3,388 research outputs found

    AUV SLAM and experiments using a mechanical scanning forward-looking sonar

    Get PDF
    Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods

    Simultaneous localization and map-building using active vision

    No full text
    An active approach to sensing can provide the focused measurement capability over a wide field of view which allows correctly formulated Simultaneous Localization and Map-Building (SLAM) to be implemented with vision, permitting repeatable long-term localization using only naturally occurring, automatically-detected features. In this paper, we present the first example of a general system for autonomous localization using active vision, enabled here by a high-performance stereo head, addressing such issues as uncertainty-based measurement selection, automatic map-maintenance, and goal-directed steering. We present varied real-time experiments in a complex environment.Published versio

    Highly efficient Localisation utilising Weightless neural systems

    Get PDF
    Efficient localisation is a highly desirable property for an autonomous navigation system. Weightless neural networks offer a real-time approach to robotics applications by reducing hardware and software requirements for pattern recognition techniques. Such networks offer the potential for objects, structures, routes and locations to be easily identified and maps constructed from fused limited sensor data as information becomes available. We show that in the absence of concise and complex information, localisation can be obtained using simple algorithms from data with inherent uncertainties using a combination of Genetic Algorithm techniques applied to a Weightless Neural Architecture

    Navigace mobilních robotů v neznámém prostředí s využitím měření vzdáleností

    Get PDF
    The ability of a robot to navigate itself in the environment is a crucial step towards its autonomy. Navigation as a subtask of the development of autonomous robots is the subject of this thesis, focusing on the development of a method for simultaneous localization an mapping (SLAM) of mobile robots in six degrees of freedom (DOF). As a part of this research, a platform for 3D range data acquisition based on a continuously inclined laser rangefinder was developed. This platform is presented, evaluating the measurements and also presenting the robotic equipment on which the platform can be fitted. The localization and mapping task is equal to the registration of multiple 3D images into a common frame of reference. For this purpose, a method based on the Iterative Closest Point (ICP) algorithm was developed. First, the originally implemented SLAM method is presented, focusing on the time-wise performance and the registration quality issues introduced by the implemented algorithms. In order to accelerate and improve the quality of the time-demanding 6DOF image registration, an extended method was developed. The major extension is the introduction of a factorized registration, extracting 2D representations of vertical objects called leveled maps from the 3D point sets, ensuring these representations are 3DOF invariant. The extracted representations are registered in 3DOF using ICP algorithm, allowing pre-alignment of the 3D data for the subsequent robust 6DOF ICP based registration. The extended method is presented, showing all important modifications to the original method. The developed registration method was evaluated using real 3D data acquired in different indoor environments, examining the benefits of the factorization and other extensions as well as the performance of the original ICP based method. The factorization gives promising results compared to a single phase 6DOF registration in vertically structured environments. Also, the disadvantages of the method are discussed, proposing possible solutions. Finally, the future prospects of the research are presented.Schopnost lokalizace a navigace je podmínkou autonomního provozu mobilních robotů. Předmětem této disertační práce jsou navigační metody se zaměřením na metodu pro simultánní lokalizaci a mapování (SLAM) mobilních robotů v šesti stupních volnosti (6DOF). Nedílnou součástí tohoto výzkumu byl vývoj platformy pro sběr 3D vzdálenostních dat s využitím kontinuálně naklápěného laserového řádkového scanneru. Tato platforma byla vyvinuta jako samostatný modul, aby mohla být umístěna na různé šasi mobilních robotů. Úkol lokalizace a mapování je ekvivalentní registraci více 3D obrazů do společného souřadného systému. Pro tyto účely byla vyvinuta metoda založená na algoritmu Iterative Closest Point Algorithm (ICP). Původně implementovaná verze navigační metody využívá ICP s akcelerací pomocí kd-stromů přičemž jsou zhodnoceny její kvalitativní a výkonnostní aspekty. Na základě této analýzy byly vyvinuty rozšíření původní metody založené na ICP. Jednou z hlavních modifikací je faktorizace registračního procesu, kdy tato faktorizace je založena na redukci dat: vytvoření 2D „leveled“ map (ve smyslu jednoúrovňových map) ze 3D vzdálenostních obrazů. Pro tuto redukci je technologicky i algoritmicky zajištěna invariantnost těchto map vůči třem stupňům volnosti. Tyto redukované mapy jsou registrovány pomocí ICP ve zbylých třech stupních volnosti, přičemž získaná transformace je aplikována na 3D data za účelem před-registrace 3D obrazů. Následně je provedena robustní 6DOF registrace. Rozšířená metoda je v disertační práci v popsána spolu se všemi podstatnými modifikacemi. Vyvinutá metoda byla otestována a zhodnocena s využitím skutečných 3D vzdálenostních dat naměřených v různých vnitřních prostředích. Jsou zhodnoceny přínosy faktorizace a jiných modifikací ve srovnání s původní jednofázovou 6DOF registrací, také jsou zmíněny nevýhody implementované metody a navrženy způsoby jejich řešení. Nakonec následuje návrh budoucího výzkumu a diskuse o možnostech dalšího rozvoje.

    Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Full text link
    This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior Tecnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots) and dynamic (moving robots) obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams

    Appearance-based localization for mobile robots using digital zoom and visual compass

    Get PDF
    This paper describes a localization system for mobile robots moving in dynamic indoor environments, which uses probabilistic integration of visual appearance and odometry information. The approach is based on a novel image matching algorithm for appearance-based place recognition that integrates digital zooming, to extend the area of application, and a visual compass. Ambiguous information used for recognizing places is resolved with multiple hypothesis tracking and a selection procedure inspired by Markov localization. This enables the system to deal with perceptual aliasing or absence of reliable sensor data. It has been implemented on a robot operating in an office scenario and the robustness of the approach demonstrated experimentally
    corecore