1,232 research outputs found

    Review of UAV positioning in indoor environments and new proposal based on US measurements

    Get PDF
    Este documento se considera que es una ponencia de congresos en lugar de un capítulo de libro.10th International Conference on Indoor Positioning and Indoor Navigation (IPIN 2019) Pisa, Italy, September 30th - October 3rd, 2019The use of unmanned aerial vehicles (UAVs) has increased dramatically in recent years because of their huge potential in both civil and military applications and the decrease in prize of UAVs products. Location detection can be implemented through GNSS technology in outdoor environments, nevertheless its accuracy could be insufficient for some applications. Usability of GNSS in indoor environments is limited due to the signal attenuation as it cross through walls or the absence of line of sight. Considering the big market opportunity of indoor UAVs many researchers are devoting their efforts in the exploration of solutions for their positioning. Indoor UAV applications include location based services (LBS), advertisement, ambient assisted living environments or emergency response. This work is an update survey in UAV indoor localization, so it can provide a guide and technical comparison perspective of different technologies with their main advantages and drawbacks. Finally, we propose an approach based on an ultrasonic local positioning system.Universidad de AlcaláJunta de Comunidades de Castilla-La ManchaMinisterio de Economía, Industria y Competitivida

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Indoor Localization System based on Artificial Landmarks and Monocular Vision

    Get PDF
     This paper presents a visual localization approach that is suitable for domestic and industrial environments as it enables accurate, reliable and robust pose estimation. The mobile robot is equipped with a single camera which update sits pose whenever a landmark is available on the field of view. The innovation presented by this research focuses on the artificial landmark system which has the ability to detect the presence of the robot, since both entities communicate with each other using an infrared signal protocol modulated in frequency. Besides this communication capability, each landmark has several high intensity light-emitting diodes (LEDs) that shine only for some instances according to the communication, which makes it possible for the camera shutter and the blinking of the LEDs to synchronize. This synchronization increases the system tolerance concerning changes in brightness in the ambient lights over time, independently of the landmarks location. Therefore, the environment’s ceiling is populated with several landmarks and an Extended Kalman Filter is used to combine the dead-reckoning and landmark information. This increases the flexibility of the system by reducing the number of landmarks required. The experimental evaluation was conducted in a real indoor environment with an autonomous wheelchair prototype

    RFID-based hybrid Camera Tracking in Virtual Studio

    Get PDF
    This paper addresses the problem of Camera tracking in virtual studio environment. The traditional camera tracking methods can be classified into optical-based or electromechanical sensor-based. However, the electromechanical method is extensive time-consuming calibration procedures and cost too much; the optical method suffers from the error detection of references features and the chorma keying limitation in virtual studio. Therefore, in order to overcome those problems, we proposed a novel RFID-based hybrid camera tracking method in virtual studio application. Firstly, we designed a RFID passive tags based camera tracker. By using the triangular position algorithm, the accuracy could reach up to 5 centimeters. Secondly, we combined the optical based tracking method into RFID tracker with the aim to improve the orientation and position accuracy. Finally, the experiment results showed that this method could be a novel potential solution for camera tracking system in virtual studio applications. Keywords-RFID, camera tracking, chorma key, SLA

    THINK Robots

    Get PDF
    Retailers rely on Kiva Systems’ warehouse robots to deliver order-fulfillment services, but current systems are frequently interrupted and require physical barriers to ensure compliance with safety regulations since Kiva does not currently rely on the obstacle detection system to contribute to the functional safety of its overall system. After evaluating operating scenarios and detection technologies, a solution comprised of a stereo vision system to detect static objects and a radio ranging system to identify humans in the vicinity was designed, built, and verified, with the aim of reducing undue downtime and allowing humans and robots to safely interact without physical restrictions
    corecore