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1. Introduction 

Wireless sensing devices are frequently used in smart spaces, ubiquitous and proactive 
computing, and situation awareness applications (Satyanarayanan 2001), (Vildjiounaite, 
Malm et al.), (Weiser), (Ilyas & Mahgoub). One could list a plethora of applications suitable 
for the use of wireless sensor networks and other sensing instruments, for instance, health 
care (wellness system for aging), environmental monitoring (pollution of air, water, and 
soil), atmospheric science (severe weather prediction), structural health monitoring 
(equipment or material fatigue detection), military surveillance (vehicle movement 
detection), facility monitoring (security and life-cycle of a facility), wild life monitoring 
(animal migration), or intelligent vehicle design (obstacle detection) (Dishman), (Gupta & 
Kumar), (Mainwaring, Polastre et al.), (Wang, Estrin et al.), (Roush, Goho et al.), (East), 
(Rom'an, Hess et al.), (Abowd), (Dey), (Kidd, Orr et al.). The list of on-going projects that 
include wireless sensor networks and other sensing instrumentation is also growing every 
day (see NSF, NIST and DARPA projects  such as NSF NEON, LOOKING, SCCOOS, 
ROADNet, USArray, TeraBridge, ORION, CLEANER, NIST SHIELD or DARPA Active 
Networks, Connectionless networks, DTT). All projects have in common the fact that they 
represent multi-instrument and multi-sensor systems that can be characterized as smart 
outdoor, indoor or embedded spaces. The challenge is to build smart spaces that can 
intelligently sense environments, gather information, integrate information across disparate 
sensing systems over time, space and measurement, and finally detect and recognize events 
of interest to trigger event-driven actions. We have been interested in the hazard awareness 
application scenarios (Bajcsy, Johnson et al. 2008) (Bajcsy, Kooper et al. 2006) that concern 
humans due to (a) natural disastrous events, (b) failures of human hazard attention or (c) 
intentional harmful behaviors of humans. Our focus is on the problems related to building 
hazard aware spaces (HAS) to alert innocent people, similar to the problem related to 
swimming pool surveillance systems to prevent human drowning (e.g. Poseidon developed 
by Vision IQ). 
While building a real-time HAS system, one has to address the issues of (1) setting up the 
system to achieve desired accuracy and (2) operating it to achieve reliable performance with 
or without human intervention. In order to setup a HAS system, one ought to find ways 
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how to deploy sensors, synchronize them, localize sensors and other instruments in the 
environment, and calibrate measurements coming from wireless sensors and instruments to 
obtain values represented in engineering units (for example, a raw value of temperature has 
to be converted to degrees of Celsius). These steps for HAS preparation allow us to answer 
questions about when, where and what hazards occur during the operation of a HAS 
system. In addition, one has to understand the limitations of smart wireless sensor networks 
(WSN), such as low-power, broadcast range, available on-board memory and CPU, to 
optimize the layout of sensor networks in terms of minimal wireless loss, minimal energy 
consumption and maximal information content received from the network. From the 
perspective of operating a HAS system, the objective is to perform reliable proactive data 
acquisition, hazard detection, human alert, hazard confirmation and possible understanding 
of specific hazard characteristics, and finally hazard containment. These building steps have 
been reflected in our research and development, and are illustrated in the overall HAS 
schema in Figure 1. 
 

 

Fig. 1. An overview of several components of the hazard aware spaces (HAS) prototype. The 
top components represent the setup of HAS while the bottom components correspond to the 
operation of HAS. 

2. Problem description 

Research and development of HAS poses several fundamental challenges in the areas of 
sensing, remote sensor deployment, wireless data acquisition, wireless communication, data 
integration, distributed signal and image processing, remote and proactive control of 
sensing, and hazard detection and pattern recognition. It is the understanding of these 
issues that leads to an optimal real-time system design of HAS. In this chapter, we primarily 
elaborate on the research themes related to adaptive remote setup of wireless sensor 
networks. Nonetheless, as one part of the design, we also investigate (a) sensor 
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measurement accuracy and optimal choice of acquisition parameters, (b) information 
selection for communication bandwidth control, (c) hazard understanding from sensor and 
image data, (d) human-computer interfaces for human alert, and (e) the use of robotics in 
HAS application domains. The research themes map into a development of technology 
components illustrated in Figure 1 and include (1) deployment of point sensors using 
remote robot control, (2) synchronization of sensors and cameras, (3) localization of sensors 
and objects, (4) calibration of measurements from sensors and spectral cameras, (5) proactive 
camera control, (6) hazard detection, (7) human alert, (8) hazard confirmation and 
understanding, and (9) hazard containment. The rest of this book chapter presents hardware 
and software for building a prototype HAS system, and theoretical and experimental 
solutions to the aforementioned technology components. 

3. Hardware and software description 

In the HAS system design presented, we used the MICA hardware that is manufactured by 
Crossbow Inc. The MICA hardware consists of (a) 4MHz Atmega 128L processor, (b) 128K 
bytes Flash, 4K bytes SRAM and 4K bytes of EEPROM, (c) 916MHz radio transceiver with a 
maximum data rate of 40Kbits/sec, (d) AA battery pack attached to the processor, and (e) 
plug-in sensor boards like the MTS101CA, connected through a 51-pin expansion connector. 
For more details, see (Hightower & Borriello), (Hollar). 
The MICA sensors are deployed using an intelligent wheeled robot P2DX8 made by 
ActivMedia Robotics, Amherst, NH, and an on-board computer-processing unit for real-
time processing. The robot has a ring of eight forward sonar sensors that can be used for 
obstacle avoidance and a two-wheel drive plus balancing caster for smooth motion. The 
robot is connected to a laptop that is either directly cable-connected to the local area 
network or wirelessly connected with other computers. In order to control the robotic 
deployment of MICA sensors, we used keyboard-, gesture- and voice-driven interfaces. For 
the gesture-driven remote control of the robot, we used the IS-300 Pro Precision Motion 
Tracker by InterSense, with the update rate of 500 Hz, weight of 15 oz, and angular 
resolution of 0.02 Deg. It measures yaw, pitch and roll using a miniature solid-state 
integrated inertial instrument "InertiaCube" and these temporal signals serve as inputs to 
our gesture recognition algorithm. For the voice-driven remote control, we used wireless 
audio sensors by Audio-technica Corp. To obtain video feedback from the robot, we 
mounted a pair of wireless miniature color cameras by Samsung on the robot's platform. To 
find the location of deployed MICA sensors, we equipped indoor hazard aware spaces with 
RFID tags and mounted an Alien Technology RFID Reader on the robot to find its location 
in the building based on detected RFID tags with known locations. 
The hazard aware space was also equipped with a visible spectrum camera (Network Color 
Camera SNC-RZ30N PTZ Pan/Tilt/Zoom by Sony, and Canon PowerShot SD100 digital 
camera) and by a thermal infrared (IR) camera, (the Omega model by Indigo Systems 
Corporation, Goleta, CA). The thermal IR camera is a long-wavelength (7.5-13.5 microns) 
uncooled microbolometer camera designed for infrared applications. It is controlled via 
RS232 serial port and the analog NTSC video output is digitized using a Hauppauge WinTV 
board. For temperature calibration experiments, we used a regular thermometer used by 
chemists as the temperature gauge. It is measuring temperature directly in engineering units 
of degrees Celsius and providing temperature readings in the range [-40°C, 150°C] with a 
reading uncertainty equal to ±1°C. A set of preliminary experiments to discriminate burning 
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materials was performed with a hyperspectral camera by Opto-Knowledge Systems Inc. 
This camera is based on a liquid crystal tunable filters (LCTF) technology and operates in 
two wavelength ranges, such as visible [400nm, 720nm] and near infrared [650nm, 1100nm]. 

4. Localization of sensors and objects 

One of the key aspects of any HAS system is the knowledge of where hazards occur based on 
sensor locations. The general problem of 3-D information recovery from sensor measurements 
has been addressed in the past by many researchers in the computer vision, machine vision 
and signal/image processing communities (Dario, Bergamasco et al.), (Marr), (Priyantha, 
Balakrishnan et al.), (Wechsler) and in the wireless communication community (Whitehouse), 
(Whitehouse & Jiang). The motivation for obtaining 3-D information often comes from 
applications that require object identification, recognition and modeling.  
In order to detect hazards, one has to deploy sensors in indoor or outdoor environments. 
The sensor deployment can be achieved manually by a human or automatically by a robot 
operating in an autonomous mode. The manual deployment can be accomplished by 
placing sensors either in-situ or remotely with the help of a robot. Every time a sensor is 
deployed, the problem of localizing the sensor arises since the sensor readings have to be 
associated with the location for a hazard to be spatially located. 
In general, there are three approaches to the sensor localization problem. First, a person who 
deploys a sensor records also the location and the unique identification (ID) of a sensor. The 
ID of a sensor is sent with every measurement to a base station where the ID is converted to 
a location according to a look-up table prepared by a human. Second, a robot that deploys a 
sensor uploads its location to the database when the sensor is deployed, the ID of the sensor 
is then sent with every measurement and the location can be found based on the ID of the 
sensor. Third, a sensor after being deployed determines its own location by communicating 
with other sensors or beacons with known locations and transmits the location back with 
each sensor reading. In all three approaches, the localization information could be defined 
or found in a relative or absolute coordinate system. 
The three approaches above have associated tradeoffs between the reuse of sensors and the 
cost of accurate localization In order to reduce the cost of the system, reusing sensors is 
preferred over placing sensors once and not moving them again. However, when sensors 
are relocated in space over time, the manual localization approaches lead to an increased 
cost of the labour needed to constantly update look-up tables with the new location of the 
smart sensors. While the sensor-driven auto-localization saves the cost of manual labour, 
there is a cost in power/energy spent by the smart sensors to run localization algorithms. 
For instance, in order to perform acoustic time-of-flight localization, all sensors have to 
communicate using radio and acoustic signals which are very power-consuming operations. 
The power expenditure leads to frequent replacements of batteries in smart sensors and 
hence increased costs of human labour and battery replacements. By analyzing the tradeoffs 
of multiple sensor localization approaches, we decided to explore two solutions based on 
the approach described as a robotic deployment of sensors. 
Next, we outline the two solutions for localizations; one using stereo and a ‘smart’ sensor 
network (the MICA sensors) and the other one using Radio Frequency Identification Tags 
(RFIDs). The first solution aims at accuracy of localization after the sensors have been 
deployed by combining the results of acoustic time-of-flight ranging and stereo vision 
algorithms. The second solution aims at power efficiency of localization by deploying RFIDs 
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in indoor environments prior to hazard sensing and recovering the localization information 
from the locations of RFIDs. The uniqueness of the RFID-based solution lies in the fact that 
the tags have fixed locations in the environment, and the reader is mounted on a robot and 
moving in the environment. This is in contrary to the majority of existing RFID-based 
applications where the RFID reader is static and the RFID tags are dynamic. After 
identifying dynamic RFID reader location, the MICA sensors for hazard sensing are 
uploaded with the location information prior to being deployed, and hence the ‘smart’ 
sensor batteries can last longer. Before describing these two solutions as the result of our 
design optimization analyses, we start by introducing the problems and solutions for 
remotely controlled sensor deployment using a robot. 

4.1 Remotely controlled sensor deployment 
The remote robot control system consists of three basic software components including (a) 
acquisition and recognition of control commands from multiple inputs, (b) client-server 
network communication, and (c) command fusion and execution by a robot and its arm. We 
used multiple input modalities to generate the control commands for the robot, such as 
voice and gesture recognition based controls of a robot. For the voice recognition, we 
considered wired or wireless microphones. In the gesture recognition system, we used 
wired orientation sensors mounted on human arms. Finally, our prototype remote robot 
control system included the mouse and keyboard interfaces, as well as a command line 
interface with files containing scripted command sequences.  
The set of gesture commands is based on the US Navy lexicon for navigating aircrafts on the 
ground (Lementec & Bajcsy), (Urban, Bajcsy et al.). The set of voice and keyboard 
commands is user defined and maps in our case to the same US Navy lexicon for navigating 
aircrafts. Fusion of multiple commands is performed by (a) analyzing time delays and (b) 
assigning different priorities to commands and the clients issuing those commands (Urban 
& Bajcsy). Consistent and conflicting commands are considered before a selected command 
is executed by a robot. For an emergency control, a video signal is sent to a monitoring 
station. The overview of the system with multiple inputs is presented in Figure 2. 
 

 

Fig. 2. An overview of a system for remote robot control using sound, gesture and human-
computer interface inputs. 
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First, we implemented an application for the user to control the robot using Human 
Computer Interfaces (HCI) such as a mouse and a keyboard. A user can use a keyboard and 
type in commands of his choice and their corresponding parameters. 
Second, we developed a template based speech recognition system so that typing can be 
replaced by more user friendly interface. A database of sound templates is formed by 
recording commands and extracting Linear Frequency Cepstral Coefficients (LFCCs 
features) defined by the equation 1, where i = 0,1,…, P-1, Yk is the audio sample at time k, P 
is the number of LFCCs features equal to 10, and the set of LFCCs is generated for each  
K= 256 audio sample points. The audio signal is filtered first using a 4th order high pass 
Chebyshev filter, to reduce the low frequency background noise. Then, the amplitudes of 
short length, high amplitude blips, glitches, and spikes are reduced to zero before LFCCs 
features are extracted. We used the Dynamic Time Warping (DTW) algorithm to match any 
new audio command to all templates previously created. The template with the shortest 
DTW error distance is selected unless it is above a pre-defined minimum recognition 
threshold, in which case the input command is classified as unrecognized. 
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Third, we added a gesture recognition system to accommodate remote control execution in 
very noisy environments, for instance, an aircraft carrier deck. While there are many 
approaches to gesture recognition, we chose to research and develop a solution with active 
sensors IS300 Pro due to our objective to achieve performance robustness and reliability. 
Given the choice of an active sensor, our approach to the problem of gesture recognition is 
based on (1) translating arm motion into a temporal sequence of orientation of angles, (2) 
describing a sequence of orientation angles with its characteristics, (3) building models of 
gestures in a lexicon using sequence characteristics of orientation angles, and (4) classifying 
sequences of orientation angles into gesture classes according to the developed gesture 
models in real time. The basic premise of our approach is an existence of a unique mapping 
between human gesture represented by arm movements and a temporal sequence of upper 
arm and forearm orientation angles. Our approach to robust gesture recognition relies on a 
two-stage classification technique. The first stage characterizes temporal streams of each 
Euler angle separately. The second stage uses the combination of Euler angle stream 
characteristics from the first stage to assign gesture labels according to a set of gesture 
classification models. At any moment each of the 12 streams of angular values from four 
orientation sensors are labeled as, steady, oscillating or unclassified, and high, medium-
high, medium, low-medium and low. These labels are then use to define each gesture 
model. 
Finally, we enabled robot arm control via mouse and keyboard interfaces in order to 
perform simple loading and unloading operations. For emergency control purposes, we 
mounted a wireless camera on the platform of a robot to obtain video feedback1. In terms of 
system architecture, the software is designed based on a client-server paradigm as shown in 
Figure 3. All input devices (microphones, orientation sensors, keyboard and mouse) are 
attached to multiple computers that represent the clients in the developed system. In our 

                                                 
1 See a video at http://isda.ncsa.uiuc.edu/gallery.html 
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laboratory experiments the robot is connected to a laptop using the RS232 connection. This 
laptop acts as a server and accepts TCP client connections over the network. Each client can 
issue control commands to the robot by sending commands to the server laptop. The server 
fuses the commands from all clients, and resolves any conflicts that may occur. After 
command conflicts are resolved the commands are translated to a set of robot instructions. 
These instructions are sent to the robot via the RS232 connection, and are then executed. 
 

 

Fig. 3. The signal processing and communication flow of a remote robot control system. 

4.2 Location awareness using stereo and MICA sensors 
The problem of 3-D information recovery is difficult regardless of whether it addresses static 
or dynamic object location estimation. In the past, the problem of depth recovery was 
approached, for example, (a) by vision techniques referred to as shape from cues (Pankanti 
& Jain) where cues can include stereo, motion, shading, etc., and (b) by communication 
techniques frequently referred to as location sensing (radio or ultrasound time-of-flight 
lateration or signal strength analysis (Hightower & Borriello), (Patwari, Ash et al.)). 
Although the vision and location sensing techniques have been proposed, very few methods 
are robust and accurate enough to be used in real-time applications. It is well known that 
many of the depth estimation algorithms are computationally expensive with limited 
robustness and accuracy in most unconstrained, real-life applications. The need for 
improved robustness and accuracy of depth estimation motivated our work on stereo and 
wireless sensor location fusion. 
Our approach to the 3D information recovery problem is based on fusing localization data 
from wireless sensor networks with depth maps obtained through computer vision 
stereopsis (Scherba & Bajcsy). One could envision performing (1) depth map calibration, (2) 
sensor location calibration, or (3) depth map and localization fusion. A flowchart depicting 
the entire process from raw data to calibrated or fused information is shown in Figure 4. We 
have performed several experiments with synthetic and measured data using the Crossbow 
MICA2 motes, TinyOS, and Image to Learn (Im2Learn) implementation of the stereo 
algorithm (Bajcsy, Lee et al.).  
Acoustic time-of-flight ranging was implemented according to Figure 5. The first step is to 
send a message to a ranging endpoint node. The endpoint node, after receiving the message, 
simultaneously broadcasts a radio ranging message with a 4 kHz chirp. Every node in the 
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Fig. 4. Flowchart of Sensor Fusion. 

network is configured to listen for the radio ranging messages and starts a timer which stops 
when the audible chirp is heard. A broadcast message announcing the distance between the 
endpoint and receiving nodes is then sent for all who are interested. Ranging is possible in 
this setup due to the differential in radio transmission speed (governed by the speed of 
light, the radio stack, and system-level issues) and the speed of sound in the sensing 
environment (we use 346.65 m/s for our experiments which corresponds to the speed of 
sound in air at 25°Celsius). The granularity of the timer on the receiving nodes primarily 
dictates the uncertainty in the ranging estimates. 
Stereopsis is the construction of three-dimensional geometry given multiple views of a 
scene. The use of stereopsis leads to a depth map that is simply an image of a scene with 
pixel values given by the depth of each scene point from the camera (the minimum distance 
from the scene point to the camera plane). We implemented the stereopsis algorithm 
according to (Hartley). It consists of stereo rectification step (a process which aligns images 
such that matching points in the resulting images are on the same scanline) followed by 
pixel matching. In the rectified images, everything can be expressed in terms of disparity 
that maps inversely to a depth estimate. The stereo algorithm and the acoustic time-of-flight 
ranging algorithm are described in (Scherba & Bajcsy). 
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Fig. 5. Acoustic Time-of-Flight Ranging. BS is the base station connected to a computer. The 
MICA2 motes are labeled a, b and c. 

The fusion of sensor localization and stereo depth map results is performed by (a) 
registering the localization and depth map data, (b) estimating the uncertainty of 
localization and depth map data as a function depth distance, and (c) fusing the two data by 
minimizing the uncertainty over the entire depth range. The registration problem is 
approached by either global optimization or local model-based fitting. The global 
optimization is achieved by minimizing the difference between depth values and 
localization values in the least squares sense by solving a non-linear set of equations 
(number of MICA sensors is equal to the number of equations) using a downhill simplex 
search. The local model-based fitting approach assumes that a set of apriori known sensors is 
co-planar. Then, the registration is performed by (a) fitting a 3-D surface to a set of apriori 
known co-planar sensor locations, and (b) computing the registration transformation 
parameters. 
In order to fuse the data, the uncertainty of localization and depth map data as a function 
depth distance is estimated theoretically and verified experimentally. The theoretical 
uncertainty estimates are derived from a stereo depth disparity equation and from modeling 
point-point ranging/localization error. Figure 6 shows the determination of a fusion 
threshold for a particular choice localization and depth map uncertainties. We also 
developed simulation capabilities for any range of input uncertainties to determine desired 
fusion thresholds.  
To quantify the benefits of fusion, we performed laboratory experiments. The pair of input 
stereo images is shown in Figure 7 (left) and the MICA sensors were spaced along the depth 
axis of both cameras. We fused the localization and stereo depth map data sets by 
minimizing the uncertainty over the entire depth range. The resulting depth map is shown 
in Figure 7 (right). The accuracy improvements due to fusion for localization and depth map 
estimation were 95% in our experiments. 
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Fig. 6. Fusion decision rule for an image matching error of 4 pixels (stereo error) and a point-
to-point ranging error of  σ = 0.03m (localization error). 
 

  

 

Fig. 7. Left two images show a stereo pair of images taken for quantifying the benefits of 
fusion in a laboratory setup. To the right from the stereo pair, the images show the resulting 
depth map after fusing localization and stereo depth map data. Left image is the input depth 
map before fusion, middle is the pseudo colored depth after fusion, and right is the color 
legend showing the range of depth values in meters in the pseudo colored depth map. 

4.3 Localization with radio frequency identification tags 
The aim of this localization approach is to investigate a more power efficient solution by 
using passive RFID tags compared to the approach using acoustic time-of-flight ranging. 
Hazard aware spaces might be equipped with passive RFIDs at known fixed locations that 
could be used for localization of a robot deploying smart MICA sensors. There is a need to 
explore the cost of deploying RFID tags, their maintenance, robustness and fault-tolerance of 
reading RFID tags, as well as the accuracy of RFID based localization as a function of the 
spatial distribution of RFIDs.  
In order to evaluate passive RFID technology, we envisioned the following scenarios. 
A robot (or person) is moving in a space containing RFID tags, and has a priori knowledge 
of the passive RFID tag locations. The sensor is an antenna (Alien Reader) that detects tags, 
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and obtains their ID and possibly other information, like temperature, position, etc. The 
types of RFID tags we used are shown in Figure 8. Our goal here is to use the RFID Reader 
to detect tags and, given a previously determined map locations of tags, globally localize 
itself in the space. The location information is uploaded to a central database and then the 
MICA sensor is deployed by a robotic arm. Future signals transmitted by the MICA sensors 
will be tagged with the ID of that sensor and the location can be found in the central 
database. Additional RFID tags on objects in the room will also be used for robot collision 
avoidance and for hazard material understanding. Thus, the main focus is to incorporate 
passive RFID tags into the HAS system by (a) building a sensor model for passive RFID tag 
detection, and (b) creating a suitable localization algorithm. 
 

 

Fig. 8. Tag types used in our experimental analysis. 

The key experimental elements to be evaluated during testing can be summarized as 
follows: (a) Reader and tag geometric configuration, (b) tag detection behavior during 
occlusion, (c) Reader and tag relative speed, (d) tag density, (e) tag type, (f) and Reader type. 
Our experimental results show that accurate modeling of the RFID Tag and Reader 
configuration is the key for Tag detection performance for a given type of Reader and Tag, 
but once this is done, robust global localization can be achieved. Our results also show that 
occlusion material between the Reader and Tag is not a very large issue unless that material 
is metallic, in which case tag detection does not occur, or is severely perturbed. 
The process of detecting an RFID tag depends on many factors: antenna footprint, the 
distance between the antenna and tag, and the relative orientation between the antenna and 
tag. We have identified so far the robustness of RFID tag detection to be dependent on the 
following main attributes: (1) geometry of RFID tag versus reader configuration, (2) relative 
motion of RFID tag versus reader and (3) media properties between RFID tag and its reader 
(e.g., occlusion material). These dependencies introduce the possibility of false-negative and 
false-positive RFID tag readings. We have ignored in our RFID tag detection model the non-
zero likelihood of RFID tag or reader failure and it could be incorporated after a basic 
probabilistic RFID tag detection model is developed. For now, we assume that the RFID tag 
type is not a major contributor to the robustness of RFID tag detection. 

4.3.1 Related work 
A technology that performs a similar function to the localization task that we wish to 
accomplish is floor-based sensor systems (Kaddoura, King et al.). Using floor-based sensors 
such as pressure sensors can be quite useful, but they obviously limit use to an environment 
with an accessible floor. Also, in order to be low-cost, it is likely that floor-based sensing will 
only be able to provide 2-D tracking, and not orientation tracking, due to the difficulty of 
attempting to detect in which direction a person or robot is pointing. Other costs of floor-
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based sensing involve power usage, wiring, installation of electronics, etc. Also, there are 
interesting developments in the use of smart sensor technology combined with computer 
vision for the purpose of tracking objects in a space (El-Zabadani, Helal et al.). The use of 
passive RFID technology has potential to make simple and robust contributions to such 
problems, especially when the object being localized is a robot. 
Our theoretical framework follows the work of Hahnel et al., (Hahnel, Burgard et al.). The 
probabilistic sensor model for the RFID antenna was derived for the same technology 
components (a Pioneer robot and Alien reader/RFID tags) but the geometrical configuration 
of readers, the number of readers, and the elevation and orientation of RFID tags were 
different from our experiments (compare Figure 9 and Figure 10). Figure 9 (right) illustrates 
the angular and range dependency of the RFID tag detection reported in Hahnel et al 
(Hahnel, Burgard et al.). Also, while Hahnel et al. presented an analysis of the use of 
augmenting a laser rangefinder with RFID tags during mapping and localization, our 
objective is to evaluate the strengths and weaknesses of using passive RFID tags as the sole 
sensor during localization. 
 

  

Fig. 9. This figure, adopted from (Hahnel, Burgard et al.), illustrates the experimental setup 
and learning a probabilistic sensor model for the RFID antenna. 

4.3.2 RFID tag detection robustness 
After preliminary studies of passive RFID technology, we realized the importance of 

understanding the behavior of RFID tag detection under various conditions, both nominal 

and off-nominal, for robust performance. Only by examining tag detection behavior will one 

be able to match the capabilities and limitations of passive RFID technology with their 

specific application. In our preliminary experiments, we analyzed four main areas: (a) tag 

detection under varying Tag/Reader geometric configurations, (b) tag detection under 

varying tag speeds, (c) tag detection during tag occlusion, and (d) tag detection under 

various tag spatial densities. 

Testing tag detection under varying tag/Reader configurations: In this area, we performed 
a variety of simple experiments, which are summarized below. 

• Measurement: lay tag on floor and find average detection range. Result: we found that 
the average detection range is less than 25 inches. 

• Measurement: suspend tag in the air and find average detection range. Result: we 
found that the average detection range is on the order of 7 feet. 
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• Measurement: lay tag on floor and find maximum detection range for various angles of 
the tag with respect to the reader. Result: we found that the maximum detection range 
varies by approximately 15% depending on the orientation of the tag. This is consistent 
with the observation that the physical tag is not built with rotational symmetry (i.e. the 
tag's antenna does have a preferred orientation with respect to the Reader). 

Testing tag detection under varying tag speeds: For tag positions in the main detection 
range of the reader, we found that the Reader detects tag's moving at all practical indoor 
speeds, with virtually no change in detection rate. We tested this by physically waiving tags, 
running by the reader, etc. The reader always detected the tag promptly. 
Testing tag detection during tag occlusion: We performed simple occlusion experiments 
which involved completely covering the RFID tag with various materials. We performed 
these experiments with plastic, wood/paper, and metal. We found that plastic, wood, and 
paper (up to approximately 2-4 inches thick) have virtually no effect on the nominal 
detection range, whereas any metal (tinfoil, aluminum sheet metal were specifically tested) 
covering the tag will completely prevent detection. 
Testing Tag Detection with spatially dense tag distribution: Measurement: put roughly 15 
tags in the main detection area of the Reader, and see if there is a processing bottle-neck. 
Result: We found that when approximately 10 - 15 tags are simultaneously detected, there is 
a bottle-neck in the Alien Reader processing, and delays of up to 5 seconds occur between 
reported tag detections (vs. 5-10 ms between reported tag detections when only a few tags 
are being detected). 
To summarize these observations: The dependencies noted above introduce the possibility 
of both false-negative measurements, in which case a tag is in the expected nominal 
detection range, but does not get detected, and false-positive RFID tag measurements, in 
which case the tag is outside the expected nominal detection range, yet still gets detected. In 
addition to this, it is also noted that depending on the specific tag/Reader configuration, 
extremely different tag detection behavior can occur. Thus, the tag/Reader configuration is 
probably the most important factor during the detection process (for a given type of RFID 
Tag). This complex behavior requires one to spend much effort in building an accurate 
sensor model, which is discussed in the next section. 

4.3.3 Building a sensor model 
As will be discussed further later, it is common during probabilistic localization to make use 
of a sensor model which specifies a likelihood of a sensor measurement given the position of 
the robot (or person). In this section we present a methodology for developing such a sensor 
model for use during localization with passive RFID technology. As noted above in 
discussion regarding tag detection under varying Tag/Reader configurations, it is necessary 
to build a sensor model which is specifically appropriate for the Tag/Reader geometries and 
configurations that will occur during deployment of the tracking/localization system. This 
is because the tag detection behavior changes drastically between different Reader/tag 
configurations. A simple model will not be sufficient if one's actual implementation differs 
in any number of fundamental ways, some of which are extremely difficult to foresee before 
the actual implementation. For example, in our experiments, we mainly worked with RFID 
Tags distributed in a grid on a carpeted floor, which leads to a very different sensor model 
than that obtained in (Hahnel, Burgard et al.) (compare Figure 9 and Figure 10). When laid 
out on a carpeted floor, the maximum read range was roughly 90 cm. In contrast, when tags 
are held in the air in front of the Reader, the maximum read range is on the order of 200 cm. 
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This behavior led us to develop the following methodology for building a sensor model. 
First, one must determine the possible Reader/tag configurations and geometries that will 
arise in their given implementation. Next, one must fix the Reader's location, and distribute 
a spatially dense array of tags in the very configurations and geometries that are expected. 
This array of tags is then used to determine the “footprint” of the Reader, and more 
specifically, the likelihood of a tag detection given the relative position of the tag and 
Reader. The sensor model then becomes a manifold of detection likelihoods, which can be 
used directly in the localization algorithm described below. 
In our experimental analysis, we followed this procedure with great success. We distributed 
tags in front of the Reader (Figure 10 left), and collected statistics on tag detection while 
varying the angle of the Reader. We then used that information to derive the manifold of 
detection likelihoods over the space of possible geometries. 
 

  

Fig. 10. Left: documentation of setup used to build the sensor model. Right: Image showing 
nominal detection range when Tags are distributed on the floor and the Reader is mounted 
on the robot and tilted forward 30 degrees. The 4th "row" has a radius of rough 

4.3.4 Probabilistic localization 
There are many methods available to perform localization and tracking. We present one 
probabilistic localization method here, in order to quickly evaluate the accuracy and 
robustness of using RFID technology as the sole sensing capability during localization. The 
algorithm we used to perform probabilistic localization, derived from (Choset, Hutchinson 
et al.), is very simple, but also very computationally expensive. The problem of localization 

is to estimate the state x∈X of the robot, where X is a discretized state space consisting of 
possible 2-D positions and orientations. So, for each time step k, we estimate the posterior 
probability P(x(k)|u(0:k-1), y(1:k)) over all possible states, where y(1:k) represents the sensor 
measurements obtained at times 1,…, k, and u(0:k-1) represents motions taken at times  
1,…, k – 1. Note that during a given time step, k, it is possible to detect multiple RFID tags, 
where the likelihood of a tagm detection is independent of whether or not tagn was detected 
(for all m, n such that m ≠ n). Also note that as background knowledge throughout this 
analysis, we have a given map of RFID tags. 
The key to this probabilistic localization scheme is the recursive Bayesian filtering equation, 
which specifies how to use the last estimate (the prior), in conjunction with current sensor 
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measurements and assumptions about current motions, to calculate a current estimate of the 
robot's state (the posterior): 

 
( 1)

( ( )| (0 : 1), (1 : ))

( ) ( ( )| ( )) ( ( ( )| ( 1), ( 1)) ( ( 1)| (0 : 2) (1 : 1))x k X

P x k u k y k

k P y k x k P x k u k x k P x k u k y kη − ∈

− =
Σ − − − − −

 (2) 

Above, ( ( 1)| (0 : 2) (1 : 1))P x k u k y k− − −  represents the prior, or the probability that the robot 

is at location ( 1)x k −   before motions or sensor measurements are taken into consideration. 

The term P(y(k)|x(k)) is called the sensor model, which represents the likelihood of the 
measurement y(k) given the robot (or person) is at location x(k); and the term 

( ( )| ( 1), ( 1)P x k u k x k− −  is called the motion model. In our application, we used a Gaussian 

distribution centered on ( 1)x k −  as the motion model, and the sensor model is determined 

as according to the procedures described in the previous section. The value η(k) is 

normalization constant to ensure that ( ( )| (0 : 1), (1 : ))P x k u k y k−  sums up to one over all  

x(k) . We adopted an algorithm from (Choset, Hutchinson et al.), pg. 313, which we used to 
compute the above posterior at each time step. We initialized the prior to be a uniform 
distribution across all possible states, which allows us to perform a global localization. 
Note that, because we are representing possible states using a discrete grid, the above 

algorithm leads to O(N2) computational complexity, where N is the number of points in the 
grid (Choset, Hutchinson et al.). In the near future, we would like to update the algorithm to 
improve efficiency to allow larger state spaces and finer time discretization. This can be 
done by using particle filters and Monte Carlo localization techniques (Choset, Hutchinson 
et al.),(Dellaert, Fox et al.). 

4.3.5 Experimental results 
We implemented the approach described above using one Alien Technology RFID Reader 
and tags of the type shown in Figure 8. We arranged a grid of RFID tags as shown in Figure 
11, loaded the Pioneer robot™ platform with the RFID Reader, and moved it in a pre-
defined path. Note that in this configuration, the maximum detection range is 
approximately 90 cm. Ground truth measurements were acquired throughout the 
experiments by keeping track of the times at which the robot passed certain pre-determined 
positions. Note that these ground truth measurements include relatively large errors of up 
to 13 cm. 
Our short term goal was to detect at least one RFID every 100 ms while moving the robot 
through the grid of tags. We found that using a tag spacing of approximately 40 cm allowed 
us to maintain this detection rate. Figure 12 show an example of the experimental data, and 
the resulting localization performance. Our localization algorithm quickly arrived at the 
robots position, and was able to track the movement of the robot very well. Figure 13 shows 
the localization error throughout one experiment. We believe that much of the variability in 
the error is due to inaccuracies during ground truth observations. Despite this, we were able 
to quickly achieve and maintain a fairly smooth position estimate over time to within an 
average of roughly 20 cm of the actual position. 
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Fig. 11. Experimental setup. The Alien Reader was mounted on the platform of a robot (left). 
The RFID tags were placed on the floor in a regular grid pattern (right). 

 

 

Fig. 12. These images show three time steps in the middle of an experimental run. Open 
circles represent undetected tags. Filled blue circles represent detected tags. The red circle 
represents the average robot location, and a green circle represents a ground 

 

 

Fig. 13. Plot of 2-D position error over the course of an experiment. Note that our ground 
truth measurement was extremely noisy, having an accuracy of only +/- 13 cm. 
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5. Integration of data across disparate sensing systems over time 

When integrating data across disparate sensing systems, time will play a crucial point. The 
readings from different sensing systems need to be time stamped to enable integration. 
Furthermore, the time stamps need to be with respect to a common clock. It is also 
important to look at the frequency of updates. When dealing with battery powered devices, 
like the MICA sensors, we need to consider the tradeoffs between the frequency of sending 
updates and the power consumption required. In addition, the frequency of sending 
wireless updates is also correlated with collisions in the sensor network and hence has to be 
understood. 

5.1 Synchronization of sensors and cameras 
In order to obtain useful sensor readings, one would like to know when the sensor readings 
were taken. Thus, our goal was to synchronize cameras with the deployed MICA sensors, or 
the MICA sensors with cameras. To achieve the synchronization goal we have to collect the 
data from both cameras and MICA sensors with accurate timestamps. These timestamps 
combined with the location of each sensor and camera would allow us to associate a MICA 
sensor value with an image pixel value. Based on our synchronization needs, we designed 
and developed a temporal calibration technique that follows the schema in Figure 14. 
Cameras are attached to a personal computer (PC) and the PC uses its internal clock to set a 
timestamp for every captured image (the time the first bit of the image is received). If 
cameras are attached to multiple PCs then the PCs are synchronized using the standard NTP 
synchronization protocol (Mills). The MICA sensors communicate through an interface 
board with either the same PC as one of the cameras, or a different PC. In the case of a 
different PC we assume the camera PCs and the MICA PC are synchronized using the 
standard NTP synchronization protocol. 
 

 

Fig. 14. A schema for time synchronization of MICA sensors and cameras. 
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The MICA sensors can be viewed as small autonomous PCs. We need to synchronize the 
time of these small PCs with the PC receiving data. One approach is let the PC receiving 
data time-stamp the incoming messages. However, if there are some delays in the network, 
delays due to processing of the incoming messages, or if the MICA sensor buffers multiple 
readings for their later transmission as a single packet, then the timestamps of the MICA 
sensor readings would be incorrect. We approached this problem by implementing a simple 
time synchronization of the MICA sensors with the PC. Since the MICA sensors use a 
wireless ad-hoc network to send messages back to the base station, we decided to leverage 
the inherent broadcast of the wireless network to do the time synchronization and not have 
each of the MICA sensors run the NTP synchronization algorithm. 
At the MICA initialization, the PC will send the current time to each of the MICA sensors. A 
MICA sensor will update this timestamp every 10ms. Each reading on the MICA sensor will 
be sent back to the PC with the timestamp of the reading. The clocks on the MICA sensors 
are not as accurate as those of the PC. To prevent too much drift between the MICA sensor 
and the PC the timestamp on each incoming packet is compared with the current time of the 
PC, and if the difference between these two is too large (350ms in our case) then the PC will 
send new time to re-synchronize the MICA sensor. 

5.2 Frequency of sensor update 
There are several challenges when it comes to (1) acquiring data continuously from wireless 
sensor networks, (2) dealing with large numbers and high spatial density sensor networks, 
and (3) performing multi-instrument integration tasks in real time. We investigated 
experimentally the impact of several communication protocols, spatial sensor arrangements, 
MICA antenna orientations, presence of other wireless devices, acquisition sampling rates 
and the dependencies of the number of active MICA sensors on the wireless information 
loss. Our results were summarized in our past publications (Bajcsy, Kooper et al.), (Saha & 
Bajcsy), (Scherba and Bajcsy). Next, we only briefly describe the issue related to acquisition 
sampling rate. 
Figure 15 shows how the number of samples received per second decreases with an 
increasing number of sensors. If there is only one sensor and we sample every 128ms, then 
we receive almost eight readings per second (1000/128). If we add more sensors then the 
number of readings decreases because of the collisions in the network. With seven sensors 
transmitting we obtain the same number of samples per second using 128ms sample rate 
(and a lot of collisions in the network) or 256ms sample rate. If we would increase the 
number of sensors then we would continue finding these tradeoff configurations (number of 
sensors and sample rate configuration assessed by the number of reading lost due to 
network congestion). From these experimental studies one can make determinations when it 
is better to switch to a lower sampling rate and still receive the same number of samples per 
second as at the higher sample rate (while saving battery power). Although unclear from 
these experiments, it is hypothetically possible that with 128ms sample rate and many 
sensors in the network one would receive fewer samples per second than with the same 
number of sensors and 256ms while wasting battery power. Thus, knowing the optimal 
sampling rate for a given number of active sensors will not only decrease the number of 
collisions in the network but also save sensor energy. The MICA sensors are battery 
operated and have a limited supply of energy. Transmission is in most cases the most 
expensive operation the sensor performs and thus minimizing the number of transmissions 
will increase the lifetime of the sensors. 
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Fig. 15. Samples (sensor readings) received per second as a function of the number of 
sensors for the temporal sampling rate equal to 128ms (top) and 256 ms (bottom). 

6. Calibration of measurements from sensors and spectral cameras 

Our objective is to detect and recognize hazards such as fire. We strived to perform 
continuous wide area monitoring using thermal IR and visible spectrum cameras. Many 
building already have low resolution visible spectrum cameras to monitor security in the 
building. Our hazard aware system could use this existing network of cameras to do a low 
resolution detection of any hazards. Once a hazard has been detected we use the robot to 
place higher accuracy sensors in the environment to confirm the hazard. In case of a false 
alarm we want to recalibrate the system to take the new data into account. To be able to 
achieve this goal we need to integrate the readings from the visible and thermal IR cameras 
with those from the MICA sensors. 
To get accurate hazard detection from raw sensor readings and camera pixel values, for 
example from the thermal IR camera, one has to convert sensor and camera raw values into 
engineering units, such as degrees of Celsius or Fahrenheit or Kelvin, otherwise the raw 
values cannot be used for detection and recognition purposes. This conversion is also 
denoted as a spectral calibration since temperature (a variable representing thermal 
wavelength range) could be replaced by any other spectral variable, for instance, a variable 
that represents visible spectrum, near infrared or radar wavelengths. Figure 16 shows our 
proposed schema for calibrating raw values.  
First, we explored the calibration of thermal IR images using pre-calibrated MICA sensor 
readings. One can find the need for thermal IR camera calibration in many other areas, for 
instance, in remote sensing (radiometric and photogrammetry calibration of aerial and 
satellite imagery), robotics (vegetation detection using near calibrated infrared and red 
wavelength imagery), astronomy (brightness estimation of stars using thermal IR imaging of 
the sky) or military (battlefield analyses). We foresee the use of widely distributed and 
deeply embedded "smart" micro electro-mechanical systems (MEMS) sensors as potential 
thermal IR calibration gauges for thermal IR cameras in future. 
The calibration procedure can be described as follows assuming that all sensors and cameras 
were synchronized and their locations are known. First, MICA sensors are programmed to 
sense and send temperature readings over a certain time period. Second, during the same 
time period, temperature measurements are collected with a thermometer (a calibration 
gauge). Third, a calibration transformation is established for MICA temperature sensors 
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Fig. 16. A calibration schema for MICA sensors and spectral cameras using an appropriate 
spectral gauge. We used temperature sensors on a MICA sensor board, thermal IR camera 
and a thermometer as a calibration gauge in our experiments. 

using a factory recommended formula and verified with thermometer measurements. 
Fourth, both thermal IR camera and MICA sensors are initiated to acquire data by 
broadcasting a RESET signal to MICA sensors and triggering thermal IR camera acquisition. 
Fifth, MICA sensors transmit every set (packet) of temperature measurements with the state 
of the internal counter (time stamp) to the base station attached to a personal computer (PC). 
In meantime, the thermal IR camera acquires data with the time stamp of the CPU clock 
counting from the RESET signal. Sixth, the MICA raw temperature measurements are 
received and transformed into degrees Celsius. Seventh, MICA temperature sensor locations 
in the thermal IR image are identified, and statistics of the transformed MICA temperature 
measurements and the thermal IR image pixel values at the MICA sensor locations are 
related to form the final calibration transformation. In this step, if the entire scene viewed by 
a thermal IR camera is temperature homogeneous then MICA temperature sensor locations 
in the thermal IR image do not have to be identified and statistics of the thermal IR image 
can be computed over the entire image. 
Second, we explored the calibration of MICA sensor readings using pre-calibrated thermal 
IR images. This problem turns out to have a great application for large scale sensor 
deployment scenarios. Calibrating a large number of MICA sensors is a very tedious and 
time-consuming process since every sensor has to be treated separately. One should be 
aware that although MICA sensors come with a manufacturer's recommended calibration 
formula, each sensor has its own hardware characteristics. This is illustrated in Figure 17 for 
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eight MICA sensors in the close proximity of the base station (the PC receiving data). The 
raw values vary significantly in terms of their amplitude (vertical axis) and slightly over 
time (horizontal axis). 
 

 
 

Fig. 17. Left - MICA sensor spatial arrangement. Right - Variations of raw temperature 
readings obtained from the MICA sensors shown in the left picture. 

In this case, the calibration procedure can be described as follows. First, we calibrate a 

thermal IR camera by acquiring thermal infrared images of a blackbody, such as a cup of hot 

water, while measuring its temperature with a regular thermometer. Second, both thermal 

IR camera and MICA sensors are initiated to acquire data by broadcasting a RESET signal to 

MICA sensors and triggering thermal IR camera acquisition. Third, MICA sensors transmit 

every set (packet) of temperature measurements with the state of the internal counter (time 

stamp) to the base station attached to a personal computer (PC). In meantime, the thermal IR 

camera acquires data with the time stamp of the CPU clock counting from the RESET signal. 

Fourth, the MICA raw temperature measurements are received and transformed into 

degrees Celsius. Fifth, MICA temperature sensor locations in the thermal IR image are 

identified. All calibrated thermal IR image pixel values at the MICA sensor locations are 

used to form the spatially dependent calibration transformation for MICA sensor readings. 

The details of the calibration procedures can be found in (Bajcsy, Kooper et al. 2006). 

7. Hazard detection, confirmation, understanding and containment 

Hazard detection is achieved by comparing calibrated temperatures with a pre-defined 

hazardous temperature. When a predefined hazardous temperature is exceeded on any 

sensor, MICA, thermal IR and visible spectrum, the frames are analyzed to detect 2D 

characteristics (location, shape, color, texture and temporal signatures). We implemented 

temperature-based thermal IR and color-based visible spectrum image hazard detections 

from video streams as illustrated in Figure 18. This type of detection guides hazard 

confirmation step which is performed by deploying more MICA sensors, or by zooming and 

panning cameras according to the operator's needs. 

It is important not only to detect fire hazards, but also to understand what material is 

burning in order to bring the appropriate extinguishers and to discriminate safe from 
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dangerous fires, e.g., a couch burning versus wood burning in a fire place. To understand 

what material is burning, one could analyze hyperspectral images of hazards together with 

thermal IR images. The assumption of this approach to hazard understanding is that 

temperature and high dimensional visible spectrum signature of fire flames uniquely 

defines burning materials. Finally, hazard containment requires studying hazard types, 

containment methods, hazard accessibility and many other application specific constraints. 

We have prototyped a demonstration showing that a robot could be used for the purpose of 

hazard containment when fire hazards in an office building are still relatively small in their 

extent. It is our belief that constant monitoring of hazards and an immediate hazard 

containment action could prevent large scale fire hazards and significant financial damages. 

 

 
 

Fig. 18. An illustration of color-based visible spectrum image hazard detections from a video 
stream. Red crosses are placed over candle flames in three frames extracted from a video 
sequence. 

7.1 Proactive camera control and human alert 
Once a hazard has been confirmed a human needs to be alerted. We have investigated 

proactive approaches to camera control, spectral image analysis and human alert 

mechanisms. We have completed a design phase of a proactive camera control system that 

can trigger visible spectrum and thermal infrared spectrum cameras based on luminance 

and temperature sensors mounted on the available MICA sensor boards. Our current design 

addresses the problems of (a) efficient bandwidth management by proactive camera control 

(low bandwidth monitoring of hazard awareness spaces with MICA sensors and high 

bandwidth monitoring of hazard awareness spaces with cameras), (b) hazard understanding 

(multi-spectral sensing including visible and thermal infrared information) (c) choice of the 

best spectral modality to capture data about the environment based on the data provided by 

the MICA sensors and (d) human alert mechanism (image analysis to highlight areas of 

potential hazard). The proactive camera logic can be described as follows: 

• If light is on then visible camera shown. 

• If light is off then thermal IR camera shown. 

• If temp > thresh & light is on then visible camera & hazard region enhancement are 
shown. 

• If temp > thresh & light is off then thermal IR camera & hazard region enhancement are 
shown. 

Examples of proactive camera control and human hazard alert mechanism are shown in 

Figure 19. Note in Figure 19 how the system uses the RGB camera when the office light is 
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on, and combines the information about white (hot) regions from the thermal IR camera to 

highlight the RGB region of interest (the hazard region). 

 

 
 

Fig. 19. Left - Proactive camera control. Depending on the temperature and light readings 
from a wireless network of motes, either a visible spectrum video or a thermal infrared 
spectrum video is sent to a hazard monitoring station. Right - Illustration of hazard alert by 
automated region selection and image enhancement. 

8. Summary 

We presented several research problems and their solutions developed for building hazard 
aware spaces. We have developed a method for deploying sensors remotely with a robot. To 
allow us to remotely control the robot we have looked at different modalities of controlling 
the robot (e.g. voice, gestures, a mouse or a keyboard) and addressed the problems related 
to fusing multiple simultaneous commands. In multi-sensor and multi-instrument systems 
like the HAS systems, we have investigated methods how to synchronize, localize and 
calibrate data. After analyzing the tradeoffs of localization approaches, we explored the 
effectiveness of using passive RFID technology for localization. We analyzed what elements 
most effected RFID tag detection robustness, and presented a methodology for building a 
sensor model for accurate RFID-based localization in addition to the standard acoustic time-
of-flight ranging and stereo vision localization methods.  
Once the sensors have been configured, we fused the incoming data and maximized our 
information gain from disparate sensing capabilities. Finally, we showed proactive 
approaches to camera control, spectral image analysis and human alert mechanisms, and 
briefly outlined a few challenges in application scenarios similar to the hazard aware space. 
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