281 research outputs found

    The importance of unsteady aerodynamics to road vehicle dynamics

    Get PDF
    This paper investigates the influence that different unsteady aerodynamic components have on a vehicle's handling. A simulated driver and vehicle are subject to two time-dependent crosswinds, one representative of a windy day and the second an extreme crosswind gust. Initially a quasi-static response is considered and then 5 additional sources of aerodynamic unsteadiness, based on experimental results, are added to the model. From the simulated vehicle and driver, the responses are used to produce results based on lateral deviation, driver steering inputs and also to create a ‘subjective’ handling rating. These results show that the largest effects are due to the relatively low frequency, time-dependent wind inputs. The additional sources of simulated unsteadiness have much smaller effect on the overall system and would be experienced as increased wind noise and reduced refinement rather than a worsening of the vehicle's handlin

    Investigation of all-wheel-drive off-road vehicle dynamics augmented by visco-lock devices

    Get PDF
    A peculiarity of AWD off-road vehicles is that their behaviour depends not only on the total power, provided by the engine, but also on its distribution among the drive axles/wheels. In turn, this distribution is largely regulated by the drivetrain layout and its torque distribution devices. At the output of the drivetrain system, the torque is constrained by the interaction between the wheels and the soft soil. For off-road automotive applications, the design of drivetrain systems has usually been largely dominated by the mobility requirements. With the growing demand to have a multipurpose on/off road vehicle with improved manoeuvrability over deformable soil, particularly at higher speed, the challenges confronting vehicle designers have become more complex. The thesis presents a novel integrated numerical approach to assess the dynamic behaviour of all-wheel-drive vehicles whilst operating over deformable soil terrain. [Continues.

    Optimisation of AWD off-road vehicle performance using visco-lock devices

    Get PDF
    A comprehensive computer model is devised for the simulation of AWD off-road vehicle dynamics. Particular attention has been paid to the modelling of various visco-lock devices, including the viscous couplings and visco-lock limited-slip differentials. These devices are represented by fully parameterised physical models which capture the torque transmission mechanism represented by various thermodynamic, hydrodynamic, structural and mechanical modules. The characteristics of these devices can easily be altered so that comparisons can be made between different types. In addition, the influence of a wide range operating conditions, vehicle design parameters and tyre characteristics can also be made over various deformable soils

    Fault tolerant control for an electric power steering system

    Get PDF
    Electric power steering (EPS) systems are rapidly replacing existing traditional hydraulic power steering systems due to fuel and cost savings. The reliability of a column mounted EPS is improved by adding an alternate control scheme that is tolerant to a torque sensor failure (FTC). To accomplish this, a motor model based observer is used to estimate the total torque on the motor shaft. An independent estimate of the road reaction torque is generated from vehicle navigation signals and subtracted from the total to estimate the torque sensor output. A Hardware-in-the-loop (HIL) simulation is described where the EPS model, road vehicle dynamics and developed control scheme are simulated on an Opal RTTM real-time platform and a physical DC motor is placed in-the-loop. This simulation validates the developed method under more realistic operating conditions than using software simulation alone and is more repeatable and cost effective than a full in-vehicle test

    Experimental and numerical analysis of a helical spring failure

    Get PDF
    Results of experimental and numerical analysis of a broken motor vehicle helical spring are presented in this paper. Location of the fracture is on a first active coil of the spring. Experimental part of the research employed optical microscopy that revealed fractured surface microstructure and allowed for detection of inclusions. Corroded fracture surface limited scanning electron microscopy examination (SEM). Nevertheless, corrosion pits on the edge of the spring wire which served as crack initiation points could be detected by SEM along with radiating ridges left by the fracture front that propagated to the opposite edge of the wire. Optical emission spectrometer with glow discharge source sample stimulation was used to determine material chemical composition that is adequate to spring steel 61SiCr7. Additionally, hardness test was performed and obtained value was used to derive maximum tensile strength of the steel. Experimentally collected data served as input for numerical analysis of helical spring. Finite element analysis of a helical spring model was performed. Stress distribution was determined and fatigue life of the undamaged helical spring predicted. Results were compared with those obtained analytical. Causes of failure are outlined assessing the results of the performed experimental and numerical analysis. Insufficient corrosion protection and excessive contact between the coils caused damage that developed from initial crack to final fracture of the spring. Results obtained by this research are valuable in understanding fracture behavior of helical spring mounted in suspension system of various motor vehicles. Given the presented results, further improvements of spring design can be made in order to reduce failures

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Detection of Communities within the Multibody System Dynamics Network and Analysis of Their Relations

    Get PDF
    Multibody system dynamics is already a well developed branch of theoretical, computational and applied mechanics. Thousands of documents can be found in any of the well-known scientific databases. In this work it is demonstrated that multibody system dynamics is built of many thematic communities. Using the Elsevier’s abstract and citation database SCOPUS, a massive amount of data is collected and analyzed with the use of the open source visualization tool Gephi. The information is represented as a large set of nodes with connections to study their graphical distribution and explore geometry and symmetries. A randomized radial symmetry is found in the graphical representation of the collected information. Furthermore, the concept of modularity is used to demonstrate that community structures are present in the field of multibody system dynamics. In particular, twenty-four different thematic communities have been identified. The scientific production of each community is analyzed, which allows to predict its growing rate in the next years. The journals and conference proceedings mainly used by the authors belonging to the community as well as the cooperation between them by country are also analyzed

    An Improved Optimal Slip Ratio Prediction considering Tyre Inflation Pressure Changes

    Get PDF
    The prediction of optimal slip ratio is crucial to vehicle control systems. Many studies have verified there is a definitive impact of tyre pressure change on the optimal slip ratio. However, the existing method of optimal slip ratio prediction has not taken into account the influence of tyre pressure changes. By introducing a second-order factor, an improved optimal slip ratio prediction considering tyre inflation pressure is proposed in this paper. In order to verify and evaluate the performance of the improved prediction, a cosimulation platform is developed by using MATLAB/Simulink and CarSim software packages, achieving a comprehensive simulation study of vehicle braking performance cooperated with an ABS controller. The simulation results show that the braking distances and braking time under different tyre pressures and initial braking speeds are effectively shortened with the improved prediction of optimal slip ratio. When the tyre pressure is slightly lower than the nominal pressure, the difference of braking performances between original optimal slip ratio and improved optimal slip ratio is the most obvious

    The DRIVE-SAFE project: signal processing and advanced information technologies for improving driving prudence and accidents

    Get PDF
    In this paper, we will talk about the Drivesafe project whose aim is creating conditions for prudent driving on highways and roadways with the purposes of reducing accidents caused by driver behavior. To achieve these primary goals, critical data is being collected from multimodal sensors (such as cameras, microphones, and other sensors) to build a unique databank on driver behavior. We are developing system and technologies for analyzing the data and automatically determining potentially dangerous situations (such as driver fatigue, distraction, etc.). Based on the findings from these studies, we will propose systems for warning the drivers and taking other precautionary measures to avoid accidents once a dangerous situation is detected. In order to address these issues a national consortium has been formed including Automotive Research Center (OTAM), Koç University, Istanbul Technical University, Sabancı University, Ford A.S., Renault A.S., and Fiat A. Ş
    corecore