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1. Introduction 
  

In navigation application of mobile robot, position is estimated based on odometry and the 
measurement obtained by peripheral devices such as ultra-sonar, range finder, and visual 
sensor. Odometry is usually unreliable due to the internal factor of encoder device and the 
external factor of slippage. These kinds of errors accumulated in navigation continuously 
affect the estimation accuracy (Borenstein & Feng, 1996b; Martinelli et al., 2007). Range 
finder and sonar are often used in navigation (Borenstein et al., 1996a; Borenstein et al., 1997; 
Groβmann & Poli, 2001; Demirli & Molhim, 2004). However such measurement is not 
reliable in highly-dynamic environments where radar or sonar beams can be frequently 
blocked or confused by moving objects such as people. They are not applicable to 
localization in large area either because of their limited range. Also, passive sensor requires 
active landmarks such as beacon, which requires modification of environment and is not 
practical especially in an outdoor environment. Moreover, interference among several 
mobile sensors causes inability to properly localize their locations. 
Visual-information-based self-localization has advantages over above methods in two-folds. 
First, it does not require active landmarks (i.e., reference objects) such as beacon and also 
natural objects can serve as landmarks. The other advantage is that it is more effective and 
reliable in dynamic environment as the sensible range is not limited by the line-of-sight. 
These advantages have fostered much effort in research community of navigation 
application (Jang et al., 2002; Hayet et al., 2007; Se et al., 2002). 
Reference objects can be either artificial or natural objects (Betke & Gurvits, 1997; Briggs et 
al., 2000; Thrun, 1998; Dao et al., 2004). We assume that reference objects can be uniquely 
identified by a mobile robot. The global coordinates of landmarks or reference objects are 
known to mobile robot. There have been extensive researches about robot localization with 
known reference objects. The conventional self localization algorithms use the bearings of 
the landmarks relative to each other. This is called “visual angle” formed by the rays from a 
mobile robot to each reference point (Sutherland & Thompson, 1993). The location of a 
mobile robot is estimated by finding the intersection point of the circles passing the 
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reference point. In the ideal case, the mobile robot is localized with three landmarks. 
However, although the matched landmarks from the image are found in the known map, 
the visual angle is usually distorted by the nonlinear property of a camera lens. Thus, the 
solution is estimated by minimizing the error of all possible landmarks pairs and the 
estimation error is minimized in proportion to the number of landmarks pairs (Betke & 
Gurvits, 1997; Cohen & Koss, 1993). Moreover, multiple solutions exist when all landmarks 
form a circle. Another approach uses perspective projection model to identify the 
relationship between the view point and the landmark. Although this method is simple in 
calculation, the performance is also worsened by the projection method without calibrating 
the camera nonlinearity (Dao et al., 2004; Liu & Zhou, 2007). 
In this chapter, we propose a self localization method using a single visual image with the 
simple iteration technique. We assume that reference objects can be reliably extracted and 
identified. The proposed method identifies the relationship between the landmarks on the 
image and the known global reference points by the parallel projection model. The parallel 
projection model calibrates the non-linearity of optical lens distortion without 
computational complexity. The coordinates and the orientations are estimated with 
minimum relation equations by the simple iteration method. Our method can be used in 
large area with artificial or natural references as long as their coordinates are known and 
they can be reliably identified. The possible error source of the self localization method is 
explained and analyzed in terms of the performance of the self localization. 
The rest of this chapter is organized as follows. Section 2 discusses background of self 
localization and problem description. In Section 3, a parallel projection model and its basic 
concept are discussed. Section 4 proposes a self localization algorithm for determining the 
coordinates and the orientation from external reference points. In Section 5, we present an 
experiment and the analysis of simulation results with extensive analysis of the error effect 
of the measurement on the performance of the algorithm. Section 6 concludes the chapter. 

 
2. Background and Problem Description 
  

2.1 Related Work on Self-Localization 
In general, self localization with visual information is related to photometry. (Yuan, 1989) 
presents a general method for determining the three-dimensional position and orientation of 
an object relative to a camera based on a two-dimensional image of known feature points 
located on the object. (Horaud et al., 1989) analytically deals with the perspective n-point 
(PnP) problems with four correspondences of scene objects. Our approach does not 
analytically solve matrix transformation, but calculates the orientation and the location 
using a computationally efficient iterative algorithm. 
A simple method for localization which allows a robot to determine its absolute position 
with a view of single landmark in one image is presented in (Dao et al., 2004). The landmark 
is chosen as the intersection of natural lines easily found in indoor environment such as 
edge of doors or walls. Another localization algorithm which is based on comparing the 
images taken in advance and taken during navigation is discussed in (Betke & Gurvits, 
1997). In this scheme, the shape and the coordinate of images are stored in memory efficient 
format for quick retrieval and comparison. A similar method is presented where planar 
landmarks such as posters are used in visual localization of a mobile robot in indoor 
environment (Ayala et al., 2000). This algorithm has a restriction on the shape of landmark 

 

and is not suitable in an open area. Similar to these approaches, our assumption requires a 
map of global coordinates of reference objects that can either be natural or artificial objects. 
Scale Invariant Feature Transform (SIFT) developed for image feature generation in object 
recognition application is used for robot localization in (Se et al., 2001). The invariant 
characteristics of SIFT are captured by three images and stereo-matched to elect landmark 
that is later used to compute 3-D world coordinates relative to the robot. This algorithm 
does not require modification of the environment or map of reference objects, but needs 
more than two cameras with expensive computation to compare the features in the image. 
In this chapter, we use a parallel projection model to simplify the computational complexity 
in determining the location and the orientation of a mobile robot. In the parallel projection 
model, a virtual viewable plane is defined to formulate the relationship between a real object 
and an actual camera. By using this model, the minimum of relation equations between the 
detected landmarks on the image and known corresponding reference points are obtained. 
This enables decrease of the computational complexity in finding the solution from all 
possible landmark pairs with the minimum mean square errors. 
The parallel projection model is similar to the pinhole camera model in perspective 
projection model since the camera angle is relatively narrow and the size of the image 
obtained by the sensor is much smaller than real object area (Swaminathan et al., 2003). 
However, in the perspective projection model, the calibration process usually uses a flat 
plate with a regular pattern or the known several reference points (Lenz & Tsai, 1988; 
Heikkila & Silven, 1997; Lv et al., 2006). In addition, the calibration information should be 
updated for projection accuracy whenever the camera status is changed. This is not 
appropriate for highly dynamic application such as the robot navigation. On the other hand, 
the parallel projection model uses zoom factor instead of focal length and scale factor. This 
model simplifies the calibration process of the camera non-linear property by using the pre-
obtained calibration table. Therefore, it is easily applied to the reference projection in the 
robot navigation. As a result, the relation equations are less affected by the camera model. 
This minimizes the self localization error due to the projection model. Fig.1 illustrates the 
difference of our parallel projection model and the perspective projection model (Lepetit & 
Fua, 2006) where d1 and d2 denote the distance of the camera and Object Plane. Object Plane 
contains the object and is parallel to Actual Camera Plane. 
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reference point. In the ideal case, the mobile robot is localized with three landmarks. 
However, although the matched landmarks from the image are found in the known map, 
the visual angle is usually distorted by the nonlinear property of a camera lens. Thus, the 
solution is estimated by minimizing the error of all possible landmarks pairs and the 
estimation error is minimized in proportion to the number of landmarks pairs (Betke & 
Gurvits, 1997; Cohen & Koss, 1993). Moreover, multiple solutions exist when all landmarks 
form a circle. Another approach uses perspective projection model to identify the 
relationship between the view point and the landmark. Although this method is simple in 
calculation, the performance is also worsened by the projection method without calibrating 
the camera nonlinearity (Dao et al., 2004; Liu & Zhou, 2007). 
In this chapter, we propose a self localization method using a single visual image with the 
simple iteration technique. We assume that reference objects can be reliably extracted and 
identified. The proposed method identifies the relationship between the landmarks on the 
image and the known global reference points by the parallel projection model. The parallel 
projection model calibrates the non-linearity of optical lens distortion without 
computational complexity. The coordinates and the orientations are estimated with 
minimum relation equations by the simple iteration method. Our method can be used in 
large area with artificial or natural references as long as their coordinates are known and 
they can be reliably identified. The possible error source of the self localization method is 
explained and analyzed in terms of the performance of the self localization. 
The rest of this chapter is organized as follows. Section 2 discusses background of self 
localization and problem description. In Section 3, a parallel projection model and its basic 
concept are discussed. Section 4 proposes a self localization algorithm for determining the 
coordinates and the orientation from external reference points. In Section 5, we present an 
experiment and the analysis of simulation results with extensive analysis of the error effect 
of the measurement on the performance of the algorithm. Section 6 concludes the chapter. 

 
2. Background and Problem Description 
  

2.1 Related Work on Self-Localization 
In general, self localization with visual information is related to photometry. (Yuan, 1989) 
presents a general method for determining the three-dimensional position and orientation of 
an object relative to a camera based on a two-dimensional image of known feature points 
located on the object. (Horaud et al., 1989) analytically deals with the perspective n-point 
(PnP) problems with four correspondences of scene objects. Our approach does not 
analytically solve matrix transformation, but calculates the orientation and the location 
using a computationally efficient iterative algorithm. 
A simple method for localization which allows a robot to determine its absolute position 
with a view of single landmark in one image is presented in (Dao et al., 2004). The landmark 
is chosen as the intersection of natural lines easily found in indoor environment such as 
edge of doors or walls. Another localization algorithm which is based on comparing the 
images taken in advance and taken during navigation is discussed in (Betke & Gurvits, 
1997). In this scheme, the shape and the coordinate of images are stored in memory efficient 
format for quick retrieval and comparison. A similar method is presented where planar 
landmarks such as posters are used in visual localization of a mobile robot in indoor 
environment (Ayala et al., 2000). This algorithm has a restriction on the shape of landmark 

 

and is not suitable in an open area. Similar to these approaches, our assumption requires a 
map of global coordinates of reference objects that can either be natural or artificial objects. 
Scale Invariant Feature Transform (SIFT) developed for image feature generation in object 
recognition application is used for robot localization in (Se et al., 2001). The invariant 
characteristics of SIFT are captured by three images and stereo-matched to elect landmark 
that is later used to compute 3-D world coordinates relative to the robot. This algorithm 
does not require modification of the environment or map of reference objects, but needs 
more than two cameras with expensive computation to compare the features in the image. 
In this chapter, we use a parallel projection model to simplify the computational complexity 
in determining the location and the orientation of a mobile robot. In the parallel projection 
model, a virtual viewable plane is defined to formulate the relationship between a real object 
and an actual camera. By using this model, the minimum of relation equations between the 
detected landmarks on the image and known corresponding reference points are obtained. 
This enables decrease of the computational complexity in finding the solution from all 
possible landmark pairs with the minimum mean square errors. 
The parallel projection model is similar to the pinhole camera model in perspective 
projection model since the camera angle is relatively narrow and the size of the image 
obtained by the sensor is much smaller than real object area (Swaminathan et al., 2003). 
However, in the perspective projection model, the calibration process usually uses a flat 
plate with a regular pattern or the known several reference points (Lenz & Tsai, 1988; 
Heikkila & Silven, 1997; Lv et al., 2006). In addition, the calibration information should be 
updated for projection accuracy whenever the camera status is changed. This is not 
appropriate for highly dynamic application such as the robot navigation. On the other hand, 
the parallel projection model uses zoom factor instead of focal length and scale factor. This 
model simplifies the calibration process of the camera non-linear property by using the pre-
obtained calibration table. Therefore, it is easily applied to the reference projection in the 
robot navigation. As a result, the relation equations are less affected by the camera model. 
This minimizes the self localization error due to the projection model. Fig.1 illustrates the 
difference of our parallel projection model and the perspective projection model (Lepetit & 
Fua, 2006) where d1 and d2 denote the distance of the camera and Object Plane. Object Plane 
contains the object and is parallel to Actual Camera Plane. 
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Fig. 1. Difference of perspective projection model and parallel projection model. (a) 
Perspective projection model. (b) Parallel projection model. 

  
2.2 Problem Overview 
In this chapter, we define the term “mobile sensor" to describe a mobile robot with visual 
sensor. We assume that mobile sensor can identify the reference objects and their 
coordinates are known (i.e., stored in a database). We limit our discussion to the self 
localization problem, and the method of how to identify such objects is not considered. The 
mobile sensor navigates by itself and visual image is obtained periodically. Based on the 
captured image data, the self localization comprises of determining both the orientation and 
the location of the mobile sensor. We use the global coordinate system, the origin of which is 
arbitrarily chosen but used to represent the coordinates of the reference points and the 
location of the mobile sensor. The objective is to utilize the projected reference points to 
determine the location of the mobile sensor. In this chapter, we focus on two aspects of the 
proposed method. The first aspect is to maintain the accuracy of the self localization and the 
second aspect is to maintain computational efficiency. 
Since our method uses captured image data through the application of a typical digital 
imaging device, several sources of error are possible. Since the proposed approach relies on 
the point that is chosen from an area of pixels which is the projected image of the reference 
object, there can be inherent errors from image processing that selects one point from the 
area of an object image. This error can vary depending on many factors such as distance 
from mobile sensor to reference objects, distance between reference objects, etc. In addition, 
the non-linearity of the lens of imaging device causes shifting of projected point when the 

 

distance to reference points is not known. This shifting also affects the fidelity of self 
localization if compensation is not done. 
Since the mobile sensor changes its location and orientation continuously, the reference 
points may be changed accordingly. The self location method should be computationally 
efficient by effectively utilizing available reference points. As we will show later in this 
chapter, the selection of reference points affects the self localization errors. When more than 
three reference points are inside the viewable range of the mobile sensor at the same time, 
the mobile sensor has freedom to choose the reference objects in such a way that can 
minimize such errors. Therefore, multiple reference objects should be strategically 
distributed to harness self localization of individual mobile sensor. A computationally 
efficient iterative algorithm using the relationship between the locations of reference points 
is proposed. 

 
3. Characterization of Viewable Images 
  

3.1 Basic Concept of Parallel Projection Model 
In this subsection, we introduce the parallel projection model. In order to simplify the process 
of projected image on the camera device, we define three planes: the object plane, the virtual 
viewable plane, and the actual camera plane as shown in Fig.2. An object P, which is in the 
viewable area of a mobile sensor, is considered to be on the object plane. As opposed to the 
traditional model of a camera, in a parallel projection model, the object P is projected in 
parallel onto virtual viewable plane and the projected point is denoted as Pp. The virtual 
viewable plane is parallel to the object plane with distance dp. Lc denotes the length of the object 
plane, which is the length of viewable area at distance dp. Ls denotes the length of the actual 
camera plane on which the measurement of projected image is done. The position of the 
projected object on a virtual viewable plane and an actual camera plane is denoted as upp and up, 
respectively. 
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Fig. 2. Parallel projection model and relationship with actual image projected on visual 
sensor (Camera). 
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Fig. 1. Difference of perspective projection model and parallel projection model. (a) 
Perspective projection model. (b) Parallel projection model. 

  
2.2 Problem Overview 
In this chapter, we define the term “mobile sensor" to describe a mobile robot with visual 
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coordinates are known (i.e., stored in a database). We limit our discussion to the self 
localization problem, and the method of how to identify such objects is not considered. The 
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captured image data, the self localization comprises of determining both the orientation and 
the location of the mobile sensor. We use the global coordinate system, the origin of which is 
arbitrarily chosen but used to represent the coordinates of the reference points and the 
location of the mobile sensor. The objective is to utilize the projected reference points to 
determine the location of the mobile sensor. In this chapter, we focus on two aspects of the 
proposed method. The first aspect is to maintain the accuracy of the self localization and the 
second aspect is to maintain computational efficiency. 
Since our method uses captured image data through the application of a typical digital 
imaging device, several sources of error are possible. Since the proposed approach relies on 
the point that is chosen from an area of pixels which is the projected image of the reference 
object, there can be inherent errors from image processing that selects one point from the 
area of an object image. This error can vary depending on many factors such as distance 
from mobile sensor to reference objects, distance between reference objects, etc. In addition, 
the non-linearity of the lens of imaging device causes shifting of projected point when the 

 

distance to reference points is not known. This shifting also affects the fidelity of self 
localization if compensation is not done. 
Since the mobile sensor changes its location and orientation continuously, the reference 
points may be changed accordingly. The self location method should be computationally 
efficient by effectively utilizing available reference points. As we will show later in this 
chapter, the selection of reference points affects the self localization errors. When more than 
three reference points are inside the viewable range of the mobile sensor at the same time, 
the mobile sensor has freedom to choose the reference objects in such a way that can 
minimize such errors. Therefore, multiple reference objects should be strategically 
distributed to harness self localization of individual mobile sensor. A computationally 
efficient iterative algorithm using the relationship between the locations of reference points 
is proposed. 

 
3. Characterization of Viewable Images 
  

3.1 Basic Concept of Parallel Projection Model 
In this subsection, we introduce the parallel projection model. In order to simplify the process 
of projected image on the camera device, we define three planes: the object plane, the virtual 
viewable plane, and the actual camera plane as shown in Fig.2. An object P, which is in the 
viewable area of a mobile sensor, is considered to be on the object plane. As opposed to the 
traditional model of a camera, in a parallel projection model, the object P is projected in 
parallel onto virtual viewable plane and the projected point is denoted as Pp. The virtual 
viewable plane is parallel to the object plane with distance dp. Lc denotes the length of the object 
plane, which is the length of viewable area at distance dp. Ls denotes the length of the actual 
camera plane on which the measurement of projected image is done. The position of the 
projected object on a virtual viewable plane and an actual camera plane is denoted as upp and up, 
respectively. 
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Fig. 2. Parallel projection model and relationship with actual image projected on visual 
sensor (Camera). 
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In the parallel projection model, a real object located on an object plane is projected to an 
actual camera plane through a virtual viewable plane. Hence, as formulated in (1), upp is 
expressed as Lc, Ls and up using the proportionality of the length of a virtual viewable plane 
and an actual camera plane. 
 

( )c
pp p

s

Lu u
L

  (1) 

 
The position of the real object can be obtained from upp and dp, once the ratio of Lc and dp is 
known. This ratio is defined to be a zoom factor, z, which is the property of the image device. 
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3.2 Relationship of Reference Points on Different Planes 
Given the parameters of visual sensor, z and Ls, we can derive the relationship between a 
projected reference point on the virtual viewable plane and one on the actual camera plane with 
their distance to the origin of each plane. The origin of each plane is defined to be the cross 
point between a plane and its perpendicular line, the view axis, which also crosses the 
location of the mobile sensor. Specifically, the origin of the actual camera plane is the axis of 
panning. In Fig. 3, the origin on the actual camera plane is denoted as Oc and the origins of 
the virtual viewable planes are denoted as Ov1 and Ov2, respectively. Even though the planes 
are rotated as visual sensor is panned, the relationship based on the distance on each plane 
remains unchanged. When p1 and p2 denote the distance to the view axis on each virtual 
plane, and i1 and i2 denote the corresponding measurement on the actual image plane, using 
(1) and (2), we can derive 
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where z1 and z2 are the zoom factors of the mobile sensor corresponding to distance, D1 and 
D2, from the actual camera plane to the object plane for each reference point. Ls is the size of the 
image on which i1 and i2 are measured. 
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Fig. 3. Self localization with two reference points. 
 
In practice, the location of a projected point on the image device is obtained from the image 
processing of the target objects such as edge detection and/or feature extraction. Thus, the 
projected point on the image device usually contains some uncertainty. In later sections, 
how this uncertainty affects self localization algorithm is discussed in detail. 

  
4. Self Localization Algorithm 
  

4.1 Self Localization with Known Orientation 
In this subsection, we introduce self localization when two reference points and the 
orientation of visual sensor are known. We define θ as the angle formed between the camera 
plane and global x axis. We define a unit vector û to have the direction of the camera plane 
and n̂ to be the unit vector along the view axis, the direction to which the visual sensor is 
facing. Therefore, θ is the angle between the x axis and û. Using the following equations, we 
can obtain values p1, p2, D1 and D2 in (3). In the previous section, we described i1 and i2 as the 
distance to the view axis on the camera plane, but, from now on, they are considered to be 
able to have negative values when the projected reference point is in the left side of the view 
axis. It does not change the distance relationship described in the previous section by 
allowing p1 and p2 to have negative values as well when they are also in the left side of the 
view axis. 
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In the parallel projection model, a real object located on an object plane is projected to an 
actual camera plane through a virtual viewable plane. Hence, as formulated in (1), upp is 
expressed as Lc, Ls and up using the proportionality of the length of a virtual viewable plane 
and an actual camera plane. 
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The position of the real object can be obtained from upp and dp, once the ratio of Lc and dp is 
known. This ratio is defined to be a zoom factor, z, which is the property of the image device. 
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where z1 and z2 are the zoom factors of the mobile sensor corresponding to distance, D1 and 
D2, from the actual camera plane to the object plane for each reference point. Ls is the size of the 
image on which i1 and i2 are measured. 
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Fig. 3. Self localization with two reference points. 
 
In practice, the location of a projected point on the image device is obtained from the image 
processing of the target objects such as edge detection and/or feature extraction. Thus, the 
projected point on the image device usually contains some uncertainty. In later sections, 
how this uncertainty affects self localization algorithm is discussed in detail. 
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facing. Therefore, θ is the angle between the x axis and û. Using the following equations, we 
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distance to the view axis on the camera plane, but, from now on, they are considered to be 
able to have negative values when the projected reference point is in the left side of the view 
axis. It does not change the distance relationship described in the previous section by 
allowing p1 and p2 to have negative values as well when they are also in the left side of the 
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Since the reference object is projected onto the camera plane, the coordinates of reference 
objects correspond to the centroid of the reference objects. Then, we can obtain the 
coordinate of mobile sensor using (10). However, even though the coordinates of reference 
points are accurately known in advance, the measurement i1 and i2 on the image may not be 
corresponding to the true reference points. Possible sources of the uncertainties may arise 
from the pixel resolution of the image planes as well as incorrect determination of the 
centroid of the detected reference shape. This uncertainty is evident even with perfect lens 
view characteristics. We will introduce the effect of non-linearity of camera lens in the later 
section. 

  
4.2 Orientation Determination 
Thus far, we have considered determining the position of the mobile sensor when its 
orientation is given. However, it is necessary to determine the orientation of the mobile 
sensor as well as its position. Determining both position and orientation concurrently 
requires a third reference point. From the parallel projection model, using (3), we can obtain 
the angle of the line that crosses the center of the camera plane and the reference point, 
where the angle is formed between the line and the camera plane. With two reference points, 
we have two lines with known angle respect to the camera plane, and we know each 
reference point is on one of them. Since there are infinite numbers of ways to position a line 
segment having two reference points as vertexes sitting on those lines, we cannot determine 
the position and the orientation of the mobile sensor with two reference points. With one 
more reference point, the problem becomes to position three vertexes of a triangle with 
known length onto three lines with a known angle. There is only one way to position the 
triangle in such way if we limit the orientation of the mobile sensor to 180 range. From the 
above, we can conclude that three reference points are enough for determining both the 
orientation and the location of the mobile sensor when the general directions of the 
reference points are assumed in the following discussion. 
We can find a solution by solving three simultaneous solutions using (10), but its non-
linearity requires large computational complexity to be implemented on resource limited 
devices, such as mobile robot. Instead, we developed an effective iteration algorithm which 
involves solving only two simultaneous equations and the solution is given in (10). In our 
iteration approach, we determine the orientation of the mobile sensor. Once we found the 
orientation, we obtain the location of the mobile sensor using (10). 
For a given orientation angle, θ, using (10), we can obtain two sets of coordinates, (xc1, yc1) 
and (xc2, yc2) using two pairs of reference points out of three. When three reference points, P1, 
P2 and P3 are chosen for self-localization, using P1 and P2, we have 
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and by using another pair, P2 and P3, we have 
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In order to develop an effective iterative strategy, we investigate the behavior of the 
differences of the two coordinates, dcx = xc1―xc2 and dcy = yc1―yc2 while varying the angle of 
orientation. We define error_distance as 
 

2 2_ ( ) ( 1 2) ( 1 2)error distance x x y y      (13) 

 
where θ is the angle of the mobile sensor's orientation. Fig. 4 shows the behavior of this 
function, as θ varies from 0 to 180. The figure shows a case when the true orientation of the 
mobile sensor is 80, and, at this angle, error_distance(θ) becomes zero. We call this angle 
solution point. Around this point, the function is found to be symmetric and periodical with 
180. Based on the characteristics of the simulated distance error function, there is always 
one global minimum between 0 to 180. Thus, there will be two possible orientations 
between 0 to 360. The good initial point is approximated by the direction which a robot 
moves toward.  
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Fig. 4. Distance error function as a function of orientation error. The slope estimations of 
initial iteration points are shown. 
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Since the reference object is projected onto the camera plane, the coordinates of reference 
objects correspond to the centroid of the reference objects. Then, we can obtain the 
coordinate of mobile sensor using (10). However, even though the coordinates of reference 
points are accurately known in advance, the measurement i1 and i2 on the image may not be 
corresponding to the true reference points. Possible sources of the uncertainties may arise 
from the pixel resolution of the image planes as well as incorrect determination of the 
centroid of the detected reference shape. This uncertainty is evident even with perfect lens 
view characteristics. We will introduce the effect of non-linearity of camera lens in the later 
section. 

  
4.2 Orientation Determination 
Thus far, we have considered determining the position of the mobile sensor when its 
orientation is given. However, it is necessary to determine the orientation of the mobile 
sensor as well as its position. Determining both position and orientation concurrently 
requires a third reference point. From the parallel projection model, using (3), we can obtain 
the angle of the line that crosses the center of the camera plane and the reference point, 
where the angle is formed between the line and the camera plane. With two reference points, 
we have two lines with known angle respect to the camera plane, and we know each 
reference point is on one of them. Since there are infinite numbers of ways to position a line 
segment having two reference points as vertexes sitting on those lines, we cannot determine 
the position and the orientation of the mobile sensor with two reference points. With one 
more reference point, the problem becomes to position three vertexes of a triangle with 
known length onto three lines with a known angle. There is only one way to position the 
triangle in such way if we limit the orientation of the mobile sensor to 180 range. From the 
above, we can conclude that three reference points are enough for determining both the 
orientation and the location of the mobile sensor when the general directions of the 
reference points are assumed in the following discussion. 
We can find a solution by solving three simultaneous solutions using (10), but its non-
linearity requires large computational complexity to be implemented on resource limited 
devices, such as mobile robot. Instead, we developed an effective iteration algorithm which 
involves solving only two simultaneous equations and the solution is given in (10). In our 
iteration approach, we determine the orientation of the mobile sensor. Once we found the 
orientation, we obtain the location of the mobile sensor using (10). 
For a given orientation angle, θ, using (10), we can obtain two sets of coordinates, (xc1, yc1) 
and (xc2, yc2) using two pairs of reference points out of three. When three reference points, P1, 
P2 and P3 are chosen for self-localization, using P1 and P2, we have 
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In order to develop an effective iterative strategy, we investigate the behavior of the 
differences of the two coordinates, dcx = xc1―xc2 and dcy = yc1―yc2 while varying the angle of 
orientation. We define error_distance as 
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where θ is the angle of the mobile sensor's orientation. Fig. 4 shows the behavior of this 
function, as θ varies from 0 to 180. The figure shows a case when the true orientation of the 
mobile sensor is 80, and, at this angle, error_distance(θ) becomes zero. We call this angle 
solution point. Around this point, the function is found to be symmetric and periodical with 
180. Based on the characteristics of the simulated distance error function, there is always 
one global minimum between 0 to 180. Thus, there will be two possible orientations 
between 0 to 360. The good initial point is approximated by the direction which a robot 
moves toward.  
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Fig. 4. Distance error function as a function of orientation error. The slope estimations of 
initial iteration points are shown. 
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If we start iteration inside 45 range from solution point, and if we follow down the slope, it is 
guaranteed to find the solution. In order to find such an initial iteration point, i0, inside the 
range, we arbitrarily choose two angles separated with 90. Since one of them will be inside 
45 range from the solution point and the other one will be outside, we simply choose the 
angle that gives smaller error_distance(θ) as our initial iteration angle, θ0. 
Once we choose an initial point, we have the initial iteration point, i0, determined by θ and 
error_distance(θ). In order to estimate the slope at that point, another error_distance function is 
evaluated using θ―1 which is chosen to be very close to θ0 such as 0. We call this estimated 
slope as slope0 and the relationship of the initial iteration variables are 
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(14) 

 
where En = error_distance(θn). 
Depending on the sign of the estimated slope, we choose the direction of the iteration, dir. If 
slope0 > 0, we set dir0 = ―1, and, swap θ0 with θ―1, and, E0 with E―1. Otherwise, dir0 = 1. 
First, by assuming the slope at our initial point being close to be linear, we choose the next 
angle where the slope line crosses x-axis. Since the slope increases as approaching to the 
solution point, the next iteration step will overshoot albeit very close to the solution point. As 
shown in Fig. 4, the error_distance function evaluated at θ1 is the other side of the solution 
point. 
From the second step, instead of using the slope, we choose the angle of next iteration step 
based on the two previous angle and error_distance evaluated with them. In this case, since 
the two triangles shown in Fig. 5 are approximately proportional near to the solution point, 
the angle for the next step is evaluated by the following equations. From 
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the next iteration angle is calculated as 
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Fig. 5. Convergence steps of the iteration algorithm. 
 

 
Fig. 6. Convergence of the iteration algorithm as a function of the number of iterations. 
 
The iteration continues until, the change of estimated orientation, Δθn, becomes smaller than 
the threshold value, ε. Otherwise, we change the direction, dir = dir × (―1) and continue. Fig. 
6 shows that the algorithm is converging very rapidly. The figure shows the iteration 
algorithm is applied when three initial estimation angles are used, 10, 40 and 80. The 
value of error_disance(θ) is plotted at each iteration step. Note that the iteration starts with 
two initial iterations (i.e., as shown in the figure, the iteration starts at ―1 index).  
Fig. 7 illustrates the importance of the orientation error on the localization. The plot shows 
the displacement error for several orientation errors. Throughout this chapter, the 
displacement error is defined as 
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guaranteed to find the solution. In order to find such an initial iteration point, i0, inside the 
range, we arbitrarily choose two angles separated with 90. Since one of them will be inside 
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Once we choose an initial point, we have the initial iteration point, i0, determined by θ and 
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where En = error_distance(θn). 
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slope0 > 0, we set dir0 = ―1, and, swap θ0 with θ―1, and, E0 with E―1. Otherwise, dir0 = 1. 
First, by assuming the slope at our initial point being close to be linear, we choose the next 
angle where the slope line crosses x-axis. Since the slope increases as approaching to the 
solution point, the next iteration step will overshoot albeit very close to the solution point. As 
shown in Fig. 4, the error_distance function evaluated at θ1 is the other side of the solution 
point. 
From the second step, instead of using the slope, we choose the angle of next iteration step 
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Fig. 6. Convergence of the iteration algorithm as a function of the number of iterations. 
 
The iteration continues until, the change of estimated orientation, Δθn, becomes smaller than 
the threshold value, ε. Otherwise, we change the direction, dir = dir × (―1) and continue. Fig. 
6 shows that the algorithm is converging very rapidly. The figure shows the iteration 
algorithm is applied when three initial estimation angles are used, 10, 40 and 80. The 
value of error_disance(θ) is plotted at each iteration step. Note that the iteration starts with 
two initial iterations (i.e., as shown in the figure, the iteration starts at ―1 index).  
Fig. 7 illustrates the importance of the orientation error on the localization. The plot shows 
the displacement error for several orientation errors. Throughout this chapter, the 
displacement error is defined as 
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where (xc,true, yc,true) is the true coordinate and (xc,est, yc,est) is the estimated coordinate. The 
results are plotted as a function of ΔP and Dmax where ΔP represents the separation (in 
parallel to the projected plane) between the reference points and the Dmax represents the 
largest distance (perpendicular to the projected plane) of the reference points. The angle 
determination is very critical since the displacement is computed after the orientation is 
determined. Thus, if the orientation computation is not accurate, the localization may not 
successfully estimate the coordinates. 
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Fig. 7. Displacement error as a function of the orientation error Δθ. (a) Orientation error,  
Δθ = 2. (b) Orientation error, Δθ = 4. 

 

4.3 Lens Distortion 
The non-linear distortion of non-ideal lens affects the scale in the parallel projection model. 
Since the distances between the mobile sensor and the references are not known, we 
compute the coordinate of the mobile sensor using the value of z corresponding to the value 
when the distance is large (i.e., the value of z converges to a specific value). Once initial 
value of the coordinate is obtained, we use specific values of z (i.e., the one for the first 
reference and the other for the second reference) to compensate for the non-linearity to 
obtain the final coordinate of the mobile sensor. Note that the zoom factor depends on the 
distance from the imaging device, as well as the distance from the axis of the lens. The 
calibration table for the zoom factor is constructed according to the distance from the 
imaging device and the distance from the axis of the lens at the interval of 0.3m (Park et al., 
2008). 

 

 
Fig. 8. Nonlinear effect of the lens on estimation error. 
 
Fig. 8 illustrates the nonlinear effect on the coordinate determination. In the figure, the 
orientation is chosen to be 0 (i.e., view axis is perpendicular to the x axis). The camera is 
located at (4.8m, 3.0m) with respect to the global coordinate (0, 0) and the first reference P1 is 
located at (4.5m, 4.5m) and the second reference P2 is located at (5.1m, 5.1m). The lens is set 
at 17mm zoom range. The value of Ls is 18.4cm (i.e., the image size in x direction). The 
projected position of the first reference i1 is at 3.85cm and the projected position of the 
second reference i2 is at 2.45cm from the center of the image. These positions are from the 
center of the reference objects to the center of the image. The reference objects both have 
finite widths of 0.16cm and 0.12cm corresponding to Δi1 = 0.0087 and Δi2 = 0.0065, 
respectively. In this chapter, Δi is defined as the uncertainty range or the measurement error 
with the respect to the overall image size (i.e., 18.4cm in the example). Since the centroid of 
the reference points are determined from the image, potential measurement errors will be 
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where (xc,true, yc,true) is the true coordinate and (xc,est, yc,est) is the estimated coordinate. The 
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4.3 Lens Distortion 
The non-linear distortion of non-ideal lens affects the scale in the parallel projection model. 
Since the distances between the mobile sensor and the references are not known, we 
compute the coordinate of the mobile sensor using the value of z corresponding to the value 
when the distance is large (i.e., the value of z converges to a specific value). Once initial 
value of the coordinate is obtained, we use specific values of z (i.e., the one for the first 
reference and the other for the second reference) to compensate for the non-linearity to 
obtain the final coordinate of the mobile sensor. Note that the zoom factor depends on the 
distance from the imaging device, as well as the distance from the axis of the lens. The 
calibration table for the zoom factor is constructed according to the distance from the 
imaging device and the distance from the axis of the lens at the interval of 0.3m (Park et al., 
2008). 

 

 
Fig. 8. Nonlinear effect of the lens on estimation error. 
 
Fig. 8 illustrates the nonlinear effect on the coordinate determination. In the figure, the 
orientation is chosen to be 0 (i.e., view axis is perpendicular to the x axis). The camera is 
located at (4.8m, 3.0m) with respect to the global coordinate (0, 0) and the first reference P1 is 
located at (4.5m, 4.5m) and the second reference P2 is located at (5.1m, 5.1m). The lens is set 
at 17mm zoom range. The value of Ls is 18.4cm (i.e., the image size in x direction). The 
projected position of the first reference i1 is at 3.85cm and the projected position of the 
second reference i2 is at 2.45cm from the center of the image. These positions are from the 
center of the reference objects to the center of the image. The reference objects both have 
finite widths of 0.16cm and 0.12cm corresponding to Δi1 = 0.0087 and Δi2 = 0.0065, 
respectively. In this chapter, Δi is defined as the uncertainty range or the measurement error 
with the respect to the overall image size (i.e., 18.4cm in the example). Since the centroid of 
the reference points are determined from the image, potential measurement errors will be 

www.intechopen.com



Mobile Robots Navigation146

 

within Δi. The actual zoom factor corresponding to the first reference z1 is 0.8238 and the 
zoom factor corresponding to the second reference z2 is 0.8119. In the initial estimation, the 
zoom factor corresponding to the infinite distance of 0.8 is used. The estimated coordinate 
without compensation is (4.8017m, 3.03815m) which is 3.87cm off from the true position of 
the mobile sensor. 

 
4.4 Effects of Reference Measurement Uncertainty 
The measurement error directly affects the accuracy of the localization including the 
orientation. Since the reference object is usually projected as an area on the image, for 
applying the parallel projection model, one point should be determined from the area. In the 
parallel projection model, we only take the horizontal component of the determined point. If 
we designate the coordinate of the reference object as its centroid, we can choose its position 
on the camera plane, i, as the center of the projected area. However, if the shape of reference 
object is not symmetrically round, there is always certain amount of error in determining i. 
This type of error is usually influenced by the image processing in finding the boundary of 
the projected references. Quantization error due to limited resolution of the visual sensor 
may affect the accuracy but it is not the biggest source of error. 
Another source of measurement error is that the reference object is not projected in the 
center of the horizontal line (i.e., illustrated as dotted line in Fig. 8). This is because the lens 
distorts the projected objects. In the figure, the edge of a wall has one coordinate value. 
However, multiple reference values can be obtained for the edge of a wall. For example, 
both ix measured at hx and iy measured at hy should represent the same coordinate, but the 
projected values are different. The difference between ix and iy contributes as Δi in the 
localization. However, (Park et al., 2008) shows that the projection error is compensated by 
using the parallel projection model if the height of a landmark is known. Since the height of 
a landmark can be known, the localization performance is not worsened in this case. 
The orientation errors due to the incorrect determination of i1 and i2 are illustrated in Fig. 9. 
Figs. 9(a) and 9 (b) show the results for two different values of the measurement errors. The 
average of orientation error is measured using all the possible combinations of the reference 
points located on 5m by 5m grid. Each reference point is located at 50cm interval in the grid 
with a small amount of additional random variation. Due to the variation of i1 and i2, the 
estimated orientation can be different from the true orientation of a mobile sensor. The 
figures show that overall range of error and standard deviation are larger when Δi = 0.03 
than when Δi = 0.05. Also, when the mobile sensor is closer to the reference points, the 
orientation error is very critical since the actual coordinates are obtained by computing the 
orientation first. 
 
 
 
 
 
 
 
 

 

 
(a) 

 
(b) 

Fig. 9. Orientation error, Δθ, as a function of the projected measurement error Δi. (a) 
Orientation error, Δi = 0.03. (b) Orientation error, Δi = 0.005. 
 
The similar results are obtained for the displacement errors in Fig. 10. Similarly, Figs. 10(a) 
and 10(b) show the results for two different values of the measurement errors. The 
displacement error is plotted as a function of two variables, Dmax, the largest distance from 
the mobile sensor to the reference points, and ΔP, the distance between two most separated 
reference points measured from the view axis of the mobile sensor. As the figure shows, the 
overall error range increases as Δi increases. 
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Fig. 10. Displacement error as a function of projected measurement error Δi. (a) 
Measurement error, Δi = 0.01. (b) Measurement error, Δi = 0.05. 

 

Both results show that the algorithm is more prone to error when distance from the mobile 
sensor to the reference points is larger, and when the references are closer to one another. 
From Fig. 9 and Fig. 10, we know that estimation error is smaller when the distance between 
the reference objects along the camera plane is larger. Since our iteration algorithm uses two 
pairs of reference objects out of three pairs that can be made from three reference objects, 
given three reference points, R1, R2 and R3, we can choose two pairs that give maximum 
distance on the camera plane to minimize error. This selection criterion can be applied also 
when there are more than three reference objects viewable and three of them need to be 
selected for self localization. 

 
5. Analysis and Simulation 
  

5.1 Experimental Setup 
 

 
Fig. 11. Experimental setup used in the self localization illustration. 10 reference points are 
used by the mobile sensor located at 6 distinct coordinates. 
 
Fig. 11 shows the experimental setup for the verification of the proposed method. A mobile 
sensor is placed at several positions indicated by P1, P2, … , P6 with P1 as the starting 
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Fig. 10. Displacement error as a function of projected measurement error Δi. (a) 
Measurement error, Δi = 0.01. (b) Measurement error, Δi = 0.05. 
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given three reference points, R1, R2 and R3, we can choose two pairs that give maximum 
distance on the camera plane to minimize error. This selection criterion can be applied also 
when there are more than three reference objects viewable and three of them need to be 
selected for self localization. 

 
5. Analysis and Simulation 
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Fig. 11. Experimental setup used in the self localization illustration. 10 reference points are 
used by the mobile sensor located at 6 distinct coordinates. 
 
Fig. 11 shows the experimental setup for the verification of the proposed method. A mobile 
sensor is placed at several positions indicated by P1, P2, … , P6 with P1 as the starting 
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position. Several reference points, R1, R2, … , R11, are designated and measured beforehand. 
At each position, the mobile sensor estimates the position and orientation before moving on 
to the next position. Navigation application utilizing our method can employ two strategies 
as to when to run the algorithm. In the first case, the mobile sensor can move until three 
reference points are in its sight before running the algorithm. In the other case, the mobile 
sensor can move to a designated position directed by a navigation algorithm, and search for 
three reference points by rotating before running the localization algorithm. Three reference 
points are extracted using edge detection and color matching. We evaluate two cases. The 
first case assumes the orientation is known and the displacement errors are obtained. In the 
second case, the orientation is computed first, and the displacement errors are obtained 
from the orientation.  

  
5.2 Localization Performance with Known Orientation 
 

 
(a) 

 
(b) 

Fig. 12. Displacement error at each mobile sensor location with known orientation. Both 
compensated and uncompensated coordinates are compared to those of true coordinates. (a) 
x- direction. (b) y-direction. 

 

We first assume that mobile visual sensor knows its orientation. Figs. 12(a) and 12(b) show 
the true position of the mobile sensor, in x-direction and y-direction separately, and their 
estimated trajectory obtained from using the algorithm. The deviation from the true position 
is shown as the distance error from the true position to the estimated position of the mobile 
sensor. Two estimated positions are plotted to show the effect of Zoom factor compensation. 
For the uncompensated estimation, the average value of the zoom factors is used. While 
displacement error in x-direction as shown in Fig. 12(a) is negligible, the displacement error 
in y-direction as shown in Fig. 12(b) illustrates that the uncompensated estimation deviates 
from the true position as much as 0.5m. It indicates the zooming factor is very sensitive to 
the distance from the visual sensor to the reference points. It is because the zoom factor has 
non-linear property only along the y-direction or the distance from the mobile sensor to the 
reference objects. However, when the zoom factors are compensated for within the 
algorithm, the distance error in y-direction disappears. 

 
5.3 Localization Performance with Unknown Orientation 
 

 
(a) 

 
(b) 

Fig. 13. Displacement error at each mobile sensor location with unknown orientation. Both 
compensated and uncompensated coordinates are compared to those of true coordinates.  
(a) x-direction. (b) y-direction. 
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In practice, the mobile sensor estimates the orientation as well as the coordinates. The 
proposed localization algorithm can determine the orientation of the sensor from the 
reference points. Since the coordinate of the mobile sensor is determined from the estimated 
orientation, the minimization of the error in estimating the orientation is very critical. 
Fig.13(a) and Fig.13(b) illustrate the displacement error in x-direction and y-direction, 
respectively. As before, the displacement error in x-direction is negligible even without the 
compensation. Similar result is also shown in y-direction. The difference between these two 
figures and the previous figures obtained for the known orientation is that the displacement 
error is computed after the orientation is determined. 
 

 
(a) 

 
(b) 

Fig. 14. Displacement error for different measurement errors for unknown orientation. The 
displacement error is obtained after the orientation estimation with the measurement errors. 
(a) x- direction. (b) y-direction. 
 

 

Fig. 14 shows the effect of Δi on the error of coordinates of the mobile sensor. For this 
simulation, we used maximal separation criterion for reference objects selection. As shown 
in the figure, when the mobile sensor is farther from the reference objects, the coordinate 
error is more sensitive to Δi. In our experimental setup, the mobile sensor is the closest to its 
selected reference points at the position P4. In the figure, at P4, the coordinate error is the 
least sensitive to Δi. When the mobile sensor at P5, where its distance to the reference objects 
is the farthest, the coordinate error is very sensitive to Δi. Especially, the y-direction error at 
P5, in Fig. 14(b) shows the large sensitivity to Δi of the coordinate error in y-direction. It is 
because the captured image does not contain any depth information, the variation to i can be 
mapped to large range of location of the mobile sensor in y-direction. 0.01 as Δi value, is 
unrealistic considering the real dimension of the image. 

 
6. Conclusion 
  

In this chapter, we present a novel self localization method using parallel projection model 
for mobile sensor in navigation applications. The algorithm estimates the coordinate and the 
orientation of mobile sensor using projected references on single visual image. The camera 
lens non-linearity is compensated for using lens specific calibration table. The method 
utilizes a simple iterative algorithm, which is very accurate with low computational demand. 
We identify various sources of measurement error that affect the estimation accuracy. We 
demonstrate with an example that the algorithm can be utilized in robot navigation as well 
as positioning application where accurate self localization is necessary. 
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