promise in the absence of GPS, nothing outside

the realm of visual servoing has been investigated. Furthermore, the MAV is not

maneuverable and is limited by its low cruise velocity when flying outdoors.
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Figure 2.5: (a) ANU’s X4-Flyer is a quadrotor platform using differential thrust for
attitude adjustment. Reprinted from [23]. (b) UC Berkeley’s RMAX UAV is used
as a testbed for implementing collision avoidance and navigation algorithms in urban
environments. Reprinted from [50].

2.3.2 UCB UAV

Sastry et al from UC Berkeley have been developing control strategies for tasks

such as landing [49] and navigation [50] in near-Earth environments. The platform

used is a commercial off-the-shelf Yamaha RMAX helicopter and is equipped with a

SICK laser scanner (see Figure 2.5b). The Yamaha RMAX is a robust platform to

use as a sensor testbed, but is not capable of traversing realistic urban environments.

Furthermore, UAVs which can navigate in near-Earth environments will most likely

not be able to carry a 4.5 kg payload such as the SICK sensor. Smaller laser scanners

such as the 160 gram Hokuyo exist, but are designed for use indoors and lack in

performance when compared to its SICK counterpart [48].

2.4 Tailsitters

The concept of a fixed wing platform which can takeoff and land vertically has

been around for decades. However, the transition from cruise flight to the vertical
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orientation was too difficult for a human pilot. With unmanned aircraft, however,

this challenge is eliminated. There are only a few research groups outside the ones

discussed in this section investigating fixed wing aircraft which can transition into

vertical flight as a viable platform [33]. The most well known is from the University

of Sydney and is discussed below.

2.4.1 Sydney T-Wing

Stone et al from the University of Sydney have designed a fixed wing vertical take-

off and landing vehicle (see Figure 2.6). The aircraft is capable of taking off vertically,

performing a stall-tumble maneuver to transition from vertical to cruise flight, and

then transitioning back to the vertical configuration to land the aircraft [56]. The

prototype has a wingspan of over 2 meters, weighs 30 kg and has counter-rotating

propellers on each wing to minimize the motor’s reactive torque. This platform is very

similar to the solution described in this thesis, however, most of the research effort at

the University of Sydney has focused on platform design. It wasn’t until August of

2006, that they were able to achieve an untethered autonomous hover. Furthermore,

it is extremely oversized for flight in near-Earth environments.

2.5 Conclusions

After surveying the literature, it seems there are two separate communities work-

ing towards the same goal. The first group appears to be focusing on platform design

such as the University of Delaware’s MHP project while the other is focusing on

sensing and control like in the case of the Berkeley Yamaha RMAX. Very few people

are looking at the two areas in parallel. An important contribution of this thesis is

to bridge the gap between the two communities. As such, the overall philosophy of

this work is to take a holistic approach towards the development of a robotic aircraft
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Figure 2.6: The University of Sydney’s T-Wing concept vehicle combines the en-
durance advantages of fixed wing aircraft with the vertical takeoff and landing capa-
bilities of helicopters. Reprinted from [56].

capable of autonomous flight in near-Earth environments. This encompasses both

the development of a well suited platform as well as sensor suite and control system

design. These contributions and others our outlined in this section.

2.5.1 Thesis Contributions

The work contained in this thesis spans a variety of disciplines including aero-

dynamic and dynamic analysis, sensor suite and control system design, and robotics

and can be broken down into four major contributions:

• the development of a fixed wing micro air vehicle with a secondary flight mode

for hovering (Chapter 3).

• a control methodology enabling high angle of attack maneuvers (e.g. transition

from cruise to hover flight) while avoiding singularities (Chapter 4).
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• the design of an onboard flight control system allowing the experimental im-

plementation of autonomous hovering and the autonomous transition between

flight modes (Chapter 5).

• mimicking bat and insect flight stratagems in order to perform autonomous

tasks such as wall following and doorway detection (Chapter 6).
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3. Prototype Design

This chapter describes the selection of a suitable platform for flight in near-Earth

environments. The feasibility of slow flying fixed wing aircraft is first investigated

and a MAV is prototyped. After realizing that hovering capabilities are most likely

needed, a fixed and rotary wing hybrid platform is developed. Also described is a

human pilot’s procedure for hovering the hybrid aircraft and making the transition

from cruise flight to hover mode. These methods will eventually be mimicked by the

flight control system to perform the maneuvers autonomously.

3.1 CQAR Prototype

Aerial robots capable of flying in closed quarters must be small and capable of

flying slowly. Such robots, dubbed Closed Quarter Aerial Robots (CQAR, pronounced

“seeker”) by the authors in [42], require specific design considerations as laid out in

Section 1.2

• wingspan of less than 0.9 meters

• cruise velocity of 2 m/s or less

• capable of flying outdoors in light to moderate winds

• high maneuverability and endurance

Neither fixed or rotary wing platforms meet all of the preliminary design specifica-

tions; however, the feasibility of fixed wing aircraft was further investigated because

of the promising results in [41]. When dealing with fixed wing aircraft, there is a

tradeoff between platform weight, W, and cruise velocity, V. It can be seen from
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Figure 3.1: The minimum cruise velocity is plotted against a range of wing loading
values.

Equation (3.1) that the minimum cruise velocity is higher for heavier aircraft

V =

√

2W

ρSCL
(3.1)

where ρ is the air density, S is the wing area, and CL is the coefficient of lift. This

tradeoff can be problematic for the design of a slow flying, fixed wing micro air vehicle.

Figure 3.1 shows a plot of the minimum cruise velocity versus wing loading (W/S),

assuming an air density at sea level and an estimated lift coefficient equal to one.

The net result and the first hypothesis of this thesis is that a fixed wing aircraft

with a wing loading of less than 2.5 N/m2 will be able to maneuver in near-Earth

environments.
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These design specifications were used to develop the first prototype. In order for

the aircraft to fly outdoors in light to moderate wind, it was estimated that a gross

takeoff weight of 50 grams was needed. With a 2.5 N/m2 wing loading, this resulted

in a wing area of

W

S
≤ 2.5 =⇒ S ≥ 0.1962m2 (3.2)

To help visualize the parameters needed to achieve this, a graph was gener-

ated which showed various wingspans, chord lengths, and their resulting areas for

rectangular-shaped wings (see Figure 3.2). It can be seen from the graph that the

wing with a 0.225 meter chord is the only option which yields a 0.1962 m2 wing area

and a wingspan under 0.9 meters. However, a wingspan just under 0.9 meters is

not desirable because it leaves little room for error when flying through a standard

doorway. Therefore, to maximize the wing area while minimizing the platform size, a

wingspan of 0.7 meters was selected as the design goal. From the graph in Figure 3.2,

it can be seen that this results in a wing area of approximately 0.16 m2 for a 0.225

meter wing chord. Using the aforementioned wing area, the aircraft must weigh 41

grams or less to achieve a wing loading of 2.5. The net effect is that a fixed wing

MAV must be constructed which weighs less than 41 grams in order to fly at a 2 m/s

cruise velocity.

To meet this weight restraint, an airframe was constructed out of light building

materials such as balsa, carbon fiber, and mylar. A 60 cm long carbon fiber tube with

a 1.5 mm outer diameter was used as the fuselage. The built-up wing and tail frames

were formed with 1.5 mm thick balsa wood and covered with 3 micron mylar. Finally,

the avionics, such as the motor, propeller, receiver, and lithium polymer battery, were

mounted to the airframe (see Figure 3.3). The resulting prototype weighed 28 grams,

carried 13 grams of payload, and was capable of flying at 2 m/s (see Figure 3.4a).
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Figure 3.2: Wing area versus wingspan for four different wing chord lengths.

Figure 3.3: The motor, propeller, receiver, and lithium polymer battery used on the
CQAR prototype.
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Figure 3.4: (a) The CQAR prototype, equipped with an onboard wireless camera,
can acquire video and transmit images. (b-c) Such images, although noisy, compare
well with regular cameras.

After several flight tests and experiments indoors, it was concluded that the CQAR

prototype was able to fly extremely well inside urban structures with sparse obstacles.

For example, the aircraft flew for more than 20 minutes while capturing surveillance

video of a 10 x 10 meter, three-story atrium (see Figure3.4b-c). However, the proto-

type wasn’t able to navigate in more densely populated obstacle fields as efficiently.

Furthermore, the 41 gram prototype could not fly effectively in winds greater than 2

m/s. This demanded a heavier MAV with hovering capabilities and high maneuver-

ability.

3.2 Hybrid Prototype

Integrating the endurance and agility of fixed-wing aircraft with hovering capabil-

ities of rotorcraft has been realized in the radio-controlled (RC) community through

a maneuver known as prop-hanging. During a prop-hang, the longitudinal axis of the

fuselage is completely vertical and the thrust from the motor balances the weight of

the aircraft. Leveraging this maneuver, a fixed-wing platform was prototyped with

an additional flight mode for hovering [19].
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3.2.1 Airframe

When designing the airframe of a hybrid aircraft, the most important attributes

are the elevator and rudder areas. When hovering, the only airflow over the control

surfaces is due to propeller wash. To compensate for this decrease in airflow when

compared to conventional cruise flight, the elevator and rudder surface areas must be

increased. Elevator and rudders typically occupy 20% of the horizontal and vertical

stabilizers of remote-controlled (R/C) aircraft, respectively [51]. However, for a hybrid

aircraft, the control surfaces should take up at least 50-60% of the stabilizer’s surface

area.

Using a R/C trainer aircraft as a template for stability, a fixed wing platform

was designed with a 0.9 meter wingspan and a wing area of 0.227 square meters.

The airframe was cut out of 3 mm depron foam and then laminated with 2 oz./in2

carbon fiber cloth for durability. The carbon fiber also served to add weight to the

airframe such that it could be controlled in windy conditions. The resulting airframe

weighed 300 grams excluding avionics. It should be noted that the 0.9 meter wingspan

was permissible because the aircraft will be traversing cluttered environments in the

hovering orientation. That is, the aircraft can move through an opening such as a

doorway with the wing plane parallel to its direction of motion. Therefore, the critical

dimension is the overall height of the aircraft (i.e. from top to bottom) and not the

wingspan.

3.2.2 Avionics

The most important design characteristic for the hybrid prototype is a thrust-to-

weight ratio (T/W ) greater than one. That is, the power system must generate enough

thrust to balance the aircraft’s weight when hovering. This is shown theoretically

using Figure 3.5, which describes the forces acting on the MAV during a hover. The
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Figure 3.5: When in a hovering attitude, the elevator and rudder control surfaces are
used to regulate the pitch and yaw angles, respectively.

forces generated by elevator (FE) and rudder (FR) deflection regulate the aircraft’s

pitch and yaw attitude, respectively, and are functions of the drag force, D, and

control surface deflection angle, δ. The aircraft’s altitude is modified by controlling

the thrust force, T . Finally, the motor’s reactive torque, M , can be countered with

aileron deflection. If the hovering flight mode is represented as the global and body

axes are aligned (i.e. θ = ψ = 0), it can be seen by summing the forces in the vertical

direction

(−T +D + FEsinδE + FRsinδR)cosψcosθ +W = maZ (3.3)

that the thrust force must equal the sum of the aircraft’s weight and drag forces when

in dynamic equillibrium (i.e. θ = ψ = δE = δR = az = 0).

In order to select a motor which provides enough thrust, the overall weight of the
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aircraft (including avionics) must be estimated. Table 3.1 below shows the estimated

weight of the aircraft components, where the fields marked with asterisks are estimates

and are not known before selecting a motor.

Table 3.1: Airframe and avionics weight estimates before selecting motor.

Components Weight [g]

Airframe 300
Receiver 8
Servos (4) 36
LiPo Battery 75*
Brushless Motor/Gearbox 80*
Speed Controller 10*
Payload 75*

Total 584

The total estimated weight of the aircraft is roughly 600 grams. In order to

incorporate extra thrust, a safety factor, and drag effects, a thrust-to-weight ratio

of 1.5:1 was chosen as the design goal. Therefore, a motor should be selected which

yields 900 grams of thrust in order to achieve a T/W of 1.5:1. A Himax brushless

motor with a voltage constant (i.e. Kv) of 4200 was chosen. With a 12 x 6 propeller

and a gear ratio of 6.6:1, the resulting setup yielded 875 grams of thrust. Figure 3.6

shows the prototype in its hovering attitude. With an 11.1 V, 1320 mAh lithium

polymer battery, it can fly in cruise mode for 25 minutes at speeds ranging from 5-20

m/s. Hovering requires more power and as a result, the aircraft can only fly in this

mode for about 10-12 minutes. These flight times can be increased, however, if larger

battery capacities are used.
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Figure 3.6: Our hybrid prototype weighs 600 grams, has a 1 m wingspan, and has a
speed range of 0 to 20 m/s.

3.3 Manual Control

The unique capabilities of the prototype make it extremely difficult for a human

pilot to fly. The pilot must have experience flying both fixed and rotary wing aircraft

and must also have a feel for how the rudder and elevator deflection mimic a heli-

copter’s cyclic control. The following section describes how a human pilot transitions

between the cruise and hover flight modes and also how hovering is sustained.

3.3.1 Transitioning Between Flight Modes

The most critical aspect of the hybrid design is the transition from cruise to

hover flight, which can also be used as a secondary collision avoidance maneuver (see

Figure 3.7). During this phase, there exists an angle-of-attack, α, for which the wings
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Figure 3.7: Our MAV prototype with a 1 meter wingspan manually transitions from
cruise flight (top left) through the stall regime (top middle) and into a hovering
position (top right) to avoid a collision with a basketball net.

are no longer a contributing factor to the lift component (i.e. stall). To achieve the

transition, the aircraft has to leverage its momentum and essentially overpower its

way through the stall regime. The high thrust-to-weight ratio built into the design

helps to ensure that the momentum is not lost through the transition. Furthermore,

as the aircraft is transitioning from cruise flight (minimum thrust) to the hovering

flight mode, the throttle must be increased to balance the weight of the aircraft. The

transition back to cruise mode first requires vertical acceleration to give the plane

some momentum and then the elevator is deflected to pitch the aircraft forward into

cruise mode. However, there may be circumstances when a vertical acceleration is

not feasible (e.g. indoors with a low ceiling). In this case, the aircraft can be pitched

forward first and then given increased throttle to pull out of stall.

3.3.2 Hovering

After transitioning into the hovering mode, the attitude must be sustained by

constantly adjusting four channels of a radio-controlled transmitter. The most critical

task the expert human pilot has is to maintain the aircraft’s vertical orientation by

adjusting the rudder and elevator deflection angles. Also, the throttle position must

be modified to balance the weight of the aircraft. Once the stick position is found
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to hold the plane at a constant altitude, it remains relatively constant as the aircraft

is not gas powered and therefore maintains the same weight throughout the flight.

Finally, the MAV’s reaction to the motor torque results in the plane rotating about

the vertical axis when hovering. This is known as torque rolling and can sometimes

be countered with aileron control. All of these efforts must be done simultaneously

which makes hovering a challenging task.

3.4 High-Alpha Representation

Automating the hovering flight mode and the transition into it requires the air-

craft orientation to be accurately represented. This cannot be achieved with con-

ventional methods such as Euler angles because of the singularities present during

these high-alpha flight modes and maneuvers. Therefore, alternative methods must

be investigated to represent the aircraft’s attitude at large pitch angles. The following

chapter discusses these different approaches in more detail.
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4. Aircraft Attitude Representation

There are many different ways to represent the attitude of a rigid body in three-

dimensional (3D) space. In the aircraft community, some of the more common meth-

ods include Euler angles, axis angle, and direction cosines. However, these methods

are either vulnerable to singularities at critical orientations (e.g. an Euler pitch angle

equal to ninety degrees) or computationally inefficient when representing rotations.

To avoid these drawbacks, quaternions will be used as an alternative approach. Each

of these methods and the algorithms for hovering and the cruise-to-hover transition

will be discussed in the ensuing sections of this chapter.

4.1 Euler Angles

Euler angles are the most widely used approach for representing aircraft attitude

because of their simplicity and intuitiveness. They describe the orientation of a rigid

body in 3D space by three consecutive rotations. There are twelve different rotation

combinations, but the aircraft community typically uses the ψ → θ → φ sequence,

which represents the aircraft’s yaw, pitch, and roll respectively [40]. Euler angles

have many advantages over other attitude representations, but their major drawback

is the singularities present at pitch angles of ± 90 degrees. This can be seen in

Equation (4.1) which describes the Euler rates (φ̇, θ̇, ψ̇) as a function of the body

angular velocities p, q, and r

φ̇ = p+ (qsinφ+ rcosφ)/tanθ (4.1a)

θ̇ = qcosφ− rsinφ (4.1b)

ψ̇ = (qsinφ+ rcosφ)secθ (4.1c)
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Equation (4.1) is integrated to find the Euler angles at the next time step; how-

ever, it can be seen that as the Euler pitch angle, θ, approaches ± 90 degrees, Equa-

tions (4.1a) and (4.1c) go to infinity. This makes the integration of the roll and yaw

rates indeterminate and is commonly referred to as gimbal lock.

4.2 Axis Angle

The axis angle method is another way to represent aircraft orientation through

rotation. The parameters used are an axis of rotation, e, which is commonly referred

to as the eigenaxis or Euler axis, and the angle of rotation, θ, about that axis. The

eigenaxis is parameterized as ex, ey, and ez, and thus a 45 degree rotation about the

y axis (i.e. pure pitch) would be represented by

(axis, angle) = (
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As in the Euler angle representation, the axis angle method also suffers from

singularities. This can be seen in Equation (4.3) which shows the relationship between

the change in the axis angle parameters with respect to time and the angular rates

in the body frame [45]



































Θ̇

ėx

ėy

ėz
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where C = cosΘ

2
and S = sinΘ

2
. It can be seen from Equation (4.3) that when
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the rotation angle, Θ, approaches 0 or nπ where n=1,2,3,..., the eigenaxis rates ap-

proach infinity. In this case, the integration of Equation (4.3) to find the eigenaxis is

indeterminate.

4.3 Direction Cosines

Direction cosines can be used to represent aircraft orientation via the following

matrix [21]
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where x, y, and z represent the components of an orientation vector in the body frame

and X, Y , and Z describe an orientation vector in the global frame. Cx and Sx are

used to represent cos(x) and sin(x) respectively.

Unlike Euler angles and axis angle representation, the Direction Cosines Matrix

(DCM) does not suffer from singularities. However, it requires nine parameters to

represent a rotation and therefore occupies more than twice the space required by Eu-

ler angles or the axis angle method. Furthermore, successive rotations are determined

through matrix multiplication making the DCM inefficient in computation time when

compared to other methods.

4.4 Quaternions

Quaternions provide yet another means of representing attitude and performing

transformations between orthogonal, Cartesian coordinate systems [43]. They are

most commonly used in the spacecraft [61] [59] and gaming industries [32]. The value

of quaternions can be attributed to their compactness and freedom from singularities.
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It was shown that Euler angles can represent attitude with just three parameters (e.g.

roll, pitch, and yaw), but are singular at pitch angles of ninety degrees. Directional

cosines are not vulnerable to singularities, but require nine matrix parameters com-

pared to just four for quaternions. The characteristics of quaternions make them ideal

for representing the orientation of vehicles which perform large angular maneuvers

such as spacecraft. Although they are rarely used for attitude control of fixed-wing

aircraft, quaternions serve as a promising approach for regulating the hovering flight

mode of the hybrid prototype.

4.4.1 Definition

A quaternion is similar to the axis angle representation and consists of four pa-

rameters. The first three components represent the vector part of the quaternion and

the fourth component represents the scalar portion. They are defined by

q1 = exsin(Θ/2) (4.5a)

q2 = eysin(Θ/2) (4.5b)

q3 = ezsin(Θ/2) (4.5c)

q4 = cos(Θ/2) (4.5d)

where ex, ey, and ez represent the eigenaxis, or Euler axis, and Θ gives the scalar

angle of rotation about that axis. The eigenaxis is multiplied by the sine of half the

rotation angle and the cosine of this angle is taken to represent the scalar component.

These slight modifications are what differentiates quaternions from the axis angle

method and also eliminates the mathematical singularities at large angles of attack.

Unit quaternions are used to represent the attitude of a rigid body in three-
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dimensional space. Therefore, the four parameters in Equation (4.5) must satisfy the

following constraint equation

q2

1
+ q2

2
+ q2

3
+ q2

4
= 1 (4.6)

4.4.2 Quaternion Rotations

Similar to the direction cosine matrix where successive rotations are described

through multiplication, the products of quaternions can also be used to represent ro-

tations. The multiplication of two quaternions, qA and qB, is defined by the following

equation [59]

qA ⊗ qB = (qA1i+ qA2j + qA3k + qA4) ⊗ (qB1i+ qB2j + qB3k + qB4) =

(qA1qB4 + qA2qB3 − qA3qB2 + qA4qB1)i

+(−qA1qB3 + qA2qB4 + qA3qB1 + qA4qB2)j

+(qA1qB2 − qA2qB1 + qA3qB4 + qA4qB3)k

+(−qA1qB1 − qA2qB2 − qA3qB3 + qA4qB4) (4.7)

where ⊗ is used to define quaternion multiplication and to distinguish it from the

vector cross product. It should also be noted that quaternion multiplication is not

commutative (i.e. qA ⊗ qB 6= qB ⊗ qA).

The motivation behind quaternion multiplication is to define a rigid body rotation

from one coordinate frame to another. For example, using the quaternion qA to

represent the current orientation of a rigid body and quaternion qAB to describe the

rotation from orientation A → B, the new orientation quaternion, qB, is calculated

by

qB = qA ⊗ qAB (4.8)
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Equation 4.8 defines the significance of quaternion multiplication. It can be mod-

ified and applied to control aircraft attitude as seen in the following subsection.

4.4.3 Error Quaternion

Attitude control requires a measurement of the current orientation of the platform,

a commanded or desired orientation, and the calculated difference between the two

orientations. Towards this, three quaternions are defined, namely the commanded,

measured, and error quaternions

• qc: the commanded quaternion represents the desired aircraft orientation (e.g.

the hovering flight mode).

• qm: the measured quaternion describes the current orientation of the aircraft

and is acquired from an onboard sensor.

• qe: the error quaternion represents the required rotation to move from the

measured attitude to the commanded attitude.

Equation (4.8) can be used to define the relationship between the parameters

listed above. To get to the orientation defined by the commanded quaternion, the

measured quaternion must be multiplied by the quaternion describing the rotation

between the two frames (i.e. the error quaternion)

qc = qm ⊗ qe (4.9)

Equation (4.9) must be solved for the error quaternion since its parameters will

dictate the amount of control surface deflection needed to drive the vehicle to the

commanded attitude. This is achieved by isolating qe

qe = q−1

m ⊗ qc (4.10)
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An inherent property of unit quaternions is that the inverse is equivalent to the

quaternion conjugate which is computationally simpler to calculate. The conjugate

of a quaternion is represented by taking the negative of the vector components

q∗ = −q1 − q2 − q3 + q4 (4.11)

where q∗ represents the quaternion conjugate. Therefore, Equation (4.10) becomes

qe = q∗m ⊗ qc (4.12)

Equation (4.12) defines the error quaternion in the body frame of the aircraft.

Therefore, the angular errors about each axis can be extracted from qe and used

in a control scheme (e.g. PID) to generate aileron, elevator, and rudder deflection

to control the aircraft’s attitude. This process is implemented in the autonomous

hovering algorithm discussed in the next subsection.

4.5 Hovering Error Quaternion

The autonomous hovering algorithm begins by defining the commanded quater-

nion, qc, which describes the MAV’s orientation during a hover (i.e. vertical with belly

facing north). The rotation is about the y axis and thus, the eigenaxis is represented

by

(ex, ey, ez) = (0, 1, 0)

With a rotation angle of ninety degrees, the quaternion representation of this attitude
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is given by

qc1 = exsin(Θ/2) = 0 ∗ sin(π/4) = 0.000i

qc2 = eysin(Θ/2) = 1 ∗ sin(π/4) = 0.707j

qc3 = ezsin(Θ/2) = 0 ∗ sin(π/4) = 0.000k

qc4 = cos(Θ/2) = cos(π/4) = 0.707

To calculate the error quaternion using Equation (4.12), the measured quaternion

must first be defined. Ultimately, the measured quaternion will be acquired with an

attitude sensor (e.g. IMU) mounted onboard the aircraft. Initially however, it was

assumed that the aircraft would start at orientations close to the hovering flight mode.

For example, a simulation was created where the initial orientation of the aircraft was

at roll, pitch, and yaw angles of 0, 75, and 0 degrees respectively, or

qm = 0.0i+ 0.609j + 0.0k + 0.793

Taking the conjugate of qm and multiplying it by qc results in the following error

quaternion

qe = (−0.0i− 0.609j − 0.0k + 0.793) ⊗ (0.0i+ 0.707j + 0.0k + 0.707)

qe = 0.0i+ 0.131j + 0.0k + 0.991

Once the error quaternion is calculated, the angular error about the x, y, and z

axes can be extracted from qe by first normalizing the vector component and then
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multiplying by the angle

Ex = 2 cos−1(qe4) qe1/‖qev
‖ (4.14a)

Ey = 2 cos−1(qe4) qe2/‖qev
‖ (4.14b)

Ez = 2 cos−1(qe4) qe3/‖qev
‖ (4.14c)

where ‖qev
‖ is the norm of the vector part of the error quaternion. When Equa-

tion (4.14) is applied to the error quaternion from above, it yields a pitch error of

15 degrees. Proportional-derivative (PD) control is then used to send signals to the

elevator and rudder control servos. This, in turn, drives the aircraft orientation back

to the hovering attitude. Although this algorithm seems to work effectively when the

aircraft starts from orientations close to vertical, it was soon realized that it is not

optimal for the transition from cruise to hover flight.

4.6 Cruise-to-Hover Transition

During autonomous hovering, the commanded quaternion represents the aircraft

in the vertical orientation with the belly facing north (using a north-east-down coor-

dinate frame). When autonomous hovering is initiated, the aircraft is already close

to the vertical orientation but may or may not be facing north. This will result in a

small amount of control effort from the elevator and rudder to get the plane vertical

and a large control effort about the x-axis to roll the aircraft until the belly faces

north. This makes the commanded quaternion used for autonomous hovering (i.e. qc

= 0.0i + 0.707j + 0.0k + 0.707) sufficient when releasing the aircraft in near-hovering

orientation. However, when dealing with large initial errors like when transitioning

from cruise to hover flight, this algorithm is not preferred.
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Figure 4.1: The MAV in cruise flight heading north.

4.6.1 Orientation Issues

Using a north-east-down reference frame, imagine the MAV to be flying in cruise

mode heading north (i.e. body and reference frames are aligned). This is shown in

Figure 4.1. If the commanded quaternion used for autonomous hovering was also

used for the transition from cruise (heading north) to hover flight, the commanded,

measured, and error quaternions would be

qc = 0.0i+ 0.707j + 0.0k + 0.707 (4.15a)

qm = 0.0i+ 0.0j + 0.0k + 1.0 (4.15b)

qe = 0.0i+ 0.707j + 0.0k + 0.707 (4.15c)

where qm represents cruise mode heading north.

Normalizing qe and finding the angular error about each axis using Equation (4.14)
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Figure 4.2: The MAV in cruise flight heading south.

results in a ninety degree pitch error and zero error about the roll and yaw axes. As

desired, the controller would respond with large elevator deflection causing the aircraft

to pitch up towards the vertical orientation.

However, if the MAV was flying in cruise mode and heading south (see Figure 4.2),

the same commanded quaternion will not result in a pure pitch up maneuver. That

is, if the same commanded quaternion was used, the commanded, measured and error

quaternions would now be

qc = 0.0i+ 0.707j + 0.0k + 0.707 (4.16a)

qm = 0.0i+ 0.0j + 1.0k + 0.0 (4.16b)

qe = 0.707i+ 0.0j − 0.707k + 0.0 (4.16c)

where qm represents cruise mode heading south.

Normalizing qe and finding the error about each axis results in large roll and yaw
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errors and zero pitch error. This is because a combination of roll and yaw will yield

the minimum rotation to get the aircraft to the commanded quaternion (vertical with

belly of aircraft facing north) rather than pitching up 90 degrees and then rolling 180

degrees. While this maneuver will most likely work, it was desired to have a pure

pitching motion to transition from cruise to hover when heading in any direction.

That is, if the aircraft is in cruise mode heading south, the transition from cruise

flight to hover mode should leave the aircraft in the vertical orientation with the

belly facing south. This method was desired because it primarily required control

about a single axis rather than two axes simultaneously. Furthermore, when put into

practical use, the aircraft will most likely be flying towards its target with a camera

mounted on the belly of the airframe. Ideally, the aircraft would pitch up and have

the belly still facing the target. To achieve this, a delta quaternion is introduced

which generates a new commanded quaternion based on the aircraft’s heading when

the cruise-to-hover algorithm is initialized.

4.6.2 Cruise-to-Hover Error Quaternion

When the transition from cruise to hover is initialized, there is an angular error

between the x axis of the aircraft and a vertical vector expressed in the reference

frame. Assuming perfect cruise conditions (i.e. φ=0, θ=0, and -180 ≤ ψ ≤ 180 de-

grees), this error is equal to ninety degrees about the pitch axis. As mentioned above,

the commanded quaternion for hovering cannot be used because it will not result in

the desired pitch up maneuver to reach the vertical orientation [28]. Instead, vector

and quaternion mathematics will be used to generate a delta quaternion which rep-

resents a rotation from the initial aircraft attitude in quaternion form to the vertical

orientation. Using the delta and measured quaternions, a commanded quaternion can

then be calculated which represents the vertical orientation with the belly facing the
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Figure 4.3: The vertical vector in the reference frame is shown along with the x axis
vector in the body frame.

same direction as the aircraft was heading when the algorithm was initialized. Upon

obtaining the commanded quaternion, the error quaternion can then be computed for

each new measured quaternion (i.e. each control loop iteration) which will generate

a pure pitching maneuver despite the initial aircraft heading.

Assuming the cruise-to-hover program has been initialized and the first measured

quaternion has been acquired, the process to calculate the delta quaternion starts by

defining the vertical vector in the reference (NED) frame, Vzr

Vzr
= 0.0i+ 0.0j − 1.0k (4.17)

and the aircraft’s x axis in the body frame, Vxb
, as seen in Figure 4.3.

Vxb
= 1.0i+ 0.0j + 0.0k (4.18)
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It is desired to keep the error quaternion in the aircraft’s body frame such that

the angular errors can be directly used to control the aileron, elevator, and rudder

surfaces. Therefore, all calculations will be performed in the body frame. As such,

the first step is to transform the vertical vector (Vzr
) from the reference frame to the

body frame using the measured quaternion. This is performed by

Vzb
= q∗m ⊗ Vzr

⊗ qm (4.19)

where Vzb
represents Vzr

transformed to the body frame. It should be noted that in

the above equation, Vzr
is first converted to a fourtuple by adding a zero to act as the

scalar component. This is done to make it compatible with quaternion multiplication.

Vzb
is then converted back to a vector by removing the scalar portion of the resulting

fourtuple.

Now that the vertical vector and the aircraft’s x-axis are both represented in the

body frame, vector mathematics can be used to find an orthogonal rotation axis and

angle between the two vectors. The cross product is calculated to find the rotation

axis, or the axis which is orthogonal to both vectors

Vrot = Vxb
× Vzb

(4.20)

Next the angle between the MAV’s x axis and vertical vector in the body frame

can be found by using the dot product

γ = cos−1(Vxb
· Vzb

) (4.21)

The axis and angle representing the rotation to have the aircraft’s x axis coincide

with the vertical vector are now known and can be converted into a quaternion, which
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will be referred to as the delta quaternion, q∆.

q∆1
= Vrot1 sin(γ/2) (4.22a)

q∆2
= Vrot2 sin(γ/2) (4.22b)

q∆3
= Vrot3 sin(γ/2) (4.22c)

q∆4
= cos(γ/2) (4.22d)

The newly calculated delta quaternion, q∆, and the first measured quaternion

from Equation (4.19) can be used to calculate the new commanded quaternion, q′c

q′c = qm ⊗ q∆ (4.23)

The new commanded quaternion represents the vertical orientation with the belly

of the aircraft facing in the same direction as the heading in cruise mode. The

entire process to calculate q′c is performed once at the initialization of the cruise

to hover maneuver. The resulting commanded quaternion remains constant and is

used in every iteration along with a new measured quaternion to compute the error

quaternion. The equation for the error quaternion (4.12) is restated below

qe = q∗m ⊗ q′c

Finally, since the error quaternion is calculated in the body frame of the aircraft,

the angular error about each axis can be used to control the aileron, elevator, and

rudder surface deflection. The angular errors are calculated using the relationships
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from Equation (4.14)

Ex = 2 cos−1(qe4) qe1/‖qev
‖

Ey = 2 cos−1(qe4) qe2/‖qev
‖

Ez = 2 cos−1(qe4) qe3/‖qev
‖

Again, the angular errors about each axis can be used in a proportional-derivative

(PD) control scheme to generate aileron, elevator, and rudder deflections.

δe = Kpe
Ey +Kde

Ėy (4.25a)

δr = Kpr
Ez +Kdr

Ėz (4.25b)
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5. Attitude Control of the Hybrid Platform

The algorithms discussed in Chapter 4 to calculate the error quaternions will be

incorporated into an attitude controller and embedded onto the onboard flight con-

trol system. In order to acquire the aircraft orientation in quaternion form, the flight

control system will be interfaced with a small and lightweight inertial measurement

sensor. The integrated system is able to achieve the first documented success1 of au-

tonomously hovering a fixed wing micro air vehicle [18]. In addition, data is captured

during both manual and autonomous hovering and is used to compare the controller

performance to that of an expert human pilot. Next, the cruise-to-hover error quater-

nion from the previous chapter is used in a slightly different controller to achieve the

transition from cruise to hover flight autonomously [17]. These novel experiments

revealed new challenges which are addressed in the latter part of this chapter. For

example, in order for the video from the MAV’s onboard camera to be useful in

surveillance applications, the torque roll effect during hover must be eliminated. This

is accomplished by mounting small motorized propellers on the tip of each wing to

create a counter-rotating force. Also, an altitude controller was incorporated into the

system and used to demonstrate full autonomous hovering of the hybrid prototype.

5.1 Attitude Sensor

Autonomous control of the hybrid prototype requires an inertial sensor capable of

measuring aircraft attitude during unconventional maneuvers and orientations. The

two most critical parameters are the output mode and gyro range capabilities of the

sensor. Ideally, the sensor will have more than a single Euler output mode because

of their singularity at ± 90 degrees. A direction cosine matrix can be converted to

1To the best of the author’s knowledge
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a quaternion and used in the algorithms of Chapter 4; however, this requires a lot

of unnecessary computations. An inertial sensor which outputs quaternions directly

will be more computationally efficient. The other parameter which factors into sensor

selection is the gyro range. Typically, this is specified at 150 or 300 deg/s for most

MEMs gyros. Careful consideration must be given in selecting this parameter because

of the fast transition from cruise to hover flight. The gyro range must be greater than

the speed of the transition. That is, orientation errors will arise if the transition

occurs at a rate of 200 deg/s. and the gyro range is specified at 150 deg/s.

Before investing in an expensive inertial measurement unit (IMU), the speed of

the transition had to be measured. FMA Direct makes a pitch and roll sensor for

less than $100 called the F8 Copilot (see Figure 5.1a). It works on the principle that

the earth is much warmer than the surrounding air. With four infrared heat sensors

covering a panoramic view of the environment, temperature readings are acquired

and processed. The F8 Copilot then classifies the region of the highest temperature

gradient as the horizon. The attitude of the aircraft can then be calculated relative

to the horizon. The sensor was mounted on the aircraft during a manual cruise-to-

hover transition and the pitch angle data from this flight was plotted against time

(see Figure 5.1b). It can be seen that the transition from 0 to 90 degrees occurs in

approximately 0.75 seconds, or at a rate of 120 deg/s. It should also be noted that

in the last trial, the aircraft is hovering in 10 mph wind and must pitch forward to

compensate.

After processing the flight data during the transition, it was determined that a

sensor with a gyro range of at least 150 deg/s. was required. Using this specification

and a desired output mode in quaternion form, an inertial measurement unit (IMU)

by Microstrain was selected. Figure 5.2 shows the Microstrain IMU which outputs a

gyroscopically stabilized four component quaternion describing the MAV’s orientation
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Figure 5.1: (a) FMA Direct’s F8 Copilot is used to measure the pitch rate of the
hybrid prototype. Reprinted from www.fmadirect.com. (b) Data captured during the
transition from cruise to hover flight is used to determine the rate of the maneuver.

with respect to the fixed earth coordinate frame. It weighs just 30 grams out of its

protective casing and is comprised of three triaxial accelerometers and angular rate

gyros as well as three orthogonal magnetometers. The gyro range is 300 deg/s which

is more than enough to handle the transition from cruise to hover flight. It uses RS-

232 protocol for communication and transmits attitude information in data packets.

For example, a four component quaternion would consist of 11 bytes of data in the

following format

• Byte 1: Header byte

• Bytes 2 and 3: q0 MSB and LSB

• Bytes 4 and 5: q1 MSB and LSB

• Bytes 6 and 7: q2 MSB and LSB

• Bytes 8 and 9: q3 MSB and LSB

• Bytes 10 and 11: Timer MSB and LSB

• Bytes 12 and 13: Checksum MSB and LSB
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Figure 5.2: Microstrain’s 30 gram IMU sensor was used to feedback attitude infor-
mation to the onboard control system.

A data packet of this length can be acquired at a rate up to 100 Hz. Mounting

the IMU at the MAV’s center of gravity and interfacing it with a flight control system

will enable autonomous attitude control of the aircraft.

5.2 Flight Control System

The hovering flight mode of the hybrid platform enables it to fly in urban areas and

other cluttered environments. The characteristics of these flying domains such as tall

buildings and enclosed areas make communication difficult. This makes controlling

the aircraft from a remote base station a perilous task. To eliminate the risk of

communication dropouts, a flight control system (FCS) was designed to fit onboard

the aircraft. Furthermore, the FCS was designed to weigh less than 25 grams in order

to reserve half of the 100 gram payload for navigational sensors.
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5.2.1 Components

The most critical component of the flight control system is the microcontroller.

It has several responsibilities including acquiring attitude data from the IMU, imple-

menting the control algorithm for autonomous hovering or the transition into hover

mode, and generating the corresponding pulse width modulated (PWM) servo signals

to control the amount of aileron, elevator, and rudder deflection. Microchip’s PIC

series microcontrollers were investigated because of their robustness and availabil-

ity. In addition, Custom Computer Services (CCS) has developed a software package

enabling the user to write PIC applications in the C programming language with

floating point math capabilities. A PIC18F8722 was selected for the FCS because of

its large amount of program (e.g. 128 KB) and data (e.g. 3.9 KB) memory, multiple

Capture-Compare-PWM pins to decode PWM signals, several RS-232 transmit and

receive pins, I2C capabilities to write data to external memory, and surface mount

packaging to reduce size and weight.

The two other significant components of the FCS include an RS-232 converter

chip and external memory. The IMU transmits RS-232 data at ± 12 volt levels while

the PIC microcontroller can only communicate with serial devices at TTL voltage

levels. Therefore, a MAX235 RS-232 converter chip was incorporated between the

IMU and the microcontroller and also allows for four additional RS-232 devices to

be interfaced with the FCS. The FCS also includes 65 KB of Electronically Erasable

Programmable Read-Only Memory (EEPROM). Altitude data for each flight is sent

to the EEPROM chip via I2C communication and is downloaded and analyzed post-

flight. Also, the FCS was designed to be modular and includes six input and five

output ports for connecting servos or other DC motors. Therefore, it can easily be

disconnected from one air or ground vehicle and used as the control system for another

by simply reprogramming the microcontroller. The complete system weighs 25 grams
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Figure 5.3: A 25 gram flight control system was developed for controlling the hybrid
prototype.

and is shown in Figure 5.3.

5.2.2 Manual Override

The manual override feature of the flight control system played an integral role in

the evolution of the control algorithms. It enabled new algorithms to be tested and

optimized with minimal risk to the airframe. If during a live flight test, the aircraft

exhibited an unexpected response, the expert human pilot would flick a switch on the

R/C transmitter to override the flight control system. Upon taking over, the pilot

has full control of the aircraft. This feature extended the life of the aircraft on several

occasions.

The implementation of the manual override feature was done in software in order to
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eliminate the need for any additional hardware. Additional hardware such as switches

and multiplexers add weight to the avionics system and also increase the chance of

failure. The switch shown in Figure 5.4 is linked to channel 6 on the aircraft receiver.

When the switch is flicked towards the pilot to enable manual control, a 2 ms PWM

signal is generated at the receiver end. When the switch is pushed away from the

pilot to engage autonomous control, a 1 ms PWM signal is formed at the receiver end.

The function of the FCS microcontroller is to decode the PWM signal and determine

the length of the incoming pulse from channel 6.

Figure 5.4: A switch on the remote-controlled transmitter was used to toggle back
and forth between manual and autonomous control.

The microcontroller comes equipped with five capture-compare-PWM (CCP) mod-

ules. These allow an interrupt to be triggered when the incoming signal goes from
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Figure 5.5: During manual mode, the signals from the receiver are passed directly
to the servos. When in autonomous mode, the control signals are sent to the servos
based on sensor data.

low to high or high to low. To determine the length of the pulse, the high time must

be measured. As such, the interrupt is set up to trigger when the incoming channel

6 pulse goes from low to high. Inside the interrupt routine, a 16-bit timer module

(TIMER1) is initiated and begins counting while the pulse remains high. When the

pulse goes low, the timer value is read, converted to milliseconds, and stored in a

global variable to be accessed in the main program. Within the main loop, a 1.5

ms threshold is set. If the pulse length is above this threshold, the microcontroller

passes the incoming signals from the receiver directly to the servos. Otherwise, the

FCS generates servo signals based on the output of the attitude controller (see Fig-

ure 5.5). With the manual override feature operating efficiently, autonomous hovering

experiments were ready to be performed.
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5.3 Autonomous Hovering Experiments

After mounting the IMU at the aircraft’s center-of-gravity and interfacing it with

the flight control system, the control algorithms could now be programmed to the

microcontroller and tested. A series of experimental hypotheses are created to assess

the outcome of the experiments, which take place inside urban structures as well as

outdoors in moderate wind conditions. The hypotheses are discussed along with the

experimental procedures and results in the ensuing subsections.

5.3.1 Autonomous Hovering Hypothesis 1

The first hypothesis for the autonomous hovering experiments was that using the

error quaternion from Chapter 4 in a simple proportional-derivative controller will

stabilize (i.e. maintain a vertical orientation) the aircraft during a hover.

The first autonomous hovering experiments were conducted inside an urban struc-

ture with limited flying space (i.e. 3m x 3m area) to demonstrate that hovering can

be sustained within small areas. The MAV is released in near-hovering orientation

(i.e. the fuselage is close to vertical) and manually given enough thrust to balance the

weight of the aircraft. The quaternion algorithm from Chapter 4 begins by sampling

the measured quaternion, qm, from the IMU and multiplying the conjugate of it by

the commanded quaternion, qc, to get the error quaternion. The angular errors about

each axis are then extracted from the error quaternion. Proportional-derivative con-

trol is performed on the pitch and yaw errors to keep the aircraft vertical. Figure 5.6

shows the control loop which repeats continuously and is synchronized with the IMU

clock cycle (i.e. every 10 ms).

Initial experiments demonstrated that the MAV was able to successfully sustain a

hover for several minutes before draining the battery (see Figure 5.7). This confirms

the first hypothesis in that a PD pitch and yaw controller was able to stabilize the
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Figure 5.6: Flow chart describing the autonomous hovering code.

aircraft during hover mode.

5.3.2 Autonomous Hovering Hypothesis 2

The reactive torque from the motor (i.e. torque roll) is beneficial because it provides

a panoramic view from the onboard wireless camera.

The reactive torque, which results from the rotational force the motor exerts on

the propeller, causes the plane to rotate about the vertical axis when hovering. When

mounting a wireless camera on the belly of the aircraft, the rotation about the vertical

axis will provide panoramic images of the environment. To evaluate this hypothesis,

a 12 gram, 2.4 GHz wireless camera system and 2-cell lithium polymer battery were

interfaced and mounted on the hybrid prototype. The aircraft was released in near-

hovering orientation and was able to sustain a hover for several minutes. The wireless

video transmitted to the ground-based receiver was recorded and the roll angle of the

aircraft was logged to the flight control system’s external memory.

When playing back the video offline, it was instantaneously realized that the
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Figure 5.7: MAV performing a hands-off autonomous hover inside an urban structure.

second hypothesis was incorrect. The aircraft is rotating so quickly that the video

had a dizzying effect on the viewer. This phenomenon is easier to justify with the

flight data as opposed to image stills extracted from the video. Figure 5.8 shows the

flight data with no torque roll control. With the plane constantly rotating, a plot

of the angular data would grow rapidly. To make each revolution more visible, the

roll angle was bounded between -180 and 180 degrees. It can be seen that the plane

completes 7 full revolutions in 16 seconds, or is torque rolling at a rate of 26 rpm.

The net result is that the torque roll had to be controlled. Therefore, the second

hypothesis is revisited in section 5.5.

5.3.3 Autonomous Hovering Hypothesis 3

When comparing the performance of the flight control system to that of an expert

human pilot, the FCS will surpass the human.
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Figure 5.8: Roll angle captured during autonomous hovering without torque roll
control.

To assess this hypothesis, an experiment was performed to contrast hovering under

both manual and autonomous control. The metrics used were

1. Duration of the hover before the FCS/human loses control

2. Stability of the aircraft while in hovering mode

A skilled human pilot was initially given control of the aircraft and was instructed

to fly around a gymnasium in cruise configuration, transition from cruise to hover

flight, and attempt to hover the aircraft for as long as possible. The video stills2 in

the top of Figure 5.9 show the pilot struggling to keep the fuselage vertical, but is able

to keep the aircraft positioned over a small area. Out of a few trials, the human pilot

was able to sustain a hover for several minutes before draining the battery. However,

the aircraft’s pitch and yaw angles oscillated significantly as the pilot tried to keep the

2The video sequence shows three images extracted once a second for a period of three seconds.
With the plane rotating at a rate of 0.25 revolutions per second, this is enough to show two quarter
rotations.
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Figure 5.9: A skilled human pilot hovers a fixed-wing aircraft in a small gymnasium
and struggles to maintain a vertical orientation (top). Under autonomous control, the
same aircraft is able to sustain a hover while remaining fixed in the vertical position
(bottom).

aircraft in the vertical orientation. This is supported with a portion of the captured

flight data, labeled human-controlled, in Figure 5.10.

A second trial was conducted where the pilot was instructed to again fly in cruise

configuration and manually transition from cruise to hover flight. However, instead

of trying to hover the aircraft manually, the pilot flicked a switch on the transmitter

which enabled the onboard control system. This time, the aircraft is fixed in a vertical

position and is able to hover for several minutes before exhausting the battery (see

bottom of Figure 5.9). Again, the flight data was captured and a fraction of it is shown

in Figure 5.10. The length of the hover for the flight controller was comparable to

that of the human, however, the FCS was able to achieve a higher margin of stability

as seen from the flight data.
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Figure 5.10: Pitch and yaw angles captured during both human-controlled and au-
tonomous hovering.
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5.4 Autonomous Cruise-to-Hover Experiments

Another series of experimental hypotheses were created to assess the autonomous

cruise-to-hover (CTH) transition. The experiments are conducted outside in an open

field and inside an urban structure. The hypotheses are discussed along with the

experimental procedures and results in the following subsections.

5.4.1 Autonomous CTH Hypothesis 1

Multiplying the elevator derivative gain by a factor of 3 is enough to kill the mo-

mentum when arriving at the hovering orientation.

In the autonomous hovering experiments, the aircraft is released close to the

desired orientation. Therefore, the angular errors extracted from the hovering error

quaternion are less than 30 degrees in most cases. As such, the elevator and rudder

control surfaces are rarely at full deflection. However, the pitch error extracted from

the cruise-to-hover error quaternion is approximately 90 degrees. Incorporating the

angular error into a proportional-derivative controller yields full elevator deflection

from the start. As a result, the aircraft will rapidly gain momentum as it pitches from

cruise mode to the hovering orientation. To kill the momentum, the derivative gain

is multiplied by a factor of 3. The hypothesis is that this will prevent the aircraft

from overshooting the hovering orientation, ending in a fatal result.

To test this hypothesis, an experiment was conducted outdoors in an open field.

The human pilot loitered around the field in cruise mode and then flicked a switch

on the transmitter to enable the onboard controller. This signaled the start of the

autonomous transition and full elevator deflection was given by the controller. By

substantially increasing the derivative gain, the rotation rate became the primary

control factor. Therefore, the controller damped the rotation rate by cutting back

on the elevator deflection, thus killing the momentum. The transition takes about a
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Figure 5.11: The transition from cruise flight (left), through the stall regime (center),
and into hover mode (right) is achieved autonomously.

second and is shown in Figure 5.11. From the experiments, the first hypothesis was

confirmed. The aircraft did not exceed a pitch angle of ninety degrees when pitching

up into the hovering flight mode.

5.4.2 Autonomous CTH Hypothesis 2

The transition from cruise flight to a hovering orientation can be achieved inside

an urban structure.

When the aircraft is in horizontal flight just before starting the transition, it

has maximum kinetic energy. As the plane makes the transition and begins to gain

altitude, the kinetic energy is converted to potential energy. It is not until all of its

kinetic energy is converted to potential that the plane reaches a maximum altitude.

With the human pilot controlling the throttle, however, it is believed that the vertical

momentum can be regulated, thus allowing the maneuver to be pulled off in an

enclosed area.

To test this hypothesis, a basketball gymnasium with a 25 foot ceiling was utilized.

The procedure was similar to the outdoor flight tests in that the pilot manually flew

the aircraft around the gymnasium in cruise mode. However, just before flicking the

switch to enable the onboard attitude controller, the pilot had to precisely control

the throttle. This was much different than the outdoor case where there was no risk
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of the aircraft crashing into the ceiling.

As the pilot enabled the autonomous flight controller, the plane began the tran-

sition to hover mode autonomously. However, it was noticed that the transition was

not as smooth as it was outdoors. That is, there was a significant amount of overshoot

in the aircraft’s pitch angle (see Figure 5.12). The controller was still able to recover

and stabilize the aircraft in the hovering orientation. The reason for the overshoot

was that as the aircraft started gaining altitude, the pilot cut back significantly on the

throttle to compensate. This resulted in a large decrease in airflow over the control

surfaces and thus the elevator could not provide enough force to completely kill the

momentum as the plane reached the hovering orientation. It seems there may be a

need for autonomous altitude hold and this is also revisited in the section 5.5.

5.5 Hypotheses Revisited

Based on the initial hovering and cruise-to-hover experiments, additional chal-

lenges were revealed. First, it was obvious that while the torque roll during a hover

did provide panoramic footage, it was impossible to interpret in real time because

of the fast rotation rate. Second, the autonomous cruise-to-hover transition experi-

ments showed the need for altitude control. These two demands are addressed and

incorporated into the low level flight controller.

5.5.1 Torque Roll Control

As originally thought, the torque roll did not affect the stability of the aircraft

during a hover. That is, the MAV was still able to remain in the vertical position

despite the rotations resulting from the motor torque. However, if the hybrid MAV

was to be used in the field for surveillance and reconnaissance purposes, the view from

the onboard wireless camera would have a dizzying effect as the plane was rotating
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Figure 5.12: The transition from cruise flight into hover mode is demonstrated inside
an urban structure (top). During the transition, the throttle is decreased to prevent
the plane from colliding with the ceiling. This causes the aircraft to overshoot the
vertical orientation (bottom left). The flight controller is able to recover and stabilize
the MAV in its hovering orientation (bottom right).

at a rate of more than 20 rpm. Since the original aileron surface area did not create

enough torque to counter the rotation when fully deflected, other alternatives had

to be investigated. Also, to keep the cost and weight of the aircraft at a minimum,

counter-rotating propeller were to be used as a last resort.

The first and most obvious approach was to increase the aileron surface area by

lengthening them in the direction of the wing chord. However, this was not effective

for several reasons. The first is that the propeller wash during a hover only flowed

over approximately 40 percent of the ailerons. Second, a longer aileron when fully

extended caused some airflow to completely miss the tail. This significantly affected
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attitude regulation during a hover. Finally, fully deflecting the ailerons created an

adverse yaw effect which caused the airplane to drift when hovering.

The second approach was to mount miniature DC motors with propellers on each

wingtip. The motors were positioned to produce a thrust force in opposite directions

which generated a rotational force countering the motor torque (see Figure 5.13).

The wingtip motors are GWS EDP-20s which provide 23 grams of thrust with a

2510 direct drive propeller at 7.2 volts. With the same error quaternion used in the

autonomous hovering experiments, the angular error about the aircraft’s x-axis was

now incorporated into the flight controller. Using this parameter, PID control was

implemented on the error. This determined the length of the PWM signal being

output to the brushed speed controller. A schematic of the system components and

interface for autonomous hovering with torque roll regulation is shown in Figure 5.14.

With the above setup, autonomous hovering experiments were conducted with

torque roll control. Figure 5.15 shows the torque-controlled condition in which the

plane remains in a relatively constant orientation. This can be compared to Figure 5.8

in which the MAV completes 7 full revolutions in the same amount of time.

5.5.2 Altitude Hold

Without reliable GPS signals in these environments, altitude control is a chal-

lenging task. Furthermore, the scope of the MAV’s flying domain includes the insides

of urban structures and thus altimeters are inefficient. Both ultrasonic and infrared

sensors were investigated for altitude hold. The infrared sensors proved to be too

noisy (even after filtering) to achieve successful results and thus ultrasonic sensing

was selected. The MaxSonar EZ-1 ultrasonic sensor was selected because of its 6

meter range, 2.5 cm resolution, digital output, and 4.5 gram weight.
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Figure 5.13: Two DC motors are added on each wingtip to counter the motor’s
reactive torque. Inset: Zoomed in view of the wingtip motor.

Figure 5.14: Schematic showing the system interface during an autonomous hover
with torque roll control.
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Figure 5.15: Roll angle captured during autonomous hovering with torque roll control.

The ultrasonic sensor had to be mounted on the hybrid prototype so that it

would not be occluded when the elevator and rudder control surfaces were deflected.

Furthermore, the mounting arm had to be designed so that it did not obstruct elevator

and rudder deflection. The arm was created out of balsa wood and is shown in

Figure 5.16.

With the ultrasonic sensor securely mounted on the tail, a controller for fully

autonomous hovering could now be implemented and tested. A PID controller with a

setpoint height of 36 inches was built upon the torque-controlled hovering algorithm of

Section 5.5. Initial experiments showed that a noisy sample would randomly penetrate

the ultrasonic height data making it difficult for the controller to regulate altitude. As

such, an Exponentially Weighted Moving Average (EWMA) filter was implemented
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Figure 5.16: A mount was created for the sonar sensor so that it would not interfere
with the elevator and rudder control surfaces.

to dampen the response to the outliers.

xk = αxk−1 + (1 − α)xk (5.1)

where 0 ≤ α ≤ 1 represents the effect the filter has on the output. The higher the

value of α, the more the data is filtered and vice versa. A value of 0.80 was used

to filter the ultrasonic sensor data. Furthermore, the throttle input was bounded to

prevent the aircraft from losing or gaining altitude too quickly.

The next set of experiments were performed using filtered ultrasonic data and
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Figure 5.17: The first two images in the above sequence show the hybrid MAV in a
fully autonomous hover at a height of 36 inches at 6 seconds apart. In the third image,
a board was placed under the MAV’s tail which caused the controller to adjust the
MAV’s height to 36 inches above the board. This was used to show that a constant
throttle setting was not used to perform altitude hold.

represent the first documented results3 of fully autonomous hovering of a fixed wing

MAV. The results of the experiment are shown in the first two images of Figure 5.17.

Furthermore, to show that the throttle was not set at a fixed position to balance the

aircraft weight, a board is placed under the tail. This causes the FCS to adjust the

aircraft’s height to 36 inches above the board as seen in third image of Figure 5.17.

The ultrasonic data from the tail mounted sensor is shown in Figures 5.18.

3To the best of the author’s knowledge
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Figure 5.18: The raw sonar data is plotted over the course of 20 seconds of fully
autonomous hovering. The reference height value was set to 36 inches. In the next
20 seconds, a board is placed under the aircraft to prove that the throttle is not set
at a constant value to balance the aircraft weight.
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6. Sensing and Control in Near-Earth Environments

The multiple flight modes of the hybrid platform make it well suited for achiev-

ing reconnaissance missions in near-Earth environments. This chapter describes a

collision avoidance sensor suite used in conjunction with a high level navigational

controller to detect an open doorway along the exterior of an urban structure. Fur-

thermore, the integrated system is able to traverse the doorway to gather reconnais-

sance inside the building. The navigational controller is built on top of the low level

attitude controller discussed in the previous chapter. The following sections describe

the mission in more detail, sensor selection, and the multimodal controller used to

achieve the building ingress and reconnaissance mission autonomously.

6.1 The Notional Mission

There is suspicious activity reported at a large one-story building.

The environment is potentially hostile and the hybrid platform is called

upon to gather reconnaissance of the area. The MAV loiters around the

perimeter of the building in cruise mode and streams wireless video back

to a command and control station. An open doorway is detected in the

video and the hybrid prototype is commanded to transition to hover mode

and gently maneuver itself through the doorway and into the building for

a closer look. Once inside, video from the MAV’s onboard wireless camera

was transmitted to a ground station located outside the target perimeter.

This mission is demonstrated by an expert human pilot under full manual

operation (see Figure 6.1).
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Figure 6.1: A fixed-wing MAV transitions to hovering mode to gently maneuver itself
through a small opening of an urban structure. Inset: once inside, the onboard
wireless camera is used to capture and transmit surveillance images.

The final goal of this thesis is to perform this mission autonomously. However,

it will be broken down into a combination of wall following, doorway detection, and

reactive control to enter the building. Looking at the building from the top view

as in Figure 6.2, the MAV will begin by implementing a wall following algorithm

to translate along the exterior wall of the building towards the doorway. Once the

door opening is detected, the aircraft must stabilize itself in the hovering orientation

and kill any forward momentum. Finally, the MAV will traverse the doorway and

gather reconnaissance inside the building. A sophisticated sensor suite and control

system is required to achieve this mission without any human intervention. Several

sensing technologies will be investigated including optic flow, LADAR, ultrasonic, and

infrared. Once a sensor suite is selected, it will be mounted on the MAV, interfaced

with the flight control system, and used to achieve the mission autonomously.
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Figure 6.2: The top view of the target building is shown to help visualize the goal of
the final experiment.

6.2 Sensing

For inspiration towards autonomous MAV navigation in near-Earth environments,

the authors looked to nature. Flying creatures such as insects, birds, and bats have

unique sensing capabilities to navigate in complex and dynamic surroundings. For

example, flying insects such as honeybees and fruit flies use optic flow [15]. By

leveraging previous research used to perform autonomous collision avoidance and

landing with a MAV [20], optic flow will be investigated as a viable option for the

hybrid prototype. Furthermore, it is well known that bats navigate in caves and

forests by emitting ultrasonic pulses. Small and lightweight ultrasonic sensors can
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Figure 6.3: (a) Dragon fly saccading away from regions of high optic flow in order to
avoid a collision. (b) One-dimensional optic flow during insect flight.

be arranged in an array to cover a large field of view around the MAV and mimic

the sensing capabilities of bats [26]. In addition, other sensing alternatives will be

investigated such as laser scanners, laser rangers, and infrared sensors.

6.2.1 Optic Flow

Insects perform tasks such as collision avoidance and landing by perceiving the

optic flow of their surroundings [53]. Optic flow refers to the apparent motion of

texture in the visual field relative to the insect’s body. Through several experiments

with honeybees [52] and fruit flies [57] [58], it is suggested that flying insects avoid

collisions by turning away from regions of high optic flow (see Figure 6.3a).

This can be seen theoretically from the one-dimensional optic flow equation orig-

inally derived in [60]

OF =
V

D
sinα− ω (6.1)

where optic flow is measured in rad/sec and is a function of the insect’s forward

velocity, V , angular velocity, ω, distance D from an obstacle, and the angle, α,

between the insect’s direction of travel and the obstacle (see Figure 6.3b). As the
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Figure 6.4: Optic flow as seen by aerial robot flying above ground. Reprinted from
www.centeye.com.

obstacle approaches (i.e. D decreases), the optic flow magnitude increases.

This same principle can be applied to MAVs traveling in straight paths [3] as

shown in Figure 6.4. If an optic flow sensor is mounted on the nose of the MAV,

the focus of expansion (FOE) in the forward sensor view indicates the direction of

travel. If the FOE is located inside a rapidly diverging region, then a collision is

imminent. A rapidly expanding region to the right of the FOE like the one seen in

the Figure 6.4, corresponds to an obstacle approaching on the right side of the MAV.

Thus, the MAV should turn left to avoid the collision, or away from the region of high

optic flow. Similarly, the MAV can estimate its height from a downward-facing optic

flow sensor mounted on the belly of the aircraft (e.g. faster optic flow indicates a low

flight altitude). By equipping a MAV with sensors capable of measuring the optic

flow in front of and below the aircraft, the above flight patterns can be embedded in

a control system for autonomous collision avoidance and landing.
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Figure 6.5: mixed-mode VLSI optic flow microsensor is slightly bigger than a US
quarter. Reprinted from www.centeye.com.

Autonomous Collision Avoidance

Mimicking behaviors of flying insects required optic flow to be measured in front

of the aircraft to detect oncoming collisions. Optic flow microsensors developed by

Centeye, Inc. [5] were used in the experiments. The sensors weighed 4.8 grams,

grabbed frames up to 1.4 kHz, and measured optic flow up to 20 rad/s (see Fig-

ure 6.5). By orienting the sensors at ± 45 degrees from the fuselage, optic flow fields

were detected on each side of the aircraft. Equation (6.1) was used to set an optic

flow threshold that corresponded to D being twice the turning radius of the aircraft.

The threshold assumed cruise conditions (i.e. V=const. and ω=0) and was preset

experimentally.

The aircraft was then flown towards different obstacles and an approaching object

on either side of the MAV would generate an increase in optic flow as seen in Equation

(6.1). The output of each of these sensors was fed into an early version of the onboard



76

Figure 6.6: Optic flow is used to sense when an obstacle is within two turning radii
of the aircraft. The aircraft avoids the collision by fully deflecting the rudder.

flight control system described in Chapter 5. If the values from either of the sensors

exceeded the threshold, the processor would apply full deflection to the rudder to avoid

the collision. By implementing this reactive-based method, autonomous collision

avoidance was successfully demonstrated (see Figure 6.6).

Autonomous Landing

Flying insects, such as honeybees, land by keeping the optic flow on the landing

surface constant. It is possible to autonomously land a MAV by mimicking this

behavior. When measuring the optic flow on the landing surface, the obstacle in

Figure 6.3b is now the ground and thus α = 90 degrees. To further simplify this

task, the rotational component of optic flow arising from changes in aircraft pitch are

assumed smaller than the translational component. Thus, Equation (6.1) reduces to

OFground =
V

D
(6.2)

Keeping Equation (6.2) constant demands the aircraft’s control system decrease

forward speed (V ) in proportion to altitude (D). When approaching a landing, the

embedded microcontroller will implement a function to gradually throttle down the
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motor while continuing to take optic flow readings throughout the landing process.

The control algorithm (see Figure 6.7) starts by computing the error between the

desired and measured optic flow. When the optic flow on the landing surface becomes

larger than the desired optic flow, the error is negative and two conditions are possible.

One, the forward velocity, V , could be significantly increasing which is not possible

based on the motor function. Two, the altitude (D) can be decreasing at a faster rate

than the forward velocity (V ). Here, the controller sends a signal to the elevator to

decrease the vehicle’s descent rate based on the error magnitude. The other possibility

is that the measured optic flow could start to dip below the desired value causing the

error to be positive. The two possible cases that arise here are one, the altitude (D) is

increasing but again this is not possible while in landing mode and two, the velocity

(V ) is decreasing faster than altitude (D). In this case, the controller commands the

elevator to increase the descent rate. Figure 6.8 shows the results of the autonomous

landing experiments.

Optic Flow Limitations

The proof-of-concept experiments showed promising results for using optic flow

as a means of perception in near-Earth environments, however, there are some lim-

itations. For example, when two optic flow sensors are aligned at 45 degrees from

the fuselage like in the experiments above, smaller objects such as poles could re-

main outside the sensor’s field of view (see left part of Figure 6.9). Similarly, optic

flow-based collision avoidance is also inefficient when flying directly towards larger,

homogenous obstacles such as walls (see right part of Figure 6.9). Surfaces which are

low in texture and uniform in color will yield small optic flow fields. These scenarios

are most likely why honeybees never fly a straight line towards a target, but rather

make a slight zigzag pattern. This generates an artificial parallax that will yield optic

flow values for smaller oncoming obstacles and large surfaces which are low in texture.
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Figure 6.7: Flow chart of landing control system.

These limitations are further evidenced in [62], where the diverging optic flow field

generated by the wall was used to trigger a warning two meters before the collision.

However, the experiment was performed in an artificially textured environment (i.e.

alternating white and black sheets were used as walls). Walls are often homogeneous

and have little texture. Therefore, this method alone will not be sufficient in more

realistic environments. Also, in one experiment in [22], optic flow sensors were used to

calculate the distance to obstacles on the side of the MAV. In the second experiment

where the MAV started out by heading right towards a building, a laser ranger was
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Figure 6.8: The optic flow on the basketball gym floor is kept constant by the control
system. That is, the aircraft (encircled) forward velocity is decreased in proportion
with its altitude to land smoothly. Left: Aircraft just after hand launch. Middle:
Aircraft midway through landing sequence at proportionally lower altitude and ve-
locity. Right: Aircraft comes to a smooth landing within 25 meters from starting
point.

Figure 6.9: Limitations of using optic flow for navigation.

used instead of optic flow for obstacle detection. Furthermore, this experiment was

performed outdoors with lots of flying space.

In addition to the limitations discussed above, optic flow is a computer vision

technique and is thus affected by changing or poor lighting conditions. Also, optic

flow sensors will not be suitable for wall following because an accurate measurement of

the MAV’s velocity is required to calculate distance in Equation 6.1. Therefore, other

alternatives will be investigated for the building ingress and reconnaissance mission.
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6.2.2 Laser Scanners and Rangers

Laser scanners are range and bearing sensors that can acquire large slices of a

robot’s environment multiple times per second. The most widely used version of

these sensors in robotics is the SICK Laser Measurement Sensor (LMS) [1] [2] [4] [7]

[24] [54]. The SICK LMS scans 180 degrees of the environment and can detect objects

out to 80 meters. At an angular resolution of 1 degree, scans can be acquired at a rate

of 75 Hz. Higher angular resolutions are achievable but at the expense of the scan

frequency. The SICK LMS is a very robust and useful sensor for collision avoidance

in near-Earth environments, but its 4.5 kg mass exceeds the payload capacity of most

miniature UAVs including the hybrid prototype.

Recently, a smaller and lighter laser scanner was released by Hokuyo. The URG-

04LX weighs 160 grams and occupies a volume which is 35 times smaller than the

SICK scanner. With a 240 degree scan angle, the Hokuyo covers a larger range than

the SICK but only has a 10 Hz scan rate. It can detect objects which are 4 meters

away with a measurement and angular resolution of 1mm and 0.4 degrees, respectively.

Even though the Hokuyo sensor weighs significantly less than the SICK laser scanner,

it is still beyond the payload capacity of the hybrid prototype. Furthermore, tests

with the Hokuyo sensor revealed it was extremely sensitive when compared to its

SICK counterpart [48].

Another option that was investigated was to use the MAV’s torque roll and a

simple laser ranger to mimic the more expensive and heavier laser scanners. That

is, a one-dimensional laser ranging sensor could be mounted on the aircraft’s belly

and rotating the aircraft around the vertical axis during a hover would simulate the

rotating mirror effect of the laser scanner. However, controlled translation while

the MAV was torque rolling would be very challenging and thus, this concept was

not selected. The net result is that while laser scanners have helped push the field
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of robotics forward, a small laser scanner as robust as the SICK LMS and within

payload limitations of miniature UAVs does not yet exist.

6.2.3 Ultrasonic and Infrared Sensing

Ultrasonic and infrared sensing have played an integral role in robotics research for

environmental perception. The advantages and disadvantages of each sensor are well

known. For example, the wide beam transmitted by ultrasonic sensors results in poor

angular resolution. This causes small openings such as doorways to be overlooked by

the sensor. Furthermore, small obstacles such as a 1-inch diameter pole can appear

to be 3 feet in width due to the sensor’s poor angular resolution.

Alternatively, infrared sensors have a very narrow transmission beam and are

therefore effective at detecting small openings and edges. However, they can be fairly

inaccurate or unstable when it comes to measuring distance. The disadvantages of

infrared and ultrasonic sensors can be improved by fusing the two sensing technologies

together. This was shown in [12] where infrared and ultrasonic sensors were used

in a complementary fashion to map out walls, doors, and windows of a residential

basement.

These same principles will be applied to perform wall following and doorway

detection in the final experiment. However, since more than one of each sensor will

be used for panoramic perception, small and lightweight packages must be selected.

The same ultrasonic sensor used for altitude hold (i.e. MaxSonar EZ-1) will be used

for lateral distance estimation to the wall. The infrared sensor selected was the Sharp

Long Range Distance Measuring Sensor (e.g. GP2Y0A02YK). It is an analog sensor

with a range of 20-150 cm and weighs just 10 grams.
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6.3 Sensor Suite

To achieve the experiment discussed earlier in this chapter, the hybrid MAV must

be able to follow the exterior wall of the building until it detects the doorway, stabilize

itself in the hovering flight mode so that its momentum does not carry it past the

doorway, and traverse the doorway to enter the building. Based on the evaluation of

various sensors in the previous section, an ultrasonic and infrared sensor suite will be

developed and interfaced with the flight control system.

In addition to the IMU and tail-mounted ultrasonic sensor for altitude control,

two MaxSonar EZ-1 ultrasonic sensors and two Sharp GP2Y0A02YK infrared sensors

will be incorporated into the sensor suite for wall following and doorway detection.

When determining where to mount the sensors, there were two critical factors that

had to be evaluated. The first was determining which orientation the plane should

be in during wall following and the other was the minimum detection distance of the

sensors.

6.3.1 Wall Following Orientation

Two options were possible when determining which orientation the MAV should

follow the wall in. The MAV’s wing axis could be parallel to the wall where a yawing

motion would create translation in the direction parallel to the wall (see Figure 6.10a).

The other option was to have the wing plane perpendicular to the wall being followed

(see Figure 6.10b). This meant that a slight rotation about the pitch axis would

result in translation parallel to the wall.

The orientation shown in Figure 6.10a would require a pitch forward maneuver

to traverse a doorway. This meant that the width of the doorway would have to

be slightly larger than the MAV’s wingspan. However, the cross section for the

orientation shown in Figure 6.10b is significantly smaller. Therefore, when yawing
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Figure 6.10: (a) One possible orientation the MAV can perform wall following is with
the wings parallel to the wall. (b) The other is with the wing plane perpendicular to
the wall.

through a doorway, there would be more room for error. Furthermore, the aircraft is

more stable when following a wall with the wing plane perpendicular to it and was

therefore chosen as the wall following orientation.

6.3.2 Sensor Location

Both the ultrasonic and infrared sensors have a minimum detection, or blind,

distance. The blind distance for the ultrasonic sensors is 15 cm which means the

sensor will return 15 cm for any obstacle that is within 0-15 cm from it. Therefore,

mounting it on the tip of each wing could have fatal results. For example, if the

aircraft is flying in hovering mode and an obstacle is dangerously close to the wing

(i.e. 3 cm), the ultrasonic sensor would still return a value of 15 cm. To prevent this,

the sensor was initially mounted on the fuselage near the aircraft’s center of gravity.

At this location, the blind distance of the sensor was shielded by the wing. However,

it was later realized that the propeller wash and frequency were severely affecting the
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performance of the sensor.

This phenomenon was further investigated in a repeatable experiment. An ul-

trasonic sensor was mounted on the aircraft’s fuselage about 30 cm away from the

propeller. The aircraft is oriented such that the sensor is aimed directly at a flat

wall. The sensor is initially 75 cm from the wall and is carried on a straight path

perpendicular to the wall until it reaches a distance of 280 cm. It is then carried

back towards the wall on the same path until it reaches the starting point (i.e. 75

cm from the wall). Each trial was conducted with the propeller off and then again

with the propeller spinning at the approximate angular velocity of the hovering flight

mode. It can be seen in Figure 6.11 that the propeller has a large effect on the raw

sensor output. Both high frequency noise and inaccuracies are introduced into the

measurements. It was therefore concluded that the sensor should be mounted as far

away from the propeller as possible. With an ultrasonic sensor already mounted on

the tail for altitude hold, the most optimal position for the wall following ultrasonic

sensors was at the base of the fuselage (see Figure 6.12). Like in the previous mount-

ing position, the minimum detection distance does not become a factor because the

wing extends out 0.5 meters and is therefore used as the threshold for the sensor.

The minimum detection distance for the infrared sensors is 20 cm. However,

they are not affected by the propeller and can therefore be mounted on the aircraft’s

wings. To account for the 20 cm blind spot, the infrared sensors are moved in this

exact distance from the tip of the wing (see Figure 6.12). Therefore, the wing prevents

any object from entering the sensor’s blind region.

6.4 Dual Processor Flight Control System

The flight control system was upgraded to a dual processor board (see Figure 6.13).

The additional PIC16F877 microcontroller acts as a low level processor by performing
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Figure 6.11: Raw ultrasonic data is collected with the propeller on and off. It can be
seen that the propeller severely affects the performance of the sensor.

sensor data acquisition and communicating the raw sensor data back to the main

processor via RS-232 protocol. While the IMU is still interfaced directly to the main

processor, the low level processor is responsible for three digital ultrasonic and four

analog infrared sensor ports.

The communication between the low and high level processors is achieved with

RS-232 cross-communication and hardware interrupts. The low level processor will

acquire data from a sensor and send it and an identifying signature to the main

processor. These two bytes of data are transmitted sequentially. For example, the

first byte sent to the main processor would be a value of 1 identifying it as sensor

1. The next byte would be the raw value from sensor 1. A hardware interrupt is set

up in the main processor to collect the data from the low level processor when it is

transmitted. This avoids having the main processor hang while it waits for data from

the low level processor.
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Figure 6.12: An infrared sensor is mounted on each wing pointing out from the
fuselage. Also, an ultrasonic sensor is mounted at the base of the fuselage pointing
outward. This is so the propeller wash does not affect the sensor reading.

6.5 Navigational Controller

The control algorithm for building ingress and reconnaissance consists of three

different control modes including wall following, stabilizing, and traversing. Each

control mode sends different commands to the pitch and yaw control surfaces while

the wingtip motors and main motor are continuously being adjusted to keep the

MAV’s roll angle and altitude constant, respectively. The general structure of the

navigational controller is illustrated in the following steps

1. Acquire IMU data to determine the current orientation of the aircraft.
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Figure 6.13: A flight control system was developed with dual processing; one for data
acquisition and the other for control.

2. Use the angle about the roll axis of the MAV as the setpoint value for torque
roll control (this step is only performed once).

3. Acquire sensor data from the low level microcontroller including the wing mounted
infrared sensors, fuselage mounted ultrasonic sensors, and tail mounted ultra-
sonic sensor.

4. Filter and process the wing and fuselage mounted sensor data from (2) to de-
termine the state of the navigational controller (e.g. wall following, stabilizing,
or traversing).

5. Based on the navigational controller’s state in (3), send the commanded pitch
and yaw values to the attitude controller.

6. Filter the tail ultrasonic data and send to the altitude controller.

7. Return to (1).

The different modes of the controller are determined by the ultrasonic and infrared

sensor data and are described in the next few subsections.
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6.5.1 Wall Following Mode

Data from both the infrared and ultrasonic sensors are acquired by the low level

microcontroller at a rate of 15 Hz. Because ultrasonic sensors have a wide beam

and are therefore inefficient at detecting edges or doorways, the infrared sensor is

primarily responsible for determining the mode of the controller. The controller

enters wall following mode if an obstacle is detected by both sensors and is less than

1.4 meters away. The 1.4 meter threshold was set based on the 1.5 meter maximum

detection distance of the infrared sensor. If the sensor detects an object within the

1.4 meter threshold, it is assumed to be a wall. If the sensor does not detect anything,

it will output a value corresponding to 1.5 meters. In this case, the assumption is

that there is an opening for the plane to transition through and the controller will

then move to stabilizing mode. Once in wall following mode, the FCS still acquires

data from both sensors but the control algorithm heavily weights the ultrasonic data

to keep the MAV at a constant distance from the wall. This is because the ultrasonic

sensor is much more accurate in measuring distance than the infrared sensor.

The wall following algorithm consists of two levels for yaw control and is shown

in Figure 6.14. The high level yaw controller starts by using a setpoint distance,

Yref , of 75 cm from the tip of the wing to the wall. This is compared to the filtered

value from the ultrasonic sensor to calculate the error between the desired and actual

distance from the wall. Proportional-derivative control is implemented on the error

to determine the commanded yaw angle value, ψc. The commanded yaw angle is

saturated between ± 5 degrees and added to the reference yaw angle (ψref is the

yaw angle for pure hovering and is calculated during the calibration process; ideally,

this will be zero degrees). The resulting angle is then fed into the low level attitude

controller from Chapter 5.

As the yaw controller is being implemented during each control loop, the aircraft
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Figure 6.14: Two nested PD loops are used in the yaw controller during wall following.

must also be translating in the forward direction (i.e. parallel to the wall). For this

part of the controller, a constant commanded pitch angle, θc, of negative 8 degrees

(i.e. the negative pitch direction is forward from the vertical) is added to the reference

pitch angle and fed into the low level attitude controller. Negative 8 degrees was

chosen for the commanded pitch value because it corresponds to a translation speed

of approximately 1 m/s.

6.5.2 Stabilizing Mode

Ultrasonic and infrared data is constantly being analyzed during wall following

mode to determine when the transition to stabilizing mode should occur. This initiates

when the infrared sensor exceeds a distance threshold of 1.4 meters for five consecutive

control loop iterations. This is to allow the MAV extra translation time to get its
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entire frame past the wall and also to rule out any noisy measurements.

The stabilizing control mode has two main functions. The first is to diffuse the

forward momentum of the MAV so it dos not move past the doorway and the second

is to get the aircraft back to the hovering orientation. To kill the forward momentum

of the MAV, the controller increments the commanded pitch value by 0.75 degrees per

control loop iteration. Initially at negative 8 degrees, it will take 11 loop iterations or

close to 0.4 seconds to get back to the vertical orientation (i.e. θc = 0). However, to

ensure that forward momentum is eliminated, the controller pitches the aircraft a few

degrees past the vertical orientation before bringing it back to a hover. Throughout

this process which takes just over a second, the commanded yaw value (ψ′

c) is set to

zero. The controller then enters traversing mode.

6.5.3 Traversing Mode

After regaining stability in the vertical orientation, the traversing mode is exe-

cuted. The traversing controller is just a simple reactive control algorithm used to

yaw the aircraft into the detected opening, thus traversing the doorway. This process

also acts as a failsafe to the wall following controller. That is, if the wall following

controller allows the aircraft to get more than 1.5 meters away from the wall (i.e.

an error of more than 75 cm), this will exceed the range of the infrared sensor caus-

ing the controller to incorrectly enter stabilizing mode. However, it will then enter

traversing mode which will just bring the MAV back towards the wall until it reenters

the detection range of the sensors. This will then force the controller back into wall

following mode.

The process is initiated by setting the commanded pitch value to 0 degrees such

that the MAV remains stationary in the direction parallel to the wall. The com-

manded yaw value is set to negative 7 degrees which corresponds to a translation
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speed of about 1 m/s in the direction perpendicular to the wall (i.e. through the

doorway). After maintaining a yaw left orientation for a few seconds, the traversing

mode controller orients the aircraft back in the vertical attitude to acquire situational

awareness of the building’s interior.

6.6 Initial Experiments

The initial experiments were conducted inside an urban structure at Drexel Uni-

versity. These experiments were used to fine tune the gains for wall following and

doorway detection.

6.6.1 Wall Following

The first experiment was used to evaluate the wall following portion of the con-

troller. The trials were conducted along a wall 13 meters in length where the objective

of the experiment was to maintain a 75 cm distance between the tip of the MAV’s

left wing and the wall, for the length of the wall. Because the ultrasonic sensor is lo-

cated on the fuselage, this has to be factored into the setpoint distance. Furthermore,

as the flight control system directs the aircraft toward the end of the wall, its wall

following efficiency will be tested as it must negotiate a 2.5 meter passageway. With

a wingspan of 1 meter, this leaves only 75 cm of error on each side of the aircraft’s

wing as it moves through the narrow opening.

The experiment begins with the human pilot orienting the aircraft’s wings per-

pendicular to the surface of the wall. Then, the pilot flicks the auto/manual switch

on the transmitter to enable fully autonomous operation. Upon releasing the aircraft,

the high level microcontroller will perform the steps listed in Section 6.5. Figure 6.15

shows a sequence of images from the experiment. As the plane follows the 13 meter

wall, it maintains its setpoint distances from the wall and floor as well as its attitude
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Figure 6.15: The hybrid MAV performs fully autonomous wall following using an
ultrasonic and infrared sensor suite.

with high effectiveness and stability.

6.6.2 Evasive Wall Following

The evasive wall following experiments were used to demonstrate the navigational

controller’s ability to perform wall following on more complex surfaces. Furthermore,

the navigational controller should be able to differentiate between a wall cavity and

a doorway to some extent. That is, if a wall cavity is deeper than the maximum

detection distance of the infrared sensor, the controller will initially declare it as a

doorway. However, as it begins to move towards the wall in traversing mode, it will

detect the wall when it’s within the range limitations of the sensors and the controller

will reenter wall following mode.

The procedure for this experiment will be the same as in the wall following exper-

iments. The aircraft will be released in near hovering orientation and will be under

full autonomous control. The goal of the experiment is to maintain a constant 75

cm distance between the tip of the MAV’s left wing and the wall. As the plane ap-



93

Figure 6.16: The hybrid MAV performs fully autonomous cavity following using an
ultrasonic and infrared sensor suite.

proaches the cavity, the data from both the infrared and ultrasonic sensors is critical.

The infrared sensor is responsible for determining if the rapid change in distance is a

result of a doorway or a wall cavity. Once declared as a wall cavity, the navigational

controller will maintain its wall following mode and use the ultrasonic sensor to veer

the aircraft towards the cavity to maintain that 75 cm distance. The wall used in the

experiments and results are shown in Figure 6.16. The perspective of the camera was

changed from the previous experiment in order to capture the controller’s ability to

sustain a constant distance from the wall as it moves along the different surfaces.

6.7 Building Ingress and Reconnaissance Experiment

The final experiment is a culmination of the work presented throughout this thesis.

It integrates the quaternion algorithms discussed in Chapter 4, the flight control

system and attitude and altitude controllers described in Chapter 5, and the multiple

mode, high level controller used to demonstrate wall and cavity following in this

chapter. In addition, the navigational controller will also have to detect and move
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Figure 6.17: The hybrid MAV autonomously follows the exterior wall of the build-
ing until detecting an open passageway. It then traverses the doorway to gather
reconnaissance inside the building.

through a doorway to acquire situation awareness1.

The experimental procedure will be the same as the previous two experiments.

The aircraft is released in a near hovering attitude and under full autonomous control,

will follow the wall of the building. As it approaches the doorway, the controller will

switch from wall following mode to stabilizing mode as discussed in Section 6.5. After

it has regained stability in a hover, it will then transition to traversing mode. The

MAV will move through the doorway and again stabilize itself in hovering mode. The

results of the experiment are shown in Figure 6.17.

1Access to the original building shown in Figure 6.1 could not be granted. Therefore, a similar
wall and doorway were used in the final experiment.
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7. Conclusions and Future Work

7.1 Summary and Achievements

Autonomously flying in near-Earth environments such as caves, tunnels, and urban

areas demands a highly maneuverable platform with high endurance and hovering

capabilities. The fixed wing hybrid platform was designed with a high thrust-to-

weight ratio enabling it to transition into a vertical flight mode. This mode can then

be sustained to hover the vehicle using the propeller wash and enlarged elevator and

rudder control surfaces. Therefore, the endurance and maneuverability characteristics

of fixed wing aircraft are preserved while adding the hovering advantage of helicopters.

To automate the hovering flight mode and the transition into it, a quaternion atti-

tude controller was developed. Typically, quaternions are used for spacecraft attitude

control, but were applicable here because of the large angle-of-attack maneuvers of

the hybrid platform (i.e. an alternative to Euler angles was needed). It was shown

in Chapter 4 that the product of the commanded quaternion and the conjugate of

the measured quaternion resulted in the error quaternion. The angular errors about

each axis could then be extracted from the error quaternion and used in the flight

controller.

The final version of the flight control system consists of a dual processor board

that interfaces with the inertial measurement unit. The FCS acquires the measured

quaternion from the IMU, calculates the error quaternion and then implements a clas-

sical PID controller to regulate the aircraft’s attitude. Using this integrated system,

autonomous hovering experiments were conducted. The captured flight data showed

that the controller’s performance exceeded that of an expert human pilot. Further

experiments demonstrated that a slightly modified algorithm was able to achieve the
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transition from cruise to hover flight autonomously.

The experiments above, however, revealed some additional challenges. The torque

rolling effect resulting from the motor’s reactive torque was originally thought to be

beneficial because it would allow the MAV’s bellycam to capture a panoramic view

of the target area. However, the plane torque rolled at a rate of 20-25 rpm. This

created a dizzying effect when viewing the video from the onboard wireless camera.

To counter this, two DC motors with propellers were mounted on each wing tip

and oriented such that the thrust vectors had an angular separation of 180 degrees.

This created a counter-rotating force and by controlling the speed of the wingtip

motors, the torque roll was regulated. It was also realized that there was a need for

altitude control. An ultrasonic sensor was mounted on the tail of the aircraft and

height-above-ground measurements were used to close the loop for altitude control.

Experiments were then conducted which demonstrated the first documented success

of fully autonomous hovering of a fixed wing micro air vehicle.

With a robust low level attitude controller, navigational sensing and control tech-

niques could be investigated. For inspiration towards autonomous MAV navigation

in near-Earth environments, flying insects and bats stratagems were researched. Op-

tic flow sensors were used previously to demonstrate autonomous collision avoidance

and landing, but some limitations of the sensor were revealed. For example, if the

sensor’s optical axis is moving in a path perpendicular to a flat surface such as a

wall, a diverging optic flow field will radiate from the focus of expansion. However,

with a wall homogeneous in color and texture, this diverging field will be difficult to

detect. Other alternatives were investigated and it was concluded that an ultrasonic

and infrared sensor suite is best suited for the building ingress and reconnaissance

experiment. The high level control algorithm for this experiment was built on top

of the low level controller. The final system was able to achieve a fully autonomous
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reconnaissance mission in a near-Earth environment.

7.2 Applications

A hybrid platform that combines the endurance and maneuverability of fixed wing

platforms with hovering capabilities of helicopters has a diverse range of potential

applications. The small airframe is easily transportable and can be rapidly deployed

to perform missions such as reconnaissance, surveillance, bomb damage assessment,

and search and rescue. The hybrid MAV can gather reconnaissance in loiter mode high

above a target area by performing simple GPS waypoint navigation (see Appendix

A). Also, it can autonomously transition into hover mode, descend to a lower altitude,

and more easily navigate in cluttered environments.

Furthermore, near-Earth environments also pose severe communication challenges.

By developing an onboard flight control system, the integrated system eliminates the

risk of communication dropouts with a ground control station. In addition, line of

sight to GPS satellites is often occluded and therefore cannot be relied upon. The

ultrasonic and infrared sensor suite can be used to perform high level control in the

absence of GPS.

7.3 Promising Areas for Future Research

This work presented a well suited platform for flight in near-Earth environments.

The primary flight mode can be used in high altitudes where open airspace is vast

while the secondary flight mode can be utilized to navigate cluttered areas. Towards

fully autonomous flight in this domain, a flight control system was interfaced with an

IMU for attitude control and a ultrasonic and infrared sensor suite for navigational

control.

While a novel reconnaissance experiment was achieved with the sensor suite, the
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integrated system is not capable of autonomously navigating in more cluttered, un-

known environments. There are challenges that have not yet been addressed and offer

some promising research opportunities including

• Localization in the absence of GPS. The hovering experiments conducted in

this thesis did not address localization. In indoor environments, the calibrated

flight control system can sustain a hover over a small area. However, the MAV

would begin to drift when performing experiments outdoors in windy conditions.

Typically, this is countered using GPS-based position control, but GPS signals

are faint in near-Earth environments and thus an alternative is needed. A

proposed solution is to mount a two-dimensional optic flow sensor on the tail,

pointing in the downward direction. Measuring the ground’s image velocity

and integrating may be an effective method for position controlled hovering

with GPS.

Another alternative to this problem could be through simultaneous localization

and mapping, or SLAM. SLAM is a revolutionary concept enabling a robot

in an unknown environment at an unknown location to simultaneously build a

map of the environment and localize itself within the map.

• Omnidirectional field of view. In the building ingress and reconnaissance exper-

iments, the sensor suite was oriented specifically for wall following and doorway

detection. It was assumed that there would be no obstacles in the MAV’s flight

path as it moved along the exterior wall of the building. For full autonomous

flight in these environments, a 360 degree field of view is desired. SICK laser

scanners have a 180 degree scan angle so two of them would be required. How-

ever, one sensor is too heavy for miniature UAV payload capacities. Further-

more, the scan plane is two-dimensional and thus a rotation mechanism would

also have to be integrated to determine the height of detected obstacles. Hokuyo
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laser scanners are significantly lighter, but are less effective when compared to

their SICK counterparts. A possible alternative is to position two laser ranging

sensors on the belly of the hybrid prototype; one at the nose and one at the

tail of the MAV. The aircraft could then complete a single controlled revolution

while scanning the environment. This would provide a 360 degree scan of the

area while also providing the third dimension (i.e. obstacle height).

• Sensor performance in the presence of obscurants. While the SICK laser mea-

surement sensor is a well proven device, little research has been done in de-

termining their effectiveness in the presence of obscurants. In [9], experiments

were conducted to demonstrate how fog severely affected the performance of ul-

trasonic sensors. More recently in [48], experiments showed that laser scanners

were affected by fog, rain, and sand. These results must be considered when

designing a sensor suite for autonomous flight in near-Earth environments.
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Appendix A. GPS Waypoint Navigation

A.1 Interpreting the GPS Data

The National Marine Electronics Association (NMEA) has developed a standard for all
GPS devices. The string containing the most relevant information is the $GPRMC data
line which is the Recommended Minimum Specific GPS/TRANSIT Data. The $GPRMC
data string contains 12 pieces of information separated by commas within the string:

1. Time Stamp

2. Validity: A for OK, V for invalid

3. Current Latitude

4. North or South

5. Current Longitude

6. East or West

7. Speed (in knots)

8. True Course

9. Date Stamp

10. Variation

11. East or West

12. Checksum

The most useful pieces of data are the latitude (3), longitude (5), and true course (8).

The true course is the current heading of the aircraft in degrees and is measured clockwise

from the north direction. If the MAV is heading east, for example, then the true course

would be equal to 90 degrees. This single value saves an enormous amount of computation.

Otherwise, a vector would have to be drawn from the previous latitude/longitude point to

the current latitude/longitude point. The angle it forms with the north direction would

then have to be calculated.

The waypoint heading is not given in the $GPRMC data string and must be calculated.

Before determining the bearing to the next waypoint, the distance between the current
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location of the aircraft and the waypoint must be determined using the great circle distance

formula

d = cos−1(sin(Lat1)xsin(Lat2) + cos(Lat1)xcos(Lat2)xcos(Lon1Lon2)) (A.1)

where (Lat1,Lon1) and (Lat2,Lon2) are the latitude and longitude coordinates of the current

and next waypoints, respectively. To calculate the bearing to the next waypoint, the classical

bearing formula is used

d = cos−1(
sin(Lat2) − sin(Lat1)xcos(d)

cos(Lat1)xsin(d)
) (A.2)

where d is the great circle distance. One last problem remains, however, as the angle yielded

will take the counter-clockwise direction as positive. To change the positive direction to

clockwise in order to coincide with the true heading value (8), the following two lines of

code are added to the algorithm

if (sin(Lon2 − Lon1) > 0.0)

waypointHeading = 360.0 − waypointHeading ∗ (180.0/P i);

else

waypointHeading = −waypointHeading ∗ (180.0/P i);

A.2 Turning Algorithm

Now that the current heading of the MAV and the heading to the next waypoint are

known, the turning control signal can now be determined to head towards the next waypoint

(i.e. which way and by how much the MAV should turn). A simple algorithm can be

used which says that if the aircraft heading is less than the waypoint heading, turn right;

otherwise turn left. Figure A.1 shows a graphical representation of this algorithm. Both the
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Figure A.1: (a) Subtracting the true course heading from the waypoint heading will
give the bearing to the next waypoint. (b) The same formula will get the MAV to
the next waypoint, but not before turning in a complete circle.

waypoint heading angle and the true course angle are measured from the north direction.

Intuitively, it is obvious the aircraft should turn right in Figure A.1a and left in Fig-

ure A.1b. However, with the algorithm from above, the plane will get to the waypoint but

not before flying in a complete circle. The algorithm used instead is a simple proportional

controller using the error between the aircraft heading and the waypoint heading. However,

a limitation is imposed on the error to confine the MAV into taking the shortest possible

turn (in terms of degrees) to the next waypoint. That is, it will not make a 300 degree right

turn when it can make a 60 left turn to head toward the next waypoint.

if(error >= 180)error = error − 360;

if(error <= −180)error = 360 + error;

An experiment was implemented using a Garmin 18 5Hz GPS receiver. The receiver

was interfaced with an earlier version of the dual processor flight control system. The

experiment was conducted over a large field and a path was mapped out a priori consisting
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Figure A.2: A Garmin GPS 18 5Hz receiver is interfaced with the FCS to perform
autonomous waypoint navigation.

of three waypoints. The plane was hand launched and manually flown to cruise altitude.

The expert human pilot would then flick the auto/manual switch on the transmitter to

enable the autonomous GPS waypoint navigation. The elevator was set in the neutral

position to keep the aircraft at a relatively constant altitude and the proportional controller

sent control signals to the rudder in order to steer the aircraft to the next waypoint. The

path the MAV followed during the experiment is shown in Figure A.2.
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