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Abstract 

Abstract 

A peculiarity of A WD off-road vehicles is that their behaviour depends not only on the 
total power, provided by the engine, but also on its distribution among the drive 
axles/wheels. In turn, this distribution is largely regulated by the drivetrain layout and its 
torque distribution devices. At the output of the drivetrain system, the torque is 
constrained by the interaction between the wheels and the soft soil. For off-road 
automotive applications, the design of drivetrain systems has usually been largely 
dominated by the mobility requirements. With the growing demand to have a multi­
purpose on/off road vehicle with improved manoeuvrability over deformable soil, 
particularly at higher speed, the challenges confronting vehicle designers have become 
more complex. 

The thesis presents a novel integrated numerical approach to assess the dynamic 
behaviour of all-wheel-drive vehicles whilst operating over deformable soil terrain. A full 
drivetrain system including all aspects of rotational inertial dynamics, friction, damping 
and stiffness properties is integrated within a fourteen-degrees-of-freedom vehicle model. 
For off-road simulations, the terra-mechanical phenomena between tyres and deformable 
soils has also been taken into account. The integration of all modules resulted in a fairly 
complex generic model which is implemented in the MA TLAB/Simulink/SimDriveline 
environment. 

In addition to the conventional mechanical torque distribution devices, particular 
attention has been paid to the modelling of various visco-lock devices, including the 
viscous couplings of shafts and visco-lock limited-slip differentials. In the present work, 
these devices are represented by fully parameterised physical models which capture the 
torque transmission mechanism represented by various thermodynamic, hydrodynamic, 
structural and mechanical modules. The characteristics of these devices can easily be 
altered so that comparisons can be made between different types. In addition, the 
influence of a wide range operating conditions, vehicle design parameters and tyre 
characteristics can also be made over various deformable soils. Both viscous shear and 
self-torque amplification (hump) have been considered. In order to validate the proposed 
modules ofvisco-lock devices, a test rig is devised. The results of the experimental work 
conform to those obtained from the numerical models. 

A number of simulation studies, during longitudinal and cornering manoeuvres, are 
conducted to investigate the contribution of significant parameters. In addition, the 
influences of different drivetrain arrangements are presented. The obtained results 
delineated that both traction and cornering response of A WD off-road vehicles are highly 
affected by the way driving torque is distributed between axles/wheels. Also, It was 
demonstrated that, by appropriate selection of silicone fluid rheological properties, 
vehicle behaviour can be tuned in a simulation environment, avoiding time consuming 
and costly experimental procedures. 

Keywords: 4x4 off-road vehicles modelling, terramechanics, A WD vehicle performance, 
viscous coupling, visco-lock devices, drivetrain dynamics. 
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Yaw moment of inertia of the vehicle body/sprung mass 

Tyre longitudinal slip 

Shear displacement 

Local shear displacement in the longitudinal direction 

Local shear displacement in the lateral direction 

Maximum lateral shear displacement 

Module of plastic soil deformation 

Cohesive module of soil deformation 

Shear displacement at maximum shear stress 

Ratio of the residual shear stress to the maximum shear stress 

Frictional module of soil deformation 

Shear deformation modulus 
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Nomenclature 

L Sum of moments about the local frame of reference (x-axis) 

L Transformation or rotation matrix 

I Tyre contact length 

M Sum of the moments along the local frame of reference (y-axis) 

M 0 Drive torque at the wheel (from drivetrain system) 

Mu Tyre circumferential torque 

Mx Roll moment about the local frame of reference (x-axis) 

MY Pitch moment about the local frame of reference (y-axis) 

Mz Tyre aligning torque (section 3.2) 

M, Yaw moment about the local frame z-axis (section 3.3) 

m Mass 

N Sum of the moments along the local frame of reference (z-axis) 

n Sinkage exponent 

0, Origin of the global frame of reference 

01 Origin of the local frame of reference 

P Normal ground pressure (section 3.2) 

P Angular velocity about the local frame of reference (x-axis) (section 3.3) 

P(z) Normal ground pressure distribution as function of soil sinkage 

p( .9) Normal pressure distribution as a function of soil/tyre contact angle 

P1n ( .9) : Normal pressure at the inlet contact point of the substitute circle 

P""' ( .9): Normal pressure at the outlet contact point of the substitute circle 

p" ( .9) : Ground pressure due to soil elastic deformation 

P pi ( .9): Ground pressure due to soil plastic deformation 

Pm" Pre-compaction pressure 

Pr Ground pressure in the track (pre-compaction) 

q Angular velocity about the local frame of reference (y-axis) 
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Nomenclature 

R, Global/fixed frame of reference 

R1 Local/moving frame of reference 

r Angular velocity about the local frame of reference (z-axis) 

rd Dynamic rolling radius of the wheel 

s1 Position vector of the origin ( 0
1 
)with respect to the global frame 

s; Position vector of the particle(P)with respect to the global frame 

T Transformation matrix from local to global frame of reference 

U Translational velocity projected on the local frame of reference, x-axis. 

u Forwarded velocity of point Pin the local frame of reference 

V Velocity of a point on the rim (section 3.2) 

V Translational velocity projected on the local frame, y-axis. (section 3.3) 

V1 Vector of velocity of a point in the local frame of reference 

' 
Vi Vector of velocity of a point in the global frame of reference 

v Lateral velocity of point P in the local frame of reference 

W Translational velocity projected on the local frame of reference, z-axis. 

w Vertical velocity of point Pin the local frame of reference 

X Sum of forces along the local frame of reference, x-axis. (section 3.3) 

x Forwarded displacement of a point in local frame (section 3.3) 

X0 Longitudinal distance of the C.G from the origin of the local frame 

x, y, z, : Global/fixed frame of reference coordinates 

x1 Y1 =1 : Local/moving frame of reference coordinates 

X0 , Yo : coordinates of the substitute circle centre (section 3.2) 

Y Sum offorces along the local frame of reference (y-axis) (section 3.3) 

Y Lateral displacement of a point in the local frame (section 3.3) 

Z Sum of forces along the local frame of reference (z-axis) (section 3.3) 

z Vertical displacement of a point in the local frame (section 3.3) 
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Nomenclature 

z 

Zo 

Zo,I 

Zo,2 

zel,zpl 

zel,oul 

a 

9in 

9el. in 

9el.out 

Sinkage (section 3.2) 

Static sinkage 

Static sinkage without multi-pass assumption 

Static sinkage with multi-pass assumption 

Elastic and plastic deformation of the soil respectively 

Soil elastic deformation at the inlet contact point of substitute circle 

Soil elastic deformation at the outlet contact point of substitute circle 

Depth of the track 

Tyre lateral slip angel 

Soil elastic deformation 

Angular displacement about the local frame of reference (x-axis) 

Wheel shear-angles at the substitute circle 

Tyre initial contact angle 

Contact angle at the inlet contact point of the substitute circle 

Inlet contact angle at the substitute circle (elastic tyre assumption) 

Outlet contact angle at the substitute circle (elastic tyre assumption) 

Adhesion 

Shear stress 

Maximum shear strength of the soil 

Angel of internal shearing resistance (section 3.2) 

Angular displacement about the local frame (y-axis) (section 3.3) 

Angular displacement about the local frame of reference (z-axis) 

Rotational velocity vector of the local frame of reference 

Rotational wheel speed 

Rotational wheel acceleration 
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A 

a,b 

b 

b 

b,, b, 

c 

c, 

F F F · Gx' Gr' Gz • 

F,, 

g 

I, 

Vehicle characteristic area (assumed to be the frontal area) 

Longitudinal location of the body C. G. from front and rear axles 

Soil damping coefficient (Equation 4.20) 

Width of the rectangular plate, or radius of the circular plate 

Damping rates at the engine and transmission sides of the clutch. 

Apparent cohesion of the soil terrain 

Coefficient of aerodynamic resistance 

Shock absorber damping coefficient (i =I: 4) 

Substitute circle diameter 

Aerodynamics force due to air resistance 

Soil damping force at each wheel 

Components of gravitational force relative to local frame system 

Horizontal force at the tyre-soil contact area 

Normal force applied to the clutch friction plates 

Tyre internal rolling (flexing) resistance force 

Suspension forces at each wheel (i =I: 4) 

Wheel circumferential force (i =I: 4) 

Tyre force at the wheel hub relative to the wheel coordinate system 

Total forces affecting the vehicle body sprung mass 

Tyre force relative to the local frame of reference system 

Gravitational acceleration 

Initial height of the local frame origin to the global frame 

Mass moment of inertia of the engine and flywheel 

Mass moments of inertia of a shaft 
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Nomenclature 

I, Mass moments of inertia of the transmission system 

I., Wheel moment of inertia around its spinning axis (i =I: 4) 

Ixx,Iyy,Izz Mass moments of inertia of the vehicle body sprung mass 

I~ Product moment of inertia of the vehicle body sprung mass 

iD Differential gear ratio 

i0 Gear ratios 

j j 1 ( .9) Local shear displacement in the longitudinal direction 

K Module of plastic soil deformation 

Kc Cohesive module of soil deformation 

K, Suspension spring stiffness (i =I: 4) 

K• Frictional module of soil deformation 

k Shear deformation modulus 

k,h, b,h Shaft rotational stiffness and damping coefficient 

M, Engine toque (applied at the flywheel) 

M" Torque transmitted by clutch 

M1~, Maximum torque capacity of the clutch 

M,,Mq, Mo,: Longitudinal and the lateral driving torques across the differential 

M., ,M8, ,Mu, : Wheel driving, braking and circumferential torque (i =I: 4) 

Mx, MY,M, Roll, pitch and yaw moment about the local frame of reference 

m., Quarter of the vehicle body or sprung mass (i =I: 4) 

m, Vehicle body or sprung mass 

m., Wheel unsprung mass (i =I: 4) 

N, Number of friction surfaces used by the clutch 

n Sinkage exponent 

ii8 Road surface profile or normal vector 

P Normal ground pressure 
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Nomenclature 

p,q,r 

R 

u,v,w 

z 

z 

z~~, 

17a 

B,rp,lf/ 

Rotational velocities about local frame of reference coordinates 

Relative transformation matrix 

Clutch effective torque radius 

Position vector of wheels relative to the local frame of reference 

Inner and outer plate radius of the clutch plate 

Wheel dynamic rolling radius (i =I: 4) 

Position of the local frame origin with respect to the global frame 

Position of wheel hub with respect to the global frame of references 

Front and rear wheel track 

Translational velocities along local frame of reference coordinates 

Coordinates of global/fixed frame of reference 

Coordinates of locaVmoving frame of reference 

Vehicle body bounce 

Sinkage (Equation 4.95) 

Vertical displacement, speed and acceleration of the vehicle corners 

Surface height at each wheel with respect to the global frame 

Vertical displacement, speed and acceleration of the wheel centre 

Steering angle applied at each wheel (i =I: 4) 

Gear efficiencies 

Wheel-terrain contact-angle at the substitute circle 

Vehicle body roll angle, pitch and yaw angle 

Euler angles (calculated by Equations 63 :65) 

Flywheel angular displacement and acceleration 

Road inclination and camber angles 

Kinetic and static coefficients of friction 
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[vx,,vy,l 
[vxi'VYIJW 
p 

rp 
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A 

A 

a 

a,~,h2 

b 

dF 

G 

h 

(h·A), 

(~). 

Longitudinal and lateral velocities with respect to the local frame 

Longitudinal and lateral velocities with respect wheel coordinates 

Air density 

Shear stress 

Maximum shear strength of the soil 

Angel of internal shearing resistance 

Wheel rotational speed and acceleration 

Longitudinal and the lateral rotational speed across the differential 

Empirical constant (Equation 5.1) 

Active area of the plates 

Half width of inner plate tab 

Dimensions used to define tab deflected geometry (Figure 5.1 0) 

Half thickness of the inner plate tab 

Ratio of fluid volume to housing void volume at filling temperature 

Specific heat coefficient of the silicone fluid 

Specific heat coefficient of the viscous coupling core 

Elementary force 

Coulomb friction force 

Modulus of rigidity 

Gap height or fluid film thickness 

Convection parameter for steel housing surface 

Equivalent conduction parameter through the housing 

Empirical conditional factor 
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Nomenclature 

L 

1 

MTC 

M., 

m 

(me), 

(me), 

n 

p 

p 

Po 

P, 

R 

lj 

Bulk modulus of the Silicone fluid 

Empirical factor due to the presence of holes and perforations 

Calculated geometry constant for plate tab deflection 

Inner plate tab length 

Inner plate tab width 

Twisting moment on plate tab due to Coulomb friction effect 

Twisting moment on plate tab due to viscous shear effect 

Slope of the regression line BC at the high shear rates (Figure 5.5) 

Masses ofthe steel core (including the plates and the drum) 

Masses of the silicone fluid 

Thermal mass of the coupling core 

Thermal mass of coupling steel housing 

Number of tabs on the inner plate 

Bulk pressure inside the viscous coupling unit 

Pressure from inner plate side-1 and side-2 respectively 

Differential force across side-1 and side-2 on plate 

Hydrodynamic pressure (around the inner plate tab) 

Equivalent differential pressure 

Atmospheric pressure 

Net axial force exerted on the inner plate tab 

Thermal energy 

Energy conducted from the viscous coupling core into the housing 

Energy convected by the air from the housing to the surrounding air 

Volume flow rate per unit depth in the x-direction 

Universal gas constant 

Outer plate inner radius 
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Nomenclature 

r, 

1j 

u 
u,v, w 

X,Y,Z 

a 

Inner plate outer radius 

Inner plate slot radius 

Gap between inner and outer plates 

Gap width between inner and outer plate from side- I and side-2 

Coulomb friction torque 

Total torque transmitted by one cell of plates 

Viscous shear torque 

Inner plate thickness 

Tangential or slider velocity 

Fluid velocity components in X,Y,Z directions respectively 

Volume of air inside the viscous coupling 

Volume of the silicone fluid in its free state 

Initial fill volume of silicone fluid 

Volume of the silicone fluid at any temperature 

Volume of the viscous coupling's housing at any temperature 

Initial volume of the viscous coupling housing 

Volume of the viscous coupling's housing at any temperature 

Tangential, axial and radial flow directions relative to the coupling unit 

Coefficient line of thermal expansion 

Coefficient volume of thermal expansion of the Silicone fluid 

Coefficient volume of thermal expansion of the steel 

Shear strain rate and critical shear strain rate respectively 

The net axial deflection of the tab tip 

Bulk pressure rise due incremental change in temperature 

Time interval or step time 
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Nomenclature 

o, 
1] 

e 

rp, If/ 

(1) 

Incremental change in temperature 

Inner plate tab inclination angle 

Inner plate tab twisting angle due to Coulomb friction moment 

Total twisting angle of the inner plate tab around its centriod 

Inner plate tab twisting angle due to differential shear stress moment 

Coefficient of Coulomb friction between plates 

Temperature 

Air temperature 

Nominal temperature 

Skin temperature 

Initial filling temperature 

Fluid temperature 

The dynamic viscosity at a specific temperature 

Dynamic viscosity at a nominal temperature and nearly zero shear rate 

Kinematic viscosity at any temperature 

Nominal kinematic viscosity (at room temperature) 

Reynolds Number 

Modified Reynolds' Number 

Reynolds' Number defined for gap height 

Reynolds' Number defined for tab length 

Fluid density 

Shear stress 

Angles describing plate geometry 

Relative rotational speed between inner and outer plates 
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JF,JR 

K 

Mdf 

Md, 

Md, 

ME 

pd 

Rc,RP 

Rs,RR 

:z;,r, 
Tc 

TF,TR 

TGB 

TLF 

TLR 

TRF 

TRR 

Tv 

Drawbar pull (force available at the drawbar) 

Gear reduction of the front axle differential 

Gear box ratio 

Gear reduction of the rear axle differential 

Longitudinal slip at the front and rear axles respectively 

Mass moment of inertia of the front and rear propeller shafts 

Torque capacity of the viscous unit 

Driving torque available at the front axle tyres 

Driving torque available at the driven wheels 

Driving torque available at the rear axle tyres 

Engine driving torque 

Drawbar pull power 

Radius of the carrier and pinion gears respectively 

Radius of the sun and ring gears respectively 

Dynamic rolling radius of the wheel (i =I: 4) 

Torques applied at right and left axle (output from differential) 

Input torque applied at the differential carrier through the ring gear 

Torque applied to front and rear axles respectively 

Torque applied at gear box 

Torque applied at left front tyre 

Torque applied at left rear tyre 

Torque applied at right front tyre 

Torque applied at right rear tyre 

Viscous shear torque transmitted by visco-lock devices 
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Nomenclature 

V 

'7, 

'lt 

Vehicle speed 

Torque split ratio 

Ring-to-sun gear ratio 

Tractive or driving efficiency 

Motion efficiency 

Slip efficiency 

Transmission efficiency 

Total tractive forces developed by the driving wheels 

Total driving resistance 

Rotational speed of the right and left axles (output from differential) 

Rotational speed of the differential carrier 

Engine rotational speed 

Rotational speed and acceleration of the front axle tyres 

Rotational speed of the output shaft of gear box 

Rotational speed of the left front tyre 

Rotational speed of the left right tyre 

Rotational speed of the pinion gear 

Rotational speed of the ring and sun gears respectively 

Rotational speed and acceleration of the rear axle tyres 

Rotational speed of the right front tyre 

Rotational speed of the right rear tyre 
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Glossary of Terms 

Glossary of Terms 

4WD 

ABS 

ADAMS 

AESCO 

AS2TM 

AWD 

AWS 

BS 

DOF 

FEM 

FWD 

HIL 

HMMWV 

IKK 

ISO 

LAV 

LSD 

LSD-0-0 

LSD(SS) 

LSD(SC) 

MATLAB 

NATO 

NRMM 

Four-Wheel Drive or ( 4x4) 

Anti-Lock-Braking System 

Automatic Dynamic Analysis of Mechanical Systems 

Automotive Engineering, Software & Consulting 

AESCO Soft Soil Tyre Model 

All Wheel Drive 

All Wheel Steering 

British Standard 

Degree of Freedom 

Finite Elements Method 

Front Wheel Drive 

Hardware in the Loop 

High Mobility Multi-Wheeled Vehicle 

Institute for Automotive Engineering 

International Organization for Standardization 

Light Armoured Vehicle 

Limited Slip Differential 

Visco-Lock Limited Slip Differential (front axle) - Open central 

differential- Open differential (rear axle) 

Visco-Lock Limited Slip Differential (Shaft to Shaft) layout 

Visco-Lock Limited Slip Differential (Shaft to Carrier) layout 

MATrix LABoratory 

North Atlantic Treaty Organization 

NATO Reference Mobility Model 
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Glossary of Terms 

NTVPM 

NWVPM 

0-0-0 

0-L-0 

0-VC-0 

0-LSD-0 

0-0-LSD 

ORIS 

ORSIS 

PID 

RTVPM 

RWD 

STA 

suv 

TA COM 

TBR 

TCS 

TMD 

TORS EN 

VDAS 

VENUS 

WES 

Nepean Tracked Vehicle Performance Model 

Nepean Wheeled Vehicle Performance Model 

Open differential (front axle) - Open central differential - Open 

differential (rear axle) 

Open differential (front axle) - Locked central differential - Open 

differential (rear axle) 

Open differential (front axle) - Viscous Coupling - Open differential 

(rear axle) 

Open differential (front axle)- Visco-Lock Limited Slip Differential­

Open differential (rear axle) 

Open differential (front axle)- Open central differential- Visco-Lock 

Limited Slip Differential (rear axle) 

Off Road Interactive Simulation 

OffRoad Systems Interactive Simulation 

Proportional-Integral-Derivative controller 

Rigid Tracked Vehicle Performance Model 

Rear Wheel Drive 

Self-Torque Amplification 

Sports Utility Vehicles 

Tank Automotive COMmmand 

Torque Bias Ratio 

Traction Control System 

Torque Management Devices 

Torque Sensing 

Vehicle Dynamics Analysis Software 

Vehicle-Nature Simulation 

U.S. Army Waterways Experiment Station 
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Chapter I: Introduction 

Chapter 1: Introduction 

1.1 Research Overview 

Wheeled vehicles which are used in sports utility, military or by some emergency services 

have to fulfil several key requirements. One requirement concerns their mobility, which is 

defined as the ability of the vehicle to cope with arduous cross-country terrains. Unlike 

the prepared surfaces of solid infrastructure (referred to hereinafter as on-road or made 

roads), off-road terrains are characterized by deformable irregular surfaces with abrupt 

slopes and obstacles of distinctive nature. It is commonly recognized that, the interaction 

between wheeled vehicles and soft terrain is complex and strongly dominated by the 

terrain's mechanical properties. Furthermore, some soils can behave excessively in terms 

of sinkage and slippage according to the applied wheel normal load and driving torque. 

The continual demand for improved mobility over an increasingly wider range of terrains 

has stimulated a great deal of interest in the field of drivetrain research. Originally, the 

concept of rigid four wheel drive was adopted such that both the front and rear axles were 

rigidly coupled to a transfer-case without a speed differential between them. While this 

layout offers a better tractive performance, serious problems may still arise on dry roads, 

especially during cornering manoeuvres. High wind-up torques in the drivetrain may 

occur, as well as severe tyre wear. The most common solution is to incorporate an 

ordinary open differential at both the front and rear axles and within the transfer-case 

itself in order to absorb shaft speed variations between the axles/wheels. In addition, for 

serious driving situations, these differentials can be manually locked. However, there are 

significant operational requirements in eliminating the manual intervention by employing 

permanent torque management devices, which would automatically adapt to the tyre­

terrain conditions. 

These aspects have emerged with the recent demands for multi-purpose on/off road 

vehicles, not only with a higher traction and acceleration potential, but also with 
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improved manoeuverability over deformable soils. Although improving traction 

performance is a main consideration for off-road vehicle applications, the desired increase 

in mobility must be achieved without making any compromises regarding safety or ease 

of operation or driver comfort. Furthermore, for modem vehicles, handling behaviour is 

an important aspect which requires a potential to sustain high lateral accelerations, whilst 

maintaining a good level of directional stability. 

With recent achievements in ride quality, which promotes unprecedented opportunity to 

increase vehicle speed over soft terrains, the challenges for vehicle designers have 

become more complex. Off-road vehicles can be more sensitive to these demands than 

passenger cars due to the basic requirement for high ground clearances and hence high 

centres of mass. Therefore, during cornering manoeuvres, large lateral weight transfers 

can cause significant changes in tyre-soil contact conditions such as sinkage and 

longitudinal slip, affecting lateral forces. Furthermore, the vehicle side-slip and yaw 

motion are dependent on, not only vehicle design parameters and tyre characteristics, but 

also on the mechanical properties of the terrain. 

1.2 Problem Definition 

With respect to the aforementioned requirements, it is obvious that the striking challenge 

is to design an efficient torque management device to optimally distribute the driving 

torque between the axles/wheels, not only for better traction performance, but also to 

achieve an acceptable cornering stability. 

Over the years, it has been shown that, for off-road applications, the concept of all-wheel­

drive propulsion offers better performance and improved mobility. Nowadays various 

components are available for A WD drivelines, including simple differentials, limited slip 

differentials through to fully electronically-controlled differentials. 

To construct a driveline and achieve the desired vehicle performance, the designer is, 

therefore, confronted with a bewildering range of options. The relationships between 

vehicle body, drivetrain, suspensions, tyres, steering, terrain conditions, and so on, are 

2 



Chapter 1: Introduction 

quite complicated for an A WD off-road vehicle. Therefore, employing numerical 

modelling techniques and simulation studies for such situations is unavoidable. 

The prospective model should provide design engineers with the capability to investigate 

the effects of various components and aid future developments for control systems and 

automatic optimization of off-road 4x4 vehicles. 

Over the past two decades, a considerable volume of research has been carried out to 

investigate 4x4 vehicle behaviour, fitted with different drivetrain configurations. 

However, the mechanism of tyre force generation was simply represented by empirical 

on-road tyre models and the road conditions were approximated and reduced to 

representation by a coefficient of adhesion. This approach should not be extended to off­

road vehicles, because the interactions between pneumatic tyres and deformable soil are 

complex and include many effects such as sinkage, multi-pass and slip sinkage. 

Among the wide variations of permanent A WD systems, visco-lock devices, including 

viscous coupling of shafts and visco-lock limited-slip differentials, are widely used. The 

elegant design and economical construction have attracted many designers to employ 

visco-lock devices, not only to fulfil torque split and transfer function, but also to act as 

self-controlling devices. 

The choice of visco-lock devices for off-road vehicles has been largely dominated by 

terrain mobility requirements. With growing demands to improve off-road vehicle 

handling, these devices need to be tuned before installing in the vehicle. The tuning 

process involves reconditioning the device torque distribution characteristics, which in 

turn regulates tractive force distribution and contributes to the generation of significant 

yaw moments and tyre slip angles in a direct manner. 

In reality, the selection and tuning of such devices are usually based on a trial and error 

approach, which is time consuming and can be prohibitively expensive. Moreover, the 

contribution of any empirical approach to the improvement of the existing knowledge on 

visco-lock devices would be rather limited. 

Hitherto, there has been a lack of an integrated approach for implementation ofvisco-lock 

devices in a full vehicle simulation environment, especially for A WD off-road vehicles. 
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1.3 Overall Aims and Objectives 

The aim and objectives of the present research follow directly from the problems stated in 

the preceding sections. A set of well-defined tasks have been performed and are outlined 

below: 

- Development of a 14 DOF multi-physics numerical simulation model by integrating 

vehicle body dynamics, kinematics, vertical dynamics, and the terra-mechanical 

phenomena between elastic tyres and soft soils. 

- Development of a complex 4x4 drivetrain model, which represents a full drivetrain 

system, incorporating all aspects of rotational inertial dynamics, friction, damping and 

stiffness properties. 

- Integrating the drivetrain model with the vehicle dynamic model and carrying out a 

comprehensive investigation of traction and handling performance of 4x4 vehicles 

during typical manoeuvres under different operating conditions. 

- Development of detailed tribo-dymanics' modules to numerically simulate different 

visco-lock devices, including viscous couplings of shafts and visco-lock limited-slip 

differentials. The mechanism of viscous-shear torque generation takes into account the 

rheology of silicone fluid, shear rate, temperature effect and the humping (Self-Torque­

Amplification) phenomenon in rotary viscous couplings. 

- Design and manufacture of a laboratory test rig to validate the derived tribo-dymanics' 

modules for different visco-lock devices. 

- Integrating the tribo-dymanics' modules of different visco-lock devices with the 

overall vehicle multi-physics model. 

- Carrying out an investigation to evaluate the tractive performance and cornering 

stability of A WD off-road vehicles, fitted with visco-lock devices, as well as ordinary 

drivetrain systems. Additionally, from point of view of traction performance and 

cornering stability, the tuning processes for visco-lock devices needed to be established 

in a numerical environment by altering the rheology of the silicone fluid. 
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The multi-physics modelling approach adhered to the following requirements: 

- The model should be generic and appropriate for the simulation of a wide variety of 

conditions, including ride and handling tests. However, the main strength of the model 

should include detailed drivetrains for accurate prediction of tractive forces. 

- Possibilities should exist for future incorporation of advanced control strategies and 

automatic optimization of off-road 4x4 vehicles. Furthermore, total control over the 

generation of model's equations should be provided in order to facilitate for 

implementation of an in-house written code. 

- Implementation on a PC with a common programming language environment 

(MA TLAB, Simulink), so that the model applications can be widely accessible. 

- The concepts of modularity, flexibility, and user-friendliness should be emphasized 

during model development. 

1.4 Structure of the Thesis 

The work is organised in seven chapters. A brief description of the issues discussed in 

each chapter is given below, in order to provide an overview of the approach followed in 

the thesis. 

CHAPTER 1 

CHAPTER 2 

INTRODUCTION 

The future challenges for off-road A WD vehicles are briefly highlighted. 

As a result, the aim and objectives of the investigations are clearly stated 

and a brief description for the research framework is outlined. 

REVIEW OF LITERATURE 

An in-depth review of the state of the art in the field of A WD off-road 

vehicle dynamics is presented. The review covers the aspects of 

mechanics of wheel-soil interactions, off-road vehicle simulation and 

various strategies for torque distribution control in A WD vehicles, 

particularly for visco-lock devices. 
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CHAPTER 3 

CHAPTER4 

CHAPTER 5 

CHAPTER 6 

CHAPTER 7 

THEORETICAL BACKGROUND 

This chapter presents the necessary theoretical background on 

terramechanics principles and the mechanism of tyre force generation 

over deformable soils. Additionally, some fundamental considerations 

about coordinate systems, rigid body motions in space and the 

implementation in vehicle dynamics are presented. 

4x4 OFF-ROAD VEHICLE MODEL 

This chapter presents the mathematical derivations for a 4x4 off-road 

vehicle model, integrating the terramechanics of tyre-soil contact, the 

vehicle body dynamics, and suspension and drivetrain systems. Different 

simulations are carried out, based on standard test manoeuvres, to 

investigate 4x4 vehicle traction performance and handling characteristics 

under typical operational conditions. 

TRIBO-DYNAMIC MODULES OF VISCO-LOCK DEVICES 

This chapter presents detailed mathematical derivation of different tribo­

dymanics' modules for visco-lock devices. Additionally, issues related to 

test rig design, instrumentations and results of measurements are 

discussed. Furthermore, experimental results for typical components are 

compared with the numerical predictions. 

ANALYSIS OF AWD VEHICLE DYNAMICS USING VISCO-LOCK DEVICES 

This chapter presents an overall investigation by numerical modelling, 

especially the results for the implementation of visco-lock devices in the 

overall vehicle model. Furthermore, the dynamic performance of A WD 

off-road vehicles, coupled with different drivetrain layouts, is addressed in 

terms of traction and directional stability. Additionally, the tuning process 

for visco-lock devices is presented using alternative silicone fluids. 

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 

This chapter summarises the major findings of the presented research. 

The main outcomes, a critical assessment of the approach undertaken, as 

well as some suggestions for future research work. 
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Chapter 2: Review of Literature 

2.1 Introduction 

This chapter describes previous work reported in the field of A WD off-road vehicle 

dynamics. In particular, the issues of off-road tyre modelling, off-road vehicle dynamic 

simulation, and various torque management devices implemented in A WD vehicles are 

reviewed. Attention is paid to the use of passive control visco-lock devices in A WD 

vehicles. The following sections critically analyse the most appropriate reported work, 

whilst a significant amount of supporting literature concerning, for instance, numerical 

methods for use in vehicle dynamics, or the modelling of tribo-dymanics' modules of 

visco-lock devices are referred to later in the thesis when dealing with these issues. 

The review of literature is divided into the following areas, according to the specific 

topics discussed: 

(I) Mechanics of wheel-soil interactions (terramechanics). 

(2) Off-road vehicle dynamic simulation. 

(3) Torque management devices implemented in A WD vehicles. 

( 4) Drive line dynamics of A WD vehicles. 

2.2 Mechanics of Wheel-Soil Interaction 

Since its invention nearly 5000 years ago, the wheel has played a crucial role in off-road 

transportation. One of the fundamental aspects in off-road vehicle studies is the 

mechanics of wheel-soil interaction. The interaction between pneumatic tyre and 

deformable soil is very complex and includes many effects such as sinkage, multi-pass 

and slip sinkage. The performance of a driven wheel is usually characterized by its thrust, 

resistance to motion, sinkage, slip, driving torque, and angular speed. Accurate 

predictions of these parameters are of prime interest to all designers of off-road vehicles. 
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In recent years, a variety of methods have been proposed to study the interactions of 

pneumatic tyres with deformable soils (Wong, 1989). They range from entirely empirical 

approaches to highly theoretical ones, figure 2.1. In this section, the main features of 

some of the well-known off-road tyre models are highlighted. As a result of evaluation, 

an appropriate off-road tyre model is subsequently selected to be employed in the present 

research. 

Deformable Soil 

Empirical Approach Finite Element Method Analytical Approach 
(y\IES Method) (FEM) Approach (Bekker Method) 

+ + + 
Cone Index (Cl) Soil Strength Properties Physical Models for 

Rating Cone Index (RC!) (Measurements) V\lheel/ Soil Interaction 

+ + + 
Vehicle Cone Index Normal and Shear Stress Mathematical Models for 

(VC!) (Input) Soil prroperties 

+ + + 
Empirical Correlations 

Stress and Strain Stress Distribution Under 
(Output) The V\lheel --

Pneumatic tyre 
performance 

Figure 2.1 Common Approaches Used to Study the Mechanics of Wheel-Soil Interaction 

2.2.1 Empirical Approach 

This approach is best exemplified by the work of U.S. Army Waterways Experiment 

Station (WES, 1973). The method was first introduced during the Second World War in 

order to support the military with a simple and quick means to measure terrain mobility, 

based on a 'go/no go' basis. The WES method is based on the use of a standard cone in 

measuring the soil penetration resistance to describe the soil properties and the wheel 
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numeric based on some tyre variables to describe the wheel characteristics. The models, 

describing the wheel performance are developed from field, and therefore this method is 

considered to be worthy for in-situ decision-making during tactical missions (Wong, 

1989). 

On a higher level of sophistication, the NATO Reference Mobility Model 'NRMM 

(Ahlvin and Haley, 1992), including the WES philosophy, is useful for mission planning. 

The NRMM is a set of equations and algorithms that predict a particular vehicle's 

performance in a prescribed terrain, based on the vehicle attributes and the terrain 

properties. The main prediction module considers a combination of vehicle, terrain, and 

weather conditions in order to determine the maximum possible speed versus the resisting 

force characteristics at which the vehicle can operate. The primary prediction target of 

NRMM is the vehicle's 'speed-made-good' (i.e. effective maximum speed) per terrain 

unit. Thus, speed predictions and limiting force calculations can be determined for on­

road, off-road, and obstacle crossing manoeuvres. 

In 1992, WES and TACOM (Tank Automotive Command) developed 'NRMM-IF to 

include enhanced mobility algorithms, a better organised modular structure and a more 

flexible user interface (Sullivan, 1999). NRMM-11 is used to determine on-road/off-road 

platform mobility characteristics, e.g. to predict vehicle speeds over terrains, often used to 

compare two vehicles over a given terrain. Predictions are made using terrain 

characteristics (e.g., soil strength, vegetation, slope, roughness), vehicle attributes (e.g., 

tractive effort curve, weight, aerodynamic properties, dimensions), and scenario 

parameters (e.g., dry, wet, snow, sand). Traction, ride quality, and visibility are examples 

of speed limitations. 

2.2.2 Finite Element Method (FEM) Approach: 

Finite Element Method (FEM) was first introduced into the study of tyre-terrain 

interactions by Perumpral et al. (1970) in an attempt to predict the stress distributions and 

soil deformation with the soil mass under a tractor tyre. This method requires the 

geometry of the contact patch and the stress distributions on the tyre-soil interface to be 
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specified at the outset. It can only be used to analyse the strain, stress and displacement 

fields within the soil mass. 

Yong et al. (1978) developed a model to study the stress and strain fields in the soil 

beneath the tyre using FEM. Their model described the tyre as a linear elastic body and 

the terrain as a piecewise linear elastic finite element. Normal and shear stress data were 

used as inputs and the length of the contact patch between the two elastic bodies was 

predicted using modified Hertzian theory. This model improved the prediction of the tyre­

contact geometry, but it should be noted that if the normal and shear stress distributions at 

the tyre surface are known, the performance of the tyre is already defined. 

Based on readily available information from the tyre manufacturers (generalised 

deflection, load, and contact area charts), Nakashima and Wong (1993) developed a finite 

element tyre model. The analysis procedures were used to determine two equivalent 

Young's moduli of elasticity for the tread and the side-wall. 

Chen (1993) incorporated the Nakashima and Wong finite element tyre methodology into 

a tyre terrain model to study the effect of tyre slip-sinkage. The terrain was modelled 

using Bekker's semi-empirical normal pressure and shear stress equations. The tyre was 

assumed to rotate about its point of entry into the terrain as it experiences slip-sinkage. 

Thus, a well-matched slip sinkage was obtained from the wheel geometry and the 

rotational conditions. Furthermore, an equation was proposed to predict the slip sinkage, 

based on the data obtained during shear tests conducted at various normal loads. 

Aubel (1994) developed the basis of a comprehensive FEM model called 'VENUS', an 

abbreviation of 'VEhicle-NatUre Simulation', see figure 2.2. The model consists of sub­

modules for the soil, the tyre and the tyre-soil interaction. The soil was assumed to have 

elasto-plastic properties, with strength limits under tri-axial state of stress. Furthermore, 

in addition to simulating the frictional properties of the soils, the FEM-soil model was 

modified to consider the cohesive properties as well. The tyre was considered as three 

concentric rings (tread, carcass and wheel-rim), each of which as a homogenous medium 

with certain elastic properties. The interaction model considered the contact conditions, 
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especially during rolling with and without circumferential slip. The main output or the 

model was the deformation in both the soi l and the tyre. Therefore, the shape of the 

contact area, sinkage, rolling resistance and ci rcumferential force, as wel l as 

circumferentia l slip could be computed. 

(a) pressure-distribution (b) hear stress 

Figure 2.2 Simulation of the Wheel-Soil Interaction using FEM (after Aubel , 1994) 

2.2.3 Analytical Approach: 

While providing little insight into the empirical and FEM approaches of wheel-soil 

mechanics, analytical (or semi-empirical) models have become very popular and are also 

computational ly very effective. The work o f some of the pioneers concerning analytical 

modelling of wheel-soil interaction is presented in text books by Bekker ( 1956, 1960, 

1969) and Wong ( 1989, 200 I). 

In the early 1950's, Bekker proposed several ana lytical models of a pneumatic tyre 

operating over oft soil. He initia lly analysed a rigid tyre rolling over a deformable 

terrain. He assumed that the normal ground pressure ( ~, ) acting on the wheel rim, was 

equal to the pressure under a plate at the same sinkage ( z). The derived semi-empirical 

equation is called the 'Bekker pre sure-sinkage equation' and represents the basis for 

most of the off-road analytical tyre models: 

P = ( Kc + K ) · -" = K · -" 
/1 b lfJ - -

(2.1) 
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Where: ( K c, K rp) are the cohesive and frictional moduli of soil deformation. ( n) is the 

soil sinkage exponent, and (b) is the width of the rectangular plate. or the rad ius of a 

equivalent circular plate. Based on th is assumption. Bekker developed a fonnula for 

predicting the resistance to the wheel motion ( R,) and its sinkage ( z) as follows: 

711+1 

R =b· K· -- -
, n + l 

(2.2) 

2 

( 
3·W )2n+l 

z= b-(3-n)·K-JD 
(2.3) 

Bekker fo und that satisfactory results from equations (2.2) and (2.3) could be obtained for 

moderate values of tyre sinkage ( z < ~} where (D) is the wheel diameter and (w) is 

the vertical reaction of the terrain. 

Later, Bckker developed an equation to define the critical inflation pressure at which the 

tyre may be considered to behave in elastic mode. Accord ing to this equation; if the sum 

of the inflation pressure (p,) and the pressure produced by the stiffness of the carcass 

(Pc) is less than the pressure that the terrain can support at the lowest point of the tyre 

ci rcum ference, the terrain is considered to be firm and the tyre contact area would be 

flattened and could no longer be model led as a rigid rim, see equation (2.4). 

W·(n + l) 
~ = I -~ 

b·( 3·W )1•·1 . D-(- 3-W )2,~+1 
(3-n)·b·K .JD (3 - n) ·b· K .J/5 

(2.4) 

Furthermore, Bekker proposed that the sum of (p,) and (pc) could be expressed by the 

average ground pressure. The average ground pressure at a speci fie tyre at a given normal 
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load and inflation pressure is equal to the normal load carried by the tyre divided by its 

projected grou nd contact area on a hard surface. 

To characterize the soi l shear strength properties, Bekker ( 1969) developed a test facility 

called 'Bevameter ' device. This apparatus was used to obtain shearing torque versus 

displacement curves using a shear annulus head at various normal loads. 

The well known "shear stress-shear displacement equation" proposed by Janosi and 

Hanamoto (196 1) is widely used to fit the shearing torque-displacement data and predict 

the shear stress at the tyre-terrain interface by assuming the following simpli'fied form: 

(2.5) 

lt is observed that the first part of equation (2.5) is the basic Coulomb friction, consisting 

of two separate terms. The former corresponds to the apparent cohesion of the terrain (C) 

and referred to as the cohesive portion of the shear strength. The latter is due to the 

frictiona l port ion of the shear strength ( P,, ·tan fP., ) , where ( rp,) is the angle of terrain 

shearing resistance. (J) is referred to as shear displacement and ( k) is the shear 

deformation modulus. 

Later another modified equation was proposed by Wong and Preston-Thomas ( 1983) to 

describe the shear stress-displacement curve that disp lays a 'hump' of maximum shear 

stress and then decreases with increasing sheari ng di splacement to a constant value of 

residual stress. Moreover, the procedure for applying the proposed equation, describing 

the shear stress-displacement relationship to the prediction of the thrust-slip relation of a 

vehicle runni ng gear was also developed as: 

-r = -r . ·K (I+( I -l)·e ;_ )·(1-e-£) 
mnx r K,· ( l - 1/e) 

(2.6) 

Where (K" ) is equal to the shear displacement at maximum shear stress, (K,) is the 

ratio of the residual shear stress to the maximum shear tress. 
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Wong and Reece (1966, 1967a, 1967b) developed a modified model of rigid wheel-soil 

interaction. Thei r model fo llowed the Bekker's approach. An improved method was 

developed to predict the shear displacement (J) along a rigid ri m, based on the 

consideration of the slip velocity of a point on the rim (V
1

) as fo llows: 

V1 = w·r· (t-( t - i) ·cosB) (2.7) 

This re ulted in an equation for the shear displacement (J) as a function of the tyre 

longitudinal slip (i) and the wheel rotational speed (w) as fo llows: 

I ~ dB 
j = f V1 · dl = f w · r · (I - (I - i) · cos B) ·-

0 0 w 
(2.8) 

They used the above equation (2.8) to enhance equation (2.6) for predicting the shear 

stress at the wheel-soil interface. 

Based on the so il shear deformation, the shear stress ( r ) can be calculated, consequently 

the thrust developed by the running gear (F ... ) of a vehicle can be pred icted by integrating 

the shear stress over the projected contact area, and tyre-terrain contact angles ( B, 81) , 

where (b. D) are tyre width and diameter respectively. 

(
b D ) ~ 

Ft = T · J-r ·cosB ·dB (2.9) 

Wong and Reece have shown that motion resistance is a function of sli p and that the 

actual normal pressure distribution beneath a wheel has its peak value well forward of the 

tyre bottom centre and moving forward with increasing slip. They proposed a method to 

improve the prediction of the normal pressure beneath a wheel, when working on sand. 

They divided the normal pressure di stribution into a front and rear region with the 

transition point being the peak pressure value. They used a separate equation to model 

each of these regions. An equation from experimental data was used to determine Lhe 
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relation between the location of this peak and the amount o f slip. Equations (2.2) and 

(2.9) were then used to determine the motion resistance and the thrust of the wheel. T heir 

model gave better accuracy than that o f Bekker's. 

According to the value of the normal ground pressure beneath the wheel ( P,,), Wong and 

Preston-Thomas ( 1986) developed another model to distinguish between rigid and elastic 

modes of a tyre operating on so ft soi l. Their approach was similar to that of Bekker's 

model and improved the operating mode predictions. Furthermore, they proposed that a 

transition sinkage boundary can be found by equating the nominal pressure with the 

average ground pressure, and then calculate the vertical reaction of the terrain. I f this 

reaction is greater than the normal load, the tyre was assumed not to have sunk into the 

transition sinkage. and thus remained ri gid. I f the vettical reaction was less than the 

normal load, the tyre was assumed to have a certain amount o f deflection, and thus could 

no longer be modelled as a rigid rim. 

(2 .1 0) 

Where ( 1) is the ratio o f the lug area to the carcass area. (~ . ~- ) are the pressures 

acting on the lug and the carcass respecti vely. 

chmid ( 1995) presented an in-depth review of the state o f the art in the field o f tyre­

terrain interaction. He summarised the results from ten years o f research, which are 

presented in 34 papers and more than six doctoral theses carried out at the Institute of 

Automotive Engineering, (IKK) , of the University of the Federal A rmed Forces, 

Hamburg. In an attempt to improve the calculation of the tyre-terrain contact shape, 

chmid and Ludewig ( 1991 ) proposed the assumption of a parabolic shape for the 

contour. The parabolic model approx imates the circle-section (D.) very closely. and 

allows a much more elegant mathematical treatment, because there is no necessity for cut­

away terms in a mathematical form, as is in the case of a circular section, figure 2.3. The 

diameter of the substitute circle (D.) is calculated from equilibrium condition between 

the vertical reaction force o f the ground and the vertical reaction of the tyre. T his 

equilibrium is obtained through an iteration process. The vertical reaction o f the ground is 
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the result of numerical integration of the local pressures under the wheel. The ryre 

reaction force was computed from the measured tyre characteristics. Furthermore, they 

proposed an equation to calculate the tyre deformation on the flat road as a function of 

tyre inflation pressure. 

(a) urrogate-diameter model for the tyre (b) Parabolic model for the contact contour 

Figure 2.3 Optional Models for the Contact Geometry Proposed by Schmid ( 1995) 

While most off-road research has been devoted to the evaluation of tractive performance 

and mobility over unprepared area, there is a considerab le volume of research to 

investigate the behaviour of pneumatic tyres over sofl soil during cornering manoeuvres. 

chwanghart ( 1968) considered an un-driven off-road tyre with deep treads rolling on a 

soft terrain. He assumed that the total latera l displacement, resulted from components of 

tread wall deformation ( 77.v ), soil deformation and shearing (i.v ) as well as sli p (a) after 

exceeding maximum soil deformation. fi gure 2.4. The governing equation was given as: 

j, + '7.~ = x. tan a (2.1 I) 

Grecenko ( 1969) included both longitudinal sli p and slip angle (a) to model the 

behaviour of an off-road tyre, subjected to combined longitudinal and lateral forces. The 

longitudinal shear displacement (Jx) is represented by an expression simi lar to the rigid 

track (Jx = x,) the lateral shear di splacement (i v) is given by the following equation: 
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(2. 12) 

Grecenko, also, introduced the soil displacement gradient ( ud) to remain constant along 

the contact length . The resultant shear stress (J =uti · x) where (uti ) is given as fo llows: 

• 2 • 2 
} y + j X 

( . )~ ~ x- J, - x-

Soil Defonnation 
and Shearing 

X 

Contact Length 

- 1'/y 

Tread Wall 
Defonnation 

(2. 13) 

Figure 2.4 Latera l hear Displacement and Tyre Deformation (after Schwanghatt 1968) 

Contact Length Contact Element 

Figure 2.5 Lateral Shear Displacement and Tyre Deformation (a fter Grecenko, 1969) 

Cro lla and EI-Razaz ( 1987a and 1987b) assumed that terrain is isotropic. Alternatively, 

the behaviour of the tyre in lateral shearing direction is s imilar to that in the longitudinal 

direction. They introduced separate terms for shearing deformation in the longitudina l 
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(J.:r ) and lateral (J
1

) directions. Fu tthermore, the resultant shear di placement (J) is the 

vector sum of both of these as fo llow, figure 2.6. 

J=JJ/ + J/ 

Figure 2.6 Lateral hear Displacement and Tyre deformation 

(after Crolla and El-Razaz I 987a) 

(2. 14) 

Based on a semi-empirical model for the latera l behaviour of off-road tyres, Metz (I 993) 

found that the magn itude of the cornering stiffness for off-road tyre is reduced, because 

an additional lateral shearing displacement takes place. He considered this to be true, 

because the shear strength of so il is usually less than the friction between the tyre and dry 

pavement. Metz also indicated that cornering stiffness and lateral force capability are half 

of the same tyre when on paved surfaces. Since the relationship between the shear stress 

and shear di splacement for a deformable terrain is usual ly of an exponential form, Metz 

assumed the relation between lateral force and sli p angle is also an exponential function. 

Wu (2000) derived a new off-road tyre model for predicting tyre forces under combined 

longitudinal s lip and slip angle deformation. The developed tyre model takes into account 

tyre lateral deformation , direction of slip velocity, contact trajectory, lateral bu lldozing 

force, sidewall shearing, and terra in properties. The model predicts the relationship 

between the tyre lateral force and drawbar pu ll at different slip angles and tyre inflation 

pressure va lues in both cases of rigid and elastic modes. 
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Based on the research at the former Insti tute for Automoti ve Engineering (I KK) Harnisch 

(200 I) developed a new off-road tyre model. His model is based on the substitution circle 

approach, described earlier. He calculated the lateral forces on soft soil.s, including the 

shear stress in the contact area, as well as a side component of the ro lling resistance. 

Another improvement is the consideration of the elastic soi l properties. With these 

additions the dynamic reactions of the vehicle to the topography of the environment and 

to the roughness of the soi l can be s imulated. These are mainly the vertical oscillations of 

the vehicle induced by uneven terrains. Furthermore, the deformation of the soft soil by 

the dynamic wheel loads is calculated, which results in a va rying rut 's depth and 

precompaction of the so il. Depending on speed and vehicle conditions thi s effect can lead 

to se If-excitation of the vehicle by rut of the first wheel. 

Furthermore, Harnisch et a l. (2005) optimised the off-road tyre model for use in 

MA TLAB/Simulink dynamics simulation envi ronment (S-function). Currentl y, thi s tyre 

model is a commercially available software too l, which is ca lled AS2TM (AESCO Soft 

Soil Tyre Model (AESCO GbR, 2005). 

2.3 Off-road Vehicle Dynamic Simulation 

The continual demand for improvement in vehicle mobi li ty over a wider range of terrains 

and in many appl ications, such as in farming, forestry, mi litary or in emergency 

operations has stimulated a great deal of interest in the simulation of vehicles over 

unprepared area. According to (Wong, 1989), generall y, there are two objectives for off­

road vehicle s imulation: 

The first is to describe the behav iour of an off-road vehicle by functional 

relationshi ps in terms of its des ign parameters, as well as soil mechanical properties. 

An accurate method of predicting off-road vehicle performance under different 

operating conditions is of prime interest to the designer and the users o f o ff-road 

vehicles, e.g. (Ruff, 1997). 

The second objective is to study the change in terrain conditions caused by the 

passage of an off-road vehicle. This is of great interest to the agricultu ral engineers 

to evaluate soi l compaction caused by farm vehicles, e.g. (Taylor and Burte, 1987). 
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Although various methods for analyzing tyre-terrain interaction and for predicting 

individual tyre performance have been in use for many decades, most of these have not 

been integrated into an appropriate procedure for predicting the dynamic performance of 

wheeled vehic les. The terramechanical phenomena between the pneumatic tyres and the 

deformable soi l should be integrated into the dynamics of the vehicle. A 11 the influential 

parameters, described thus far, should be inc luded in an overall vehicle dynamic 

simulation study of off-road vehicles. 

In th is section the main findings of some of the wel l known integrated off-road vehicle 

dynamics studies are reported. lt should be mentioned that, all the previous research 

reported here are based on analytical (semi-empirical) approach of tyre-soil mechanics. 

which was originally introduced by Bekker ( 1956, 1960 1969). 

2.3.1 Contribution of Wong (The Canadian School) 

Wong and Preston-Thomas (1986) developed a computer aided method for predicting the 

steady state tractive performance of multi-axle wheeled vehicles over un prepared terrains. 

The major features of their simulation model may be summarised as follows: 

The response characteristics of the terra in to repetiti ve loading were taken into 

account in predicting the sinkage and rut depth of different tyres. 

The dynamic load transfer between axles due to drawbar pu ll and gradient was taken 

into consideration. 

The effect of independent suspensions on the load distribution among ax les was also 

taken into account. 

Furthermore, these researchers used their computer simulation model for a parametric 

evaluation of the wheeled vehicle performance. The effects of tyre configuration, 

inOation pressure, and static load di stribution over two types of terrain were investigated. 

Wu (2000) investigated the handling characteri tics of a six-wheel-drive (6WD) fron t­

wheel-steering mi litary vehicle on hard ground and on deformable so il. Based on a 

computer-aided simulation program called 'A UTOSJM, a 17-DOF model to simulate 
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handling behaviour of off-road vehicles was developed. In comparison wi th the steady 

state handl ing behaviour on hard ground, the handling characteristics on deformable 

terrain demonstrated quite low tyre lateral forces and a considerable time-lag ex isted in 

the response w ith respect to the steering input. 

Wong and Huang (2006a, 2006b) presented an investigation to compare the thrust 

developed by a multi-axle Light Armoured Vehicle (LA V, 8x 8) with that of a tracked 

vehicle. Their investigation was carried out, based on various computer-aided simulation 

models for predicting wheeled and tracked vehicle performance, which were developed 

under collaboration with Vehicle ystems Development Corporation. These models, 

known as RTVPM. TVPM and WVPM. can be used to support vehicle designers and 

procurement managers in the selection of a suitable vehicle configuration for a given 

mission and environment from the traction performance viewpoint. 

NTVPM 'Nepean Tracked Vehicle Pe1jormance Model' was used for performance 

evaluation of vehicles with rubber-belt tracks or link tracks with relatively short-track 

pitch, commonly used in high-speed tracked vehicles. such as military vehicles (Wong, 

1995. 1998a). 

RTVPM. 'Rigid Tracked Vehicle Pe1jormance Moder was used for performance 

evaluation of vehicles with link tracks having relatively long track pitch commonly in use 

in low-speed agri cu ltural and construction tractors. 

N WVPM, ·Nepean Wheeled Veh icle Pe1jormance Model' is a comprehensive computer 

simulation model for performance evaluation of off-road wheeled vehicles. The major 

design parameters of the vehicle and of the tyre are considered. The computer model 

consists of two modules; the tyre modu le and the vehicle module. The tyre module 

predicts the operating mode of the tyre. normal and shear stress distributions on the tyre­

terrain interface. The main outputs from tyre module are thrust motion resistance and 

sinkage. The vehicle module takes into account the dynamic interaxle load transfer as 

well as the multi-pass effects. Terrain strength properties are presented in both verti ca l 

and horizontal directions, as well as its response to repetitive normal and shear load ing. 
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2.3.2 Contribution of Crolla (The British School) 

Crolla ( 199 1) summarized his contributions over 20 years of research in the fi eld of off­

road vehicle dynamics. This includes more than 64 research papers covering the 

following aspects: ana lysis and improvement of off-road vehicle ride vibration using 

active suspension control, steering behaviour and lateral stabi lity of tractor braking, slope 

stabi lity, tyre modelling, and power-take-off drivelines. The majority of these research 

works were devoted to automotive-agricultural applications li ke; the ride qua lity whilst 

moving on un prepared surfaces; the handling of the tractor and the combined tractor and 

trailer; and the vibration problems in a tractor power take-off unit. The fo llowing papers, 

from Cro lla 's contributions which are related to the current topic, are highlighted here. 

Crolla ( 1975) developed a computer program to simulate the field performance of an 

agricultural tractor operating under varying loading condi tions. The predicted work-rates 

under dynamic and steady state conditions were compared. Several aspects of tractor 

design which influence dynamic performance were di scussed and design criteria were 

suggested to control the variations in load caused by change in depth or soi I resistance. 

In an attempt to predict the tractor lateral response, while conducting off-road 

manoeuvres, Crolla and Hales ( 1979) produced a table summarising resu lts obta ined from 

various fie ld measurements. This empirical process has led to some impo1tant concluding 

remarks. They fou nd that, lateral forces were approximately related to the slip angle by an 

exponential relationship. Furthermore, the lateral force characteristic at small slip angles 

was found to be non-linear. Also, lateral force coefficient reduced with an increase in tyre 

vertica l force and the presence of braking or tractive force reduced the lateral force. 

Compared to on-road tyres, they noticed that, at a given slip angle off-road tyres generate 

lower lateral force, the max imum value of which increases as tyre inflation pressure 

decreases, in a manner analogous to tractive force behaviour. 

Crol la ( 1983a) proposed a 4-DOF mathematical model to examine the common problems 

concerning lateral stability of a tractor and a trailer combination, such as overturning and 

jack-knifing. Off-road tractor-tra iler combinations were shown to exhib it simi lar 
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problems to their road vehicles counterpatts; over teer instability (at much lower speeds 

than the road vehicles) and the well-known jack-knife and trai ler swing instabilities under 

braking conditions. The results indicated that weight distribution and tyre inflation 

pressure were dominant in determining the safe operating conditions. 

Using the classical vehicle dynamics methods Crolla and H01ton ( 1983b) proposed 

appropriate methods to model the special featu res of off-road vehicle steering systems. 

Some of the special problems were addressed, including the ro le of tyre/soil interaction in 

the generation of tyre forces, effect of tyre dynamic response, hydrostatic system 

characteristics and articulated-frame steer vehicles. 

Since all the analytical models are subjected to limitations resu lting from the inherent 

difficu lties in precisely modelling tyre forces, Crolla and El-Razaz ( 1987b) proposed a 

tyre model to predict the combined lateral and longitudinal forces generated by off-road 

tyres on deformable soil. Their model was based on the idea that, in the tyre-ground 

contact region the force due to soil shear must equal that due to deflection at any point. 

Furthermore, this tyre model was modi fied to study the interaction between tyre and the 

terrain fo r different assumptions, including straight and angled lugs, cambered tyre, in 

addition to inclusion of a new description for the pressure-sinkage relationship and shear 

stress-shear displacement relationships. A computer program using MATLAB software 

was developed, and the results were shown in the form of tyre forces and moments in the 

three directions summed over the tyre contact length. The effect of many parameters such 

as slip angle, soil deformation modulus, lug dimensions and lugs spacing on tyre forces 

and moments was discussed (EI-Gawwad et al., 1999a, 1999b, 1999c, 1999d). 

2.3.3 Contribution of Schmid (The German School) 

Based on research of more than tv o decades at the former Institute for Automotive 

Engineering (!KK) under the management of chmid. various computer programs to 

simulate off-road vehicle dynamics have been developed. The following contributions, 

which are related to the current research topic, are di scussed. 
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Ruff et al. ( 199 1, 1993 1994, 1997) developed a program for interactive s imulation of the 

mobi lity of off-road vehicles. The program was called ' ORiS' (Off Road Interactive 

simulation) and composed of several sub-models, which descri bed wheel-so il interaction, 

motion resistance and driveline power transmission, see figure 2.7. 

ORJS was written in the programming language C under A SI standard. The description 

of the wheel-so il interaction and the dynamic calculation of slip were the basis of the 

program. The theory of rigid wheel proposed by Bekker ( 1956, 1960) and the assumption 

of a parabolic shape for the contour proposed by Schmid and Ludewig ( 199 1) were used. 

For ea I culation of motion resistance the air resistance, slope gradient, rolling resistance 

and accelerative resistances were considered. Within the driveline sub-model, engine and 

transmission characteristics were considered, as well as basic torque distribution devices, 

such as torque converter with mechanicall y open and locked differentia ls. Based on 

ORIS, many investigations have been carried out to assess the in teraction between the 

vehicle sub-systems and the terrain as fol lows: 

Lach ( 1996) investigated the influence of tyre inflation pressure on the traction 

performance of a 4x4 mi litary truck over two different soils (loam and sand) . He carried 

out a comparison between simulated resul ts using the ORIS programme and experimental 

test-drives, with regard to the circumferential force. the roll ing resistance and the tractive 

force. The results confirmed the well-known benefits of reduced tyre inflation pressure, 

such as lower rolling resistance and higher traction capabil ities. 

Furthermore, Lach ( 1997, 1999) discussed some possible strategies for a tyre inflation 

pressure control system. He proposed some measured parameters for controlling the 

inflation pressure such as roll ing resistance, sinkage and wheel slip. The control strategy 

outl ined that it would be better to control the tyres which face higher sinkage or sli p 

rather than controlling the inflation pressure for all the tyres. Moreover, the ruts from the 

previous tyres should be exploited by the following tyres traversing the same path. This 

improves the general characteristics of the control system, whilst also increasing the tyre 

life and decreasing the time to refi ll the tyres and recover 'on-road' mobility. 
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Figure 2.7 ORIS Program Main Structure (after Ruff and Jakobs, 1993) 

Harnisch ( 1997) investigated the consequences of increasing the number of axles from the 

perspective of efficient off-road truck design. The advantages of higher drawbar pu ll , 

better cli mbing ab ility are encountered by extra expenditure due to the required higher 

propulsion power and additional design complexity. The results of the s imu lated multi­

axle vehicle showed a remarkable lower roll ing resistance due to the multi-pass effect. 

Furthermore, Harn isch ( 1999) investi gated the contribution of multi-pass effect, resulting 

from the ruts of the wheels, on the process of cornering of multi-ax le-steer vehicles. The 

results showed that, during lateral manoeuvres of multi-axle vehicle, the multipass-effect 

was reduced, causing a significant higher roll ing resistance. Moreover, this negative 

effect could be reduced by considering multi-axle-steering layout, where the steady-state 

cornering response was improved, especially for the case of symmetric all-wheel steering 

systems (AWS). However, compared to the standard steering systems, an increased 

rolling res istance at the beginning of a cornering procedure was noted, especially when 
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manoeuvring in confined space with fast changes to the steering an gle. The author 

recommended development of a control system as an optimal solution to this problem. 

Harn isch (200 I), in his PhD dissertation, increased the capabi lities of the ORI S program 

and added more featu res to the tyre model itself, such that the new vers ion was able to 

simulate multi-dri ve-axles and multi-steer-axles. Furthermore, due to its rea l-time 

capability, it is also possible to include test stands (HIL, Hardware in the Loop) as well 

as dri ving simulators with motion systems. The new version of the simulation programme 

is called ORSIS' (Off Road Systems Interacti ve Simulation). The main structu re of 

ORSIS program is shown in figure 2.8. 

MAIN MODELS ADDITIONAL MODELS ,...., __ 

TERRAIN ~ 
.. -.r;;, 
~I J.fj[.8}:::Jl HANDLING 

MODEL •~r•l•J:aL. ELEMENTS 

l ~ Driveline model t Accelerator. Brake. - r Gearsuck Differential Lock 
So1l PropertJes 

~ 
_, 

Allltude 
Longitudinally -. 

Normals 
Precompaction Slip .. ~--~ Steering model I. 

Steenng angle r 
Laterally Slip -;:;· 

r : 
Topographie f- K I .,. Speedometer, 
Soli type Dynamic model 

Revolution counter 
(Build up areas) I 

T Wheel poajljona I 
Steenng angle 
Aocel , Brake 
Gear 

Vehlde m<~~~ernenlS Position 
Steenng angle of wheels Velocity 

3D-VISUALISATION 
Wheel revolutions Dtrecllon 

AUTOPILOT 

Figure 2.8 ORSIS Program Main Structure (after Harn isch et al. , 2003) 

ORS IS is written in the c++ programming language and has a modular structure, which 

allows easy and fast adaptations. lt can be run on different computer platforms. Later, 

ORSIS became a commercial too l for off-road vehicle simulation and A ESCO took over 

the di stri bution, support and futt her development of the simulation program. Details and 

capabilities of OR I are introduced in numerous publ ications, for example (Harn isch 

and Lach, 2002a; Harn isch and Lach, 2002b; Harnisch et al. 2003; Harnisch et al. 2007). 
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2.4 Torque Management Devices Implemented in AWD Vehicles 

A peculiarity of A WO off-road vehicles is that their running abilities (higher traction, 

tractive efficiency, and improved mobility) depend not only on total tractive effort 

ava ilable by the power-plant but also on its distribution between the driving wheels. The 

latter is determined by actuating vehicle systems and characteristics of the power divid ing 

mechanisms e.g. inter-wheel inter-axle reduction gear and transfer cases. The locking 

characteristics of these mechanisms regulate the ci rcum ferential fo rce distribution 

between driving wheels. Accordingly, they can control both the longitud inal performance 

and the hand ling characteristics of the vehicle (V ant evich, 1997). 

There are almost as many di fferent types of four-wheel-drive systems as there are four­

wheel-dri ve vehicles. lt seems that every manufacturer has several different schemes for 

providi ng power to all the wheels. The language used by different carmakers can 

sometimes be a li ttle confusing, so prior to di scuss ing some of the most important torque 

management devices it is usefu l to clear up some terminology (Dick, 1995; Mohan and 

Wi lliams, 1995; Stone and Ball, 2004). 

Part-Time Four-Wheel Drive: lt ha a separate transfer case after the tran miss ion. lt is 

referred to as part-time, because it can be u ed only to prevent wheel slip under special 

circumstances. where the vehicle moves on an off-road area. For on-road manoeuvres, the 

power is derived as (4x2), while on purpo e the transfer case provides torque from the 

engine to the other wheels (4x4). Both the front and rear ax les are rigidly coupled to the 

transfer ax le. There is no difference in speed between front and rear ax les. lt should be 

noted that thi s mechanism is not allowed fo r on-road driving, otherwise serious drivetra in 

damage may occur which is referred to as 'lransmi sion wind-up' . 

On-Demand - Four-Wheel Drive: An open differentia l is incorporated between the front 

and rear ax les. The open differential ab orbs the variations in the speed between the front 

and rear shafts. However, being an open differential torque transmitted is regulated by 

the ax le with the least amount of resi tance. This system allows driving on on-road, but 

wi ll increase the fuel consumption of the vehicle. The driver may use two-wheel drive, 
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when there is no need for four-wheel drive. This arrangement is cal led ·on-demand'. In 

certain serious situations, it is possible to lock the differentials by means of an electric or 

a vacuum locking system. 

Full-Time (Permanent) Four-Wheel Drive: This system has differential everywhere, at 

both the front and rear axles and within the transfer case. This allows the vehicle to be 

4 WO on on-road. However the open differential wou ld transfer torque to the wheel with 

the least traction. The differentials can be locked to prevent this effect, or sometimes a 

limited slip differentia l is added to prevent excessive slip between the axles or the wheels. 

All-Wheel Drive (A WD) (Automatic): In thi s case there is no selectable transfer case. 

Generally, these vehicles use the four-wheel drive concept to mainLain stability. Usuall y, 

a traction control system is implemented to direct power from the spinning wheels to the 

gripping wheels. The system operates automatica lly and requires no driver intervention. 

The construction layout and des ign considerations of all these four-wheel-drive systems 

are explained in many text books, for example (Dick, 1995; Heisler 1885, 2002; Garrett, 

200 1). In add ition, some electi ve papers are reviewed to cover and explore various 

classifications and industri al trends of those systems as follows: 

Lanzer ( 1986) conducted a comparison between permanent and part time 4 WO systems 

from the po int of view of a torque split mechanism. He proposed a torque split factor to 

evaluate the influence of tracti ve force on drivabili ty, handling ease of operation, cost 

and compatibility with the ABS system for different 4WD systems. 

Mohan and Williams ( 1995) organized the various A WO traction control systems, 

including passive and active devices, by the general principles used and their 

implementation and strategies, figure 2.9. In addition. several examples of the major 

traction control systems made by automobi le manufacturers are described in some detail. 

Williams et al. (1995) described an approach for identifying and understanding the 

common market trend for development of 4WD systems. Based on a bui lding block 

approach, they categorized the available 4 WO systems avai lab le in the market, such that, 
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the systems were separated into main components and rated according to their effect on 

the overall performance and safety. 

Vantsevich (1997) presented a statistical analysis of 4 WO agricultural tractors and their 

differentials with data on more than 4000 tractor models produced since 1970. The 

obtained results have led to the creation of construction systems of a unified limited slip 

differential and a technique to select geometrical parameters fo r it. 

4WD Traction Control Strategies 
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Figure 2.9 4 WO Traction Control Strategies, adopted from (Mohan and Wi lli ams, 1995) 
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According to this review, it is obvious that the driveline components available to carry 

out a driveline for 4WD are a number and considering a same nominal typo logy, the 

characteristics can vary significantly from one supplier to another. Such differences 

permit establishment of the desired performance by the appropriate selection of the 

driveline components. An extensive literature survey for the various devices used to 

produce torque bias has been carried out. Some of the well-known examples 

incorporating friction clutch, high friction worm gearing (Torsen differential), viscous 

coupli ng and electronica ll y controlled limited slip differentia ls are introduced below. 

2.4.1 Mechanical Differential (Open and Locked): 

The conventiona l open differential has been the standard device for an automoti ve 

powertra in for a long time. This device is simple and effective in providing the necessary 

speed differential between the driving wheels during vehicle turning, see figure 2.1 0. 

However, because of the inherent equal-torque characteri stics, it cannot take fu ll 

advantage of the available traction at the dri ving wheels in roads with different levels of 

adhesion. Thus, the vehicle's maximum propelling power is restricted to twice the 

limiting torque at the low frict ion side of the driving wheels. Meanwhi le, any attempt to 

increase the engine throttle simply makes the low friction side wheels to spin more, which 

would increase the s lip sinkage in case of driving on an off-road area (Dick, 1995). 

The conventional bevel-gear differential can be analyzed as a set of planetary gears, the 

gear attached to the left half-ax le can be considered as the sun gear with angular speed 

(m,) , the other gear attached to the right half-ax le can be cons idered as the ring gear with 

an angular speed ( ()), ) . The crown wheel is considered as the planet carrier with an 

angular ve loc ity (we). The kinematic equation for planetary gears can be applied and 

from power and torque balance equations, the driving speed and torque along the lateral 

axes can be calculated as fo llow: (Stone and Ball, 2004). 

and T = T =(7;,) 
·' r 2 (2. 15) 
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To improve the traction characteristics of an open differential, the locking differential is 

useful for critical off-road conditions. The locked differential has the same parts as an 

open differential, but adds an electri c, pneumatic, hyd raulic or frictional mechanism to 

lock the two output pinions together. This mechanism is usually activated manually by a 

switch, and when activated, both the wheels spin at the same speed, equation (2.16). If 

one wheel leaves the ground, the other wheel is not affected. 

and T;. =(T,+T, ) (2. 16) 

Figure 2. 1 0 Principles of Open Differential Gearing adopted from (Heisler, 2002) 

2.4.2 Clutch-Type LSD 

One way to introduce torque bias to the system is to add a frict ion clutch, figure 2. 11. The 

clutch type LSD has all of the same components as an open differential, but it adds a 

spring pack and a set of clutches. Some of these have a cone clutch that acts like the 

synchronizers in a manual transmission. The spring pack pushes the side gears against 

the clutches, which are attached to the cage. Both side gears spin with the cage when both 

the wheels are moving at the same speed, and the clutches are not needed. The only time 

the clutches act is when one wheel spins faster than the other. The clutches resist this 

behaviour, forcing both wheels to rotate at the same speed. If one wheel tends to spin 

faster, then it must overcome the resistance of the clutch. The stiffness of the springs 

combined with the friction of the clutch determines how much torque it takes to overcome 
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the clutch resistance. The main di sadvantage is, since frictional forces are continually 

active to resist slip, the frictional clutches tend to wear, resulting in deterioration of 

differential performance (Garren, 200 I). 

Figure 2. 11 Clutch Type Limited li p Differentia l, adopted from (Dick, 1995). 

The general expression for the biased torque due to a total force applied in the friction 

di c is given by Danesin et al. (2004) as: 

(2. 17) 

Where, (n) is the number of slipping surfaces, (/ ) is the clutch dynamic coefficient of 

friction. (N) is the normal load applied on the clutch disc. (R"R2 ) are the outer and 

inner clutch disc radii. (ilco) is the differentia l angular speed of the rotating discs. 

2.4.3 Torsen LSD 

ince 1983 Torsen differential has been employed in the powertrain driveline. These 

devices are often used in high-performance A WO vehicles. Torsen differential is purely a 

mechanical device, figure 2.12. The Torsen (from Torque Sensing) works as an open 
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differential when the amount of torque transferred to each v heel is the same. As soon as 

one wheel starts to lose traction, the difference in torque causes the gears in the Torsen 

differential to engage them. The design of gears determines the torque bias ratio. For 

instance, if a Torsen differential is designed with (5: I ) bias ratio, it is capable of app lying 

up to five times more torque to the wheel with good traction (Shih and Bowerman, 2002). 

The basic operating principles of a Torsen differential, as well as a functional comparison 

with an open differential are given by Chocholek ( 1988). Moreover, he derived a 

simplified mathematical model for the basic frictional relationships within a Torsen 

differential, which are responsible for achieving the bias torque between the drive axles. 

Wonn wh-

Figure 2.12 Torsen Limited lip Differentials, adopted from (Chocholek, 1988) 

Egnaczak (1994) presented an overview of a modified torque sensing geared LSD called 

'Torsen-!1', which is designed with parall el ax le helical gearing, further to its 

compatibility with Anti lock Braking ystem (AB ). The bias ratio starts from ( 1.6: I ) to 

( 2.5: I ). lt has a similar function to the older type described previously. 

Based on a numerical simulation model, as well as experimental results, hih and 

Bov erman (2002) compared the torque bias ratio and the efficiency of friction clutch 

based L D Tor en differentials and Lockable differential devices. The authors also 

investigated the effect of helica l angle and bearing arrangement on both the torque bias 

ratio and power loss. 
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lt should be noted that this kind of L D differential biases torque as a function of the 

available torque at the slipping wheel. Thus, if a wheel is off the gro und with no carried 

torque, the different ial cannot produce a torque bias to the contacting wheel. For this 

reason, many torque sensitive differentia ls are designed with a preload. Even with a 

wheel off the ground, there is some torque avai lab le to the wheel with good traction. 

Preload must be limited to prevent adverse handling effects in the vehicle, limiting its 

effectiveness (Kinsey, 2004). 

2.4.4 Visco-Lock Devices 

Rotary viscous couplings have been in use since the 1920s as torsional damper or as 

torque transmission devices. However, their full potential was not rea lized unti l the use of 

A WO vehicles. These couplings are commonly used in A WO to connect the rear ax le 

with the front ax le such that, the transmitted torque is a function of the re lative rotational 

speed between them. In its simplest form, a viscous coupling consists of a sealed housing 

and a splined hub. A set of thin plates are alternately connected to the housing and the 

hub. The intervening space between the plates and the housing is parti ally fi lled with high 

viscosity silicone oil as shown in figure 2.1 3. When one set of wheels tries to spin faster, 

the set of plates corresponding to those wheels spin faster than the others. The viscous 

fluid , entrained/entrapped between the plates, adheres to the faster disks, thu dragging 

the slower di sks along with it. This transfers additional torque to the slower moving 

wheels or the wheels which are not sli pping (Dick, 1995; Heisler, 2002). 

The viscous coupling unit constitutes the core of the entire fami ly of products known as 

visco-lock devices. They can be used in a driveline in series as a viscous transmission 

called viscous coupling, or they can be employed within the differential unit to act as a 

viscous control element called ·visco-lock limited slip differential'. In the parallel 

connection, there are two common \ ays of installing the viscous un it. These are: the 

shaft-to-carrier and the shaft-to-shaft layouts. In a shaft-to-carrier layout, one set of plates 

is splined to the differential carrier, whilst the other set of plates is splined to the 

differential gear on one side which, in turn, is of course splined to its shaft. On the other 

hand, with a shaft-to-shaft arrangement, the plates are connected alternately, one set to 

each of the differential gears (Garrett, 200 I). 
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Taureg and Herrmann ( 1988) illustrated some typical applications of viscous coupling in 

all wheel drive vehicles. In addition they proposed a simple empirical description of the 

transmitted viscous torque (T) as a function of the speed difference ( ~n) and the friction 

torque (T,.11 ) as follow: 

r = T,.u +a · (~nf (2. 18) 

Their method of calculation has been supported by numerous experimental measurements 

to find the empi rica l constants (a, b) as follows: 

log( r; -T,.u) 
I;- Tt·R 

a= log(~n2) 
~nl 

and b = ( T2 - T,.R) 
(~n2 r 

Q) 7; 
::I 
0" .... 
0 
1-
!/) T; ::I 
0 
(.) 
!/) 

> 

fu?J t'1n2 
Speed Difference 

(2. 19) 

Figure 2. 13 Viscous Coupling Characteristics, adopted from Taureg and Herrmann ( 1988) 

Peschke ( 1986) presented an in-depth study of the operating and des ign considerations of 

viscous couplings. Based on the assumption of simple Couette flow between the plates of 

a unit cell with dynamic viscosity (Ji), Pe chke calculated the shear torque (r) 

transmitted by the viscous coupling as a function of the slip speed ( ~w), inner and outer 

plate radii (tj,r2 ) and gap (or fluid film thickness) between the plates (S) as fo llows: 
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T= 7r·b.OJ·J1.(r4 -r4 ) 
2S 2 I 

(2.20) 

Furthermore, Peschke clarified that due to the shearing of the oil an equ ivalent amount of 

heat is generated; therefore the fluid temperature is rai sed and causes it to expand . At 

room temperature, the coupling is only partia lly fi lled with silicone fluid . At a certain 

critical temperature, when all the sil icone fluid has expanded to fully fi ll the vo ids, the 

bulk pressure increases which causes the transmitted torque to sharp ly increase. Referring 

to the ' elf Torque Amplification' (STA) or ·hump phenomenon', Peschke described its 

onset to be at the time, when all the air within the housing is dissolved into the fluid . The 

temperature - pressure - volume expansion relationship is the key to this special mode of 

viscous coupling operation. 

Taureg and Horst ( 1990) developed a more sophisticated model to ca lculate the viscous 

shear torque, by consider ing the effect of seal drag, the viscosity variation of the silicone 

with temperature, local shear rate and the contribution of two-phase flow. 

(2.2 1) 

(iemm_•try• + Flmd ,,,,COS I I)' 

Where (0.11 ) is the friction torque due to seal. (~n·Kz (n)) accounts for the viscosity 

changes due to absolute and relati ve speed difference (n). The rest of the terms accounte 

for geometry and viscosity effects, where, (Z) is the number of working surfaces (1 j,r2) 

are the radii of the inner and outer plates separated by gap (S) which is fil led with 

silicone fluid of density (p) , kinematic viscosity (v) and filling ratio (/3). (B) is 

referred to the fluid temperature. Furthermore, Taureg and Horst related the hump 

phenomena to the geometry of the plate slots. An add itional objective was to develop 

externally controlled viscous coupling through controlling the pressure inside the unit, 

which is used to trigger the timing of the TA (hump) mode. 
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Further improvements in the calculation of viscous shear torque were carried out by 

Takemura and iikura ( 1990). They incorporated the viscosity-shear rate relationship into 

the torque equation, which was originally developed by Tung and Linden ( 1985). The 

viscosity variation is related to shear rate accord ing to the fo llowing equation: 

(2.22) 

Furthermore, they used a log-log model to relate the viscosity variation with temperature 

using the following equation: 

(2.23) 

Where (A, m) are empirical constants, (vo .. , v0 ) are viscosities at room and at any 

temperature. (f , f 8 ) are shear and critical shear strai n rates. 

Takemura and iikura proposed new sequences to explain the phenomena of self torque 

amplification. According to their explanation, the uneven distribution of air bubbles, 

which are collected in the plate holes, generates local temperature difference. This 

imbalance in thermal expansion is assumed to cause the differential pressure across the 

plate sides, resulting in metal contact of the plates and more torque to be transmitted. 

Mohan et al. ( 1992) calculated the shear torque by considering the fl uid viscosity 

dependency on shear rate, as well as on temperature. The si I icone fluid is considered to 

exhibit pseudo-plastic behaviour under shear. Another empirica l relationship is used to 

express viscosity variation with temperature which was originally proposed by Dow 

Corning Corporation (1962), see equation (2.24). 

(
722.5+0.000032·1/o. J 

log(v8 )= () o +1.004 · 1og(''o.)-2.447 (2.24) 

Furthermore. they claimed that as the plate approach each other, an axia l pumping action 

occurs within the coupling, in addition to a reduction in the effective permeability fo r the 
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axial flow through the perforated plates. The combined effect was thought to set up a 

system of differential pressure cells that force the plate pairs together and hence lead to 

the occurrence of rhe hump phenomena. 

Based on an elaborated numerical simulation a well as experimental observations of the 

fluid now inside the viscous coup ling, Wakamatsu et al. ( 1992) found that the flow field 

had nearl y no radial component and any small radial component was close to the outer 

plate holes. Furthermore they found that both the shape and number of holes of the 

plates had no significant effect on the transmitted torque. 

Using a numerical model, akaoka et al. ( 1993) concentrated on the geometry of the 

inner plate tabs and the effect of a tab 's camber particularly on the hump mechanism. 

They found that the v iscous flow over a slight camber on the inner plate tabs caused a 

considerable torsional moment on them, resulting in an increase of the angle of attack of 

the blade and axial thrust on the inner disk. 

Mohan (2002, 2003, 2004) described a comprehensive theory to define and explain the 

conditions necessary for ini tiating and sustaining TA in rotary viscous couplings. His 

' ork established and verified the processes that produce ST A by proposing a sequence of 

events which are qualitatively viable and consistent with one another, w ith respect to a 

chain of causal ity. The various thermodynamic. hydrodynamic, structural and mechanical 

processes were delineated and tested using a methodology consisting of theoretical 

analysis, computational dynamic simulation and experimental observations. This 

investigation differs from others by studying the interaction between fluid mechanics and 

structural mechanics within the coupling. The structural response of the inner plate tabs 

on dynamic pressure generation in the gaps between the inner and outer plates were 

identified as the main cause ofthe sequence of events that results in STA. 

2.4.5 Electronically Controlled LSD 

The conventional passively controlled limited lip differential has limited capabilitie due 

to its inherent design. By electronical ly controlling the differential 's output both traction 
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and handling can be easily optimized. Furthermore, if the vehicle is equipped with one of 

the advanced traction or braking control systems, the differentia l can res ist by applying a 

torque to the wheel that is slowing down. This reduces the effecti veness of both the 

di fferential and the control systems. To allow compatibility, the dif ferential needs to be 

de-tuned, reducing the tract ive ef fort of the vehicle. Optimal mobility and handling can 

easily be achieved by programming the differentia l to react differently to specific external 

conditions. Figure 2. 14 shows the torque transfer range of an electronically controllable 

differential compared with an ordinary viscous coupling LSD (K insey, 2004) 

The majority of the current design so lutions for electronically torque-biased L D used in 

A WO applications are based on the use of wet-plate clutches. The amount of torque 

transferred by the coupling can be varied by modifying the number of friction plates 

engaged or by modulating the applied pressure. Several mechanisms are used for 

generating and controlling the pressure, including ball-ramp arrangements, gear-pumps, 

axial pistons/ cam plates, hydraulic valves etc. 
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Figure 2. 14 Passive versus Electronically Controlled LSD (after Kinsey, 2004) 

120 

ome examples using ba ll-ramp arrangements are given by (Gill et al. 2002; Kinsey. 

2004; Huchtkoener and Gassmann, 2004). A n electronically controlled va lve is 

employed. consisting of an electromagnetic coi l posit ioned above a ball covering an 

orifice. When the coil is energized, an armature, which is slightly offset, tries to align 

with the co il. This provides a force on the ball blocking the orifice. The amount of force 
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on the ball controls the pressure that can be generated on the clutch pack. When the co il is 

disengaged, the ball can move away from the orifi ce allowing pressure to bleed off. 

A Proportional-Integral-Differential (PlO) controller is used to calculate the engagement 

force. Several inputs are used to determine the condition of the vehicle. Inputs include 

individual wheel speeds steering angle, throttle position vehicle speed brake status 

transfer case mode, and temperature. Based on the inputs, theoretical wheel speeds are 

calculated. When the actual measured wheel speeds vary from the theoretical speeds the 

control ler determines how much correction is needed. 

Another coup ling solution addresses the stringent requ irement for contro ll ab ility by 

employing a magnetic particle clutch, coupled, in a quasi-static torque split arrangement 

with a planetary gear system (Gradu, 2003). Magnetic parti cle clutches are we ll known 

for very good torque modulation capabi I ities and for torque characteristics that are 

independent of the differential speed in the clutch. The main control parameter of the 

clutch is the applied current, which energizes a co il and aligns the steel particles similarly 

to bridges in the gap between the clutch rotors. The torque is transferred between the 

rotors due to friction with the micron-sized steel particles. The torque split arrangement 

significantly increases the torque capaci ty of the coupling, directing only a fraction of the 

torque through the magnetic particle clutch. 

Park and Kroppe (2004) presented a novel torque-vectoring called ' Differential System 

Dynamic Trak' which can be applied to both the inter-axle and the inter-wheel differential 

systems. The 'Dynamic Trak' has three mu lti-p late clutches, figure 2. 15. The centre 

clutch located inside the differential case provides a limited-s li p or complete lock-up 

capabil ity. The two outboard clutches, positioned at either sides of the differential case, 

selectively adjust the torque flow to the left or right shafts/wheels. An electronic control 

unit and a hydraulic circuit unit control the three clutches, effecting the active 

management of the torque to the two output shafts/wheels. The 'Dynamic Trak' can 

provide a maximum of I 00% torque bias. whi le maintaining an open differential feature. 
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Figure 2. 15 Torque Vectoring Differential (after Park and Kroppe, 2004) 

2.5 Driveline Dynamics of AWD Vehicles 

The driveline is a fundamental par1 of a vehicle. It transmits the energy from the engine 

combustion to propel the vehicle body through the wheels. In addi tion to the driveability 

and ease of operation, it is of great importance that thi s action is achieved as efficientl y as 

poss ible, which would lead to better performance and lower fuel consumption. To achieve 

this, it is important to be ab le to mathematically model and numerical ly simulate the 

individual elements of the power train including engine, transmission torque distribution 

devices, axles and so on. Next, the relationships between driveline characteristics and 

vehicle subsystems including body suspensions, steering system and tyres must be 

clearly identi·fi ed. Finall y, with reference to special measuring criteria, the vehicle 

dynamics in terms of longitudinal, lateral and vertical responses should be evaluated. 

2.5.1 Driveline Simulation Tools 

umerical simulation of dynamic systems has long been recognized as an important and 

effective tool in the design and analysis of drivetrain systems. Over the years many 

simu lations have been developed which are application-specific, for exa mple (Somayaj i, 

1993; Assanis et al., 1999). In the process of constructing such simulations, the 

differential equations which describe the motion of the system are repeatedly derived in a 

form which is appropriate to a particular appl ication. The equations of motion are coded 

and debugged. This time-consuming process is repeated for each application before any 

usefu l resul ts can be obtained from the simulation. A need emerges to quickly construct 
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nex ible simulations which al low rapid and safe evaluation of alternative components and 

system configurations. In this section, several driveline analysis programs w ith various 

levels of complexity are discussed and compared, which assists selection of the right 

simulation tool. 

With a support from Ricardo Consulting Engineers Ltd. and Boeing Computer Services, 

Ciesla and Jennings ( 1995) have constructed a l ibrary ofpowertrain component models in 

a modular form. This library is cal led ' Power/rain Dynamic Simulation Librmy' (PD L). 

T hese macro models have been derived in a consistent manner and have been designed to 

handle the causality issues that are important in a general purpose library. Models built 

using the PO L components have been validated to ensure that the results predicted by 

the model are sensible. These module have been developed using the EA Y5 simulation 

language environment (M C oft-.: are Co.). Each model in the library represents a basic 

component, commonly found in drivetrain. This library allows users to easily and quickly 

develop complex models of a wide range of vehicle and transmission configurations. 

IMAGINE Ltd. ( 1995-2006) issued powertrain library cal led 'AMESim ' including 

components for modelling powertra in. transmissions and driveline systems. This library 

enables the designer to address the various physical phenomena invo lved in powertrain 

system simulation. From the engine to tyres, a large set of component models are 

provided. A complete modell ing facility is offered for applications such as des ign of a 

automatic gearbox analys is of shaft or driveline vibration, improvement of gear shi ft 

quality, clutch design, sizing of dual mass fl ywheels, optimization of gearbox efficiency, 

for example, the work carried by Garcia and Kargar (2000). 

Another multi-domain modelling language is called ' Modelica' under the 

'MathModelica' environment (Model ica Association). Modelica is a standardized 

language for complex multi-domain dynamic modelling while MathModelica is a 

modelling and simulation environment building on the Modelica language. The language 

contains a standard library with ready to use components such that the user can use them 

and bui ld a complete model by dragging components and drawing lines between them. 

ignificant research is carried out to simu late full driveline system using ' Modelica ' for 

examples (Pettersson, 1996; obrant, 200 I ; Drogies and Bauer, 2002; Wallen, 2004). 
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The latest release of the Modelica include special library called 'PowerTrain·. which is 

enri ched by optional consideration of 30 effects, a simpler signal bus concept, new 

components and example models for flexible drivelines, 4WD drivelines and hybrid 

vehicles. In addition, various new driver models have been added. A number of 

components originally developed for the Power-Train library have been incorporated into 

the Modelica standard library since they are or general interest (Eimqvist et al. , 2004) 

The MathWorks Inc. (2004-2006) released a new toolbox called ·SimDriveline', which is 

part orSimulink Physical Modell ing, encompassing the modelling and design of systems 

accord ing to basic physical principles. imDriveline extends imulink with too ls for 

modelling and simulating the mechanics of dri ve line systems. These tools include 

components such as gears, rotating shafts, and clutches; standard transmission templates; 

and engine and tyre models. SimDrive line is optimized for ease of use and speed of 

calculation for drivel ine mechanics. It is integrated with the Math Works control design 

and code generation products, such that, it is possible to design and test controllers in real 

time with the model of the mechanical system. imDriveline can be used for a vari ety of 

automotive, aerospace, defence, and industrial applications. lt is particularly suited to the 

development or controllers for automotive and aerospace transmission systems. 

In order to include, in an effective manner, all the sources of drivetrain non-linearity, a 

multi-body dynamic methodology is most appropriate. MSC Software Corporation 

released 'ADAMS/Driveiine' which provides engineers and analysts with specialized tools 

for modelling and simulating driveline components and studying the dynamic behaviour 

or the entire driveline during different input conditions. It can al so be used to explore 

interactions between driveline and chassis components, such as suspens ions, steering 

systems, brakes, and the vehicle body (M C Software Co.). 

Another well -known algorithm ca lled • Bond Graphs Method can be used for modelling 

and simulation of driveline systems, for example (Vijayakumar and Chandran, 2002; 

Wehn: ein and Mourelatos, 2005). Bond graphs are topological models that capture 

energy exchange pathways in physica l processes. The generic elements in bond graphs 

are energy storage, energy diss ipation, energy transformation, and input-output elements. 
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The connect ing edges or ·bonds' represent energy pathways between the elements. Each 

bond is associated with two variables: effort and flow. The product of effort and flow is 

power. i.e. , the rate of energy transfer. Connections in the system can be modelled by two 

idealized elements (series or parallel) junctions. This domain independence makes bond 

graphs attractive in a mu lti-domain context. Furthermore, the equations associated with 

bond- graph elements can be automatica lly converted into a simulation code, thus 

releasing the modeller of writing computable code. A lot of publications are available to 

cover different definitions and concepts of bond graphs, e.g. , (Borutzky 1992). 

2.5.2 AWD Vehicle Dynamics Augmented by Torque Management Devices 

Although the primary objecti ve of A WO vehicle is to improve propulsion, particular 

attention must be paid to other aspects of vehic le behaviour. Therefore, a series of 

research works are carri ed out to in vestigate the vehicle behaviour in terms acceleration, 

declaration, braking and cornering under the condition of various configurations of 4WO. 

Hall ( 1986) predicted the steady state cornering behaviour of a high mobility 4 WO 

armoured vehicle fitted with different torque split devices between front and rear axle. 

Oi fferent modules were proposed to simulate different types of torque distribution 

devices such as visco-lock, torque and friction clutch LSD. The behaviour of the tyres 

was predicted using an empirica l on-road tyre model with sim pl ified representation of the 

coefficient of adhesion. With static weight equally divided between the front and rear 

ax le, Hall found that compared to viscous type L D, torque sensitive LSD generates 

greater lift-off oversteer effects. This is may be due to the capabilities of torque-sens itive 

L D to bias a higher torque across the wheels. 

Fu rthermore. Hall and Moss ( 1988) conducted research into the use of viscous coup! ing 

to alleviate the transmission wi nd-up in military vehicles, when driven on-road. Various 

computer simulation models were developed to investigate the steady state hand ling 

response of military vehicles fitted ' ith H-type transmission and viscous coupling of 

different stiffness characteristics. The results obta ined indicate that wind-up torque is 

considerably reduced when the vehicle negotiates tight turns on roads at low speeds, in 
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addition to a noti ceable reduction in tyre wear. Moreover. if a viscous coupling is used 

with stiffer characteristics, wind up torque would be reduced while keeping a high level 

of traction capability on off-road areas. 

MacLaurin and Crolla (1988) proposed an acti ve system, using a double differential to 

control both overall wheel slip and the di stribution of slip and torque between the wheels. 

To obta in data on combined longitudinal and lateral tyre forces, they used the PARDE 

mobi le tester. Both the computer simulation and fi eld testing showed that acti ve control 

of the differential offers the potential for tai loring the vehicle response in a \Vay which is 

not possible with conventional d ifferentials. Additionally, the generated yaw rate for 

mechanically locked di fferential was fo und to be higher than that of an open d ifferential 

and for L D differentials; the behaviour is somewhere between open and locked case. 

Furthermore, MacLaurin and Hall (1993) described in detail the computer simulation 

models used to predict the steady state handling behaviour of the vehicle. The effect of 

controllable and various types of limited slip di fferentials on vehicle handling and traction 

characteri stics were investigated. To validate the numerical models, they carried out field 

tests of a military vehicle eq ui pped with a controllab le double differential. The results 

suggested that using an acti vely controlled differential would considerably change the 

potential for better steady state handling behaviour. 

Minabe et al. (1986) developed a computer simulation model to study 4WD handl ing 

characteri stics resulting from two concepts: geared centre differential (with different 

static torque split ratio) and viscous coupling device (with different viscous 

characteristics). The vehicle model was represented by four degrees of freedom for 

simulating longitudi nal lateral. yaw and roll motion. Calculations of tyre forces in both 

longitudinal and lateral directions were based on empirical maps as function of slip angle 

and coefficient of friction. Under certain prescribed manoeuvres, many simulations were 

carried out to eva luate cornering response of the vehicle in each case. 

Maretzkc and Richter ( L 986) investigated the effect of different types of 4 WO on both 

longitud inal and lateral directions. A 3-DOF vehicle model was used to express forward , 
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lateral and rotational motions about the vertica l axis. The tyre representation was based 

on a simplified on-road tyre model. On the basis of the given tyre characteristics, the tyre 

model calculated forces in both longitudinal and lateral directions in add ition to the 

dependency of the fri ction conditions and wheel load. The driveline model represented 

various configurations of torque split mechanisms, such as rigid coupling, central 

differential and viscous coupling. The viscous coupling was described by simplified 

empirical relationships of the viscous torque, driving speed and operating temperature. 

Many simulations were carri ed out, such as traction, braking and handling to evaluate 

vehicle performance in terms of different drivetrain configurations. An overall result of 

their investigation indicated that introducing a contro llable degree of freedom (viscous 

coupling) between front and rear ax le improved the general performance of the vehicle. 

Tani et al. ( 1987) followed a similar methodology of Maretzke and Richter to investigate 

the vehicle response due to differem static torque split ratios. The vehicle model was 

represented by 6-DOF, in add ition to I 0-DOF for a drivetrain model. ome useful 

mathematical equations of different driveline layouts were introduced. The authors found 

that if a relati ve ly small resisting force is app li ed to the centre differential, higher 

acceleration and cornering performance would be obtained. Compared to the centre 

differential, the results reflected the advantage of using a visco-lock LSD as the torque 

distribution device, which was a suitable feature for passenger cars. 

Lugner et al. ( 1987) compared the performance of eight di fferent drivetrain 

configurations for the case of straight ahead acceleration on a p -spl it surface, on high 

friction surface and the un ilateral crossing of the low frict ion patch. They found that the 

configuration of a central differential with parallel viscous coupling and soft coupling at 

the rear differential can provide a good compromise for all the perceived driving duties. lt 

should be mentioned that the authors based their model on empirical equations to 

represent visco- lock differentials. Additionally, they carried out simulations with on-road 

surface with different coeffi cient of adhes ion. 

Hopkins and Metz ( 1994) examined the effect of locked differential on 

oversteer/understeer behaviour of RWD racing car. The numeri ca l simulation of the 
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steady state cornering behaviour showed that the actual effect is much more complicated 

and is strongly affected by static weight distribution between front and rear axles, roll 

coupl ing distribution. avai lable traction and the radius of negotiated tu m. 

Huchtkoetter et al. ( 1994 and 1996) presented a series of field tests which investigated the 

effect of viscous coupli ng implemented in a front-wheel-drive vehicle on both its traction 

and handling characteristics. The results from tests demonstrated substantial traction 

improvement whi le only slightly influencing steering torque. Factors affecting this 

steering torque in front-wheel-drive vehicles were described. Further testing demonstrated 

that a veh icle with viscous limited slip different ial exhi bited an improved stability under 

acceleration and throttle-off manoeuvres during cornering. 

Rubin and Moskwa ( 1999) developed a dynamic powertrain system model of the High 

Mobility Multi-Wheeled Veh icle (HMMWV). The dynamic model contains separate 

modules for open, Torsen differentia l and automatic transmission, as well as severa l other 

powertrain components. The model ' as created in the Simulink graphical programming 

environment. The overall model , combining full veh icle and powertrain system. was 

simulated during different scenarios to examine acceleration capabi lities of the vehicle 

over moderately steep hills. The results demonstrated only the longitudinal performance 

of the vehicle, including its shi fti ng characteristics and speed up-time diagram. 

In a series of five papers the research engineers at Yisteon Corporation, introduced a new 

modell ing approach called 'VADSJM-DYNA' to combine the dynamics of driveline 

systems within a fu ll vehicle mode ll ing envi ronment. Using ADAMS/View Alexander 

and Monkaba (2000) developed fully parametric modules to represent the criti ca l 

components and assemblies of the drivel ine system, such as the hypoid gear set, the 

differential case and pinion shaft, full and semi-floating axles, and propeller shafts. 

Later, Alexander et al. (2002) incorporated their dri veline modules into a highly non­

linear. multi-degree of freedom vehicle model, v hich was developed in the ADAMS 

program by ubramanyam et al. (2000). Then, the developed VAD IM-DYNA driveline 

model was modified to include the functions of torque control devices. 
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Liu et al. (200 I) presented a eo-simulation approach to integrate the vehicle control 

modules in the virtual prototyping environments to verify the vehicle traction/cornering 

performance. The controller modu les were developed in MATLAB. ADAMS was used to 

create a high-fideli ty virtual prototyping vehicle model. The vehicle model was then 

modified to integrate the function of torque bias control devices. The eo-simulation of the 

controller modu les with the vehicle model was performed using ADAMS/Controls. 

Furthermore, Liu et al. (2002) introduced three types of driveline torque bias 

arrangements including an electro-magnetic coupler, twin couplers and an electro­

magnetic limited sli p differential to mon itor the vehicle response with different drive line 

torque strategies. The simulations were used to study several winter test conditions on 

packed snow or icy road and were used to also validate the torque control strategies. 

Huchtkoetter et al. (2004) descri bed various dri ve line concepts using electronically 

controlled Torque Management Devices (TMO), ranging from on-demand (hang-on 

coupling) to fu ll-time A WO systems with a centre differential. The influences ofTMD on 

vehicle dynamics were investigated for various driveline layouts and TMD arrangements. 

Results from vehicle tests showed remarkable improvements in vehicle traction provided 

by TMD. Furthermore, TMD also showed a significant influence on vehicle handling and 

stabi lity and safety in 4WD systems, as well as in 2WO applications. 

According to standard manoeuvres and a set of criteria Borio et al. (2004) suggested a 

methodology for the compari son of longitud inal and lateral performances of A WO 

vehicles with different drivetrain architectures (locking, self- locking, viscous coupling 

and active differentials). Their performance evaluation methodology was based on three 

indices. The first index was to evaluate the longitudinal performance using Traction 

Capability Index (TCl). The second was to evaluate lateral performance using Handling 

objective Quality Index (HIQ), and the third index was to evaluate reaction of the car 

during power on/off considering the yaw and sides li p response after the throttle transient. 

Their findi ngs can be summarized as follows: the presence of a self-locking or visco­

coupling on the centre allows for better longitudinal performance under all conditions. 

However, at high lateral acceleration it becomes worst, because of deterioration in 

stability, due to the locking phenomenon. 
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Danesin et al. (2004) investigated the dynamics of a 4WD vehicle, considering drivelines 

with different layouts including an ordinary differential , torque sensing and friction­

clutch-based LSD. A simulator was used to compare performance through virtual 

experimentation. In addition, some preliminary road tests were carried out. Regarding 

lateral stability, the authors fou nd that, compared with central clutch hyd raulically 

actuated LSD the Torque sensing layout tends to reduce the under-steering behaviour of 

the car. lt should be noted that the main equations applied to model open, torque sensing 

and limited slip differentials were based on empirical coefficients which were picked-up 

from direct measurements of the employed devices. 

2.6 Conclusion of Review of Literature 

An in-depth review of the state of the art in the fi eld of A WD off-road vehicle dynamics 

has been presented here. The review includes more than 95 research papers and eight 

doctoral theses covering the fo llowing aspects: mechanics of wheel-soil interaction, off­

road vehicle simulation and various strategies to control torque distribution in A WD 

vehicles. These are critically analysed and summarised as follows: 

In the field of wheel soil mechanics and off-road vehicle simulation: 

- Among the different repot1ed approaches of wheel-soil mechanics, the analytical 

approach, which is originated by Bekker ( 1956, 1960, 1969) possesses a distinctive 

and highly desired advantage, being easi ly adapted to numerical simulation 

environments. This approach is characterised by a well-establi shed mathematical 

structure which accounts for the pressure-sinkage in the vertical direction, and the 

shear-tension-displacement in the horizontal direction. On the contrary other 

approaches, e.g. theoretical and empirical, are still striving to compete in terms of 

fidelity computational time and ease of use. 

Undoubtedly, the most important aspect of any off-road vehicle simulation model is 

the mechanism of tyre force generation (i.e. a suitable tyre model). It should be 

emphasized that a tyre model can be judged from at least two different points of view. 

First, in terms of being an all -around performer i.e. being able to deliver sensible 
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resu lts when used in simulat ions under a wide range of operating conditions. econd, 

it can be judged in terms of enab ling the study and assessment of certain parameters 

that influence tyre force generation. To this end. a recently developed off-road tyre 

modell ing method, called 'As"2TM (AE CO GbR, 2005), seems to be the model of 

choice. Since the tyre model is customized as a Simulink S-Function, it seems a 

sensible choice which offers great fl ex ibi lity for future developments of the entire 

modelling domain, where it can include further features such as control systems and 

automatic optimization routines. 

With the latest advances in computer technology, various computer programs have 

been deve loped to simulate differen t aspects of wheeled vehicle dynamics over 

deformable terra ins. Although some of them have succeeded in this aim, simulation 

with such models is either computationally expensive e.g. ·QRSIS' (Harnisch et al., 

2007) or confidentially restricted e.g. , 'NRMM-If (S ul livan, 1999). On the other hand, 

with recent demands concerning the application of control systems and automatic 

optimization in 4x4 off-road vehicles, there is a need to develop models with medium 

degree of sophistication, yet adequate to represent vehicle dynamics accurately. One 

should also provide total control over the equations of the model to facilitate the 

implement.ation of an in-house wri tten code. 

In the sections dedicated to various torque management devices and their 

effect on vehicle behaviour, the following overall conclusions can be made: 

lt is obvious that, the concepts of 4 WD-trains developed or under development range 

from types activated manually, automatica lly, or permanently appl ied, with different 

kinds and degrees of differential locks. More sophisticated concepts use data 

monitored from driving conditions to control the transmission properties of the central 

and the axle differential gears using various e lectronic systems (Lanzer, 1986: Mohan 

and Wi lliams, 1995; Huchtkoetter and Gassmann, 2004). Among this vari ety. 

application of visco-lock devices offer a possibility to achieve permanent 4 WO 

inexpensively, providing an automatically adj usted tractive force distribution through a 

relatively wide range of conditions (Lee and Atkinson, 2002) 
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lt is recognised by the majority of researchers that a vehicle with visco-lock devices 

exhibits an improved traction performance. However, undesirable over-steering effect 

may occur during cornering manoeuvres, depend ing to a great extent, on the coupling 

characteri stics of these devices (Minabe et al., 1986; Hall et al., 1 988~ Huchtkoetter et 

al. 1994, 1996). 

lt is observed that, while visco- lock devices were origina ll y developed to improve 

vehicle performance during serious driving situations, such as fo r off-road areas, under 

slippery conditions or f.l-Split surfaces, the majority of research work carried out has 

been devoted to the study of slippery on-roads and the used mechanism of tyre force 

representation has been based on on-road empirica l maps as fu nctions of vertical load, 

slip angle and coefficient of frict ion (Maretzke and Richter, 1986; Tani et al., 1987; 

Rubin and Moskwa, 1999; Borio et al.. 2004). At this point, it should be emphas ized 

that, this approach should not be extended to off-road vehicles because the 

interactions between pneumatic tyres and deformable soil are very complex and 

include many effects, such as sinkage, multipass and sli p sinkage. Another 

shortcoming is that, the mechanism of viscous torque transmission has been treated in 

past researches in a simple manner. using empirical equations or look-up tables, 

includ ing data fitted to experimental measurements. 

On the other hand although various mathematical models for analyzing the 

mechanism of torque generation in rotary viscous coup I ings have been in existence for 

many years (Peschke, 1986; Takemura and Niikura, 1990; Nakaoka et al., 1993; 

Mohan, 2002, 2003, 2004), most of these have not been integrated in to an appropriate 

procedure for predicting the dynamic performance of a vehicle. In addition, some of 

these models have only shed light on isolated effects such as the complex sequence of 

events that would result in set f-induced torque amp I i fication (hump). 

As a final conclusion, there has been a lack of integrated numerical approach fo r 

implementation of visco-lock devices in a full vehicle simulation environment, 

especially for off-road automotive applications. Moreover. the contribution of any 

empirica l approach to the improvement of the existing knowledge on visco-lock 

devices has been rather limited. 
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The following observation can be made with regard to the reported 

numerical simulation tools: 

Over the years, modelling effort has concentrated on repl icating the behaviour of 

individual system components or sub-systems as closely as possible. This has, in the 

main, led largely to multi-body dynamic models, created in codes such as ADAMS. 

A lthough very good agreement is often found with test data, the shear size of such 

models often leads to long computation times. For the purpose of the present analysis a 

model is implemented in the MATLAB/Simulink environment. This choice offers the 

poss ibi lity of later incorporation of advanced control strategies and the use of the real­

time toolbox in Simul ink. 

Recently, a fai r number of commercial tools for simulating driveline systems have 

been reported. These too ls have the potential to simulate the indiv idual components 

commonly found in automotive powertrains. The common feature of those programs is 

the inclusion of general purpose libraries, which enable users to easily and quickly 

develop complex models. Among th is variety, SimDriveline toolbox seems to be the 

too l of choice. Since SimDriveline tool box is a part of Simulink Physical Modelling, lt 

provides the advantage of using the control design and other code generation products 

within the Simulink environmen t. 
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Chapter 3: Theoretical Background 

Traditionally, working in off-road veh ic le research requires a combined knowledge of 

terramechanics and vehicle dynamics. This chapter presents the necessary foundations 

both in the understanding of basic principles ofterramechanics and the mechanism of tyre 

force generation over deformable soil. Furthermore, some fundamental considerations 

about coordinate systems, rigid body motion in 3-D space and the implementation in 

vehicle dynamics are presented. The Newton-Euler approach is chosen for the 

formulation of the system of differential eq uations of motion. The material provided in 

this chapter not only forms the basis for off-road vehicle model development, but also to 

interpret and analyze the simulation results. 

3.1 Soil Characterization for Numerical Modelling 

Performance evaluation of terrain-veh ic le systems entails information about both the 

vehicle design parameters and the physica l environment within which the vehicle may 

operate. For the purpose of numerical modell ing of off-road vehicles, the characterization 

of soil mechanical properties is a fundamental task in order to be able to predict thrust, 

resistance, sinkage, slip. driving torque, and wheel speed. Generally, the so il mechanica l 

properties can be categorized as so il physica l properties and soi l strength parameters. 

oil physica l properties affect the vehicle performance by changing the soil strength 

characteristics under different conditions. In ature, however the soi l strength values in a 

site vary stochastically. Furthermore, they may be al tered by soil cultivation and by 

vegetation. Add itionally, they change continually w ithin short term due to climatic 

influences. Impacts due to agriculture and by nature cause tremendous uncertainties in the 

actual soi l strength. In order to consider the infl uences of cu ltivation and of climate on 

soil strength influences such as those of density and of moisture content has to be 

investigated systematically prior to any modelling effort. For this purpose, vari ous models 

have been developed to account for the changes in so i l strength due to its moisture 
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content, e.g. (Hintze, 1990, 199 1, 1994). Furthermore, in Nature soil strength values in a 

given site are somewhat scattered. Therefore, a particular measured value is not regarded 

as reliable at a ll. Additionally, a mean measured value in a few measurements may not be 

trustworth y. To solve thi s problem, various stati stical methods have been reported by 

different researchers e.g., (Heiming, 1987, 1989), where frequency distribution, mean 

value and standard deviation, and other stati stica l measures have been considered. 

For off-road automotive appl ications, soil strength parameters are some of the main 

factors affecting the supporting, floating, shear, friction and other abil ities of the soil 

under vehicle load. Prediction of off-road vehicle performance, to a large extent, depends 

on the proper evaluation and measurement of the strength parameters ofthe terrain, which 

has been the major objective of terrain-vehicle mobili ty studies. 

To characterize the so il strength parameters, interactions between tyre and soft soil may 

be described in terms of two separate relationships; one is soil deformation in vertica l 

di rection using 'The Pressure-Sinkage Relationship' and the other is to describe soil 

deformation in the horizontal direction using 'The Shear-Stress Shear-Displacement 

Relationship'. Both relat ionshi ps can be obtained experimenta ll y using a device called 

·Bevameter ', which was ori ginally developed by Bekker (1969). 

Figure 3.1 shows the basic components of a Bevameter faci lity. ln the Bevameter shown, 

a hydraulic loading cylinder is mounted verticall y at one end of the frame and is used to 

apply normal loads to the sinkage plate in pressure-sinkage tests. A shear annulus head is 

mounted at the other end of the bevameter frame and is rotated by the hydraulic ram 

through a chain drive. The idea is to subject the terrain to loading, simi lar to that imposed 

by a running gear. To simulate this, two separate tests are carried out as fo llows: 

The penetration tests: different plates with suitable sizes (b" b2 ) are used to s imulate 

the contact area of the vehicle running gear; hence the pressure-sinkage relationship 

(p, z) of the terrain can be obtained. 

The shear test: using a shear annulus ring, which is driven by a torque motor, the shear 

stress-shear displacement relationsh ip (T, B) at various normal pressures 

(P' , P", Pm) can thus be obtained. 
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Figure 3. 1 Basic Components of a Bevameter (after Wong, 1989) 

The common approaches for pred icti ng both relationships are highlighted as follows: 

3.1.1 Pressure-Sinkage Relationship 

A vehicle applies normal load to the terrain through its wheels, which results in sinkage. 

A lternati vely, a wheel on soft so il penetrates into the ground to such a depth which results 

in a ground pressure balance against the applied wheel load. To predict the normal 

pressure distribution at the wheel-terrain interface, the response of the terrain to normal 

load and repetiti ve loading must be measured and then described by a mathematical 

relationship. This relationship is considered as semi-empirica l, owing to the use of 

measured values, rather than being from first mathematical principles, such as by contact 

mechanics of poro-elastic solids, which would be highly involved in an analytical sense. 

For the measurement of pressure-sinkage relationship, the vertical plate penetration test 

has thus become widely accepted, see figure 3.2. Different sizes of plates (bp b2 ) are 

used, and both the penetration force (F) and the sinkage ( z) are recorded. The 

penetration speed is usually kept low to reduce the dynamic effect. This corresponds to 
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relaxation of the soil as a poro-elastic solid, similar to viscoelastic behaviour. 

Consequently, the pressure on the sinkage plate is obtained by dividing the penetration 

force by the contact area. The results of the calculated ground pressure (p) versus 

measured plate sinkage (z) can easily be plotted as shown in figure 3.2. This curve may 

be approximated by a simple exponential equation (3. 1) which was originally proposed 

by Bekker ( 1956) as fo llows: 

( Kc K ) 11 K 11 

p = b+ rp · Z = ·Z (3. 1) 

Where: ( K) is the modulus of plastic soil deformation, ( Kc, K"' ) are the cohes ive and 

frictional mod ul i of soil deformation respectively, and (n) is the soi l sinkage exponent. 

F 

p z 

Figure 3.2 The Pressure-Sinkage Relationshi p (after Ruff, 1997) 

To derive the soil strength parameters (Kc, K"', n) , a weighted least squares method, 

which was originally developed by Wong ( 1980), is used. The weight error function is 

given as fo llows: 

f ( n, K) = L p 2 ·(In p - In K - n · ln z f (3 .2) 

By taking the partial derivative of .f(n K) with respect to (n) and (K) and equating 

them to zero and solving for ( n) and ( K) the following expressions resul t: 
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(3.3) 

(3.4) 

For a given terrain , the sinkage exponent ( n) shou ld be the same, so the average 

exponent ( nav) can be calculated as fo llows: 

(n ),=,1 + ( 11 ),=,2 
nm. = 2 (3.5) 

Then, the values of ( Kc, K'P ) can be ca lcu lated as fo llows: 

(3.6) 

(3.7) 

A number of measured strength properties for soils are given by Wong ( 1989). Moreover, 

he introduced the response of a terra in to repetitive loading. 

3.1.2 Shear-Stress Shear-Displacement Relationship 

A vehicle appl ies a shear force (traction) to the terrain 's surface through its wheels, which 

results in the development of thrust and an associated sli p. To predict the tracti ve 

performance of an off-road vehicle, it is necessary to measure the relationship between 

shear stress and shear displacement under various normal pressures. 

For the measurement of this relationship, two different types of shear plates can be used. 

The first one with grousers for measuring the internal shear strength, and the second is 

covered with natural rubber for measuring rubber-terrain shearing characteristics. During 
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the tests. different normal pressures are applied on the shear ring while the shear stress, 

shear di sp lacement and slip sinkage are recorded. For each value of the normal pressure, 

the maximum shear stress is plotted versus the normal pressure. The single measurement 

points can be approximated by a line, see figure 3.3. 

p 

~ F ***tt**t*t** I I 1 I 
--+ --+ --+ --+ 

'tmax c 
p 

Figure 3.3 The Shear-Stress Shear-Displacement Relationship (after Ru ff 1997) 

The slope of this line determ ines the so il internal friction angle (<P) and the intersection 

with the abscissa specifi es the soi I cohesion (C). The maximum shear strength ( ~maJ is 

assumed to be observed from the following Mohr-Coulomb failure criterion as fo llows: 

~max = C + p · tan <P (3.8) 

To fit the measured data and predict the shear stress as a function of shear deformation 

(J), Janosi and Hanamoto ( 196 1) proposed the following simplified equation: 

(3.9) 

Wong and Preston-Thomas (1983) proposed a different equation, composed of two 

exponential functions. Their equation descri bes the shear stress-displacement curve that 

di sp lays a 'hump' of maximum shear stress and then decreases with an increase in shear 

di sp lacement to a constant value of residual stress as fo llows: 

~=-r ·K (t+( I -l)·e-:· J·(I-e ~ ) 
max ' K,· ( l - 1/ e) 

(3 .1 0) 
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Where ( k) is the tangent modulus of horizontal shear deformation, ( K •. ) is equal to the 

shear displacement at the maximum shear stress, ( K,) is the ratio of the res idual shear 

stress to the maximum shear stress. 

3.2 Off-Road Tyre Modelling 

Calculation of the interactions between tyres and so il is the key chal lenge in off-road 

vehicle dynamics simulation. An extensive literature review is carri ed out to select a 

suitab le off-road tyre model (see chapter 2). Among the different methods developed for 

wheel-soi l mechanics, the AS2TM off-road tyre model was chosen (AESCO, 2005) fo r 

use in the current investigation. 

The AS2TM uses an advanced version of the trad itional analytical method, which is based 

on the principles introduced by Bekker ( 1956, 1960, 1969) and by Janosi and Hanamoto 

( 1961 ). The main strength of this tyre model is the consideration of elastic tyres on soft 

soils, including multi-pass calculat ions. Furthermore, the deformed contact patch between 

the tyre and the so il is described by a large substitute circle. The main outputs of the 

model are the longitudinal, lateral, and vertical forces of elastic tyres on soft so ils, driving 

torques acting on the wheel, sinkage, tyre deflection, rolling resistance, slip, slip angle 

and soil compaction. In thi s section the main features, limitations, as well as the 

mathematical modelling of this tyre model are briefly introduced (Ruff et al. , 1991 , 1993, 

1994, 1997; Schmid, 1995; Harnisch, 200 I; Harnisch et al., 2003 2005; AESCO, 2005). 

3.2.1 Main Features and Limitations 

Features: 

Tyre forces in longitudinal , latera l and vertical directions are calculated by assuming 

contact of an elastic tyre on soft soi Is. 

Calculating torques acting on the tyre relati ve to the wheel hub. 

Calculating sl ip in both longitudinal and lateral directions. 

Taking into account interactions between the longitudinal and the lateral fo rces. 
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Calculating si nkage. resulting from assumption of elastic and plastic soil 

characteristics. 

Calculating rolling resistance, based on both soil compaction and tyre deformation. 

Calculating tyre defl ection, taking into account tyre inflation pressure. 

Calculating slip-sinkage. 

Including the effects of repetitive loading or multi-pass (soil pre-compaction). 

Including influence oftyre-profi le (i.e., lug height and tyre shape profi le). 

Including the effect of slippery surfaces (e. g. grass, wet loam). 

Implementing the tyre model as an S-function in Matlab/Simulink environment. 

Limitations: 

Since the tyre model is approximated by a single-point-contact only, the simulation of 

crossing over-steep obstacles (>80°) is not possible. The drawback of th is assumption 

would main ly affect ride quality simulations. Even though a sign ificant number of 

important effects can be descri bed (e.g. deformation of the soil after crossing, planting of 

roughness) the wheel elevation curve, when crossing a tapered ditch, may not be 

geometri call y correct. 

3.2.2 Rigid Wheel Model 

The preliminary approach in understandi ng off-road tyre modelling is to consider a rigid 

wheel with a circular geometry, which is a practi cal approximation of tyre over soft soils 

without pre-compaction, see figure 3.4. While the rigid wheel model is relatively simple, 

it represents an essential starting point for any ana lytical off-road tyre model. 

The first step is to numerica lly ca lculate the local pressure under the wheel, see equation 

(3. 1 ). The normal pressure distribution starts at zero, where the wheel enters the terrain 

(z = 0) and reaches its maximum at the bottom dead centre of the wheel (z = z0 ) . 

Tyre vertica l force ( ~) is calculated from the numerical integration of the pressure along 

( (
D-2 · z )J the contact area, where ( 81) is the contact angle given by: 91 = arccos D 0 

• 
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1 (D) 8t ~ = b . f p ( z). ctr = b . - . f p ( .9). cos .9. d .9 
0 2 0 

(3 .11) 

- o 

-x- ciF 

Figure 3.4 Principle of the Rigid Wheel Model, adopted from (Ruff, 1997) 

From equations (3 .1 ) and (3 .11 ) an expression for the tyre sinkage can be obtained as: 

2 

3 ·F 

[ ]

211+1 

(3. 12) 

The resisting force can be ca lculated by integrating the horizontal component: 

=n (D ) 8t Fu = b · JP ( z ) · dz = b · - · J p ( .9) · sin .9 · cl .9 
0 2 0 

(3 .1 3) 

F = b· _ c + K · _z_ 
( 

K ) ( n+l J 
u b rp n + l 

(3.14) 

The transferred circumferential force ( f;, ) and its horizontal component (r: ) can be 

determined by integration of local shear stress over the contact area. The local shear stress 

( r ( .9)) can be computed, based on the local pressure and shear displacement, see 

equations (3.9) or (3.1 0). 
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(3. 15) 

(3. 16) 

The drawbar pu ll can be computed as the di fference between the longitudinal force ( Fx) 

and the resisting force caused by the soi I ( Fn) . 

3.2.3 Simulation of Elastic Tyres on Elastic/Plastic Soil 

The pressures generated along the contact area depend on the local deformation of the 

ground, which are described by the tyre-so il contact contour. While maximum sinkage 

results from the equilibrium condition of wheel load and ground pressures, the shape of 

contact is an assumption in most analytical models. In the simplest case the contact 

contour consists of the section of a circle and a straight horizontal secant. For the elastic 

tyre assumption, the model uses a large substitute circle (D.) to describe the deformed 

contact patch between the tyre and soil. This approximation allows a much more elegant 

mathematical treatment of the deflected elastic tyre contour. figure 3.5. 

3.2.3.1 Elastic/Plastic Soil Model: 

In straight line motion of a multi-wheeled off-road vehicle, an element of the terrain 

under the leading wheel is first subjected to a vertical load. As the leading wheel ro lls 

over, the vertical load on the terrain element is reduced. However, the vertical load is 

reapp lied again by the fo llowing wheel. Thus, a terrain element is subjected to repetitive 

loading. The loading-un loading-reloading cycle continues unti l the rear wheel of the 

vehicle has passed over the terrain . To predict the normal pressure distribution, sinkage 

and motion resistance, the response of the terrain to repetitive normal loads must be 

measured. 
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(b) With Soil Elasticity 

Figure 3.5 Substitution Circle Approach (a fter Harnisch and Lach, 2002b) 

Soil elastici ty is important for multi-pass calculations and also leads to a much more 

rea l istic pressure distribution under the wheel, fi gure 3.5. The response of the elastic soil 

to repetitive loading is considered similar to that of Wong ( 1989). When the load is first 

applied to the soil the load-sinkage relationship follows the normal pattern, equations 

(3. 1 ). I f the load is reduced, a certain amount of elastic rebound (recovery) occurs. When 

the load is reapplied again, a certain amount of hysteretic response exists during the 

loading-unloading cycle. Consequent ly, additional sinkage occurs. oi l elasticity can be 

determined by means ofplate-sink test "ith repetiti ve loading. The soil stiffness (C8 ) is 

assumed to be l inear over the complete ran ge of sinkage and can be obtained from 

measurements as fo llows: 

C = Pmax 
H 

A::d 
(3. 17) 

The ground pressure (Pe~ ) during elastic deformation of the soil (z., ) can be easily 

calculated using the soi l elasticity modulus (C8 ) as fol lows: 

(3.18) 
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Figures 3.6 and 3.7 show the principle of the substitution circle model for the non multi­

pass and the multi-pass cases. In the figures the plastic (red) and the elastic soil 

deformations (green and blue) are shown. In multi-pass the pre-compaction of the so il is 

taken into account; the pressure sinkage relationship starts with an elastic portion, 

equation (3.1 ). To effect plastic soil deformation , the local pressure should increase above 

the pre-compaction pressure (Pmax ) . 

. -· 

Sinka~e 

Figure 3.6 Substitution Circle Approach (No Multi-pass) (after AESCO, 2005) 

-·· ·· .... 
Pmax 
PT 

. 
' 

: 

Sinkage 

Figure 3.7 Substitution Circle Approach (Multi-pass) (after Harnisch et al. (2005) 

Referring to figure 3.6, the elastic soil deformation ( zeJ.mu ) using substitution c ircle 

approach and non multi-pass case is calculated as follows: 

64 



Chapter 3: Theoretical Background 

K·z" 
Z = Pmax = 0,1 

el,ow C C 
B IJ 

(3. 19) 

Referring to figure 3.7 and based on the so il elasticity modulus ( C8 ) , the elasti c soil 

deformation ( z et.m , z"'·"'"), using the substitution circle approach for multi-pass case, can 

be obtained as fo llow: 

K 11 

Pr ·Zo.m z - - - _ __:.:-'-
d,m - C - C 

B B 

(3.20) 

K ·(z +z )" Pmax /.1 0 z =-- = -.....:..,_--~ 
el ,our C C 

IJ IJ 

(3.2 1) 

3.2.3.2 The Substitution Circle Geometry Calculations: 

The diameter of the substinne circle (n' ) is calculated from equilibrium condition 

between the vertica l reaction force of the soi I and the vertical reaction of the tyre. 

Solution to the equilibrium condition is obtained via an iterative process, see figure 3. 18: 

The vertical reaction of the ground is ca lculated by numerical integration of the local 

pressures under the whee l, see equation (3.30) and (3.33) 

The tyre reaction force is computed from the measured tyre characteristics. To 

determine these characteristics, the vertical load has to be measured versus the tyre 

deflection. The measured values are approx imated by an analytical conversion 

formu la, which was proposed by Schmid ( 1995), and is used by the model. Five 

parameters are employed to describe the non-linear tyre deflection characteristics 

(/ ) , taking into account the influence of ty re inflation pressure. Due to the fact that, 

the geometry of the deflected tyre on soft soi I is different from that on a fl at hard 

road, the tyre reaction force must be modified to compensate for this effect. 
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For the calculation of the ground vertical reaction force, the geometry of the tyre 

deflection on soft ground must first be ca lculated, see figure 3.8. 

(a) 

Figure 3.8 Substitution Circle Geometry, adopted from (Harnisch, 200 I) 

Referring to figure 3.8, the general equation for a circle can be applied as fol lows: 

2 ~ D ( 
. )1 

(x-xo) +(y- Yot = 2 (3.22) 

The origin of the coordinate system is located at the intersection of the tangent at the 

substitution circle through (P1) and the vertical line passing through (P2). As shown 111 

figure 3.8, the following boundary conditions are also applied: 

x=O y(x) = zl!i ,out 

x=l (3.23) 

From equation (3.22) and the assum ptions given in equation (3.23), two quadratic 

equations are obtained and solved to obtain ( x0 ) and (D.) as follows: 
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Xo =[ l·zel~a J·(l- l -[ ~ -~] · ( l + Zo ·(zo ~ zet.our ) )J 
Z el ow Zo el ow l . . 

(3.24) 

(3.25) 

3.2.3.3 The Substitution Circle Angles Calculations: 

Referring to figure 3.9b, the contact angle of the substitution circle without multi-pass can 

be calculated as fo llows: 

. [ 2. Z0 I) .9, = arcs m I - d (3.26) 

Referri ng to fi gure 3.9a, the contact angles of the substitution circle with multi-pass can 

be calculated as follows: 

.9 _ .. (l-2· (zo.2 -ze~, , ) ) 
.~., - arcsrn D' 

(3.27) 

(a) With Multi-pass (b) Without Multi-pass 

Figure 3.9 Angles of the Substitution Circle, adopted from (Harnisch, 200 I) 
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3.2.4 Ground Pressure and Reaction Force 

The numerica l integration of the local pressure along the contact area gives the vertical 

reaction force. To take into account the effect of soil elasticity, the contact area is divided 

into plastic and elastic regions. The ground local pressure, and hence the vertical reaction 

are calculated. 

For the non-multi-pass case; the ground pressure is given as: 

( 
' )N 

pP,= K · ~ ·(sin .9-sin 9m) 

(3.28) 

The integration of local pressure under the tyre contact area g ives the vert ica l reaction as: 

1T 

• 2 ( • )N 
F =b ·!!_ ·K· J !!__· (sin.9 -sin.9) ·s in.9 ·d.9 Z, pl 2 2 m 

f)m 

tJ,/p ut ( D' ) 
J z - - ·(1- sin.9) · sin.9 ·d.9 

e/ ,0111 2 
;r 

(3.29) 

2 

F = F +F Z Z,pl Z,out (3.30) 

For the multi-pass case: the ground pressure is g iven by: 

p, ( .9) ~ C8 { ~· ·(sin .9 - sin .9,., ) + z •. ,) 

p P1(9) =K· ~ · (sin.9 -si n .9111 ) +z0,~ -ze/ .m ( . )" 
(3.3 1) 

The integration of local pressure under the tyre contact patch area gives the vettical 

reaction as: 
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D' 
Fz.m =b·2·Cn 

8

•
1

'" ( o· ) I 2· (sin .9-sin .9,)+ z0,~ ·sin .9·d.9 
s, 

,T 
(3.32) 

• 2 ( • )11 
F. =b ·!l_ · K · I !l__· (sin .9 -sin.9 )+z -z ·sin .9·d.9 Z.pl 2 2 m 0.1 el.m 

s...,J, 

Fz =Fz + Fz , +Fz ~ ... m ... p .#.out (3.33) 

3.2.5 Rolling Resistance 

Similar to the rigid wheel model , the external roll ing resistance (FR" ) due to compaction 

of the terrain is computed by integrating the hori zontal component of the normal pressure 

over the tyre contact patch, figure 3. 1 0. Equation (3.34) is used to calculate rolli ng 

resistance in case of non-multi-pass, while equation (3.35) is used fo r the mu lti-pass case: 

Pmax,1 

F =b · K · ~--· z11 · z 
( 

7

11

+
1 

1 J 
Ill:' n + I 2 0.1 el.olll 

( 

Z
11

+
1 

- Z
11
+

1 
I J 

F __ b . K . o.1 o.t ( 11 11 ) --· z . 7 -7 . 7 
RJ, n + I 2 0.1 - .J.om., - o.t - ·'·"'·' 

Sinkage 

z 

Pmax.2 
Pmax, l 

Zo.1 

Sinkage 

Zp~ 

(a) Without Multi-pass (b) With Multi-pass 

(3.34) 

(3.35) 

Figure 3. 10 Rolling Resistancesat High lip Angles, adopted from (Harnisch, 200 1) 
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Fundamentally, the external ro ll ing resistance is always directed in opposite sense to the 

direction of travel. Furthermore, the change in track width due to high slip angle is taken 

into account. At high slip angles, the external roll ing resistance has a lateral fo rce 

component which is added to the lateral fo rce caused by shear deformation, figure 3.1 1. 

In addition to the external rolling resistance, the internal rolling resistance ( FR1 ) due to 

the flexing work of the tyre (hysteresis losses) is also taken into account. It should be 

noted that, this portion of the rolling resistance does not affect the transmission of forces 

in the contact patch, equation (3.4 1 ). where (a) is the lateral slip angle. 

Figure 3.11 Roll ing Resistances at High Sli p Angles adopted from (AESCO, 2005) 

3.2.6 Drive Torque and Tractive Force 

Both the wheel driving torque (MD) and the tractive force ( }\. ) are calculated based on 

the local pressure (p(.9)) and the local shear displacement (j, (.9)) in the contact patch. 

A method for the calculation of local shear di splacement of rigid wheel was proposed by 

Wong and Reece ( 1967a, 1967b). This method is based on the analysis of slip velocity of 

a point (p) on the wheel ci rcumference re lative to the terrain, figure 3.12. The local 

differences between these speeds in the contact area are integrated over time to calculate 

the local shearing deformations, see equations (2.8) and (2.9): 

i1 ( .9) = ~ ·( ( s.I.OIII- sill ) +(1- i) · (COS s c/,out- COS sc/,m )) (3.36) 
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Figure 3.12 Trajectory of a Point on Tyre Circumference, adopted from (AESCO, 2005) 

The slip returned by the model is calculated from internal values and matches the 

traditional sli p definition only in stationary cases (V and (.t) are constant). There is no 

difference between pushed (V ~ (.t) • td) and pulled (V > (.t) .,d) cases. Furthermore, it 

considered that the soil is sheared rather than the tyre slipping over an invariable surface. 

The slip is limited to values between(-!: +I) or(± lOO %) and can be ca lcu lated as: 

i = (3.37) 

Based on the local shearing di splacement (J, ( .9)) , the local shear stress (' ( .9)) can be 

computed using equation (3.9) or alternatively equation (3. 1 0). The integration of local 

shear stress ( r( .9)) over the contact patch gives the ci rcumferential force (F;, ) as: 

( 
n· J s""'"'' ( -Ji(s)) 

F;, =b· 2 · i (C+p(.9)·tan qJ) · 1-e-k- ·c/.9 (3.38) 

The drive torque (M0 ) is defined as a function of circumferential force (Fu), dynamic 

rolling rad ius (td), and internal flex-rolling (F;u) as: 

(3.39) 
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where ( d> ) is the rotational wheel acce leration and (!") is the wheel's mass moment of 

inertia around its spinning axle (i.e. polar moment of inertia). The rol ling radius can be set 

to a fi xed value or alternatively be de fined by a mathematical function, which allows 

description of the dynamic roll ing radius as a function of the wheel load (Hirschberg et 

al., 2002). Because of the curved contact patch there is a difference between the tractive 

force acting parallel to the ground surface and the circumferential fo rce ( F;,) , which acts 

para llel to the tyre surface. 

The hori zontal portion of local shear stress integration gives the tractive force as fo llows: 

(
D. J a,, ... , ( ~] 

FH =b· 2 · .l (C+ p(.9) · tan qJ) · 1- e k ·sin(9 )· d9 (3.40) 

The net tractive force in longitudinal direction (f:. ) can be computed as the difference 

between horizontal force and the external ro lling res istance ( ~~r: ) ; see fi gure 3. 11. 

(3 .41 ) 

3.2.7 Lateral Forces 

Based on the local pressure (P ( .9)) under the wheel in combination with the local shear 

displacement in the lateral direction (1, ( 9)) the local stress can be calculated. The 

results of integration of the local shear stress over the contact zone are the lateral and 

horizontal forces ( ~·, ) . The mathematical approach for calculation of lateral fo rces is 

similar to the theory put forward by Schwanghart ( 1968), which also considers the 

influence of lateral force on the longitudinal force as has been proposed by Grecenko 

( 1969). Figure 3. 13 shows the basic princip le for pure lateral fo rce modell ing. 

(3.42) 
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Accord ing to the well known concept of friction circle, the dependencies between latera l 

and longitudinal forces are taken into account. Furthermore, the tyre lateral force is 

regulated by the maximum lateral shear displacement (iy.max) and slip angle (a) as 

given by equation (3.43), where (!) is the tyre contact length, see figure 3. 13. 

}y,max = l. tan a (3.43) 

In add ition to the lateral fo rce induced by shear stress in the contact patch, a fUtt her 

lateral component ( ~·: ) due to a bulldozing wave in the tyre side wall or the lateral 

component of rolling resistance, see figure 3. 11, is also considered as follows: 

~.2 = F11E ·sin a (3.44) 

The total lateral force ( F>' ) can thus be given as: 

(3.45) 

Figure 3.1 3 Calculations of the Lateral Forces (after AESCO, 2005). 
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3.2.8 Tyre Aligning Torque 

Calculation of tyre aligning torque (Mz) is based on a simplified model using the local 

lateral shear stresses ( ' >' ( .9)) and the lever arm to the rotational ax is ( h ( .9)). The effect 

of latera l force component due to high slip angle is neglected. The local lever arm can be 

calculated according to the defined substitute circle dimensions, figure 3. 14. The 

integration of the lateral shear stress multiplied by the lever arm over the contact area 

gives the tyre aligning torque as fo llows: 

D. ( 2 J h ( .9) = 2 · COS .9 - D · ( fo + z el ,ou1 ) - ( fo + z e1 /1111 ) - Xo 

~Mz 
I 
I 
IZ 

(3.46) 

(3 .47) 

Figure 3.14 Principle of the Aligning Torque Calculation (a fter Harnisch (200 I)) 

3.2.9 Slip Sinkage Effect 

When the driving torque is applied at the wheel hub, both the longitudinal slip and the 

associated soil shearing deformation occur at the tyre-ground contact patch. At higher 

74 



Chapter 3: Theorelical Background 

driving torques, excessive slippage is generated, which causes additional sinkage called 

'slip sinkage' , mainly due to the wheel digging into the ground, figure 3.15. This 

phenomenon is mostly dependent on wheel slip (i) , soil mechanical propett ies and tyre­

soil contact area. For the calculation purposes two tyre parameters are required, the lug 

height ( h_,, ) and the ratio between the positive and negative portion of the tyre tread ( k,). 

The basic idea of th is model is to calculate the volume of the soil per uni t time which is 

transpotted by the negative part of the tread. The sli p sin kage ( z,) may thus be calculated 

as fo llow: (Ruff, 1997) 

z= k·h· -
( 

i ) 
' < M 1- i 

(3.48) 

lt should be noted that, the tyre model considers the add itional rolling resistance due to 

sli p sinkage, in addition to the effect of soil fi ll ing degree of the tyre tread. 

no Slip Slip 

Figure 3. 15 Principle of the Slip Sinkage Effect (a fter Ruff (1997)) 

3.2.10 Multi-pass Effect 

Generally, in the field of off-road multi-axle vehicles, it is well known that, one of the 

most important effects is called the 'multi-pass effect' . The multi-pass arises from the 

track or rut produced by a wheel which has rol led over the virgin terrain. Therefore, the 

wheel of the fo llowing ax le will encounter conditions qu ite different from those of the 

first ax le. 
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This phenomenon is mainly related to soil compaction and its response to repetitive 

loading as explained earlier in section 3.2.3. 1. The multi-pass effect has a great impact in 

reducing the rolling resistance of the vehicle. In turn both the mobi li ty and fuel 

consumption are improved when dri ving on soft soils. The basic concept of multi-pass is 

depicted in fi gure 3. 16. In the pre-compacted so il , the additional sinkage ( & 02 ) of the 

wheel and the tyre contact length (12 ) is sign ificantly lower, which translates to a lower 

rolling resistance. 

1 . Wheel 
t 

Figure 3.16 Principle of the Mu lti-pa s Effect (after Ruff ( 1997)) 

For the calculation of multi-pass, it is assumed that the soil strength parameters do not 

change during compaction. The model for the multi-pass is based on the hypothesis that 

the pressure level of the fo llowing wheel has to be higher than that of the preceding wheel 

to cause an additional sinkage (Schmid, 1995; Ruff, 1994, 1997). Based on the 

assumptions of the rigid wheel model with a parabo lic shape and neglecting the elasticity 

of the terrain the numerical integration of the pressure distribution along the contact area 

is considered to be equivalent to the wheel load. Therefore. the additional static sinkage 

(~02 ) due to multi-pass with vertical load (~2 ) for the fol lower wheel is calculated as: 

2 

F:2 (3.49) 

b K ~D ~-o2 " ( 2·n Li:o2J · ·vu· 1- ·z01 • I + - ..,- ·--
D J ~I 
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With the assumption of elastic tyres with a parabolic shape on a compacted hard ground 

in the track the pressure distribution in the contact area only depends on the tyre 

deformation not on the deformation of the ground. This requires an approach different 

from the method described above (Schmid and Ludewig, 1991 ). With th is assumption, 

and based on experience, the maximum pressure is 25% higher than the average pressure. 

A simple equation for the add itional sinkage is thus obta ined as: 

t.z02 

= ( 1 .25·~] · ( 1 -~J b 1,2 1,2 
"--v--------' 

P2ma., 

I 

=( 1 .25·~]-;; 
b ·1,2 

(3.50) 

where (!,2 ) is the equi valent contact length of the tyre, measured on the hard surface. 

3.2.11 Influence of Friction between Tyre and Soil 

The maximum shear strength of the soil ( rmaJ is calcu lated by the model in two different 

ways. The first is based on Coulomb friction, given by equation (3.8). The second is 

based on the adhesion between the tyre and the soil, which can be expressed as a function 

of the normal pressure (p) and the coeffic ient of friction (.u, .• ) (Bekker, 1960): 

(3 .5 1) 

The typical range of the coefficient of fri ction is (0.3 : 1.0) and depends on the soi I 

mechanical propett ies and the material of the tyre. The maximum shear strength is 

calculated according to the minimum value of adhesion, equation (3.51 ), and the internal 

soil friction equation (3. 8), thus: 
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r ma:-. =m in((C+p·tanq;) , p·JL,_,) (3.52) 

3.2.12 Influence of the Tyre Tread 

The effect of tyre tread is taken into consideration in the model by the inclusion of two 

different parameters; the lug height and the profile factor (the relation between the 

positive and negative portions of the tyre tread). The basic idea of the model is to separate 

the calculations of normal pressure, as we ll as shear strength according to the positive and 

negative portions of the tread. In the area under the lug, the shear strength of the soil is 

calculated by equation (3.5 1) according to normal pressure ( p1). Between the lugs, the 

max imum shear strength of the soil is ca lculated by equation (3.8) according to normal 

pressure (p2 ). 

N 
11) 

"' ~ 
c: ·c;; 

soft soil 

Figure 3. 17 Tyre Tread Model (after Harn isch et al, 2003) 

p, 

Furthermore, the effect of soil fi lli ng of the tyre tread is taken into account, see fi gure 

3. 17. The results obtained by Harni sch et al. (2003) show that, both the tyre tread profile 

factor and lug height have a high influence on the drive torque, as well as the roll ing 

resistance. Figure 3. 18 shows the general algorithm of the tyre model computational 

structure: 
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Figure 3.18 Computational Structure of AS2TM Off-Road Tyre Model 

Adopted from (Harnisch 200 I) 
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3.3 Equations of Motion of the Vehicle 's Body 

Based on the Newton-Euler approach, the general form of the equations of motion of a 

rigid body with six degrees of freedom is derived from the first principles. The 

mathematical derivation is carri ed out for an elementary particle and then integrated over 

all the fu ll rigid body to include the effect of the external forces and moments. The 

ve locity and acceleration are defined with respect to two frames of reference. 

Furthermore, relative transfo rmations are used to transform the data between these frames 

of reference. 

3.3.1 General Motion of a Particle 

The general motion of a particle (p) in space may be described by considering two frames 

of reference as shown in figure 3.19. The global frame of reference is defined by (R,) or 

( 0 , x, y, z,), whi le the local frame of re ference is defined by ( R
1

) or ( 0
1 

x
1 

y
1 

z 
1
). 

It is anticipated that, the local frame of reference may be moving with respect to the 

global frame through translational and/or rotational motions. Referring to figure 3. 19, the 

position of the parti cle (p) can be defined with respect to each frame of reference 

according to the following position vectors: 

si: Position vector of the particle (p) with respect to the local rrame of reference ( R
1

) 

s; : Position vector of the parti cle (p) with respect to the global frame of reference ( R,) 

e : Position vector of the origin ( 0
1

) with respect to the global frame of reference ( R,) 

The general relationship between al l the aforementioned vectors can be written as follow: 

s. = e + s . 
I J (3.53) 

The time rate of change of the position vector (si) with respect to the local frame of 

reference can be expressed by ( dsi I dt )n . The time rate of change of the same position 
I 

vector with respect to the global frame of reference can be expressed by the following 

equation (Rahnejat, 1998): 
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(ds./ dt) =(ds./ dt) + Q x s. 
J R, J R, J (3.54) 

Where ( Q) is the rotational ve locity vector of the local frame of reference. 

p 

Y; 

Figure 3. 19 Motion of a Point as Sensed in the Global Frame of Reference 

The following mathematical expressions are used to discriminate between the rate of 

change of a vector with respect to the global and local frames of reference: 

D ( ) = (~J : means time derivative of a vector relative to the global frame ( R,) . 
Dt dt R 

I 

~ = (~J : means time derivati ve of a vector relative to the local frame ( R
1
). 

dt dt 11 
I 

The velocity of the particle (p) with respect to the global frame reference ( R,) results 

from the differentiation of the position vector ( S;) with respect to time. Referring to 

figure 3.19, the fo llowing relations are applied: 

Ds. De Dsj 
-'=-+--
Dt Dt Dt 

- ' = - + _ J + Q x s. Ds. De (ds. ) 
Dt Dt dt J 

(3.55) 
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A similar procedure is carried out for the derivation of acceleration, knowing that 

acceleration is the time rate of change of the velocity vector. Equation (3.54) is applied to 

the velocity vector assum ing that (Vi ( 0
1

) = 0): 

D\ =.!}_( Dsi ) -.!}_(dsi +Q xs ) 
Dt 2 Dt Dt - Dt dt i 

= - _ _ J + !! xs. +!! x _ J +Q xs. d ( ds . ) ( ds . ) 
dt dt J dt J 

(3 .56) d2

s. d ( ) ( ds .) ( ) = -
2
-J +-· Q xs. + !! x _ J + Q x Q xs. 

dt dt J dt J 

d
2

s. ( dQ ) ( ) ( ds.) = __ J + - xs.+ Q x Q xs. + 2· Q x _ J 

dt2 dt J J dt 
'---v--' '------v----' 
Linear '-v--:--"' Centripetal "-v---' 

Accdcr:uion Tnngcno~al Accelcrntion Conohs 
Accclerntoon Accelern toon 

3.3.2 Relative Transforms in Rigid-Body Kinematics 

Fundamentall y, kinematics of a rigid body is concerned with the analysis of pos ition 

velocity and acceleration of the body. Since the aforementioned vectors are relative, it is 

often necessary to define them with respect to the frames of reference. For this purpose it 

is essential to apply re lati ve transforms, as a convenient way to switch between frames of 

reference. Ell is ( 1994) and Rahnejat ( 1998) describe the general theory of translationa l 

and rotational transformations that are used for expressing vector components in different 

frames of reference that are moving with respect to each other. 

It is poss ible to move from a local frame of reference ( R
1

) to the global frame of 

reference ( R, ) using three sequential rotations and a linear translation of ( R
1

) until ( R
1

) 

coincides with ( R,). ft should be noted that in this specific case, each rotation takes place 

with respect to the previous frame of reference, not the initial frame of reference. The 

transformation is therefore, ca lled 'relative'. Each rotation results in a new set of axes, 

which are related to the previous set of axes by a transformation matrix (L) , fi gure 3.2 1. 
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: -
- I 

: -, 
-, .. ~ ' 

\' 
• I 

• J' 

, 
; , 

\" x, I 

x, 

First Rotation Second Rotation Third Rotation 

Figure 3.20 Relati ve Transformation between two Inertial Frames of References 

The characterisation of the transformation by the sequence of numbers ' 1-2-3" implies 

that the first rotation is about x-axis ·Roil', the second about y-axis 'Pitch' and the third 

about z-axis ' Yaw' . The frame transformation consists of the following steps: 

( I) Lineartranslation (-e) resulting coincidence of ( 0
1

) with ( 0,). 

(2) I st rotation ( <p) about axis ( 0, x
1

) resulting to the frame ( 0, x
1 
y~ z~ ) as fo llows: 

(:;]=[~ co~<p -s~l<p]·[~J 
z

1 
0 sin cp COS<p z

1 

(3.57) 

Roll L('!') 

(3) 2"d rotation (B) about ax is ( 0
1 
y~ ) resulting to the frame ( 0, x~ y~ Z

1
) as fo llows: 

[~J=[co~e ~ 
Z

1 
-sm e o 

sin BJ[ I 0 0 J [x, J 0 0 COS<p -sin <p · y
1 

cosB 0 sin <p cos<p z
1 

(3.58) 

Puch: L(O) Roll· L(91) 

3 



Chapter 3: Theoretical Background 

(4) 3rd rotation ('I') about axis ( 0, z,) resulting m coincidence with the frame 

[

x,J [c~Sif/ -sin lfl 
Y, = Sin If/ COS If/ 

z, 0 0 
(3.59) 

Yaw; L{w) Pitch: L(O) Roll. L(91) 

The resulting matrix (T) shown below is obtained by multiplying the three 

transformat ion matrices in the following order: (T = L ( <p, B,lfl) = L( If/) L (B) L( <p)): 

[

cos e. cos If/ 

T = cosB·sin lfl 

-sin e 

sin e. sin <p. cos If!- cos <p. sin If/ 

sin e. sin <p. s in If/+ cos <p. cos If/ 

cose. sin <p 

sine . cos <p. cos If/+ sin <p. sin If/] 
sine . cos <p. s in w- sin <p. cos ljl (3.60) 

cos8·COS<p 

If angles (<p, e, If/) are relatively small , the above matrix can be simplified to the one 

shown below, since (cos ( <p, 8 If/ ) ~ I) and (sin ( <p 8, 1f1 ) ~ <p, 8 If/): 

(3.6 1) 

3.3.3 Kinematic Equations of the Vehicle Body 

The ki nematic relations for the vehicle body are obtained by considering two frames of 

reference, as shown in figure 3.22. Global (fixed) frame of reference ( R,) and local 

(moving) frame of reference attached to the vehicle body ( R
1

). Obviously, ( R
1

) is a 

moving frame of reference, thus, its position and orientation changes continually with 

respect to the fi xed global frame of reference. The considered axis system is right handed. 

The positive rotation is clockwise around the axis when viewed from the origin along the 

positive direction. ( U V wr is the translational velocity vector including longitudinal, 
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latera l and vertical component of the origin of the local frame of reference. [P q r ]' is 

the angular velocity vector including roiL pitch and yaw components around the local 

frame of reference coordinates. 

Figure 3.2 1 Application of the Kinematic Equations on the tudy of Vehicle Dynamics 

The velocity and acceleration of a point (p) on the vehicle body can be fo und by applying 

the kinematic equations in a matrix form. All velocities and accelerations are calculated 

with respect to the global fram e of reference ( R,) . Nevertheless, it is much more 

convenient to use the projection of these velocities to the local (moving) frame of 

re ference ( R
1

) . In this way, one can ga in a better perception of the situation, as it is very 

important to know the velocity vectors in certain directions, specified by the local frame 

of reference attached to the vehicle body. 

For the study of vehicle motion, equation (3.54) can be rewritten in a matrix. form. In this 

case ( J) represents the space vector of a point (p) of the vehicle with respect to the local 

(vehicle attached) frame, while ( Q) represents the space vector of the rotational veloci ty 

of the local frame of reference. Attention should be paid to the fact that whi le the velocity 
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obtained in equation (3.54) is sensed with respect to the global frame of reference, the 

actual components are sti 11 written for the local frame of reference ( R,). Consequently 

equation (3.55) is ha lf written for the global frame of reference (vi ( oJ) and half written 

for the local (moving) frame of reference (vi (P) +f! xsi) . 

Equation (3.55) includes the translational motion of the origin of the local frame of 

reference. In order to write thi s equation for the global frame of reference, it is essential to 

mu ltiply the second term by the transformation matrix L, so that the components of the 

rotational velocities are projected to the global frame of reference as: 

vi ( r) = vi ( 0 1 ) + L ( vj ( P) + .Q x s j ) (3.62) 

Equation (3.62) represents the velocity of a po int (p) on the vehicle, with respect to the 

global frame of reference. This velocity should now be projected onto the local frame of 

reference. This is achieved by pre-multiplying the ve locity by the inverted transformation 

matrix ( L 1
) as fo llows: 

vi (P) = L 1 ·vi (P) = L-1 [ vi ( o, )+ L(vj (P)+.Q xsi)] 

= L-1v; ( o, ) + L-'L (vi (P) +f! xsi) 

= L 1V; ( oJ +(Vj (P) +.Q xsj) 

(3.63) 

Equation (3.63) is written in a condensed matrix form. lt is easy to obtain the velocity 

components in all three directions in the local frame of reference, as follows: 

Let (U V W r be the projections of the translational velocity to the local frame of 

reference, so that ([ u V wr = L-'v, ( oJ). Also, let ( .Q = [ (J)x (J)\ (J):]
1 = [P q IT ) . 

The components of the velocity in the directions of the local axes can be written as: 

[
u] [U] [dx ldJ ] [z ·q - y· r] 
V = V + dy I dt + X . ,. - :; • p 
w W dz I dt y · p - x · q 

(3.64) 
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Because point (p) belongs to the vehicle, which is considered as a rigid body, the middle 

term of the right hand-side of the above equation diminishes. Thus, the velocity becomes: 

[
ul [U] [ z ·q - y·rl v = V + x·r -z ·p 

w W y · p-x·q 

(3.645) 

[n order to calculate the acceleration of point (p) one can statt from equation (3.59): 

ap = ~ vi(P) = ~(L·•v;(oJ )+(Vi(P) + fi x si)) 

=!!_L•v.(o )+!!_(v.(P) +n xs.) 
d/ I 

1 dt J J 

d .1 ( ) d ( dsi ) =-LV. 0 +- - .-+ fi ·xs. 
dt I 

1 dt dt J 

d 1 ( ) d
2

s. (dQ) ( ds .) ( ) =- L" V. 0 + _2J + - X s. + 2. Q X _J + Q X Q X s. 
dt I 

1 dt dl J dt J 

= !!_L-•v. (o )+n xL·•v. (o )+ d
2

s
2
i +(dQ)xs. +2 -n x(dsi )+n x(n xs.) 

dt I ) I ) dl dt J dt J 

The above equation can be written in matrix form as fo llows: 

dt 

( 2 2) ( dr J ( dq J - x· q +r + y· p·q - dt +z· p·r +dt 

( , 2) ( dp J ( . dr J - y· r·+ p +z· q·r - - +x· p·q +-
dt dl 

- z ·(p2 +q2)+x·( p·r - ~~ )+ y·( q·r + ~) 
[1]= 

dU 

Or as separate equations as fo llows: 

d U . ( 2 2 ) ( dr ) ( dq) A =--V ·r+W ·q- x · q +r + y· p·q-- +z · p·r+-
_. dt dt dt 

dV ( 2 2 ) ( dp) ( dr) A =--W·p+U·r-y· r +p + z · q ·r- - +x · p·q +-
Y ~ ~ & 

dW ( 2 2 
) ( dq) ( dp ) A_ =--U ·q+V · p- z · p +q +x · p·r - - + y · q·r+-- ~ ~ & 

7 

(3.66) 

(3.67) 

(3.68) 



Chapter 3: Theoretical Background 

3.3.4 Dynamic Equations of Motion 

Since the velocity and acceleration of a point fixed to a body moving with six degrees of 

freedom are defined, the inertial equations can be obtained from a summation of the 

effects of the small elements of mass. The dynamic equations of motion are obtained by 

app lying the Newton - Euler method as fo llows: 

t5Fx = D(t5m·u) l Dt 

t5FY = D(t5m· v)l Dt 

t5F: = D(t5m·•v) l Dt 
} (3.69) 

Assuming that the vehicle's mass remains constant, the equations may be rewritten as: 

t5F_, =t5m·(Du l Dt) 

t5Fv =t5m·(Dv/ Dt) 

t5F= =t5m·(Dw l Dt) 
} (3.70) 

The effect of the sum of particles, which form the vehicle, is reali sed through integration: 

Jt5Fx = Jt5m·(Du/ Dt) 

Jt5FY = Jt5m·(Dvl Dt) 

Jt5F: = Jt5m·(Dw l Dt) 

The fo llowing relations also apply: 

Jt5m =m 

Jt5m · y =m· Ye; 

(3 .7 1) 

(3.72) 
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.,. 
Where (m) is the vehicle's total mass, [ x(i YG zG] is the vector of coordinates of the 

position ofthe vehicle centre ofmass with respect to the moving frame of reference. 

is the sum of forces in the direction of ax is Ox of frame( R;) 

is the sum of forces in the direction of axis Oy of frame( R
1

) 

is the sum of forces in the direction of ax is Oz of frame( R
1

) 

Consequently, using equations (3 .68) the following express ions for forces can be derived: 

LF =m·(dU. -V·r+W·q)-m·[x ·(q2 +r2)-y, . ·(p·q- elr)-z . ·(p·r+ elq )] 
X ell G (, ell (, ell 

LF,=m·(dV -W· p+U·r)-m·[Y. ··(I.2 +p2)-z .·(q·r- elp)-x .·(p·q+ elr)] 
J ell . (, (, ell (, ell 

LF.. =m·(dW -U·q+V· p)-m·[z. ·(Ji +q2)-x . ·(p·r- elq)-Y. . ·(q·r+ elp)] - ell (, (, ell (, ell 

Euler moment equations for a single point (p) of the vehicle are expressed as: 

8M_. = y·[ D·(8m ·w) l Dt ]-z ·[ D ·(8m · v)! Dl J 
8MY = z{ D·(8m·u) l Dt ]-x{ D·(8m ·w)! Dt ] 

8Mx =x{D·(8m·v) ! Dt]- y{ D ·(8m·u)! Dt ] 

(3.73) 

(3.74) 

By assuming again that the vehicle's mass is constant, the above equations can be written 

as fo llows: 

8Mx = 8m ·[y·(Dw/ Dl)- z ·( Dv / Dt)] 

8MY =8m{ z ·(Du l Dt) -x ·(Dw/ Dt)] 

8M= =8m{x·(Dv l Dt) - y· (Du l Dt)] 

9 
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Again. the effect of the sum of particles, which form the vehicle is realised through 

integration: 

JoM.r = Jom{y·(Dwl Dt ) - =·(Dv l Dt)] 

JoM > = Jo m { z ·(Du / Dt) - x·(Dvv / Dt )] 

Jo M = = Jom{x ·(Dv l Dt ) - y· (Du l Dt )] 

(3 .76) 

Where L, M and 

respectively, so that: 

denote the sum of all moments in the direction of axes x,y z 

L= 'LM:r = JoMx is the sum of moment in the direction of axis Ox offrame(R;) 

M ='LM , = JoM , is thesumofmoments in thedirectionofaxis0yofframe(R
1

) 

N = I.M: =I oM: is the sum of moments in the direction of axis Oz of frame( R;) 

[
dW ( ' 2) ( dq ) ( dp )] y · dl - U·q +V· p-z· p-+q +x· p·r - dl + y· q·r+ dt 

(3 .77) 

[dV ( 2 
' ) ( dp ) ( dr )] - z· ---;jf - W· p +U ·r - y· r +p- +z· q·r - dt +x· p·q+ dt 

r.M, = Jom · 

[
dU . ( 2 

' ) ( dr ) ( dq )] z· ---;jf - V ·r +W·q - x· q +r- + y· p·q - dt +z· p·r+ dt 

(3.78) 

[
eiW ( , ' ) ( elq ) ( dp )] - x· dt - U ·q+V · p - z· p - +q- +x · p ·r - elL + y· q·r+ ell 

x{ c; -W· p +U ·r-y·(r
2 + p2

)+={ q ·r - ~ ) +x{ p·q+ ~·)] 
I.A( = Jom· (3.79) 
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Furthermore, the following relations apply for the mass and product moments of ine11ia: 

(3.80) 

J:x = f= ·x·om 

I . ._, = Jx·y·Om 

Introducing the definitions of mass and product moments of inertia into the Euler 

equations y ields: 

'iM =1 ·( dp ) -(1 - 1_)·q·r+l _·(r2 - q2 ) - 1 ·(p·q+dr )+ f ·( p·r - dq) 
x :a dt J, - J- :x dt n d! 

(3.81) 

+m· y ·(dW -U·q+V· p)-m·= . ·(dV - W· p+U·r) 
~ ~ G ~ 

L.M = I ·(dq)-(1_ - 1 ) · p·r+f ·(/-r2)-1 ·(q·r+dp)+ f _·(q·p-dr) 
J '' dt - :rx c 'J dJ )- dl 

(3.82) 

+m·z . ·( dU -V·r+W ·a)-m·x . ·(dW -U ·a+V ·p) 
~ ~ 1 ~ ~ 1 

( dr ) ( ) ( 2 2
) ( • dq) ( dp) rM_= L· -- 1 -1 ·p·q +1 · q - p - !_· l·p+- +1 · r·q- -- - dt .... ):V l) )- dt ::X dt 

(3.83) 

+m·x ·(dV -W·p +U·r) -m·~ · · ( dU - V·r +W·q) (, dt (, dt 
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Below. the six generic differentia l equations of motion obtained by the application of 

ewton-Euler method are grouped together: 

l.Jvl =1 o( dp )-(1 - l_)oq or+ f.- o(r2 - q2 )- l o(poq +dr )+l o( por _ dq ) 
f u dt )' - ,_ ::X dt 'I) dt 

(3087) 

+mo y, . o( dW -Uoq +Vop)-mo:: o( dV - Wop +U or) 
0 ~ 0 ~ 

l.M =1 , 0 (dq ) - (1_ - f )opo r+f o(p2 - r2 )-l o( qor+dp ) +1 _o(qop - dr ) 
1 

'' df - XX c XI df )· df 

+mo z 0 o( dU - Vor +Woq ) -m ox 0 o(dW - Uoq +Vo p) (, dt (, dt 

(3088) 

l.M_ =L o( dr ) -(1 -I ) 0 p oq+f o(q2
- p 2 )- l _ o(rop+ dq )+ 1 o(r oq - dp ) - - dl oU >' Tl ) · dt ::X dt 

(3089) 
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By assuming that the centre of mass of the vehicle coincides w ith the origin ( 0
1

) of the 

frame of reference. so (xc; =Ye; = =c; = 0). Also the vehicle is symmetrical about the 

plane defined by axes ( 0
1
x) and ( 0

1
z) , thus as a result ( 1 XJ = J =Y = 0) . The above 

equations can be further simplified by introducing these relations into the generi c 

equations as fol lows: 

"f.F = m· ( dU- V ·r+W ·q) 
X df (3.90) 

(3.91) 

"LF. = m· ( dW - U · q +V · p) 
. dt (3 .92) 

"LM =1 ·( dp )-(1 - i_) ·q·r - 1 ·( p ·q+ dr ) 
f XX d/ l1 - :T d/ (3.93) 

"f.M =1 .·(dq )-(L-1 )·p·r+1 ·(p2 -r2
) 

y » dl - X.f X: (3.94) 

'LM. =L·( dr )-(1 - 1 )·p·q+ l. ·(r·q-dp ) • - d/ XX ,I) _r df (3.95) 
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Chapter 4: 4x4 Off-Road Vehicle Model 

owadays, implementing numerical simulation techniques in the process of vehicle 

development is an ind ispensable task. The exploitation of vehicle modelling in the 

commercial world has focused on either simplified models aimed at understanding 

fundamental issues or extremely complex models based on multi-body system dynamics ' 

packages, e.g. ADAMS, aimed at understand ing specific designs. Between these two 

extremes, however, it has become apparent that there is a class of models which can 

useful ly be employed to explore design issues in relation to vehicle behaviour during 

different manoeuvres. While for on-road vehicles there are plenty of established codes 

covering this aspect, e.g. VDAS and veDYNA, there is a lack of similar tools for the off­

road driving simulations. 

The aim of this chapter is to present a medium degree of sophistication for 4x4 off-road 

vehicle models. Based on a multi-physics model ling approach, a fu ll drivetrain system 

including all aspects of rotational inerti al dynamics, fri ction, damping and stiffness 

properties is integrated with in a fo urteen-degrees-of- freedom vehicle model, including 

body dynamics, kinemati cs, suspension and wheel dynamics as well as the 

terramechanical phenomena between tyres and soft soil s. The interaction between all 

these mod ules is implemented in the MATLAB/Simulink/S imDriveline environment. 

The fu ll integration of all these modu les resul ts in a multi-physics platform, which 

provides the design engineers with the capabi lity to investigate the effects of various 

components and would aid the future development of control systems and automatic 

optimization of off-road 4x4 vehicles. The model is generic and appropriate fo r the 

simulation of a wide vari ety of conditions in the low-medium frequency range, including 

traction, ride and handling tests. 

The contri bution of a number of significant parameters on the traction perfo rmance as 

well as cornering response of 4x4 off-road vehic les are discussed reveali ng the fidelity 

and robustness of the presented multi-phys ics vehicle model. 
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4.1 Physical Description of the Vehicle Model 

Vehicle dynamics is concerned with the behaviour of vehicles through ce1tain 

manoeuvres. In general , this behaviour may be described in terms of performance, ride 

and handling characteristics. Vehicle performance, in longitudinal direction, is mainly 

dependent on its power plant characteri stics, dri vetrain layout, tyre so il contact, and any 

employed control systems. Ride characteristics, in vertical direction, are devoted to the 

road surface profi le and the induced vibration which affects passenger comfort. Handling 

characteristics, in lateral direction. are primarily concerned with the vehicle re ponse to 

driver steering commands and its effect on the controllability and stab il ity of the vehicle. 

The vehicle response during certain manoeuvre is controlled by the forces imposed on the 

vehicle from the tyre-ground contact conditions, gravitational e ffect, and aerodynamics. 

For the theoretical analysis of vehicle dynamics, the equations of motion must be known, 

and the physical interactions between the various subsystems must be written in the form 

of mathematical expressions. The vehicle and its subsystems are modelled to determine 

what forces will be produced by each of these sources under particular manoeuvres. 

For the purpose of numerical modelling. the vehicle is usually sub-d ivided into five 

masses. These are: the vehicle mass (sprung, or body mass concentrated at its centre of 

gravi ty) and located above the suspension springs, and four unsprung masses, v hich 

represent the assemblies: wheels, ax les, and suspensions. The vehicle body is assumed to 

be rigid, with mass (m,) and moments of inertia. The rigid body has six degrees of 

freedom, which includes three translations namely; forward velocity ( U) in xL -direction, 

lateral velocity (V) in yL -direction and vertical velocity (W) in zL -di rection, in 

addition to three rotations namely· roll rate (p) about xL -axis. pitch rate ( q) about yL­

ax is and yaw rate (r) about =L - axis. The wheels are connected to the vehicle body via 

spring and shock absorbers. lt is assumed that each wheel has two degrees of freedom , 

one for the vertical displacement ( z,.,) and the other for wheel rotational driving speed 

(m, ). Thus, the total degrees of freedom are fou rteen. 
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According to the SAE Recommended Practice System ( AE J670e), all the movements of 

the vehicle body are observed relative to the local/moving frame of reference, as shown in 

figure 4.1. The vehicle attitude and trajectory through the course of a manoeuvre are 

defined with respect to a right-handed orthogonal frame of reference, fixed on the ground, 

referred to as the global or fixed frame of reference. This is located directly beneath the 

local/moving coordinate system at the point, where the manoeuvre has commenced. 

Another four coordinate systems for the wheels are added to represent each wheel motion 

independently. Transformations between all coordinates are based on relative 

transformations. The equations of motion for the non-linear, unsteady motion of the 

vehicle sprung mass are based on the Newton-Euler formulation for translational and 

rotational motions. These equations are derived -.. ith respect to the local frame of 

reference (see chapter 3 for the full mathematical derivation). 

a 

·' t .,_~""""- ms Local/Moving 
'P ',, Frame of Reference 

~~. 

Frame of Refere"ce 
--.J( __ 

Z,, 

L 

', 

\ 
\ 

', 
' ' 

\ 
\ _, ,. , 
'• \ 

b 

\ 
\ 

' 

\ 
\ 
\ 

\ 
\ 

\ 
\ 

\ 

Wheel 
~ No. (3) 

Figure 4. 1 Vehicle Local, Wheels and Global/Fixed Frames of References 
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The forces and moments that govern the vehicle's motion are: 

Drivi ng forces developed at the contact patch between the tyres and the terrain. 

Lateral forces on the tyres, as a result of the development of tyre sl ip angles. 

Tyre vettical forces resulting from the ground pressure-sinkage relat ionship. 

Ro lling resistance forces (internal from the tyre and external from the terrain). 

Gravitational forces due to vehicle weight. 

Forces due to inclined or uneven roads. 

Aerodynamic force due to air resistance. 

Suspension system spring and damper forces. 

oil damping force due to soil damping coefficient. 

All the moments that result !Tom the aforement ioned forces. 

Figure 4.2 shows a free body diagram of the vehicle sprung and unsprung masses 

including all forces and moments affecting the veh icle motion. 

\ 

~m,·g) 
\ 

\ 
\ 

I _, 
r ' '• \ 

\ 

I \ 
I \ 

I \ 
\ 

I ' I \ 
I \ 

' 
Xc ' ' 

z c 

F F, 
a b 

L 

Figure 4.2 14-DOF 4x4 Off-Road Vehicle Model 
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4.2 Mathematical Derivation of the Vehicle Model 

4.2.1 Sprung Mass Dynamics: 

The general equations of motion of a body with six degrees of freedom are derived in 

chapter 3. Simplifications may be carried out by assuming the local frame of reference to 

be located at the vehicle sprung mass C.G. To further simplify the calcu lations, the 

vehicle is assumed to be symmetrical about the plane defined by axes xL and zL (EII is, 

1994). Based on the ewton-Eu ler formulation, the equations of motion of the vehicle 

sprung mass can be written in the following form: 

(4. 1) 

'LF
1
, = 111, • (V - W · p + U · r) (4.2) 

L.F: = m, · ( W - U · q +V · p) (4.3) 

'LM = I ·p· - (1 - 1 )·q·r-1 ·(p·a+r) 
X .~'C '?' =: ;:x 1 (4.4) 

(4.5) 

(4.6) 

ln order to estab lish differential equations such that it would be more convenient to solve 

in MA TLAB/ Simulink environment, the acceleration terms are separated on the left hand 

side and the rest of terms on the right hand s ide are rearranged as follows: 

Forward Dynamics : (4.7) 

Lateral Dynamics m, ·V='L~ - m, ·(U ·r-W·p) (4.8) 
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Vertical Dynamics m, ·W = L.f -m, ·(V · p-U ·q) (4.9) 

Roll Dynamics I · jJ - I · i· ='EM +(I - I ) · q · r + l · p · q .u :x • n = :x (4. 1 0) 

Pitch Dynamics I · q· ='EM + (I - I ) · r · p- ! · (p 2 
- r

2
) JY ) ' = XX x: (4 .1 1) 

Yaw Dynamics I .,~- I · p' = 'EM + (! - 1 . ) · p · q- f · r · q :: :.t : .t.< )'V :X (4.12) 

All the terms in the right-hand side of equations (4.7) to (4. 12) contain products oftwo 

unknown va lues of state variab les which may be referred to as Gyroscopic terms, and 

hence they cannot be calculated directl y from MATLA B. Otherwise neglecting these 

terms affects the accuracy of the resul ts. Therefore. these terms are calculated 

downstream of the model in Simulink. The aforementioned six equations can be written 

in the fo llowing matrix form : 

(4 . 13) 

[X]= p· B1 ·(X) + q· B2 ·(X) +r ·B3 · (X) + B4 ·(F) 
'---y---J 

Gyro COpiC Body Forces 
Tcnns and Momcms Tcnn 

Where, [X] is the state vector, [X J is the s tate vector deri vati ve and [F] is the vector of 

external forces and moments affecting the vehicle body or sprung mass given as: 

(; u l.F: 
V V r.~ 

[x]= w [X) = w (F) = L.F_ 

L.M .• 
(4. 14) 

p p 

q q L.M> 

r r 'EM= 
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ms 0 0 0 0 0 

0 ms 0 0 0 0 

0 0 ms 0 0 0 
A = 

0 0 0 !XX 0 - I:x 

0 0 0 0 Iyy 0 

0 0 0 - [ 
::x 0 ! __ 

0 0 0 0 0 0 

0 0 ms 0 0 0 

0 -ms 0 0 0 0 
A -

0 0 0 0 !:X 0 1 -

0 0 0 - 1 x= 0 (I= - Jxx ) 
0 0 0 0 V~~- lyy ) 0 

0 0 - ms 0 0 0 

0 0 0 0 0 0 

ms 0 0 0 0 0 (4. 15) 
A -2 -

0 0 0 0 0 (!;~ -fzJ 
0 0 0 0 0 0 

0 0 0 0 0 - 1 . x= 

0 ms 0 0 0 0 

- ms 0 0 0 0 0 

0 0 0 0 0 0 
A3= 

0 0 0 0 0 0 

0 0 0 0 0 I .r.: 
0 0 0 0 0 0 

B =A"1 · A 
I I 

B = A-1 ·A 2 2 

B = A-1 · A 3 3 

B = A-1 
-1 
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4.2.2 Unsprung Mass Dynamics: 

As already mentioned the unsprung mass can be simplified by four masses distributed at 

each wheel. Each one has two degrees of freedom ; the first represents the vertical 

movement of the wheel and the second represents the driving wheel speed, see figure 4.2. 

4.2.2.1 Unsprung Mass Vertical Dynamics: 

For vertical dynamics, a two-degree of freedom quarter-car model is used for each wheel. 

The quarter car model consists of an unsprung or wheel mass (m"',), which is connected 

to approximately a qua1ter of the vehicle' s sprung mass (mq,) by a spring and a damper 

system as shown in figure 4.3. The quarter car model possesses two degrees of freedom 

which includes the vertical displacement of the vehicle quarter body sprung mass ( zh,) 

and the vertical displacement of the wheel centre ( z"',). All four wheel suspensions are 

assumed to be vertically directed. The equations of motion for the quarter car model can 

be deri ved easily by applying Newton's second law of motion. To derive the equation of 

motion in vertical direction firstly. suspension reaction must be ca lculated. 

--·-l 
F, 

I 

.-

,/ 
f 
\ 
\ •.. 

·· ... · .. ··· ... 

F . . , 

Figure 4.3 Two Degrees of Freedom Quarter-Car Model 
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Suspension fo rces (F.,) are calcu lated, based on the suspension spring stiffness ( K
1

) , the 

shock absorber damp ing coefficient ( C
1

) and the vertical displacement and velocity 

d ifference between the sprung mass body corner and the wheel centre as (Gillespie, 1992) 

Quarter-mass equation ofmotion: 

.. C ( · . ) K ( ) · 7 - . - . ? - 7 - . - - -mq _, - m(, g I _ , - .. I " " - .. 
I I I ~ I I I 

Suspension Force 

Unsprung mass equation of motion: 

m, · z , = m.. · g + F. + F1> + F. 
11 ltl I $1 I - , 

m,.. ·zw =m,., ·g+ C1 ·(zb - i,.. )+K, ·(z, -z,.,) + 
I I I I I 1 I 

SuspenSIOn Force 

b· z w, ...__,___.. 
So1l Dampmg Force 

(4.16) 

(4.17) 

(4. 18) 

(4.19) 

+F. ., (4 .20) 

Where ( F=,) is the tyre vertica l force calculated by the tyre mode l, see equations (3 .30) or 

(3.33). The damping force ( ~J, ) is computed from the wheel vertical speed ( i,.,) 

multiplied by so il damping coeffi cient (b) in (N·s/m) (AESCO, 2 005). T he total 

equations of motion representing unsprung mass vertical dynamics are written as fo llows: 

(4.2 1) 

m... · z,.. = m.. · g + F + b · z, + F_ 
"'2 2 "2 ,\ 2 1'.! - 2 (4 .22) 

(4.23) 

m ·z. =m ·g+ F +b·z +F. 
'"" .. .. ~" .\J ~-~ - "' 

(4.24) 
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To implement the quarter car model into the ful l vehicle model. the effect of the vehicle 

body bounce (z) , roll angle (cp) and pitch angle (B) must be taken into consideration, to 

modify the body displacement at each corner. !t can be written in the following form : 

Vehicle body vertical position at each corner: 

' rJ _'2._ z--· cp-a·B - a 
2 2 

z'1 
frf ' rJ 

{:] z +-·cp - a·B - a 
zi>: 2 2 = = z, I -~ b z-...!:!..· cp +b·B 
zh, 2 2 

(4.25) 

t, b e ~ b z +- ·cp + . 
2 2 

Vehicle body vertical velocity at each corner: 

' rJ - I rJ W --· p - a·q - a 
2 2 z,. 
'rr ' rJ {;] W +-· p - a ·q - a 

-~>: 2 2 
= = z, w I, b _I,, 

b --·p + ·q 
zh, 2 2 

(4.26) 

w I , b ~ b +- · p + ·q 
2 2 

Suspension force at each corner : 

F,. Kl 0 0 0 zha - z .... c, 0 0 0 '7 -7 
-~~a -.... 

F.l 0 K 0 0 =~t, - z\t2 0 cl 0 0 
.:. 

-~>: - "'! = I + (4.27) 
F;, 0 0 K 0 - 0 0 C, 0 z,. -z" , r -~ - wJ 

F 
'• 

0 0 0 K r zh, - z,... 0 0 0 C, zh. - z ..... 
Su ffness 1\ I at m Dampmg Ma1nx 

lt should be noted that while the model calcu lates the suspension forces based on linear 

spring and shock absorber assumption, it would be relatively easy to implement 

suspension non-linearity and effect of bump rubber stops in the Simul ink model by 

simply using look-up tables to accurat.ely introduce all suspension system non-linearities. 
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4.2.2.2 Wheel Driving Speed: 

Calculation of the wheel driving speed (m,) requires the calculation of wheel angular 

acceleration ( riJ,). Wheel angular acceleration arises from driving torque, brake torque 

and tyre circumferential torque, as shown in figure 4.4. 

From the wheel torque balance, using ewton's second law for rotational dynamics, the 

differential equation for the spin degree-of-freedom can be written as follows: 

1 ·riJ =M -M -M 
,.., I "'' B, I ' (4.28) 

where: 

I,., Wheel rotational moment of inertia (around the axle of spinning). 

W
1 

Wheel angular acceleration. 

M "' Engine drive torque app lied at each wheel hub, see secti on 4.2.8. 
I 

M 8 Braking torque applied for each wheel. 
I 

M11, Tyrecircumferential torque (M1 , =(F;,, +FRI )·,;,, ),seeequation (3.39). 

f; , Circumferential force results from soil shear strength equation (3.38). 
I 

F,11 :Tyre internal rolling (flexing) resistance force. 

r Wheel dynamic rolling radius (assumed to be constant value) 
J, 

F_ lz 
-1 • 

Figure 4.4 Driving Wheel Spin Degree of Freedom 
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4.2.3 Tyre Forces and Moments 

The output force vector from the o ff-road tyre model is given at the wheel hub relative to 

the wheel coordinate system and calculated for each wheel in [N]. Trans formation o f the 

force vector from the wheel coordinate system to the local f rame of reference is carried 

out based on the wheel steer angles as: 

F, 
I 

F){ 
' I 01 F~ 

I 01 
F,: F 02 02 02 X: 

·sin = ·COS 
F:, F 03 F;) 03 X; 

(4 .29) 

F, Fr 04 f;. 04 
• I. ' . w ' \\ 

~-. F.r, 01 ;;., 01 
F_,.l Fr 02 Fr: 82 • 2 

·sin + = ·COS 

~-. F 03 ;;., 03 x, 
(4.30) 

~·, F 04 F;, 04 
L x, w \\' 

The total forces affecting the vehic le body prung mass are given as: 

(4.3 1) 
Tyn: Forces m '-du·~:e11on 

(4.32) 
Tyre Forces m y·<hrtcuon 

"F = F. . - (F + F + F + F ) ~ : (, .t "I '2 \ ' ' " L (4.33) 
u pens1on Forees 

where: 

[ 81 82 83 84 ] are the wheel steering angles, calculated from equation (4.77) 

[F., F,
1 

F.., F...] are suspens ion forces, calculated from equation (4.27) 

[ F;,, F;;, Fe, J is the gravitational force vector, calculated from equation (4 .53) 

F;, is the aerodynamics force due to air resistance, calculated from equation (4 .55) 
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As already mentioned the tyre forces are calculated from the off-road tyre model at the 

wheel hub. These forces (after transformation relative to the vehicle body) cause 

moments with respect to the local frame of reference (M,= (r, x F, )J. These moments 

affect the vehicle body ro ll , pitch and yaw motions. The position vector (r, )of each 

wheel hub with respect to the local frame of references can be written as follows, see 

figure 4. 1: 

(4.34) 

(4.35) 

r3 = - (b) i - (I; ) j + ( h<i -Id, - z + Z,..
1

) k (4.36) 

r-1 = - (b) i + (I; ) j + ( h0 - Id, - Z + z..,. ) k (4.37) 

The tyre forces affecting the vehic le body spru ng mass with the following moments: 

Roll Moments (Mx): 

M =-(h .- r -z+z )·F -('rfJ·F ·' 1 ( , (/1 " 1 ILl 2 : L1 
(4.38) 

(4.39) 

(4.40) 

M . =-(he. - 1;, -z + z, . )·F.. +(~) · F_ 
-' .& ~ -1 ' 4 .r L.,a 2 - J~ .e 

(4.4 1) 
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Pitch Moments (M> ) : 

(4.42) 

(4.43) 

M =(h . - r - z+z )·F +(b)· F. J'J (, t/1 " l XLI · L J 
(4.44) 

M>. =(he. - r" - = + = .. ) · Fr +(b)· F. 
-4 I .a 4 - l..& -LJ 

(4.45) 

Yaw Moments (M=) : 

M . =( 1'' ]·F . +(a)· F . ., 2 x,, h , ( 4.46) 

(4.47) 

M. =('")·F - (b)·F • I 2 TL I ,ILJ 
( 4.48) 

M . =-(''') ·F - (b)· F. ., 2 XL' .I L, 
(4.49) 

The total moments affecting the vehicle sprung mass are given as fo llows: 

(4.50) 

LM,. = (M,, +M ,_ + Mr, +My, )L (4.5 1) 

" M. = (M. + M. + M. +M. ) ~ • ., ., ., ., L (4.52) 

107 



Chapter -1: -lx-1 Off-Road Vehicle Model 

4.2.4 Inclined Road Surfaces 

Representing the road surface inclination is carried out by introducing the road surface 

profi le vector (n 8 ) and the corresponding surface height ( z 11, ) at each wheel-terrain 

contact patch with respect to the global frame of reference, figure 4.5. Since the 

gravitat ional force applies to the centre of mass of the vehicle, it is easy to introduce the 

effect of an inclined road by multiplying the gravitational vector by the transformation 

matrix given in equation (3.56), using the following conditions: ( B = B11 (/) = qJ11 • If/= 0). 

sin Bn ·sin (/Ju 

cos (/Ju 

cos Bu ·sin (/Ju 

sin Bu · COS(/Ju] [ 0 ] 
-sin q; · 0 

cos Bu · co
1

: q;1? m., .g 

Tmn~ronnauon Mntnx 

(4.53) 

Wh ere (n 8 ) is a downward normalized 3-dimensional vector, the length of the vector is 

I, specifying the normal of the surface at the given position in the global coordinate 

system. A positive road inclination angle (811 ) means an upward inclined road. A positive 

road camber angle ( qJ11 ) means the road which raises the left-hand side of the vehicle. For 

a flat surface. (ii 8 ) equals to [0 0 Jf , consequently ( FG, = FG, = 0, f'ci, =m.· g) . 

The road surface height ( z11, ) specifies the height of the surface with respect to the global 

frame of reference at the given position of a wheel ( x .. , Y .. , ) as: 
c 

(4.54) 

10 



Chapter 4: -/x-1 Off-Road Vehicle Model 

(a) Road with lnclination Angle (eR) (b) Road with Camber Angle (qJu) 

Figure 4.5 Gravitational Force Analyses for Inclined Road Surfaces 

4.2.5 Aerodynamic Force 

Aerodynamic forces have a major impact on the behaviour of a vehicle. Their effects 

include drag, lift, down load, lateral forces, moments in roll , pitch and yaw. These 

eventuall y influence the fuel economy, the hand ling and also the noise, vibration and 

harshness characteri stics of the vehicle. Due to the aerodynamic shape of the vehicle body 

and the air fl ow, both normal pressure and shear stress are generated. This interaction 

causes an external aerodynamic resistance comprising two components. The former is the 

pressure drag arising from the component of the normal pressure acting against the 

motion of the vehicle. The later is the skin fri ction due to shear stress in the boundary 

layer adjacent to the external surface of the vehicle body. To simplify the calculations, 

only one component of the drag force, in longitudinal direction, is considered. 

FU!thermore, the line of action is assumed to be at the vehicle body C.G. This force can 

be simply expressed as (Wong, 200 I ): 

(4.55) 

where (P) is the mass density of air, ( Cd ) is the coefficient of aerodynamic resistance 

that represents the combined effects of all the factors described above. (A) is the 

characteristic area of the veh icle, simply assumed to be the frontal area, which is the 

projected area of the vehicle in the direction of the travel (i.e. forward). 
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4.2.6 Vehicle and Tyre Kinematics 

The AS2TM off-road tyre calculates forces and moments applied at the wheel hub relative 

to the wheel coordinate system. Consequently, the tyre model requires information about 

the velocity and pos ition vector of each wheel hub. The velocity vector is defined with 

respect to the wheels' coordinate systems, while the position vector is defined with 

respect to the global frame of reference. 

(r ~ -' ) 

Figure 4.6 Velocities Transformation at the Wheel Hub 

Once the differential equations of vehicle body motion are solved, both the translational 

and rotational ve locity vectors of the vehicle body with respect to the local frame of 

reference are obtained. ubsequently, the ve locity vector of the body corners can be 

calculated relative to the local frame of reference. Transfo1mation of the velocity vector 

from the vehicle body local frame of reference to the wheel coordinate system can be 

easily carried out using the wheel steering angles a fo llows; see fi gure 4.6. 
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Longitudina l velocities vector with respect to the local frame of reference: 

0 !!£_ 
2 

Vxl _!!£_ 

[:] 0 
V x2 2 

(4.56) = 
V 1, XI 0 
V 2 

x, L 

0 -~ 
2 

Lateral velocities vector with respect to the local frame of reference: 

V 0 a ) 't 

[:] VY2 0 a 
= (4.57) 

V 0 -b y, 

V 0 -b 
Y• I. 

Longitudinal velocities vector with respect to the wheel coordinates system: 

Vxl Vxl 81 v,. 81 
V vrl 82 V 82 xz 

·COS + 
Y: ·sin (4.58) = 

V vr, 83 VYI 83 x, 

V V 84 V 84 x, w r, L Y• L 

Lateral velocities vector with respect to the wheel coord inates system: 

vr, vr, 81 v>.• 81 
V)': Vr: 82 V 82 

+ 
Y1 

(4.59) = ·Sin ·COS 
v>.• V 83 V)., 83 x, 
vy. " x• 

84 vy, 84 
\ \ L I. 

Referri ng to figure 4.1 , the position vector of each wheel hub with respect to the global 

frame of re ferences [rw le can be written as fo llows, (Day et al., 200 I): 
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(4.60) 

where [r0 L le is the position vector of the origin of the local frame of reference with 

respect to the global frame of reference. Referring to figure 4. 1, it should be noted that, 

the global frame of reference is located directly beneath the local coordinate system at the 

point, where the manoeuvre has commenced. The initial position vector of local frame of 

reference relative to the global frame of reference can be given by: (0 0 - h(; r. 
[r .. ]L is the position vector of each wheel hub with respect to the local frame of reference. 

a a - b - b 

[r .. l1. = _!:!__ ! if I" l ,, 

2 2 2 2 

h<i - 'd, - z + Z111 hli - ' d: - z + z": h(, - 1;1, - z + z" , hu - 'd• - z + Z114 

L 

(4.61) 

[ x . X": x ., x .. ,] 
[r .. le = y r..l r. Y .. ., \ 

z .. ~ c z .. z .. l z .. , 

[X"' 
X m XOI 

X m J [roL le = Y,), .Y,)/ Y,)/ YOI 

Zm ZOI ZOI zm c 

(R) is a relative transformation matrix used to transform the data from the local to the 

global frame of reference. see chapter 3. The transformation matrix is given as follows: 

(

cos() · cos If 

R = cosB· inlf 

- sin e 

sin()· s in <p ·COSf// - cos<p ·sin l.f/ 

sin B ·sin <p ·sin If'+ cos<p ·cos If 

cos e. sin <p 
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sin 8 · COS<p ·COS If+ s in <p ·Sin If] 
sin B · cos<p ·sin If- sin <p ·cos If ( 4.62) 

cos() . cos <p 
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For the transformation matrix (R) given by equation (4.62), the order of rotations is yaw, 

pitch and roll. The angles between the local and global frames of reference are called the 

Euler angles ( rp.B If! ) . Calculation of Euler angles requires integration of rotational 

velocity components (p,q,r). Integration of these components a long the axes of rotation 

or Euler angles yields their angular velocity as fol lows (Katz, 1997): 

ifJ = p + ( q ·sin rp + r ·cos rp ) ·tan B (4.63) 

iJ = q · COS(/)- r ·Sin rp (4.64) 

. ( q· sin rp +r · cosrp) V/= ....:...._ _____ ~ 
cosB 

(4.65) 

4.2. 7 The Steering System 

ReferTing to figure 4.7. the steer angles at the rear wheels, 83 = 84 = 0 (assuming that, no 

camber or steer effects in the rear suspension geometry. 

3 

·--. ····s;·......_ 
········ -.~---.. ·-

··-. ........ ~::;:::: ::::::·:·· .... ·· .. 
St.::......_. ··-••• 

......... '4 ................ _______________________ __ ····---.:::::~~:~~::::.-.-

Hf----L---l---~ 

a 
L 

c 
D 

Figure 4.7 Ackerman teering Corrections, adopted from (Gi llespie 1992) 

The steering angle of the front wheels can be given as (Gillespie, 1992): 

L 
tan80 = -

D 
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(4.66) 
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L 
tan t51 = ( ) D +C 

L 
tan t5, = ( ) - D -C 

From equation (4.66): ( D ~ t: o.) and from equation (4.67): ( D +c ~ ta~ O, J 

L L 
- -+c=-­
tan t50 tan t51 

L+c·tano0 L 
-----=- =--

tan o0 tan o1 

s: L · tan o0 tan o0 tan u 1 = = ---"---
L +c. tan Oo I + c . tan Oo 

L 

For small 80 and o1, and using the binomial expansion series: 

, n · ( n - I) · x 2 n · ( n - I) · ( n - 2) · x3 

(l +x) = l+n·x+ + + ... 
2! 3! 

( l+xf':: l-x 

ff (~) is the proportion of Ackerman, then ( o1) and ( o2 ) become: 
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(4.67) 

(4.68) 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 
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(4.76) 

The correction of steering input can be given as fo llows: 

I 
= 

0 (4.77) 

0 

4.2.8 The Drivetrain Model 

The drivetrain model embod ies the dynamic characteristics of 4x4 vehicles including the 

engine clutch, a manual fi ve-speed gear-box, and three mechanical differentials, namely: 

central (open/locked), front (open) and rear (open) differentials, as well as the torque 

transmitting elements such as propeller shafts and axles, see figure 4.8. 

The driverrain model is implemented in a new toolbox called SimDriveline (The 

MathWork Inc., 2004-2006), which is part of the Simul ink Physical Modelling. 

encompassing the modelling and design of systems according to the basic physical 

principles. Physical Modelling runs with in the imulink environment and interfaces 

seamlessly with the rest of Simulink and with MATLAB. Unlike other imulink blocks, 

which represent mathematical operations, Phys ical Modelling blocks represent phys ical 

components or relationshi ps directly. With SimDriveline, it is possible to represent a 

drivetrain system with a connected block diagram, as shown in figure 4.9. 

Rotational motion can be initiated and maintained in a drive line with actuators while 

measuring, via sensors, the motions of dri eline elements and the torques acting on them. 

The imDriveline libraries offer blocks to represent rotating bodies, gear constraints 

among bodies, special dynamic elements such as spring-damper forces, rotational stops, 

clutches, transmissions, sensors and actuator . 
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Figure 4.8 Mathematical Representation of 4x4 Drivetrain Model 
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Engine: 

Over the years, numerous computational models have been developed for the prediction 

of engine performance and fuel consumption. These models have different accuracies 

depending on the extension of details. Generally, engine modelling may be categorized 

into three groups. The first group incorporates static or steady state conditions which is 

widely acceptable for evaluation of performance. The second group implements simple 

dynamics with simple variables which is suitable for control system design. The th ird 

group deals with complex dynamics with large number of variables which is suitable for 

hard ware in loop (HJL) simulations. 

Traditionally, the static approach is based on steady state characteri sti cs, which offers the 

advantage of high speed calculations and puts less demands on amount of required data 

entry. The accuracy of this approach depends on the available data from manufacturing. 

The engine characteri stics are included in the model as a look-up table of engine torque 

versus engine speed and throttle position. H should be noted that the engine model does 

not include the air-fuel mixture and the combustion process. The throttle signal directly 

controls the output torque that the engine generates and indirectly controls the speed at 

which the engine runs. If the engine speed exceeds the maximum specified speed the 

engine torque drops to zero. For the purpose of constant speed simulations, a 

proportional-integral-derivative (PID) controller is used. Based on the di fference between 

the desired and actual speeds, the controller specifies the appropriate position of the 

throttle peda l to keep the vehicle speed constant. 

The output torque of the engine is characterized by the driving torque (Me) resulting 

from combustion, the internal fri ction torque (M 1, ). and the external load (Me~ ) from 

the clutch. ewton's second law of motion gives the following model: 

(4 .78) 

Where (le) is the mass moment of ine11ia of the engine and ( B,. ) is the fl ywheel angular 

acceleration. 
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Friction Clutch: 

Friction clutch is common ly found in vehicles equipped with a manual transmission . lt 

consists of friction di sk connecting the fl ywheel of the engine and the transmission's input 

shaft. The clutch provides the capabi lity to allow or restrict the transmission of engine 

torque to the drivetrai n through clutch pedal. One of the simplest possible clutches is a set 

of two plates normal to the axis of transmission, one being the input and the other the 

output. The two plates can be pressed together so that friction causes the input to impart 

torque onto the output. The greater the pressure is, the higher the torque which can be 

transmitted. 

The clutch req uires a dimensionless input pressure signal (between zero and one) to 

modulate the applied friction. This signal is input as a function of time, which represents 

the driver response regard ing clutch engagement and di sengagement. 

All the parameters required to describe the clutch are defined such as the number of 

friction surfaces (Ne) , the effective torque rad ius ( R
111

) , inner ('i) and outer h) plate 

rad ius, kinetic (JI*) and static (JI,) coefficients of friction. The clutch system is analyzed 

using a lumped-parameter model; the state equations for the coupled system are derived 

as fo llows: 

r,. e, = Me/ - b, . e, } (4.79) 

Where; (!.,!,) are the mass moments of inerti a of the engine and transmission system. 

( be,b, ) are the damping rates at the engine and transmission sides of the clutch. 

The torque capacity of the clutch (M/..,., ) is a fu nction of its size, friction characteristics 

(,u) and the normal force that is appli ed between the friction plates (.r;,) as follows: 
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A1 = JJrxFr ·da 
!..., A 

A 

(4.80) 

? ( r3 -r3) =F · j.L ·N . .::.. 2 I 
11 < 3 ,.1 _,.2 

2 I 

= F,, · f.L · c · Rm 

When the clutch is sl ipping, the input and output remain independent, but some torque is 

transferred between them. The model uses the kinetic coe fficient o f fri cti on (JL*) and the 

full capacity (M/.,.., ) is available in the direction that opposes slip. 

A1c1 = M/.,.,, ·sgn ( B,. - B1 ) = F,, · f.lk ·Ne· Rm ·sgn (Be - B1 ) (4.81 ) 
Mr,.., 

When the clutch applies static fricti on (JL,) the frictional surfaces are locked together and 

do not slip. Both the input fi·om the engine and the output to transmission effecti vely form 

a single axis (Be = B1 ). This state transfers the maximum torque possible and the system 

torque acts on the combined inertia of engine and transmiss ion as a single unit. o, the 

equations (4.78) and (4.79) are combined into a single equation for the locked state: 

(4.82) 

olv ing equation (4.79) and equati on (4.82) the torque transmitted by the clutch while 

locked can be given as fol lows: 

1 ·A1 - ( 1 ·b - 1 ·b )·B M =M = 1 " 1 c " 1 e 

c:J I (1,+ 1,) (4.83) 

T he clutch thus remains locked unless the magnitude of ( A11 ) exceeds the static friction 
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Gear-Box: 

The manual fi ve-speed gear-box is modelled by a two-mass system, connected by a gear 

connection taking into account the gear ratios (iG) , gear efficiencies ( IJc; ) and inertias. 

A time signal is used to control the gear shifting sequence, while the program is running. 

Ultimate ly, the gear shifting instances are related to the engine speed, in order to achieve 

the best traction performance. If the maximum engine speed is reached, the gear box is 

shifted to a higher gear (lower gear ratios). 

Both the angular velocity (Bow ) and acceleration ( B"
111

) of the output shaft can be 

calculated as follows: 

(j = e,, 
(Jilt • 

(4 .84) 

l(j 

Torque lo s due to friction between gears is calculated ba ed on the following equation: 

(4.85) 

Furthermore, drive shaft and axle inertias, as well as number of axles are considered in 

the model. Drive shaft and axles are modelled as rigid shafts. 

Mechanical Differential : 

The di fferential couples the rotational motion about the longitudina l ax1s with the 

rotational motion about two lateral axes. In normal use. the longi tudinal shaft is the input, 

and motion, torque, and power flow out through the lateral shafts. The three rotational 

degrees of freedom, the longitudinal (m,) and the lateral ( mOJ , mOz ), are subject to one 

gear constraint and thus reduce to two independent degrees of freedom. In terms of the 

di fferential gear ratio (in), the longitudinal motion is related to the sum of the lateral 

motions as shown in the fo llowing kinematic constraint: 
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(4.86) 

The driving output torques along the lateral axes (M,~ , M
02

) are constrained by the 

longitudinal input torque ( M1) in such a way that the power input equals the sum of the 

power outputs as foll ows: 

(4.87) 

The combination of kinematic and power constraints yields the following relation: 

(4.88) 

For an open differential the applied torques along the lateral axes are equal and lim ited by 

the lower adhesion between wheel and soil as fol low : 

M M 
. M , ,. = " = 1/) · -

., l 2 (4.89) 

The locked differential has the same parts as an open di fferential, but adds an e lectric, 

pneumatic. hydraulic or frictional mechanism to lock the two output pinions together. 

This mechanism is usually acti vated manually, and when activated both wheels spin at 

the same speed. If one wheel leaves the ground, the other wheel remains unaffected. 

To model differential locking a controllable friction clutch is connected between the two 

output shafts. The clutch input signal can be programmed to represent full differential 

lock (the input pressure signal is a constant value) or a limited slip differential (the input 

pressure signal is variable, depending on the difference between the left and right 

rotational speeds). For fu ll mechanical differential lock: 

(J) 
(J) = (J) = _, 

''I o, . 
• 1/) 
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(4.9 1) 

Shafts and Axles: 

The shaft is modelled as a rotational stiffness (k,,11 ) and damping (b,11 ) in parallel and use 

the relative displacement ( Bm- 8
0

, ) and relative velocity ( B
111

- B"'" ) across the end of the 

shaft to develop a windup torque. Shaft backlash may be also included to account for the 

shaft splines. 

The general dynamic equation of output torque can be obtained as: 

MOIII =M/11 - 1,/t ·B,/t -b,/t ·(B/11 -B,,,) - k,/t ·(B,, -BOIII ) 
"---v--' 

lncntn C ffcct Sllffi>css Effect Damping Effect 
(4.92) 

The above equation can be written for any shaft carrying torque, for example the 

propeller shaft or an axle shaft. 

4.3 Numerical Simulation 

Hitherto, model ling e ffort has concentrated on replicating individual component 

behaviour as closely as possible. This has, in the main, led to large multi-body dynamic 

models, created in codes such as ADAMS. Although very good agreement is often found 

with test data, the shear size of such models often leads to long computation times. 

For the purpose of the present study the model is implemented m the 

' MA TLAB/ imulink/SimDriveline environment. This choice has added the possibilities 

of later incorporation of advanced control strategies and the use of the real-time too l box. 

Also, it provides total control over the equations of the model and has facil itated the 

implementation of an in-house written code. 
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MA TLAB is used to: 

Define the vehicle body, suspension, tyres and soi I input data. 

Set the initial conditions of the states and define the testing manoeuvres. 

Carry out all basic calculations in matrix form to be used by the Simulink model. 

Execute the Simulink model. 

Read, save and plot the output results from Simul ink model (postprocessing). 

Simulink is used to : 

Integrate all the vehicle subsystems' modules with the off-road ty re model, where 

the tyre model is defined as a -function in the Simulink environment, fi gure 4.1 0. 

Implementing the drivetrain model using SimDriveline toolbox fi gure 4.9. 

olve fourteen second-order non-linear differential equations with respect to time, 

and give the output in the form of time histories into the Matlab workspace. 

Numerical simulation procedures are carri ed out using ODE4: Runge-Kutta solver w ith 

fixed-step integration size of (0.00 I s). T he vehic le model contains (299) state variables. 

(t-..), [X"] u 
Yu, 

~ (=. ··\), I' 
Suspension Vehicle Body IV Vehicle Body Zu 

(=., ·=. )L 

rrr System Dynamics p Kinematics 
q 

I r L 

~. X~ , Y • • z. ) J :· J 
' r: 

V V V ) ~ ___: ... .. : 

Off-Road 
(o,) 

Tyre Steering 

Tyre Model Kinematics System - 14--- (o,) 
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Drivetrain Simulation ..... f--
Model Output 

Figure 4.10 14-DOF 4x4 Off-Road Vehicle Simulink Model 
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4.4 Simulation Results and Analysis 

Driving on soft terrains is very different to driving on prepared roads of solid 

construction . One main difference is the tyre sinkage, which is an important aspect of off­

road terrains. Penetration of the wheel into the ground compresses the soil underneath the 

wheel, which is furrowed to the sides and to the front of the wheel where a bow wave is 

built up. Th is plastic deformation of the soil produces the major part of the rol ling 

resi stance on soft grounds. The encountered rol ling resistance not onl y reduces vehicle 

traction capabi lities, but also affects the vehicle cornering behaviour and stability. At high 

sli p angles the external roll ing resistance has a lateral force component, which is added to 

the lateral force caused by shearing deformations, see equations (3.44) and (3.45). This 

lateral fo rce rises with the sine of the sli p angle (Harn isch, 200 I). 

Another difference in off-road operations is the restriction of the circumferential force on 

soft soils. Contrary to the cond itions on rigid roads the tyre forces on soft soil are not only 

limited by the friction between the wheel and the ground surface, but also by the shear 

strength of the soil. The shear tension under the wheel is based on the local pressures and 

the local generated shear di splacements. Furthermore, because the shear strength of soi l is 

usually less than the fr iction between tyre and dry pavement, the maximum tyre forces 

(tracti ve and lateral) are reduced. Generally this can be noticed from the lower values of 

maximum latera l acceleration or by the I imitation of the forward speed during off-road 

acceleration manoeuvres. As a result, the mechanism of tyre force generation greatly 

depends upon both wheel sinkage and the soil shear strength (depending on the soil type) . 

The aim of this section is to simulate an integrated 4x4 vehicle dynamics duri ng various 

off-road manoeuvres and address the vehicle characteristics in terms of traction 

performance and cornering response. All simulations are carried out using 4x4 Land 

Rover Defender 110 (station wagon), see appendix (A). The baseline vehicle has three 

mechanical open differentials with a possibili ty to lock the centre differential. The stati c 

weight of the vehicle is distributed 40% on the front axle and 60% on the rear axle. The 

tyre inflation pre sure is set to be 1.9 bar for the front ax le tyres and 3.3 bar for the rear 

ax le tyres. 
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As an integral part of off-road vehicle simulations, the soil mechanical properties should 

be defined, see appendix (A). Three different types of soi ls with distinct properties are 

used, namely clay, loam and sand soil (AESCO. 2005). The firm clay so il is characterized 

by moderate high shear strength properties, as well as a good sinkage resistance. The dry 

sand so il is characteri zed by relati ve ly good shear strength properties, while it is has a low 

sinkage resistance. The wet loam soi l (grass grown) is characterized by relatively good 

sinkage resistance while it is has low shear strength properties. 

4.4.1 Traction Analysis 

As a case-study, the traction performance of the vehicle at full thrott le position is 

eva luated during acceleration in a straight li ne manoeuvre on firm clay soi l, Figure 4. 11 . 

The throttle increases until the engine speed reaches its maximum va lue, at which stage 

the gearbox is shifted to a higher gear. This resul ts in the saw-tooth diagram shown 1n 

figure 4. ll .d. During shifting, the throttle is released and the clutch is disengaged. 
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Figure 4. 11 Traction Performance of the Baseline Vehicle Configuration 
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lt should be noted that during the shifting process and until throttle reaches its max imum 

position the vehicle acceleration fluctuates. This results from an instantaneous drop in 

vehicle speed and the effect of clutch engagement and throttle pedal appl ication. This 

causes wheel slip fluctuations which affects the vehicle acceleration. The ampli tude of 

these fluctuations reflects the amplitude of tyre slip, which reaches its higher values in 

first gear and decreases as the gear box is up-shifted. 

4.4.1.1 Effect of Soi I Shear Strength Properties 

The calculation of tractive force, as well as the drive torque is based on both the local 

ground pres ure (P ( .9)) and the local shear displacement (J, ( .9)) at the tyre contact 

patch. The local shear di splacement can be calculated by time integration of the local 

rotationa l speeds (Wong and Recce, 1967a, 1967b). Based on the local shear 

displacement the local shear stress ( r) is computed by Bekker ( 1969) as follows; 

(4.93) 

The first part of equation (4.93) can be calculated from the Coulomb contribution, where 

(C) is the apparent cohes ion of the soil and refers to the cohesive portion of the shear 

strength, ( p ( .9) ·tan cp) represents the fri ctional portion of the shear strength, where ( .9) 

is the contact angle and ( cp ) is the soil angle of shearing resistance. The integration of 

shear stress ( r) over the contact patch gives the circumferential force. The horizontal 

portion of ( r) gives the horizontal force as fo llows; (Harnisch, 200 I) 

( 
D' J s,,_ ( - 1,(9} J 

F,, =b· 2 · i (C+p (.9) ·tan tp) · l -e k ·sin(.9)·d.9 (4.94) 

The drawbar pull or net tractive fo rce can be ca lculated as the difference between 

horizontal force ( FH) and the external rolling resistance. 
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Figure 4. 12 shows the traction performance for different so ils with different shear 

strength properties. As opposed to rigid road situations, the circumferential force on soft 

soil is not only limited by the friction between the wheel and the ground surface, but also 

by the shear strength of the so il. In soft loose soil the maximum shear tension is not 

immediately availab le at the beginning of the contact area but is reached asymptotica lly 

with increasing shear di splacement, equation (4.93). As a result, in the case of wet loam 

soil with lower shearing properties, it takes a longer time to achieve the same vehicle 

speed, followed by sand and clay soi l. Figure 4. 12.a. This is also apparent in the speeding 

up distance characteri stics. Figure 4.12.b. 

Another good indicator of traction performance is the vehicle forward acceleration. 

Figure 4. 12.c. In general, acceleration is higher in first gear which is characterized by a 

higher ratio, whereas acceleration decrea es as the gear is up-shifted. Comparison of 

acceleration results for different soils shows a difference which is more prominent in first 

gear, revealing the contribution of soil shearing properties. In the case of firm clay soil 

the shearing properties are such that the vehicle is propelled effectively, whereas the soft 

loam causes excessive slippage, which in turn increases sinkage and resistance. 
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Figure 4. 12 Effect of oi l hear Strength on Traction Performance 
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4.4.1.2 Effect of Tyre Inflation Pressure 

The main difference between driving on so ft terrains and driving on rigid roads is the tyre 

sinkage. A wheel on soft soil penetrates into the ground deeply until the resultant ground 

pressure (p) balances the wheel load ( F2 ). The ari sing ground pressure is a resu lt of the 

normal ground deformation ( z). This can be described by the following equat ion, 

yielding the relationship between pressure a nd sinkage (Bekker, 1956 1969): 

p = ( :c + K'~' } =" = K · =" (4.95) 

Where: ( Kc, K'l' ) are the cohesive and frictional moduli of soil deformation, (n) is the soil 

sinkage exponent, and (b) is the width o f the rectangular plate, or the radius of the 

circular plate. This equation shows that for the same soil parameters ( Kc, K'l' , n) , tyre 

inkage (z) increase if the ground pre sure or tyre vertical load rises. Another important 

parameter is the rolling resistance. The major part of the rolling resistance on soft. ground 

results from the energy absorption of the oil. which is caused by the compaction and 

deformation of the soil. Therefore the rolling resistance can be calculated from the plastic 

oi l deformation under the wheel as follows; (Bekker, 1956, 1969): 

FR = b · J p ( z) · dz = b · _c + K · ---=o ( K ) ( _, +1 ) 

0 
b '~' n+ I 

(4.96) 

As tyre in flat ion pressure reduces, for the same vertical load, both the tyre contact length 

and contact area increase. Because of the enlarged contact area the ground pressure is 

reduced. As a result sinkage also decreases, equation (4.95), and, therefore, the rolling 

resistance is reduced equati on (4.96). In add ition, the increase in contact area leads to the 

enlargement of the circumferential force, equation (4.94). Thus it becomes obvious that 

the drawbar pull which is the difference between ci rcumferential force and rolling 

resistance, is affected favourably by a reduction in tyre inflation pressure (Lach, 1996). 
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Figure 4.13 shows how a reduction in tyre inflation pressure improves the straight-line 

performance on the loam soil. This can be seen clearly from an increase in veh icle 

acceleration fo r the same gear ratio, fi gure 4.13.c. and the improvement of speeding up 

time and distance, figure 4.1 3.a and figure 4. 13.b. 

lt should be noted that wheel s inkage is the result of two different mechan isms. The fi rst 

is called static sinkage representing the reaction to the wheel vertical load, as explained 

previously. The second mechanism is the slip sin kage due to excessive slipping, causing 

the wheel to penetrate into the ground, compressing the so il underneath the wheel, wh ich 

is in turn fu rrowed to the sides and to the fron t of the wheel, where a bow wave is built 

up. This excessive sli p leads to additional sinkage and rolling resistance and, hence, 

reduces the resulting tracti ve fo rce. Thi explains why in soft deformable soils it is 

advisable to apply the throttle pedal graduall y, especially when in first gear (section 3.2.9) 
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4.4.1.3 Effect of Differential Lock 

Before discussing the effect of a locked differential on 4x4 off-road vehicles, it is useful 

to introduce the significant role of static load distribution between front and rear axles. In 

general , when the axle load increases, the ground pressure also increases, enhancing the 

maximum shear strength available by the soil , equation (4.93), and hence the 

circumferential force developed by the tyres, equation (4.94). This increases the ability of 

the tyres to develop higher driving torques without causing excessive sl ip. On the other 

hand, when the axle weight is increased, both tyre sinkage and rolling resistance also 

increase, equation (4.96). lt should be mentioned that, for the reference vehicle, load 

distribution between Front and rear ax le is (40:60%) respectively. 

To show the effect of differential locking, the reference vehicle is s imulated in straight­

line acce leration on dry sand so il. Vehicle traction performance is eva luated in two 

situations: first with an open central-differential and second with a locked central­

differential figure 4.14. 
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For open central-di fferen tial: the driving torque from the powertrain system is distributed 

equally between the front and rear axles, equation (4.89), therefore, the torque distribution 

is limited by the lower traction side or by the ax le carrying the least weight. For the same 

driving torque, the rear axle-tyres suffer from higher rolling resistance due to higher 

vertical weight and sinkage. As a result, net tractive force at the front axle-tyres will be 

higher than that at the rear ax le-tyres, figure 4.14.b. 

For the locked central-di fferential: the driving torque from the powertrain system is 

distributed based on the available traction at each axle, equation ( 4.91 ). Therefore, the 

rear axle with a larger weight and, therefore, relatively higher shear strength is able to 

develop a higher driving torque than the front ax le. Hence, the generated drawbar pull at 

the rear axle-tyres would be higher than that at the front ax le-tyres, figure 4.14.b. Another 

benefit of a locked different ial is that all tyres are forced to rotate with the same driving 

speed, so the slip of all tyres is regulated by that of the tyre with most traction. Thus, the 

slip values at all four corners are automatica lly adjusted in favour of tract ion. 

4.4.2 Handling Analysis 

The rapidly increasing applications of A WO. particularly in the passenger vehicle sector 

demand the development of vehicles, not only with higher traction and acceleration 

capabili ties, bu t also with better manoeuverabil ity over deformable soi l. Although 

improving traction performance is a main consideration for off-road vehicle applications, 

handling behaviour is an important aspect of modern vehicles which requ ires capabil ity 

to undergo high lateral accelerations, whilst maintain ing good level of directional 

stabi lity. The desired increase in mobi lity must be reached without making any 

compromises regarding safety or ease of operation or driver comfort. This is particu larly 

true as the driving torque affects the lateral behaviour of pneumatic tyres. lt is anti cipated 

that the hand ling response of these vehicles may be different from on-road vehicles. 

Furthermore, vehicle side-slip and yaw motions are dependent on, not only the vehicle 

design parameters and tyre characteristics, but also on the mechanical properti es of the 

terrain . Therefore, study of handling characteristic of all-wheel drive vehicles, especiall y 

at high speeds, has become a signifi cant point of research. 
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The prescribed 14-DOF model is used to simulate the handling behaviour of 4x4 vehicles 

subject to a steering input. The output is a time history of the vehicle motion variables 

such as lateral velocity, roll angle, yaw velocity, and lateral acceleration. Vehicle 

handling characteristics are examined under both steady state and transient conditions. 

4.4.2.1 Steady State Handling Response 

The steady-state handling behaviour of the 4 WO vehicle is s imulated by a given step 

steering angle of 2 degrees, with in time interval of I second, applied at the front left 

wheel and then maintained for 30 seconds, see fi gure 4. 18.a. The step input theoretically 

makes the vehicle, driven at constant speed, to follow a constant-curvature path at steady 

state, fi gure 4.18.b. The vehicle handling steady-state response is examined in terms of 

lateral acceleration gain and yaw velocity gain responses. Lateral acce leration gain is 

defined as the ratio of steady-state lateral acceleration to the input steering angle. Yaw 

velocity ga in is de fined as the ratio of steady-state yaw velocity to the input steering angle 

(Wong, 200 I). Both lateral acceleration gain and yaw velocity ga in cannot be calculated 

or predicted directly by a single execution of the model. Instead the vehicle is simulated 

by a given step steering input, similar to the one shown figure 4.18.a at various vehicle 

longitudinal peeds. The steady-state lateral acceleration gain is determined from the 

steady-state lateral acceleration. A similar procedure is applied for obtaining yaw velocity 

gain. Furthermore, the off-road vehicle model is used to investigate the handling 

characteristics under different conditions as described below. 

4.4.2.1.1 Static Weight Distribution Ratio: 

Before discuss ing the effect of static weight distribution ratio between front and rear 

ax les, it would be usefu l to introduce the significant ro le of tyre sinkagc in soil terrain. 

inkage affects handling characteristics due to additional latera l loads generated at the 

tyre sidewalls. Tyre sinkage ( z) varies non-linearl y with tyre ground pressure (p" ) 

according to the well-known relationship: ( Pn = ( :c + K,.). =n), (Bekker, 1956, 1960). 

Where: ( K,, K'~' ) are cohesive and frictional moduli of soil deformation, (n) is soil 
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sinkage exponent, (b) is width of the rectangular plate, or radius of the circular plate 

which represents the tyre width. 

At higher sinkage, significant tyre sidewall forces may occur which can be explained by 

the soil cutting theory (Wong, 200 1). According to this theory a stress fie ld occurs in the 

soi l. Soil mechanics equations have been developed for this situation, based on pass ive 

soil failure, which is developed using the Mohr's ci rcle technique. The additional lateral 

load capability is determined from integrating the passive soil pressure over the tyre 

sidewall for a given sinkage distribution of the tyre. 

For very high slip angles, an add itional effect is the bulldozing or build-up of soil at the 

tyre sidewalls, especiall y for soft soils, increasing the maximum lateral load. 

Furthermore, the tyre cornering stiffness and the maximum lateral load capacity both 

increase with the vertical load (Crolla and El-Razaz, 1987). 

Vehicle we ight distribution between front and rear axles plays a significant role in off­

road vehicle handling, see figure 4.15. Generally, as the vehicle weight distribution on the 

front ax le increases more than that on the rear, the generated yaw rate ga in and lateral 

acceleration gain also increase. Thi may be explained as follows: as the vertical weight 

increases on the front axle, the ground pressure, sinkage and contact length also increase. 

The additional sinkage provides extra sidewall surface available fo r the build-up of 

passive soil pressure, which leads to a higher side-force (Metz, 1993; Liang et al., 2004). 

Due to these effects, the resulting cornering stiffness at the fron t ax le increases with 

vertica l load. Consequently, the under-steer coefficient is reduced and the vehicle 

becomes more over-steering with a reduced turn ing and increased yaw velocity. 

Depending on the values of understeer coefficients or the relationship between the slip 

angles of the front and rear tyres, the steady-state handling characteristics may then be 

eva luated (Wong, 200 1). 

lt should be noted that the effect of weight distribution ratio on the steady state handling 

response appears clearl y in the case of driving on sand soi l (friction so il), fi gure 4. 15.c. 

This is ma inly due to the dependency of the mechanism of tyre shear fo rces generation on 

the vertica l weight, which affects the tyre cornering stiffness, see equation (4.93). 
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4.4.2.1.2 Soil Shear Strength Properties 

The mechanism of lateral force generation is based not only on tyre sinkage (which is 

function of tyre ve1tical load), but also on the soil shearing strength (Bekker, 1956, 1960): 

( r
10

" = •m .. , · ( 1- e-'u )), where( r .,., ) is the so il maximum shear strength ( r nux = (c + p,. tan {0.)). 

Where also: ( c, {0,) are soi I apparent cohesion and angle of internal shearing resistance, 

(J,k)are so il shear displacement and deformation modu li respectively. Therefore, it is 

imp01tant to examine the combined effect of sinkage (due to different -.eight 

di stributions) for different cases of shear strength properties (different soi ls). 

The effect of" eight di stribution is investigated over three types of soils with distinct 

mechanical properties, figure 4.16. These are firm clay so il with moderate shear strength 

properties dry sand soil and wet loam soi l. The results are obtained using drivetrain with 

a mechanical open differential and in nation pressure of 1.9 bar for the front ax le tyres and 

3.3 bar for the rear axle tyres. 

Contrary to on-road, off-road ryre forces are affected by soil type, soi l conditions (surface 

geometry, vegetation. etc.). Additionally, the terrain has a more significant effect than 

does the tyre parameters. oil shear strength prope1ties cause two significant effects on 

tyre cornering characteristics; a reduction in cornering stiffness and reduction in 

max imum lateral force (Crolla and EI-Razaz 1987; Metz, 1993). Cornering st iffness is 

reduced since in addition to lateral tyre deformation, lateral so il deformation must occur 

for the soil to support load. Add itionall y, soil shear strength is typical ly less than the 

tyre/soi l friction coefficient; hence the max imum latera l load capability is reduced. 

Compared to sand and loam soils, due to its higher shearing strength with clay soil higher 

maximum values for both the lateral acceleration gain and yaw velocity ga in can be 

observed, as also noted by (Holloway et a l., 1989; Harn isch et al. 2002). The vehicle 

handl ing behaviour is characterized by an oversteeri ng characteri stic, which appears 

clearly with shifting of more weight to the front axle, figure 4. 16.c. It shou ld be noted 

that compared to on-road handling manoeuvres, the maximum speed at which the vehicle 

is simulated is lower. Beyond this velocity igni ficant lateral soil deformation occurs, 

resulting in a greater sinkage. This phenomenon is referred to slip sinkage (Metz, 1993). 
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4.4.2.1.3 Driveline Configurations: 

The influence of different dri veline configurations on the steady-state hand ling behaviour 

are depicted in figure 4. 17. The simulations are carried out fo r both clay and sand soil 

with a fi xed weight distribution of 40% and 60% for front and rear ax les respectively. 

Fundamentally, the cornenng behaviour of any veh icle is mainly contro lled by the 

generated lateral forces and si ip angles at the tyre-ground contact patch. Furthermore, 

these lateral forces are regulated by the longitudinal sli p and tractive force at each tyre 

according to the well known principle of friction circle (e.g., Cro lla and El-Razaz, 1987). 

Both longitudinal and lateral tyre fo rces are restricted by the avai lable soil shear strength 

properties, adhes ion and the imposed tyre verti cal force. Consequently it is obvious that, 

biasing more driving torque to the rear axle would reduce the longitudinal slip at the front 

and therefore, increase the lateral force generating potential at the front. At the same time, 

the counteracting side force at the rear would be reduced. The additional yaw moment 

shifts the handling characteristics towards an oversteering response, a fact which in turn 

reduces both the stabi lity and controllability of the vehicle. 

lt is clear from figure 4. 17 that, front wheel drive (FWO) and rear wheel drive (R WD) 

represent the extremes of the aforementioned analysis. For FWO, the vehicle is biased to 

behave towards an understeering response, while for R WO the vehicle is biased to behave 

towards an oversteering response which then deteriorates the vehicle stabili ty. 

Install ing torque distribution devices between fro nt and rear ax les, e.g. mechanical 

differentials, would simply regulate the cornering response accord ing to the criteria of 

torque di stribution used, such that, the handling characteristics would be somewhere 

bounded by those resulting from FWO and R WO behaviours, depending on the ax le 

weight distribution and the driving speed. 

For open central differential (0-0 -0): the driving torque is equall y di stributed between 

the ax les equation (4.89). Since the rear axle-tyres are subjected to a higher rolling 

resistance due to higher vertical weight and sinkage, both the longitud inal sli p and 

tractive force at the front axle-tyres will be higher than those developed at the rear axle-
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tyres. Consequently. the generated lateral forces at the rear axle will be higher than those 

at the front axle. On the other hand, the latera l load transfer from inward tyres to the 

outward tyres during cornering causes a considerable increase of the tractive force at the 

inward ones. The combined effect resu lts in an under-steering tendency at high lateral 

accelerations 
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For a locked centre differential (0-L-0): the driving torque is distributed between the 

front and rear wheels depending on the operating conditions, equation (4.9 1 ). Under the 
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condition of equal dynamic tyre rad ii for the front and rear tyres, the driving speed and 

thus the slip of all tyres equate and wi ll be regulated by that of the tyre with the most 

traction. Under given steering cond itions the rear axle with a larger weight and, 

therefore, relatively higher shear strength would be able to develop a larger driving torque 

than the front axle. The slip at the fron t ax le tyres, which is limited by the sli p at the rear 

axle tyres wou ld improve their potential to generate more lateral forces. This shifts the 

hand ling behaviour towards less understeer when compared to that achieved by the open 

central differential configuration. 

4.4.2.2 Transient Handling Response 

Between the appl ication of a steering input and the attainment of steady-state response, 

the vehicle is in a state of transience. The overall vehicle handling quality depends, to a 

great extent, on its characteri sti c transient response. The optimum transient response is 

that which has the fastest response with a min imum number of osc illations in the process 

of approaching the steady state condition. It is obvious from the steady-state analyses that 

the vehicle cornering behaviour not only depends on the static weight ratio but also on the 

soil mechan ical properties especiall y for sand soil s. In analyzing transient response for 

this case, two manoeuvres are considered: a step steer input manoeuvre (B I 0 740 I, 

2003) and a lane change manoeuvre (EI-Gindy and Woodrooffee. 1990). 

4.4.2.2.1 Step Steer Manoeuvre 

The step steering input is the simplest form of transient investigations, see fi gure 4.18.a. 

A steer angle of 2 degrees with in rise time of a second is applied and maintained at the 

fro nt left wheel whi le the angle of the front right wheel is calculated based on the 

Ackerman steering geometry (Wong, 200 I) . The manoeuvre is undertaken at a constant 

vehicle speed of 60 km/h. The vehicle forward speed is contro lled by means of a PlD 

controller. Initially, the forward speed drops due to the component of vehicle latera l 

velocity. Hence, an appropriate throttle input has to be applied in order to regain the 

velocity demand. This happens with an overshoot with a settling time prior to reaching 

the steady state condition. Theoretica ll y, the step steering input makes the vehicle fo llow 

a constant curvature path, figure 4. 18.b. 

139 



Chapter .f: .fx.f Off-Road Vehicle Model 

~2 ,----------------------------------------, 

2.0 

c;; 1.8 .. 
B. 1.& .. 
~ 1.4 
< 
~ 1.2 .. 
Ui 1.0 
a; 
~ 0.8 
:0: c 0 .6 

2 
~ 0.4 

0.2 

I 

0.0 + """T...,....r-""""'T'"....-f'-.-,....."'T'".,..,-.-,-.-,-..--,-.-,--.--1 
5 6 ~ 8 ~ 10 11 12 
Time (sec ) 

(a) 

5.5 ,----------------------------------------, 

5.0 

4.5 

.. 
I I , ' , - ... ____ _ 

N I ,, 
.!!! 4.0 I 

.§_ 3.5 I 

c ~ ~~--------
.2 3.0 I ' 
i! , I 
~ 2.5 : /- · - · - · - · -
g 2.0 . , 

j~ I El 
o.o+----_/ C;J 
~~~~~-r-r~~~-.-,-~-T-r,-~rT=r~~~ 

3 4 5 6 7 8 9 10 11 12 
Time (soc) 

(c) 
0.5 .---------------------------------------, 

.!!! O.Of--\• 

.§. -4.5 -

~ 

g .:- ·- ·--·--·--~ -1.0 1\ 

I ' f ! -1 .5 _, 

-2.0 

\ ---------
1 

' , .. -----­.. , 
0 1 2 3 4 5 6 7 8 9 10 11 12 

Time (see) 

(e) 

200,----------------------------------------, 

150 

K 
c 
0 
; 
c;; 100 
0 
Q.. 

1! 

~ 50 
0 
~ 

(.!) 

<.) 

--- 60 : 40 
~0 ~~-,-~--,-~--,-~--,-~~~~--~-q 

~0 ~ 50 1~0 150 
C.G Lateral Position (m) 

200 250 

(b) 

o.•o ,-----------------------------------------, 
0.35 I' 

I \ 
0.30 I \ 

~ : •,--------
;; 0.26 1 

~ I,...----------
?;- 0.20 :t 
g (;-·- ·--·--·--·-

~ :::: _)I' 
0.05 - -· 

0.00 - · 

40 : 10 

50 : 50 

--- 60 : 40 
~.06 -1-.,.....,,....,....,.....,.-,....,...,.....,..-,....,...,.....,..-,....,.--.-~;=;=r:::;::;=;~ 

6 ! : 10 11 12 
Timo (soe) 

(d) 
0.5 .---------------------------------------, 

o.o ~., '1 I I 
~~ I 1 

I I 
-1 .0 I 1 

1 
, 

"' -2.0 c. 
~ -2.5 

~ .J.O 
-3.5 

~.0 
40 : 60 

50 : 50 

60 : 40 

\ 

I \ I .,.. _ _ _ _ 

: \ .. 

' i ~·~·-·-·-·-· 
~ I 
1\ I 
I '( 
I' ' ~.0 ~;:::;:::;::, :;:::;: ,=:-...--r-r..,...,,;;.-:;=;:~;::;::~=r:~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 
Time (soe) 

(f) 

Figure 4.18 Transient Response of a tep teer Input on and oi l at 60 km/h 
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As a result of app lying the steering angle, a lateral acceleration is generated , figure 4.18.c. 

This lateral acceleration produces a centrifuga l force, which induces the vehicle sprung 

mass to roll, figure 4.18.f. and move with a lateral velocity as shown in figure 4.18.e. As a 

reaction to this, a lateral force is generated at the tyre-ground contact patch, hence, slip 

angles are generated, which control the vehicle handling characteristics (under-steer or 

over-steer). 

Referring to figure 4. 18, generally, it is obvious that, increasing the static weight 

distribution on the front ax le reduces the handling indicators' response, as explained 

before in the steady state analysis. However, it is clear that, this deterioration happens 

with a delay to reach steady state. For any change in wheel slip or sli p angle, tyres have a 

fini te response time relating to the time taken for the contact region to assume a new 

distorted shape. The lateral force delay of a side slip ryre is commonly called ·tyre lag' 

which has been explained by many researchers e.g. Crolla and EI-Razaz ( 1987). 

Furthermore, it is observed that, for the simulation of weight distribution 60% on front 

and 40% on rear axle, both the lateral acceleration and yaw velocity transient responses 

perform an overshoot, although the curve still roughly follows the trend of the step 

steering input case. This phenomenon can be explained by observing the roll angle 

response of the sprung mass. Owning to the roll motion a lateral load transfer takes place 

so that the vertical force on the left and right tyres fluctuates. 

At higher speeds, it is observed that sand soil behaves in an excessive manner. Since the 

sum of these fluctuated tyre lateral forces on all wheels is the only source that sustains the 

vehicle concerning, the vehicles centrifugal or lateral acceleration also fluctuates as 

shown in figures 4.18.c and d. Because of the extra weight at the front axle, the equivalent 

cornering stiffness at the front axle increases due to extra sinkage. As a result the vehicle 

becomes excessively over-steering and momentarily stabi lity is lost. Due to the complex 

interaction between the tyres and the sand . control is quickly re-gained and the vehicle 

stabilise at a different operation point. The oscillatory behaviour should not 

mis interpreted as an under- teering behaviour, as it is triggered by the roll motion of the 

vehicle due to the loss and subsequent re-gain of stability. 
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4.4.2.2.2 Lane Change Manoeuvre 

The vehicle is subjected to a doub le triangular steering input, applied at the front left 

wheel, figure 4.19.a with a constant angular speed of the steering wheel in both 

directions. The vehicle forward ve locity is kept at 60 km/h and the simulation is 

performed for the duration of 18 seconds. The PID controller is used to maintain the 

vehicle speed, as previously described. 

To demonstrate the transient cornering response of a 4x4 vehicle under off-road 

conditions, the handling characteristics of the same vehicle and weight distribution is 

simulated for different so ils. The variations of typical indicators for transient handling in 

a lane change manoeuvre, such as yaw velocity, lateral acceleration. and roll angle of the 

sprung mass are plotted in figure 4. 19. 

Generall y it should be noted that the values of lateral acceleration are low compared to 

the same vehicle, when on-road, see figu re 4.1 9.c. This is due to the restriction of the 

circumferential forces by the soil shearing strength , as a result of which the developed 

tyre latera l fo rces are remarkably lower than those for the case of the on-road manoeuvre. 

Compared to the results obtained during step steer manoeuvre, there is a significant 

improvement in the time response of the lateral acceleration and yaw velocity. Ho\ ever, 

with regard to the simulation results of the sand soil, the vehicle cornering response 

shows quite sensitive behaviour to the static weight distribution and dynamic load 

transfer. According to (Bekker, 1960) soi ls can be classi fied to plastic so il s (e.g. clay or 

loom) friction soils (e.g. dry sand) or mixture of plastic and friction properties. The 

maximum shear strength provided by the soil can be described by Mohr-Coulomb failure 

cri terion, see equation (4.93). In contrary to clay and loam soi ls, the shear strength 

properties of sand soils and hence the mechanism of tyre forces generation are highly 

dominated by the imposed tyre vertica l weight and the angle of internal friction. 

Increasing the tyre vertica l load squeezes the sand grains against each other and improves 

its shear strength. As the tyres' vertical forces change, tyre lateral forces also vary. 

142 



Chapter ./: ./x ./ Off-Road Vehicle Model 

2.0 

1 .~ 

a; .. 
:!:?. 1.0 .. 
a, 
c 0.5 
< 
~ .. 
g 0.0 
(/) 

<i .. -(1.5 
.<: 
:;:: 
c 
~ 

-1 .0 

IL 

-1 .5 

-2.0 

0 2 4 6 a 10 12 ,. 
Timo (s) 

(a) 

3.5 -r----------------------, 
3.0 

2.5 

N 2.0 n :--\ , 
-!!! ' I ' .§. 1.5 , , • ', 

~ 1.0 , . ,' \ ,,_ 

::!! 0.5 " ~--j ;:: \\ / ,: ·-.- . .::::a--

E -1.0 I 
S ::~ \ .• / // _::~r:::: 

-!!! 

-z.s \ I -- Clay..,,, 
-3.0 ..., Sand sott 
-3.5 +-r-,--,--.--~,....---yl---r---,---r--r~=;:l===r=r 1 ~ 

0 2 4 6 8 10 12 ,. 16 18 
Tlmo (s) 

(c) 

z.o,------------------------r========~ 
Wtigbt· )L 10 · 40 

1.5 ,, 
I \ 

I \ Sand son 
1.0 

Loam soil 

.§. 0.5 
?;-

tr. \ 
1: \ \ 1 . \ '<3 

0 0.0-

~ ,, ,...--·~-­
\ \ . ,.--\\ I , 

' \.;• , 
"-'/ 

~ -0.5 .. ... 
...J 

-1 .0 

-1 .5 

-2.0 +--.---r--r-r--r--,~r-,.-..-,-..-.,--.--.-.--,.-,..---l 

0 2 4 6 8 10 12 14 16 1a 
Time (s) 

(e) 

300 

! 
w.igb1·· ~ iA · ~~ 

\ 

\ 
-- Clay soil 

250 I \ Sand soil 

I \ 
I --· Loam soil 

c: \ 0 200 . ., \ 

i 'Vi \ 0 
IL ' 150 '2 ' ........... ..... _ \ .. 
! 
0 

100 ~ ............... '· IL 
(!) 

--~. ti ~ 
50 '\ 

0 

·10 -'0 .so -40 -30 -~0 _;. 0 
C.G Lateral Position (m) 

(b) 

0 .25,----------------------, 

0.20 

0 .15 

~ 0.10 

6 0.015 
?;-g 0.00-

~ 
3: .. 
> 

-0 .05 

.0.10 

-(1.20 

rt-"' 

If \ ', 
/., \ ......... 

I • -......... --11 ·--~--
. I 

. I I 
\ . I ./ I 

I 
/ 

W!lqht· "' 60 . t9 

CUysoU 

Sand soli 

Loam soW 
-(1.25 +..,.... ... ..,.... ... ..,.... ... ..,.... .......... ..,,,.....--,~;:=r=,r=r=,~ 

o 2 4 ' a 10 12 14 " u 
Tlmo (s) 

(d) 

5.0 ,-----------------------;:=======~ 

4.0 

3.0 

2.0 
a; 
! 1.0 .. 
c;, 0.0-
c 
< 
0 -1.0 
a: 

-3.0 

-4.0 

.... 
~ \ ( . \ 

I \ \ 
\ \ . \ 

Wttgbt· '4 to · 40 

Clay soU 

Sand soil 

loam soli 

\ \ -·-·--::.·~ . \ / ' ,.,--
\ ' ;· /"' . \ / 

\ . / y., 

a 10 
Time(s) 

(f) 

12 16 18 

Figure 4.19 Transient Response of a Double Triangular Steering Input at 60 km/h 

143 



Chapter 5: Tribo-Dynamics ' Modules of Visco-Lock Devices 

Chapter 5: Tribo-Dynamics' Modules of Visco­

Lock Devices 

Unti l 1980s the concept of 4WO was almost exclusively used for off-road vehicles. 

Today, nearly every American, European and Japanese vehicle manufacturer runs a 

special program for A WO vehicles. ystems used range from manually engaging second 

axle through to fu lly computerized traction control systems. 

Among the ' ide variations of permanent A WO ystems visco-lock devices, including 

viscous couplings of shafts and visco-lock limited- lip differentia ls, offer a possibili ty to 

maintain permanent A WO relatively inexpensively, providing an automati cally demand­

adj usted tracti ve force distribution in a relatively wide range. 

The main objective of this chapter is to develop tribe-dynamics modules to describe 

visco- lock devices through to fully parameterised physical models, -v hich capture the 

torque transmiss ion mechanism represented by various thermodynamic, hydrodynamic, 

structural and mechanica l modules. Therefore, the characteri stics of these devices can 

easily be altered with in a numerical simulation environment. 

The mechanism of torque transmitted by visco-lock devices is modelled by considering 

two different modes of operation. One is the normal viscous shearing mode, whi lst the 

other is the hump or sel f-torque amp I ification mode. The dependency of si I icone flu id 

viscosity on both shear rate and temperature is taken into account. 

In order to va lidate the proposed tribe-dynamics' modules, a test rig is devised to mimic 

the conditions of differential speed between axles. Furthermore, the transmitted shear 

torque and some related parameters are measured. The experimental results of typica l 

components are compared with the numerical simulations results showing satisfactory 

agreement between them. It should be mentioned that the numerical modelling is based 

on an initial work carried by Mohan ( 1992, 2002, 2003, 2004), as we ll as through 

co llaboration with him, resulting in two publications ( haraf et al. 2007a, 2007b). 
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5.1 General Considerations 

5.1 .1 Automotive Applications of Visco-Lock Devices 

The rotary viscous coupling is a component, which has been known in engineering for a 

long time for torque transmission or as torsional dampers. Recent developments of these 

couplings have been in the field of automotive drivelines in many cases. The main 

mechanism for torque transfer is based on the shearing friction of a high viscosity oi l film 

and, therefore the resistive torque of the v iscous coupl ing, which is dependent on the 

relative speed of the rotating contacting elements. T he viscous unit represents the basic 

element of an enti re family of products. it can be connected w ithin the drivel ine in series, 

ca lled viscous transmission (VT), or in paral lel known as the viscous con trol (VC). On 

the basis of realized designs, some typical appli cations of the visco-lock devices are 

presented by, for example (Taureg and Herrmann, 1988; Garrett, 200 I): 

5.1.1.1 Viscous Transmission Device (VT): 

Viscous coupl ing or transmission is commonly used to connect the rear ax le of the 

vehicle to the front axle as il lustrated in fi gure 5. 1. The inner set of plates is spl ined to a 

shaft-end, driven by the front propeller shaft. The outer set of the plates is splined to the 

outer drum, which is rigid ly connected to the rear propeller shaft. 

When one set of wheels attempts to spin faster, perhaps because it is slipp ing, the set of 

plates corresponding to those whee ls sp ins faster than the others. The fluid fi lm, trapped 

between the plates, tries to adhere to the faster disks through entrain ing action thus 

dragging the slower disks along. Th is transfers more torque to the slower moving wheels 

(the wheels that are not slipping). 

During cornering manoeuvres the di fference in speed between the wheels is not as large 

as when one w heel is sl ipping. The faster the plates spin relative to each other, the more 

torque the v iscous coupling transfers. The coupling does not interfere with vehicle 

turning, because the amount of torque transferred during a turn is usual ly qu i te small. 
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Figure 5. 1 Viscous Transmission Devices (VT) in A WD Vehicles 

5.1.1 .2 Viscous Control Device (VC): 

The shortcoming of a differential lock. used for ax le-d ifferentia ls or interax le-differentials 

is that, it is either di sengaged or full y engaged and has to be manually selected. However, 

combining a vi scous coupling with a differential provides an automatic way of 

neutralizing the differential action whenever there is relative speed between the front and 

rear final-drives, or when one of the wheels loses its grip and commences to spin . The 

viscous coup li ng can be incorporated with either an in terax le-differential to transmit more 

torque to the final-drive whose axle retains good road wheel traction as shown in figure 

5.2.a, or incorporated into a final-drive differential to transfer an increas ing amount of 

torque to the wheel, which has traction whenever the wheel on the opposite side loses its 

grip and spins, see figure 5.2.b. The viscous un it can progress ively and automatically lock 

out the differential action every time relat ive speed fluctuates between its two outputs. 

In a differential, there are two common methods of installing the viscous unit as shown in 

fi gure 5.3. These are: the shaft-to-carrier and the shaft-to-shaft. In a sha ft-to-carrier layout 

one set of plates is splined to the differential carri er, whilst the other set of plates is 

splined to the differentia l gear on one side which in turn is splined to its shaft . On the 

other hand, with a shaft-to-shaft arrangement the plates are connected alternately, one set 

to each of the differential gears. With the latter arrangement; although the viscous 
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coupli ng is connected, in e ffect in series between the ends of the two half-shafts, the 

differential gear nevertheless sti ll acts in parallel with it. 

~Front 
~-"'~'" 

T Engine 

:~±--: ._,_____,,..... 

Rear 
OitforonUai 

(a) Inter-Axle Differential 

Centre 
Oitfcrcn!lai 

Engine 

Vlsco-Lock 
Ditferon!lai 

(b) Axle Differential 

Figure 5.2 Configurations of the Viscous Control Devices (VC) in A WO vehicles 

~ 

(a) Shaft-to-Carrier (b) Shaft-to-Shaft 

Figure 5.3 Common Methods of Installing the Viscous Unit within Differential 
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5.1.2 Strategies of Traction Control system 

Basical ly any traction control system may be classified according lO the way the driving 

torque is regulated between the wheels (Ho lzwarth and May 1994) as: 

Proportion : the driv ing torque is distributed between the wheels in proportion to the 

adhesion properties at each wheel. However, drive torque still has the potential to exceed 

that available at the wheel with the lower adhesion properties, causing it to spin. 

L imiting: the amount o f driving torque del ivered to the wheels is lim ited in order to 

prevent excessive slippage of the wheel. By limiting the torque the effective low adhesion 

side can be optimised at or near its peak va lue. 

Optimal: provide the maximum utilization of the friction at each wheel independently 

through both proportion and limiting. In general limited sli p differentials act 

proportionally, but cannot limit. Engine TC systems can limit but cannot proportion, 

whilst the brake TC systems are capable of proportioning and limiting. 

Controlled Variable 
(Speed difference) 

• Soil mechanical properties 
• Wheel load distnbulion 
• Kmemauc mfluences 

Visco-lock 
Device 

Control Untt 

(T) Correcting Vanable 
(Viscous torque) 

Figure 5.4 VC Traction Control Strategy, adopted from (Taureg and Herrmann 1988) 

A viscous unit can be considered as a passive traction control system as shown in figure 

5.4. The wheel-speed dependent parameter ( 617) is fed back which gives the v iscous 

coupling shear torque (T). Without a speed difference the torque distribution cannot be 

regulated. This means that the dri ve torque, which is transmitted to the ax le or the wheel 

respectively, is automatically controlled in the sense of an optimized torque distribution 
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device. Factors causing disturbance in the tyre-road system are mainly the soil properties, 

the wheel load distribution, and the kinematic condit ions (Taureg and Herrmann 1988). 

5.2 Rheology of Silicone Fluids 

5.2.1 General Properties 

ilicone fluid is an important element of the visco-lock devices. I t has been selected 

because, in contrast to the mineral oils. the viscosity of si licone falls to a lesser degree 

with rising temperature. Furthermore, the fluid remains stab le even at very high 

temperatures. This is mainly due to its resistance to oxidation and owing to its chemical 

inertness. ilicone fluids may be expressed as un-branched chains of alternate oxygen and 

silicon atoms or siloxane group ( i-0- i) wi th methyl groups (CH3) attached to the free 

va lences of the silicon. The stabi lity of the inorganic siloxane, Si-0-Si bonds, is a maj or 

contributor to the inert behaviour of the sil icone nuids. The number of Siloxane units 

determines the molecular weight of the Sil icone molecule and to a great extent, the 

kinematic v iscosity of the silicone. The molecular weight also affects the viscosity-shear 

rate characteristics. Poly-dim-ethyl-siloxane is a non- ewtonian. pseudo-plastic fluid. In 

such a fluid viscosity decreases with increasing shear rate. stabili zing at some high shear 

rate (Tung and Linden, 1985). 

5.2.2 Viscosity-Temperature Dependency 

Calculation of the viscous shear torque depends, to a great extent, not only on the flu id 

viscos ity, but also on its temperature dependency. Experimental data of silicone viscos ity­

temperature dependency is usually plotted in a logarithmic diagram, and then an 

empirical equation of the folio" ing forms is used to fit the measured data: 

Equation (5. 1) can be used to ca lculate the kinematic viscosity (v0 ) at any temperature 

(B) a a function of the nominal viscosity (vu), given at nominal temperature 

( 0" = 25 oc), where (A) is an empirical constant and its value is determined empirically. 
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(5. 1) 

Another empirical equation given by Dow Coming Corporation ( 1962) is as follows: 

log (v
0

) = ( 722·5 + O.~OOOJ2 · v, )+ 1.004 · log(v, ) - 2.447 (5.2) 

5.2.3 Viscosity-Shear-Rate Dependency 

Genera lly. the relationship bet' een the viscosity of si licones and shear rate is non-

ewtonian , especially at higher shear rates. Moreover, silicones exhibit pseudo-plastic 

behav iour under shear strain , i.e. when the shear rate increases, the appa rent viscosity 

decreases. However, the drop in apparent viscosity is noted for the higher viscos ity nuids, 

which have a higher molecular weight. 

The vi eo ity-shear rate characteri tic for a given fluid at any temperature of interest are 

non-linear. A mathematical relationship defining this characteristic is, therefore, difficult 

to develop. Plotting viscosity versus shear rate on a logarithmic plot reduces the non­

linearity only at low and extremely high shear rates figure 5.5. However, it was found 

that, the logarithmic relationship between viscosity and shear rate for the entire shear rate 

range can be expressed mathematically using the following bode empirical equation 

(Tung and Linden, 1985). 

(5.3) 

where: 

(,u) The dynamic viscosity at a speci fie temperature. 

(,u,> ) The dynamic viscosity at a nominal temperature and nearly zero shear rate. 

(m) The slope of the regression I ine BC at the high shear rates 

(Yn) Critical shear rate (intersection of horizontal line passing through ,U
0 

and line BC) 
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Figure 5.5 Mathematical Model of Viscosity hear Rate Dependency 

(after Tung and Linden, 1985) 

ormally, silicone fluids can be distinguished by its nominal viscosity (vJ which is 

measured at room temperature (25°C) and approximately zero shear rate. For instance; 

silicone fluid with a kinematic viscosity of 30 [kc t] may be referred to as 30 K. The 

kinematic viscosity is expressed in [centistokes] or [mm2-s- 1
]. The relation between the 

dynamic and kinematic visco ity can be specified using the fluid density as: (,u = p · v). 

Therefore, equation (5.3) can be expressed in terms or kinematic viscosity as follows: 

V Yn 
( J

- 111 

~= J-/ +r/ 
(5.4) 

Equation (5.4) can be further simplified by assuming that at higher shear rates (r >> y8 ) , 

the critical shear rate can be neglected accordingly, thus: 

V - V· - -V· -_ ( r n ) -"' _ ( r )"' 
0 • () • r r11 (5.5) 

lt shou ld be noted that the relat ionship between shear stress and shear strain rate can be 

identified from the mathematical relationship between viscosi ty and shear rate. For the 

viscous shearing mechanism the transmitted shear torque is related to the shear stress 

between the input and output plates, and shear strain rate is proportional to the differential 

speed between the input and output plates. 
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5.3 Mathematical Model of Viscous Shear Torque 

5.3.1 Newtonian Fluid Model 

A wel l known test to establish the shear torque versus rotational speed characteristics is to 

drive the v iscous coupling fo r I 0 seconds with a ramp speed from zero to I 00 rpm at a 

rate of I 0 rpm/s. It is assumed that, the output shaft is kept at zero speed (i.e. locked). The 

mathematical model for viscous shear torque during such a test is developed in thi s 

section . General properties of the silicone fluid used here can be found in appendix (A). 

The equation for the total viscous shear torque (7;.) from one s ide of the inner plate can 

be derived from bas ic principles by integrating the shear mo ment due to shear stress over 

the plates acti ve area (A) . The flow between the plates has a Reynolds Number(m << 1), 

thus, a li near veloc ity profil e can be assumed in the gap (through the entrained lubricant 

film thickness). The inner plate has a rel ative rotational speed ( w) with a gap (S) from 

the adj acent outer plate, fi gure 5.6. Therefore: 

,, 
Tv = Jr ·r·dA=27r· Jr·1·2 ·dr (5.6) 

A 'I 

The bas ic definition of the dynamic viscosity is given by: (I' = ; = (:) /( ~;)} 
Therefore, an expression for the shear stress can be written as follows: 

r=,u{:) (5.7) 

The shear stra in rate (;V) at any radius (r) over the ga p ( S) between inner and outer 

plates can be expressed as a function of the rotational speed difference (w) as follows: 

. du w· r r=-=-
dy s (5.8) 

Form eq uations (5.7) and (5.8), a genera l form of the viscous shear torque may be 

obtained as follows: 
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Figure 5.6 Simplified Model of One Inner and Two Outer Plates 

In order to account for the reduction in the effective shear area due to the presence of the 

perforations and slots, an empirical correction factor ( KP = 0.7 : 0.8) is introduced 111 

equation (5. 1 0). This factor depends on the plate's slots and perforation dimensions. 

(
K = Area of the wetted plate swface J 

P Area of the total theoretical sutface 
(5. 1 I) 

Equation (5. 1 0) shows that the transmitted shear torque (T,.) can be increased as follows: 

Using a fluid with a higher viscosity: During operation and as a result of heat 

generated, silicone's viscosity decreases, which in turn reduces the transferred torque. 

This justifies the employment of ilicone fluid in rotary viscous couplings, as its 

viscosity remains constant over a long range of operating temperatures. 
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The torque is proportional to the 41
h power of the effective radius of the plates. Us ing 

plates with higher dimensions will increase the transmitted torque. 

When the differential speed between the plates increases. 

When the gap between the plates is reduced. lt is noticed that if the gap reduces to a 

lower value the viscous torque rises sharply as shown later in fi gure 5.9. 

5.3.2 Isothermal and Non-Newtonian Fluid Model 

In ection 5.3. 1, it was assumed that the silicone fl uid is ewtonian (the viscosity remains 

independent of the shear strain rate). so the calculated viscous torque is expected to be 

higher than its actual value. As mentioned previously, silicone fluids exhi bit pseudo­

plastic behaviour (i.e. viscosity decrease as shear strain rate increases, a non-Newtonian 

behav iour). Thus. a correction for viscosity mu t be carried out to take this effect into 

account. This is carried out by substituting the viscosity given by equation (5.5) and 

integrating over the shearing area. lt should be noted that, the fo llowing derivation of 

shear torque does not take into account any thermal effects (i.e. isothermal). 

( )

Ill 

w. r 
v = v · - ­

o s . ·rn 

dT._. = 2n. p . ''o . (J) • Jr3+m . dr 
( )

(l+m) 'l 

I · m S 
Yn ~ 

T.. = 2n. p. V() . K • . (r(4+m)- r (4+m) ) . ( (J) )(J,m) 
I (4 +m)· r/ " I 2 I S 

Ka 

_ "' . ( ()) )(l+m) 
T,, - K, s 
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where ( K1) is given as follows: 

K -(27r·K1, ·p· 1111 J·( {4+m)_ (4+m) ) ,- ~ ~ 
( 4 +m). rn"' 

(5. 17) 

lt should be noted that, if the slope ofthe regression line BC (m) at the high shear rates is 

equal to zero (slope of a straight line), then equation (5. 15) will be reduced to equation 

(5.1 0) and in this case there is no effect due to shear strain rate (a Newtonian fluid). 

5.3.3 Adiabatic and Non-Newtonian Fluid Model 

The viscous shearing torque calculated by equation (5. 15) is based on the assumption that 

the temperature of the fluid keeps constant at the room temperature. However, the work 

exerted by the plates in shearing the silicone fluid is converted into an equivalent amount 

of heat and therefore, increases the nuid's temperature. If the instantaneous torque and 

rotational speed are known. then the effect ive rate of heat generation can be equated to 

the shear work done as follows: 

dO 
---=:::. = 'Fr. . (J) 

dl 
(5. 18) 

(5. 19) 

ince the inner and outer plates are in permanent contact with the silicone fluid the 

generated heat is transferred directl y to the fluid and then to the surrounding air through 

the viscous coupling's housing. The rate of heat transfer through the viscous coupling is a 

t ime dependent process. Furthermore, it depends on the thermal properties of the 

components and the effective convective heat transfer coefficient on the fluid-sol id 

interface. Since the test procedure is carried out wi thin relatively small time ( I 0 

seconds), then it would be reasonable to assume that the thermal process is adiabatic. This 

means that. the work exetted by the plates is converted into heat wh ich is absorbed by the 

core of the viscous coupling, consisting of the inner and outer plates, spacers, and the 

fluid trapped within the gap between the adjacen t plates. 
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(5.20) 

Where: 

(m1 ,mc): Masses ofthe si licone fl uid and the steel core includi ng the plates and the drum 

( c1 ,c,. ) : pecific heat coefficients of the sil icone fluid and core respectively 

( Ll8) :The incremental change in temperature corresponds to the time interval ( t::.t) . 

During the computational scheme and at each time step ( t::.l) , the temperature ri se ( LlB) 

is calculated. Accordingly. silicone 's fluid viscosity is updated, based on equation (5.1) 

and then is used to compute the shear torque given by equation (5 .1 5), see figure 5.8. 

The viscous shear torque is calculated and plotted fo r all the aforementioned derived 

models during the speed ramp-rate test of I 0 seconds run up to I 00 rpm, see figure 5. 7. lt 

is obvious that, the model wi th an ad iabatic assumption provides more realistic 

characteristics for the transmitted vi scous shear torque. 
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Figure 5.7 Viscous Shear Torque for Different Levels of Modelling Assumptions 
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Inner Plate Data : 12,1,, n,, KP) 

Outer Plate Data : ('i, n., ) 

Fluid Rehology 
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Figure 5.8 Flow Chart of Calculating tep of the Viscous Torque. 
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5.4 Mathematical Model of Self Torque Induced Amplification 

A viscous unit normally operates in the viscous shear mode. as described in section 5.3, 

where the generated torque is mainly due to the fluid sheari ng effect. Under certain 

circumstances, the coupling functi on changes into the so-cal led ·Hump' or ' Induced 

Torque Amplification· mode, which is characterized by a significant increase in torque. 

The advantage of this mode is that it works as a self-regulating mechanism to prevent the 

coup ling from damage due to higher generated bulk pressures. In add ition, it causes ful l 

locking of the unit, where there is no longer any relative motion between the plates. This 

causes the temperature to fall again, thereby reducing the pressure. Both temperature and 

pressure finally ettle at a certain level according to the instantaneous traction e ffort. 

In section 5.3, it was assumed that gaps between the plates remain constant i.e. there is no 

ax ial movements of the plates. However, in reality, these gaps vary randomly. As the gap 

between any pair of contiguous plates decreases, both the generated shear stress and shear 

torque increase accordingly as shown in fi gure 5.9. 
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Figure 5.9 Effect of Inner Plate Axial Movement on the Viscous hear Torque 
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A featu re o f the design of rotary viscous coupli ngs is that thei r plates include slots and 

perforations. Also, the inner plate tabs are produced with an edge which encourages fluid 

entraining action through the hydrodynamic wedge effect and activates the initiation of 

the we ll known hump mode. The prescribed plate shape design is the key for developing 

the hump mode as described below, figure 5.10: 

Step ( I): The slotted edge geometry of the tabs stimulates side-2 of the inner plate to 

have a narrower gap with side-3 of the outer gap. 

- ~ (2): The side with a narrower gap (side-2) generates a higher shear stress than the 

side with a larger gap (side-3). 

- ~ (3): The moment due to the resu lting di fferenti al shear forces across the tab sides 

causes the plate tabs to twist around its centroid. 

- Step (4): With the twisted shape of the inner plate tab and the di fferent ia l speed 

between the inner and outer plates, the tabs act as a sliding pad bearing, generating a 

hydrodynamic pressure over them, which in turn, further increases the axial force. This 

force pushes the inner plates towards side-3 of the outer plates, unti l the leading edge 

of side-2 makes contact with s ide-3. The pressure drop might be lim ited by the 

effective local vapour pressure of the fluid/air mixture. 

- ~ (5): The introduced Coulomb fri ction at the rubbing leading edge increases the 

twisting moment and results in the twist of the tabs. The increased twist creates a 

higher di fferential pressure across side- I and side-2 of the inner plate. 

- Step (6): At room temperature, the coupling is only partially fill ed with the silicone 

fluid . At a certain criti cal temperature, when all the silicone fluid has expanded to 

fu ll y fill the voids, the bul k pressure increases. Consequently, the hydrodynamic 

pressure and the net axial force increase rapidl y until the plates contact each other. 

~ (7): This results in a sudden rise in the differential pressure across the inner plate. 

Side-2 would now be able to realize the fu ll potential of the pressure drop instead of 

being limited by the local vapour pressure. The net torque is over twenty times the 

torque of a non-STA viscous coupling of a similar size. This self-induced torque 

amplification is sustained so long as the pressure and relative speed are maintained. 
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Figure 5.10 Model of Self Induced Torque Amplification (STA) 

In view of the aforementioned hypothesis of self-torque amplification mode, appropriate 

mathematica l models are required to be developed, as described below. 

5.4.1 Hydrodynamic Pressure Model 

The twisted shape of the inner plate tab in conjunction with the outer plate may be 

analyzed as a sliding pad bearing as shown in fi gure 5.10. The inner plate tab is assumed 

to be stationary and inclined wi th a small angle ( 8), whi le the outer plate moves with a 

sliding velocity. 

The axis system (X ,Y,Z) represents the tangential ax ial and radial directions of the 

flow field relative to the coupling respectively. lt is also assumed that the tab depth is 

relatively large in the ( Z) di rection. The above assumptions allow the use of a two­

dimensional rectilinear so lu tion. The flow field is assumed to be an incompressible, 

isotropic, Newtonian, recti linear, two-dimensional, steady-state flow. 
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The Navier-Stokes Equation: 

Accord ing to the assumption of ewtonian behaviour of a fluid the Navier-Stokes 

equations in rectangular coordi nates can be written as follows (Hamrock, 2004): 

(5.21) 

Where (u, v. w) are the fluid veloc ity components in (X ,Y.Z) directions respectively. 

a vier- takes formulation contains three equations and four unknowns (u, v, w, p). A 

fourth equation is provided by the continuity or flow condition in order to find the 

solution (Hamrock, 2004). 

Continuity of Flow Condition : 

op a a a - +- (p·u)+ - (p·v) +- (p·w) = 0 ot ax 8y a= (5.22) 

If densi ty is assumed to be constant, the continuity equation may be written as fo llows: 

(5 .23) 

Reynolds' Number: 

The relative significance of inertial and viscous forces in any fl ow can be judged from the 

va lue of Reynolds' number (Munson et al., 2005). It is used to distinguish between 

laminar and turbulent flows. If the Reynolds' number is very small (~ << I) , this 

indicates that the viscous force is dominant compared to the inertial and body forces and 

it may be possible to neglect them. uch low Reynolds· numbers are typical of narrow 

conjunctions. Furthermore, this means the fluid density is not an important vari ab le, 
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since the pressures are quite high and the fluid may be considered to have become 

incompressible. Flow at a very small Reynolds' number is commonly referred to as 

creeping now, and is typical of al l lubrication problems. 

The Reynolds' number for any flow is defined in terms of a characteri stic length. The 

characteristic dimensions for the flow are the tab length ( L) and the gap height (h) (i.e. 

the film th ickness). 

91 = Inertia = p · U · L = U. L 
Viscous J1 V 

(5.24) 

The Reynolds' number expressed 111 equation (5.24) is the conventional Reynolds' 

number found in fluid mechanics. However, in fluid film lubrication because of the 

dominance of the viscous term the modified Reynolds' number is used. Considering the 

motion in the (x) direction, the modified Reynolds' number can be defined as fol lows: 

91• = l~ertia Force = (p. u . ou )/(/-' . o2

u J = (p. tj__J/(1-'. -;.) = p ·u· h
2 

V iSCOUS Force Ox ol L h- J-l · L 

where: 

(IR) Reynolds' umber. 

( 91 ') Modified Reynolds' Number ( 91' = 0.000105). 

(91h) Reynolds' umber defined for gap height (~h = 0.066). 

(91 L) Reynolds' Number defined fortab length (~ L = 4.2) . 

(5.25) 

(5.26) 

lt is obvious that, the Reynolds' number is very small which describes creeping now, 

therefore. it wou ld be reasonable to neglect the inertial terms in comparison with the 

viscous terms in the avier- takes equation. Consequently, the left hand side of the 

Navier- tokes equations may be neglected (set to zero). Equation (5.2 1) can be reduced 

to the following form : 
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(5.27) 

Assumptions: 

- Since the dimension or the contact in the y-direction can be considered to be smal ler 

compared to the direction or entraining motion (x-d irection), the pressure grad ient in 

that d irection may be ignored ( : = 0) . 

- In a semi-infinite flow field both the velocity and pressure variations along the (z)­

axis may be neglected (very small film thickness). A lso. the velocity (w) in the (z) 

direction can be ignored (no side- leakage). 

-Compared to the longitudinal velocity (u), the velocity component (v) is negligible 

. (a2u) (a2u a2u) (approach veloctty). Furthermore, -, can be neglected, because -, << -, . ax- ax- ay-

Using the aforementioned assumptions, equation (5.27) can be simplified as fol lows: 

(5.28) 

For steady-state condi tions the pressure has been shown to be a function of (x) only. 

T hus equation (5.28) can be in tegrated directly to give a general expression for the 

velocity gradient as: 

(5.29) 
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Where (A) is the constant of integration. By integrating equation (5 .29), the flow 

velocity (speed of entraining motion) can be obta ined as: 

u =L·(ap ) +i·y+B 
2 •JI ox j.1 

(5.30) 

If zero slip at the fluid-so lid interface is assumed (in accordance wi th the Newtonian slow 

viscous motion), then the boundary values for the ve locity are given by: 

y=O ~ u=U } y= h ~ u=O 
(5.31) 

B =U 

} A~-~{ ~{8P)+u) 
h 2· p ax 

(5.32) 

Theslidervelocity (U) canbecalculated fromthetip speedofthe tab (U=W ·li ) where 

(w) is the relative rotational speed of the inner plate and (r1 ) is the tip radius. With the 

boundary conditions obtained from equation (5.3 1 ), the elocity gradient ( u) can be 

given as fo llows: 

(5.33) 

The volume flow rate per unit depth in the x-direction ( qx) may be derived from the 

reduced form of continuity equation as follows: 

h(;r) 

qx = I U ·dy 
0 

(5.34) 

ubstituting equation (5.33) into equation (5.34) gives the volumetric flow rate per unit 

depth as follows: 

q, ~ 7( U {1-~ ) -( ;~}(:}( I< )}dy (5.35) 
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(5.36) 

o, (:) may be rearranged and wri tten in terms of ( q.) as follows: 

(5.37) 

(5.38) 

The boundary values for the pressure are given by: 

x=o ~ p(x) = p, ~ C= pn (5.39) 

r dx x d 
p ( x) = Po +6j.J· U · J~- 1 2,u ·qx · Jh~ 

0 11 0 
(5.40) 

Volume Flow Rate per Unit Depth (qr): 

x= l p(x) = Po (5.4 1) 

1 dx 1 dx 
P =p +6u ·U· J- - l2 u·a ·J-

" 11 r h2 r 1x h3 
0 0 

(5.42) 

q, = ~ ((f~ )/0~~ )J (5.43) 

The oil film thickness can be written as a function of (x) and the tab inclination angle 

( o) as fo llows, see figure 5. 1 0. 

h(x) =o ·(a-x) (5.44) 
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x=O ~ h(x)=h1 =8 ·a 

x=l ~ h(x)=~ = 8·(a - l) 

a·(a-1) 
q =U ·8 ·--'-~ 

r 2a - l 

Hydrodynamic Pressure p(x): 

} (5.45) 

(5.46) 

(5.47) 

Substituti ng equation (5.47) into equation (5.38) y ie lds the expression for hydrodynamic 

pressure di stribution as: 

'I dx a·(a - 1) x dx p(x) =p11 +6j.1·U · 
2 2 - l2j.1 ·U·8· ·I 

3 3 
0 8 ·(a - x) 2a - l 0 8 ·(a - x) 

( 
·) _ 6}1· U ( I )x l 2JL · U a· (a - I) [ 1 Jr p .X - p, + --? - . -- - ? . . ? 

g - a- x 0 g - 2a - I 2 · (a- x )" 
0 

p('K) =p + 6J.1· U ·((-1 _ _!_)-(a·(a-/)J·( I __ I JJ 
· " 82 a - x a 2a - 1 (a-x)2 (a/ 

From figure 5.1 0. the following terms can be substituted: 

h - h 
x =-'-

8 

h 
a - x= -

8 

a - 1= ~ 
8 

166 

h 
a =--'-

8 

(5.48) 

(5 .49) 

(5.50) 

(5.5 1) 

(5.52) 



Chapter 5: Tribo-Dynamics · Modules of Visco-Lock Devices 

The Net Axial Force per Unit Depth ( P): 

The net axial force per unit depth can be obtained by integrating the hydrodynamic 

pressure distribution over the tab length (!) . 

1 6p· U· L 'J(h - h)·(l1-~) 
P = p (x) · dx = p ·l + · 1 

• dx 
(I (h 2- h 2) h2 

I 2 0 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

By introducing the variable: k, = ( ~ J 

(5.57) 

Whi lst side ( I) of the inner plate tab undergoes pressure given by equation (5.52), side (2) 

experiences a corresponding drop in pressure below the ambient pressure such that it is 

lim ited by the effective vapour pressure of the silicone-air mixture, see figure 5.1 0. In 

other words, below this threshold pressure, the air comes out of the solution or the 

silicone wo uld flash into vapour, especially at higher temperatures, when the s ilicone 

vapour pressure cannot be neglected. 

The net ax ial force exerted on the tab is the sum of the integrated pressures on its side- I 

and side-2. The total force per unit depth can be given as follows: 
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(5.58) 

The conditional factor (Kc) is in troduced to modify the effect of the pressure on side-2, 

when the fluid bulk pressure is below the critical threshold in order to avoid formation of 

vapour. 

5.4.2 Thermal Energy Calculations 

The change in sil icone temperature due to shear and Coulomb effects is calculated by 

making some implifying assumptions of lumped-mass and one-dimensional thermal 

conduction model ( lncropera, 2002). 

The generated viscous shear and the Coulomb fricti on work done by the rotating plates 

are converted into heat (Q) , which is calculated as follows: 

dO -= = (T,, + 7;.)- (1) 

dl 
(5.59) 

ince the plates and the flu id are in contact. so it wou ld be reasonable to assume that both 

remain at the same temperature ( 01 ) . Furthermore. the conducted heat (Q1) from the 

viscous coupling core into the housing can be expressed using the following equation: 

dQ1 =[leA] ·(B _8 ) 
dt 6x I ' 

' 
(5.60) 

Where; [ ~ 1 is the equivalent conduction parameter th rough the housing. 

The energy convected by the air (Q2) fi·om the housing outside surface at ( Bl) to the 

surrounding air at (Ba) can be expressed using the following equation : 

dQ2 = [h . A] . (e - o ) 
dt I I (I 

(5.6 1) 
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Where, [ h ·A]. is the corresponding convection parameter from the housing's outer 

surface. Two other relations can also be obtained from the heat balance from core to the 

housing and from the housing to ai r as follows: 

dQ _ dQ1 =[me] . dB1 
dt dt c dt 

(5.62) 

dO dO dB 
---=:::!. - ---=:d. = [m c] · -·' 

ell clt \ dt 
(5.63) 

Where, (me )c and (me) ~ are the equivalent thermal masses for the viscous coupling core 

and the steel housing respectively. During the simulation Equations from (5.59) to (5.63) 

are solved numerically to obtain the tluid and housing temperatures. 

The pressure rise inside the viscous coupling is established based on the silicone fluid 

temperature. The development of the mathemat ical models for pressure ri se is carried out 

in two steps as described below. 

5.4.2.1 Compression of The Gas Phase: 

Initiall y, the coupling is partially fill ed with silicone fluid and air voids (Vo). With an 

increase in temperature (B) the silicone fluid expands, compressing the air voids ( P). A 

relationship can be obtained by applying the ideal gas law as follows (Mohan, 2004): 

R·B 
P- -
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Assumptions: 

Assume that both the air and silicone fluid are mixed together at the same 

temperature, thus: ( ( dB,BL,, = ( dB.B),.,md ) 

Thermal expansion of the steel housing may be neglected when compared to the 

thermal expansion of the fluid,, thus: ( dV,, ~ 0). 

The expansion volume of the fluid may be substituted for the reduction in the volume 

of air, thus: ( d~, = -d~ = - {31 .. • V1• ·dB). 

The volume of air at any temperature can be calcu lated as: 

(5.65) 

(V,, ) is the initial vo lume of the viscous coupling housing, assumed to be constant, thus: 

(5.66) 

For each time step, the incremental change in fluid temperature ( d81 ) is calculated and is 

used to update the bulk pressure ri se (dP) and the expansion volume ofthe fluid (dV1 ) , 

see fi gure 5.11. A the fluid temperature increases, the fluid expands and compre ses the 

volume of air in the housing. The in itial rate of pressure rise is smal l, because of the high 

compressibility of air. 
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5.4.2.2 Compression of The Liquid Phase: 

After a certain cri tical temperature, the flu id completely fi lls the vo id volume. The 

expansion of the steel housing of the viscous coupling can no longer be neglected. The 

effective fl uid compress ion may be calculated as the difference between the vo lume of 

the fluid (V1. ) in its free state, and the smaller vo lume ( ~, ) of the viscous coupling's 

housing, which the flu id is made to occupy. 

From the definition of the flu id bulk modulus ( K1. ) , it fo llows that (Munson et al., 2005): 

dP = K ·( dV,.- J= K ·(V,.,. -V,~, J 
~ V ~ V 

I· I· 

(5.67) 

(5.68) 

The in itial flu id fi lling ratio (C1. ) is defi ned as the ratio of the ·fl uid (vi. ) and the housing 

vo id vo lumes ( 1~,) at thefi lling temperalU re (B, ) . Thus: 

(5.69) 

For a temperature rise ( !). {) = () - e,) both flu id and housing volumes can be calculated as: 

(5.70) 

V,~, =V,,, (1 + /Js . !).{) ) (5.71) 

The pressure rise ( f).P) may be calculated, based on the fo llowing relations. 

(5 .72) 
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5.4.3 Moments due to Coulomb Friction 

As a result of the tab twisted shape and the differential speed, the plate tabs experience an 

axial force, causing their leading edge to be pushed against the outer plates. The total 

ax ial force ( P, ) is calculated from equation (5.58) as the sum of the forces on side- I and 

side-2. An equivalent differentia l pressure ( P. ) may be introduced in the contact area of 

the plate, which would result in the same axial force acting on the tabs (Mohan, 2002), 

see figure 5. 12, thus: 

P, P, 

* 'k~ 
r, 

r, - .. 
Figure 5. 12 Coulomb Friction Torque Model 

P ~ 
• = ( 2 2) 

1(. 'i - l j 
(5.73) 

Consider an elemental annular ring area of v idth (dr) located at a rad ius (r) . The 

elementary friction force ( dF) resulting from the effective fri ction between the plates 

( '7) can be ca lculated as fo llows: 
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dF= n ·P ·2Jr·r·dr 'I c (5.74) 

The corresponding elemental torque ( dT) is given as: 

dT = dF · r = 17 · P., · 2Jr · r 2 
• dr (5.75) 

The numerical integration of the elemental torque (dT ) from the tab inner rad ius (13) to 

the outer radius h) gives the Coulomb frictional torque (~. )as: 

2 
I =- ·Jr·n·P ·(r 3 - r 3

) ( ..., 'I c 2 3 
.) 

(5.76) 

lt should be noted that the calcu lated Coulomb fri ctiona l torque. equation (5.76), is added 

to the viscous shear torque (r;,) to provide the total torque provided per plate cell. 

(5.77) 

5.4.4 Structural Deformation of The Inner Plate Tab 

Twisting Moment Due to Differential Shear Forces: 

From equation (5 . 15) it is obvious that, when the inner plate moves away from the mid­

poin t between the outer plates, side- 1 and side-2 begin to experi ence different shear 

stresses. Referring to fi gure 5.1 3, the viscous shear forces acting on side- I and side-2, 

wi th corresponding gaps ( S1) and ( S2 ) , form a counter-clockwise twisting moment 

(M,, ) about the centroid of the base of the tab. The total twisting moment on one tab 

from the outer periphery up to a radi us (r) is obtained as fo llows (Mohan, 2003): 

M,,,(r) = r'' r2([/-Ldu] -[J-Ldu] ) ·~·r·dr·diJ! 
1v, r dy 2 dy I 2 

(5.78) 
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Figure 5. 13 Structural Deformation of the Inner Plate Tab Model 

From equations (5.5, 5.8), it fol lows that: 

M ( ) 
_ p·v0 · t, ·(J) r" r! (2+m) I I d d (l+m) (( )(l+m) ( )(l+m)] 

,.. r - 2 . rZ' . l "' , r . s2 - S: . r . If/ (5.79) 

- p. VQ ·I, 'If/. (J)(I+m) (( I )(l+m} ( I )(l+m)] ( ' 2(3+m)- rP+m) J 
M,.- .:.__---=<-__:__y_:_; ___ . -S2 - s; . 3 + m (5.80) 

Twisting Moment Due to Coulomb Friction: 

As il lustrated in fi gures 5. 10 and 5. 13 the tab is subjected to an additional twisting 

moment ( M.,.c ), resulting from Coulomb friction at the tab 's leading edge. This torque 

can be calculated according to the differential pressure induced force between side-J and 

side-2 (~_2 ) , the number of tabs on the inner plate (n) as well as tab' s dimension as: 

174 



Chapter 5: Tribo-Dynamics ·Modules of Visco-Lock Devices 

M _ ~-2 ( l · 5 + I, ) 
TC --· f7 · 

n 2 
(5.8 1) 

Once Cou lomb friction comes into effect, the plates are irrevocably in the TA mode, 

even ifthe twisting moment due to viscous shear to rque, (Mr~ . ) reduces. 

Inner Plate Tab Angle of Twist: 

Calculation of the angle of twist is carried out by considering an elemental area (c!A) 

subjected to a differential shear stress from both sides of the tab as: 

ciF. = 2a · p · V0 • !!!.._ . (r) l+m. dr ( J
l+m 

I . m S 
YB I 

dF. _ 2a ' p 'V11 ( (I) ]I+ m ( )l+m d • - --'--......,_ · - · r · r 
2 ra"' s2 

(5.82) 

The corresponding twisting moment dM (r) around the tab's centriod can be obtained as: 

dM" =(dF2 - dF;)·b 

(5.83) 

( J
l+m 

dM = 2a·b·p·vn . !!!..__!!!__ ·(r)l+m ·dr 
tv . m S 

Yn 2 1 

This moment acts on an equivalent beam of length ( L = r -r3) .The effective denection at 

the section (r) is given by: 

d s: _ dM" · L _ 2a · b · p ·110 ( (J} (I) Jl+m ( . 2..-m l+m) d u. - ----'-----"- · --- · 1 - r. ·r · r 
IV K ·G ' "' ·K·G ss 3 

I r /1 I 2 I 

(5.84) 

The total deflection at the tip may be computed by integrating it over the tab 's radial 

length: 
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(5.85) 

Twisting angle due to Coulomb friction moment around the tab's centriod can be 

calculated as: 

0 = M 1c · L = F. . . ( 6. + 1, ) . ( r2 - r3 ) 

IC K ·G ( 2 K ·G 
I I 

(5.86) 

0 = _'7_· F_1 --'. (_2a_·_o_11,1_+_t,-'-) ·-'-(_'i ___ ,3~) 
" 2K·G I 

(5.87) 

where ( F,) ts the net total ax ial force per tab, (17) is the coefficient of Coulombic 

friction. 

The total twisting angle due to the differential shear stress and Coulomb friction is given 

as: 

o1()/ = o1,, + oiC (5.88) 

It should be noted that before a tab contact occurs, tab angle of twist is calculated based 

on equation (5.85). After contact, the tab angle of twist is calculated based on equation 

(5.88). 

The net axial tip deflection (6.) may be obtained by multiplying the angle of de flection 

by the width of the tab at the tip. This deflection can be measured during test and is used 

to characteri ze the deflected shape ofthe tab: (6. = 2ao). 

Figure 5. 14 shows the general algorithm for simulating the viscous coupl ing during self­

torque amplification mode. The numerical simulation procedures are carried out using 

ODE4: Runge-Kutta solver with fixed-step integration size of (0.00 Is), which was found 

adequate to ensure conversion of the algorithm. 
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Figure 5. 14 General A lgorithm of Viscous Coupl ing Simulation in STA Mode. 
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5.5 Experimental Methodology 

Val idation of numerical modell ing is an important step in any theoretica l analysis work, 

as it imparts confidence to the users in employing the model for design purposes. In order 

to validate the tribe-dynamics' modules of the visco-lock devices, the simulated 

conditions described in sections 5.3 and 5.4 are appli ed to typical components, and then 

the experimental findings under simi lar conditions are compared with the simulation 

results. 

5.5.1 Rheological Measurements for The Silicone Fluid 

From the theoretical analysis of visco-lock devices, it is obvious that, the rheology of 

silicone fluid has a significant e ffect upon the generated shear torque, especially the 

fluid s viscosity-temperature and viscosity-shear rate characteristics. Consequently it is 

of prime interest, to measure these characteri stics for given samples of the silicone flu ids 

used. 

To measure these characteristics, AR I 000 rheometer from TA Instruments, is used, see 

appendix (B). The instrument consists of a main unit mounted on a cast metal stand and 

electronic control circu itry contained within a separate electronic control system as shown 

in figure 5. 15. 

The rheometer unit contains an electronically-controlled induction motor with an atr 

bearing suppot1 for all the rotating pat1s. The drive motor is equipped with a hollow 

spindle which allows the geometry (cone and plate, parallel plate or concentric cylinders) 

to be securely attached. Measurement of angular displacement is made by an optical 

encoding device. The associated circuitry interpolates and digiti zes the resulting signal to 

produce digital data which is directl y related to the angular deflection of the rotating di sk, 

therefore, the strain of the sample, see fi gure 5.1 6. 

Temperature control is achieved using a Peltier plate system, which uses Peltier (thermo­

electric) effect to rapidly and accurately control heating and cooling of the fluid trapped 
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in the gap (the film thickness). By controlling the magnitude and direction of e lectric 

current the Peltier system can provide any desired level of active heating or cooling 

directly in the plate. 

The concept of measurement is to drive the geometry under controlled torque, then , both 

the shear stress (function of driving torque and plate area) and rate of shear strain 

(measured rotational speed times the plate radius divided by the gap size or film 

thickness) are measured and plotted for different values of the controlled temperature. 

The viscosity-shear rate characteristics are measured over the temperature range of 

(25 : I 50) °C as depicted in fi gure 5.17. lt is obvious that, at a lower shear strain rate, the 

fluid is characterized by Newtonian behaviour, where the viscosity is independent of the 

rate of shear strain. Fu1thermore, for each temperature, viscosity decreases as rate of shear 

strain increases. The observed drop in viscosity under shear strain rate is attri buted to the 

elongation and orientation in shear direction of the in itially randomly convolute chain 

molecules under the influence of shear loading. Moreover, and as a typical behaviour of 

pseudo-plastic fluids, the rate of decrease in apparent viscosity is more pronounced at the 

lower range of measured temperatures. 

The viscosity-shear rate characteristics at temperature 25 °C can be represented by the 

mathematical relationship given in equation (5.5). Therefore. the following parameters 

can be estimated from the measurements; the nominal kinematic viscosity 

( V
0 

= 80 KcSt) , the criti ca l shear rate (rJJ = 80 s-1
) and the slope of the regression line 

(m= - 0.85). 

The viscosity-temperature relationship can be predicted from viscosity-shear rate 

characteri stics at nearl y zero shear-stra in rate, as shown in figure 5. 18. The data obtained 

are plotted against temperature, and then, equations (5. I) and (5.2) are used to 

mathematically represent the relationship. Coefficient (A= - 1.37) can be obtained by 

fitting the measured data. Figure 5. 18 shows a sufficient accuracy when using both 

equations to predict vi scosity as function of temperature. 
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Electronic Control Unit Rheometer Thermal Control 

Figure 5. 15 Silicone Fluid Rheology Measurements 
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Figure 5.1 6 The ARlOOO Rheometer 
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5.5.2 Test Rig Design 

To capture the characteri stics of the viscous-shear torque mechanism transmitted by 

visco-lock devices, it is essential to represent the condition of differential speed or slip 

between the input and output of these devices. However, in practice these components are 

instal led within ax les or integrated with full transmiss ion systems. Therefore, it would be 

an advantage to consider their performance separately, rather than dealing with complex 

systems with many interacting parameters with manifold of effects. For this purpose, a 

special casing was designed to hold the differential unit as described later. Furthermore, 

different aspects associated with viscous-shear phenomenon, such as shear torque, shear 

rate and thermal effects are measured. The fol lowing sections deal with these issues in 

some deta il , providing justification for use of the given configuration. 

5.5.2.1 Visco-lock Differential Casing 

The idea of the differential casing design. to a great extent, was based on the construction 

layout of the di fferential itself and the functional implementation of the viscous unit. The 

viscous coupling unit is incorporated into a rear ax le differential to provide an automatic 

way of neutral izing the differential action, whenever one of the wheels loses its grip and 

commences to spin. The manner of instal lation of the viscous unit was based on the shaft­

to-carrier layout such that, the plates are connected alternately; one set of plates wa 

spl ined to the differential carrier, whilst the other set of plates was sp lined to the 

differential gear on one side, which in turn was splined to its shaft. 

In order to simulate and test the operation of such a configuration, the differential can be 

analyzed as a set of planetary gears. The gear. attached to the right half-ax le, can be 

considered as a sun gear, which drives the gearing system, as well as the inner plates of 

the viscous coupl ing. The other gear, attached to the left half axle, can be considered as a 

ring gear. The crown wheel is considered as the planet carrier, which is attached to the 

outer plates of the viscous coupling. 

For the purpose of viscous torque measurement, the crown wheel was locked to the 

cas ing, whilst the nng gear was free. Therefore, the net differential speed can be 
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measured from the speed of the sun gear and the driving toque is tota lly consumed by the 

viscous shear resistance, see figure 5. 19. 

For the purpose of lubrication, the differentia l assembly was covered with a sealed plastic 

sheet and partially fi lled with gear oil. Furthermore, a hole was tapped to lubricate the 

input shaft through an oi l cup. 

gear attached 
to the input or 
driving torque 

Figure 5. 19 Visco-Lock Differential Cas ing Assembly 

5.5.2.2 Torque Unit Assembly 

The differential un it, described earlier was driven and measured at the same time via the 

torque unit assembly as shown in fi gure 5.20. The unit consists of a torque transducer, 

which was installed between two self-aligning plummer block bearings. In addition, the 

unit assembled the propeller shaft and the input shaft to the differential un it. To improve 

the alignment and fl ex ibility of the ri g, a constant velocity joint was introduced between 

the visco-lock differential casing and the torque unit. 
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Torque was measured (up to 500 N·rn), using the 420 seri es torque transducers, supplied 

by the Datum Electronics Ltd., see appendix (B). The torque transducer operates as a non­

contact device (no direct contact between the rotor and the stator) using strain gauges. 

Both the rotary shaft and the stator are built into a static housing, which is mounted onto 

the shaft via bearings. Therefore, the housing of the transducer was locked by means of a 

metallic plate. 

5.5.2.3 The Drive Unit 

( ) ~.:. 
Rs part nunUr 302·"22) 
r~nher key, 40lt8x7 mm 

Figure 5.20 Torque Unit Assembly 

The drive unit was a part of a previous research aimed at measuring the induced vibration 

(clank) in vehicular dri vetrain systems (Gnankumarr, 2004). The drive unit consists of 

AC electric motor, motor control, self-lubricating cast iron pi llow block, hydraulic clutch 

and a gear box, figure 5.2 1. Some modifications were carri ed out for the drive input shaft 

to be accommodated with the differential rig. The following are brief notes about the 

drive unit. 

Electric motor: A 22 KW, th ree phase, four pole AC electric motor provides the 

opportunity to apply fu ll y controllable torque conditions. The maximum delivered torque 

143 N·m at 1470 rpm is more than sufficient to drive the viscous differential at the low 

speed of ( IOO rpm). 
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Motor Controller: an invetter ' IMO Jaguar VX 2200 - P-EN ' is used to achieve the 

smoothness in motor's performance. Using the contro ller, it would be possible to obtain 

certain speed-time profiles necessary to investigate the viscous shear characteristics. 

Flexible Coupling: A flexible rubber coupling was installed in-line between the motor 

and the input shaft of the gearbox. The rubber coupling helps to dampen torsional 

vibration and to isolate the drivetrain from the operational frequencies of the electric 

motor. The coupling is fitted with a shear pin in order to protect the electric motor from 

any sudden reversals or over-loading conditions. The propeller sha ft is mounted rigidly 

on a pair of angular contact thrust ball bearings in back-to-back arrangement to provide 

high dynamic stiffi1ess. 

Bearing: In order to support the propeller shaft and the weight of the coupling unit, it is 

necessary to use the bearings. Therefore, two self-lubricating cast iron pillow block un its 

with angular contact thrust ball beari ngs were selected. Both bearing are mounted in to the 

bedplate with motor and the transmission. 

Figure 5.2 1 The Drive Unit Main Components 
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Hydrau lic Clutch system : The standard vehicle hydraulic clutch system has been fitted 

in the test rig to provide time-controlling and altering clutch engagement-disengagement. 

For the present research, the clutch was assumed to be fully engaged. 

Gear Box: A five speed manual gear box is installed to provide a wide variation of 

torque, depending on the se lected gear ratio. Normal ly, the first gear provides enough 

torque to drive the rig components. 

5.5.3 Measuring Instruments 

5.5.3.1 Temperature Measurement 

Temperature was measured using type K thermocouples (Nickel-Chromium I N ickel­

A luminium) of accuracy (±0.25% of F. ) and resolution (±0.1 % of F. ) . To obtain more 

accurate and reliable measurements, three thermocouples were attached to the outer 

surface of the differential at different places, such that all of them were as close as 

possible to the viscous unit as shown in figure 5.22. Thermocouples were plugged into a 

multi-channels microprocessor thermometer (Comark. series 620 I ), which provides the 

ability to read the temperature digitally. Furthermore, this instrument provides an 

analogue representation of the digital display of I volt which is equivalent of I 00 °C. 

Figure 5.22 Temperature Measurements using Comark Microprocessor Thermometer 
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5.5.3.2 Speed Measurement 

The angular speed of the driving shaft was measured using a laser torsional vibrometer, 

which is an effective non-contact alternative to the use of an Eddy current probe or 

traditional contacting vibration transducers. The principle of the Laser Doppler 

Vibrometry (LDV) reli es on the detection of a doppler shift in the frequency of the 

coherent light scattered by a moving target, from which a time-resolved measurement of 

the target velocity is obtained (Halliwell 1996). 

The laser beam is divided into two parallel beams which are separated by a small gap. 

The instrument is held so that the plane of the incident laser beams is para llel to the 

shaft 's cross-section. The Doppler frequency demodulation of the photo-detector output 

provides a time resolved analogue voltage of the rotational speed of the shaft, figure 5.23. 

Figure 5.23 Rotational peed Measurements using Laser Rotational Yibrometer 

5.5.3.3 Torque Measurement 

For the measurement of torque, a non-contact rotary torque transducer with bearings 

(series M420 metric) was employed. The transducer provides a digital output (via RS232 

seria l port) directly proportional to the torque. In addition, the transducer can measure 

torque up to alues 500 N·m with an accuracy of 0.1% full scale with sampling rate of 

) I 0: I 00) samples per second. For the purpose of display and data logging fac il ities, 

special software is provided to monitor and record speed, torque and power values as 

depicted in fi gure 5.24. 
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Torque Speed PCl'Ner 
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Figure 5.24 Torque Measurements using Datum Torque Transducer and Torque Log 

To co llect data from the thermocouples and the laser Doppler vibrometer, the NI USB-

6008 data acquisition device was used. The device provides connection to eight analogue 

input channels, two analogue output channels, twelve digital input/output channels, and a 

32-bit counter with a ful l-speed USB interface. The system was connected to a Pentium 

IV 2 GHz laptop computer. Raw data were transferred into various data analysis software 

such as ational Instruments Lab VIEW 7.0 and Microsoft Office Exce l. 

The overall test ri g arrangement, as well as the instrumentation is shown in fi gure 5.25 . 

• 

• 
• • 

• 

'\ \ 
Figure 5.25 Test Rig Arrangement with Instrumentations 
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5.6 Results and Analysis 

Several different methods can be considered for evaluating the shear torque transmission 

characteristics of visco-lock devices. The method used in the present research is to 

consider the output shaft, connected to the outer plates, to be fully locked, whi lst the in put 

shaft, connected to the inner plates, is driven with a speed ramp rise rate of I 0 rpm/sec. 

The contro ll ed rotationa l speed was increased from zero up to I 00 rpm within I 0 seconds. 

The speed was hold at I 00 rpm for another 25 seconds and then decreased again to zero. 

The vari ati ons in the transmitted shear torque during this process was recoded and 

examined. Limitations in the measured data are related to instrument accuracy and sensor 

placement. Furthermore, a filter was used to reduce noise in the data set, without creating 

any significant lag in the data recording rate. The accuracy of the calculated results is 

verified through comparisons with the experimental measurements. 

5.6.1 Visco-Lock Limited Slip Differential 

Figure 5.26 demonstrates a time history of the numerical simu lation results of a rear ax le 

limited slip differential for a short duration of I 0 seconds. Based on Non- ewtonian and 

full thermal model assumptions, both shear torque and temperature of core, as well as that 

of the housing were calculated. The behaviour of the shear torque can be best explained 

by observing the changes in fluid viscosity. In the first three seconds, where both shear 

rate and fluid temperatures are low, the rate of increase of shear torque is qu ite high. 

However, an equivalent amount of heat is generated, which can be estimated by 

multiplying the instantaneous shear torque, rotational speed and time, see equation (5.19). 

The resultant heat raises the silicone fluid temperature and hence reduces its viscosity. 

Moreover s imilar e ffect on the apparent viscosity occurs due to the shear thinning effect. 

The continual reduction of fluid viscosity limits the rate of increase of shear torque. 

The compansons between the numerical simulation results and the experimental 

measurements during a long period of time are depicted in figure 5.27. The test is carried 

out at initial skin temperature of26°C. Good agreement can be observed for both the skin 

temperature and the rotational speed. 
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For shear torque characteristics; while the numerical simu lation values fo llow that of the 

experimental measurements during short period, for longer period of time a small 

difference is observed which may be considered to be due to the approximate nature of 

the thermal model due to its simplify ing assum ptions. 

Referring to figure 5.27, it is obvious that, during the speed-ramp period (up to 18 

seconds) a mi nute change in housing temperature occurs, which j ustifies the assumption 

of an adiabatic thermal process, see section 5.3.3. During experiments, it was observed 

that, the coupling does not hump (the phenomenon described in section 5.4). In addition, 

the measured value of shear torque is comparatively low. This performance is desired by 

the manufacturers in order to reduce the over-steer effect of the vehicle during cornering 

manoeuvre as described later in chapter 6. 

Another important characteristic to describe the behaviour of viscous coupling is to 

construct the relationship between shear torque and rotational speed. Figure 5.28 shows a 

compari son for both the numerical and experimenta l resul ts for the short duration tests 

which reveals an acceptable confidence about the developed numerical model. 
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Figure 5.28 hear Torque- peed Characteristics (Model versus Experiment) 
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To investigate the effect of temperature on the torque capacity of the visco-lock limited 

si ip differential, several tests were carried out at different skin temperatures, as shown in 

figure 5.29. As expected performing the shear-test at higher temperatures would reduce 

the torque capacity of the unit from 65 N·m at 25°C to 50 ·m at 150°C. The reduction in 

shear torque is mainly due to the decrease in viscosity of the siloxane, which is added to 

the thixotropic behaviour, see equations (5. 1 ), (5.2) and fi gure 5.18. 
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Figure 5.29 Temperature Effect on Torque capacity of the Visco-Lock Differential 

5.6.2 Viscous Coupling 

The viscous coupl ing behaviour is inve tigated during ramp speed input, from 0 to I 00 

rpm, with an angu lar acceleration of I 0 rpm/sec. Thereafter, the speed is maintained 

con tant as depicted in figure 5.30.a. 

The torque is the primary characteristic of the operation of the viscous coupling. 

Referring to figure 5.30.c, the torque characteri stics can be divided into three distinct 

phases as fo llows: 

192 



Chapter 5: Tribo-Dynamics' Modules of Visco-Lock Devices 

-The initial: is the normal viscous shearing phase, which is characteri zed by an 

increased rate of shear torque as previously explained in section 5.6. 1. 

- The intermediate: is characteri zed by a noticeable reduction in the shear torque. This 

effect can be explained by noting the relationship between shear torque, heat, and 

viscosity-temperature dependency, see fi gure 5.30.b. However, with continual 

shearing of the flu id as well as the slotted edge geometry of the tabs, the inner plates 

are made to move axiall y, creating non-symmetrical gaps around their tabs as shown 

in figure 5.30.d. The resulting change in the gap between the contiguous plate pairs 

causes differential shear stresses and twisting moments across the inner plate tabs. 

This tends to twist the tabs around their centroids, see fi gure 5.30.f. With the twisted 

shape of the inner plate tab and the differentia l speed between the inner and outer 

plate, the tabs act as a sliding pad bearing, generating hydrodynamic pressures. The 

resulting differential pressure across the plate tabs creates a further axial force, see 

figure 5.30.e. 

-The final: is the self-torque amplification phase, which is characterized by a sudden 

and sharp increase in the transmi tted torque. The generated hydrodynamic pressures 

are lim ited by the bulk pressure inside the viscous coupling. At the room temperature, 

the coupling is onl y patt iall y fill ed with the silicone fl uid. At a certa in critical 

temperature, when the vo lume of sil icone fluid has expanded to fu lly fill the voids, the 

bulk pressure increases, see fi gure 5. 11 . Consequently, both the di fferential pressure 

and the net axial force increase rapidly until the plates come into direct contact with 

each other, fi gure 5.30.d. At thi s point, a Coulomb friction torque is generated, which 

adds to the viscous torque to form a sharp increase in torque known as the humping 

torque, fi gure 5.30.c. 

For the purpose of verifying the numerical model in hump mode, the simulation results 

are compared with some of the well known published experimental results (Mohan, 2002, 

2003, 2004) as shown in figure 5.30.a and b and c. lt can be seen that the numerical 

results confo rm well with the reported experimental fi ndi ngs. 
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Figure 5.30 Self-Torq ue Amplification in Rotary Viscous Couplings 
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Chapter 6: Analysis of AWD Vehicle Dynamics 

Augmented by Visco-Lock Devices 

The rapidl y increasing applications of A WO particularly in the passenger vehicle sector, 

necessitates the development of vehicles not only with higher traction potential but also 

with better manoeuvrability over deformable soil. Although improving traction 

performance is a main consideration for off-road vehicle applications, handling behaviour 

is an important aspect of modern vehicles, which requires capability to undergo high 

lateral accelerations whilst maintaining good level of directional stability. The desired 

increase in mobility must be reached without making any compromises regarding sa fety 

or ease of operation or driver comfort. lt is anticipated that, the performance of A WO off­

road vehicles depends not only on the total tractive effort available by the power-p lant, 

but also on its distribution between the driving wheels. 

An innovation in the field of permanent A WO is the use of v isco-lock devices not on ly to 

fu l fil the function of torque spl it and transfer. but also to work as self-control ling devices. 

The tuning and setting up of these devices is usually based on a trial and error approach, 

wh ich is time consuming and expensive. In such a situation a computer simulation can 

usually offer a tool not only for speeding up thi s process, but also to develop a deeper 

understanding of the problem. The characteri stics of these devices can easily be altered so 

that comparison can be made between their different types. In addition, the influence of a 

wide range operating conditions and vehicle design parameters can easily be exam ined 

and therefore optimized for better performance. 

The main objective of this chapter is to implement the tribo-dynamic modules, derived in 

chapter 5, into the overall vehicle multi-physics model, derived in chapter 4. Furthermore, 

the dynamic performance of A WO off-road vehicles, coupled with different drivetrain 

layouts, is addressed in terms of traction and directional stability. Additionally, the tuning 

process for v isco-lock devices is established in a full numerical simulation environment 

by altering the rheology of the sil icone nuid to achieve the required vehicle performance. 
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6.1 Implementation of Visco-Lock Devices into Dynamic Drivetrain Model 

Biasing the driving torque between axles/wheels has serious consequences on the vehicle 

behaviour. Generally, 4 WO systems may be classi fi ed accord ing to the way driving 

torque is divided between their ax les as follows: 

Static torque split devices: characterized by a fixed ratio of torque-split between axles, 

which is predetermined by the gearing design. The conventional (straight) bevel geared 

differential , without additional control mechanism, has an equal torque distribution 

between its ax les, i.e. (50:50) %. Different static split torque ratios can be obtained by 

using an angular bevel gear or a planetary gear set as described later, see fi gure 6.3. 

Dynamic torque split devices: characterized by a variable ratio of torque-split between 

axles, which is predetermined by the device's locking characteristics, i.e. softer or stiffer. 

While the visco-lock devices can dynamicall y split the driving torque between their 

ax les/wheels the range of torque spli t is constrained by the rheological characteri stics of 

the viscous unit. Therefore, an optimal solution is achieved by incorporating a viscous 

control element into the static torque split devices. The mathematical modelling of some 

of the well-known mechanisms for torque distribution is derived as described below. 

6.1.1 Viscous Control Differentials with Equal Torque Distribution: 

As previously described in section 5. 1, the viscous unit may be install ed wi thin the 

conventional open differential to act as a viscous contro lled element for distribution of 

torque. Either arrangement of shaft-to-carrier or shaft-to-shaft leaves the differential 

carrier and pinions to funct ion normally, except when there is a significant speed 

difference between the half-shafts , where the viscous unit operates. 

6.1.1.1 Shaft-To-Carrier Layout: 

Referring to fi gure 6.1, the input torque (J;.) is applied at the differential carri er through 

the ring gear. Accord ing to the differential rotational speed between left and right ax les, 
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the viscous torque ('f.,) is developed. Therefore. the torques app lied at right axle (T.) 

and left ax le (72 ) can be calculated from the principles of mechanics as fol lows: 

ince the side gears of the differntia l have equal diameters (or symetrical geometry) then 

from the balance of forces acting on di ffernti al gears the fol lowi ng relationship is 

obtained: 

From the balance of moments, the fo llowing relationship is found: 

.._._ 
(7) 

~ 
r. t~~ 

I 

Figure 6. 1 Viscous Control Di fferential with haft-To-Carrier Arrangement 

(6.1) 

(6.2) 

By solving eauations (6. 1) and (6.2), expresions for the ax les' torques (T.) and (7;) can 

be obtained as fo llows: 

T. - 're· - 'f., 
1-

2 

T, = 'fc +'f., 
- 2 
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(6.5) 

6.1.1.2 Shaft-To-Shaft Layout: 

Since the side gears of the differntia l have equal diameters (or symetrical geometry), then 

from the balance of forces acting on differntial gears, the following relationship can be 

obtained: 

(6.6) 

From the balance of moments, the fo llowing relationsh ip is found: 

(6.7) 

lnput (lr ) 

~ 
(7;) 

(1, ) -----. 

Figure 6.2 Viscous Control Differential with Shaft-To-Shaft Arrangement 

By solving eauations (6.6) and (6.7), expresions fo r the ax les' torques (~ ) and (I; ) can 

be obtained as fo llows: 

T. = 7;_. - T. 
I 

2 
V (6.8) 

Ye· I; =-+T.,. 
- 2 

(6.9) 
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(6 .10) 

For the purpose of comparison between the two aforementioned arrangements and for a 

given speed difference, the shaft-to-shaft layout has approximately three times the locking 

torque of the shaft-to-carrier design. It is, therefore, the preferred arrangement for 

applications in which sufficient space is availab le and a high torque is to be transmitted. 

If the viscous unit is assumed to have a torque capacity ( K) in ( kN ·m) , given at 
rad / s 

certain operat ing conditions where side-! is fully sli pping and side -2 is completely 

stationary, then, as an example of calculation, the axles' torque may be found as: 

For Shaft-To-Carrier Layout: 

cu2 = 0 cu1 = 2cuc !::,.(J) = lw2- cue I= We 

} (6 . 11) 

T; = K ·cue ~ = 0 Torque Bias = IT2 -7; I= K ·cue 

For Shaft-To-Shaft Layout: 

(JJ2 = 0 w1 = 2wc !::.. cu = lw2 - wll = 2(J)c 

} (6.12) 

T; = 2K ·(J)c 7; = 0 Torque Bias= IT2 -7; I= 2K ·We 

6.1.2 Viscous Control Differentials with Non-Equal Torque Distribution: 

As previously mentioned, an ordinary mechanical differential with straight bevel gears 

cannot bias torque between its output axles. However, in cer1ain situations to improve the 

driving capabil ities, it is required to statical ly split the driving torque between the axles. 

Under such a condition, angular bevel gears or a planetary gear set can provide torque 

split features as shown in figure 6.3 . This feature of static torque split is normal ly adhered 

to the central di stri bution element between the axles such as in a transfer-case or a central 

differential. 
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(a) Angular Bevel Gear LSD 
(Shaft-To-Carrier) 

.. 
ji 
< 

Input ----+-----..----i-Ht 
(Tc} r--~"'T"""-r-~ 

(b) Planetary Gear LSD (Single Pinion) 
(Shaft-To-Shaft) 

T, - .--r. 

Figure 6.3 Viscous Control Differentials with on-Equal Torque Distribution 

Planetary gear (single pinion) is common ly used as a centre differential to mechanically 

spl it the driving torque between the front and rear axles. The viscous uni t is instal led 

between the sun gear (connected to the front axle) and the ring gear (connected to the rear 

axle) to control excessive slip between front and rear ax les as illustrated in fi gure 6.3. 

The planetary gear imposes two kinematic and two geometric constraints on the three 

connected axes and the fou rth constraint; the internal wheel (planet): see figure 6.3.b. 

(6. 13) 

(6.14) 

(6. 15) 

(6. 16) 

In terms of the ring-to-sun gear ratio (~~L-; = RR I Rs ) , the key effect ive kinematic 

constraint is given as: 

(6.17) 
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The four degrees of freedom are reduced to two independent degrees of freedom , 

therefore, the input torque is distributed between the front and rear ax les as follows: 

(6. 18) 

Referring to equation (6. I 8), the ratio of torque spl it between the rear and front axles is 

statically fixed and can be determined from the ratio of the ring-to-sun gear diameters. 

Due to the effect of viscous unit (shaft-to-shaft), torque distribution between the front and 

rear axles can be dynamically varied according to the speed difference. Assume (~ ) to be 

the torque split ratio, given by: 

~ = Split Output Torque I 

Split Output Torque 2 
(6. I 9) 

For example, a differential with a mechanical split ratio (38:62)% between front and rear 

axle {~ = 0.6 I 9) . The output torque applied to the output axles can be calculated as: 

7; = (_L) 0 Tc - r,. 
I + ~ 

(6.20) 

T; = (- ]- ) 0 Te· + r,, 
I + ~ 

(6.2 I) 

It should be noted that, for a conventional straight bevel gear differential , the split ratio 

between its outputs is (50:50) % with a mechanical split ratio of (~ = 1.0) equations 

(6.20) and (6.2 1) are reduced to equations (6.8) and (6.9) respectively. 

6.1.3 Permanent Wheel Drive with Viscous Coupling Transmission 

To demonstrate the implementation of viscous coupling transmission in permanent A WO 

drivetrain, a simplified model is derived as follows, ee fi gure 6.4. 

201 



Chapter 6: Analysis of AWD Vehicle Dynamics Augmented by Visco-Lock Devices 

.. 
~ ;;; 

cc ~"E 
0" .. " 
~~ 

., ~ 
VIscous er~ 

Engine 
0 I, Transmission 0 

.. ~ 
I, 

J, lllllllllllllll J, 

I . 

c c 50 ... "· -1; 
'~ Tu (l,lu 7~ "'"' 

Figure 6.4 Permanent Drivetrain ystem with Viscous Coupl ing Transmission 

Gear box: 

Front open differential: 

TRJ = T,,. = 0.5 · (7;,11 ·lcm- T,. / I,.. ) 

Front propeller shaft: 

Rear propeller shaft: 

Rear open differential: 

r -T -(T,?· fu)-(T,, - Ju·cOu)· l 1 Ill/ - 1.1/ - 2 - 2 ll 
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Viscous coupling: 

(6.27) 

The viscous shear torque (T11 ) is calculated accordi ng to the models derived earl ier in 

chapter (5), which are functions of the differential speed between the front and rear 

propeller shafts, as well as the design parameters of the viscous coupling un it. 

Figures 6.5 and 6.6 illustrate the traction performance of an A WO vehicle, incorporating 

a viscous coupling transmission. The drivetrain layout is depicted in figure 6.4. The 

simulation is carried out at full throttle position du ring acceleration in a straight line 

manoeuvre on fi rm clay soi l. The throttle increa es until the engine speed reaches its 

maximum value, at which stage the gearbox is shifted to a higher gear (lower ratio). 

Compared to the results obta ined in section 4.4. 1, see figure 4. 11, it is obvious that the 

difference between the tracti ve forces developed at the front and rear ax les are not 

constant, see figu re 6.5.b. This can be best explained by observing the shear torque 

characteristics as shown in figu re 6.6.b, and its strong dependency on fluid viscosity 

figure 6.6.a. Ini tially, in fi rst gear, a high speed difference between the front and rear 

axles is noted, fi gu re 6.6.d, due to different resisting moments app lied at each tyre. 

Therefore, a high rate of shear torque is transferred to the rear ax le via the viscous 

coupling unit figure 6.6.b. An equivalent amount of heat is generated which is 

proportional to the rate of shearing torque. This has as its consequence an increase in fl uid 

temperature, fi gure 6.6.c, thus reducing the apparent viscosity in a similar manner, figure 

6.6.a. 

ln genera l, acceleration is higher in first gear, which is characterized by its higher gearing 

ratio, whereas acceleration decrease as the gear is up-shi fted. Therefore, the differen tia l 

rotational speed across the viscous coupli ng and hence the shear torque is reduced by a 

simi lar rate. On the other hand, the noticeable reduction in the apparent viscosity has its 

consequence on the reduction in shear torque. The combined effect of gear up-shifting 

and lowering of viscosity result in eliminating the difference between the tractive forces 

at the front and rear ax les. 
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For the purpose of the present investigation, a special library is created includ ing custom­

made blocks, representing the different mechanical and visco-lock torque distribution 

devices. In add ition to open and mechanical ly locked ordinary differentials, a mechanical 

transfer-case is modelled to statica lly split the driving torque from the gear- box between 

the front and rear axles, see fi gure 6.7. The derived li brary is implemented using a new 

toolbox ca lled SimDriveline, wh ich is a part of Simulink Physical Modelling, 

encompassing the modelling and design of systems according to basic phys ical principles. 

With the derived library it is possible to simulate any drivetrain configuration. The 

concepts of modularity, flex ibil ity, and user-friendliness were emphasized duri ng the 

model development. The viscous coupling unit form s the heart of all these units, which 

are successfully linked with the dri vetrain system developed in chapter 4. 

m ~ 1 m ~ 
Mechanical Friction Controlled VII CO-LSO Vloco-LSD 

l ocked Openll ock Olffertnliol Ol!ltr tnliol 
Shaft .Carrier Shaft-Shaft 

Differential Differential 

~ ~ ~ 4@r 
Viscous Coupling 

Mechanical Visco-LSD Visco-LSD Transmission 

Open/l ock Non-Equal Torque Non-Equal Torque 
Transfer Case Shaft-Shaft Shaft-Carrier 

Figure 6.7 Phys ical Simulation Library of Visco-Lock Devices 

6.2 Evaluation Criteria 

While there are plenty of established criteria which are developed to evaluate vehicle 

behaviour over prepared roads of solid construction, for 4x4 off-road vehicles, there are 

limited investigations to eva luate the entire vehicle behaviour over soft soils. 

Furthermore, most of the reported relevant investi gations are devoted to the prediction 

and optimization of vehicle behaviour from point of view of traction onl y, ignoring the 
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critical consequence on directional stabil ity. lt is anticipated that the cornering response 

of these vehicles may be different from on-road vehicles. Furthermore, vehicle side-slip 

and yaw motions are dependent on the driving torque distributed between the 

axles/wheels, as well as the mechan ical properti es of the terrain . 

A methodology for comparison of longitudinal performances, as wel l as lateral stability 

of A WO vehicles is introduced and implemented into the overall model. The results of 

this virtual evaluation method would assist in optimizing A WO vehicle performance in 

terms of drivetrain architectural choice and component specifications. 

6.2.1 Traction Criterion 

Over the years, different criteria have been developed to evaluate traction performance of 

off-road vehicles depending on the veh icle functional requirements . In chapter 4. section 

4.4. 1 a method was introduced to assess the traction performance in terms of maximum 

speed, acceleration speeding-up time and speeding-up distance. While this method is 

adequate to predict the traction capabilities for a specific power plant and given 

transmission characteristics, it is observed that limitations are encountered in 

differentiating between various drivetrain configurations, see figure 4.15. Therefore, it is 

of prime interest to employ different criteria. v hich would provide the opportunity to 

investigate the traction characteri stics over the enti re range of tyres longitud inal slip. 

Ba ed on the efficiency calculation of the power transmitted from the engine to the driven 

wheels, Wong et al. ( 1970 1998b, 2000, 200 I) presented a va lidated criterion for 

pred icting the tractive performance of cross-country vehicles. In this section Wong' s 

methodology is briefly highlighted, in addition to some results of its implementation in 

the current vehicle model. 

6.2.1.1 Drawbar Pull Characteristics 

Drawbar pull ( Ftl ) is defined as the force available at the drawbar, and is equal to the 

difference between the total tractive forces developed by the driving wheels and the total 

driving resistance as fol lows: 
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4 

F;, =I f., - IR (6.28) 
1=1 

Where: (I R) is the total resisting fo rce acting on the off-road vehicle, including the 

rolling resistance of the tyres, resistance due to vehicle-terrain interaction, grade 

resistance, as well as aerodynamic drag. The roll ing resistance of the tyre consists of an 

internal component caused by the flexing work of the tyre (due to hysteresis losses) and 

an external component caused by soil deformation or compaction (Wong 200 l ). 

It should be mentioned that the employed off-road tyre model internally ca lculates the 

net tracti ve force by considering the internal resistance of the tyre and the resistance due 

to tyre-terrain interactions such as resistance due to compaction of the terrain and the 

bulldozing effect. In this case the resisting force (I R) is reduced to the aerodynamic 

drag and grade resistance. 

Also, in cross-country operations the maximum tractive effo rt is often limited by the 

shear characteristics of the tyre-terrain interaction. Furthermore, the development of 

thrust often results in considerable slip over unprepared terrain, thus the drawbar pull and 

vehicle speed are functions of slip. The product of the drawbar pull and the vehicle speed 

i usually referred to as the drawbar pu ll power: (P11 = F11 ·V) 

DD v c:o .,__. 

Test Vehicle 

'====~!!. HL 
Time 

Load Vehicle 

Figure 6.8 Concepts of Tractive Forces- lip Characteristics Measurement 

In reality and fo r the purpose of measuring tractive forces over entire range of 

longitudinal slip a drawbar load is applied by pulling a loaded vehicle as depicted in 

figure 6.8. The drawbar hitch was set at a low level to minimize load transfer effects 

between the ax les. By shifting gear in the transmission and by applying brakes to the 
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loaded vehicle, di fferent drawbar loads are experienced. The driver of the test vehicle 

applies the throttle pedal such that the engine revolutions and hence the vehicle speed is 

maintained, noting that normally a low speed (around 15 km/h) is desired to eliminate 

dynamic effects. By measuring the drawbar pull , the driving torques applied on the front 

and rear ax les, the angular speeds (or di splacements) of the front and rear tyres, the 

ground speed (or distance travelled) of the vehicle, the tractive force-slip characteristics 

can be obtained. 

The numerical simulation of the aforementioned procedures in volves adding a slowly 

growing towing capacity wi th time for the vehicle, dri ven at a low constant speed of 15 

km/h in the lowest gear as shown in fi gure 6.8. The test is terminated, when full wheel 

s lip is considered to have reached. The advantage of this test is that it prov ides a complete 

picture of traction performance over the entire range of tyre longitudinal slip. To keep the 

vehicle speed constant, a PlO controller is employed, which controls the engine torque 

through the proper position of the throttle pedal. As the towing load increases, the engine 

torque also increases, as well as the tracti ve force. The re lationship between the tractive 

force and longitudinal slip for each tyre can then be plotted as shown in figure 6.9. 
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6.2.1.2 Tractive Efficiency 

The tractive efficiency ( 17") of a wheeled vehicle under constant speed and straight I ine 

motion conditions on horizontal ground may be expressed as: 

'ld = '7, ' '7, ''lm (6.29) 

Transmission Efficiency (77, ) : represents the efficiency of the transmission, which 

characterizes the losses in power from the engine to the driven wheels, given as follows: 

(6.30) 

lip Efficiency (77.,) : represents the effi ciency, which characterizes the power losses and 

also the reduction in forward speed of the vehicle due to sli p of the driven wheels. This 

part of the power di ssipates through the sliding of the tyre relative to the terrain surface 

and interna l shearing of the terrain between the tyre lugs. The slip e fficiency not only 

affects the drawbar power but also clo ely relates to tyre wear. Usua lly slip is a major 

source of power loss during the operation in the field. In general the slip efficiency can 

be determined from the ratio of power loss due to slip to the power ava ilab le at the driven 

wheel. For a 4 WO vehicle, the slip efficiency may be calculated as: 

(6.3 1) 

Motion Efficiency ( 1]
111

): represents the efficiency which is a measure of losses incurred 

in transforming the available driving torque at the dri ven wheels ( M,11 ) to that 

successfully pulled at the drawbar (Fe~ ) . 

(6.32) 
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Figures 6.10 and 6.11 show the variation of efficiency and longitudinal slip with drawbar 

pull. The simulation is carried out for a rigid-drive 4x4 vehicle on firm clay and wet loam 

soils respectively. It is observed that moti on efficiency reflects the ability of the soil (in 

terms of shear and sinkage properties) to support the thrust force, while slip efficiency 

reflects the utilization ofthe distributed torque to propel the vehicle forward . 

Another interesting conclusion can be derived from equation (6.31) that when the slip of 

either the front or rear wheels reaches 100% the slip efficiency and the tractive efficiency 

fall to zero. Furthermore, the maximum slip efficiency is only achieved when the slip 

ratio of the front axle (i1 ) is equal to the slip ratio of the rear axle (i,) . At this moment 

the slip efficiency is no longer affected by the torque distribution between the front and 

rear axles. In other words, the optimum torque distribution is that which makes both the 

front and real axle tyres to attain the same slip ratio . 

By comparing the results obtained in figures 6.10 and 6.1 I, it is obvious that, for the same 

concept of a drivetrain higher maximum values of drawbar pull and tractive efficiency 

can be observed in the case of clay soil. This may be due to the higher shearing strengths 

and lower sinkage properties of clay so il, when compared to the loamy soi l. These 

mechanical properties essentia lly affect the motion efficiently which is equal to (0.9) in 

the case of c lay soi l, and (0.756) in the case of loam soil. 

6.2.2 The Handling Criterion 

A typical off-road A WO vehicle with a ramp-steer manoeuvre, at a constant forward 

speed of 75 km/h, is considered to assess its handl ing performance. The steer-angle is 

gradually increased, whilst driving on a deformable clay soi l. The vehicle's response in 

terms of lateral acceleration is calculated and plotted aga inst the commanded steer angle 

in order to obtain a picture of its handling performance (Wong 200 I). 

It should be noted that the vehicle is considered to understeer when the slope of the 

generated curve is greater than that for the neutral steering case, and to oversteer when the 

slope is less than the same. 
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6.3 Result and Analysis 

With regard to the aforementioned criteria, both the traction capability and the directional 

stabil ity of a typical 4x4 vehicle are investigated. The vehicle's main design parameters 

are kept the same as before, except for the way the driving torque is distributed between 

the ax les. The inflation pressure is assumed to be I bar for al l tyres. The static weight 

distributi on between the front and rear axles is (40:60%) respectively. 

Simulation results for a visco-lock device include viscous coupl ing and a visco-lock 

differential are plotted and compared with ordinary mechanical devices such as a 

differential (open/locked), as well as the transfer-case with a mechanically biased torque. 

6.3.1 Different Drivetrain Configurations: 

Before discussing the influence of torque distribution devices on the performance of a 

4x4 off-road vehicle, it would be helpful to highlight the significant consequences of 

static' eight di stribution between the front and rear axles. 

When the vertical load, applied on a tyre increases, both the contact area and ground 

pressure increase accordingly. Consequent ly, the maximum so il shear strength and thus 

the circumferential force developed by the tyre are enhanced. This increases the ab ility of 

the tyre to develop additional driving forces without causing excessive slip. On the other 

hand, when the tyre vertical load is increased, both the tyre sinkage and rolling res istance 

also increase. 

Handling characteri stics are affected by sinkage due to additional lateral forces generated 

at the tyre sidewalls. At higher sinkage, significant tyre sidewall forces may occur, which 

can be explained by the soil cutting theory (Wong, 200 I). According to thi s theory a 

stress field occurs in the so il , based on passive so il failure, which is developed using the 

Mohr's circle technique. This add itional lateral force is determined by integrating the 

passive soi l pressure over the tyre sidewall for a given sinkage distribution of the tyres. 
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In general , the reference vehicle has more weight on its rear axle, and due to these effects, 

the resul ting equivalent cornering sti ffness is higher than that developed at the front axle. 

Consequently, the under-steer coefficient is increased and the vehicle becomes more 

under-steering with a increased turning radius and a reduced yaw velocity. 

The effects of different concepts of drivetrain, for the same vehicle, on both traction 

performance and handling responses are depicted in figures 6. 12 to 6.14. To have an 

expressive designation of different drivetrain configurations a set of letters are appointed 

to differentiate between each case. The symbol ' 0 ' stands for open differentia l, 'L' for 

mechanically locked di fferential, ·VC' for viscous coupling transmission, ' LSD(S )' for 

visco- lock limited sl ip differential shaft-to-shaft layout ' LSD( C)" for visco-lock limited 

slip differentia l shaft-to-carrier layout, · FWD' for front wheel drive and ' R WD' for rear 

wheel drive. 

Open Central-Differentia l (0-0-0): 

The main characteristic of this type ofdrivetrain is that the ratio of angular velocity ofthe 

front wheels to that of the rear wheels may vary depending on the operating conditions, 

but the ratio of the torque distribution between the front and rear wheels is invari able and 

limited by the lowest traction side (carrying the least weight). Therefore. drivetrain 

torsional wind-up never occurs under any conditions. This means that a rigid driveli ne 

model used is justified, unless impu lsive conditions due to lash take-up takes place, which 

is outside the remit of this research and is adequately covered by Menday (2003) and 

Gnanakumarr (2004). Nevertheless, both the maximum drawbar pul l and the tractive 

efficiency sti ll depend on the slips of both front and rear wheels and wil l on ly be high if 

these are equal. In order to achieve high operational efficiency, the weight di stribution 

and other factors should be carefully control led. 

For equal torque distribution, and assuming equal dynamic radii for the front and rear 

tyres, the rear axle-tyres are subjected to higher rolling resistance due to higher vertica l 

weight and sinkage. As a result, both the longitudinal slip and tractive force at the front 

ax le-tyres wi ll be higher than those developed at the rear axle-tyres. Consequently, the 

generated lateral forces at the rear ax le wi ll be higher than those at the front ax le. On the 

213 



Chapter 6: Analysis of A WD Vehicle Dynamics Augmented by Visco-Lock Devices 

other hand, the lateral load transfer from inward wheels to those at the outside during 

cornering causes a considerable increase in the tractive force at the inside. The combined 

effect results in a greater tendency to understeer, especially at high lateral accelerations, 

see figure 6. 14. 

Locked Central-Differential (0-L-0): 

The main characteristic of this type of drivetrain is that the ratio of angular velocity of the 

front wheels to that of the rear wheels is invariable, but the ratio of the torque distribution 

between the front and rear wheels may vary depending on operating conditions. Under the 

assumption of equal dynamic tyre radii for the front and rear tyres, they would be forced 

to rotate at the same rotational driving speed (theoretical speed), thus the slip of all tyres 

wou ld equate and would be regulated by that of the tyre with the most traction. Therefore, 

the slip values at all four corners are automatically adjusted in favour of traction and the 

vehic le performance is no longer affected by its weight distribution, see figure 6. 12. 

However, under given steering conditions, the kinematics of the veh icle require that the 

front and rear wheels follow different paths with different translational speeds. In this 

case, tractive slip at the front will reduce and skidding might occur in extreme cases with 

the subsequent generation of braking forces at the n·ont. On the other hand, the rear 

wheels slip, generating a forward thrust. Under these circumstances, torsional wind-up in 

transmission occurs, resulting in premature fa il ure of the driveline components and/or 

excessive wheel slippage depending on tyre-soil conditions (Wong, 200 I). 

For lower shear strength or sli ppery soils, the wind-up torque resu lts in an excess ive 

slippage and tyre wear. For higher shear strength soils or ri gid roads, the wind-up torque 

exerts so much stresses on the drivetrain shafts and gears in addition to undesirable 

resistance sensed by the steering wheel. This may also affect the structural performance 

of driveshaft tubes, meaning that an elastodynamic model ofthese may be required. 

The rear ax le with a larger weight and, therefore, relatively higher shear strength would 

be able to develop a larger driving torque than the front axle. The slip at the front is 

limited by the sl ip at the rear and the front tyres improve their potential of lateral force 
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generation. This shifts the handling behaviour towards less understeer, when compared to 

that achieved by the open central differential configuration, see figure 6.14. 

Visco-Lock Devices: 

The common feature of such devices is that the torque cannot be transmitted unless there 

is a speed difference between the input and output shafts. Therefore, these are termed 

speed sensitive devices. In other words, visco-lock devices act as a passive traction 

control system to regulate torque distribution between the axles according to the speed (or 

sli p) difference between them. Jf the speed difference between the axles increases, visco­

lock devices bias or transfer more torque to the side with a lower speed (i.e. the front 

ax le).The effect is, therefore, to deliberately introduce a ratio (smaller than unity) for the 

theoretical speed of the front wheel to that of the rear. This ratio can be tuned or 

optimised according to the viscous unit design parameters (as described later) to meet the 

requ ired characteristics. 

For the viscous coupling layout (0-YC-0) the vehicle behaviour, to a great extent, 

depends on the way the viscous coupling is instal led in the dri vetrain. For this analysis, 

the driving torque from the engine is primarily directed to the rear axle. This torque is 

transferred to the front axle via the viscous coupling unit. This arrangement would 

improve the traction performance, especia lly at higher values of longitudinal slip, see 

figure 6. 12. 

For the visco-lock differentials layout the e ffect of a viscous control unit at the central 

differential, shaft-to-shaft (0-SS-0) or shaft-to-carrier (0 -SC-0), is considerably less 

severe than that of a viscous coupling transmission (0 -VC-0 ) fo r direct torque transfer. 

However. even this rather "soft" characteristics result in a substantial improvement in the 

traction performance compared with the ordinary open central differential configuration. 

lt should be noted that, for a given speed difference, the shaft-to-sha ft layout exhibits 

approximately three times the locking torque of the shaft-to-carrier design. lt, therefore, 

represents the preferred option for applications in which sufficient space is avai lable and 

a high torque is to be transmitted, see fi gure 6.12. 
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The handling characteristics provided by visco-lock devices are similar to that of the 

vehicle fitted with open differentials. In addition, it depends not only on the amount of 

viscous torque, but also on the way that the viscous unit is installed. However, because 

there is no rigid connection between the axles (like a viscous transmission), the tyres are 

still free to rotate with different velocities, so the problem of drivetrain wind-up is 

minimized. 

When the vehicle corners at 75 km/h, the transmitted torque by the visco-lock device is 

relatively small , since the speed differences imposed on the output shafts are smal l. 

Figure 6.14 shows the effect of different scenarios with visco-lock devices on the 

hand I ing characteristics. 

lt should be noted that, the speed difference across the ax le differentials increases wi th 

lateral acceleration. At higher lateral accelerations the angular speed of the inner wheels 

begins to increase due to the additional lateral and traction forces imposed on the tyres in 

relation to the reducing vertical load. Moreover, the rear outer wheel, which experi ences 

the highest ve1tical load, begins to slow down due to a combination of latera l weight 

transfer and a large slip angle at the rear axle. This generates a very high rolling 

resistance, which eventually exceeds the traction applied to the wheel. As a result of these 

effects, the handling characteristics become more sensitive pa1ticularly in the case of 

(0-VC-0). 

Additional results are depicted in figure 6. 13, revealing the effect of soil mechanical 

properties on the maximum drawbar pull for different drivetrain layouts. It is obvious 

that, clay soil , with comparatively good sinkage resistance and shearing properties 

affords better opportunity for improved traction performance. Furthermore, compared to 

sand and loam, clay soil is less sensitive to the variation of drivetrain layouts. ince the 

maximum traction performance is attained using a rigid or a locked centre differential, a 

rating of I 00% is allocated to that layout, while all other layouts are compared 

accordingly. 
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6.3.2 Static Split Ratio of Driving Torque Distribution: 

For the purpose of this ana lysis a transfer case is used to statically split the drivi ng torque 

between the axles at di fferent fixed ratios. as explained earlier in section 6.1.2. The gear­

box output is fed into a single pinion planetary gear transfer case which in turn drives, 

through planetary gears, the front and rear propeller shafts. The wheels are driven via a 

mechanical open di fferent ial. It should be mentioned that, while the transfer-case can split 

the torque between the front and rear axles, there is no constraint imposed on the 

rotational speed of these ax les. This feature is mainly due to the inherent characteristics of 

the planetary gears. The importance in analysing the effect of static distribution of driving 

torque is that it improves understanding and aids optimisation ofvisco-lock devices. 

The numerical results of the computations depicted in fi gures 6. 15 to 6. I 8 reveal that, a 

slight vari ation in torque distribution between the ax les causes considerable changes in 

traction performance, as well as the hand ling characteristics as described below. 
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From the Traction Performance View Point: 

Biasing more dri vi ng torque to the axle with a greater vertical load improves the drawbar 

pu ll , as well as the tractive effi ciency (particularly the slip efficiency). Since the reference 

veh icle has a greater weight on the rear axle, it is obvious that in order to improve the 

tractive effici ency, the driving torque should also be distributed in a matching manner 

(according to the weight distribution) as shown in figure 6.15. However, in reality, it is 

unacceptable to des ign the veh icle with a fi xed scenario of weight distribution between 

the axles, as both static and dynamic variations in weight distribution would alter the 

optimum value of torque di stribution between the axles. 

Figure 6. 16 shows a comparison of the traction performance under the different 

conditions for static torque split ratios on different soil s. As expected, the max imum va lue 

of drawbar pu ll is achieved for the case of driving on clay soil. Furthermore, it seems that 

the split ratio of 30% on the front and 70% on the rear ax le provides an acceptable level 

of traction over different soils. It should be pointed out that the inefficient distribution of 

the driving torque not only wastes power, but also can cause excessive tyre wear. 
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From the Handling Characteristics View Point: 

pliuing the driving torque between the front and rear axles has a serious consequence on 

handling characteristics. For the purpose of this analysis the cornering response is 

investi gated at both low speed (40 km/h) and high speed (75 km/h) during ramp-steer 

manoeuvre over clay soi l as shown in fi gures 6. 17 and 6. 18. 

The depicted results reveal that biasing more torque to the rear axle would reduce the 

longitudinal sl ip at the front and, consequently, increase the lateral force generating 

potential at the front. At the same time, the counteracting side force at the rear would be 

reduced. The additional yaw moment shifts the handing characteristics towards oversteer, 

a fact which in turn reduces the stabi lity and controllabil ity of the vehic le. Whi le thi s 

effect is not c lear for low speed cornering manoeuvres, see figures 6. 17, at higher speeds 

the cornering response is sensitive to static torque split ratio as shown in figures 6.18. 
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As a general conclusion, in order to optimise a 4x4 vehicle behaviour in terms of traction 

performance and cornering stabil ity, the ratio of torque distribution between the front and 

rear ax les must be carefully controlled in order to guarantee, not only a higher traction, 

but also an acceptable level of controllability and stability. 

6.3.3 Visco-Lock Device Tuning: 

Visco-lock devices are designed not only to transmit torque, but also to control its 

distribution. The transmitted torque must atisfy certain requ irements for vehicle 

performance. The viscous shear torque characteristics depend on the fluid rheology, 

dimensions and number of plate pairs, the gap between them (clearance) and the fluid 

filling percentage. However, because these devices act as passive control systems, they 

require tuning (optimisation) before installation into the drivetrain system. 

In reality this process is simply carried out empirically, changing the si li cone fluid in a 

trial and error approach, which is time consuming and expensive. 

For the purpose of this investigation, different silicone fluids (A B, C and D) with 

different rheological properties, in terms of kinematic viscosity, as ' ell as shear and 

thermal properties are used. The silicone flu ids can be distinguished according to their 

nominal kinematic viscosity as fo llows: (Fluid A: 1.0 m2/s), (Fluid 8: 0. 1 m2/s), (fluid C: 

0.0 I m2/s), and (Flu id D: 0.00 I m2/s). 

If the viscous un it is assumed to have a torque capacity factor ( K) expressed in (____:!!!__) , 
radl s 

given at operat ing cond it ions with rotational speed difference(~w) the torque bias ratio 

between the two shafts j?;-J; j can be expressed by: (K · j~wl). Using a silicone fluid 

with a higher nominal viscosity (for example. fluid A) makes the unit stiffer with a higher 

torque capacity factor. This enables larger torques to be transmitted. Depending on the 

functional installation of the viscous unit wi th in the drivetrain both the traction 

performance and cornering stability of the vehicle would vary accordingly. 
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6.3.3.1 Viscous Coupling (0-VC-0): 

As previously explained, the way the viscous coupling is installed within the dri vetrain 

depends on the static ratio of weight distribution between the ax les. Since the reference 

veh icle carries more static weight on the rear axle, the primary dri ve is ded icated to the 

rear axle and the secondary drive axle (front axle) is used via the viscous coupling. 

Figure 6.1 9 il lustrates the consequences of employing different silicone fluid s with 

altered rheological properties on the tractive efficiency, as well as the drawbar pul l-slip 

characteristics. lt is apparent that, by using a fluid with stiffer characteristics (e.g. fluid 

A), the traction performance can be regu lated to approach that obtained in the case of a 

locked centre differential (0-L-0). On the other hand, by using a fluid with softer 

characteristics (e.g. fluid D), the traction performance can be regulated to approach that 

obtained in the case of a rear wheel drive (R WO). 

As a critical step during the optimization procedures, the same simu lation is repeated for 

different soils as shown in figure 6.20. lt is obvious that whi le the clay soil offers 

comparatively improved conditions for traction , over the same type of soi I, traction 

sensitivity to the variation of flu id's properties remains unaltered. 
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Figure 6.20 Effect of Viscous Coupl ing Fluid Rheology on Traction on Different oils 

As introduced earl ier in chapter 5, the viscous coup ling has two modes of operation; shear 

mode and hump mode. Whi le the shear mode is primarily speed and temperature 

dependent, the hump mode is additionally time dependent. In other words. for the viscous 

coupling to hump or experience self-torque amplification. the unit should operate a long 

time. through which the generated heat (due to front and rear speed difference) can cause 

the silicone fluid to expand and fu lly fill the voids inside the viscous coupling. 

During the computation it was observed that sometimes the longitudinal sl ip o f the 

vehicle tyres reaches its ultimate value ( 100%), while the v iscous unit still performed in 

the normal shear mode. Furthermore. it was noted that for lose or slippery soils (e.g. sand 

and loam), time for the driven tyres to reach their critical longitudinal slip value is 

relatively short compared to that achieved over relatively firm so il like the clay soil. 

Figures 6.2 1 and 6.22 demonstrate an example of the consequences of the hump mode on 

both longitudinal slip and tractive force. When the rear ax le tyres reach the utmost va lue 

of longitud inal slip, the differential rotational speed, across the v iscous coupl ing shafts 
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also increases. ubsequently, the total torque and the resulting heat ri ses the temperature 

of the silicone fluid. At certain critical temperature, when all air has been dissolved, the 

bulk pressure drives the unit into the STA mode, see figures 5. 11 and 5.30. 

The suddenly increased bulk pressure and thus the total torque across the viscous 

coupling shafts bring the rotating plates together such that the unit acts as a rigid 

coupling. Under these conditions both the front and rear ax le tyres rotate at the same 

dri vi ng speed and, hence the same slip ratio. Therefore, the driving torques and the 

resul ti ng tractive forces are redistributed according to the wheel-soil contact conditions. 

Two favo urable advantages are ga ined from the TA mode. First advantage relates to the 

safety of the vi cous unit, where the relative sli p betv een its plates diminishes, so the 

core temperature and thus the bulk pressure of the unit stop ri sing. These would guard 

aga inst damage to the coupling. The second advantage relates to traction performance, 

where the excess ive slippage of the tyres is eliminated, reducing the slip sinkage and offer 

a better chance to recover traction. 

The cornering response of the reference vehicle at 75 km/h with different silicone flu ids is 

ill ustrated in figure 6.23. As expected, the handling response is also bounded by the 

characteristics acquired for rear wheel drive (R WO) and that achieved by locking the 

centra l di fferential (0-L-0). 

By employing a silicone flui d wi th stiffer characteri stics (e.g. fluid A), more of the 

driving torque is biased to the front ax le. Consequently, both longitudinal sli p and tracti ve 

force at the front ax le-tyres tend to increase. Accordingly, the generated lateral forces at 

the rear ax le also increase. On the other hand, the lateral load transfer from the inside 

wheels to those at the outside during cornering causes a considerable increase in the 

tractive force at the inside tyres. The combined effect results in shifting the handling 

diagram towards the understeer side, especially at high lateral accelerations. 
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Figure 6.23 Effect of Viscous Coup ling Fluid Rheology on Handling on Clay Soil 

As a general conclusion, in order to optimise the behaviour of the presented reference 

vehicle fi tted with drivetrain layout (0-VC-0 ), the viscous coupling should be filled with 

the silicone Ou id (A) which wou ld ensure not only a sufficient traction performance, but 

also an acceptable level of cornering stability. 

6.3.3.2 Visco-Lock Limited Slip Differential (0-LSD-0): 

As already mentioned, the viscous unit can be integrated within the ordinary mechanical 

differential to act as a control element. In this section, the employed layout is a visco-lock 

limited slip differential in shaft-to-shaft configuration, which is used as a central 

distributing element (0-L D-0). imilar to the viscous coupling, different types of 

si licone fluids are used to establish the vehicle behaviour. 

As shown in fi gure 6.24, employing silicone fluids with a higher nominal viscosity sets 

the performance close to that obtained by a mechanically locked central differential (0-L-

0). On the other hand, selecting a silicone fluid with a lower nominal viscosity sets the 

performance close to that obtained by a mechanica lly open central differential (0-0-0). 
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The same trend is obtained over different soi ls with a not iceable reduction in traction 

performance provided by sand and loam soil in comparison to that with clay soil, see 

figure 6.25. Furthermore, for the case of sand soi l, using sil icone flu ids with different 

values of viscosity has shown less inOuence on traction performance. 

Before discussing the influence of silicone Ouid properties on the cornering response of a 

4x4 off-road vehicle, fitted wi th a visco- lock di fferential, it would be he lpful to highlight 

the significant consequences of an ordinary mechanical differential lock. 

The main signi ficance of differential lock is that the driving torque is distributed 

according to the conditions of the tyre- oi l contact. This affects primari ly the longitudinal 

slip and , therefore the tractive force. According to the well known principle of friction 

circle, both the longitudinal and lateral forces are limited by the maximum adhesion 

provided by the soil. This implies that increasing the tractive force should result in a 

noticeable reduction in the lateral forces. As a result, locking the differential not only 

regulates the tractive force distribut ion, but also the lateral forces. 

The effect of differential locking on the cornering stabi lity to a great extent, depends on 

the location o f the differential used within the drivetrain . Based on a 4x4 drivetrain with 

three mechanical di fferentials, there are eight possible configurations of di fferential 

locking as shown in fi gure 6.26. 

In general, locking the central differentia l regulates the driving fo rces between the front 

and rear ax les and the cornering response would be determined accord ing to the static 

weight distri bution between the ax les. Since the reference vehicle has a greater stati c 

weight on the rear ax le, locking the differential would constitute greater tracti ve forces 

developed at the rear axle, while more lateral forces would be expected to be developed at 

the fron t ax le. The effect due to the moments generated by these forces would reduce the 

understeer moment as previously explained. 

Locking the ax le (front or rear) differential regu lates the tractive and, hence, the lateral 

forces between the tyres of the same axle and the cornering response would be 
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determined according to the dynamic lateral weight transfer from the inside wheels in a 

turn to the outside wheels, which in turn are fun ctions of lateral acceleration. If the axle 

differential is locked, more driving torques are transferred to the outer wheels, which 

would experience larger vertical weights and, hence, rolling resistance. Consequently, the 

generated tractive forces at the inside wheels are reduced. The effect of the moments of 

these forces would be to reduce understeer. 
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Figure 6.26 Effect of Mechanical Differential Locking on Handling Characteri sti cs 

Referring to figure 6.26, different scenarios are simulated to represent the possib le layouts 

of differentia l locking. According to the aforementioned analys is, it is obvious that, 

locking the three differentials represents the extreme condition of oversteering, whi le 

un locking the three differentials represents the extreme condition of understeering. The 

handling characteristics provided by other possibi lities are somewhere in between these 

extremes, depending on the weight distribution and latera l dynamic weight transfer. 

As depicted in figure 6.27, it is obvious that by changing the sil icone fl uid it is possible 

to tune the visco-controlled limited slip differential (LSD) to ach ieve the required 
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handling characteristics. A higher torque capacity factor shifts the cornering response 

towards that expected of a rigid 4x4 coupling (0-L-0) characteristics, wh ile a lower 

torque capacity factor shifts the vehicle performance towards the open central differential 

(0-0-0) characteristics. 

As a general conclusion: in order to optimise the behaviour of the reference veh icle in this 

study, fitted with the drivetrain layout (0 -LSD-0), silicone fluid (C) seems to be a 

reasonable choice which would ensure not only sufficient traction performance, but also 

an acceptable level of cornering stability. 
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Chapter 7: Conclusions and Suggestions for 

Future Work 

7.1 Achievement of Aims and Contributions to Knowledge 

The thesis reports on an integrated investigation of the dynamic behaviour of all-wheel­

drive vehicles, whilst negotiating deformable soil terrains. A comprehensive model is 

devised with parameterised physical models of visco-lock devices, which is used in full 

vehicle simulations. 

The vehicle is represented by a 14-DOF model, integrating all impott ant subsystems such 

as vehicle body, suspension steering system and wheel dynamics. The vehicle model also 

incorporates body dynamics of 4x4 full drivetrain systems, including sources of torsional 

damping and stiffness in ax les/shafts. The drivetrain model also allows provisions for the 

inclusion of conventional torque distribution devices. 

Within the dri vetrain model, the driving torque is transmitted/regulated by the various 

torque distribution devices. At the output end of the system, the torque is regulated by the 

interaction between the tyres and the soft soil. 

The employment of a detailed model of any drivetrain system would be meaningless 

without an equally e laborate representation of the tyre-soi I interaction. For this reason, 

the newly developed AS2TM soft soi l tyre model was employed. The model accounts for 

the pressure-sinkage in the vertica l direction and the shear-tension-d isplacement in the 

horizontal direction. Both phenomena are particular to off-road terrains and affect the 

tyre-force generation process to such an extent that typical tyre models for rigid roads 

cannot be employed for the simulation of the contact between tyres and soils. 

The proposed model was successfully extended to ass imilate a special library of tribe­

dynamics' modules of visco-lock devices including viscous couplings of shafts and visco-
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lock limited-slip differentials. The mechanism of torque transmitted by visco-lock devices 

was modelled, considering the viscous shear mode, as well as the hump or self-torque 

amplification mode. The dependency of silicone fluid rheology on both shear rate and 

temperature was taken into account. 

In order to va lidate the proposed tribo-dynam ics' modules an experimental test rig was 

devised. The measurements were carried out to capture torque characteristics of these 

devices. Experimental findings for typical components were compared wi th the numerical 

simulation results, showing satisfactory conformity for the predictions. 

The integration of all modules resulted in a fairly complex generi c mu lti-physics model, 

which was implemented in a MATALB/ imulink/ imDriveline environment. Hitherto, 

this is the only numerical approach developed reported, which incorporates tribo­

dynamics ' modules for visco-lock devices with the capability of simulating 4x4 off-road 

vehicles. This unique modelling approach can be used to support the de ign engineers and 

manufacturers in the following manner: 

- Simulation of a wide vari ety of conditions including ride, traction and handling tests 

using medium degree of sophistication for 4x4 off-road vehicle models. However, the 

main strength of the model is the inclusion of a deta iled dri vetrain dynamics fo r 

accurate representation of traction forces. 

Investigation of components' selection particularly those related to drivetrain 

gearing/coupling design, which wou ld produce the characteristics, best suited to a 

proposed vehicle. 

Assessment of vehicle behaviour in accordance to the detailed design parameters of 

visco-lock devices. Subsequently, the requirements for tun ing of such devices can 

easi ly be achieved in a purely numerical environment, which would eliminate time 

and money wasted in the otherwise empirical trial and error implementations. 

Feasibility for the future incorporation of advanced control strategies and automatic 

optimization techniques for off-road 4x4 vehicles. This is in add ition to the possibility 

of integrating such control strategies with an in-house written code rather than using 

complex/commercia l models, wh ich often require special know-how in order to be 

adapted to particular design requirements. 
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7.2 Overall Findings and Conclusions 

The numerical analysis has been successful ly employed in order to predict both traction 

and handling characteristics of a typ ical 4x4 off-road vehicle. The traction performance is 

evaluated based on two alternative approaches. One is to assess vehicle traction 

capab ilities for a specific power plant system in terms of maximum speed, acceleration. 

The other is to assess the efficiency of torque distribution devices in terms of drawbar 

pul l and tractive efficiency. The handl ing characteristics have been examined under both 

transient and steady state conditions du ring standard cornering manoeuvres such as lane 

change, step steer and ramp steer manoeuvres. 

Contributions of a number of significant parameters such as mechanical propetties of so il, 

static weight distribution and tyre inflation pressure have been ascertained. Particular 

attention is paid to various types of conventional drivetrain configurations, as well as 

different scenarios for torque distribution between front and rear ax les, including 

mechanical and visco-lock devices. 

While it was not poss ible to conduct field tests to verify the simulation model , the 

findings conform to general observations and natural intuition and to those reported in 

well known published research work. Based on the results obtained, the following main 

conclusions have been drawn: 

Contrary to on-road vehicles ' performance, it is noted that both the longitudinal and 

lateral behaviour of off-road vehicles are dominated by the mechanical properties of 

the soil. To explore the vehicle behaviour over wider range of so il terrains three 

different types of soi ls with di stinct properties were employed. The findings 

confirmed that traction performance as wel l as cornering stability are seriously 

deteriorated when driving on loose soil with poor shear properties. 

The ana lysis results also show that qu ite different characteristics compared to those 

obtained on rigid road are obtained for soft terrains, particularly for higher speed 

manoeuvres. Generall y a lower magnitude of lateral acceleration is observed which is 

mainly attributed to the resisting circumferential forces due to soil shear strength, as a 
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result of which the developed tyre lateral forces are remarkably lower than those on 

the made roads. 

A significant improvement in the hand ling stability was noted when the vehicle has 

more static weight on the rear ax le. This is mainly due to the higher resultant 

equivalent cornering stiffness at the rear ax le, which tends to shift the handling 

characteristics towards an understeering behaviour. 

The cornering response of A WO vehicles is highly affected by the way the driving 

torque is distributed between the ax les/wheels. This is particularly true where the 

lateral forces are regulated by the longi tudinal slip and the tractive forces at the tyres. 

It was observed that, biasing more driving torque to the rear axle would reduce both 

the longitudinal slip and tracti ve force at the fro nt axle-tyres and therefore, increase 

the lateral force generating potentia l at the front. The additional yaw moment shifts 

the handing characteristics towards an oversteering response, a fact which in turn 

reduces both the stability and controllability of the vehicle. 

- Results of traction analysis have shown that vehicle weight distribution is a crucial 

parameter, which must be taken into account during the design process of A WO off­

road veh icles. For a given ratio of stati c weight distribut ion. except for the case of a 

locked central differential configuration, the traction capabilities are adversely 

affected. In order to achieve the maximum tractive efficiency, the driving torque 

should be di stributed to match the weight distribution between the front and rear axles 

in a manner that would minimize the slip difference between them. 

- In the case where more torque is biased to the rear ax le, a conflict with the handling 

characteristics would be inevitable, and the vehicle stability would be adversely 

affected. 

- Towards the end of the numerical investigation it was noted that, for mechanical 

torque distribution devices, a fi xed ratio of torque bias can be carefully selected by 

appropriately setting the gearing design. On the other hand, for visco-lock devices the 

torque bias ratio can be tuned by carefu lly selecting the si licone fluid rheological 

parameters. 
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7.3 Critical Assessment of Approach 

The thesis presents an integrated numerical approach to simulate A WO off-road vehicles 

fitted with visco-lock devices. A model of medium degree of sophistication is va lidated 

against existing typical vehicle parameters and experimental results obtained du ring the 

study. Furthermore, the thesis demonstrated the usefu lness of visco-lock devices not only 

to improve traction performance but also to maintain vehicle stabil ity. The present 

research is characterised by certain limitations, as follows: 

- The suspension system is simply represented by a linear spring and shock absorber 

model with purely vertically directed forces. This assum ption is c learly not accurate 

due to the complicated des ign of the suspension system, including, bushing non­

linearities, geometry and compl iance. However, it should be noted that, eva luation of 

vehicle behaviour for ride comfo rt was not the main concern of the present research. 

Therefore, the current formulation of suspension system may be reasonable. 

Additionally, due to the modular structure of the model, it would be relatively easy to 

incorporate complex suspension models to achieve more accurate dynamic load 

transfer and hence tyre fo rces. 

- The presented numeri cal model is devoted to the wheeled vehicles, whilst traversing 

on soft so il terrains. This limitation is mainly attributed to the employed off-road tyre 

model. Therefore, the current model cannot be employed for on-road research 

requirements. However by carefully selecting the soil terrain input parameters, 

simulation of hard soi l could still give usefu l quali tative predictions for vehicle 

behaviour on-road. 

- While the proposed approach seems capab le of predicting off-road vehicle behaviour, 

under combined lateral and longitudinal manoeuvres, the experimemal verifications of 

the vehicle model are inevitably req uired. This would enable its use fo r a wide range 

of applications. lt is commonly recogn ized that, field tests of off-road vehicles are 

quite diffi cult, which would requ ires measurements not only the vehicle response, but 

also of the soi l properties and terrain profi le. 
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- The vehicle behaviour in terms of traction performance and cornering stab ility has 

been predicted under the assumption of homogeneous and isotropic surfaces. 

However~ it is obvious that, th is assumption is not valid patticularly for cross country 

terrains. lt is, therefore, expected that the actual performance to be less effective than 

the indicated simulated results. 

7.4 Suggestions for Future Work 

- With respect to the aforementioned limitations, the potential of the model can clearly 

be extended. The generic formulation and modu lar structure of the model permits 

interactions between sub-models, whereby the design time is concentrated upon the 

subsystem currently under investigation. These features enable the future 

incorporation of detai led subsystems such as complex suspensions, tyre inflation 

pressure system, engine dynamics and so forth. Additionally, to broaden the 

app licat ions of the model, it is suggested to integrate it with an on-road tyre module 

such that it would be easy for the user to switch between different conditions. 

- Another major improvement would invo lve the extension of the vehic le model to 

represent features of multi-axle a ll-wheel-dri ve off-road vehicles such as 6x6 and 8x8. 

lt is widely recognized that, there is an increasing demand for such vehicles with 

efficient capabilities for dual operations on both rigid and soft roads. lt is anticipated 

that, the appropriate numerical model to predict traction performance and cornering 

stabi lity of such configurations would be a complex task. 

- With the rap idly growing applications of electronic control systems and automatic 

optimization in the fi eld of A WO vehicles, the devised model would represent a 

suitable environment for such indicated developments. lt is encouraged that, various 

traction control strategies and acti ve torque distribution devices should be 

implemented in the presented model. 

- Conducting fi eld test and measuring vehicle behaviour in both longitudinal and lateral 

directions during typical manoeuvres, aimed at verification of the entire vehicle 

model can be another avenue for further research. 
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Appendix A: Numerical Simulation Parameters 

Appendix A: Numerical Simulation Parameters 

A.1 Vehicle Parameters 

A.1.1 General Description: 

Model 

Unladen weight [Kg] 

Gross vehicle weight [Kg] 

Towing capabilities [Kg] 

Ground clearance [mm] 

Angle of approach [0] 

Angle of departure [0] 

Minimum turning rad ius [m] 

Maximum speed [Km/ hr] 

2794mm 

1996 Land Rover Defender I I 0 

(Station Wagon-Top, 5+4 seats, 5 doors) 

[923 

2950 

- 750 (Un-braked) 

- 3500 (Overrun) 

- 4000 (Coupled) 

2 15 

50 

35 

6.4 

145 

2076mm 
with 750 tyres 

1993mm 
with 205 tyres 

1790mm 

Figure A. I Basic Dimensions of the Reference Vehicle 
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Appendix A: Numerical S imulation Parameters 

Wading Oopth 500mm 

TRAVERSE 
dependant on cargo weight 

Doporture 
Angle 
at Kerb 
Woight 

Romp 
Break 
Over 
Angle 

Approoch 
Angle 

at Kerb 
Weight 

Figure A.2 Performance Limitations of the Reference Vehicle 

A.1.2 Dimensions 

Track front/rear (t1 ,trr ) [mm] 1486 

Interior width [mm] 1430 

Interior height [mm] 11 75 

Width between wheel boxes [mm] 925 

Tailgate aperture width [mm] 864 

Largest box length [mm] 1100/ 1470 

Largest box width [mm] 660 

Largest box height [mm] 1050 

Width [mm] 1790 

Height with 205 tyres [mm] 1993 

Height with 750/235 tyres [mm] 2076 

Overall length [mm] 4599 

Wheelbase ( L) [mm] 2794 
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Appendix A: Numerical Simulation Parameters 

A.1.3 Sprung Mass 

Sprung mass (m,) [Kg] 2,709.9 

Roll moment of inertia (lx.. ) [Kg · m2
] 11 70 

Pitch moment of inett ia (I>,,) [Kg·m2
] 45 11 

Yaw moment of inert ia (!=) [Kg ·m2
] 4803 

Product moment of inertia ( I..Y) [Kg ·m2
] -6.519 

Product moment of inertia ( 1 :x ) [Kg·m 2
] 45.04 

Product moment of inertia ( !;-= ) [Kg· m2
] - I. I 06 

Sprung mass e.G. height ( h(i ) [m] 0.98277 

Sprung mass initial yaw angle (Vi) [0] 0.00 

Sprung mass initial pitch angle( B) [0] 1. 1115 

Sprung mass initia l roll angle (lP) [0] 0.00 

A.1.4 Unsprung Mass 

Front unsprung mass (m,. 
1

) [Kg] 2 18.82 

Front unsprung mass e.G. height [mm] 37 1.67 

Front roll centre height [mm] 394.42 

Rear unsprung mass (m...,, ) [Kg] 21 1.25 

Rear unsprung mass e.G. height [mm] 375.88 

Rear roll centre height [mm] 372.53 

A.1.5 Axle Weight Distribution 

Front ax le [Kg] 1200 

Rear axle [Kg] 1750 

Front axle at kerb [Kg] 1026 

Rear ax le at kerb [Kg] 1029 
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Appendix A: Numerical Simulation Parameters 

A.1.6 Suspension System 

Mode l: N RC9448 - Damper mode l: RNB l 04320. 

Front Live beam ax le - dual rate coi l springs - te lescopic hydraulic dampers. 

Pa nhard rod - Heavy Duty Suspension - Load capacity: 585.00 Lb -

Spring rate: 3943 1 - N/m Free length : 388.62 mm - No. of co ils: 8 turns. 

Mode l: NRC6389- Damper mode l: AN R3538. 

Rear 3050kg li ve beam ax le - mul ti-rate coi l springs - te lescopic hydraulic 

da mpers - "A" frame - Spring: Heavy Duty - Load capacity: 643.97 Lb ­

Spring rate: 578 16 N/m - Free length: 407.00 mm - o. of coils: 8 turns. 

4000 

3000 

2000 

1000 

0 

-z -1000 -Q) 
(,) ... 

-2000 0 
u.. 

-3000 

-4000 

-5000 

-6000 

-7000 

-1 

Front spring stiffness (Kf) = 39431 N/m : 

Rear spring stiffness (Kr) = 57816 N/m I _...----·--· 

: -~· : / ..,- ..,- ..,-
1 • _ _,_ 

----------------~~:::: __________ _ 
_,_/;· 

_,_..,-
/ . / J / . 

/ / 
/. 

/" 
/" . 

-0.8 -0.6 -0.4 -0.2 0 0.2 
Velocity (m/sec) 

Damper Characteristics 

Front Suspension 

Rear Suspension 

0.4 0 .6 0.8 

Figure A.3 Suspension System Characteristics 
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A.1 . 7 Wheel and Tyre 

Description Symbol Un its Data 

Tyre free (unloaded) radius ro [cm] 38 

Tyre width (manufacture) b [cm] 25.8 

Contact area average width [cm] 24.8 

Moment of Inertia 1., [kg· m2
] 1.0 

Profi le factor ------- ------- 0.85 

Profile depth ------- [cm] 1.0 

Grip, coeffi cient of fri ction ------- ------- 0.9 

Maximum pressure p, [bar] 4.0 

Tyre Characteristics 

a l a, ------- 10 

a2 a2 ------- 40 

b l b, ------- 250 

b2 b2 ------- 3000 

b3 bJ ------- 0.23 

Tyre vertical damping [N ·si m] ------- 50 

Dynamic rad ius r d [cm] 37.9 

Rill Approach Parameters 

Nominal wheel load Fz [N] 6000 

Lambda (Fz) A..v ------- 1.0 

Lambda (2·F2 ) ~N ------- 1.0 

Front Rear 

Wheel Standard steel Standard steel 

Tyre 205RI6 205RI6 

Inflation Pressure 1.9 [bar] 3.3 [bar] 
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A.1 .8 Engine 

Model TD5 Diesel 2.5 [Litre] 

Type Inter-Cooled Direct Injection 

Max Power (DIN Net) [KW] 10 1@ 4,200 [rpm] 

Max Torque [N·m] 300 @ 1950 [rpm] 

umber of Cylinders 5 

Compression Ratio 19.5: I 

Cylinder Bore [mm] 84.5 

troke [mm] 89.0 

Cubic Capacity [cm3
] 2495 

350-r------------------~~================~--l 
( TD5 2.5 Litre Engine Torque Chs) 

300 

E 
2:. 250 
<11 
=s 
r:r .... 
0 ...... 
<11 
c:: 200 
C) 
c:: 
w 

150 

1000 1500 2000 2500 3000 3500 
Engine Speed (rpm) 

4000 

Figure A.4 Engine Torque-Speed Characteristics 
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Appendix A: Nwnerical Simulation Parameters 

A.1.9 Drivetrain System 

The drivetrain system can be described as a fu ll-time 4WD system including lockable 

centre differentia l and transfer case model L T230. This arrangement allows both the 

front and rear transfer-case output shafts to rotate at di fferent driving speeds. In 

addition, it permits the 4 WO system to be used at low-range of speed without 

transmission wind-up. The transfer case has two gear positions; high ( 1.4 11: 1) and 

low (3.320: 1) 

A differentia l lock engages the shafts together when wheel sl ip is a problem; in fact it 

locks the front shaft to the differential carri er. This differential-lock does not act on 

the axle differentials. Later a viscous coupling in place of the centre differential lock 

is used. 

If the differential-lock is engaged on good roads it wil l cause sever transmission/tyre 

wear. If the differential-lock is not engaged (earl y enough) on loose surfaces it may 

allow the centre differential (which is small and rotates 3.5 times more rapid ly than 

the road wheels) to overheat and eventually fail. This explains the importance of later· 

incorporation of viscous coupling which not onl y improves vehicle performance but 

also adds strength and durab ility. 

The transfer case uses the standard arrangement of input shaft (from the gearbox), 

intermediate shaft and output shafts, the latter embody the centre differential. Later a 

'silent chain ' or 'Morse chain' to carry the dri ve from the input shaft directly to the 

output shaft. A viscous coupling replaces the centre differential lock. The high/low 

range selection is done by epicyclic gears at the end of the gearbox output­

shaft/transfer case input shaft, where a PTO would normally fit. 

A manual 5-speeds gear box of model (R380) is incorporated: 

Fi rst 3.32 1: I 

Second 2. 132: 1 

Third 1.397: I 

Fourth Direct (I: I) 

Fifth 0.77: 1 
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Appendix A: Nwnerica/ Simulation Parameters 

Both the front and rear differentials of model (FTC2750) are used with gear reduction 

(3.54: 1). 

Rotational moment of inertia about it 's axis of rotation [ kg· m2 J: 

Engine and flywheel 0. 1 

Gear Box 0.0897 

Axle from GB to central Dif. 0.00 1 Central differential 0.1957 

Front propeller shaft 0.002320 Front differential 0.0845 

Rear propeller shaft 0.00 1304 Rear differential 0.0845 

Front ax le Left: 0.00 I Right: 0.00 I 

Rear axle Left: 0.00 I Right: 0.00 I 

Wheel and tyre 1.0 

- Shafts/ax les elasticity properties: 

Stiffness Damping Initial Offset Backlash 

[N·m] 
rad 

[N· m· s] 
rad 

[rad] [ rad] 

Axle from GB to central Dif. 1200 I 0 0 

Front propeller shaft 1000 10 0 0 

Rear propeller shaft 1000 10 0 0 

Front left ax le 7200 50 0 0 

Front right ax le 7200 50 0 0 

Rear left axle 7200 50 0 0 

Rear right ax le 7200 50 0 0 

Stiffness: The spring constant or rate for the restoring torque imposed by the spring. 

Damping: The damping constant of the kinetic frictional torque imposed by the spring 

Initial Offset: The initia l angular offset of the relative di splacement. 

Backlash: The angular free playback allowed in the torsional spring. 
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A.2 Visco-Lock Devices 

I Parameter I Symbol I Unit VC LSDI LSD II 

1- Inner Plate Parameters: 

lnner plate thickness l , [m] 0.0005588 0.0005588 0.00040 

Inner plate outer rad ius r 2 [m] 0.058530 0.058530 0.03980 

Inner plate slot inner radius r3 [m] 0.045470 0.045470 0.02750 

Inner plate slot w idth d, [m] 0.002790 0.002790 0.00216 

Inner plate tap angle 2 ·If! [0] 15.00 15.00 15.00 

Inner plate edge height fedrze [m] 0.000033 0.000033 0.000033 

Inner plate number of tabs N 7oh' --- 24 24 24 

Inner plate mass m'"""' [Kg] 0.02758 0.02758 0.0085 

Coefficient of Coulomb friction '7 --- 0. 1 0.1 0.1 

Number of inner plates Nlnner --- 27 10 13 

2- Outer Plate Parameters: 

Outer plate thickness fo [m] 0.0005588 0.0005588 0.00040 

Outer plate inner radius r I [m] 0.035584 0.035584 0.02725 

Outer plate perforated holes diameter d(l [m] 0.007400 0.007400 0.00740 

Number of perforated holes Nholes --- 18 18 18 

Outer plate mass lno mer [Kg] 0.02669 0.02669 0.0 106 

Number of outer plates N Ower --- 28 11 14 

3- Spacers Parameters: 

Spacer thickness I 'fKJCer [m] 0.0009398 0.0009398 0.0007 

Spacer mass m Spacer [Kg ] 0.00235 0.00235 0.0005 

N u m bet· of spacers N Spacer --- 26 9 13 

4- Fluid Rheology (Silicone Parameters) 

Nominal kinematic v iscosity vo [ :'] 0.03 0.1 0.08 

Critical shear rate ( in viscosity model) Yn [s·'] 100 100 80 

Slope of viscosity-shear rate curve m --- 0.3586 -0.4716 -0.85 

A-9 



Appendix A: Numerical Simulation Parameters 

Parameter Symbol Unit VC LSD I L D li 

Density (at temperature = 25°C) PF [~~] 976.00 976.00 976.00 

Empirica l constant (log-log equation) A,,"'w --- 1.84 1.40 1.37 

Coefficient of thermal expansion {J,. [K·'] 0.00096 96£-05 0.00096 

Bulk modulus K I· [Pa] 6.25E+08 6.25E+08 6.25E+08 

Thermal conductivity k,. [ /11~: J 0. 145 0. 174 0. 145 

I Speci fie heat c,. [K/K ] 1444 1444 1444 

Total mass of si licone flu id m, [Kg] 0. 11 95 0.0278 0.0163 

5- Hou ing Parameters: 

Hou ing length L ,IOIISIOg [m] 0.06441 0.036605 0.033 

Housing outer diameter D, hOII\ [m] 0.1397 0. 1397 0. 10224 

Housing inner diameter D,, llou.l [m] 0. 1245 0.1 245 0.05450 

Thickness of end wal l t ,•nd ~<all [m] 0.0 11 0.0 11 0.0 11 

Effective area factor of plates Kt> --- 0.73 0.73 0.85 

Hub outer diameter D" ""h [m] 0.068 0.068 0.0325 

Hub inner diameter Dill 1mb [m] 0.04 10 0.041 0 0.0 11 2 

Percentage of fluid filling ratio cl· [%] 0.86 0 .86 0.85 

Mass of housing and hub 11111\f:+huh [Kg ] 4.4690 2.9069 2.0532 

Conduction coefficient he s [ ,,/~ K ] 400.0 400.0 400.0 

Convection coefficient hs A [m:~ K ] 10.0 10.0 10.0 

Steel Density P, [~~] 7832 7832 7832 

Stee l Modulus of Rigidity G.., (Pa) I.OE+OII I.OE+O 11 I.OE+OI I 

Steel Thermal conduct ivity k.., [ mi·VK ] 63.9 63.9 63.9 

Steel pecific heat Cs [K/K ] 434.0 434.0 434.0 

Coefficient line thermal expansion as [ '~m ] 16.2E-06 16.2E-06 16.2E-06 

line contact to vo lume --- ,., 
.) 3 3 
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VC stands for data of viscous coupling used in section 5.6.2 and section 6.3 

LSD I stands for data of visco-lock limited slip differentia l used in section 6.3 

LSD 11 stands for data ofvisco-lock limited slip differential used in section 5.6. 1 

Silicone Fluid Rheology Parameters used in Section 6.3.3 (tuning procedures) 

ominal kinematic viscosity 

Critical shear rate 

Slope of viscosity-shear rate curve 

Density at room temperature 

Empirical constant 

Coefficient of thermal expansion 

Bulk modulus 

Thermal conductivity coefficient 

Specific heat coefficient 

10' 

Ill' 

10' 

10' 

"F 
F. 
li 

~10' 
§ 
> 

I 

_ ,_I 

I 
I 

- - - -

I 

I 

I I 

l_jj _ 

Jl 
11 

- ~t~-· 

I I 

I I 

I I 

10'' 

-

Flu id (A) Fluid (B) Fluid (C) 

v, [ :'] 1.00 0.1 0 0.01 

Yn [s·' ] 15 100 2000 

m --- -0.5622 -0.47 16 -0.4 12 

p,. [Kg] 
m3 976 976 976 

At freta --- 0.92 1.4 2.5 

fJF [ K·' ] 0.00099 0.00099 0.00099 

Kv [Pa] 6.25E08 6.25E08 6.25E08 

k,.- [ w ] 
m-K 

0. 174 0. 174 0.1 74 

c,.- [K/K ] 1444 1444 1444 

.,. M I 000000 
M 500000 
M 100000 

11: I I L l c::::~ c::Jc::l CJ M 50000 

H==JJ ! ! ---- M 10000 ---- M I 000 
:-.,.;;:::_-, 

..... ,., 
I _!_ _!_ _!_ ' ·~ I I I I : ~ ....... ' 

- - ---- ..,.=·~ 

I ,, I 

l 11 l 
I I I 

I I I! 

10' 10' 

C!!lio 

C'S1 

i 

' 

10' 10' 

~ 

~ 
~ 

10' 
9\tv nra 11 sec 

Figure A.5 Silicone Fluid Shear Properties at 25 °C (after Payer, 2006) 
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A.3 Soil Mechanical Properties 

Parameters Symbol Unit Clay Loam Sand 

Density of the soi I p [,!3] 2.0 2.0 1.9 

Cohesive module of deformation Kc [Cl:,+ I] 35 18 20 

Frictional module of deformation K'P 
[ C/1~+2 ] 30 6.0 23 

Exponent of sinkage n -------- 0. 18 0.50 0.55 

Cohesion c [c:2 ] 
3.5 2.5 1.0 

Angle of friction rp [0] 18 25 28 

Slip coefficient K -------- 2.5 2.5 2.5 

Stiffness coefficient CB [c:3 ] 
7600 70 560 

Damping coefficient b [~~s] 4000 4000 10000 

Slippery coefficient -------- -------- 0.2 0.3 0.8 

Cornpaction capabi lity -------- -------- 1.0 0.9 0.4 

Roll ing resistance correction -------- -------- 0.078 0. 144 0.230 

Shearing offset -------- [cm] 0.0 0.5 5.0 
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Appendix B: Measuring Instruments Specifications 

8 .1 The AR 1000 Rheometer 

230V AC 5 amps 
Supply Voltage 120V AC 10 amps 

Frequency 50 to 60Hz 

Power 800 VAC 

Torque Range 0.1 !l ·m to 100 m N·m 

Shear tress Range (Geometry Dependent) 0.0008 to 508000 Pa 

Frequency Range 0. 1 mHz to I OOHz 

Controlled stress: 10·8 to I 00 rad ·s 
Angular Velocity Range 

Controlled strain: I o·2 to I 00 rad·s 

Angular Displacement Resolution 0.62 Jl·rad·s 

Shear Rate Range (Geometry, material and 

technique dependent.) 
I o·6 to I I ,000 s·1 

Minimum stra in Range: 0.00006 

Normal force lgto5000g 

Peltier system range (Ramp rate) -10 °C to 99 °C (20 °C min) 

Internal resolution of Pt I 00 0.016 °C 
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8 .2 Non-Contact Rotary Torque Transducer 

Model Size 2 I M420 Torque Transducer (0 - 500Nm) 

Torque Rating 0- 500Nm 

Operating Speed I 00 rpm 

Data Output Digital Output RS232 

Optional Output 
Analogue Output 4-20mA I 0 - I OVDC 

- Type 686 Analogue Output Module Required 

Accuracy 0.1% Full Scale 

Sampling Rate I 0 - I 00 samples per second 

Operating Temperature -I 0°C to +70°C 

IP Rating lP 54 

Cable Length 4 metres 

Supply Voltage 12V (15V if supplied Type 686 modu le) 

Compatib le with 
Type 370 Torque, Speed & Power fndicator, Type 30C 

Digital Torque Ind icators and TorqueLog Software. 

Delivery Standard delivery is 4 - 6 weeks from receipt of order 

Overa ll Length 240mm 

Shaft Diameter 25mm (150- 450Nm) 30mm (400 

Shaft Dimensions Body Diameter 750N m) 

Body Length 85mm 

150mm 

Calibration Record 

CW ccw 
Torque Torque cw CCW Error Error 

lbft Nm m V/V m V/V %FSD %FSD 
0 0.0 0.000 0.000 0.00 0.00 

75 I 01.7 0.364 -0.360 0.32 -0.12 
150 203 .4 0.728 -0.724 0.64 -0.02 
225 305 . 1 1.075 -1.085 -0.01 -0.09 
300 406.7 1.433 -1.450 -0.03 0.07 
375 508.425 1.792 - 1.811 0.00 0.00 
Calibration Figure: 1.762 
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8 .3 The Microprocessor Thermometers 

Model Comark ( 620 l) 

Output Analouge signal 

Response 0.5 second to fu ll accuracy 

Reading rate 4 per second 

Range 0.000 I to 9.9999 

Accuracy ±0.05% of setting 

Analouge output I Volt out = 100 °C or I mY 

Reso lution ±0. 1%of F.S. ( I vo lt) 

Temp. coefficient ±0.05% per I oc 
Thermocouple K Type Nickel-Chromium I Nickel-Aluminium 

8 .4 The Data Acquisition (US8-6008/6009) 

Converter type ........................ .. ....... .. ..... Successive approximation 
Analog inputs .......................................... & single-ended, 4 differentia l, 

software selectable 
Input resolution 

USB-6008 ........ .. ....................... .... ........ 12 bi ts differentia l, 

I I bits single-ended 
USB-6009 ..................................... ........ 14 bits differential , 

13 bits single-ended 
Max sampling rate I 
Single channel 

USB-6008 .. .................... .................... .... l0 kS/s 
USB-6009 ............................................. .48 kS/s 

Multiple channels (aggregate) 
USB-6008 .............................................. 1 0 kS/s 
USB-6009 .............................................. 42 kS/s 
AI FIFO ........ ..................... ................... 512 bytes 
Timing resolution ................................ .41.67 ns (24 MHz timebase) 
Timing accuracy ................................... ( 00 ppm of actual sample rate 

Input range 
Single-ended .......................................... ± IO V 
Differential ..................... ................... ... ±20 V, ± I 0 V, ±5 V, ±4 V, ±2.5 V, ±2 V, ± 1.25 V, ± I V 
Working voltage ............... .................... ± I 0 V 
Input impedance ................................... 144 kQ 
Overvoltage protection ........................ . ±35 
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8 .5 The Rotational Vibrometer 

Sensor Head: OFV-400 (Polytec) 

Operating distance 400 mm ±50 mm (200 or 600 mm optional) 

Beam separation 8 mm (standard) 

Laser class TI (less than I m W per ex iting beam) 

Wavelength 633 mm 

Environmenta l Temp. +5 °C ... +40 oc 
Controller: OFV-4000 (Polytec) 

Main supply I 00/ 11 5/230 V 

Power consumption Max. 150 VA 

Interface RS-232 (8 data bits, baud rate 4800) 

Speed Measurement (rpm) 

Measurement range -7000rpm ... + IJ OOOrpm 

Display range -7000 rpm ... +9 999 rpm 

Slope I mY/rpm 

Analog output +/- 12 V, RJ= IOO Q, BNC min. load impedance 10 KQ 

Calibration error < +/- I%± 5 rpm at 25 °C ± 5 degrees 

Linearity error < 0.5% 

Lim it frequency I Hz (slow) I 2500 (fast) 

Vibrational velocity Range: I 00, WOO, I 0 000, 60 000 °/s full scale va lue 

Vibrational angle Range: 0. 1 o I : 1.0° /: I 0° fu ll scale value 
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