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Kurzfassung

Modellbasierte Regelung von Flugrobotern für robuste physikalische Interaktion unter
Windeinfluss

Das Hauptziel dieser Arbeit ist es, die Lücke zwischen Trajektorienverfolgung und In-
teraktionsregelung für Flugroboter zu schließen, um eine möglichst exakte physikalische
Interaktion sogar unter Windeinfluss zu ermöglichen. Von zentraler Bedeutung ist es,
dass die Roboter Störungen, Interaktionen und Fehler, die auf sie einwirken, erkennen
können und zielgerichtet auf diese reagieren. Konkret wird dies dadurch erreicht, dass
extern auf den Roboter einwirkende Kraftwinder (Kraft und Drehmoment), modellbasiert
gefolgert wird und zwischen den kausalen Ursachen Wind, Interaktionen und Kollisionen
diskriminiert (unterschieden) wird. Dieses grundsätzliche Ziel wirft folgende Forschungs-
fragen auf. Erstens, ist eine simultane Schätzung und Unterscheidung zwischen externen
Kraftwinderkomponenten für die Nutzung in der Regelung kontinuierlich und in Echtzeit
möglich? Zweitens, was sind geeignete effektive Regelungsmethoden für die Interaktion
und Trajektorienverfolgung unter bestimmten Windbedingungen und physikalischer In-
teraktion? Drittens: wie können unerwartete Fehler, wie Kollisionen mit der Umwelt,
effizient und effektiv erkannt und behandelt werden? Im Rahmen der ersten Frage kann eine
vierte Frage gestellt werden: Ist es grundsätzlich möglich, eine vom externen Kraftwinder
unabhängige Messung bzw. Schätzung der Windgeschwindigkeit zu erhalten? In dieser
Arbeit werden modellbasierte Methoden angewendet, um spezifische Antworten auf diese
Fragen zu finden. Dies erfordert sowohl ein gutes Dynamikmodell des Roboters sowie
genau identifizierte Parameter. Daher wird ein in dieser Güte bisher unerreichtes neues
systematisches Parameteridentifizierungsverfahren für Flugroboter entwickelt und angewen-
det. Ferner werden etablierte Methoden aus der Robotik zu Schätzung des externen
Kraftwinders für Flugroboter geeignet erweitert, ohne dass externe Geschwindigkeitsmes-
sungen erforderlich sind. Basierend auf der Schätzung des externen Kraftwinders werden
Methoden der Interaktionsregelung (Impedanz- und Admittanzregelung) auf Flugroboter
erweitert und ein gründlicher Stabilitätsbeweis gegeben. Die Schätzung wird auch in einem
geometrischen Trajektorienverfolgungsregler angewendet, um externe Störungen zu kom-
pensieren, um so den Schleppfehler unter Windeinfluss zu minimieren, ohne Notwendigkeit
eines Integralterms. Die genannten Regler werden zu einem neuartigen Impedanzregler
kombiniert. Ferner wird die Kollisionserkennung auf fliegende Roboter erweitert, wodurch
eine Reflexreaktion zur Erhöhung der Sicherheit dieser autonomen Roboter erreicht wurde.
Um aerodynamische Modelle zur Windgschätzung zu identifizieren und vergleichen, wurden
Flugversuche in einem dreidimensionalen Windkanal mit einem Hexacopter durchgeführt.
Es wird gezeigt, dass eine gute Modellgüte bereits mit relativ einfachen linearen Re-
gressionsmodellen erhalten werden kann. Ferner wird das Propeller-Aerodynamikmodell
verwendet, um aus verfügbaren Motorleistungsmesswerten die Windgeschwindigkeit zu
schätzen. Darüber hinaus wurde eine neuartige, optimierungsbasierte Methode entwickelt,
die das Propeller-Aerodynamikmodell nutzt, um die Windgeschwindigkeit anhand der
aerodynamischen Leistung zu schätzen. Im Wesentlichen verwenden diese beiden Verfahren
die Propeller als Windgeschwindigkeitssensoren, so dass eine Messung bereitgestellt wird,
die unabhängig von der externen Kraft ist. Schließlich wird in dieser Arbeit erstmals
das neuartige Thema der Diskriminierung zwischen aerodynamischen, Interaktions- und
Fehlerkraftwindern systematisch behandelt. Dies ermöglicht schließlich die Implemen-
tierung eines Reglers, der bei physikalischen Interaktion gewollt nachgiebiges Verhalten
erzeugt, Windstörungen jedoch ausgleicht.

Schlagwörter: Flugroboter, Interaktionsregelung, Fehlererkennung und -isolierung



Abstract

Model-Based Control of Flying Robots for Robust Interaction under Wind Influence

The main goal of this thesis is to bridge the gap between trajectory tracking and interaction
control for flying robots in order to allow physical interaction under wind influence by
making aerial robots aware of the disturbance, interaction, and faults acting on them. This
is accomplished by reasoning about the external wrench (force and torque) acting on the
robot, and discriminating (distinguishing) between wind, interactions, and collisions. This
poses the following research questions. First, is discrimination between the external wrench
components even possible in a continuous real-time fashion for control purposes? Second,
given the individual wrench components, what are effective control schemes for interaction
and trajectory tracking control under wind influence? Third, how can unexpected faults,
such as collisions with the environment, be detected and handled efficiently and effectively?
In the interest of the first question, a fourth can be posed: is it possible to obtain a
measurement of the wind speed that is independent of the external wrench? In this
thesis, model-based methods are applied in the pursuit of answers to these questions. This
requires a good dynamics model of the robot, as well as accurately identified parameters.
Therefore, a systematic parameter identification procedure for aerial robots is developed
and applied. Furthermore, external wrench estimation techniques from the field of robot
manipulators are extended to be suitable for aerial robots without the need of velocity
measurements, which are difficult to obtain in this context. Based on the external wrench
estimate, interaction control techniques (impedance and admittance control) are extended
and applied to flying robots, and a thorough stability proof is provided. Similarly, the
wrench estimate is applied in a geometric trajectory tracking controller to compensate
external disturbances, to provide zero steady-state error under wind influence without
the need of integral control action. The controllers are finally combined into a novel
compensated impedance controller, to facilitate the main goal of the thesis. Collision
detection is applied to flying robots, providing a low level reflex reaction that increases
safety of these autonomous robots. In order to identify aerodynamic models for wind
speed estimation, flight experiments in a three-dimensional wind tunnel were performed
using a custom-built hexacopter. This data is used to investigate wind speed estimation
using different data-driven aerodynamic models. It is shown that good performance can be
obtained using relatively simple linear regression models. In this context, the propeller
aerodynamic power model is used to obtain information about wind speed from available
motor power measurements. Leveraging the wind tunnel data, it is shown that power
can be used to obtain the wind speed. Furthermore, a novel optimization-based method
that leverages the propeller aerodynamics model is developed to estimate the wind speed.
Essentially, these two methods use the propellers as wind speed sensors, thereby providing
an additional measurement independent of the external force. Finally, the novel topic
of simultaneously discriminating between aerodynamic, interaction, and fault wrenches
is opened up. This enables the implementation of novel types of controllers that are e.g.
compliant to physical interaction, while compensating wind disturbances at the same time.
The previously unexplored force discrimination topic has the potential to even open a new
research avenue for flying robots.

Keywords: flying robots, interaction control, fault detection and identification



Acronyms

Acronym Description

AIBC Adaptive Integral Backstepping Control

ADRC Active Disturbance Rejection Control

DO Disturbance Observer

DMP Dynamic Movement Primitive

FDI Fault Detection, Isolation and Identification

FDIR Fault Detection, Isolation, Identification and Reaction

GPS Global Positioning System

IMU Inertial Measurement Unit

ISS Input-to-State Stability

ISM Integral Sliding Mode

LMI Linear Matrix Inequality

LQR Linear Quadratic Regulator

MAV Micro Aerial Vehicle

MPC Model Predictive Control

NLS Nonlinear Least Squares

PD Proportional-Derivative control

PID Proportional-Integral-Derivative control

SIR Sequential Importance Resampling

VIO Visual-inertial odometry

UAV Unmanned Aerial Vehicle



Notation

Symbol Dim. Units Description

x R - Scalar

x RN - N -dimensional vector

ẋ RN - Time derivative of x, ẋ = ∂x(t)
∂t

‖x‖ R - Norm of vector x

A RN×M - N ×M matrix

·̂ RN - Estimate of quantity represented by ·
·̃ RN - Error of quantity represented by ·

0 RN - Zero vector of size N

0N×N RN×N - Zero matrix

A R m2 Propeller surface area

Ad R3×3 s/m Blade flapping and induced drag matrix

a R3 m/s2 Acceleration

CT R - Propeller thrust coefficient

CQ R - Propeller torque coefficient

C(ν) R6×6 - Matrix of centripetal and Coriolis terms

D R m Propeller diameter

Dr R Nm Rotor drag torque

ei R3 - Unit vector for axis i, i.e. e2 = [0, 1, 0]T

η R - Scalar part of quaternion

ε R3 - Vector part of quaternion

f R3 N Force; control force in the body frame

fc R3 N Collision force

fd R3 N Aerodynamic (drag) force

fe R3 N External force

fi R3 N Interaction force

FM R - Propeller figure of merit, FM ∈ (0, 1)

Γ R3×3 - Ratio of actual and virtual inertia µ = II−1
v

I RN×N - Identity matrix

ia R A Motor current

I R3×3 kg m2 Rigid body inertia



Ir R kg m2 Rotor inertia

J RN×M - Jacobian (depends on context)

K RN×N - Gain matrix (depends on context)

Kq R Nm/A Motor torque constant

λmax{A} R - Maximum eigenvalue of matrix A

λmin{A} R - Minimum eigenvalue of matrix A

M R kg Actual rigid body mass

M0 R kg Nominal mass

Mv R kg Virtual mass

µ R - Ratio of actual and virtual mass µ =MM−1
v

M R6×6 kg, kg m2 Generalized rigid body inertia tensor

m R3 Nm Torque; control torque in the body frame

md R3 Nm Aerodynamic (drag) torque

me R3 Nm External torque

mi R3 Nm Interaction torque

ω R3 rad/s Angular velocity of a rigid body

$ R s−1 Angular velocity of a propeller

$ RNp s−1 Angular velocity of Np propellers

ωd R3 rad/s Desired angular velocity

p R Pa Air pressure

p R6 J Generalized momentum p = Mν

Pm R W Motor power

Pa R W Aerodynamic power of a propeller

P̂a R W Estimated aerodynamic power of a propeller

Ph R W Aerodynamic power of a propeller in hover

Q R Nm Propeller torque

q SO(3) - Unit quaternion q = [η εT ]T

r R3 m Position in the inertial frame

rd R3 m Desired position in the inertial frame

R SO(3) - Rotation matrix from body to inertial frame

Rab SO(3) - Rotation matrix from frame B to frame A

Rair R J/kg K Ideal gas constant of dry air

ρ R kg/m3 Air density

ρ R6 J Residual

s R3 - Tracking variable

S(·) R3×3 - Skew-symmetric matrix operator, S(a) b = a× b
θ RNp - Parameter vector

T R N Propeller thrust

τ R6 N, Nm Force; control force in the body frame

τc R6 N, Nm Collision wrench

τd R6 N, Nm Aerodynamic (drag) wrench

τe R6 N, Nm External wrench

τi R6 N, Nm Interaction wrench



τf R6 N, Nm Fault wrench

τm R Nm Motor torque

U R m/s Velocity of the propeller slipstream

V R - Lyapunov function

vh R m/s Induced velocity of a propeller, in hover

vi R m/s Induced velocity of a propeller

vr R3 m/s Relative airspeed in the inertial frame

vw R3 m/s Wind velocity in the inertial frame

v∞ R3 m/s Propeller freestream velocity

ν R6 m/s, rad/s Generalized velocity ν = [ṙT ωT ]T

νd R6 m/s, rad/s Desired generalized velocity ν = [ṙTd ω
T
d ]T

w R3 m/s Propeller slipstream velocity

x RN - State vector (depending on context)

Y RM×Np - Regression matrix for Np parameters and M
measurements

z RM - Measurement vector
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CHAPTER 1

Introduction

(a) DLR’s AscTec Pelican (2011).
Copyright cO 2012 IEEE [143].

(b) Skydio R1 (2018) in flight [128]

Figure 1.1: The techniques developed in the framework of this thesis have been applied and
experimentally verified on the depicted research and commercial multirotor flying robots.

The continuation of Moore’s law and resulting proliferation of cheap and powerful
computational hardware in a small form factor, coupled with advances in sensors and
state estimation algorithms, has dramatically increased the autonomy of small-scale flying
robots in recent years. Autonomy in the context of this thesis is understood as the
ability of robots to operate in unknown, uncertain and cluttered environments without
the intervention of a human operator. This includes estimating the robot’s pose, mapping
the environment, trajectory generation, and decision-making. The key to autonomy is the
fusion of exteroceptive sensors, such as cameras and laser range finders, with proprioceptive
sensors such as an inertial measurement unit (IMU). The combination provides a high-rate
estimate of the robot’s motion using the IMU, while stabilizing the pose and mapping can
be done at a lower rate. Processing large amounts of data from exteroceptive sensors such
as cameras in real time during flight is a computationally demanding task. For example,
state of the art in 2011, see Tomić et al. [143] and Figure 1.1(a) and further developments in
Schmid et al. [123], was a 2 kg quadcopter carrying a laser range finder and one sterao pair,
while computation was divided among three single-core ARM computers, and one Atom
computer. This was enough to run a low-resolution stereo algorithm, visual odometry, laser
odometry, and an extended Kalman filter for state estimation. Due to the total system
weight of the prototyping platform, the flight time was less than 10 minutes. The price
of hardware alone (quadrotor platform, laser sensor, cameras, computers) was around
10,000 USD. Several years later, the Skydio R1 [128] in 2018, see Figure 1.1(b), contains
an Nvidia Jetson TX1 computer with four ARM cores, and a 256-core GPU, which allows

1



2 1 Introduction

the real-time computation of 6 stereo pairs, occupancy grid mapping, motion planning,
visual odometry, state estimation, and person tracking (using deep learning). This comes
in a portable 1.1 kg quadrotor platform, largely due to the weight of the computational
hardware. The price of this consumer robot is 2500 USD. Less capable (i.e.with limited or
nonexistent obstacle avoidance) aerial robots are in the price range of 200 to 1000 USD
and weight several hundred grams. So, even though powerful computational capabilities
are coming in smaller packages, there is still a long way before miniature (<250 g) and
affordable (50 USD) fully autonomous flying robots become ubiquitous. The limit of 250 g
is due to the lack of regulation requirements below this mass, as the robots are deemed
safe in the event of a crash [1].

It is notable that even though resource-hungry perception and planning algorithms
have improved substantially, low-level control algorithms have remained in the domain of
microcontroller-level computational demands. Despite significant advances in e.g. Model
Predictive Control (MPC) based controllers for flying robots, they have not yet been widely
deployed due to their computational complexity. Furthermore, control algorithms have
mainly focused on two opposing areas: trajectory tracking and interaction control. The
aim of the former is to follow a desired trajectory as close as possible under the influence
of external disturbances and model uncertainties. The latter controls a compliant behavior
towards external interaction forces, or exerts a desired force on the environment. These
paradigms contain implicit assumptions. Trajectory tracking assumes that all external
forces and torques acting on the robot are disturbances, and therefore have to be rejected
– any deviation from the reference trajectory is undesirable. This is true if the robot
is operating outdoors in free space, under moderate wind influence, and is carrying a
previously unknown payload. Conversely, interaction control schemes assume that the
only external forces acting on the robot come from physical interaction. The robot will
therefore be compliant, i.e. deviate from the reference trajectory, even to wind forces,
which is undesirable in most scenarios.

Despite these advances in sensing and computation, some obstacles still remain elusive
due to unfavorable sensing conditions. Examples are reflective and transparent surfaces
(glass), and thin structures that cannot be sensed due to limited resolution of the sensors.
Furthermore, computational power limits the sensing and planning frequency. This can
cause a delay in reaction to dynamic obstacles, or lack of perception thereof. Failure of
the obstacle avoidance system may then lead to contact or collision of the flying robot
with its environment, causing damage to the robot, property, or people. In these cases, it
is necessary to have a low-level collision detection and reflex strategy to minimize harm
to the robot and its environment. Therefore, the four essential phases of collision Fault
Detection, Identification, Isolation and Recovery (FDIR) have to be handled, see Haddadin
et al. [54, 56]. Collision detection provides binary information whether a collision with
the environment has occurred. Collision classification provides information about the
collision type. The location of the collision is obtained through collision isolation. Lastly,
appropriate collision recovery mitigates danger.

1.1 Problem statement

This thesis aims to make aerial robots aware of the disturbance, interaction, and faults
acting on them, see Figure 1.2, which yields the following objectives. The first objective is
to make flying robots aware of contacts and collisions, by providing a low-level detection
and reaction framework. This requires the reasoning about the external wrench (force and
torque) acting on the robot, and discriminating (distinguishing) between wind, interactions,
and collisions. The second goal of this thesis is to provide an estimate of the wind
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Physical interaction [135] Wind disturbance [140] Collision fault [135]

Flying Robot
System

+
τi

τd

τf

τe

impedance control

reaction

collision reflex

reaction

compensate τd

Figure 1.2: An interaction, disturbance, and fault aware flying robot system understands the
source and context of its simultaneous inputs and reacts accordingly.

velocity that is independent of the external wrench. This allows a motion planner to
reason about future external forces based on the aerodynamics model, and obtain energy-
efficient and saturation-aware trajectories. The final goal of this thesis is to bridge the gap
between trajectory tracking and interaction control, to allow physical interaction under
wind influence, which is made possible by the discrimination of these forces.

These goals pose following research questions. First, is discrimination between the
external wrench components for control purposes possible in real time? Second, given
the individual wrench components, what are effective control schemes for interaction and
trajectory tracking control under wind influence? Third, how can unexpected faults, such as
collisions with the environment, be detected and handled efficiently and effectively? In the
interest of the first question, a fourth can be posed: is it possible to obtain a measurement
of the wind speed that is independent of the external wrench? In this thesis, model-based
methods are developed and applied in the pursuit of answers to these questions.

1.2 Related Work

The following literature overview touches the most relevant topics covered in this thesis:
trajectory tracking control for disturbance compensation, physical interaction control,
collision fault detection and identification, wind estimation, and force discrimination.

Trajectory tracking control for disturbance compensation

Trajectory tracking. A large body of literature has been written about trajectory
tracking control of aerial vehicles, see Table 1.1. The goal of trajectory tracking control is
to make the vehicle track a time-dependent spatial trajectory. For multirotor flying robots,
the trajectory is most commonly defined by the Cartesian position rd(t) and yaw angle
ψd(t), and their time derivatives. It has been shown that quadrotors without aerodynamic
effects are differentially flat, see Mellinger et al. [88], which means that all feedforward
control signals may be obtained from the spatial trajectory alone. Earlier works used
cascaded proportional-integral-derivative (PID) [60], linear quadratic regulator (LQR)
[28], and feedback linearization controllers [147] to provide adequate trajectory following
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Table 1.1: An overview of work related to trajectory tracking and disturbance compensation.

Topic References

Trajectory
tracking

Achtelik et al. [3], Cowling et al. [28], Faessler et al. [38], Goodarzi et
al. [49, 48], Hoffmann et al. [60], Kamel et al. [70, 71], Lee et al. [77],
Mellinger et al. [88], Omari et al. [107], Svacha et al. [131], Voos [146]

Disturbance
compensation

Besnard et al. [20], Madani and Benallegue [82], [81], [21], [115], [7, 8], [35,
90], [153, 39], Leonard et al. [79], Gong et al. [47], Ruggiero et al. [118],
Mellinger et al. [90], Hancer et al. [57], Park et al. [67], Kondak et al. [74],
[75, 66, 65]

performance about hover conditions. Outside hover conditions, trajectory tracking is based
on geometric tracking control on SE(3), see Lee et al. [77] and Goodarzi et al. [49], direct
inversion based position control, see Achtelik et al. [3], as well as nonlinear model predictive
control in Kamel et al. [70, 71] and unified model predictive trajectory generation and
control in Neunert et al. [99]. An aerodynamics model may be used to improve trajectory
tracking, as done e.g. by Omari et al. [107], Svacha et al. [131] and Faessler2018 et al. [.]
The dominant attitude representations in literature are rotation matrices and quaternions
[51, 50] due to being singularity free.

Disturbance compensation. During operation, aerial robots may be subject to the
disturbances listed in Table 1.2. They are discussed in more detail in Section 6.2.3.
The most obvious disturbances are due to aerodynamic effects, i.e.wind. Modeling and
parameter uncertainties can also be viewed as disturbances. The system parameters, such
as mass, inertia, or center of gravity, may change if a payload is attached during flight. In
the case of partial propeller failure, its thrust coefficient changes. All these effects must be
compensated by the trajectory tracking controller. Some of the techniques used in literature
for dealing with disturbances and uncertainties are backstepping [81], sliding mode [21]
control, H∞ control [115], model predictive control [7, 8], and adaptive control [35, 90].
Explicit estimation of the uncertainties has been shown to improve flight performance.
Sliding mode disturbance observers have been applied to quadrotors by Besnard et al. [20]
and Madani and Benallegue [82]. However, higher-order sliding modes are computationally
expensive for embedded systems due to noninteger powers. The disturbance estimate must
be filtered to avoid chattering, thereby sacrifing robustness. Adaptive integral backstepping
control (AIBC), which estimates and compensates model uncertainties, has also been
applied to quadrotors [153, 39]. The controller has been shown to be effective for varying
system inertia. Due to the large number of parameters it is not easy to tune. In Escareño
et al. [36] a two-dimensional horizontal wind disturbance is estimated and compensated.
Extended state observers have been applied for helicopter disturbance observation in
Leonard et al. [79] and Gong et al. [47], in the context of active disturbance rejection
control (ADRC). Momentum-based observers of the external wrench have been applied
by Ruggiero et al. [118] to compensate disturbances. Kalman-filter-based disturbance
observation has been shown for quadrotors in Mellinger et al. [90] for near-hover conditions.

Disturbance observer based control has been shown to improve tracking performance
of various systems by explicitly estimating and compensating general uncertainties in
nonlinear systems [80]. For example, acceleration-based observers have been applied to
tilt-wing quadrotors in Hancer et al. [57] and underwater vehicles in Park et al. [67]. In
Kondak et al. [74], the authors showed performance improvements when using a disturbance
observer for quadrotor attitude control. In this paper, no significant improvements in
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Table 1.2: A list of the most common disturbances acting on flying robots.

Type Description Sensing

Aerodynamic
wrench

Aerodynamic drag wrench due to relative
airspeed of the flying robot, caused by form drag
and blade flapping of the propellers

Model [140, 149],
Pitot tubes [152],
Anemometer [26]

Propeller thrust Change of propeller thrust (i.e. control input)
with airspeed [14, 16]

Motor power [16],
Force sensing [29]

Payload Payload inertial parameters, aerodynamic drag
wrench on the payload

Online
identification [89]

Payload
aerodynamic
wrench

Aerodynamic drag wrench on the payload during
cooperative transport

Online
identification (open
problem)

tracking performance have been observed when applied the observer to position control.
Investigation of disturbance observers in quadrotors has also been done in [75, 66, 65]
and more recent works. Acceleration-based disturbance observation is well-suited for
small UAVs because acceleration measurements are provided by the Inertial Measurement
Unit (IMU). Attitude control typically runs at high update rate (1 kHz in the case of an
AscTec Hummingbird), so the angular acceleration signal required for the observer may
be computed from the angular velocity by finite differences. Therefore, this approach is
suitable in the context of the goals defined above.

Physical interaction control

Physical interaction control aims to prescribe a desired dynamics between the robot and
an external interaction force. Widely applied in robot manipulator control, the two main
approaches to achieve this are admittance control and impedance control [61, 108]. To
implement these, the robot must have information about the interaction force. This can
be measured (e.g. by a force-torque sensor (FTS)), or estimated. These topics have been
thoroughly investigated in the context of robotic manipulators; see e.g. Haddadin et al. [56]
and Ott et al. [108] and references therein. Our goal is to transfer the original concepts
from manipulators and extend them to flying robots. Due to limited payload constraints
of flying robots, in this work we estimate the external force. Note that this problem is
closely related to disturbance observation, however we view the external force as a desired
interaction, as opposed to an unwanted disturbance. Table 1.3 lists some state of the art
developments in physical interaction control of flying robots, while Table 1.4 lists some
example applications of flying robots physically interacting with their environment. So far,
aerodynamic effects due to wind are largely ignored in the interaction control literature.
As of today, this significantly limits the applicability of physical interaction methods in
harsh environments.

External wrench estimation and impedance control. In the context of hybrid
pose/wrench control, Bellens et al. [17] mapped offline control inputs to forces and torques
generated by the UAV while being fixed to a base. The estimated wrench is then a function
of the control input. This approach is only valid while the robot is in contact. The work
of Ruggiero et al. [118, 119] is related to the wrench estimation and interaction control
aspects of this thesis. The authors used a momentum-based external wrench estimator
with second-order estimation dynamics and implemented an impedance controller based
on this estimate. A sketch of the controller’s stability proof was given. However, their
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Table 1.3: An overview of work related to physical interaction control.

Topic References

External wrench
estimation

Bellens et al. [17], Ruggiero et al. [118, 119], Yüksel et al. [155], Yüksel et
al. [154], McKinnon et al. [86], Augugliaro et al. [11]

Physical
interaction
control

Nguyen et al. [100], Jung et al. [69], Fumagalli et al. [42, 44], Ruggiero et
al. [118, 119], Yüksel et al. [155], McKinnon et al. [86], Albers et al. [5],
Forte et al. [40], Augugliaro et al. [11], Mersha et al. [92]

Table 1.4: Application examples of physical interaction between flying robots and environment.

Application Related work

Individual robots

Interaction control Impedance control [92, 117, 118, 135, 138], Admittance control [11,
120, 135, 138], Force control [17, 110], Contact inspection [6]

Load transport Slung load transport [19, 129], Aerial manipulators [4, 43]

Reconfiguration Whole-body manipulation [156], Full controllability [24, 121, 120]

Groups of robots

Manipulation Transport [91, 93], Grasping [45], Aerial Manipulators [13, 95]

Assembly /
Construction

Building structures [12]

Formation control Energy tank based [41]

Physical docking Distributed flight array [109]

force estimator requires translational velocity information, which is not readily available on
flying systems, and is subject to failure cases of exteroceptive sensing and state estimation
schemes. Yüksel et al. [155, 154] use a Lyapunov-based design of an nonlinear external
wrench observer including also inertia shaping. A port-based Hamiltonian approach is
used to design an Interconnection and Damping Assignment Passivity-Based Controller
(IDA-PBC), which allows to reshape the physical properties of a quadrotor. Only simulation
results are presented. McKinnon et al. [86] implemented an Unscented Kalman Filter
(UKF) based estimator of the external wrench. This allows the explicit incorporation of
sensor noise properties into the filter. However, the experimental results show overshoot of
the wrench estimate, which we consider undesirable when using the estimate for feedback
control.

Physical interaction control. A dedicated propeller for horizontal force control has
been used by Albers et al. [5]. However, only a feedforward signal was used to exert a
contact force. More recently, force control at a tooltip rigidly attached to a flying robot
was investigated in Nguyen et al. [100], Jung et al. [69], and Fumagalli et al. [42]. The force
was assumed to be measured by a force sensor. Impedance control was applied to UAVs
for contact inspection by Forte et al. [40] and Fumagalli et al. [42, 44]. An external force
measurement was not required because of reliance on the passivity properties of impedance
control. Augugliaro and D’Andrea [11] extend the Kalman filter used for quadcopter state
estimation with an external wrench state. They implement an admittance controller for
interaction control, using the estimated external force. Mersha et al. [92] developed a
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variable impedance controller for aerial manipulation using a simplified model. A force
controller is implemented as the outer loop of the variable impedance controller. It is
assumed that the environment can be modeled as a linear spring. The external force is
therefore estimated using position information and the environment stiffness, making it
dependent on the used controller and state estimation method. The effectiveness of this
approach is shown in flight experiments in contact scenarios, with ground truth provided
by a force-torque sensor.

Collision detection and reaction

In order to protect a flying robot from unintended collisions with the environment due
to e.g. sensing failures, these have to be detected and appropriate reaction has to be
taken. Collision detection can be viewed as Fault Detection, Identification, Isolation and
Recovery problem [32, 127], and has been extensively researched in the context of robotic
manipulators in Haddadin et al. [54, 56]. Collision detection provides binary information
whether a collision with the environment has occurred. Collision classification provides
information about the collision type. The location of the collision is obtained through
collision isolation. Lastly, appropriate collision recovery mitigates danger. Collision
detection and reaction literature is briefly reviewed next. Table 1.5 show an overview
thereof.

A control loop supervisor for contact detection was implemented by Naldi et al. [96].
If the error of the path following controller is above a threshold, contact is assumed and
the path is interpolated backwards until there is no collision anymore. Here, no wrench
information is used and absolute thresholds on the position error must be set. The position
error acts as a proxy to the external force, so the threshold then depends on the controller
gains. Furthermore, the duration required for the signal to be above the threshold is
absolute. This makes the method trajectory and controller dependent. In Mersha et al. [92]
contacts are detected through a threshold on the external force, making the implementation
equivalent to Naldi et al. [96]. Onboard accelerometers and small force sensors attached to
elastic springs were used by Briod et al. [25] to detect collisions with the environment. The
acceleration-based approach detects collisions when the acceleration magnitude is above a
pre-defined threshold. The threshold needs to be chosen larger than nominal accelerations
occuring during normal flight. Therefore, the sensitivity of the method depends significantly
on the controller and the trajectory. Upon collision, the motors are turned off and the
robot relies on its robust mechanical design to land safely. It resumes flight opposite of the
detected collision direction. This information is used for tactile exploration. More recently,
Dicker et al. [31] used the accelerometer signal to detect collisions, and coupled this with a
fuzzy logic system to obtain a reflex attitude command reaction for collision recovery.

Aerodynamic modeling and wind estimation

Table 1.6 shows that wind speed estimation for multirotor vehicles is a well established
topic, and wind tunnel experiments are increasingly being carried out. Publications relating
to applications of wind estimates show that there is a need for methods that provide this
information. The aerodynamics of a flying robot (e.g. quadrotor) during fast flight and
under external wind influence are significantly nonlinear.

Model-based wind speed estimation. A large body of literature shows that it is
possible to obtain the freestream velocity by using an aerodynamics model and onboard
measurements in flight. The methods fall broadly into two categories. The first set uses a
physical modeling based approach. The exploited effects are usually blade flapping and
propeller induced drag, which produce a horizontal force that can be measured by the
onboard accelerometer. The second set of methods uses a data-driven approach, where a
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Table 1.5: Overview of work related to collision detection and handling.

Topic References

Collision
handling

Briod et al. [25], Tomić and Haddadin [135, 136], Mersha et al. [92], Naldi
et al. [96]

Table 1.6: An overview of related work in the field of wind estimation and force discrimination.

Topic References

Model-based
wind speed
estimation

Waslander et al. [149], Huang et al. [64], Martin et al. [85], Neumann et
al. [97], Omari et al. [107], Abeywardena et al. [2], Neumann et al. [98],
Tomic et al. [136], Sikkel et al. [126], Ware et al. [148]

Wind tunnel
experiments

Marino et al. [84], Schiano et al. [122], Neumann et al. [98], Planckaert et
al. [113], Jung et al. [68], Prudden et al. [114], Bruschi et al. [26], Sikkel et
al. [126], Tomić et al. [140]

Applications Bangura et al. [15], Sydney et al. [133], Guerrero et al. [52], Bangura et
al. [14], Ware et al. [148], Bangura et al. [16], Bennetts et al. [18]

Force
discrimination

Manuelli et al. [83], Rajappa et al. [117], Tomić and Haddadin [136, 142],

regressor between a measured variable and the freestream velocity is found.
Physical modeling based estimation. The freestream velocity of multicopter MAVs is

commonly obtained from accelerometer measurements. This can be done because the
propeller induced drag and blade flapping produce a horizontal force that can be measured
by the onboard accelerometer. However, only the horizontal velocity components can
be obtained in this way. Huang et al. [64] used the dependence of thrust on freestream
velocity to add a feedforward term to their position controller in order to improve tracking
performance during aggressive maneuvers. Escareño et al. [37] estimated a slowly-varying
2D wind vector using a kinematics-based observer. The trajectory was modified on-line to
compensate for the wind effects. This work is also related to disturbance compensation.
Schiano et al. [122] used a wind tunnel to measure the forces and torques acting on a static
quadrotor under varying conditions.

Another body of related work deals with using propeller induced drag to estimate the
horizontal freestream velocity components. Waslander and Wang [149] use the propeller
model from Huang et al. [64] and a linear drag model to estimate the metric wind velocity.
This information is used for feedforward compensation of wind effects to improve position
tracking accuracy. To reduce complexity for thrust calculation, a zero-order-hold is applied
to the estimated freestream velocity, which results in rather limited estimation of the
vertical wind component. This paper shows the feasibility of model-based wind estimation.
The same effect was used by Martin et al. [85] and Abeywardena et al. [2] to estimate the
relative airspeed of a quadcopter. Martin et al. [85] derive how the blade flapping effect can
be used to estimate the relative airspeed and provide a simple compensation scheme of the
resulting aerodynamic forces. Abeywardena et al. [2] incorporated a linear induced-drag
model into a visual SLAM scheme. The filter state is augmented by the horizontal wind
velocity, which is estimated from the accelerometer measurements. The approach improves
convergence of accelerometer biases. However, the vertical wind component is not estimated.
Omari et al. [107] incorporate blade flapping and induced drag as a feedforward term into
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a nonlinear control scheme. However, they assume that the wind velocity and yaw rates of
the vehicle are negligible, and the thrust is independent of the freestream velocity. More
recently, Sikkel et al. [126] identified parameters of the blade flapping model by flying in a
wind tunnel and used it for wind speed estimation. It may be concluded that related work,
especially Waslander et al. [149], shows the feasibility of model-based wind estimation.

Data-driven estimation. Another type of aerodynamics models uses generalized regression
to fit experimental data to wind speeds. Neumann et al. [97, 98] and Ware et al. [148]
related the quadrotor pitch angle to the wind speed. The assumption is that under static
conditions the aerodynamic and control forces are in equilibrium, hence the aerodynamic
force is estimated indirectly from the position controller output. As such, this method
depends heavily on the controller and system parameters and is ill-suited to wind estimation
during aggressive flight. It can be concluded that model-based wind speed estimation is
well established in literature, albeit with significant limitations.

Sensor-based wind speed estimation. Alternatively, airspeed probes have been used
by Sydney et al. [133] and Yeo et al. [151, 152] to measure the freestream velocity of a
quadcopter. They used this measurement to create a probabilistic map of the wind field and
improve controller performance. A successful evaluation of a small MEMS anemometers
has also been performed by Bruschi et al. [26]. The anemometer was mounted 22 cm above
the propellers of the quadrotor and tested in a wind tunnel, and performed well under
different airflow conditions. However, force sensors are discretely localized, and a reliable,
lightweight wind sensor for multirotor UAV does not yet exist.

Wind tunnel measurements. Wind tunnel measurements on multirotor vehicles have
been increasingly carried out in recent years. Schiano et al. [122] and Planckaert et al. [113]
measured the forces and torques acting on a static quadrotor under varying conditions
for model identification purposes. Similarly, Jung et al. [68] performed comprehensive
wind tunnel tests on commercial multicopter vehicles, measuring the vehicle drag and
thrust under varying conditions. The purpose of the tests was to assess performance of
multicopter systems. Marino et al. [84] measured the motor power in steady-state wind
conditions, and related it to the wind velocity for estimation purposes. They found that
the mapping of power to wind velocity is not unique, and the solution quality varies with
the flow conditions. However, no online estimation scheme was proposed. Ware et al. [148]
flew a quadcopter in a horizontal wind tunnel to identify the power used for flight under
varying wind conditions and used it for path planning in an urban wind field. Bruschi
et al. [26] evaluated the performance of a small anemometer mounted on a quadrotor.
Prudden et al. [114] evaluated flow conditions around a quadcopter to find a feasible flow
sensor mounting location where rotor influence is minimal. They found that such a sensor
would have to be mounted at least 2.5 rotor radii in front of the hub axis to compensate
for induced flow effects. Sikkel et al. [126] flew a quadcopter in a wind tunnel to estimate
an aerodynamic model based on blade flapping, and used it to estimate the wind velocity.

Applications. The estimated wind speed is commonly used in literature to improve
control performance or plan time- or energy-optimal paths through a wind field. Bangura et
al. [15, 14] have shown that propeller power can be used to estimate and control its thrust.
They used momentum theory [78] to estimate and control the propeller aerodynamic power,
which is directly related to thrust. The estimated aerodynamic power to estimate the
propeller thrust with known freestream velocity. Aerodynamic power control was applied
to a quadrotor in Bangura et al. [16] in order to improve flight control performance. Sydney
et al. [133] used the estimated wind speed and an aerodynamics model to improve flight
performance. This was extended by an experimental validation in Sydney et al. [134].
Guerrero et al. [52] used a kinematic model to plan time-optimal quadrotor trajectories in
known wind fields. Ware et al. [148] planned energy-optimal trajectories in a planar urban
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wind field, which was estimated using a fast CFD solver and a known map. Bennetts et
al. [18] use the onboard estimated wind speed for probabilistic air flow modeling. Clearly,
an online estimate of the wind speed can be used to improve overall performance of a flying
robot.

Open problems. The methods available in literature are mainly based on first principles
models and a relatively small dataset to fit parameters of those models. While this is
sufficiently accurate to improve tracking performance and obtain information about wind
speed, there is a lack of thorough exploration and analysis of aerodynamic models using
large datasets. Second, data-driven methods map steady state values, like the pitch angle,
to an airspeed. While this may work in a limited set of conditions, it is a proxy for the
external wrench and depends on the controller parameters. This means that the model has
to be reidentified when the controller parameters change. Furthermore, the generalization
of aerodynamic models is not explored in literature, nor applications other than feedforward
of the aerodynamic force and wind speed estimation. Lastly, due to complex flow conditions,
there are no lightweight and reliable onboard airspeed sensors for aerial robots as of this
writing.

Discrimination between aerodynamic and contact forces

This topic is crucial for the goals posed by this thesis, however it has obtained the least
attention in literature, as can be seen from Table 1.7. Table 1.8 shows some sensors
that could be used to for this purpose. However, the problem of distinguishing between
aerodynamic, contact, and collision forces has not been formally defined in literature.
Instead, solutions are predominantly application-specific. In physical robot-environment
interaction scenarios, it is common to assume the use of a dedicated force sensor, see
Nguyen et al. [100], Jung et al. [69], Fumagalli et al. [42], and Alexis et al. [6]. If the
external force is estimated, it is assumed that aerodynamic forces are non-existent or
negligible during the interaction, see Fumagalli et al. [44], Yüksel et al. [154]. Other authors
have exploited different assumptions to discriminate between forces acting on the robot.
For handling collision scenarios, Briod et al. [25] have used an Euler spring and force sensor
to determine the collision force and direction. This adds additional sensors and weight,
which is undesirable for a flying robot. Neither of these methods can distinguish between
slow contact and aerodynamic forces from the estimated external wrench. More recently,
Rajappa et al. [117] proposed a discrimination scheme that employs a sensor ring around a
flying robot to separate human interaction force from additional disturbances. This scheme
relies on adding localized sensors to the robot. Related to this problem, Manuelli et al. [83]
developed a Contact Particle Filter to obtain contact positions on an Atlas humanoid
robot using external wrench information. Discrimination between interaction, disturbance,
and fault wrenches is possible in a localized fashion using sensors for specific applications,
see Alexis et al. [6], Briod et al. [25], and Rajappa et al. [117]. The interaction input
may further be discriminated from other inputs with the help of sensors as the ones listed
in Table 1.8. However, force sensors are discretely localized, and a reliable, lightweight
wind sensor for multirotor UAV does not yet exist. Approaching this from a different
perspective, the known wind speed and an aerodynamics model may be used to obtain
the aerodynamic wrench. This requires a wind sensing method that is independent of
estimating the external wrench, such as onboard pitot tubes [152], anemometers [26], or
motor power and an aerodynamics model [140]. Lastly, uncertainty of the control wrench
due to the propeller force varying with airspeed may result in modeling errors, reducing
the accuracy any of input discrimination. Recent advances have been made to estimate
[16] or directly measure [29] the control input in flying robots.

Open problems. The problem as such has not been formally defined in literature yet,
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Table 1.7: Work related to discriminating between aerodynamic and interaction forces.

Topic References

Force
discrimination

Manuelli et al. [83], Rajappa et al. [117], Tomić and Haddadin [136, 142],

Table 1.8: Most typical sensors and models that enable the discrimination of contact forces
acting on flying robots.

Sensor Measures Description

IMU Acceleration,
angular rate

Commonly used for navigation (strapdown). May be used for external
wrench estimation [135].

Force /
torque
sensor

Force / Torque Directly measures the wrench at certain locations. Provides direct
measurement of the interaction wrench at the sensor’s position [117].
Useful e.g. for contact inspection tasks [6], measuring payload
properties [19], or forces generated by propellers [29].

Tactile
sensor

Touch Can be installed on the robot hull as input device for physical
human-robot interaction.

Bumper Touch Detect collisions and contacts at specific hull points [25].

Surface
humidity
sensor

Humidity Can detect and isolate environmental conditions that are potentially
harmful for the robot, for example a water avoidance reflex in caves.

Strain
gauge

Deformation Measures bending of flexible structures. May be used to directly
measure the propeller wrench, or detect structural failure.

Wind

Anemometer Wind speed Measures wind speed directly. Difficult to apply to multirotor vehicles
due to complex airflow.

Pitot tube Dynamic
pressure

Can be used to estimate the wind velocity. However, application to
multirotor vehicles is limited by the complex airflow.

Motor
current

Current May be used to estimate the wind speed from the propeller
aerodynamics model [14, 140]. Collisions with objects in propellers may
be detected from the motor external torque.

and therefore not approached in a systematic manner. Isolated, application-specific solutions
using dedicated sensors can be found in literature. Purely model based discrimination
between slow aerodynamic and contact forces is therefore still an open research problem.
This presents a good research opportunity, as such methods would allow novel applications
of flying robots developed in the literature, without the need for additional sensing, which
could potentially greatly enhance their usefulness.

1.3 Contributions

In the context of the goals of this thesis, the following contributions to the state of the art
are made by means of our publications. They have been experimentally verified on the
systems depicted in Figure 1.1 and Figure 1.3.
First, a systematic parameter identification procedure for aerial robots is developed [139].
The identification procedure is split into three stages: identifying the propulsion (motor
and propeller) parameters first; followed by rigid body parameters; and finally identifying
aerodynamic models. This makes it easier to isolate specific parameter sets as it reduces
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(a) AscTec Hummingbird.
Copyright cO 2014 IEEE [141,
137, 138, 141].

(b) AscTec Pelican with modu-
lar stereo vision based naviga-
tion system. Copyright cO 2013
IEEE [123, 138].

(c) DLR Ardea coaxial hexa-
copter custom developed and
built for the wind tunnel exper-
iments in this thesis. Copyright
cO 2016 IEEE [140, 139].

Figure 1.3: Different multirotor flying robot systems were used to develop and experimentally
verify the techniques developed in this thesis.

the number of unknown parameters in each subsequent stage.
Second, external wrench estimation techniques are extended to be suitable for aerial robots
without the need of velocity measurements [135, 138]. Accelerations and angular velocities
are easy to measure by means of an IMU, however translational velocity is difficult to
obtain on flying robots. It requires exteroceptive sensors like cameras and lasers, coupled
with computationally expensive odometry and state estimation algorithms. Using only
the IMU makes it possible to implement the wrench estimator on embedded platforms
knowing only the control input, IMU measurements, and the system model.
Third, the wrench estimator is applied in a geometric trajectory tracking controller to
compensate external disturbances [141]. It is shown that this greatly improves flight
performance in wind without the need for integral or adaptive action.
Fourth, interaction control techniques (impedance and admittance control) are extended to
flying robots, based on the external wrench estimate [135, 138]. An input-to-state stability
proof is provided for the impedance controller, considering the wrench estimation dynamics.
The impedance controller is further extended into a compensated impedance controller, that
is compliant to the interaction wrench, but compensates the disturbance wrench. This
assumes that the two wrenches can be discriminated online.
Fifth, wind speed estimation is investigated, using different data-driven aerodynamic
models [140, 139]. To train and evaluate the models, measurements obtained by flying a
custom-built hexacopter in a 3D wind tunnel were used, see Figure 1.3(c). The output of
the models is the relative airspeed, i.e. the velocity of the robot w.r.t. the surrounding air.
Different inputs are investigated, such as the external force, external wrench, and motor
power. Conclusions are made about the model complexity required to accurately capture
the aerodynamics model of a flying robot.

The sixth contribution is related to estimating wind speed using measured motor power
[140, 139]. As this was also measured during the wind tunnel flights, it could then be used to
estimate the aerodynamic power of each coaxial rotor pair during flight, and then the wind
speed. Two novel methods were developed for this purpose. The first uses a data-driven
approach to build nonlinear regression models from aerodynamic power to airspeed. The
second is a first-principles model driven approach that builds an optimization problem
based on the propeller aerodynamics model, and online motor power measurements. A
sensitivity analysis of the optimization problem is provided and solutions are suggested
to make it practically applicable. The sensitivity of this novel optimization problem also
opens new avenues of research. This contribution essentially allows the propellers to be
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Figure 1.4: Applications of the external wrench estimate developed in this thesis. We consider
the control input, IMU and motor power measurements as inputs into our estimation methods.
External wrench information is used for disturbance compensation, interaction control, collision
detection and wind speed estimation. Collision detection is further applied to tactile mapping.
Wind speed estimation is improved by a propeller aerodynamics model and may be used to
make collision detection more robust.

used as wind speed sensors, and provide a measurement that is independent of the IMU.
Seventh, the topic of discriminating between aerodynamic, interaction, and fault wrenches
is introduced [142, 139]. This topic has gained the least attention in literature so far.
The methods developed in this thesis allow the external wrench to continuously, in real-
time, be decomposed into the constituent terms. Collisions are detected based on the
frequency content of the external force. Upon detection, a reflex reaction can be taken. The
geometry of the problem can be used to obtain the collision location on the robot’s convex
hull. Experimental verification and applications of collision detection for flying robots are
provided. Next, slow contact forces can be distinguished from wind through a residual of
the aerodynamic torque model. Discrimination can then be performed by simultaneously
estimating the wind speed, and slowing down wind estimation when contact is detected.
Due of the failure cases of this method, an alternative method that uses aerodynamic power
based wind estimation is developed. This relies on other aerodynamic models to distinguish
between the constituent terms. In summary, this contribution presents a starting point of
a quite new research field for aerial robots, as it also opens interesting new questions.
Eighth, a synopsis of recent developments in physically interacting flying robots is provided
in Chapter 6 [142]. These are put in a larger taxonomical context, and a generalized
concept of interacting flying robots at scale, such as in a swarm, is developed. An awareness
pipeline is introduced that unifies the representation of interaction, disturbance, and fault
awareness for a single flying robot as well as flying robot swarms. A synopsis of already
developed individual elements of the pipeline from the literature is provided, and future
research directions that would validate the proposed approach are speculated.

The overall contributions of the thesis are summarized in Figure 1.4. First, the external
wrench τe acting on the robot is estimated. It is based on a dynamics model of the
robot, acceleration a and angular velocity ω measurements from an inertial measurement
unit (IMU) and speed measurements $ of all the propellers on the robot to obtain the
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Figure 1.5: Overview of the objectives of this thesis.

applied control wrench τ . The estimated external wrench τ̂e is then discriminated into
the interaction wrench τi, the aerodynamic drag wrench τd, and the fault wrench τf .
Force discimination and wind estimation may use motor power measurements and an
aerodynamics model in order to use propellers as wind sensors. The following applications
are first developed under the assumption that only one of the wrenches is acting at a time.
Physical interaction control assumes that only the interaction control is acting on the robot.
Wind speed estimation assumes that only the aerodynamic wrench is acting on the robot,
and uses an aerodynamic model to estimate the wind speed. Lastly, collision fault detection
and isolation (FDI) is able to detect and react to collisions under wind influence based on
frequency characteristics of the wrenches. This allows for a tactile mapping application,
that transparently supplements exteroceptive methods by adding obstacles into a map
when collisions with the environment are detected.

The thesis is organized as depicted in Figure 1.5. Chapter 2 covers relevant modeling,
parameter identification, and external wrench estimation. Chapter 3 covers trajectory
tracking and physical interaction control. Wind tunnel experiments, evaluation of aero-
dynamic models, and wind estimation are covered in Chapter 4. Force discrimination
techniques, including collision detection, are dealt with in Chapter 5. Applications and an
outlook towards interaction and disturbance aware robot swarms is presented in Chapter 6.
Finally, conclusions are made in Chapter 7.





Illustration: L. Figuier: Les aérostats; Paris: Furne, Jouvet et Cie, 1887
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Figure 2.1: High-level overview of subsystems of a mutirotor flying robot.

Figure 2.1 depicts an overview of a mutirotor flying robot. On a high level, in the
context of this thesis, it can be decomposed into the Controller, System, Sensing, and Wind
estimation. The Sensing modules provide the controller with an estimate of the vehicle’s
state (position, orientation, velocity). We use this, and the motor feedback, in the Wind
estimation blocks. The aerodynamic power estimator uses a propeller aerodynamics model
and motor feedback to obtain the aerodynamic power P̂a, as described in Section 2.1.5.
Force discrimination uses the external wrench, the robot’s convex hull and an aerodynamics
module to simultaneously estimate the interaction force fi and the aerodynamic force fd,
as described in Chapter 5. The interaction force fi can be used for interaction control, as
presented in Section 3.2.2. The aerodynamic force fd, along with P̂a, may then used to
perform wind velocity estimation, as described in Chapter 4.

The controller, discussed in detail in Chapter 3, is typically a cascade of a position and
an attitude controller, as depicted here. The control allocation module takes the desired
control wrench and outputs the desired motor angular velocities. The attitude controller
tracks the desired orientation Rd through a desired control torque. The position controller
tracks the desired spatial trajectory rd(t) and derivatives, through a desired attitude and
thrust. The controller subsystem is discussed in detail in Chapter 3.

In this chapter, the dynamics of the flying robot, represented by the System subblock,

17
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are modeled. The System consists of a rigid body, with the aerodynamics wrench τd,
interaction wrench τi and propulsion wrench τ acting on it through the external wrench
τe. Rigid body dynamics is presented in Section 2.1.1, while the propulsion wrench is
described in Section 2.1.2, along with relevant propeller aerodynamics in Section 2.1.3.
The propulsion wrench and motor dynamics, modeled in Section 2.1.5, are connected
through the propeller speed $. Lastly, the external wrench τe is estimated as discussed in
Section 2.3.

2.1 Dynamics model

2.1.1 Rigid body dynamics

Free-body diagrams of a quadrotor and a coaxial hexacopter is depicted in Figure 2.2. The
equations of motion about the center of mass of such robots can be written as

Mr̈ =Mge3 +Rf +Rfe (2.1)

Iω̇ = S(Iω)ω +m+me (2.2)

Ṙ = RS(ω) (2.3)

where M is the robot mass, r = [x, y, z]T is its position in the fixed North-East-Down
(NED) inertial frame, R ∈ SO(3) is the rotation matrix from the body to the inertial frame
and equivalent to R ≡ Rib, I ∈ R3×3 is its moment of inertia, S(·) is skew-symmetric
matrix operator, g is the acceleration of gravity, ω is the body angular velocity, e3 is the
z-axis unit vector, f and fe are the body-frame propulsion and external forces, and m and
me are the control and external torques, respectively. The propulsion wrench is denoted as
τ = [fT mT ]T , and the external wrench as τe = [fTe m

T
e ]T . In our case, the body frame is

located at the center of propellers. To account for the offset center of mass, the control
torque m contains the correction term mg =MgS(rg)R

Te3, where rg is the position of
the center of gravity expressed in the body frame. By writing the generalized velocity as
ν = [ṙT ωT ]T , the equations of motion can be rewritten in Lagrange form as

Mν̇ +C(ν)ν + g = JTτ + τ e, (2.4)

where

g = −
[

I3×3
S(rg)R

T

]
Mge3, J =

[
RT 03×3
03×3 I3×3

]
,

M =

[
MI3×3 03×3
03×3 I

]
, C(ν) =

[
03×3 03×3
03×3 −S(Iω)

]
.

External wrench. For the purposes of this thesis, the external wrench may be defined
as

τe = τi + τd(vr) + τf , (2.5)

where τi is the interaction wrench, τd(vr) is the aerodynamic drag wrench that depends on
the relative airspeed vr = ṙ − vw, where vw is the wind speed in the inertial frame. The
fault wrench τf consists of the collision wrench τc and model faults τf,m, which stem from
parameter uncertainties [32].

2.1.2 Propulsion wrench

Control of a flying robot’s motion is achieved through the forces and torques generated by
the propellers. These can be represented in the propulsion wrench τ , which also acts as
the control input, As τ can not be directly measured during flight, an accurate model is
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Figure 2.2: Free-body diagram of a quadrotor (left), and the coaxial hexacopter used in the
wind tunnel experiments (right). The body frame B is located at position r and orientation
R in the inertial frame I and subject to wind velocity vw. This causes the external wrench
τ e = [fTe mT

e ]T due to aerodynamic forces dependent on the airspeed vr. The propellers
rotating at angular velocities $ = [$1 . . . $6]T generate the control wrench τ = [fT mT ]T

through the thrusts Ti and drag torques Qi. The propeller frames P1,2,3 are depicted in blue.
Free-body diagrams Copyright cO 2015, 2016 IEEE [136, 140]. Hexacopter photo Copyright
cO 2016 DLR (CC-BY 3.0).

required. The control wrench generated by the propellers about the center of mass for N
propellers is given by

τ =

[ ∑N
i=1 Tini∑N

i=1 (Ti(ri + rg)× ni + δiQini)

]
= Bu (2.6)

where ni = Rbp,ie3 is the axis of rotation of propeller i located at ri in the body frame,
Rpb,i the rotation matrix from the body to the propeller frame, δi ∈ {−1,1} is the propeller
rotational sense, and B ∈ R6×N is the control allocation matrix. In classical designs where
propellers are coplanar, Rbp,i is an identity matrix. In more recent multirotor designs,
propellers are tilted to obtain more yaw control authority. In those cases, Rbp,i will be
the appropriate transformation. The desired propeller velocities u = [$2

1 . . . $
2
N ]T can be

obtained for control purposes by (pseudo-)inverting the matrix B. The rotor thrust and
torque in hover may be obtained by

Th,i = ρCTD
4$2

i , (2.7)

Qh,i = ρCQD
5$2

i + Ir$̇i, (2.8)

where CT and CQ are the nondimensional rotor thrust and torque coefficients, respectively,
and are typically obtained from static thrust measurements; D is the propeller diameter,
and $ is the propeller speed. Additionally, ρ is the air density, D is the propeller diameter,
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U = vw + vi
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T

Figure 2.3: Thrust T is generated by increasing the wind velocity vw by the propeller induced
velocity vi, which goes through the propeller normal. The propeller slipstream finally merges
into the wind flow to produce w. Copyright cO 2016 IEEE [140].

and Ir is the combined inertia of the rotor and propeller. Next, we show how the thrust and
torque change under wind influence. Of these values, D is known from the geometry, and
$ is measured online. Note that the thrust and torque change with airspeed, so (2.7) and
(2.8) are only valid in hover conditions. The air density ρ = p/(RairT ) depends on the air
pressure p, absolute temperature T and specific gas constant of air Rair = 287.05 J/kg K,
and may be estimated online or computed from onboard barometer measurements. This
leaves CT , CQ, and Ir to be identified. The coefficients CT and CQ are commonly obtained
from bench tests relating propeller angular speed to measured force and torque. The rotor
inertia Ir may be obtained by inertia estimation methods like swing tests, or dynamic
identification on a motor. In Section 2.2, we identify these parameters on a force-torque
sensor in the full hexacopter configuration.

2.1.3 Propeller aerodynamics

The forces exerted by a propeller depend on its freestream velocity (relative wind velocity).
The freestream velocity of the k-th propeller expressed in the propeller frame is

v∞,k = RT
bp,k

(
RTvr + ω × rk

)
, (2.9)

where vr = ṙ − vw is the true airspeed, vw is the wind velocity, and rk is the location of
the propeller relative to the center of gravity. The thrust acts in positive z-direction of the
propeller frame Pk, see Figure 2.2. According to momentum theory [78] it can be written
as

T = 2ρAviU, (2.10)

where A is the rotor disk surface area, and U = ‖vie3 + v∞‖ is the velocity of the propeller
slipstream. The induced velocity vi can be obtained using

vi =
v2h√

v2xy + (vi − vz)2
, (2.11)

which may be solved by several Newton-Raphson iterations with known vh and v∞ [78]. A
flow visualization of thrust generation and the relevant velocities is depicted in Figure 2.3.
The horizontal and vertical components of the freestream velocity are vxy = v∞ − vz and
vz = eT3 v∞, respectively. Their norms are vxy = ‖vxy‖ and vz = ‖vz‖. In hover conditions
the induced velocity is vh =

√
Th/2ρA, where the hover thrust is obtained from (2.7). The
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propeller ideal aerodynamic power is

Pa = 2ρAviU(vi − vz). (2.12)

Furthermore, the aerodynamic power in forward flight is related to the hovering power
following

Pa
Ph

=
vi − vz
vh

, (2.13)

with Ph = 2ρAv3h. Nonidealities can be included through the figure of merit (FM), between
0 and 1, such that Pa = Pm · FM , where Pm is the motor power. The theory must be
applied in the valid domain. Unmodified momentum theory does not apply in the unsteady
Vortex Ring State (VRS) [78], as depicted in Figure 2.4.

Note that we may also model the aerodynamic power Pa as a general function of Pm,
Pa := g(Pm) which can be found in a parameter identification step. This will also include
effects neglected by first-principles physics modeling, such as motor losses or fluid-structure
interaction effects.

Coaxial rotors. In the case of coaxial rotors, we can consider one propeller pair as a
single propeller. In that case, the hover induced velocity is

vh =

√
T1 + T2

2ρA
= D

√
2

π

√
CT,1$2

1 + CT,2$2
2, (2.14)

where CT,1 and CT,2 are thrust coefficients of the upper and lower propeller, respectively.
They are obtained using an identification procedure of the propulsion system, as described
in Section 2.2. Having obtained vh, we use other aerodynamic quantities as described
above. Note that the torque coefficients (and thereby power) will also differ between the
upper and lower propeller.
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2.1.4 Simplified drag model

Next, a widely used form of the aerodynamic wrench model is derived. Without loss of
generality, the aerodynamic drag wrench may be written as

τ d(νr) = −D(νr)νr, (2.15)

where νr = ν−νw, with νw being the generalized wind velocity. Based on physical models,
it is composed of viscous (linear) drag and parasitic (quadratic) drag. As such, the model
may be written as

D(νr) = DL +Di.d. +DQ|νr| (2.16)

with viscous damping coefficients DL, induced drag coefficients Di.d. presented below in
(2.19), and quadratic damping coefficients DQ. Viscous drag is principally the result of
propeller induced drag and blade flapping, which are dominant at low velocities [106]. The
coefficients in DQ represent parasitic form drag, the components of which can be written
as

dq,ij = 1
2ρArefCD,ij ,

where CD is the drag coefficient, and Aref is the reference surface area. A common
assumption for small UAVs is that the drag forces are decoupled (dq,ij = 0 ∀ i 6= j) and
act in a principal coordinate frame which usually coincides with the body frame. However,
this is not a requirement for analyses performed in this thesis.

Following [107], the blade flapping and induced drag forces fi.d acting on a propeller for
small advance ratios — when the translational velocity is significantly smaller than blade
tip speed — may be written as

fi.d = TAdv∞, (2.17)

where the blade flapping and induced drag matrix Ad is

Ad =

ca + cd,x −cb 0
cb ca + cd,y 0
0 0 0

 , (2.18)

where ca and cb are the longitudinal and lateral flapping coefficients, and cd,x and cd,y are
induced drag coefficients. The induced drag wrench may now be defined as τ i.d = Diνr,
with

Di.d. =

[ ∑
i TiR

T
pbAd 03×3∑

i ri ×
(
TiR

T
pbAd

)
03×3

]
. (2.19)

Notice that the location of the propellers may produce a drag torque. Notice that through
propeller induced drag, the drag model is also dependent on the control input. This model
is used for inversion-based wind estimation in Chapter 4. Other data-driven aerodynamic
models based on general regressors are defined in Chapter 4.

2.1.5 Reduced brushless DC motor model

In order to estimate the propeller aerodynamic power, we employ the BLDC motor model
from [14]. The mechanical part of motor dynamics can be represented by

τm = (Kq,0 −Kq,1ia)ia, (2.20)

Ir$̇ = τm −Dr, (2.21)

where ia is the current through the motor, and $ is the rotor angular velocity. The
motor torque is τm, with the torque constant modeled as Kq(ia) = (Kq,0 −Kq,1ia). The
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parameter Ir is the rotor inertia, and Dr is the aerodynamic drag torque acting on the rotor.
The total motor mechanical power is Pm = Pa/FM + Pr, where the mechanical power Pm
and power consumed by rotor acceleration Pr are used to estimate the aerodynamic power
using

Pm = τm$ = (Kq,0 −Kq,1ia)ia$, (2.22)

Pr = Ir$$̇, (2.23)

P̂a = FM
(

(Kq,0 −Kq,1ia)ia − Ir$̇$
)
. (2.24)

Note that, in general, the figure of merit FM can be a nonlinear function. In summary, we
need to estimate or measure the motor current ia, rotor speed $ and rotor acceleration $̇.
The measurements ia and $ can be obtained from modern ESCs, and $̇ can be estimated
[14].

Current measurement on the speed controller allows us to directly relate the motor
torque (2.20) to the aerodynamic torque of the propeller (2.8) through (2.21) as

τm = Q,

(Kq0 −Kq1ia)ia = Ir$̇ + ρCQD
5$2

i ,
(2.25)

i.e. the motor current can be related to the torque applied to the rotor, without the need
of numerical differentiation to obtain $̇. By using this measurement to get the propulsion
wrench (2.6), and using it in the external wrench estimator, see Section 2.3, an accurate
estimate of the external yaw torque may be obtained even under wind influence. This
relation is further investigated in Section 2.2.

2.2 Parameter identification

Problem formulation. The methods presented in this paper are model-based, and as
such require model parameters to be identified. The rigid body and propulsion models can
be represented as the linear regression model

Y θ = u, (2.26)

where Y ∈ RN×M is the regression matrix, θ ∈ RM is the vector of unknown parameters,
and u ∈ RN is the known input. Here, N is the number of measurement samples, and
M is the number of parameters. For the full hexacopter model, the following parameters
have to identified: the mass M (1 parameter), inertia I (6 parameters), center of gravity
rg (3 parameters), thrust and torque coefficients of the coaxial propellers (4 parameters),
propeller inertia (1 parameter) and the motor torque constants (2 parameters), making in
total 18 parameters to be identified. By using only diagonal inertia terms and known mass,
the number of unknown parameters is reduced to 14. In order to further reduce the search
space, the parameter estimation is performed in three stages, as depicted in Figure 2.5.

Identification methods. Two methods to obtain the estimated parameters θ̂ are
compared next. Batch least squares. First, the batch least squares [102] solution is obtained
by

θ̂LS =
(
Y TY

)−1
Y Tu, (2.27)

which minimizes the `2 norm of the estimation error.
Iteratively reweighted least squares (IRLS). Second, the `1 norm of the model residuals

is minimized by means of IRLS [27]. This provides robustness to outliers and creates a
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Figure 2.5: Parameter identification procedure. To minimize coupling effects in the high-
dimensional parameter space, the identification is performed in three steps. Using the known
vehicle mass M, first the propulsion parameters θ1 are estimated on a force-torque sensor.
Inertia and the center of gravity θ2 are identified from an identification flight without wind.
Lastly, aerodynamic models τd(vr) are identified from wind tunnel experiments.

sparse model by driving some parameters to zero. The estimate at step k is obtained by
solving the weighted least squares problem

θ̂
(k)

IRLS =
(
Y TW (k)Y

)−1
Y TW (k)u (2.28)

where W (k) = diag{w(k)
1 , w

(k)
2 , . . . , w

(k)
N } is the weight matrix. Minimization of an `p-

norm, 0 ≤ p ≤ 1, is obtained by setting the weights to w
(k)
i =

(
r(k−1)2 + ε

)(p/2)−1
, where

r(k) = Y θ(k) − u is the estimation residual, and ε � 1 is a regularization parameter
obtained as described in [27].

Identification procedure. A difficulty with identifying all parameters from flight data
is the lack of ground truth measurements of the total torque acting on the robot. It was
also found that estimating the thrust and torque coefficients from flight data is sensitive
to time delay in the measurements (on the order of 20 ms), and can lead to physically
meaningless parameters, such as negative thrust coefficients. Identification of the system
parameters is therefore split into three parts as depicted in Figure 2.5:

1. propeller and motor parameters are obtained using measurements on a force-torque
sensor and the known mass,

2. rigid body parameters are obtained from an identification flight,

3. aerodynamic models are obtained by flying in a 3D wind tunnel.

The propulsion model is treated as ground truth for the rigid body identification. In the
last step, the external wrench is estimated based on the previously identified models. In
our experiments only the aerodynamic wrench acts on the robot. The estimated external
wrench is therefore used to identify aerodynamic models. The procedure and results are
covered in depth in Section 4.3.

Propulsion system parameters. The propulsion parameter vector for our coaxial
hexacopter is

θ1 := [CT,1, CT,2, CQ,1, CQ,2, K
T
q,1, K

T
q,2, Ir]

T , (2.29)

and the regression matrix Y 1 contains the rotor rates and motor current. The motor torque
coefficients Kq,i = [Kq,0i,Kq,1i]

T are split for upper and lower motors (Kq,1 and Kq,2

respectively) because of the aerodynamic interaction between the propellers. For this step
in the identification procedure, the hexacopter was fixed to an ATI 85 Mini force-torque
sensor as depicted in Figure 2.6. The wrench measured by the sensor is concatenated in
u1 := τFTS. The pose of the hexacopter and the force-torque sensor were obtained by a
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Figure 2.6: Setup of the force-torque sensor experiment. The hexacopter with coaxial
propeller pairs was fixed to a force-torque-sensor (FTS). The lower and upper propellers have
different thrust and torque coefficients due to interaction effects. Copyright cO 2017 IEEE
[138].

motion capture system at 250 Hz, while the onboard attitude controller ran at 500 Hz.
The following signals were logged: pose, IMU, motor speed and current as measured by the
speed controllers, the commanded control input, and the force and torque. The relative
orientation of the force-torque sensor to the IMU was calibrated beforehand. The resulting
parameter estimates are listed in Table 2.1. Note the different motor constants between
upper and lower propellers. In comparison to the lower propellers, the upper propellers
generate less thrust (CT,1 < CT,2) and require more power (CQ,1 > CQ,2).

Comparison of the identified model to the force-torque sensor measurements is shown
in Figure 2.7. It can be seen that the identified propulsion model closely matches the
force-torque sensor measurements. In this case, using the measured motor speeds to obtain
the control wrench shows only a minor improvement over using the commanded speeds.

Figure 2.8 shows the yaw torque estimation using different measurements. The model
most widely used in literature uses only the motor speed, and is shown as m̂$

e,z. This
simple model does not capture fast transitions well because the rotor acceleration torque
is not modeled. Adding also the rotor acceleration (m̂$,$̇

e,z ) as in (2.8) improves accuracy
during fast changes of the desired torque, but requires estimation of the rotor acceleration.
Lastly, the motor torque may be obtained directly from the measured motor current as
in (2.25), shown in Figure 2.8 as m̂ia

e,z. Note that the motor torque is used to obtain the
yaw component of the propulsion wrench (2.6). The measured current is also depicted for
illustrative purposes. In this case, a propeller model is not needed, while the accuracy is
similar to the model using rotor acceleration. Note that in the case of actuator failure (e.g.

Table 2.1: System parameters identified in the first identification step, using data from a
force-torque sensor. Coaxial propeller pair coefficients are written as [upper, lower].

Parameter Value

M 2.445 kg

D 0.254 m

CT [5.1137, 7.8176] · 10−2

CQ [7.5183, 4.7597] · 10−3 -

Kq,0 [2.9404, 1.4545] · 10−2 N m/A

Kq,1 [−1.4099, − 3.3360] · 10−3 N m/A2

Ir 2.1748 · 10−4 kg m2
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Figure 2.7: Validation of the identified propulsion model ( ) on the setup depicted in Figure
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measured motor speeds, shown in the bottom plot. The measured motor speeds $ of the
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lines ( , , ). Copyright cO 2017 IEEE [138].

partially losing a propeller), using the motor current will provide a better estimate of the
yaw torque, as the method does not explicitly model the propeller drag torque.

Rigid body parameters. For a diagonal inertia tensor, the rigid body parameter
vector is

θ2 := [Ixx, Iyy, Izz, rTg ]T . (2.30)

On the right-hand side, u2 is obtained from the identified propulsion model and the known
mass M as

u2 = Y 1θ1 −MyM, (2.31)

where yM is the regression matrix column associated with the mass. Furthermore, the
off-diagonal inertia terms are more than an order of magnitude lower than the diagonal
terms, which allows us to simplify the model to diagonal inertia. The identified parameters
are listed in Table 2.2. Figure 2.9 compares the propulsion model torque to the torque
predicted by the identified rigid body model. The `1-identified parameters are shown, as
the predicted torque is almost indistinguishable from `2. The result confirms correctness of
the identified dynamics model.

Identification of aerodynamic models was done through wind tunnel experiments, which
are described next.

2.3 External wrench estimation

Knowledge of the system model and control laws can be used to estimate the external
wrench acting on the robot [30]. Two schemes are investigated – the momentum-based
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The estimator gain is Km

I = 36 to make the signals more discrenible.

Table 2.2: Results of the rigid body parameter identification step for the DLR Ardea
hexacopter, using data from an identification flight, and the identified propulsion model.
Results obtained by batch least squares (`2) and IRLS (`1) do not differ significantly.

`2 I diag{2.58, 2.46, 4.32} · 10−2 kg m2

rg [4.28,−1.11,−11.1]T · 10−3 m

`1 I diag{2.54, 2.58, 5.46} · 10−2 kg m2

rg [4.01,−1.05, 8.64]T · 10−3 m

method which uses velocity information, and the acceleration-based method. Finally, we
combine the two to obtain a practical choice for a flying robot, using already available
sensors.

2.3.1 Momentum-based estimation

The first method relies on observing the robot’s generalized momentum p = Mν. Rewriting
(2.4) in terms of p gives

ṗ = Mν̇ = JTτ + τ e −N , (2.32)

where N := C(ν)ν +D(ν)ν + g. Following [30], we define a residual vector

ρ = KI

[
p−

∫ (
JTτ −N + ρ

)
dt− p(0)

]
(2.33)

with positive definite diagonal observer matrix KI ∈ R6×6. By differentiating (2.33), we
obtain the residual dynamics

ρ̇ = KIτ e −KIρ. (2.34)

Note that (2.34) represents a linear exponentially stable system, driven by the true external
wrench τ e. Hence, ρ is the first-order lowpass filtered reconstruction of τ e. Therefore,
the estimated external wrench is denoted τ̂ e := ρ. Note that this method requires the
measurement or estimation of the generalized velocity ν.
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Figure 2.9: Rigid body torque prediction using parameters obtained by the IRLS method,
minimizing the `1-norm. Overall the model shows a good match to the ground truth.

2.3.2 Acceleration-based estimation

In general, the external wrench could be obtained directly from full acceleration information.
By rearranging the terms in (2.4) we may algebraically calculate the external wrench as

τ̄ e = Mν̇ +C(ν)ν +D(ν)ν + g − JTτ , (2.35)

where the acceleration ν̇ contains significant sensor noise. A first-order stable filter is
therefore applied to obtain the estimation dynamics

˙̂τ e = KI τ̄ e −KI τ̂ e. (2.36)

By lumping the nonlinear terms in N := C(ν)ν +D(ν)ν + g, we finally obtain

˙̂τ e = KI

(
Mν̇ +N − JTτ − τ̂ e

)
. (2.37)

In contrast to robot manipulators, this method is suitable for observing the translational
dynamics of flying robots, as the translational acceleration r̈ and acceleration of gravity
ge3 are directly measured by the onboard inertial measurement unit (IMU). The angular
acceleration ω̇ may be obtained by numerical differentiation.

2.3.3 Hybrid estimation

Practical considerations for flying robots. Table 2.3 shows measurement requirements
for the two wrench estimation methods. Obtaining a drift-free translational velocity requires
exteroceptive sensors and a fusion algorithm. This greatly limits the applicability of the
momentum based method for force estimation. Similarly, the angular acceleration can
only be obtained through numerical differentiation. This reduces the quality of the torque
estimate by the acceleration based method.

By considering the directly measurable values, it is intuitively clear that a combination
of the two methods solves each one’s shortcomings — (2.37) is used for external force



2.3 External wrench estimation 29

Table 2.3: Motivation for the hybrid estimation scheme — the translational velocity required
by the momentum observer would have to be estimated. Alternatively, the readily available
accelerometer signal can be used for estimation of the external force. The table shows relevant
measurements provided by different state of the art sensor suites: translational velocity ṙ,
translational acceleration r̈, angular velocity ω, and angular acceleration ω̇. Measured: •,
obtained numerically: ◦, or estimated: 4.

Sensor ṙ ω r̈ ω̇

Accelerometer - - • -
Gyroscope - • - ◦
PX4FLOW [62] 4 • - ◦
Skybotix VI [101] 4 • • ◦
IMU–odometry fusion [124, 123] 4 • • ◦
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Figure 2.10: Structure of the hybrid external wrench estimator near hovering conditions. It
uses the robot acceleration r̈ and angular velocity ω, both measured directly by the onboard
IMU. Copyright cO 2017 IEEE [138].

estimation and (2.33) for external torque estimation. The resulting estimator structure
is depicted in Figure 2.10. The rotational part of the momentum p is denoted pω. The
estimator gain KI is split into its diagonal blocks Kf

I for the force and Km
I for the torque

components. By combining both methods we can estimate the external wrench using
proprioceptive sensors only. The estimated external wrench τ̂ e = [f̂ e m̂e]

T is obtained by

τ̂ e =

 ∫ t
0 KI,f

(
Ma− f − f̂ e

)
dt

KI,m

(
Iω −

∫ t
0 (m+ (Iω)× ω − m̂e) dt

) (2.38)

where a = RT (r̈ − ge3) is the acceleration measured by an accelerometer in the body
frame, and m̂e is the estimated external torque, also expressed in the body frame. Note
that an accelerometer also measures the acceleration of gravity. The estimator dynamics
are linear and decoupled in both methods.



Illustration (excerpt): A. Robida: Paris la nuit; Book: A. Robida: Le vingtième siècle, Paris: Decaux, Georges,
1883



CHAPTER 3

Tracking and interaction control

This chapter covers disturbance-observer based trajectory tracking control and interaction
control for multirotor flying robots. The geometric trajectory tracking controller in
Section ?? is based on a disturbance observer approach, while interaction control, Section 3.2
is based on impedance and admittance control. Both are based on the external wrench
estimator from Chapter 2. For trajectory tracking, the complete wrench is compensated,
while for interaction inertia shaping is performed for compliant behavior. For interaction
control under wind influence, the two methods are combined into the aerodynamics
compensated impedance controller in Section 3.2.2. Based on discriminated aerodynamic
and interaction wrenches, the controller compensates the aerodynamic wrench, and is
compliant to the interaction wrench.

3.1 Trajectory tracking control

3.1.1 Attitude tracking control

Kinematics

In this following, three coordinate frames are considered: the non-moving inertial frame
I, the body-fixed frame B, and the desired frame D. The goal of the attitude tracking
controller is to align frame B with frame D. Unit quaternions are used for singularity-free
attitude representation. The quaternion q = [η εT ]T consists of the scalar part η and
the vector part ε. To prevent notational ambiguity with vectors, we denote quaternions
with an underbar. Unit quaternion attitude representation is related to the angle-axis
representation through the half of the rotation angle:

η = cos ϕ2 , ε = k sin ϕ
2 , (3.1)

where k is the rotation axis, and ϕ the rotation angle. The norm of a unit quaternion

is always unity such that ‖q‖ =
√
qTq) = 1. The conjugate of a unit quaternion

q∗ = [η − εT ]T represents inverse rotation. The rotation matrix R(q) can be obtained
by using the Euler-Rodriguez formula [103]. The kinematic differential equation of a unit
quaternion is

q̇ = 1
2U(q)ω = 1

2

[
−εT

ηI3×3 + S(ε)

]
ω, (3.2)

where ω = [p q r]T is the body angular velocity.

31
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Attitude error

The attitude error q̃ between the desired attitude q
id

and the body attitude q
ib

is next

defined geometrically [103, 76]. It is equivalent to R̃ = R(q̃) = Rdb = RT
idRib. The error

represents the rotation from frame B to frame D. Using quaternion multiplication it can
be defined as

q̃ = q
db

= q∗
di
⊗ q

bi

q̃ =

[
η̃
ε̃

]
=

[
ηdi εTdi
−εdi ηdiI3×3 − S(εdi)

] [
ηbi
εbi

]
,

(3.3)

where ⊗ represents quaternion multiplication. The angular velocity error transforms the
desired angular velocity from the D-frame to the B-frame and is defined as

ω̃ = ω − R̃T
ωd, ˙̃ω = ω̇ − R̃T

ω̇d − ˙̃RTωd, (3.4)

where Ṙ = RS(ω) is the time derivative of the rotation matrix.

Attitude stabilization

To better explain quaternion attitude control, let us first consider the attitude stabilization
problem without model uncertainties. Consider the Lyapunov function candidate

V = 1
2ω

TIω + 2cH(ε̃), (3.5)

where the inertia I is constant, c is positive and H(ε̃) is the quaternion error function.
Because the error is a unit quaternion, the error function must be a Lipschitz function
defined on the range [−1, 1] and vanish at ±1, since η̃ = ±1 represents aligned B and
D frames. Several common choices for H(ε̃) can be found in [103]. After expansion, the
derivative of the Lyapunov function candidate is

V̇ = ωT [m+ S(Iω)ω +me]− cωT ẽ,

where ẽ = −∂H
∂η̃ ε̃ has been introduced. By assuming hm = 0 and taking the control law

m = −Kvω − cẽ, with gain Kv ≥ 03×3, and using the skew-symmetry property of the
Coriolis term in the dynamics, V̇ becomes negative semidefinite

V̇ = −ωTKvω < 0, ∀ω 6= 0.

The equilibrium points depend on the chosen potential function of the quaternion error.
Due to the structure of the SO(3) group, at least two equilibrium points exist In this
thesis, H(η̃) = ε̃T ε̃ is chosen, which yields ẽ = 2η̃ε̃. When using this error function, the
asymptotically stable equilibrium points are η̃ = ±1, and an unstable equilibrium point
exists at η̃ = 0.

Robust attitude tracking control

In the following, an integral sliding mode (ISM) controller [145] is combined with disturbance
observer based control [80]. The disturbance is estimated using the external wrench
estimator from Chapter 2. Consider the desired attitude error dynamics to be

˙̃ω +Kv
˙̃e+ cẽ = 0, (3.6)

where instead of the angular velocity error, the time derivative of the geometric attitude
error has been taken. For control design, an ideal model without disturbances is chosen to
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Figure 3.1: Block diagram of the attitude controller and disturbance observer. Copyright cO
2014 IEEE [141].

be followed, such that
I0ω̇0 = m0 + S(I0ω0)ω0. (3.7)

In integral sliding mode controller design, the tracking (sliding) variable is expanded by a
model-based integral term z which is designed such that sliding mode starts immediately
without a reaching phase [145]. If the sliding variable s is defined

s = s0 + z, s0 = ω̃ +Kvẽ, (3.8)

from the sliding condition ṡ = 0, one obtains z to be

ż = −ṡ0 = − ˙̃ω0 −Kv
˙̃e, z(0) = −s0(0), (3.9)

where the ideal error dynamics ˙̃ω0 are obtained from the nominal model (3.7), using (3.4).
The actual error dynamics can be obtained from (2.3) to be

˙̃ω0 = I−10 m0 + I−10 S(I0ω)ω − R̃T
ω̇d − ˙̃RTωd,

˙̃ω = I−1m+ I−1S(Iω)ω + I−1me − R̃
T
ω̇d − ˙̃RTωd.

(3.10)

The control law m consists of a nominal control m0 and a robust control m1. The
nominal control law is obtained such that the nominal model (3.7) follows the desired error
dynamics (3.6), while the robust control is determined from the following stability analysis.
The atttiude controller is

m = m0 +m1

m0 = I0
(
R̃
T
ω̇d + ˙̃RTωd −Kv

˙̃e− cẽ
)
− S(I0ω)ω.

(3.11)

Next, the robust control m1 is derived. By applying (3.11), the derivative of the sliding
variable (3.8) is

ṡ = ṡ0 + ż = ζ1 + ζ2m0 + I−1m1 + I−1me,

ζ1 = I−1S(Iω)ω − I−10 S(I0ω)ω

ζ2 = I−1 − I−10

(3.12)

The disturbance me can be estimated by the external wrench estimator from Section 2.3.
This will include both modeling errors and external disturbance.

Next take m̃e = me − m̂e and the Lyapunov function

V = 1
2s

TIs+ 1
2m̃

T
eK

m−1
I m̃e, (3.13)
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whose derivative is

V̇ = sTI
(
ζ1 + ζ2m0

)
+ sTm1 + sTme + m̃T

eK
m−1
I (ṁe − ˙̂me). (3.14)

By choosing the robust control law m1 and disturbance estimation dynamics to be

m1 = −Kwsgn(s)− m̂e, ˙̂me = Km
I m̃e + ξ sgn(m̃e) (3.15)

the derivative of the Lyapunov function becomes

V̇ = sTI
(
ζ1 + ζ2m0

)
− sTKwsgn(s)− sTm̃e − m̃T

e m̃e + m̃T
eK

m−1
I

(
ṁe − ξ sign(m̃e)

)
.

(3.16)
For (3.16) to be negative definite, it must hold that

Kw >
1

γ
‖ζ1 + ζ2m0 + I−1m̃e‖, γ < λmin(I−1)

ξ > sup‖ṁe‖
(3.17)

where it is assumed that me is Lipschitz. It can be seen that the sliding gain Kw depends
on the modeling error ζ1 + ζ2m0 as well as the disturbance estimation error m̃e. If
the disturbance had not been estimated, the gain would also have to be larger than the
maximum amplitude of the external disturbance, as well as the modeling errors. Thus, by
incorporating an explicit disturbance estimator into the controller, the sliding gain can
be smaller, which leads to improved robustness. The gain ξ in the disturbance estimator
compensates for the rate of change of the disturbance. Note that here the external torque
is interpreted as a disturbance. For purposes of the stability proof, it was expanded with a
sign term. However, under the assumption of quasistatic disturbances, ξ can practically be
chosen to be zero. In that case the sliding gain has to be higher in order to compensate
me. The equivalent control, or averaged motion, of the sliding mode term is

m1,eq = I
(
ζ1 + ζ2m0

)
+ m̃e (3.18)

Since using a signum function in the control leads to chattering, a boundary-layer approach
is adpoted, which is equivalent to a lowpass-filtered signal of the signum function. By
taking

m1 = −Kwsat (s/ε)− m̂e (3.19)

with a small constant ε > 0, the system behaves as in (3.16) outside the boundary layer.
The system will therefore not converge asymptotically to the tracking variable, but to its
ε-vicinity. Inside the boundary layer an equivalent gain K = Kw/ε can be defined and
ξ = 0 can be chosen to obtain

V̇ = sTI
(
ζ1 + ζ2m0

)
+ m̃T

eK
m−1
I ṁe −W,

W = sTKs+ sTm̃e + m̃T
eK

m
I m̃e

≥ λmin {K} ‖s‖2 + ‖s‖‖m̃e‖+ λmin {Km
I } ‖m̃e‖2.

(3.20)

The condition for positive definiteness of W is

4λmin {K}λmin {Km
I } > 1. (3.21)

Hence, the system must be sufficiently damped inside the boundary layer to compensate
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the estimation error dynamics. An upper limit on K is imposed by the propeller dynamics
and sensor noise. The Lyapunov function inside the boundary layer is not negative definite,
but is dominated by the modeling and estimation errors. The error dynamics inside the
boundary layer in case of I 6= I0 can be obtained as

˙̃ω + I−1I0Kvω̃ + I−1I0cẽ = ζ1 − I−1m̃e

˙̂me +Km
I m̂e = Km

I m̃e

(3.22)

which shows that the error dynamics inside the boundary layer is excited by the disturbance
estimation error.

The boundary-layer integral sliding mode controller behaves like a saturated PID con-
troller. Therefore, an anti-windup method must be applied [130]. During saturation of
the sliding mode term in m1, the sliding surface is reset such that z = −s0 and ż = 0.
Furthermore, saturated control inputs are used for disturbance observation, as depicted in
Figure 3.1.

3.1.2 Position tracking control

The position controller is designed to track a desired position rd = [xd yd zd]
T , velocity ṙd

and acceleration r̈d. Control of the yaw angle ψ about the inertial z-axis is independent
of the position. This is achieved by designing a controller in the inertial frame which
calculates an inertial control force. The force is then used to generate an attitude and
thrust reference for the underlying attitude controller.

Virtual control force

The design closely follows that of the attitude controller, therefore most details are omitted.
The controller calculates a required force in the inertial frame based on the desired error
dynamics

¨̃r +Kv,p
˙̃r +Kp,pr̃ = 0, (3.23)

where r̃ = r−rd is the position error. We follow the ideal disturbance-free dynamics based
on (2.3) without the external force to obtain

M0r̈0 =M0ge3 − TRe3, (3.24)

where M0 is the nominal mass. A quaternion reference attitude is then generated that
aligns the thrust vector with the desired control force. Equivalent to the attitude controller,
the position control input f = f0 + f1 consists of a nominal control f0, based on (3.24)
and (3.23), and a robust control f1 such that

f0 =M0

(
r̈d −Kv,p

˙̃r −Kp,pr̃
)

f1 = −Rf̂ e −Kf sat(sp/εp)
(3.25)

where r̈d includes the gravity compensation term. By using the same integral sliding mode
design process as in the attitude controller, the sliding variable is obtained to be

sp = ˙̃r +Kv,pr̃ +

∫
Kp,pr̃ dt− ˙̃r(0)−Kv,pr̃(0) (3.26)

Hence, the controller behaves locally as a PID controller. The thrust is equal to the norm
of the desired force, i.e. T = ‖f‖.
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Attitude reference generation

The attitude reference can be obtained from f through two transformations, depicted in
Figure 3.3. The thrust transformation q

f
aligns the zf -axis to the desired thrust vector,

and is obtained from an angle-axis representation. The yaw transformation q
ψ

rotates

about the inertial z-axis by angle ψ. The thrust vector points in the negative zi direction
in hover, so a rotation axis k can be obtained as the cross product between the desired
inertial force and the negative zi vector. The transformation between axes zi and zf can
be obtained by normalizing the non-unit quaternion q

f
= [ηf εf ]T

ηf = −zTi f +

√
1 + fTf , εf = −zi × f (3.27)

The reference quaternion q
d

from the position controller is then obtained by transforming
the intermediate yaw coordinate system by the thrust transformation as

q
d

= q0
f
⊗ q

ψ
, q

ψ
=
[
cos ψ2 , 0, 0, sin ψ

2

]T
. (3.28)

The transformation is free of singularities. Here, the yaw transformation represents the
angle about the inertial z-axis, and not the Euler yaw angle.
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Commanding an angular velocity improves attitude tracking performance. The angular
velocity command can be generated by discretizing the kinematics of the rotation matrix
and calculating delta rotations of the position controller between two time steps. The
angular velocity at time step k is then

ωd,k = ∨(RT
bi,k−1Rbi,k

)
t−1s (3.29)

where ts is the sampling time of the position controller, and ∨(·) is the inverse of the
skew-symmetric matrix operator, which extracts a vector from the matrix S(·). In this
way, angular velocity is generated from the feedback signal, rather than the feedforward
signal from a precomputed trajectory.

3.1.3 Evaluation of trajectory tracking

In this section, behavior of the controller with disturbance observation is first shown when
model uncertainties are applied in simulation. The transient response is compared to a
PID controller and influence of the integral term is shown. Three sets of experiments are
presented, where four controllers are compared – PID, Adaptive Integral Backstepping
Controller (AIBC), Integral Sliding Mode with Disturbance Observation (ISM+DO) and
PD with disturbance observation (PD+DO). First, hovering performance with and without
turbulent wind influence is compared across position and attitude controllers. Second,
trajectory tracking between waypoints is shown for situations where large angles must be
applied. Lastly, behavior of the disturbance observation method is shown for cases when
a constant force in the inertial frame is applied, and the response is compared with the
AIBC. For presentation clarity, the ZYX Euler angles are shown, while quaternions are
used for control.

For a fair comparison, all controllers have been tuned to have the same local closed-loop
gains as a standard PID controller fPID,x = M0(ẍd −Kv,x

˙̃x −Kp,xx̃ −Ki,x

∫
x̃dτ) with

gains Kv,p = 2ωc, Kv,p = ω2
c , Ki,p = 1

4ωc. This applies for the sliding mode boundary layer
and AIBC controller. Disturbance observers were tuned separately. The AIBC position
controller was implemented as three decoupled controllers of the form [153, 39] as

fx = m0

(
ẍd − (1− c21 + λ)x̃− (c1 + c2) ˙̃x+ c1λξx − ĥx

)
,

where ξx =
∫
x̃dτ for the x-axis and equivalent for other axes, with the disturbance

estimation as
˙̂
hx = γė. Since the mass is constant and is not adapted in other controllers,

the adaptation has not been implemented for the AIBC.

Simulation results

The simulation model includes sensor noise, propeller modeling and actuator discretization.
Angular accelerations are obtained through finite-difference differentiation. Figure 3.4
shows the step position disturbance response for different controllers, which is applied
between 1 s and 8 s, with an ISM+DO attitude controller. The PD+DO approach shows
faster convergence than the PID controller. The combined ISM+DO scheme inside the
boundary layer has a faster response and a smaller absolute error, however the transient
has an undershoot due to integrator influence.

The response to time-varying disturbances is shown next in Figure 3.5. The quadrotor is
commanded to hover at a constant position, while time-varying disturbances are applied, as
a torque about the x-axis (roll), and a force in the inertial y-axis. The force is counteracted
by changing the roll angle, and is thereby coupled with the torque disturbance. It can be
seen that the disturbance is counteracted very closely despite being time-varying. The
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are applied on the roll axis and in the inertial y-direction. The disturbance compensation
is faster due to ISM, and the tracking variable s (term Ksy) converges to zero when the
disturbance is constant. Copyright cO 2014 IEEE [141].

slow component is identified by the acceleration-based disturbance estimator, while the
faster component is counteracted through the integral sliding mode term Ks. A chirp
torque disturbance with varying amplitude can be compensated, even though the lowpass
disturbance estimate has a considerable phase delay. The system is in the boundary layer,
and the sliding variable s goes to zero once the constant disturbance is counteracted by
the disturbance estimate. Position and attitude are of course coupled, as a change in the
attitude due to the disturbance causes a change in position, so the quadrotor must fly
back to the hover position. Note that here the disturbance amplitude is larger than the
quadrotor weight, so the roll angle must be held at 60 degrees in hover.

Experimental validation

The experiments are carried out using an AscTec Hummingbird that runs the quaternion
attitude controller with disturbance observer onboard at 1 kHz. A strapdown algorithm
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(a) Hovering in a 3 m/s turbulent wind stream,
generated by a fan with 70 cm diameter

(b) Hovering with a constant side force produced
by a suspended 6 N weight

Figure 3.6: Experimental setups for hovering tests with external disturbance investigated in
this thesis. Copyright cO 2014 IEEE [141].
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(b) Hovering in 3 m/s turbulent wind stream

Figure 3.7: Hovering performance using different position and attitude controllers. Controller
parameters were constant through the experiments. The attitude controller was tuned as
ωc,a = 12 rad/s and Km

I = 8. All position controllers had ωc,p = 1.5 rad/s, and the mass was

constant at M = M0 = 0.63 kg. Position DO parameters were Kf
I = diag{[3 3 1.5]} and

AIBC γ = diag{[4 4 2]}. Copyright cO 2014 IEEE [141].

integrates the onboard gyroscopes to obtain the attitude estimate that is used for the
control. The attitude drift is corrected from motion tracking measurements. Position and
attitude measurement are provided by an A.R.T. motion tracking system at 60 Hz. The
position controller runs in Simulink, and sends attitude and thrust reference commands
to the quadrotor via a wireless XBee link. The angular acceleration is obtained onboard
by numerically differentiating the gyro signals. Translational velocity and acceleration
are obtained by differentiating and filtering raw position measurements from the motion
tracking system, hence a small delay is introduced.

First, the influence of a disturbance observer in hover conditions is investigated. All
experiments have been carried out with the same hardware and under same conditions.
Since it is common to use a PD attitude controller on the Hummingbird platform, the
quaternion controller in PD form is compared to a controller with disturbance observation.
The quadrotor parameters are not ideally known, so modeling errors exists. Therefore, as
no external disturbances are present, these will dominate the error dynamics. Figure 3.7(a)
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Figure 3.8: Position and velocity tracking during aggressive waypoint trajectory tracking.
The maximum commanded velocity is 2 m/s. Due to overshoot, the max. reached velocity was
3 m/s. The roll and pitch angles reach 50◦, and the commanded angular velocity reaches the
limit of 250◦/s. Copyright cO 2014 IEEE [141].

shows box plots for the four position controllers and attitude controllers with and without
disturbance observation. It can be seen that only using a disturbance observer in the
attitude controller improves performance in the horizontal plane. It does not significantly
influence altitude control. In hover, the ISM controller is always inside the boundary layer,
so the integral term adds a low frequency component that spreads the error distribution
when combined with the disturbance observer.

Next, the influence of turbulent wind on hovering performance is analyzed. The setup is
depicted in Figure 3.6(a). The fan generates a turbulent wind stream with a velocity of
3 m/s, resulting in a ∼15◦ hover. Figure 3.7(b) shows very consistent performance of the
PD+DO position control approach when combined with the attitude disturbance observer.
It can be seen that the PD attitude controller performs much worse in turbulent conditions.
It can be concluded that the position controller performance can be significantly improved
in turbulent wind conditions by simply adding a disturbance observer to the attitude
controller. Adding a disturbance observer to the position control loop further improves
performance. However, the ISM integral term does not further improve the hovering
performance.
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(a) Slow trajectory simulation (b) Slow trajectory experiment

(c) Aggressive trajectory simulation (d) Aggressive trajectory experiment

Figure 3.9: Simulation and experimental results for a Hummingbird quadrotor executing
Dynamic Movement Primitive (DMP) trajectories [137]. The quadrotor is running a PD+DO
geometric attitude controller, and a PD position controller. Copyright cO 2014 IEEE [137].

Figure 3.8 shows position and velocity tracking errors for a trajectory tracking experiment.
The velocity and acceleration are generated by filtering the position between waypoints.
Here, the maximal reference velocity was about 2 m/s. The ISM+DO controller shows fast
and very oscillatory behavior. It can be seen that the PD+DO controller shows the fastest
convergence of the position error, however it also shows large velocity overshoot. This is
due to lumping the unmodeled drag force in the disturbance. Here, performance can be
improved by modeling the velocity-dependent drag forces. The obtained pitch angle and
commanded angular velocity show that the angles reach 45◦, The onboard gyroscopes are
rated to 300◦/s, so the commanded signal is limited to avoid sensor saturation. This leads
to lower tracking performance in periods of high acceleration. Yaw tracking remains good
throughout the flights. The roll angle and angular velocity are not shown.

Trajectory tracking of aggressive trajectories represented by Dynamic Movement Primi-
tives (DMPs) [137] is depicted in Figure 3.9. It can be observed that the attitude controller
can track very aggressive trajectories, up to 80 ◦ in pitch, and stabilize rapidly. The main
difference between simulation and experimental results is additional delay in experiments,
possibly due to unmodeled motor dynamics.

Lastly, the transient response to a step disturbance in the inertial x-direction is compared.
The setup is shown in Figure 3.6(b). A weight of 6 N (610 g) is suspended and bound to
the quadrotor with a string. The quadrotor, with a mass of 630 g, is then commanded
to hover and the weight is dropped. This produces a constant horizontal force in the
x-direction on the quadrotor. Figure 3.10 shows that the DO identifies the weight quickly.
The quantitative error indicates errors in modeling of the quadrotor thrust. The hover
position is reached quickly. The ISM+DO approach shows faster convergence of the error
to zero, as shown in simulations. In equilibrium, the quadrotor hovers at approx. 45◦. It is
importantl to note that releasine the weight does not cause an overshoot. The velocity-
based disturbance observation of the AIBC does not correctly identify this disturbance,
since the weight falls to the ground and the quadrotor velocity reaches zero. Therefore,
the disturbance estimate converges to a constant value. The integral term is too slow to
drive the error to zero. Hence, the DO-based approach is well suited for applications where
relatively large external forces are present because these are estimated directly from the
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acceleration.

3.2 Interaction control

In this section, the integration of the external wrench estimate τ̂ e into the robot control
feedback loop is considered. The goal is to enable the system to purposefully interact
with its surroundings. Suitable interaction behaviors can be obtained through impedance
control and admittance control [108]. In the impedance control approach, the interaction
properties of the flying system are directly controlled. The resulting controller replaces the
existing position control loop of a flying robot. Admittance control, on the other hand,
is implemented around an existing position control loop [11]. However, is more difficult
to select the gains to obtain the desired interaction behavior than in the case of a clean
impedance controller. In the following, both interaction control approaches are discussed.

3.2.1 Impedance control with inertia shaping

For interaction control, a robot should ideally represent an impedance, as was argued in
the seminal work of Hogan [61]. Consider the target closed loop dynamics to be

M v
˙̃ν +Dvν̃ +Kvx̃ = τ e, (3.30)

where M v ∈ R6×6 is the desired positive definite apparent inertia matrix, Dv ∈ R6×6 is the
desired positive definite diagonal damping matrix, and Kv = blockdiag{Kv,t, c I3×3} is
the desired positive definite diagonal stiffness matrix. Here, Kv ∈ R3×3 is the translational
stiffness, and c is the rotational stiffness about all three axes. The state and velocity
tracking errors are x̃ = [r̃ η̃ε̃]T and ν̃ = ν − νd, respectively. Here, q̃ := [η̃ ε̃]T is the
quaternion representation of the geometric orientation error, with η̃ being the scalar, and
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Figure 3.11: Structure of an impedance controller (3.31) if it were possible to apply forces
in every direction. This would be the case for a UAV with fully actuated degrees of freedom,
where rank(B) = 6. Copyright cO 2017 IEEE [135, 138].

ε̃ the vector part. By inserting (3.30) into (2.4) the required control input becomes

JTτ = (MM−1
v − I)τ e +Mν̇d −MM−1

v (Dvν̃ +Kvx̃) +N . (3.31)

Since a measurement of τ e is not available, its estimate τ̂ e is used in (3.31). The resulting
control structure for a fully actuated flying robot (rank(B) = 6) is shown in Figure 3.11.
The impedance control structure for a nonholonomic flying robot (e.g. quadcopter) is
shown in Figure 3.12. The resulting system response along the inertial x-direction is shown
in Figure 3.13. The impedance controller has a simpler overall structure and it is easier to
select its gains than for the admittance controller.

Remark 1 (Closed-loop dynamics). By applying τ̂ e in (3.31), the closed-loop dynamics of
controller (3.31) for system (2.4) is

M v
˙̃ν +Dvν̃ +Kvx̃ = τ e + (M vM

−1 − I)τ̃ e, (3.32)

where τ̃ e := τ e − τ̂ e is the external wrench estimation error. Equation (3.32) shows
that controller (3.31) achieves the desired closed-loop dynamics up to the scaled wrench
estimation error. The steady state (ν̇ = 0, ν = 0, τ̃ e = 0, ˙̃τ e = 0) equilibrium point is
obviously x̃ = K−1v τ e. Systems (3.32) and (2.34) may be rewritten using z := [x̃ ν̃ τ̃ e]

T ,
in matrix form

ż = Az + g(t,z), (3.33)

A =

 0 T 0
−M−1

v Kv −M−1
v Dv M−1 −M−1

v

0 0 −KI

 , (3.34)

g(t) = [0 M−1
v τ e τ̇ e]

T . (3.35)

Here T is the kinematic transformation matrix with ẋ = Tν and det(T ) = 1. The nominal
(unperturbed) system ż = Az will be asymptotically stable if Re(A) < 0. Note that in
that case the coupling term

(
M−1 −M−1

v

)
in (3.34) does not affect stability due to zero

submatrices in A. Next, passivity and stability of the impedance controller are shown.

We note that with most flying systems (3.31) can not be obtained in the general
case. Flying systems such as quadrotors are underactuated and therefore cannot generate
horizontal forces in the body frame. The target impedance dynamics (3.30) can only be
obtained in the in the direction of the rotor thrust, which is typically the body z-axis.
Therefore, to obtain a Cartesian impedance, the robot must turn its body z-axis in the
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a typical quadrotor with rank(B) < 6. Position impedance is only achievable in the thrust
direction. Therefore the attitude controller must be used to obtain the desired impedance
in Cartesian translational directions. The controller calculates a virtual control force in the
inertial frame f c = TRde3. This force is then decomposed into the desired thrust T and
attitude Rd using state of the art methods. Copyright cO 2017 IEEE [135, 138].
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direction of the desired force. This is achieved by using a cascaded control structure
as depicted in Figure 3.12, which will be the subject of our analysis. By introducing
µ :=MM−1v and Γ := II−1v , the position and attitude impedance controllers can be
written as

Rdf =Mr̈d + (µ− 1) f̂e − µ
(
D1

˙̃r +K1r̃
)
− g, (3.36)

m = Iω̇d + (Γ−I) m̂e − Γ(D2ω̃ + cv ẽ)− n, (3.37)

where g =Mge3, ẽ = η̃ε̃, n = S(Iω)ω − mg. The overall structure of the described
system is depicted in Figure 3.14. In order to incorporate the attitude error dynamics into
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the error dynamics of the translation subsystem, we define the control force error.

Definition 1 (Control force error). Suppose that the desired thrust T can be obtained
instantaneously, i. e. that the thrust dynamics can be neglected w. r. t. the attitude
dynamics. This assumption is valid due to the motor dynamics and speed control being
faster than the attitude control loop. The desired control force fc := TRde3 is then
achieved perfectly, whereas the actual control force depends on the actual attitude as
f = TRe3. The control force error f̃ := f − fc is

f̃ = T (R̃− I)Rde3,

= 2T
(
(η̃I + S(ε̃))S(ε̃)

)
Rde3,

(3.38)

from which we obtain the norm estimates
∥∥∥f̃∥∥∥ ≤ 2T ‖ε̃‖ and

∥∥∥ ˙̃
f
∥∥∥ ≤ 2Ṫ ‖ε̃‖+ T ‖ω̃‖. By

limiting the thrust to the range 0 < T < Tmax, we obtain the upper bound
∥∥∥f̃∥∥∥ < 2Tmax ‖ε̃‖.

The error dynamics of the impedance controllers is

Mv
¨̃r +D1

˙̃r +K1r̃ = fe + (µ̄− 1)f̃e + µ̄f̃ , (3.39)

Iv ˙̃ω +D2ω̃ + cvη̃ε̃ = me + (Γ̄− I)m̃e, (3.40)

where µ̄ = µ−1 =MvM−1, Γ̄ = IvI−1, f̃e := fe − f̂e and m̃e := me − m̂e are the force
and torque estimation errors, respectively, and f̃ is the control force error resulting from
the attitude tracking error.

Proposition 1. The attitude impedance controlled subsystem (3.40) is passive w.r.t. the
pair (ω̃,me + (Γ̄− I)m̃e).

Proof. Take the storage function

V1 = 1
2 ω̃

TIvω̃ + 1
2cv ε̃

T ε̃.

The derivative of V1 is

V̇1 = ω̃T
(
me + (Γ̄− I)m̃e −D2ω̃ − cv η̃ε̃

)
+ cv η̃ω̃

T ε̃

V̇1 = −ω̃TD2ω̃ + ω̃T
(
me + (Γ̄− I)m̃e

)
,

which shows passivity of the subsystem. Here, the estimator error m̃e is an additional
scaled input.

Proposition 2. The position impedance controlled subsystem (3.52) is passive w.r.t. the
pair ( ˙̃r,fe + (µ̄− 1)f̃e + µ̄f̃).

Proof. Take the storage function

V2 = 1
2

˙̃rTMv
˙̃r + 1

2 r̃
TK1r̃.

The derivative of V2 is

V̇2 = − ˙̃rTD1
˙̃r + ˙̃rT

(
fe + (µ̄− 1)f̃e + µ̄f̃

)
,

which shows passivity of the subsystem.
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We show passivity of the attitude impedance controller w.r.t. the pair (ω̃,me + (Γ̄− I)m̃e).
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show passivity of the position impedance controller w.r.t. the pair ( ˙̃r,fe + (µ̄− 1)f̃e + µ̄f̃).
Copyright cO 2017 IEEE [138].

Note that in the case without inertia shaping, the interaction ports of the attitude
controller correspond to the physical power ports. For the position controller, this only
holds for f̃ = 0. Note that for a full passivity proof for a passive environment w.r.t (fe,me)
and ( ˙̃r, ω̃) further steps would be necessary.

However, in the following we show local input-to-state stability (ISS) [72] of the complete
impedance controlled system, taking into account the external wrench estimation dynamics.
In the analysis we assume that the external wrench is bounded and differentiable, but
do not impose any specific form on the bounds. In this way, we allow the analysis to be
applied to more specific assumptions on the external wrench, such as e.g. [63]; As an
example of bounds on the external force, one may use ‖fe‖ ≤ cf1 + cf2 ‖ṙ − vw‖, see [63].
First, we recall the definition of ISS and Theorem 4.19 from [72].

Definition 2. The system ẋ = f(t,x,u) is said to be input-to-state stable if there exist a
class KL function β and a class K class function γ such that for any initial state x(t0) and
any bounded input u(t), the solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖ , t− t0) + γ

(
sup

t0≤τ≤t
‖u(τ)‖

)
.

Theorem 1. Let V : [0,∞) × Rn → R be a continuously differentiable function such that

α1(‖x‖) ≤ V (t,x) ≤ α2(‖x‖),

∂V

∂t
+

(
∂V

∂x

)T
f(t,x,u) ≤ −W3(x), ∀ ‖x‖ ≥ ρ(‖u‖) > 0

∀(t,x,u) ∈ [0,∞) × Rn × Rm, where α1, α2 are class K∞ functions, ρ is a class K
function, and W3(x) is a continuous positive definite function on Rn. Then, the system

ẋ = f(t,x,u)

is input-to-state stable with γ = α−11 ◦ α2 ◦ ρ. �

Proposition 3. The impedance controlled flying robot as depicted in Figure 3.14 is locally

input-to-state stable for inputs uT = [fTe ḟe
T
mT

e ṁe] and states xT =
[
r̃T ˙̃rT f̃

T
e ε̃

T ω̃T m̃T
e

]
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for all eig(P ) � 0, eig(N) � 0, and Q � 0, with P defined in (3.42), N defined in (3.45),
and Q defined in (3.46).

Proof. Take the candidate function for the complete system

V = 1
2 x

TPx, (3.41)

where

P =



K1 c1I · · · ·
c1I MvI · · · ·
· · K−1I,f · · ·
· · · cvI c2I ·
· · · c2I Iv ·
· · · · · K−1I,m


, (3.42)

with · ≡ 03×3 used for readability, and c1 > 0, c2 > 0 chosen such that eig(P ) � 0 (see e.g.
[77]). Then, V is bounded by

1
2λmin{P } ‖x‖22 ≤ V ≤ 1

2λmax{P } ‖x‖22 , (3.43)

α1(‖x‖) = 1
2λmin{P } ‖x‖22 ,

α2(‖x‖) = 1
2λmax{P } ‖x‖22 ,

and after algebraic manipulation its derivative can be found as

V̇ < −yTQy + yTNv, (3.44)

where
yT =

[
‖r̃‖

∥∥ ˙̃r
∥∥ ∥∥∥f̃e∥∥∥ ‖ε̃‖ ‖ω̃‖ ‖m̃e‖

]
,

vT =
[
‖fe‖

∥∥∥ḟe∥∥∥ ‖me‖ ‖ṁe‖
]

contain the state as y(‖x‖) and input bounds as v(‖u‖), and their coupling matrix
N ∈ R6×4 is

N =


cM 0 0 0
1 0 0 0
0 λ−1

min{KI,f} 0 0
0 0 cI 0
0 0 1 0
0 0 0 λ−1

min{KI,m}

 (3.45)

where cM = c1M−1v and cI = c2λ
−1
min{Iv} for v > 0. The matrix Q ∈ R6×6 can be written

as

Q =



cMλmin{K1} 1
2cMλmin{D1} −1

2cM(µ̄− 1) cMµ̄Tmax 0 0
1
2cMλmin{D1} λmin{D1} − c1 −1

2(µ̄− 1) µ̄Tmax 0 0
−1

2cM(µ̄− 1) −1
2(µ̄− 1) 1 0 0 0

cMµ̄Tmax µ̄Tmax 0 cvcI
1
2cIλmin{D2} −1

2cI(λmin

{
Γ̄
}
− 1)

0 0 0 1
2cIλmin{D2} λmin{D2} − 1

2c2
1
2(λmin

{
Γ̄
}
− 1)

0 0 0 −1
2cI(λmin

{
Γ̄
}
− 1) 1

2(λmin

{
Γ̄
}
− 1) 1

 .
(3.46)

Take θ : 0 < θ < 1 and rewrite V̇ as

V̇ < −θyTQy + yTNv − (1− θ)yTQy. (3.47)

The quadratic term in V̇ is negative definite iff yTQy > 0, i.e. Q must be positive definite.
Then, V̇ will be negative definite at least in the region where the quadratic term is larger
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than the linear term, i.e where θyTQy > yTNv. From

θ λmin{Q} ‖y‖2 > λmax{N} ‖y‖ ‖v‖ (3.48)

we obtain

V̇ < −(1− θ)yTQy, ∀ ‖y‖ > ρ(‖u‖) =
‖v‖
θ

λmax{N}
λmin{Q}

, (3.49)

for all λmax{N} > 0. It follows that the complete system is locally input-to-state stable
with

γ = α−11 (α2(ρ(‖u‖))) =
‖v‖
θ

λmax{N}
λmin{Q}

√
λmax{P }
λmin{P }

, (3.50)

where ρ(‖u‖) defines the region of local ISS.

Remark 2. Notice that the matrix Q can be subdivided into the position control subsystem
with force estimation dynamics in Qp ∈ R3×3, the attitude control subsystem with torque
estimation dynamics in Qa ∈ R3×3, and the coupling matrix Qpa ∈ R3×1 as

Q =

[
Qp Qpa

QT
pa Qa

]
,Qp =

[
Q0

p Q0
p1

Q0,T
p1 1

]
,Qa =

[
Q0

a Q0
a1

Q0,T
a1 1

]
(3.51)

and Qp and Qa can be further subdivided into the respective error dynamics Q0
p and Q0

a,

estimator dynamics, and coupling matrices Q0
p1 and Q0

a1. Therefore, showing positive
definiteness of Q can be shown by showing positive definiteness – and therefore local input-
to-state stability – of the respective subsystems. Due to space constraints and complicated
analytical expressions, we omit the particular conditions for the positive definiteness of Q
and P . This can be also seen as a linear matrix inequality (LMI) problem [22] and solved
numerically.

Remark 3. The following qualitative thoughts can be given from analyzing (3.50). First, the
bounds will obviously grow with the external inputs ‖v‖, as well as a smaller θ. Increasing
the maximum eigenvalue of Q will decrease the ISS bounds. This can be achieved by
increasing the minimum damping, stiffness, and virtual inertia. Analyzing the eigenvalues
of N , one finds that cM is the only non-zero eigenvalue. Therefore, increasing the virtual
mass will reduce the ISS bounds in this term. Lastly, decreasing the eigenvalues of P (the
bounds of the Lyapunov function), and improving the conditioning of P will reduce the
bounds further. This can be interpreted as increasing the observer gains, and reducing
the virtual inertia and stiffness, and them being of the same order of magnitude as the
inverse of the observer gains. This is clearly a compromise with tuning λmin{Q}. Lastly, a
numerical example applied to one of the experiments is given in Section 3.2.6.

3.2.2 Compensated impedance control

In the foregoing analysis we implicitly assumed that the external wrench is caused by
interaction forces only. However, aerial robots are typically subject to wind influence. In
that case, we would ideally compensate for the wind influence, and apply an impedance
only to the interaction wrench. Suppose now that we are able to distinguish between the
external wrench components τe = τd + τi, consisting of the aerodynamic drag wrench τd
and interaction wrench τi. It is then possible to compensate the aerodynamic wrench
and apply an impedance on the interaction wrench τi. To analyze the stability of such a
controller, we focus on the position controller for simplicity. The desired error dynamics

Mv
¨̃r +Kd

˙̃r +Kpr̃ = fi (3.52)
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results in the compensated impedance controller

Rdf =Mr̈d − f̂d + (µ− 1) f̂i − µ
(
D1

˙̃r +K1r̃
)
− g, (3.53)

where f̂d is the estimated aerodynamic force and f̂i is the estimated interaction force. We
do not assume any properties on f̂d and f̂i other than f̂e = f̂d + f̂i. The previous stability
analysis may be applied to this controller by expanding the state f̃e into f̃i and f̃d, and
setting the appropriate coupling matrix Q0

p1. The stability bounds will in this case depend
on the quality of discrimination between the external force components. Furthermore,
the estimaton error f̃i must be bounded, and will have the same effect as the attitude
control error f̃ . Note that in the case of fi = 0 and µ = 1 we obtain a disturbance observer
(DO) based controler discussed earlier in this chapter. Interestingly, the DO controller is
equivalent to setting (MM−1v − 1)fe = −fe in the impedance controller, i.e. setting the
virtual mass to Mv =∞.

3.2.3 Admittance control

Essentially, admittance control generates velocity commands as a function of the contact
wrench. The resulting trajectory may then be tracked using a position and attitude
controller. In effect, this adds an additional cascade around the position control loop. The
reference velocity and position are typically generated via the virtual dynamical system

Ma
¨̃xv +Da

˙̃xv +Kax̃v = τ v, (3.54)

where xv = [rd ψd] is the resulting position trajectory, Ma = blockdiag{MaI3×3 Ia,z}
with ma > 0 and Ia,z > 0 is the virtual admittance inertia matrix, Da ∈ R4×4 is the
positive definite diagonal virtual damping gain matrix, Ka ∈ R4×4 is the positive diagonal
virtual spring gain matrix, and τ v = [f̂ e m̂e,z]

T is the estimated external wrench, with
m̂e,z being the torque about the z-axis. The torque information is used to implement an
admittance on the yaw angle. The desired roll and pitch angles are commanded via the
position controller. Similarly to the compensated impedance controller, a compensated
admittance controller may be achieved by using a disturbance observer based position
tracking controller, and applying the interaction wrench in (3.54) as τ v = [f̂ i m̂e,z]

T .
In the case Ka = 04×4, a human operator can move the robot freely in space. The

steady state velocity will then be ẋv,ss = D−1a M
−1
a τ v, which in turn could be used to

design the desired behavior of the admittance system. The admittance control structure is
shown in Figure 3.15, and the response of (3.54) in Figure 3.16. The admittance controller
adds another cascade into the control loop. This makes it simple to implement the method
on a system where a position controller is already available. Note that now there is a fourth
order system between the input τ v and the system states, as opposed to the impedance
controller which imposes a second order system.

3.2.4 Discussion and practical considerations

Fig. 3.13 and 3.16 show responses of impedance and admittance controllers under the
same external force, using various parameters. It can be seen that the behavior of the
impedance controller is intuitively more consistent, e.g. a different virtual mass does not
change the steady state position. It is thus easier to select the appropriate gains than for
an admittance controller. An impedance controller replaces the position control loop of a
flying robot. In contrast, the admittance controller can be easily implemented on existing
systems around an existing position control loop.
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Figure 3.15: Structure of the admittance controller (3.54). The controller generates a position
and yaw reference, which is then tracked by a position controller. The external wrench causes
a velocity. Copyright cO 2017 IEEE [135, 138].
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3.2.5 Experimental validation of impedance control

An impedance controller for the position subsystem as depicted Figure 3.12 was experimen-
tally verified, using parameters shown in Table 3.1. The rotational inertia is unchanged,
i.e. Iv = I. During the experiment, the controller was in damping mode in the inertial
(x,y) plane, and a human applied a force to the robot. Figure 3.17 depicts the position
response and estimated force during interaction. Due to the spring term, the altitude is
controlled to 1 m, while the external force causes a proportional altitude error as expected.
The robot may be freely moved in the horizontal axes by applying a force, as expected.
The energy injected by a collision is dissipated by the impedance controller’s damping term.
A numerical analysis of the local input-to-state stability conditions for this experiment is
given in Appendix 3.2.6.

3.2.6 ISS numerical example

The following is a numerical example of the local input-to-state stability conditions for
the impedance control experiment shown in Figure 3.17, parameters from Table ??, and
c1 = 0.1, c2 = 0.01 taken numerically such that P and Q are positive definite. Because the
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(a) Position response and estimated external force of the impedance controller
during interaction without collisions.

fe

(b) Video stills of an interaction experiment. The human pushes the
robot, which causes a collision. The secondary collision can be recovered
from safely because the interaction controller amplifies the collision force;
as a result, the robot bounces away from the obstacle.

Figure 3.17: Trajectory and estimated external force in the impedance controller experiment
with mv = 0.25 kg, Dv = diag{1, 1, 1} N/s, Kv = diag{0, 0, 2} N/m, see Figure 3.17(a). The
quadrotor can be freely moved along the inertial x and y axes, see Figure 3.17(b). Copyright
cO 2017 IEEE [135, 138].

x− and y− position stiffness is zero, these position coordinates are obviously unbounded.
We therefore omit them from the state for this analysis. Note that the analysis includes the
x− and y− translational velocities nonetheless. With Ki,m = 30I, the following numerical
values are obtained:

P =



2 0.1 · · · ·
0.1 0.25 · · · ·
· · 0.1 I · · ·
· · · cv I · ·
· · · · I 0.01 I
· · · · 0.01 I 30 I

 , (3.55)

Q =



0.80 0.20 0.12 1.97 0 0
0.20 0.90 0.30 4.92 0 0
0.12 0.30 1.00 0 0 0
1.97 4.92 0 853.33 53.33 0

0 0 0 53.33 32 0
0 0 0 −0 −0 1

 . (3.56)
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Table 3.1: System and control parameters used in the impedance control experiments with
the AscTec Hummingbird.

Parameter Value Unit

M 0.55 kg

K1 diag{2.25, 2.25, 5.06} s−2

D1 diag{3, 3, 4.5} s−1

I diag{3, 3, 4} 10−3 kg m2

cv 256 -

D2 diag{32, 32, 32} rad −1 s−1

Their eigenvalues (with multiplicity in braces) are

eig(P ) =
(
256(3), 30(3), 2.006, 0.244, 0.1(3), 0.004, 0.003(2)

)
,

eig(Q) =
(
856.81, 28.55, 1.32, 1, 0.75, 0.59

)
,

and are obviously positive, confirming the local input-to-state stability conditions from
Proposition 3.





Illustration: Broux, P.; Book: Figuier, Louis: Les merveilles de l’industrie, vol. 4, Paris, Furne, Jouvet et Cie,
1877



CHAPTER 4

Wind estimation

In this chapter, the problem of estimating the wind speed from onboard measurements of
a flying robot is investigated. The chapter is organized as follows. In Section 4.1, a novel
method for inverting a nonlinear drag wrench model to obtain the wind speed is presented
[136]. In order to obtain accurate aerodynamics models, a custom-built hexacopter was
flown in a 3D wind tunnel. The experimental setup and resulting dataset are presented
in Section 4.2. Next, the dataset is used to evaluate the model complexity and feasible
measurements to directly obtain a good estimate of the airspeed, without the need of model
inversion. It is shown that even simple models may be used to accurately obtain relative
airspeed. It is also shown that the propeller aerodynamic power can be used to directly
regress to the airspeed. Lastly, a novel physics model based wind estimation method is
developed in Section 4.4. Starting from the momentum theory model of a propeller, it
builds a nonlinear least squares problem to obtain the airspeed. Due to its sensitivity, a
novel combined wind estimator is developed and evaluated. Finally, a method to obtain
optimal measurements for this problem is formulated.

4.1 Inversion-based metric wind estimation

The external wrench and aerodynamic model (2.15) can be used to determine the surround-
ing wind velocity. It is assumed that the external wrench is purely due to aerodynamic
forces, i.e. τ̂ e ≈ τ d. The aerodynamic model may be iteratively linearized and inverted
about the current estimate, as done in Waslander et al. [149]. By linearizing the nonlinear
model (2.16) about νr at step k, we obtain

νr,k+1 = −D−1k τ d (4.1)

where Dk = DL +Di.d. +DQ|νr,k|. The relative velocity νr is obtained in the body frame,
and the wind velocity is then νw = ν − νr. At low velocities, the viscous (linear) effects
are dominant. Therefore linearizing about the current velocity simplifies the problem [149].

Alternatively, using Newton-Raphson iteration, quadratic convergence may be achieved.
The update is

νr,k+1 = νr,k −
(
∂Dk

∂νr,k

)−1
(Dkνr,k + τ d) , (4.2)

where
∂Dk

∂νr,k
= DL +Di.d. + diag

{
|νr,k|

}
DQ + diag

{
DQ|νr,k|

}
. (4.3)

Note that the matrix inversion is easy to compute if Dk is diagonal. Figure 4.1 shows

55
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Figure 4.1: Convergence of the Newton-Raphson (4.2) (solid) and iterative linearization
(4.1) (dashed) methods for obtaining the wind velocity from a force by model inversion, for
vr = [1,−2,−0.5]T m/s with initial estimate vr,0 = [0, 0, 0]T m/s. The Newton-Raphson
method coverges to the exact value in 6 iterations. Sufficient relative or absolute tolerance
may be reached in less. By initializing with the previous solution in an online implementation,
one iteration is sufficient. Copyright cO 2015 IEEE [136].

a comparison of the convergence of both methods for a simple simulation model. The
Newton-Raphson method converges to the exact value in 6 iterations. However, in general
there is no guarantee for real-time convergence. In an online implementation the result from
the previous time step may be used as initialization. In that case, under the assumption
that the result has not changed much, convergence is typically be obtained in one iteration.

In order for this method to work, the drag model has to be known, i.e. elements of the
drag model matrices have to be identified. Furthermore, it has to be well-structured and
invertible, in order for the inversion to converge. Alternatively, the airspeed can be fitted
directly from flight data, for example as a function of the external wrench

νr := νr(τe), (4.4)

where νr(τe) is an nonlinear ”inverse” drag model. This has the advantage of potentially
being computationally cheaper than inverting a nonlinear drag model online. In the
following, we investigated this approach by first collecting data in a wind tunnel and
exploring nonlinear regression methods to fit aerodynamics models.

4.2 Wind tunnel experiments

Experiments to identify aerodynamic models were carried out at the Wind Engineering,
Energy and Environment (WindEEE) Dome, see Hangan [58], in London, ON, Canada. It
is the world’s first 3D wind chamber, consisting of a hexagonal test area 25 m in diameter
and an outer return dome 40 m in diameter. Mounted on the peripheral walls and on top
of the test chamber are a total of 106 individually controlled fans and 202 louver systems.
Additional subsystems, including an active boundary layer floor and ”guillotine” allow for
further manipulation of the flow. These are integrated via a sophisticated control system
which allows dynamic manipulation with thousands of degrees of freedom to produce various
time and spatially dependent flows including straight uniform, atmospheric boundary layer,
shear gusts, downbursts and tornados at multiple scales. A pair of 5 m diameter turntables
allow for a wide variety of objects to be tested inside and outside the facility.

For this project WindEEE was configured to produce straight flow closed-loop and
downburst flows concurrently. In this configuration the test area was restricted to a 4.5 m
diameter, 3.8 m tall region at the centre of the facility. See Figure 4.2 for a schematic



4.2 Wind tunnel experiments 57

5

1 1

3

2

4

6

Figure 4.2: Left: experimental setup inside the wind tunnel: four ART Tracking cameras
(1) and ART controller (2), RM Young Model 81000 Sonic Anemometer (3), groundstation
laptop (4), vertical wind component inlet (5). The flying robot (6) is located in the center of
the flying area. Right: schematic layout of the wind tunnel test. Red arrows show horizontal
flow component, green arrows show vertical flow component, blue arrows show net wind vector.
Copyright cO 2016 IEEE [140].

drawing of the layout. A rectangular array of 36 fans (9 wide by 4 high) located on the
south chamber wall were used to produce horizontal flow and 6 large fans above the test
chamber were used to generate the downward flow. The respective flow rates from the
horizontal and vertical component fans were manipulated individually to generate net wind
vectors ranging in velocity from 1–5 m/s and vertical plane angularity from 0–90◦. In some
cases both the velocity and vertical plane angularity were manipulated dynamically to
produce time-dependent wind vectors that either varied in speed or angularity over a given
test run.

Motion capture noise. Before the experiments the effect of the wind tunnel on motion
capture noise was investigated by increasing the horizontal speed to 6 m/s, and keeping
the hexacopter stationary. It was found that the wind tunnel did not have a noticable
effect on noise in the position and orientation measurements of the marker attached to the
hexacopter.

Flow visualization. For illustrative purposes, flow visualization at various wind speeds
is shown in Figure 4.3. In steady-state hover, each coaxial rotor pair has to provide a third
of the total robot weight. Therefore, the induced velocity of a coaxial rotor pair at hover is

vh =

√
1
3Mg
1
2ρD

2π
=

√
2 · 2.445 · 9.81

3 · 1.182 · 0.2542π
= 8.17 m/s,

where the air density in the wind tunnel was measured to be 1.182 kg/m3, based on ambient
temperature and pressure. From the flow visualization, deformation of the airflow becomes
noticable at 8 m/s, or about one induced velocity at hover (v∞/vh ≈ 1). Note also that due
to high vh and limited range of tested airspeeds, the changes in the propeller aerodynamic
power are expected to be small.

Dataset. For training aerodynamic models, the hexacopter was flown in horizontal,
vertical and combined airflows with varying wind speeds. The robot was hovering in
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(a) 3 m/s (b) 6 m/s (c) 8 m/s

Figure 4.3: Flow visualization in the wind tunnel at various horizontal wind speeds. Effects
due to wind become visibly noticeable around 8 m/s. At lower speeds, propellers dominate the
airflow.

position-controlled mode and was yawing during the experiments. The concatenated
dataset, shown in Figure 4.4, contains over 37 minutes of flight data under horizontal wind
speed up to 8 m/s, and vertical wind speeds up to 5 m/s. Individual flights are delimited
by a dotted vertical line. Larger vertical wind speeds were not possible due to actuator
saturation resulting in loss of yaw control authority. The relative airspeed is depicted in
the body frame. We varied the yaw angle throughout the flights. The following data were
logged: pose from the external tracking system and the onboard visual-inertial navigation
system; IMU data (accelerometer, gyroscope); control input; motor speed, current, and
voltage; anemometer data (wind velocity, direction, temperature, speed of sound). This
is then used to compute the external wrench, relative airspeed, and aerodynamic power.
The plot shows the sum of powers of the three coaxial motor pairs. The hover power was
obtained from Ph = 2ρAv3h, where vh is obtained by (2.14). The expected aerodynamic
power is Pa, with induced velocity calculated from (2.11) and (2.12), using the relative
airspeed obtained from the anemometer data and external tracking system. Aerodynamic
power is fitted as described in Section 4.3.1. Figure 4.4 also shows the individual motor
speeds of two coaxial pairs. It can be seen that the motors were saturating for come flow
conditions, limiting the maximum achievable wind speed.

Figure 4.5 depicts the distribution of relative airspeeds vr achieved in the dataset. The
shape is an inclined oblate spheroid. The implication of this shape is that our models will
be valid only within this shape, i.e. the models will have to extrapolate (generalize) beyond
the measured airspeeds. Most notably, the data does not include downward motion, which
would lead to the vortex ring state, but is dominated by horizontal and upward relative
airspeeds. Ideally, the dataset would have been a sphere, however only downward vertical
wind speeds were possible in the wind tunnel. This dataset is next used to identify and
evaluate aerodynamic models, and later used in Chapter 5 for simulation studies on force
discrimination.

4.3 Aerodynamic model evaluation

In this section, the wind tunnel dataset is used to evaluate aerodynamic models for wind
speed estimation. The evaluation is carried out for combinations of model types and input
sets. Furthermore, quality of fit is investigated depending on regularization, as well as
model generalization. These findings are then applied to models for simulation and force
discrimination. Here, an attempt to answer the following questions is made:

� What is the minimal set of inputs required?
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Figure 4.5: Flight data distribution. The intensity shows the number of data points collected
at a certain relative airspeed. The data is represented here in 80 horizontal and vertical bins.
Ideally, the training data would be a sphere. However, due to the limited space in the wind
tunnel and no possibility to get wind from below, we were only able to cover a limited set of
z-velocities. The data is shown here with the z-axis pointing upwards.
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Figure 4.6: Fit of aerodynamic power for individual propeller pairs. The points represent
the individual data points for each propeller pair, while the line shows a quadratic fit.

� Is is possible to estimate the airspeed using motor power measurements only?

� Which model/method works/generalizes best?

First, the mapping vr(u) is investigated, as well as the effect of different inputs u on
the model quality, i.e. the quality of the fit to existing data. Qualitative extrapolation
properties of the models are also investigated. To estimate the relative airspeed vr ∈ R3, a
combination of the following inputs was chosen:

� external force fe ∈ R3,

� external wrench τe ∈ R6,

� individual propeller aerodynamic power Pa ∈ R6, Ph ∈ R6,

� coaxial propeller aerodynamic power P̄a ∈ R3, P̄h ∈ R3,

� propeller rotational speed $ ∈ R6.

Note that e.g. Ph is a nonlinear map of $ and is therefore redundant to that input.
Equation (2.14) was used to obtain the aerodynamic power of the coaxial pairs P̄a ∈ R3

and P̄h ∈ R3 by treating each pair as a single propeller. Because of the complex shape
of our robot, we hypothesize that simple models (e.g. blade flapping based) are not be
expressive enough to predict the airspeed. Models with increasing complexity are therefore
investigated to provide insights for other researchers. Lastly, all forces and airspeeds are
treated in the body frame. This implicitly captures aerodynamic angles in the vector
components, as they are projected to the body frame.

4.3.1 Propeller aerodynamic power

Using individual motor powers for coaxial propellers leads physically meaningless results,
where the figure of merit of the lower motors can be above 1, whereas it should be
around 0.5–0.6 (see [78]). In order to use the propeller aerodynamics model presented in
Section 2.1.3, the motor power measurements (2.22) must be fit to the aerodynamic power
(2.12). Figure 4.6 shows the fit of each propeller pair data to the quadratic model

P̄a,j+k = P0 + β1P̄m,j+k + β2P̄
2
m,j+k, (4.5)
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where the mechanical power P̄m of each coaxial pair j + k is the sum of individual motors’
mechanical power, i.e.

P̄m,j+k := P̂m,j + P̂m,k (4.6)

The mechanical power of motor i without the rotor acceleration term is obtained by

P̂m,i =
((
Kq,0i −Kq,1iia,i

)
ia,i − Ir$̇i

)
$i. (4.7)

The model fit uses IRLS and shows good agreement with the data. Helicopter aerodynamics
literature (e.g. Leishman [78]) proposes a linear fit from shaft power to aerodynamic power,
in the form of a figure of merit FM . However, only the current can be measured, and the
shaft torque cannot be measured directly. The quadratic model therefore also captures
losses in the conversion of electrical to mechanical power. Now the motor power can be
related to momentum theory, and as such may be used in further analyses.

Momentum theory may be used to predict the ratio of aerodynamic power in forward
flight to the aerodynamic power in flight. This is visualized for our dataset in Figure 4.7,
for the motor power, and the fitted aerodynamic power. Note that momentum theory
predicts a decline in power at oblique angles of attack (high horizontal and vertical airspeed
components). However, we could not observe this effect during the combined airflow
experiment (67◦ inflow angle), which is the first flight in Figure 4.4. Notably, the motor
power saturates on the low side. It can be postulated that that this may be due to motor
speed saturations from compensating the simultaneously large external force and torque
during the flight. This produces more losses in the motor, and information about the
wind speed cannot be deduced. The fit is better in the remainder of the flights, where
motors do not saturate for large parts of the flight. Based on this, it can be concluded that
any method that uses motor power as input will not be valid in periods of motor input
saturation.

4.3.2 Aerodynamic models

Next, various models used in the evaluation are presented. The problem considered here
is regressing from a set of inputs u to the vector of body-frame relative airspeed vr
(three velocity components). Data fitting was done using a 67%–33% train–test split of the
complete wind tunnel dataset. For efficient training the inputs and outputs were normalized
to a range of [0, 1]. The Python package scikit-learn [112] was used for its machine learning
functions.

Physics-based models

Physics-based models are obtained from first-principles modeling, such as conservation of
momentum. As such, they provide insight into the structure of the problem. However,
some effects are usually neglected due to assumptions contained therein.

Blade flapping. It is well established in multirotor literature that the dominant
horizontal force in multicopters is due to propeller induced drag [149, 107]. The widely
used induced-drag and blade flapping model [107] can be written as

fd(vr) = Dl vr
∑
i

$i, (4.8)

where Dl is the matrix of coefficients, and $i is the speed of the i–th propeller. The reader
is referred to the cited literature for the derivation of the model.

Parasitic drag. The blade flapping model may be extended with a quadratic parasitic
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Figure 4.7: Power ratio at different airspeeds, relative to aerodynamic power in hover. From
left to right: motor power, aerodynamic power, fitted aerodynamic power.

term due to form drag such that

fd(vr) = Dl vr
∑

$i +Dq vr|vr|, (4.9)

where Dq is the parasitic drag matrix. These models are used as a starting point to design
more general regression models.

Linear regression models

Physics-based models are considered in the general framework of linear regression. The
linear regression model can be written as

y(u) = X(u)w, (4.10)

where y ∈ RNy is the model output, u ∈ RNu is the input, X(u) ∈ RNy×Nw is the regression
matrix, and w ∈ RNw are the model weights. The weights are obtained by solving the
minimization problem

min
w

1
2N ‖Xw − y‖22 + α1‖w‖1,

where N is the number of samples, α1 is the regularization factor, and ‖w‖1 is the `1 norm
of the model weights. This will drive some of the model weights to zero, leading to sparse
models depending on α1.

To apply this model to physics-based models, X contains the linear and quadratic terms
of the input, while w contains the matrix elements. In this evaluation, the linear model
and quadratic model are considered. The linear model can be written as

y(u) = Wu, (4.11)

where W is the matrix of weights, and u is the input vector. This gives a maximum of
Nu ×Ny nonzero parameters. Similarly, the quadratic model can be written as

y(u) = W1u+W2u|u|, (4.12)

where W1 is the matrix of linear weights, W2 is the matrix of quadratic weights, This
gives a maximum of 2×Nu ×Ny nonzero parameters.
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Multilayer perceptron model

To compare a purely data-driven approach to physically based modeling, nonlinear regres-
sion is applied to the data. For this purporse a multilayer perceptron with one hidden layer
is used, with the tanh activation function and a linear output layer. Experimentation on
the available data has found that using more layers did not improve the fit, and using other
activation functions did not change the results significantly. The model can be summarized
as

y(u) = W2

(
σ
(
W1u+ b1

)
+ b2

)
(4.13)

where W1 ∈ RNh×Nu , W2 ∈ RNy×Nh are the neuron weight matrices, b1 ∈ RNh and
b2 ∈ RNy are the bias vectors, and σ(·) = tanh(·) is the activation function. This gives
a maximum of (Nu + Ny + 1) × Nh + Ny nonzero parameters. For the perceptron, `2
regularization of the weights is used, with α2 as regularization parameter. Training is
performed by stochastic gradient descent [112].

4.3.3 Model performance

Figure 4.8 shows error histograms of the test data set for combinations of models and
inputs as listed in Tables 4.1 and 4.2, respectively. Simple blade flapping based models
have a problem predicting the body-vertical relative airspeed. The plot therefore contains
histograms of individual relative airspeed components. From the results in Figure 4.8, the
following conclusions can be drawn:

(1) Even the linear model (column 1) obtains good results for all input sets, for low
regularization. As the model becomes sparser (i.e. contains fewer nonzero parameters) with
increased regularization (column 2), it cannot predict the airspeed accurately anymore.

(2) Comparing the wrench input (row C) to the force input (row B), it can be seen that
the external torque does not add significant information to the external force. In fact, the
histograms are almost identical.

(3) Multiplying the wrench by the inverse sum of rotor speeds
∑

i$i improves the results,
see linear and quadratic models with higher regularization (B2, B4, C2, C4). This indicates
that this is a more accurate representation of the underlying physics (blade flapping and

Table 4.1: Summary of tested regression models.

Model Formulation

Linear model y = Wu
Quadratic model y = W1u+W2u|u|
Perceptron y = W2

(
tanh

(
W1u+ b1

)
+ b2

)

Table 4.2: Summary of tested inputs for predicting relative airspeed.

ID Label Input data Nu

A External force uA = fe 3
B Rotor speed normalized fe uB = fe/

∑
i$i 3

C Rotor speed normalized τe uC = τe/
∑
i$i 6

D Aerodynamic power uD = P̂ a 6

E Aerodynamic and hover power uE =
[
P̂
T

aP
T
h

]T
12

F Coaxial aero. power uF = P̄ a 3

G Coaxial aero. and hover power uG =
[
P̄
T
a P̄

T
h

]T
6
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Figure 4.8: Normed error histograms of predicted airspeed as a function of different input
sets, for different models. The histograms for x (blue), y (green) and z (red) airspeed are
overlaid to better depict per-axis model performance. The letters on the right (rows) and
numbers on the bottom (columns) define a grid for easier reference in the text.

induced drag). However, it does not significantly improve the nonlinear perceptron models,
nor models with low regularization.

(4) The best regression results were achived by perceptron with Nh = 16 hidden neurons
for the fe/

∑
i$i input (B6). The difference is most notable in the z-axis, where the offset

present in most histograms is absent. This may be used as a benchmark of the best possible
regression for this dataset, and may compare simpler models to this one. In comparison,
the preceptron with Nh = 8 hidden neurons (column 5) is almost as good with a lot fewer
parameters.

(5) Increasing the perceptron model complexity does not significantly improve the
airspeed regression after just several neurons in the hidden layer. This indicates that the
underlying model has low complexity. Similarly, it was found that multiple hidden layers
did not improve the regression (not shown in the histogram).

(6) The relative airspeed may be predicted by using only the aerodynamic power as
input. Adding the aerodynamic power in hover (which is directly related to the control
input, i.e. motor speeds) improves the fit. This is due to the fact that in steady state, the
control input is equal to the external wrench, τ = τe. The aerodynamic power in hover
Ph is computed from the motor speeds $, which relate to the control input through the
control allocation matrix B as $ = B+τ . Therefore, the aerodynamic power in hover is a
function of the external wrench, i.e. P h := P h(τe). This result must therefore be taken
with caution, as the model essentially learns this nonlinear transformation. Our dataset
does not include external forces other than wind, and the robot was hovering in place. The
desired result of using this regression as an independent measurement of the airspeed is
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therefore not attained.
(7) The offset in the z-velocity for power inputs indicates difficulty in modeling the

aerodynamic power from motor power measurements (without the hover power).
(8) Aerodynamic power of coaxial propeller pairs is a more accurate representation

than considering each propeller individually, as it is a better representation of underlying
physics.

In summary, two of the questions posed at the beginning of this section may be answered:

1. The minimum set of inputs is the external force fe.

2. It is possible to estimate the airspeed using motor power measurements. However,
this will be noisier than when using the external force.

The last question about model quality (i.e. model selection) requires more investigation. To
answer, the influence of regularization on the prediction quality of the models is investigated
next.

4.3.4 Model generalization

In order to reason about model fit and generalization, the dataset is visualized in Figure
4.9(a). Therein, the mapping from external force (input) to relative airspeed (output) is
considered. Rows show three planar sections of the three-dimensional input force samples
in the dataset. The upper-left plot (fx,fy) shows the x,y−plane, where fz is close to zero.
From top to bottom the data points are (fx, fy, 0), (fx, 0, fz), and (0, fy, fz). In each plot,
the color visualizes the output intensity – lighter colors indicate higher airspeed values.
The columns represent different views of the model outputs, i.e. the relative airspeeds vx,
vy, and vz, respectively. Figure 4.9(b) and Figure 4.9(f) depict how the dataset was fitted
by different models. Every contour line in the plots show a 3 m/s increase in airspeed
(dashed lines for negative values). Figure 4.9(a) depicts the distribution of the training
points, simplifying visually reasoning about the range of validity of the fitted models. As
expected from the shape of training airspeeds in Figure 4.4, horizontally the input is a circle.
However, the total shape is conic, because the number of combined airflow datapoints with
substantial horizontal airspeed is limited. Clearly, fitted models will extrapolate in the
regions where airspeed data has not been sampled.

The difference in expressivity between a linear and a perceptron model can also be seen
from this visualization. Obviously, the perceptron model is more expressive. However,
given the distribution of the training dataset, it is prone to overfitting to the training
data. Outside of the training data distribution, the output may be physically meaningless.
Therefore, a regularization parameter must be found for each model that both fits the
training distribution, and generalizes outside of it. To furthter visualize the change in
model outputs, Figure 4.10 shows the shape of vr,z for a quadratic model and a perceptron
with 8 hidden neurons, with varying regularization values. Obviously, both models converge
to a linear fit as regularization increases. However, the visualization alone does not tell
us which model performs best. The following procedure is adopted to choose a model
regularization parameter for good generalization. First, the complete dataset is split into
training (70%) and validation (30%) datasets. The data points are therefore drawn from
the same distribution. However, training never sees data from the validation set (holdout).
K-fold cross-validation is then performed. The model is trained on a fraction of the training
data, and a validation score is obtained on the remaining data. The procedure is repeated
K times to get a mean and standard deviation of the training error and training loss
(which includes regularization). Finally, in order to obtain the validation error, a model
is trained on the complete training dataset. The validation error is computed between
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Figure 4.9: Distribution of external force samples used for training and validation of the
mapping force (input) to relative airspeed (output). The color indicates the airspeed component
vx, vy or vz per column, brighter shades depict larger values. The distribution shows where
learned models will be valid. Each row shows a different plane of the forces. The first row
shows (fx, fy) for |fz| < 0.1 N, the second (fx, fz) for |fy| < 0.1 N, and the third one (fy, fz)
for fx < 0.1 N.

the model-predicted airspeed and the ground truth airspeed in the holdout set. To reason
about generalization, the training loss will show when the regularization term in the cost
function starts to dominate the loss, i.e. the model starts becoming linear.

Figure 4.11 shows the training loss, cross-validation training mean squared error (MSE)
with standard deviation, and validation MSE for different models mapping external force
to airspeed. The following can be concluded. First, the underlying structure of the data
is simple. This is indicated by the fact that increasing the number of neurons in the
perceptron’s hidden layer does not significantly improve the fit. Second, both training and
validation errors increase with regularization, indicating that overfitting is unlikely. This
trend could also be caused by insufficient model complexity (expressiveness). However,
given the simple structure of the data, this is unlikely to be the case. Lastly, for this
particular model input, the quadratic model is only slightly better than the linear model,
as they start converging around α1 = 10−3.

Next, different inputs to predict airspeed are compared. Figure 4.12 shows a comparison
for a perceptron with 8 hidden neurons, and Figure 4.13 depicts a comparison for a
quadratic model. The results show that for the external force input, i.e. model vr(fe),
the difference between the models is very small. Therefore, it is recommended to use the
simpler quadratic model over a perceptron. Second, the effect of incorporating the sum
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of vr,z for (0, fy, fz).

Figure 4.10: Change of model shape with increasing regularization.
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Figure 4.11: Training and validation mean square errors for 10-fold cross-validation of
different models fitting vr(fe), with varying regularization factors. Perceptron models with 4,
8, and 16 neurons in the hidden layer are labeled as P 4, P 8, and P 16, respectively.

of rotor rates into the input has been compared, motivated by the blade flapping model
[107]. For modeling airspeed as a function of force, it is expected that a division by the
rotor rates is necessary, due to the structure of this physical model. The results in Figure
4.12 and Figure 4.13 confirm this. Namely, multiplying the external force fe by the sum of
rotor rates

∑
$ increases the MSE over just using the external force. Converesely, using

fe/
∑
$ as input does not have this effect. The MSE for this model does not increase as

fast with regularization, however this may be attributed to scaling in the inputs.
Lastly, the use of coaxial aerodynamic power P̄ a to estimate the airspeed was investigated.

The MSE is higher than when using the external force. This can be attributed to the
measurement noise of the motor current, i.e. motor power, which will limit the model
performance. The training and validation MSE show the same behavior as with the external
force models, however somewhat flatter for this particular range of the regularization
parameter. This also indicates a slight scaling issue in the input. Here, the perceptron
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Figure 4.12: Training and validation mean square errors for 10-fold cross-validation of a
Perceptron model with Nh = 8 fitting vr(u), with varying u and regularization factors

10−1

V
al

id
at

io
n

M
S

E

Quadratic model

P̄ a
fe

fe
∑
$

fe/
∑
$

10−1

T
ra

in
in

g
M

S
E

P̄ a
fe

fe
∑
$

fe/
∑
$

10−6 10−5 10−4 10−3 10−2 10−1 100

Regularization

10−3

10−2

10−1

T
ra

in
in

g
lo

ss

P̄ a
fe

fe
∑
$

fe/
∑
$

Figure 4.13: Training and validation mean square errors for 10-fold cross-validation of a
quadratic model fitting vr(u), with varying u and regularization factors



4.4 Physics model based wind estimation 69

−0.2 0.0 0.2

m̃ [Nm]

0

5

10

N
(m̃

e
(f
e
)

Linear

−0.2 0.0 0.2

m̃ [Nm]

Quadratic

−0.2 0.0 0.2

m̃ [Nm]

Perceptron Nh = 8

x

y

z

Figure 4.14: Error histograms for models predicting the aerodynamic torque as a function of
the aerodynamic force md

(
fd
)
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model (validation MSE ≈ 0.009 m/s) performs almost twice as good as the quadratic
model (validation MSE ≈ 0.016 m/s), since it can fit an underlying nonlinear mapping.
When using aerodynamic power to estimate airspeed, therefore using a perceptron model
is recommended.

To summarize, in this subsection K-fold cross-validation was used to analyze the effect
of regularization on model generalization. It was concluded that the model training was set
up properly, and that the models are not overfitting to the data. When using the external
force as input, the underlying structure is simple, so a simple quadratic model is sufficient
to represent it. When using aerodynamic power as input, the increased expressivity
of perceptron models tends itself better to model the underlying nonlinear physics. It
is postulated that current sensing with smaller measurement noise would improve the
performance of the latter model, however this cannot be confirmed using the available
data.

4.3.5 Aerodynamic torque models

In Section 4.3.3, using the complete external wrench as input did not significantly improve
the fit when compared to only using the force. This indicated that there is a functional
relationship between the aerodynamic torque and force. Physically, this can be understood
as the aerodynamic force acting at the center of pressure. In other words, the torque and
force are related by the point of action of the aerodynamic force.

Modeling the aerodynamic torque as a function of the force was therefore investigated.
Figure 4.14 shows the error histogram for a linear model md := Dfd, a quadratic model
md := Dlfd +Dq|fd|fd, and a perceptron with 8 hidden neurons. Because the geometric
shape of the used robot is asymmetrical, it is expected that the perceptron model performs
best. The results indicate that even the linear model can describe the relationship for our
dataset, albeit with a bimodal error distribution for the y-axis. The quadratic model gets
rid of this offset and performs significantly better. Finally, he perceptron shows the best
performance, as it can capture the orientation-dependent relationship. To find the best
model, cross-validation should be performed. In the interest of brevity, this step is skipped
for torque models. Note that for other flying robots with simpler geometry, even a linear
model could describe the relationship with good accuracy. These models are the basis of
force discrimination methods in Chapter 5.

4.4 Physics model based wind estimation

In this section, a novel method to obtain wind velocity from aerodynamic power measure-
ments based on momentum theory is presented. The aim is is to provide a measurement
that is independent of the external force, in order to discriminate between aerodynamic
and physical interaction forces. First, the aerodynamics of one propeller (2.11), (2.12)
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and (2.13) are rewritten as a system of nonlinear equations F (vi, vz, vxy, vh, Pa) = 0, with
F = [F1, F2, F3]

T , where

F1 = v4i − 2v3i vz + v2i (v
2
z + v2xy)− v4h = 0,

F2 = viU(vi − vz)− Pa/(2ρA) = 0,

F3 = v2h(vi − vz)− Pa/(2ρA) = 0.

(4.14)

Here, Pa/(2ρA) and vh are considered to be known inputs, and want to determine
x = [vx, vy, vz, vi]

T . This system of nonlinear equations is underdetermined, as it has two
knowns and three unknowns, since vx and vy are coupled in vxy. Due to this mapping,
the solution of (4.14) will be a manifold, and depends on the initial guess. Hence, (4.14)
cannot be used to uniquely determine the unknowns. To solve this problem, the system
of equations is expanded to include multiple measurements. A transformation of (4.14)
into a common frame is then introduced. This allows us to estimate all three wind velocity
components and the propeller induced velocities by solving a nonlinear least squares (NLS)
problem.

Multiple measurements. Let us assume a constant wind velocity vw = [vx, vy, vz]
T

through N measurements. This assumption holds in several cases. First, instantaneous
measurements from multiple propellers that are rigidly attached (e.g. quadcopter) can
be combined. These may also be rotated w. r. t. the body frame. Second, measurements
from multiple poses at different time instants in a small time window can be combined.
Third, if the flight is not aggressive, i. e. the orientation does not change significantly, the
body-frame freestream velocity may be estimated. In effect, information gained from N
measurements may be used to obtain the wind velocity components.

The state may be extended to N measurements

x|N = [vx, vy, vz, vi,2, vi,2, . . . vi,N ]T , (4.15)

and solve the extended system of equations

F |N (vx, vy, vz, vi,1, vh,1, Pa,1, . . . , vi,N , vh,N , Pa,N ) = 0,

F |N = [F1,1, F2,1, F3,1, . . . , F1,N , F2,N , F3,N ]T ,
(4.16)

where F1,k, F2,k and F3,k are evaluations of (4.14) for the k-th measurement. A Jacobian
is needed to solve (4.16). The Jacobian for the k-th measurement is defined as

Jk =

J11,k J12,k J13,k J14,k
J21,k J22,k J23,k J24,k
J31,k J32,k J33,k J34,k

 , (4.17)

where Jij,k = ∂Fi,k/∂xj,k. Now the extended Jacobian J |N ∈ R3N×N+3 can be constructed.
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For three measurements we have x|3 = [vx, vy, vz, vi,1, vi,2, vi,3]
T and

J |3 =



J11,1 J12,1 J13,1 J14,1 0 0
J21,1 J22,1 J23,1 J24,1 0 0
J31,1 J32,1 J33,1 J34,1 0 0

J11,2 J12,2 J13,2 0 J14,2 0
J21,2 J22,2 J23,2 0 J24,2 0
J31,2 J32,2 J33,2 0 J34,2 0

J11,3 J12,3 J13,3 0 0 J14,3
J21,3 J22,3 J23,3 0 0 J24,3
J31,3 J32,3 J33,3 0 0 J34,3


,

which is straightforward to extend to N measurements. Notice that the first three columns
are due to the three airspeed components, which are assumed equal across measurements.
The other columns are due to the induced velocity, which is different between measurements.

Transformed formulation. When combining measurements from different poses, the
wind velocity has to be transformed into a common coordinate frame. Otherwise, the
constant wind velocity assumption will not hold. Define the freestream velocity of propeller
k as

vk =

vx,kvy,k
vz,k

 = Rk

vxvy
vz

+ v0,k = Rkv + v0,k, (4.18)

and use the transformed velocities when calculating (4.14) and (4.17). It is assumed that
the robot is moving between measurements. Therefore, the offset velocity v0,k can be
obtained from a pose estimation system as the relative velocity of the robot between two
measurements. The propeller offset velocity due to the body angular velocity may also
be used, i. e. v0,k = Rpb,kω × rk, where Rpb,k is the rotation from the body to the k-th
propeller frame. The Jacobian of this formulation can be found as (4.29) in Section 4.4.3.

This formulation allows us to determine all three components of the freestream velocity
independently. It also can be used to obtain the instantaneous wind velocity components
when the propellers are not mounted to the multicopter frame in a coplanar configuration.

Solving the system of equations. In perfect conditions, the solution to (4.16) will
be at the intersection of all nonlinear functions, where F = 0. This corresponds to a
multidimensional root-finding problem. However, when the measured aerodynamic power
does not match momentum theory (i.e. under model mismatch), the functions will not
necessarily intersect. The solution is therefore the point that is closest to all functions. In
this case a nonlinear least squares problem has to be solved, with the objective function

f = 1
2F

TF , (4.19)

for example using a Levenberg-Marquardt solver [102, 23].
When an exact solution exists, it will be at f = 0, i. e. the intersection of F = 0.

Otherwise, if there is a model mismatch or noise in Pa, a least squares solution is obtained.
Figure 4.15 shows convergence of the solver for different initial guesses and noise on Pa.

Limiting the search space. The space of (4.19) can contain local optima. From the
underlying physics, the same measured power can be obtained by various wind and induced
velocities. The optimized variables are velocities. Therefore, physical considerations may
be used to determine the set of feasible solutions. A flying robot must expend power to
generate thrust, which implies T > 0 and Pa > 0, for which (2.10) and (2.12) are used,
respectively. The induced velocity is vi < vh in the normal working state, and vi > vh in
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Figure 4.15: Zero contours of (4.19), with color indicating the function value. Green lines

are contours of F
(k)
1 , magenta lines are contours of F

(k)
2 , and black lines are contours of F

(k)
3

at vi = const. The blue lines show convergence of a Levenberg-Marquardt solver for different
initial guesses. The converged solution is depicted as a red cross. The velocity components
vx and vy lumped into vxy. N = 6 measurements were used, velocity v∞ = 3.5 m/s, angle of
attack α = 10◦, vh ∈ [4.1 . . . 6.7] m/s, and measurement angles up to 10◦. Without noise on
the power measurement (Figure 4.15(a)), the solution converges to the exact wind velocity
vw = [−3.45, 0 − 0.61]T m/s. With noise in the power measurements, the least-squares solution
moves depending on measurement conditioning. Copyright cO 2016 IEEE [140].

the VRS. VRS is excluded from the search space because momentum theory is invalid in
that state. Therefore, the induced velocity is limited to 0 < vi < vh. Likewise, limit vw
can be limited in case its maxima are known. In order to limit the search space using the
Levenberg-Marquardt method, a quadratic barrier function F4 is added to the optimization
problem formulation [102]. which increases the size of the problem, as the function becomes
F ∈ R4N , and the Jacobian becomes J |N ∈ R4N×N+3.

Normalization. In order to improve stability of the numerical solution, The goal
function is normalized to its initial value f0, i. e. we minimize f ′ = f−10 f . Furthermore,

the functions F
(k)
1...3 are normalized to v

(k)
h , such that F ′1 = F1/v

4
h, F ′2 = F2/v

3
h, F ′3 = F3/v

3
h,

F ′4 = F4/v
2
h. In this way, the function values are dimensionless and have the same order of

magnitude.
Sensitivity analysis. Measurement noise will shift the estimated wind velocity in

a nonlinear manner, see Figure 4.15. A sensitivity analysis helps estimating this effect.
Figure 4.16 depicts the converged solutions for increasing noise amplitude in the measured
power. Since the quality of the solution will depend on the distribution of measurement
poses, these are uniformly distributed under different maximum angles, from 5◦ to 20◦.
Higher relative angles between measurement poses increase robustness of the solution.
However, estimation of the horizontal wind velocity components is very sensitive to power
measurements.

The horizontal velocity components may therefore be estimated using the induced drag
model, i. e. from the external force. As shown in Figure 4.17, this allows a robust estimation
of the vertical wind velocity component and the propeller induced velocity even for a
high error in power measurements. A minimum angular distance between measurements
should also be considered when choosing suitable measurements for the NLS problem.
Having an offset velocity v0 in (4.18) additionally reduces sensitivity to noise in the power
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Figure 4.16: Sensitivity of the NLS solution to error in aerodynamic power P̃a up to 8 W,
using N = 12 measurements, and maximum measurement angles σα up to 20◦. For σα = 0◦,
the solution diverges out of the depicted range and is not shown. Wind speed is chosen to be
v∞ = 3.5 m/s. Larger measurement angles lead to a more robust solution, as the estimated
wind velocity is closer to the real value even for high errors in the aerodynamic power. The
vertical wind component vz and propeller induced velocity vi are estimated with good accuracy
for a wide range of P̃a. However, the horizontal wind components vx, vy diverge from their

real values even for low P̃a. Copyright cO 2016 IEEE [140].
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Figure 4.17: Sensitivity analzsis of the NLS solution for the same case as in Figure 4.16,
however for perfect knowledge of horizontal velocity components (vx, vy). These may be
obtained from the induced drag model, i. e. the external force. When the horizontal wind
velocity is known, the vertical component maz be determined robustly from aerodynamic power
measurements. Copyright cO 2016 IEEE [140].

measurements.
Combined wind estimator. In order to overcome limitations of the two presented

methods, see Section 4.3 and Section 4.4, a combined wind estimator is finally proposed,
see Figure 4.18. The horizontal velocity components (vx, vy) are obtained from the external
wrench or aerodynamic power, using models identified in Section 4.3. The estimated
aerodynamic power and known (vx, vy) are then used to calculate vz using the nonlinear
least squares formulation, by minimizing (4.19).

4.4.1 Comparison to data-driven estimation

Next, the optimization-based combined wind estimator is compared to machine learning
based models. Different sources of horizontal velocity in the optimization are also compared.
Figure 4.19 shows components of the airspeed for the complete wind tunnel dataset. Ground
truth is shown in black; estimation using the external force and rotor speed vr(f e/

∑
$) is

shown in red; estimation using aerodynamic power of the coaxial pairs vr(P̄ a) is shown in
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Figure 4.18: The combined estimation scheme calculates the horizontal wind velocity from
the external wrench. This is then used as an input to the wind velocity estimator using the
motor power, which leads to improved accuracy.

light blue. Finally, for the z−component the velocity obtained by the combined estimator
is also shown in light green as voptz . In this case the vr(P̄ a) model was used to obtain the
horizontal airspeed components. The result therefore uses only motor power to estimate
airspeed. The result mirrors conclusions from Section 4.3. The mean of all models follows
the ground truth, however when using motor power, the result is noisier. This is due to the
noisy motor current measurements in our experiments. Second, large errors occur where
the aerodynamic power cannot be estimated correctly due to motor saturation, such as at
the beginning of the dataset.

For the optimization based combined estimator, a window of 3 measurements was used,
utilizing all 3 motor pairs, for a total of 9 measurements per optimization. As these are close
in time and orientation, the results become inaccurate and noisy with increasing horizontal
airspeed components. The result is otherwise comparable to the machine learning based
method, however the latter outperforms the optimization slightly. This shows that the
optimization method can be used to obtain airspeed from real in-flight measurements.

Figure 4.20 compares how utilizing different sources of horizontal airspeed for the com-
bined estimator affects prediction accuracy. A histogram is shown only for the z−component
of the relative airspeed. As a benchmark, we show the airspeed obtained by using the
external force as vfez . It has the smallest variance in comparison. The machine learning
model vr(P̄ a) is shown as vPa

z , and has the second smallest variance. Using the ground
truth horizontal velocity in the combined wind estimator is shown as vopt,vrz . Using the
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Figure 4.19: Estimation of relative airspeed for the complete dataset from Figure 4.4,
using machine learning models vr(fe

∑
$) (shown as vfe), vr(Pa) (shown as vPa), and the

optimization based combined wind estimator described in this section (shown as vopt). For the
latter, the horizontal velocity was obtained from motor power.
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Figure 4.20: Normalized error histograms of the vertical airspeed component vz for the
dataset from Figure 4.4, For the combined wind estimator, we compare different sources of
horizontal airspeed components: The model vr(fe

∑
$) is used in vopt,fe

z . The model vr(Pa)
is used in vopt,Pa

z . Lastly, we use the exact airspeed in vopt,vr
z .

external force model for this purpose is depicted as vopt,fez . Finally, the histogram for the
result shown in Figure 4.19 is depicted as vopt,Pa

z . Interestingly, the combined estimator is
not sensitive to the source of horizontal airspeed. However, the variance of the estimated
velocity is higher than when using machine learning based models.

In conclusion, it was shown that airspeed may be obtained using motor power measure-
ments only. The underlying physics of the problem was described in the optimization
based approach. Accuracy of the estimation will clearly be limited by the accuracy of
the estimated aerodynamic power. Therefore, having a good measurement of the motor
current and a good estimate of the aerodynamic power are crucial to the applicability of
this approach.

4.4.2 Choosing optimal measurements

Due to the sensitivity of the optimization problem, a natural question is how to choose
measurements to maximize observability of the wind velocity, i.e. reduce sensitivity to noise.
This problem is closely related to generating exciting trajectories for optimal parameter
estimation in robotics, see [10, 132, 111]. The results of the following analysis may then be
applied to path planning, trajectory generation, or as a control signal to achieve active
sensing.

According to matrix function literature [144, 59, 46], the sensitivity to noise of an
optimization problem such as (4.19) depends on the condition number of its Jacobian. By
minimizing the condition number of the Jacobian J = ∂f(x)/∂x, the observability of the
problem is maximized. The absolute condition number κ̂(·) is defined as

κ̂ = ‖J(x)‖, (4.20)

whereas the relative condition number κ(·) is defined as

κ =
‖J(x)‖
‖f(x)‖ ‖x‖ , (4.21)

where the Frobenius norm of a matrix

‖A‖F =

√
Tr{ATA} =

√√√√ m∑
i=1

n∑
j=1

|aij |2 (4.22)

is commonly used. Next, the Jacobian of the previously defined least squares problem is of
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interest. Recall the Levenberg-Marquardt update step

δx =
(
JTJ + µI

)−1
JT f(x), (4.23)

where µ is the regularization parameter, δx is the update step of the optimized variable, and
f(x) is the cost function value evaluated at x. Hence, the condition number of the inverted
matrix JTJ is a measure of the problem’s sensitivity. Note also that κ(JTJ) = κ2(J).

Next, an optimization problem is defined for choosing propeller orientations that result
in the best conditioning of the least squares problem. First, define a sequential optimization
problem where a set of K − 1 measurements is available, and the next measurement K is
chosen to maximize the observability of the least squares problem. This approach is useful
for online motion planning or control, where only local information is available. Let ϕ be a
suitable parameterization of the measurement orientation. The orientation ϕ∗K associated
with the next best measurement is then obtained by solving the optimization problem

ϕ∗K = arg min
ϕ

κ(J). (4.24)

The problem (4.19) is normalized for easily interpretable physical values. The optimization
may therefore be simplified to minimizing the absolute condition number κ̂, obtaining

ϕ∗K = arg min
ϕ

‖J‖2F , (4.25)

where the norm was squared to simplify computation of the derivatives. Note that this
approach is similar to observability analysis, with the Jacobian J corresponding to the
observation matrix.

This local problem may also be solved online by means of a gradient descent algorithm.
Define ϕ to be a suitable parameterization of the measurement orientation. In continuous
time, solving

ϕ̇ = −γ ∂ ‖J‖
2
F

∂ϕ
, (4.26)

where γ is the descent factor, will locally converge to the optimal measurement angles.
Note that barrier functions should be included as well in order to ensure physically feasible
solutions only. Using the squared Frobenius norm leads to

∂ ‖J‖2F
∂ϕi

= 2
m∑
i=1

n∑
j=1

Jij
∂Jij
∂ϕi

(4.27)

In other cases it might be desirable to plan a path or trajectory that will contain
optimal measurement poses. Such a simultaneous optimization problem can be defined by
having a set of roll and pitch angles (φ,θ). The optimal angles are then a solution to the
optimization problem over all ϕ such that

ϕ∗1...K = arg min
ϕ1...K

κ(J). (4.28)

Though it was shown how trajectories for optimal wind estimation can be obtained in
principle, this active sensing approach to wind estimation is out of scope of this thesis and
left for future work.
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4.4.3 Jacobian of the optimization problem

Take j = (1,2,3) and the substitutions z = v +RT
k v0,k, and y = v −RT

k (v0,k − vi,ke3).
Elements of the Jacobian (4.17) can now be written as

J1j,k = 2v2i,k z1,j − 2R3j,k v
3
i,k,

J14,k = 4v3i,k − 6vz,kv
2
i,k + 2vi,k‖vk‖2,

J2j,k = −vi,k
Uk

(
R3j,kU

2
k + (vz,k − vi,k) yj

)
,

J24,k = 1
Uk

(
U2
k (2vi,k − vz,k) + vi,k (vz,k − vi,k)2

)
,

J3j,k = −R3j,k,

J34,k = 1.

(4.29)

In order to obtain the gradient (4.26), the partial derivatives of the Jacobian (4.17)
are required. Define the partial derivative of A w.r.t ϕ as Aϕ := ∂A

∂ϕ . For j = (1,2,3), the
partial derivatives of the Jacobian w.r.t a rotation parameter ϕ are

Jϕ1j = 2v2i zj − v3iRϕ3j ,
Jϕ14 = −6v2i v

ϕ
z ,

Jϕ2j = −vi
{
URϕ3j + UϕR3j

+ 1
U

[
vϕz yj + U−1

U yϕj (vz − vi)
]}
,

Jϕ24 = Uϕ(2vi − vz)− Uvϕz
+ vz−vi

U

[
2viv

ϕ
z − Uϕ

U (vz − vi)
]
,

Jϕ3j = −Rϕ3j ,
Jϕ34 = 0.

(4.30)

Note that the term associated with ‖vk‖ϕ = 0 was dropped because the rotation does not
affect the wind velocity norm.
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CHAPTER 5

Force discrimination

Now that the dynamics and aerodynamic models have been identified, the problem of
discriminating between the terms of the external wrench acting on the robot is investigated.
In this chapter, several novel methods for input discrimination are presented in the context
of the awareness pipeline presented in [142]. The awareness pipeline is a generalization of
Fault Detection, Identification and Isolation [54, 56]. Detection provides a binary signal
(true/false) whether a signal is present. Collision detection is extended to flying robots, to
also be effective under wind influence. A novel method for contact detection under wind
influence is also developed. Isolation deals with determination of the kind and location of
the signal. An example is obtaining the contact or collision position on the robot’s convex
hull upon detecting either. Lastly, identification deals with monitoring the time-variant
behavior of the signal. In this context, this is the reconstruction of the signal of interest.

This chapter is organized as follows. In Section 5.1 the problem of force discrimination
is formally defined. Collision detection under wind influence is investigated in Section 5.2.
Next, the contact location is obtained in an isolation step in Section 5.3. In Section 5.4
an aerodynamic torque model is used to detect slow contact forces under wind influence,
lying in the same frequency region. This is then used in Section 5.5 to develope the
modified model checking scheme for force discrimination. In Section 5.6, it is shown how
the the contact wrench may be obtained from an aerodynamics model and a known contact
position. This is incorporated in a particle filter framework in Section 5.7 to directly
estimate the contact position under wind influence. The aerodynamic model that regresses
motor power to airspeed is used in Section 5.8 to perform force discrimination using an
independent measurement of the wind speed. All developed methods are fused in a Kalman
filter framework in Section 5.9. Finally, a summary of the results is given in Section 5.10

5.1 Problem statement

The goal of force discrimination is outlined in Figure 5.1: given an external wrench τe that
is a sum of the fault wrench τf (e.g. caused by collisions), the physical interaction wrench
τi (e.g. caused by a person pushing the vehicle), and the disturbance wrench τd (caused
by wind), obtain a reconstruction of the constituent terms. In other words, given

τe = τf + τi + τd, (5.1)

force discrimination deals with detecting the presence of a signal, extracting context
dependent information (isolation), and obtaining the time-varying reconstruction of the
signal (isolation). In the following, it is assumed that the external wrench τe is perfectly

79
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Figure 5.1: Force discrimination reconstructs the time-varying additive inputs summed in
the external wrench τe, given an estimate thereof τ̂e, the robot’s state, and additional models
and/or sensor inputs.
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Figure 5.2: An overview of methods to discriminate slow aerodynamic and interaction
wrenches. In this chapter, model-based methods in the (c) family are developed. They do not
require dedicated wind or force sensors.

known. When using the external wrench estimator this means that τ̂e ≈ τe. Figure 5.2
depicts some possible approaches to solving this problem. For the scheme in Figure 5.2(a),
an onboard force sensor is needed, and for Figure 5.2(b) an onboard wind sensor and an
aerodynamics model are needed. In this chapter, model-based methods like the scheme in
Figure 5.2(c) are developed, as they do not require such additional onboard sensors.

5.2 Collision detection under wind influence

A collision will cause a force on the flying robot with a large amplitude and short duration.
Briod et al. [25] have used a constant threshold on the estimated external force as a collision
detection signal :

CDA =

{
1 if ‖f̂ e‖ ≥ fk
0 otherwise.

(5.2)

In this way, both slow contacts and impacts will be detected as collisions, but the detection
sensitivity will then highly depend on modeling errors and measurement noise. A more
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robust method of detecting contacts is to require the external wrench to be larger than a
threshold fk for a certain amount of time Tk. The contact detection signal CDB may be
obtained as

CDB =

{
1 if

∫
sign(‖f̂ e‖ − fk)dτ > Tk

0 otherwise.
(5.3)

where the integral has a zero lower limit. However, these signals will also trigger in strong
winds, i.e. they cannot distinguish between wind and collision forces.

Collision detection for robot manipulators has been discussed in more detail in [56, 30],
and in [136] and [138] for aerial robots in particular. The main idea is that discrimination
between aerodynamic and collision forces may be achieved by considering the respective
signals’ frequency characteristics. The frequency ranges of the constituent terms are used
to design appropriate filters. Collisions may be detected by applying a highpass filter
H(f, ωf ) on the external force, with break frequency ωf , to obtain the collision detection
signal

CD =

{
1 if ∃i : H(|f̂e,i|, ωf ) > fc,i

0 otherwise,
(5.4)

where fc,i is the collision detection threshold. The threshold is be state-dependent, as
increasing airspeed will also increase noise in the external wrench. Note that quasistatic
contact forces cannot be distinguished from aerodynamic forces from the frequency content
alone. A method is needed to distinguish constituent terms of the external wrench in the
same frequency range. Two methods for isolating the collision wrench from the aerodynamic
wrench are presented next – the filter bank and the model checking method.

Filter bank. The first method is based on spectrum analysis of the external wrench during
flight, structured as in Figure 5.4(a). The frequency ranges of its constituent terms are
isolated and appropriate filters are designed. The design approach is illustrated in Figure
5.3, which shows spectrograms of the external force components acting on a quadrotor in
simulation, with darker shades indicating higher amplitude. The flight is divided in four
phases, each lasting 20 s:

� Phase 1: No drag forces, no collisions. The quadrotor hovers, hence no external
wrench is acting on the robot.

� Phase 2: Drag forces, no collisions. The aerodynamic model is active, the quadrotor
hovers, and the wind speed changes. This results in displacement from the hovering
position due to the used PD controller.

� Phase 3: No drag forces, collisions. The quadrotor flies into a surface located at
x = 5 m, resulting in an high force and a static contact force. The position remains
constant during contact.

� Phase 4: Drag forces, collisions. Same scenario as in Phase 3, but with the aerody-
namic model enabled.

The spectrograms indicate that collision events can be clearly isolated using the high
frequency components of the external force, while the aerodynamic forces principally
contain low frequency components. Therefore, after analyzing the resulting spectrograms
of this example, shown in Figure 5.3, a lowpass filter with a cutoff frequency of 0.2 Hz and
a highpass filter at 5 Hz are applied to isolate the signals. Note that quasistatic contact
forces cannot be distinguished from aerodynamic forces in this scheme.

Model checking. The second isolation method is based on wind model checking, and
assumes a known wind velocity propagation model. Its structure is shown in Figure 5.4(b).
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Figure 5.3: Spectrograms of the wrenches acting on a quadrotor during simulated flight and
the according robot position as well as wind speed. See the text for an explanation of the
phases. The spectrograms show that aerodynamic forces can be distinguished from collisions by
exploiting the respective frequency characteristics in the estimated external wrench. Copyright
cO 2015 IEEE [136].

This is motivated by wind models from aerospace literature, which are based on the power
spectral density, such as the Dryden wind gust model [87]. This allows us to model the
wind velocity as a dynamic system H(s). In this method, τ̂ e = τ d is first assumed to obtain
the wind velocity input. After updating the model, the expected aerodynamic wrench τ̂ d
is calculated using the estimated wind velocity ν̂w and compare it to the external wrench.
The residual wrench τ r will then contain the contact wrench and model errors.

The contact torque m̂c is contained in τ r, and provides additional information for
detecting contacts in the presence of wind. Notice that the contact force and contact
wrench may be filtered separately, thus m̂c may be obtained using both methods.

Results

The presented concepts are further illustrated through quadrotor simulation results with
parameters from Table 5.1. Contacts are modeled with a Hunt-Crossley model [33], which
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(a) Discrimination between aerodynamic and collision wrenches by the filter bank
method. The filters f1 and f2 are obtained from spectral analysis of the lumped
external wrench τ̂ e. The wind velocity is then estimated from the drag component
τ̂ d.
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(b) In the model checking discrimination method, we first assume τ̂ e = τ d to obtain the wind
velocity. Based on physical reasoning we then filter the wind velocity using a propagation model
H(s). The estimate is used to obtain an expected aerodynamic wrench. The residual τ r then
contains contact forces and model errors.

Figure 5.4: Structures of the filter bank (a) and model checking (b) methods for discriminating
between the aerodynamic and contact wrench from the lumped wrench τ̂ e. Collision detection
is performed on the contact wrench τ c or the residual τ r. Copyright cO 2015 IEEE [136].

Table 5.1: Simulation parameters used to obtain the wind estimation and collision detection
results. The robot is an quadrotor with arm length L = 0.17 m. Copyright cO 2015 IEEE
[136].

Parameter Value

M 1.75 kg

I diag{1, 1, 1} · 10−2 kg m2

D 0.254 m

ρ 1.205 kg m−3

k 1·104 N/m

λ 2.3·105 Ns/m

n 1.5

Parameter Value

CT 1.330 · 10−1 + 3.195 · 10−6$

CQ 2.221 · 10−3

DL diag{0.6, 0.6, 1.2, 0.2, 0.2, 0.12} N s−1

DQ diag{0.12, 0.12, 0.12, 0, 0, 0} N s−2

Aref 0.392 m2

Ad diag{0.06, 0.06, 0} s−1
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Figure 5.5: Wind velocity estimation in a collision and contact scenario, showing erroneously
estimated wind velocity during contact. The quadrotor flies toward a wall starting at t = 10 s,
and collides at t = 15.5 s. Contact is maintained until t = 21 s. The static contact force results
in erroneous estimation of the wind velocity. Copyright cO 2015 IEEE [136].
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Figure 5.6: The residual wrench for the flight shown in Figure 5.5, with a first-order wind
velocity propagation model. The collision may clearly be determined from the estimated
external forces. However, we cannot estimate the static contact forces, as the wind model
captures low frequency components, as can be seen from the misinterpreted fc,x component.
Interestingly, the residual mr reconstructs the contact torque. Therefore, if the contact is
applying a torque to the robot, the static contact phase is visible from the external torque.
Copyright cO 2015 IEEE [136].

models the contact force F based on penetration depth x as

F (t) =

{
kxn(t) + λxn(t)ẋn(t), x ≥ 0

0, x < 0
. (5.5)

The exponent n is a real number that takes into account the geometry of contact surfaces.
A PD position controller is used for flight, which naturally results in poor position tracking
under wind influence.

Figure 5.5 depicts the wind velocity estimated using inversion of the aerodynamic model
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Figure 5.7: A collision reflex when the wind force creates an offset in the external force.
The quadrotor collides with a surface at t = 11 s with a velocity of 0.2 m/s. This produces a
collision force in the same order of magnitude as the wind force. The reference position rd is
set in the direction of the collision force in order to fly to a safe distance from the obstacle. By
isolating the collision force f̂ c to obtain the reflex direction we are able to react in the correct
direction, as without wind influence. Copyright cO 2015 IEEE [136].

in the model checking scheme. The wind model is a lowpass-filter with a time constant
of 250 ms. The thrust model is known and used in the estimation, therefore it is possible
estimate the vertical wind component accurately. In the simulation, a collision occurs at
t = 15.5 s, and contact with the surface is maintained until t = 21 s. Due to the contact
force being constant, the x component of the wind velocity is erroneous. This illustrates
that contacts should be avoided if accurate wind velocity estimation is required.

Figure 5.6 shows components of the wind model residual τ r in the same scenario. The
collision is clearly visible as a peak in the residual force. Interestingly, the contact torque
can be seen in the residual. This indicates that contact could further be discriminated from
wind by using a filtered residual torque signal. Note that this is not possible in general,
but only in contact scenarios that generate torque, i.e. where the contact force acts with a
lever.

Lastly, to illustrate the filter bank method, the quadrotor collided with a surface at a
velocity of 0.2 m/s at 2.3 m/s wind. This results in a collision force that has the same order
of magnitude as the aerodynamic force. The aerodynamic and collision force filters were
designed according to Figure 5.3. Figure 5.7 shows the position, external force, isolated
contact force and wind velocity in this scenario. The use of a PD position controller results
in a position error due to wind. Upon collision, the desired position was set in direction of
the estimated collision force f̂ c, i.e. away from the collided surface. Using the external
wrench f̂ e would result in an erroneous offset reflex direction due to the aerodynamic
wrench. Our approach significantly robustifies collision reflexes under wind influence.

In conclusion, the simulations show the effectiveness of the presented methods in dis-
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criminating between aerodynamic and collision components of the external wrench.

5.3 Contact location

The contact location can be obtained from the estimated contact wrench during the contact
phase [135, 138]. This may be used after discriminating the interaction force and torque
by any presented method to obtain the contact position. By using the torque model
mc = rc × fc, the contact location is obtained by intersecting the ray

rc = o+ kd,

o =
fc ×mc

fTc fc
,

d = fc,

(5.6)

with the vehicle’s convex hull to obtain the unknown parameter k. An intersection with
the hull is required in order to obtain a unique solution. Note that this problem has two
solutions when the ray passes through the hull. Under the assumption that the contact
force points into the robot, k < 0 can be chosen. Now, a collision plane may be estimated
in the inertial frame nTp (rp−o) = 0 with the associated normal np = f̂ e/‖f̂ e‖ and position

rp = r +RTrc. This information could e.g. be stored in a contact map to prevent further
collisions with static surfaces. The plane information may also be included in a more
involved mapping solution, e.g. an octomap, and further used for (re-)planning. This
tactile mapping idea is further explored in Section 6.1.2.

To show the effectiveness of this method, a quadrotor is collided with a plane for different
collision speeds in simulation. The contact with the plane occurs at a single point on
the robot’s convex hull. The robot geometry is approximated using only 8 rectangular
surfaces, which underlines the robustness of the method. The resulting plane estimation
errors are depicted in Figure 5.9. The estimated surface normal is very accurate for the
entire velocity range and all collision configurations. This is due to the normal being
estimated from the force direction, which has a high signal to noise ratio on collision. The
position determination accuracy depends highly on the used geometric model. Even for the
quite approximate geometric model, the accuracy is better than 1 cm for straight collisions.
The maximum standard deviation of all collision cases is 2 mm and it is consistent across
collision velocities. This shows strong robustness and repeatability. The error of the 45◦

horizontal case is caused by the geometric approximation. The approximated robot’s
bottom surface is already 5 cm below the actual contact point, which causes a systematic
error in the position estimation.

5.4 Contact detection under wind influence

Contact detection is based on the aerodynamic torque model as a function of the aerody-
namic force m̂d(fd), see Section 4.3.5. When only the aerodynamic force is acting on the
robot, the external torque me will match the aerodynamic torque model, i.e. m̂d(fe) = me,
up to modeling errors. If there is another torque-generating force acting on the robot, the
external torque will not match the model. Based on this insight the aerodynamic torque
residual m̃d is defined as

m̃d = m̂d

(
fe
)
−me. (5.7)

The assumption of the nominal state is that only the aerodynamic wrench is acting on the
robot. The identified aerodynamic torque model is evaluated at the current external force
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mc = rc × fc

rc

fc

(fc ×mc)/(fT
c fc)

kfc

Figure 5.8: The collision position rc can be obtained from the external force fc and torque
mc through the line of action of fc. All forces lying on the dashed ray produce the same
torque. The free parameter k is then found by intersecting the ray with the robot’s convex
hull. Copyright cO 2017 IEEE [138].
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Figure 5.9: Simulation of collision location determination for a quadrotor in different collision
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the real plane d = nT (rp−o). The lower plot shows the angular error of the estimated normal
ñ = acos nTnp. The mean of multiple collisions is shown for each velocity. The standard
deviation in both cases is too small to be visible (2 mm and 10−3◦, respectively). Copyright
cO 2014 IEEE [141, 138].

fe. The residual m̃d will be nonzero if there is an additional wrench acting on the robot
that does not correspond to the aerodynamics model. The contact detection signal CD1

may now be defined as

CD1 =

{
1 if ‖m̃d‖ > δd

0 otherwise,
(5.8)

where δd is the threshold on the residual norm.
Failure cases. The aerodynamic torque model may be as simple as a linear combination

m̂d(fd) := Dfd, i.e. the aerodynamic force acting at a center of pressure. Assume

fe = fd + fi,

me = Dfd +mi,
(5.9)

the aerodynamic model is perfectly known, and fi 6= 0, mi 6= 0, and m̃d = 0. Then, by
applying (5.9) to (5.7),

Dfd +Dfi −Dfd −mi = 0.



88 5 Force discrimination

x

y

z

0.0

0.2

0.4

0.6

0.8

1.0

(a) fi = [1, 0, 0]T N

x

y

z

0.0

0.2

0.4

0.6

0.8

1.0

(b) fi = [0, 1, 0]T N

x

y

z

0.0

0.2

0.4

0.6

0.8

1.0

(c) fi = [0, 0, 1]T N

x

y

z

0.0

0.2

0.4

0.6

0.8

1.0

(d) fi = [1, 0, 1]T N

Figure 5.10: Torque residual for constant forces at positions around a superellipsoidal convex
hull. A contact force will only be detected by the residual if it generates a torque. The
color represents ‖m̃d‖ and is normalized to the highest residual being equal to 1. A linear
aerodynamic torque model md(fd) was used, along with a quadratic aerodynamic wrench
model with a relative airspeed of vr = [1.0, 5.0, 0.2]T m/s.

This means that the contact detection scheme fails if

Dfi = mi.

In other words, the scheme does not work if the exerted wrench exactly matches the
aerodynamics model, i.e. is indistinguishable from aerodynamic effects. In the nonlinear
case, the equivalent failure is

0 = m̂d

(
fd + fi

)
−md

(
fi
)
−mi.

Limitations. The proposed detection scheme relies on the torque produced by the
interaction. Therefore, as discussed above, not all combinations of force and torque will
generate a residual. The detection will be local, depending on the convex hull of the robot,
and the aerodynamic model. Figure 5.10 illustrates the residual norm when the contact
occurs on the convex hull of the robot. Clearly, some forces generate a stronger signal than
others. In the cases Figure 5.10(a) and Figure 5.10(b), contact positions that generate a
torque about the z−axis will generate the strongest residual. Conversely, a purely vertical
force as in Figure 5.10(c) will produce no torque, making it difficult to distinguish from
wind when acting on the top or bottom of the hull. Similarly, in the case Figure 5.10(d),
when the force is acting at particular contact positions, it will not be distinguishable from
wind, as described in the failure cases.
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Figure 5.11: Modified model checking scheme for simultaneous wind and interaction estima-
tion. The wind speed is estimated in the inertial frame by filtering the raw prediction made by
an aerodynamics model learned in Section 4.3. Once contact is detected, the time constant of
the wind estimator is decreased and everything else is treated as the interaction force.
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5.5 Modified model-checking force discrimination scheme

Based on the contact detection signal, the force discrimination scheme depicted in Figure
5.11 is proposed next. This scheme makes the assumption that wind speed does not change
significantly during physical interaction. It estimates the wind speed in the inertial frame
with a filter (e.g. Kalman filter). For simplicity of argumentation, in Figure 5.11 this
is a simple first-order lowpass filter. It is a modification of the model-checking scheme
presented in [136] with a time-varying wind estimation time constant. Once the contact
detection signal CD1 becomes true, the time constant Tw of the wind estimator (or process
noise in the case of a Kalman filter) is slowed down. This essentially pauses wind speed
estimation by slowing down wind estimation. By reprojecting the estimated wind speed
v̂w back into the body frame to get the relative airspeed v̂r, the estimated aerodynamic
wrench τ̂ d := τ d(v̂r) is obtained by passing the airspeed through the aerodynamic model.
Note that this is similar to the model checking scheme in [136]. The interaction wrench is
then obtained from the forward aerodynamic model as τ̂ i = τ e − τ̂ d. However, it does not
make any assumptions about the interaction force itself.

Simulation results. In order to evaluate the proposed discrimination scheme, the
hexacopter identified in Section 2.2 was simulated, with an aerodynamic wrench model
identified from data presented in Section 4.3. The robot is controlled using the compensated
impedance controller (3.53), with a constant position setpoint (hover). The controller
is compensating the estimated aerodynamic wrench, while being compliant w.r.t. the
estimated interaction wrench. To illustrate determination of the contact position, the
convex hull is an oblate superellipsoid convex hull with horizontal major semiaxes of 0.3 m,
and the vertical minor semiaxis of 0.05 m. If (5.6) has no solution, i.e. does not intersect
the convex hull, the previous estimated values were kept. Then a contact force was virtually
injected at a position on the convex hull, while the robot motion is unconstrained. To
illustrate how the scheme behaves in time-varying conditions, the simulated conditions
are as follows. Until t = 15 s, the vehicle is yawing at a 9 ◦/s, and the wind speed is
time-varying. After t = 15 s, the wind speed and yaw reference remain constant. The
simulation has 4 distinct contact phases to illustrate the behavior and failure cases of the
discrimination scheme:

1. Time-varying wind speed, constant contact force and position in the body frame for
3 s < t < 6 s.

2. Time-varying wind speed, constant contact force in the inertial frame, time-varying
contact position for 10 s < t < 13 s.

3. Constant wind speed, pure contact force (no torque) for 15 s < t < 18 s.

4. Wind speed step change at t = 24 s during contact during 21 s < t < 26 s.

Simulation results are shown in Figure 5.12. Throughout the simulation, when no interaction
is detected, the vehicle converges to the setpoint, as the complete external wrench is
compensated as a disturbance. The wind velocity also converges to the correct value.
During phase (1), wind estimation is essentially paused, and the error of the time-varying
aerodynamic force is interpreted as the interaction force. The vehicle is compliant to
the estimated interaction force. The raw contact position is estimated correctly. During
phase (2), the time-varying interaction force is correctly estimated because the wind
speed is estimated in the inertial frame, and transformed into the body frame to obtain
the aerodynamic wrench. The compensated impedance controller is making the vehicle
compliant to the estimated interaction wrench. This makes it possible to physically move
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Figure 5.12: Simulation results for discrimination between aerodynamic and contact forces
under wind influence, using exactly the residual based estimation scheme from Figure 5.11.
The aerial robot is yawing in the time-varying wind field, while running the compensated
impedance controller. From top to bottom: wind speed vw; robot position r; aerodynamic
force fd; contact force fi; contact position rc; torque residual m̃e. Periods where contact was
detected are shaded in red.

the vehicle in the inertial frame while it is yawing under time-varying wind influence, see
the robot position r. The time-varying contact position is also correctly estimated in this
case. There is additional noise due to the small error in the interaction force. In phase (3),
no contact is detected because the purely vertical force does not exert a torque, as can
also be seen in Figure 5.10. This is wrongly interpreted as a change in wind. Lastly, in
phase (4), the wind speed exhibits a step change. The change from the initial aerodynamic
force gets falsely interpreted as interaction, hence the scheme fails. The ambiguity in the
contact position determination can also be seen here – the contact position is estimated
on the wrong side of the convex hull (wrong sign of the x−axis) after the wind change.
Notice also that the estimated interaction wrench does not intersect with the convex hull
most of the time, since r̂c is held constant.

In summary, the force discrimination scheme presented in Figure 5.11 works well for
scenarios where

� the wind speed is constant or slowly varying, and
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Figure 5.13: Observability of contact forces on a superellipsoidal convex hull, with different
aerodynamic torque models. The scale is normalized to the smallest condition number being
1.0, and higher condition numbers going down to zero. Darker colors therefore indicate a higher
condition number of the Jacobian at the contact position for this particular model. For the
perceptron model the initial Jacobian at f̂d = 0 is shown.

� the interaction force exhibits a torque sufficiently different from the aerodynamic
torque.

Conversely, it will fail if

� the interaction force does not generate a torque residual, and/or

� the wind speed changes significantly during the interaction.

Note that this discrimination scheme does not assume a model of the interaction force. The
contact position determination in the simulation result is obtained under the assumption
of a point contact using (5.6).

5.6 Interaction force at known contact position

In the following, it is shown that given a known contact position, the interaction force
can be computed by using the aerodynamic torque model, under the assumption that the
interaction can be reduced to a point contact on the robot’s convex hull. This assumption
applies to applications such as slung load transportation or contact inspection. The location
of the slung load may e.g. be known by mechanical design. Alternatively, the contact
position may be initialized on collision with the inspected surface, when the signal-to-noise
ratio allows for frequency-based discrimination.

When the contact position rc is known, the external torque me may be written as
me = md +mi as

me = md

(
fe − fi

)
+ S(rc)f i, (5.10)

where md(•) is the nonlinear aerodynamic torque model. In the nonlinear case, the
nonlinear equation

Fi = md

(
fe − fi

)
+ S(rc)fi −me = 0, (5.11)

must be solved, which may be done using e.g. Levenberg-Marquardt. The Jacobian of
(5.11) is

Ji =
∂F i

∂fi
= S(rc)−

∂md

(
fd
)

∂fd
= S(rc)− Jd, (5.12)

where Jd = ∂md(fd)
∂fd

is the Jacobian of the aerodynamic torque model. In the special case
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(b) Perceptron aerodynamic torque model (ground truth), using nonlinear optimization of (5.11),

initialized with f̂i = fe.

Figure 5.14: Force estimation at the exactly known contact position for the simulation in
Figure 5.12, using different aerodynamic torque models. A perceptron aerodynamic torque
model was used for simulation. The error in the estimated interaction force for the linear model
is mainly caused by the aerodynamic torque modeling error, as the true aerodynamic wrench
is modeled as a nonlinear perceptron model. Even with perfect model knowledge (b), the force
is not reconstructed perfectly. The force spikes are caused by transients in the external wrench
estimate.

of a linear model md

(
fd
)

= Dfd, the solution may then be directly found as

f̂i =
(
S(rc)−D

)−1(
me −Df e

)
= J−1i m̃d. (5.13)

The observability of the interaction force will thus depend on the contact position and the
aerodynamic model, as Ji must be nonsingular. Note also that (5.11) allows the solution
for nonlinear torque models.

Figure 5.13 illustrates the interaction force observability on an example superellipsoidal
hull and a linear aerodynamic torque identified in Section 4.3.5. Here, observability is
defined as the condition number of Ji. The color is normalized to the smallest condition
number being brightest, and largest condition number (lowest observability) being darkest.
Areas with a lower observability will be more susceptible to modeling errors and noise in
the measurements. The solution (5.13) can also guide the contact point selection for best
observability, Note also that the contact point does not have to be on the convex hull, but
can also be the end of a tool attached to the flying robot. The model m̂d(fd) contains
implicitly a (possibly varying) center of pressure, in other words the effective lever rd of
aerodynamic force fd. For our linear model, this is assumed to be constant, thus D is
constant. This explains the strongly asymmetric behavior in Figure 5.13(a) – forces acting
near to the constant center of pressure will be less observable due to the shorter lever to
rd. Notice that the behavior tends towards more symmetry for the richer nonlinear model
in Figure 5.13(b).

Figure 5.14 depicts the interaction force computed at the exact (simulated) contact
position using a linear model and direct computation (5.13). The aerodynamic wrench in
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the simulation was obtained using a nonlinear model, and therefore using a linear model
results in an estimation error. Furthermore, a delay in estimating the external wrench
causes some transient errors, for example at t = 0 s, and t = 26 s. Note that the pure force
interaction in contact phase 3 is correctly identified because the exact contact position is
used. However, modeling errors are reflected in a state-dependent error of the estimated
interaction force. The result shows that even with perfect knowledge of the contact position,
under modeling errors, the method presented here is not sufficient to accurately obtain the
interaction force.

5.7 Particle filter-based force discrimination

As shown in the previous subsection, even exactly knowing the contact force leads to
inaccurate estimation of the interaction force when modeling errors are present. In this
section a framework that fuses interaction force and wind speed models into a unified force
discrimination scheme is proposed. It is based on directly estimating the contact position
on the robot’s convex hull by using a particle filter. By estimating the contact position that
best matches the observed external wrench, the modeling error is essentially transferred
from the interaction wrench to the estimated contact position. The latter is by definition
bounded through the convex hull, which results in a more robust overall scheme. The
scheme is based on a Sequential Importance Resampling (SIR) particle filter [34]. Each
particle xi = [rTc,i vw,i]

T contains a contact position rc,i on the convex hull CH, as well as
a wind speed vw,i. Then (5.12) is used to obtain the interaction wrench τi,i at the contact
point, and an aerodynamic wrench model τd

(
vr
)

at the relative airspeed computed from
the particle’s wind speed to obtain the particle aerodynamic wrench τ̂d,i. In summary,

τ̂i,i =

[
J−1i m̃d

rc,i ×
(
J−1i m̃d

)] , (5.14)

τ̂d,i = τd
(
RT (v − vw,i)

)
. (5.15)

Based on τ̂e,i = τ̂d,i + τ̂i,i, the external wrench error τ̃e,i of particle i is defined as

τ̃e,i = τe − τ̂i,i − τ̂d, (5.16)

which is the error between the estimated external wrench and the wrench predicted by
particle i. A Gaussian distribution of the particles around zero of the external wrench
error is adopted. The probability of particle i is then

p (τ̂e,i|rc,i) = exp

(
− 1

σ2
τ̃Te,iτ̃e,i

)
, (5.17)

where σ is a shape parameter. The algorithm is described in detail in Algorithms 1 and 2.
The filter runs when contact is detected using the torque residual. The contact positions
rc,i are initialized uniformly on the convex hull, and assigned to the currently estimated
wind speed. The process model for both, the contact position and wind speed, is constant
with per-axis Gaussian noise. At each iteration, the contact position is projected onto the
convex hull.

Convergence. Figure 5.15 depicts four iterations of the particle filter. The aerodynamic
force is obtained from a nonlinear perceptron model, while the particle filter uses a linear
model, which results in a modeling error. Already after the first iteration, the result is near
the actual contact position and force. After resampling, particles are distributed around
the actual contact position, as expected. Here, a portion of the particles is randomized
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Algorithm 1: Contact particle filter for simultaneous estimation of contact and
aerodynamic wrenches.

Input : τe: External wrench
v: Translational velocity
R: Orientation

Output : τ̂i: Estimated interaction wrench
τ̂d: Estimated aerodynamic wrench
r̂c: Estimated contact position
v̂w: Estimated wind velocity

Models :CH: Convex hull
τd(vr): Aerodynamic wrench model
md(fd): Aerodynamic torque model

Variables :x ∈ R6×Np : Particles
w ∈ RNp : Particle weights

Parameters :Np: Number of particles
Nr: Resampling threshold
Qr: Contact position noise
Qw: Wind speed noise
ρrand: Particle randomization ratio

ForceDiscrimination:
Initialize ()
repeat

k ← k + 1
ProcessModel ()
for i← 1 to Np do

vr,i|k ← RT
(
v − vw,i|k

)
τd,i|k ← τd(vr,i|k)

τi,i|k ← InteractionWrench
(
rc,i|k, τe

)
τ̃ i|k ← τe − τi,i|k − τd,i|k
p
(
xi|k|xi|k−1, τ e

)
= − exp

(
− 1

2σ2 τ̃
T
i|kτ̃ i|k

)
wi|k ← wi|k−1 p

(
xi|k|xi|k−1, τ e

)
end

τ̄i|k =
∑Np

i=1 wi|kτi,i|k
τ̄d|k =

∑Np

i=1 wi|kτd,i|k
r̄c|k =

∑Np

i=1 wi|krc,i|k
v̂w|k =

∑Np

i=1 wi|kvw,i|k
Resample ()

until ‖md

(
fe
)
−me‖ ≤ δ;

after each iteration as an ”exploration” step. Iterating further, as expected, particles are
still concentrated around the contact position, and variance of the contact force direction
and magnitude is low. This shows that the particle filter can converge to the actual contact
position and force even with modeling errors. Conversely, Figure 5.16 shows a degenerate
case where the filter can fall into a local minimum. As discussed in Section 5.3, the same
wrench can be generated by a force on opposite sides of the convex hull, see Figure 5.16.
Notice the large variance of the contact force direction and magnitude.

Discrimination scheme. The particle filter is one component in the discrimination
scheme depicted in Figure 5.17 In this scheme, the time constant of the wind estimator
is not adapted. Instead, the interaction wrench τ̂i is estimated directly. The estimated
aerodynamic wrench τ̂d = τ e − τ̂i is then used directly to obtain an estimated relative
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Algorithm 2: Auxiliary functions of the particle filter.

Initialize:
k ← 0
for i← 1 to Np do

rc,i|0 ← UniformSampleConvexHull (CH)
vw,i|0 ← vw|0
xi|0 ←

[
rTc,i|0 v

T
w,i|0

]T
wi = 1

Np

end

ProcessModel:
for i← 1 to Np do

if UniformRandomNumber () < 1− ρrand then
Contact position noise model
r̄c,i|k−1 ← rc,i|k−1 +Qr· GaussianRandom ()

else
Randomize contact position
r̄c,i|k−1 ← RandomSampleConvexHull (CH)

end
rc,i|k ← ProjectToConvexHull (r̄c,i|k−1, CH)
vw,i|k ← vw|k−1 +Qw· GaussianRandom ()

end

Resample:
Neff = 1/

(∑
i w

2
i

)
Number of effective samples

if Neff < Nr then
γ = cumsum (w)
for i← 1 to Np do

/* Uniformly draw new sample index m from the cumulative distribution in γ */
ρ = UniformRandomNumber ()
m = first j for γj < ρ, j ∈ 1 . . . Np
xi|k = xm|k−1

wi = 1
Np

end

end

airspeed. The raw wind speed is filtered in the same manner as in the previous discrimination
scheme. Note, however, that estimation of the wind speed does not need to be slowed
down.

Results. To test particle filter based discrimination, the same simulation scenario as
for the residual based discrimination was used, with Np = 45 particles, contact position
noise Qr = diag{0.025, 0.025, 0.005} m, and wind speed noise Qw = 0.001I3×3 m/s. The
results are shown in Figure 5.18. The position, aerodynamic force, and residual plots are
omitted as they are comparable. The notable difference to Figure 5.12 is that the contact
position fluctuates more. This behavior can be tuned through Qr. In phase (4), the contact
position estimation is stable even after the wind speed changes abruptly. However, the filter
converges to the wrong side of the convex hull during the contact (see r̂c,x), but switches
back to the correct side after a short period. This is due to the ambiguity of the contact
determination problem discussed above. In this simulation, wind speed estimation is not
slowed down during contact. Instead, the particle filter outputs the estimated interaction
wrench τ̂i, and the resulting τ̂d is used to estimate wind speed. Overall, the results for
this simulation scenario are not significantly better than the modified model-checking
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure 5.15: Particle filter convergence with a linear model, while the aerodynamic wrench
is obtained with a nonlinear model. Black points represent candidate contact positions on the
convex hull (particles). The estimated interaction force at that position is represented as a
line. The red line depicts the ground truth interaction force, while the blue line represents the
output of the particle filter (contact position and force).

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure 5.16: Example when particles converge to the wrong side of the convex hull, estimating
the wrong contact position. This is due to the ambiguity of the contact determination problem:
the same torque can be achieved by the force on both sides of the convex hull. The force
direction and magnitude are still estimated correctly. Note the high variability of the interaction
force around the sample mean.

estimation scheme, because it is based on the same principle. However, this framework may
be used to more accurately determine the contact position, given an interaction wrench.

Extensions. Note that this algorithm can be extended to also include the interaction
force fi in the particle state. However, that further increases the dimensionality of the
problem. Lastly, wind speed may be omitted from the particle state to simplify the filter
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Figure 5.17: Input discrimination and wind estimation scheme based on the particle filter.
The time constant of the wind speed filter is not adapted. Instead, the particle filter outputs
the estimated interaction wrench τ̂i only when contact is detected by the residual generator.
Then, the drag wrench τ̂d is subsequently used to obtain the relative airspeed.
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Figure 5.18: Discrimination between aerodynamic and contact forces under wind influence,
using the particle filter based approach. The aerial robot is yawing in the time-varying wind
field, while running the compensated impedance controller. From top to bottom: wind speed
vw; robot position r; aerodynamic force fd; contact force fi; contact position rc; torque
residual m̃e. Periods where contact was detected are shaded in red.

to only determine the contact position.

5.8 Power-based discrimination

The previously presented force discrimination schemes rely on the aerodynamic torque
residual for contact detection. In Section 4.3 and Section 4.4 we have shown that the
airspeed may be obtained also by using the aerodynamic power instead of the external
wrench. In this section, a force discrimination scheme that exploits this fact is proposed,
see Figure 5.19.

First, an estimate of the aerodynamic power P̂ a is obtained from the motor current ia,
motor speed $, and motor acceleration $̇ as described in Section 2.1.5. Second, a raw
body-frame airspeed measurements is obtained by employing a model vr(P a), identified
in Section 4.3. This is converted into an inertial-frame wind velocity and filtered using
an appropriate time constant Tw. The aerodynamic wrench τ̂d is then obtained from the
aerodynamic model τd(vr), identified in Section 4.3. The estimated contact wrench and
position are computed as in the modified model-checking scheme. Note that if the airspeed
was estimating directly in the body frame, the accuracy would depend on the trajectory,
i.e. the filter time constant would have to change with the movement of the robot, for
example during the yawing motion in phases 1 and 2 of the simulation. Estimating the
wind speed in the inertial frame is therefore crucial because of the that is the relevant
quantity which is slowly time-varying in the inertial frame.

The scheme is tested for the same simulation scenario as previous schemes, and results
are shown in Figure 5.20. In the simulation, the aerodynamic power of coaxial rotor pairs
was used, and Gaussian noise with a standard deviation of 8 W was added to the power
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Figure 5.20: Simulation results for power based force discrimination, for the same case as in
Figure 5.12. Periods of contact are shaded in gray. Explicit contact detection is not needed in
this scheme.

measurements. The wind estimation time constant was Tw = 0.2 s. The resulting wind
speed and therefore aerodynamic wrench exhibit bias errors in some cases. Note that,
contrary to the above discrimination schemes, there is no explicit slowing down of the wind
estimation. There is also no explicit contact detection, as the scheme runs continuously.
This causes some systematic errors. For example, during the first contact phase the force
is falsely interpreted as x−axis airspeed. This is probably because the underlying model
fitted from wind tunnel data has partly also fitted the external force. The same would
happen in the above schemes if wind speed estimation were not slowed down. The power
based scheme performs better in the other contact phases, despite the same systematic
errors. Notably, where the scheme successfully detects the interaction force is coming from
above in the third phase, which is a failure case of residual based methods. Finally, in the
third contact phase, the interaction force is correctly identified despite the change in wind
speed during the contact. This is another failure case of residual based methods.

It can be conclude that the motor power may be used to provide an independent
measurement of the aerodynamic wrench, which can then successfully be applied to
discriminate between interaction and aerodynamic wrenches. The accuracy of the method
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Figure 5.21: Simulation results for Kalman filter-based force discrimination, which combines
airspeed obtained from external forces, and airspeed obtained from power. Red shaded areas
indicate periods during which the filter has detected contact.

will depend on measurement noise of the motor current and speed; the fit from the motor
power to propeller aerodynamic power; the aerodynamic model mapping aerodynamic
power to airspeed ; and the aerodynamic model mapping airspeed to the aerodynamic
wrench. Therefore, the difficulty in applying this scheme lies in the effort to obtain these
models accurately, as modeling errors propagate through the estimation chain.

5.9 Kalman filter-based force discrimination

The modified model checking method fails when a pure force is applied to the vehicle
and when wind speed changes during contact. On the other hand, the power based
discrimination can run continuously and can detect pure forces, but is prone to modeling
errors (offset). Neither method performs robustly for estimating the contact position
directly from the estimated interaction wrench, especially if the wind speed changes during
contact. The particle filter performs favorably for this task, as it is designed to estimate
the contact position. Our aim is to combine the strengths of the previously proposed
discrimination schemes into a unifying framework. A Kalman filter is an established tool for
such sensor fusion. In the filter the wind speed is estimated directly, i.e. the state is x = vw.
The process model is a constant with Gaussian noise Q = QwI3×3. The measurements z
are the instantaneous model-based estimates of the wind speed

z =

[
v −Rvr(f̄d)
v −Rvr(P̄ a)

]
, (5.18)
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where f̄d is to be defined below. The measurement matrix H and measurement covariance
Rz are simply

H =

[
I3×3
I3×3

]
, Rz =

[
RfI3×3 03×3
03×3 RpI3×3

]
. (5.19)

The implementation details of the Kalman filter are omitted, as they can be found in any
textbook on the subject. Because the estimated interaction force from the power based
method can estimate a pure interaction force, the additional contact detection signal

CD2 =

{
1 if ‖f̂i‖ > δf ,

0 otherwise,
(5.20)

is added, where δf will depend on the aerodynamic modeling error and state (e.g. velocity).
The new contact detection signal for the Kalman filter is CDK = CD1 ∨ CD2, i.e. if either
of the contact detection signals are true. The particle filter is initialized when contact is
detected. During contact, only the contact position estimate of the particle filter is used.
It is obtained by applying the Kalman-filter estimated aerodynamic wrench to evaluate the
sample probability density function. This leads to a more robust contact position estimate
than based purely on the torque residual, as it fuses information from multiple sources.

A discrete-time Kalman filter was simulated with a time step of T = 0.02 s, and used
perceptron models for both the aerodynamic power and external force based airspeed
estimation. Similar to the modified model-checking method, filter parameters are changed
when a contact detection signal CDK is true. When not in contact, the parameters

Qw = 3.6 · 10−7, Rf = 1.6 · 10−7,

Rp = 3.6 · 10−5, f̄d = fe

are used, and when CD1 = 1, and the parameters

Qw = 9.0 · 10−10, Rf = 1.6 · 10−7,

Rp = 1.0 · 10−6, f̄d = fd
(
RT (v − x̂)

)
are used. In essence, this mimics the behavior of the modified model checking methods
where wind estimation is slowed down when contact is detected. In contact, the mea-
surement covariance of the power based estimate is decreased to take it into account
more strongly. The particle filter is run with Np = 20 particles, and contact position
noise Qr = diag{1.25, 1.25, 0.25} · 10−2 m. The particles are initialized uniformly across
the convex hull once contact is detected. Note that these parameters can be tweaked to
fine-tune the overall behavior. The optimization-based estimation of the vertical airspeed
component was omitted, as it did not provide substantially better performance than the
data-driven model. However, this information can also be easily included in the filter
if needed. Figure 5.21 shows the resulting estimated wind speed, interaction force, and
contact position. Note that the result is largely similar to the power based estimation.
However, in the periods without interaction, the offset of the interaction force is lower. A
negative side effect is that the pure force interaction in phase 3 is underestimated in this
scheme, due to the filter also trusting the force based measurement. In phase 4, the filter
can maintain the same discrimination performance even if the wind speed rapidly changes.
Finally, because the contact position is estimated by the particle filter, it exhibits more
stable behavior than computing it from the estimated interaction wrench directly. Note
that it is still prone to switching the side of convex hull during contact. This effect can be
prevented by stronger filtering, however that is out of scope of this paper. In summary,
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Table 5.2: Overview of pipeline stages for simultaneous collision handling and wind estimation,
in the context of a Fault Detection, Identification and Isolation pipeline [55].

Sec. Pipeline stage Algorithm Input Required models

5.2 Detection CD = H(|f̂e,i|, ωf ) > fc,i fe Fault isolation frequency ωf ,
threshold fc,i

5.3 Isolation rc = o+ kd τe Convex hull

5.4 Detection CD1 = ‖m̃d‖ > δ τe Aerodynamic torque model md

(
fd
)

5.5 Isolation,
Identification

τ̂i, τ̂d, v̂w, r̂c ← Figure 5.11 τe Aerodynamic torque model md(fd), wind
speed propagation model

5.6 Identification fi = J−1
i m̃d τe, rc Aerodynamic torque model md

(
fd
)
,

interaction position rc

5.7 Isolation,
Identification

τ̂i, τ̂d, v̂w, r̂c ← Algorithms 1 and 2,
Figure 5.17

τe Aerodynamic torque model md

(
fd
)
,

convex hull, contact position model

5.7 Isolation,
Identification

τ̂i, τ̂d, v̂w, r̂c ← Algorithms 1 and 2 with
v̂w in particle state

τe Aerodynamic torque model md

(
fd
)
,

aerodynamic wrench model τ d
(
vr
)
,

convex hull, contact position model, wind
speed propagation model

5.8 Isolation,
Identification

τ̂d := τd

(
vr
(
P̂a
))

,

τ̂i, v̂w, r̂c ← Figure 5.19

τe, P̄a Airspeed model vr
(
Pa
)
, convex hull,

aerodynamic power model P̂a(Pm),
aerodynamic wrench model τ d

(
vr
)

5.9 Identification Kalman filter with measurement vector
(5.18) and matrices (5.19)

τe, P̄a Aerodynamic torque model md

(
fd
)
,

Airspeed model vr
(
P̂a
)
,

aerodynamic power model P̂a(Pm), aero-
dynamic wrench model τd

(
vr
)

5.9 Detection CD2 = ‖f̂ i‖ > δf f̂i Threshold δf

the Kalman filter is a framework that can easily combine the two developed methods to
provide quite robust discrimination between aerodynamic and contact wrenches.

5.10 Summary

Table 5.2 provides an overview of the novel force discrimination methods developed in
this paper, in the context of a Fault Detection, Identification and Isolation pipeline, see
Haddadin et al. [55]. Three different detection signals may be used. The collision detection
signal CD detects collisions based on frequency. The contact detection signal CD1 detects
contacts based on the external torque. Finally, the contact detection signal CD2 detects
contacts based on the estimated interaction force. Isolation in this context means obtaining
the contact position on the robot’s convex hull. This may be achieved by raycasting
as discussed in Section 5.3, or by a particle filter as discussed in Section 5.7. Finally,
the identification stage reconstructs the constituent wrenches τi and τd. Two distinct
approaches are used for this purpose. In the modified model-checking scheme, Section 5.5,
wind estimation is slowed down when contact is detected. In the power-based scheme,
Section 5.8, the wind speed is obtained from the motor power, which is a measurement
independent of the external wrench. Finally, it was shown that these two schemes may be
successfully combined in a Kalman filter framework.
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CHAPTER 6

Applications and outlook

This chapter presents applications of the collision detection schemes from Chapter 5, and a
high level research outlook for the methods developed in this theseis. Collision detection
applications are presented in Section 6.1, namely collision reflexes and collision location
determination in Section 6.1.1, and tactile mapping as part of an autonomy stack of a
flying robot in Section 6.1.2.

In Section 6.2, the goals and research question posed in this thesis are extrapolated
towards the goal of interaction, disturbance and fault-aware flying robot swarms. It is
argued that robust operation of interacting flying robots requires systematic handling of
interactions and external inputs from individual robot to swarm level. For this, a scalable
methodology for interaction, disturbance and fault handling is introduced, resulting in an
awareness pipeline scheme that can be applied to robot swarms. Another algorithmic key
element for unification is the extension of well established methods from operational space
and multipriority robot control to this system class, potentially leading to novel controls
and skills of flying robot swarms.

6.1 Collision detection applications

During flight in unknown environments, collisions with the environment might occur due to
unfavorable sensing conditions. In these cases, it is necessary to have a low-level collision
detection and reflex strategy to minimize harm to the robot and its environment. Next,
we explore applications of the collision detection methods developed in Chapter 5.

6.1.1 Collision reaction and location

Several basic collision reflex reaction strategies are investigated next. A reflex can be
described as an ”involuntary” action that does not involve active planning. The x-axis
trajectory of a quadrotor colliding with a stiff surface (polycarbonate) is depicted in Figure
6.1. A Hunt-Crossley surface contact model was used, with parameters taken from [33].
The collision occurs at a velocity of 1 m/s, and the surface is located at x = 1 m. The
quadrotor arm is 27 cm in length and acts as an offset. Depending on the desired robot
behavior, the following reactions are investigated: no reaction, trajectory stop, equilibrium
bounce and collision force amplification.

No reaction. The collision is not considered, hence the quadrotor becomes unstable
and may crash.

Trajectory Stop. Upon collision, the trajectory is stopped at the current reference
position. This halts the robot approximately at the obstacle position.

103
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Figure 6.1: Simulated robot trajectories for different collision reaction strategies. Copyright
cO 2014 IEEE [141, 138].

Equilibrium Bounce. Upon detecting a collision, the equilibrium position is set to

rd = rk + δcf̂
0

e where rk is the robot position at the time of collision, and δc > 0 is the
bounce distance. This will drive the path backwards along the collision normal. The robot
will then stabilize at a remote and safe distance from the obstacle.

Collision force amplification. Immediately upon collision, the controller is instan-
taneously switched to impedance or admittance mode. Only damping is performed, i.e.
Kv = 0. The input to the control system becomes the amplified collision force τ v = Krτ̂ e.
For admittance control we then have

M vẍv +Dvẋv = Krτ̂ e, (6.1)

and for impedance control

JTτ = (MM−1
v − I)Krτ̂ e −MM−1

v Dvν̃ +N . (6.2)

This essentialy produces an energy dissipation reflex. The reaction is in both cases
significantly faster than trajectory-based approaches. Note that the amplified wrench τ v
acting on the robot should be saturated to prevent instability.

Results from Figure 6.1 show that without reaction, the robot might become unstable.
The system mass in the simulation was M = 0.55 kg, and Mv = 0.25 kg. Damping during
admittance control is dv,x = 3 Ns/m, and during impedance control dv,x = 0.25 Ns/m. A
stop reaction halts the robot at the collision position. A bounce reaction with δc = 0.5 m
that sets the equilibrium position in the opposite direction of the collision normal is effective
in providing a smooth and deterministic response. The interaction controllers (Kr,x = 1)
show very fast reaction.

To compare the reactions experimentally, a polystyrene block was placed on the robot’s
flight path and used it as an obstacle. Figure 6.2 depicts the position response of different
collision reaction schemes along the inertial x-direction. Video stills of the experiment can
be seen in Figure 6.3. The obstacle position did not change between the experiments. The
highpass filtered external force was used as the collision detection signal.

From top to bottom: position, estimated external force, estimated external pitch torque,
collision detection signal are shown. The force estimate is filtered with Kf

I = 3, and
the torque with Km

I = 12. The collision detection threshold was set to fc = 0.6. The
parametersMv = 0.25 kg, dv = 0.5 Ns/m, and Kr,x = 1 were used. Collisions are detected
at ≈ tc. The red shaded area depicts the contact phase. It can be concluded that even
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Figure 6.2: Collision reaction experiment with a polystyrene block. Copyright cO 2014 IEEE
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Figure 6.3: Video stills of the equilibrium bounce collision reaction experiment depicted in
Figure 6.2. From left to right: shortly before impact (t = 2s), at impact (t = 2.7s), and stable
state after the impact (t = 4s). Copyright cO 2017 IEEE [138].

for a highly filtered (delayed) external force, the presented schemes are still effective. The
quadrotor crashed when the collision was not accounted for, i.e. without a reaction scheme.
The trajectory-based reaction schemes (stop, bounce) successfully stabilized the quadrotor
after a collision, while switching to impedance damping mode provided the fastest and
smoothest response to the collision. The estimated obstacle locations listed in Table 6.1
show that the obstacle plane estimation is precise and consistent across experiments.

Takeoff, landing, and multiple collisions

Figure 6.4 shows a complete flight with multiple bounce collision reactions. External force
estimation in flight was performed with Kf

I = 50. Individual events can clearly be seen
from the external forces. The first three reactions were due to the quadrotor hitting a
static obstacle. Normal flight is resumed after stabilization. After t = 25 s, the quadrotor
hovers and is hit by a human. Takeoff and landing events can be clearly recognized from
the magnitude of the external force f̂e,z, see that takeoff is detected at t = tt, and landing
at t = tl. Subsequent reactions are caused by a human hitting the robot during hovering.
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Table 6.1: Estimated obstacle location and associated surface normal in the collision reaction
experiment. The position is expressed in meters, in the inertial frame. Copyright cO 2014
IEEE [135].

Reaction x y z nx ny nz

No reaction 1.129 -0.339 -0.841 -0.964 0.051 -0.262
Stop 1.140 -0.335 -0.864 -0.983 -0.006 -0.180
Bounce 1.139 -0.242 -0.851 -0.982 -0.072 -0.175
Impedance 1.145 -0.304 -0.834 -0.989 0.034 -0.145
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Figure 6.4: Flight with multiple collisions. Equilibrium bounce reactions are indicated by
shaded areas. Copyright cO 2014 IEEE [135].

Clearly, the method’s sensitivity is evident, as it reacts also to small peak forces. Note
that the threshold has to be tuned according to the noise level in the estimated external
wrench, These experiments were performed in a laboratory environment without wind. At
higher airspeeds, or in wind, the noise level of the external wrench signal will be higher,
therefore the thresholds could be adapted based on the estimated airspeed. The threshold
set for collision detection is clearly a trade-off between false positives due to noise on the
one hand, and sensitivity to small impacts on the other.

6.1.2 Tactile mapping

Following a collision reflex, information about the identified collision location may be
built into an obstacle map. Such tactile mapping complements mapping by exteroceptive
sensation. For carrying out the experiment, the hybrid external force estimator and the
equilibrium bounce collision reaction strategy were implemented on an Asctec Pelican
quadrotor, see Figure 6.5. The quadrotor [123] navigates using IMU–stereo fusion only and
builds an onboard octomap, which is used for subsequent path planning. The reference
trajectory was generated such that the onboard cameras purposefully look 90◦ rotated away
from the flight direction, so that the polystyrene-block obstacle can not be seen. Upon
collision, a 60×60×30 cm obstacle is added to the octomap at the position and orientation
of the collision, estimated via (5.6). An A* path planner is subsequently applied to go
around the new obstacle mapped by using the collision reflex.
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Figure 6.5: A tactile mapping application. The collision reaction is a low-level reflex. Upon
detecting a collision, an object is added at the estimated contact position and orientation to
the onboard octomap and replan to avoid further collisions. This assumes collisions with a
static environment. Copyright cO 2017 IEEE [138].

6.2 Interaction, disturbance, and fault aware flying robot swarms

With the maturing of onboard visual navigation and perception for flying robots, research
has partly focused on developing physical interaction and manipulation capabilites for these
machines. In order to deploy such capabilities at a large scale, a high level of robustness
against faults and disturbances is required. With the majority of the literature focusing
on basic capabilities such as interaction control and (cooperative) aerial manipulation,
handling general classes of faults and disturbances has not been covered in great detail
and is still in its infancy.

In this section, we provide a synopsis of recent developments in physically interacting
flying robots, put them in a larger taxonomical context, and develop a generalized concept
of interacting flying robots at scale, such as in a swarm. A main contribution is the
the introduction of the awareness pipeline that unifies the representation of interaction,
disturbance, and fault awareness for a single flying robot as well as flying robot swarms.
A synopsis of already developed individual elements of the pipeline from the literature is
provided, and future research directions that would validate the proposed approach are
speculated.

Interaction, disturbance, and fault aware flying robots. Figure 6.6 depicts a
flying robot system (single robot, robot group or robot swarm) that is simultaneously
subject to (possibly multiple) physical interactions (e.g. from a human, or manipulation),
wind disturbances, and external faults such as collisions. An interaction is a desired
dynamic behavior of the robot w.r.t. some input quantity. A disturbance is an uncontrolled
input to the system, while a fault is an unpermitted deviation of at least one characteristic
property or parameter of the system from the nominal operating condition [127]. A
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Figure 6.6: An interaction, disturbance, and fault aware flying robot system understands the
source and context of its simultaneous inputs and reacts accordingly.

hypothetical interaction, disturbance and fault aware flying robot system will be able to
sense these inputs and safely react consistent to a task-specific context. Furthermore, by
exploiting contextual information from disturbance models it is argued that fundamentally
new interaction paradigms may be achieved that allow e.g. physical interaction under wind
influence, or following the wind speed gradient. Figure 6.7 depicts a speculative application
of such a system. The task is to cooperatively slide an object along a compliant surface,
under wind influence, while generating an accessible 3D map of the surface. A robot in the
swarm serves as haptic input device for a human user. The system is composed of three
robot groups. The blue group preforms cooperative slung load transport [19]. The red
group grasps [45] for controlling the horizontal motion of the object. The green group is
maintaining visual line of sight. To achieve complex interaction task, flying robots swarms
must be aware of all involved interactions, in particular physical ones. In Section 6.2.2 the
considered types of awareness are refined further.

Swarm hierarchy. Figure 6.8 depicts a hierarchy of an interaction, disturbance, and
fault aware flying robot swarm, with some example tasks and disturbances. The flying
robot swarm can be subdivided into multiple hiearchical subsystems: propulsion, flying
robot, robot group, and robot swarm. Each subsystem subsumes multiple units of the lower
level subsystem, and is subject to specific disturbances and faults (e.g. wind, latency, packet
loss). Faults may occur at each hierarchy level and propagate upwards. Each subsystem
is assigned prioritized tasks (e.g. trajectory tracking, formation, obstacle avoidance).
Obviously, higher level tasks should not destabilize presumably safety critical lower level
tasks – for example, formation control should not destabilize vehicle trajectory tracking
or local collision avoidance. Lower hierarchy level tasks therefore have higher priority.
Disturbances may be compensated and potentially exploited, and faults must be handled
in a hierarchical manner due to propagation. In this section, methods to handle interaction,
disturbances, and faults at multiple hierarchy levels are explored.
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Figure 6.7: Exemplary hypothetical future scenario of cooperative flying robot swarms (top
view). So far, no unified framework for dealing with such problems exists.
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Figure 6.8: A hierarchy of flying robot subsystems, and example tasks and disturbances.

Physically interacting flying robots. Table 1.4 lists some examples of state of the art
developments in physical interaction control of flying robots. Note that so far aerodynamic
effects due to wind are largely ignored in the literature, or they are simply compensated
as a lumped disturbance. As of today, this limits the applicability of physical interaction
methods in harsh environments. The aim of this section is to develop a framework that also
provides a roadmap and guidelines for future developments to enhance existing methods
with disturbance and fault awareness.

6.2.1 Swarm system dynamics

System dynamics with disturbances and faults. In this paper we consider interaction,
disturbance and fault aware flying robots, which should be reflected in their dynamics
formulation. Start with the ideal system dynamics of an individual flying robot, which
may be described by the Lagrangian dynamics

M(q)q̈ + g(q) +C(q, q̇)q̇ = τ , (6.3)

where M(q) is the generalized inertia matrix, q are generalized coordinates, g(q) is the
generalized gravity vector, C(q, q̇) is the matrix of Coriolis and centripetal terms, and τ is
the control input. For an individual flying robot without an articulated structure, q is the
position and orientation of the robot, and τ is the control wrench.
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The actual system dynamics is subject to disturbances, faults, and parameter and
structural changes [32, 127]. Dropping arguments, we may write

(M + ∆M)q̈ + ∆g + g + (∆C +C)q̇ = τ + ∆τ + τd + τf,e, (6.4)

where τd is the generalized disturbance (e.g. aerodynamics), τf,e are the additive external
faults. The prefix ∆ denotes a change in the respective parameter or wrench, for example
∆τ is the change of propeller thrust due to airspeed. External faults violate the free-flight
assumption, and are caused by external factors. Examples are collisions, contacts, undesired
constrained motion, etc. The proper reaction is to change the control objective, and/or
escalate to higher level planning. We also consider multiplicative model faults τf,m due to
parameter uncertainty or a change in the system dynamics, such as loss of motor actuation,
change of aerodynamic coefficients, a shifting center of mass, or structural failure. The
reaction is e.g. a structural change or adaptation of the controller. This distinction is
made because the two fault types differ in effect and required recovery, see Section 6.2.3.
By defining τf,m from (6.4) as

τf,m(q, q̇, τ , t) = ∆τ −∆M(q)q̈ −∆g(q)−∆C(q, q̇)q̇, (6.5)

the dynamics of a single robot with disturbances and faults may be written as

M(q)q̈ + g(q) +C(q, q̇)q̇ = τ + τd + τf , (6.6)

where faults are lumped into a single fault wrench τf = τf,m + τf,e.
System dynamics of a flying robot swarm. In the swarm, it is assumed that g(q)

and C(q, q̇)q̇ are compensated by the local controllers at individual robot level, and a
set of controllable coordinates qc is exposed to the swarm level. Quadrotors, for example,
are underactuated and their local controller ensures tracking of a Cartesian position and
orientation about the body z−axis. For flying robots with full controllability, see Rajappa
et al. [116] and Ryll et al. [120], qc will contain the full 6D pose. For a swarm of robots,
let the swarm generalized coordinates qs contain the controllable coordinates qc of each
robot. The dynamics equations of the swarm may then be simplified to

Msq̈s = τs, (6.7)

where M s is the generalized swarm inertia matrix, and τ s is the swarm control input in the
generalized coordinates. The dynamics with swarm-level disturbances and faults become

Msq̈s = τs + τd,s + τf,m,s + τf,e,s, (6.8)

where τd,s, τf,m,s, and τf,e,s are swarm-level disturbances, modeling, and external faults,
respectively. Note that these equations have been presented in order to define the nomen-
clature and apply model-based concepts to the problem. They present the basic equations
for the awareness pipeline. In the following sections, specifics of disturbance, interaction
control, and fault awareness are discussed.

6.2.2 Awareness pipeline and interaction control

To deal with complex tasks, flying robot swarms must be aware of physical interactions.
This awareness may be conceptualized through the novel concept awareness pipeline,
depicted in Figure 6.9(a). It is derived from a deductive sequential question-driven process
to generate knowledge. This is a generalization of a fault handling pipeline introduced in
Haddadin et al. [55] to interactions and disturbances.
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Figure 6.9: The awareness pipeline and its parallel instantiation.

The choice of pipeline defines the scope of the awareness. First, the robot must know
about the presence of an object (anything from a real physical object, a data-driven signal
input to the arising of a monitoring signal). Second, an isolation step determines its origin
(e.g. location). The identification step determines the time evolution of the object, enabling
the classification of its purpose. Once this is known, a proper response may be taken by
the robot.

The external wrench τe acting on the robot is a sum of all interaction, disturbance, and
fault inputs. Most control schemes operate under the assumption that only the interaction
wrench acts on the robot [17, 92, 135]. Consider the interaction in Figure 6.6, where
wind is added to the interaction wrench. In order to simultaneously compensate for the
aerodynamic disturbance, perform impedance control towards the human, and react to
collisions, the flying robot must be able to discriminate between the separate forces acting
on it. Input discrimination is therefore a basic enabling component for running awareness
pipelines in parallel, see Figure 6.9(b). It may use sensors (e.g. IMU, force sensing), models
(e.g. dynamics, geometry), estimates and context (e.g. environment maps, task definitions,
proximity of humans). This is discussed in detail in Section 6.2.3. Discriminated wrenches
are used as inputs to the respective pipelines. The overall system behavior is a composition
of the pipeline responses. Awareness pipelines run at each swarm hierarchy level. Note
that contextual input can be provided by other levels in the hierarchy. In the following
subsections, each pipeline is discussed in more detail.

6.2.3 Disturbance awareness pipeline

Disturbance presence, isolation and classification are usually obtained from context infor-
mation, during the controller design stage. Table 1.2 lists the most common disturbances
in flying robots, and sensors that may be used to discriminate between them. Each distur-
bance type (the what) requires a separate awareness pipeline, because their interpretation
and responses will differ. Identification (i.e. time evolution of the signal) may be used
to adapt the response online. In the following, two disturbance response strategies are
discussed: compensation and exploitation.

Disturbance compensation. In most situations, it is desirable that a single interacting
flying robot under the influence of disturbances maintains the simplifed dynamics (6.7). The
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Figure 6.10: A framework for exploiting an aerodynamics model to map the wind speed and
use the resulting wind map for planning on multiple levels of the hierarchy.

control law may be decomopsed as τ = τ task + τ comp, where τ task is a nominal controller
that executes the desired task(s), e.g. impedance control, while τ comp compensates the
disturbances. A common approach is to lump all disturbances and faults into one unknown
input wrench, which is interpreted as a disturbance and compensated. The lumped
disturbance estimation is obtained by an external wrench estimator [30, 118, 135], which is
based on IMU measurements, a dynamics model, and the control input. Then, methods such
as disturbance observers [80, 141, 118], or integral control may be applied for compensation.
A compensated impedance controller that reacts to the interaction force and compensates
wind forces has been proposed in Section 3.2.2.

Exploitation of disturbances. In some applications it may be beneficial to exploit a
known model of the disturbance. Undoubtedly, there is large potential in exploiting wind
information, which can be obtained from the aerodynamic disturbance using model-based
methods [149, 136, 140]. Initial advancements have been made toward motion planning using
known wind fields [148, 150]. In Ware and Roy [148], motion planning in an urban wind
field is performed that minimizes the required motor power. The most promising direction
seems to be building a shared map, as depicted in Figure 6.10. Instead of interpreting wind
as a disturbance, disturbance context may be shared among robots. For example, in Yao
et al. [150] the authors learned a map of disturbance wrenches to improve planning in the
proximity of structures. Figure 6.10 depicts a generalized scheme that exploits a known
aerodynamics model. Here, the wind vw is causing an aerodynamics wrench τ aero on a
flying robot. The estimated external wrench τ̂e is then used for discriminating between
wrenches acting on the robot, see Chapter 5 and Section 6.2.3. The result is an estimated
aerodynamics wrench τ̂ aero, which is inverted in a learned aerodynamics model to obtain
an estimate v̂w. This is stored in a local map of wind speeds, and shared among multiple
robots. The wind map may then be used for planning e.g. energy-optimal trajectories xd,
or to follow the wind gradient. Lastly, the controller at each level commands a lower-priority
task fi to the respective lower level controller, according to (6.10).

Interaction aware control and sensing

Handling of aerodynamic effects during interaction. The topic has not gained a
lot of attention in literature, as discussed in Section 1.2. Model-based contact wrench
isolation with minimal additional sensing, or at least obtaining the contact position on the
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Figure 6.11: Operational space behaviors on swarm level imposed via virtual springs.

robot hull in a continuous fashion is an open problem in literature. This topic has been
investigated in detail in Chapter 5, in the context of a single robot.

Multi-priority task definition. After the interaction input has been discriminated,
the particular response of the interaction pipeline in Figure 6.9(b) is defined by one or more
prioritized tasks. The response of the pipeline is then a generalized control force obtained
from a multi-priority task controller. Our belief is that multi-priority task control for
swarms will become an important research topic. Tasks may be defined w.r.t an operational
space O [73]. The operational space task x can be mapped to the generalized coordinates
q via the Jacobian J(q) := ∂x

∂q . For example, the operational space of a quadrotor may be
its position and yaw, while its generalized coordinates are its full 6-DoF pose. A controller
in the operational space will command a generalized wrench f(x), which may then be
translated to the generalized coordinates by the map

τ = JT (q)f(x). (6.9)

Due to redundancy, multiple tasks may be imposed on a robot or a swarm simultaneously.
In particular, redundancy resolution methods from multi-priority control of redundant
robot manipulators and humanoids may be extended to flying robot swarms. The basic
idea is to project lower-priority tasks into the nullspace of higher-priority tasks so they do
not interfere with each other [4, 9, 13]. Doing this at the swarm level dynamics (6.7) would
result in a hierearchical multi-priority wrench swarm controller. Note that this is still an
open research problem. Alternatively, consensus algorithms can be used, see Olfati-Saber
et al. [105] and references therein. The control input for task with priority k would then
be given by

τ k = τ k−1 + (JkPk−1)
−T (fk − Jkτk−1), (6.10)

where fk is the desired operational space wrench of task i, and τ 0 = 0. The matrix Pk is
the projection operator onto the nullspace of matrix Jk (i.e. Pk = I − J+

k Jk) [125]. This
state-of-the art approach decouples tasks and ensures that the higher priority tasks are not
perturbed by lower priority tasks, at the cost of reduced perfomance of the latter. Of course,
it is important to have good models for all levels of the swarm hierarchy. Well-researched
simultaneous tasks for swarms include maintaining a formation, obstacle avoidance, and
tracking desired positions [104].

Operational space interaction behaviors. In the context of interaction, it is also
possible to include desired physical interaction with the environment and/or objects to be
manipulated, such as admittance [11, 120, 135, 138], impedance [92, 117, 118, 135, 138],
or force control [6, 17, 110]. Typically, impedance control for the tracking case is defined
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through the desired error dynamics

Mẍ+Dẋ+K(x− x∗) = fk, (6.11)

where x∗ is the desired equilibrium state, and D and K are appropriate damping and
stiffness gain matrices, respectively. Operational space controllers f(x) may be defined on
the robot, group [13, 156] or swarm level, see Figure 6.11. Only the task Jacobian must
be changed. Note that using this framework, also perception-based tasks on all hierarchy
levels may be included.

Physical interaction with swarms. There have been significant advancements in
cooperative aerial manipulation [13, 91, 156]. However, physical interaction with a flying
robot swarm is still and unresearched area. External wrench estimation for robot swarms
would enable novel physical interaction paradigms, such as moving the swarm through
physical interaction with its agents. Furthermore, input discrimination may be applied at
higher levels of the hierarchy by sharing context between the robots. Each robot may be
understood as a particle of a rigid, elastic or articulated body. Then, physical interaction
properties on this body may be defined on swarm level analogous to the single robot or
manipulator case, respectively.

Fault handling pipeline

Figure 6.12 depicts a fault handling pipeline [55, 32, 127] on a collision detection example as
in Section 6.1. The pipeline starts with a residual generator, which is a fault indicator based
on a deviation between measurements and a system model (practically also a data-driven
model). The residual is used for fault detection, which outputs a binary signal (true/false),
i.e. whether the fault is present, as well as the time of detection. Fault isolation deals
with determination of the kind and location of the fault. The fault is then identified to
determine the size and time-variant behavior of the fault. This can further be classified,
e.g. by severity, intensity, intent, etc. The appropriate reaction depends on the result of
the fault diagnosis, which consists of isolation, identification and classification. The last
step in the pipeline is fault recovery.

Hierarchical fault handling. Faults may occur at multiple levels of the robot or
robot swarm, as depicted in Figure 6.12(b). In this hierarchical scheme, multiple fault
handling pipelines run in parallel. Residual generators may use signals from lower levels
in the hierarchy as well. The diagnosis is similarly connected, where identification may
use lower level isolation and identification signals, and classification may use lower level
identification signals. The reaction depends on the fault type, as explained below. Note
that there is a inherent and possibly time-varying latency between the levels in the fault
handling pipeline.

Model faults cause an internal reconfiguration of the system. This may be adaptation or
structural (morphological) reconfiguration. Adaptation is, for example, changing parameters
of an adaptive controller, or changing the spring stiffness in a formation of robots. For
example, the loss of a motor in a quadrotor requires a different control strategy than in
the nominal case because the dynamics changes considerably [94]. For a group of robots,
losing one robot may require reconfiguring the morphology of the formation [41]. Similarly,
when the individual robot cannot maintain (6.7) anymore (e.g. due to actuator failure),
the robot may safely land, while removing itself from the swarm, in turn necessitating the
swarm to react with according awareness (swarm-level reflexes). Picking up a payload with
a single robot can also be handled as a model fault, detected e.g. by a change detection
algorithm [53]. The proper reaction would be parameter adaptation [91], e.g. by resetting
the covariance of estimated parameters. The recovery is complete once the parameter
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Figure 6.12: Hierarchical model-based fault handling pipeline.

covariance converges below a threshold. In this case, no escalation to a higher level in the
hierarchy is necessary, as the local fault-aware controller is ensuring that the robot behaves
as (6.7). However, if multiple robots grasp a payload simultaneously, this may trigger a
group-level model fault, leading to distributed estimation of the payload parameters.

External faults trigger a change in the task objectives. This might be a reflex reaction,
or a switch to a different interaction task. In the hierarchical fault handling pipeline,
re-planning at the group or swarm level may also be triggered. Unwanted collisions with
the environment are an example of external faults [136], and may be handled according
to the pipeline from Figure 6.12 as follows. On motor level, a residual may be used to
detect collisions with the propeller. An example reaction is slowing down or stopping the
motor to prevent further damage. Going up to the vehicle level, the motor residual may be
used for detection, together with the highpass filtered external force as depicted in Figure
6.12(b). After the collision direction and location are isolated, the classification may use
information from the motor level to determine whether the collision was on the hull or
within the propeller. Contextual information such as vehicle velocity at the collision time
may be used. An example reaction is stopping the vehicle away from the collision pose, as
to “bounce off”. Inclusion in the environment map and replanning is also possible in this
case, see Section 6.1. The vehicle is recovered once the reflex is complete. Going further up
in the hierarchy, in the group and swarm levels, this may trigger a change in the formation
parameters, like changing the spring stiffness between the robots, or changing the desired
formation.

Disturbance and fault estimation for robot groups. Disturbance estimation
exist for individual robots, however this area is unexplored for groups of flying robots.
Furthermore, flying robot swarm literature is mostly concerned with motion planning.
General fault disturbance handling can be seen as an enabling factor in robust operation of
swarms. Therefore, fault detection at the group and swarm level seem to be important
underrepresented research topics. Parameter and aerodynamic disturbance estimation
during cooperative load carrying seem to be topics that have not yet been handled in the
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Table 6.2: Common faults for single flying robots and robot swarms.

Type Description Reaction

Model faults τ f,m

Motor loss Loss of motor or propeller, reducing
vehicle controllability.

Change controller [94] and land
(underactuated vehicle), adapt
control allocation matrix (redundant
propellers) [121]

Parameter
change

Parameter uncertainty or change of
parameters due to e.g. picking up payload

Reset covariance of a parameter
estimation algorithm [53]

Contact with
envirionment

Contact is achieved, changing sytem
dynamics [6, 110, 120]

Switch to contact controller

Loss of robot A robot has failed critically. Remove the robot from the swarm
and reconfigure formation.

External faults τ f,e

Hull collision Unwanted collision of robot hull with
environment.

Stabilize vehicle at safe distance from
collision pose, replan trajectory [138].

Motor collision Objects in propellers. Stop or slow down the motor,
escalate to hull collision reaction.

Contact One or more robots come into contact
with environment

Engage force closure

literature. However, this may change as aerial manipulation systems mature and start
executing missions under wind influence.

6.2.4 Conclusions

Significant advancements in flying robots physically interacting with the environment
were made in literature. Still, in comparison to well established disciplines like industrial
robotics the entire field is still rather young. Based on the state of the art and by taking
significant speculative steps, a synopsis and high-level control framework for concretizing
a fully elaborated vision of interaction aware flying robot systems were assembled. This
was possible since on the one hand the major technological challenges when aiming for
general robust interaction capabilities, high-performance disturbance compensation and
exploitation, and fault handling in flying single robots and swarms were isolated in this
section. On the other hand, a unifying methodology was proposed, inspired from deductive
awareness concepts in order to define and develop awareness in flying systems. The resulting
awareness pipelines aim to generalize methods from fault detection and isolation literature
to interactions and disturbances. Lastly, speculation about future research that is needed
to achieve truly interactive, disturbance and fault aware flying robot swarms in the wild
was undertaken.
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CHAPTER 7

Conclusion

This thesis aimed to make aerial robots aware of the disturbance, interaction, and faults
acting on them. This yielded the following goals:

G1) Make flying robots aware of contacts and collisions, by providing a low-level detection
and reaction framework.

G2) Provide an estimate of the wind velocity that is independent of the external wrench.

G3) Bridge the gap between trajectory tracking and interaction control, to allow physical
interaction under wind influence.

These goals in turn posed following research questions:

Q1) Is discrimination between the external wrench components for control purposes
possible in real time?

Q1) Given the individual wrench components, what are effective control schemes for
interaction and trajectory tracking control under wind influence?

Q3) How can unexpected faults, such as collisions with the environment, be detected and
handled efficiently and effectively?

Q4) Is it possible to obtain a measurement of the wind speed that is independent of the
external wrench?

Table 7.1 provides an overview how the goals and questions map to chapters in this thesis.
The following contributions were made. In Chapter 2, a systematic three-stage parameter

identification procedure for aerial robots was developed, to accurately identify required
models [139]. Then, external wrench estimation techniques were extended to be suitable
for aerial robots without the need of velocity measurements [135, 138]. Results show that
using only the IMU makes it possible to implement the wrench estimator on embedded
platforms knowing only the control input, IMU measurements, and the system model. This
technique allows the reasoning about external wrenches without the need for additional
sensors such as force, contact or wind sensors, forming the basis of all other methods
developed in the thesis.

In Chapter 3 tracking and physical interaction control for flying robots were developed,
with explicit estimation of the external wrench. Therefore, effective control schemes for
interaction and trajectory tracking control under wind influence are explored. It is shown
that directly compensating the estimated disturbance is an effective method for improving

119
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Table 7.1: Matrix of thesis goals and questions to chapters.

Ch 3 Ch 4 Ch 5 Ch 6 Achieved?

G1 · · • • Y
G2 · • · · Y
G3 • · • · Y/N
Q1 · · • · Y
Q2 • · · · Y
Q3 · · • • Y
Q4 · • · · Y

tracking performance of flying robots under wind influence. The impedance controller is
extended to compensate aerodynamic disturbances, i.e. to facilitate physical interaction
under wind influence (goal 3). This controller was used to obtain simulation results in
Chapter 5. Since only simulation results are provided, the effectiveness of the proposed
controller in real-world conditions still remains an open question.

Wind estimation is investigated in Chapter 4, using different data-driven aerodynamic
models [140, 139]. To train and evaluate the models, measurements obtained by flying a
custom-built hexacopter in a 3D wind tunnel are used. Solutions to Goal 2 and Question
4 have been explored in this chapter. A major contribution ot this thesis is related to
estimating wind speed using measured motor power. Measurements obtained from wind
tunnel flights could then be used to estimate the aerodynamic power of each coaxial rotor
pair during flight, and then the wind speed. Two novel methods were developed for this
purpose. The first employs a data-driven approach to build nonlinear regression models
from aerodynamic power to airspeed. The second is a first-principles model driven approach
that builds an optimization problem based on the propeller aerodynamics model and online
motor power measurements. This contribution allows the propellers to be used as wind
speed sensors and to provide a measurement that is independent of the IMU.

The topic of discriminating between aerodynamic, interaction, and fault wrenches is
introduced in Chapter 5, touching on Goals 1 and 3, and Question 1. The methods
developed in this thesis allow the external wrench to be decomposed into the constituent
terms continuously and in real-time. This is achieved by modeling the relevant aerody-
namics models and reasoning about the wind velocity, as evaluated in Chapter 4. Force
discrimination outputs are applied in the compensated impedance controller developed
in Chapter 3 to allow compensation of the wind disturbance while being compliant to
interaction forces. This allows interaction control under wind influence without the need
for additional sensors, further facilitating Goal 3. In Chapter 5, four novel methods to
discriminate between the inputs, using previously identified models were developed and
evaluated in simulation. All of them rely on estimating the wind speed in an inertial
frame and applying an aerodynamics model to obtain the aerodynamic wrench. This is
subtracted from the estimated external wrench to obtain the interaction wrench. The
first, modified model-checking scheme, is based on slowing down wind estimation when
contact is detected. Contact detection is based on the residual between the external torque
and the expected aerodynamic torque as a function of the external force. Limits of this
contact detection methods are also shown. The second method is a particle filter that
directly estimates the contact position, under the assumption of a point contact on the
robot’s convex hull. The third method uses the estimated aerodynamic power to obtain
the airspeed. Therefore, airspeed estimation in this scheme is independent of the vehicle’s
IMU. Lastly, the modified model-checking and power-based method are combined in a
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Kalman filter and use the particle filter to obtain the contact position. This results in a
robust overall scheme for obtaining the interaction wrench and contact position when a
flying robot is operating under wind influence, without the need for additional sensors.

The problem of collision detection and safe reaction for flying robots without the need
of additional sensors has been solved in Chapter 5. Collisions are detected based on the
frequency content of the external force. Effective collision reflex schemes were presented in
Chapter 6, relating to Question 3. The geometry of the problem can be used to obtain the
collision location on the robot’s convex hull. Next, slow contact forces can be distinguished
from wind through a residual of the aerodynamic torque model. Discrimination can then be
performed by simultaneously estimating the wind speed, and slowing down wind estimation
when contact is detected. Due to the failure cases of this method, an alternative method
that uses aerodynamic power based wind estimation is developed. This relies on other
aerodynamic models to distinguish between the constituent terms. In summary, this
contribution presents a starting point of a quite new research field for aerial robots, as it
opens interesting new questions.

It can be concluded that all posed goals have been successfully achieved, with some force
discrimination methods requiring experimental validation.

Future work

This thesis opens new research opportunities, mainly in two areas. The first is estimating
wind by using propellers as sensors in flight, providing a measurement independent of the
external force, and therefore supporting Goal 2. This method re-uses existing hardware
(motors and speed controllers), and requires only modeling and computational effort. In this
thesis, the first successful estimation techniques to obtain wind speed from aerodynamic
power estimates were developed. This largely unexplored field has opened new research
questions. In the case of physical model based wind estimation, while the power optimization
problem works in principle, its performance and robustness can be improved dramatically,
providing new research opportunities. For example, state of the art trajectory optimization
techniques for maximizing observability of a problem may be applied to this problem
in future work. Furthermore, extending and improving the problem formulation to also
include other measurements and make it more robust is also left for future work. Note that
this field is still young, as motor current sensing, which is a prerequisite for this method, is
still not commonly deployed in flying robot research platforms.

The second novel area is force discrimination. In this thesis significant steps have been
made to formulate the problem and provide the first effective and efficient model-based
techniques towards solving Goal 3. For collision detection, extensive experiments and
high-level architectures were presented, showing the robustness of this method and how it
can be applied in the context of fully autonomous flying robots. Discrimination between
slow contact and aerodynamic forces was only explored in simulation. Nevertheless, this
was based on real-world data, leveraging aerodynamics models identified from flights in a
3D wind tunnel. As such, the developed methods are promising, however they have yet to
be experimentally tested in real-world conditions, which is left for future work and might
require architectural changes.

Finally, the thesis explored interaction, disturbance, and fault aware flying robot swarms
in Chapter 6, touching on Goal 1. Extensions of the developed methods to robot swarms
were discussed and novel research questions beyond state of the art were postulated, based
on insights gained in this thesis.
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–2000 OŠ Vilima Korajca, Kaptol, Croatia

2000–2004 Gimnazija Požega, Požega, Croatia
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