169 research outputs found

    Paradoxes of the applied infinite : infinite idealizations in Physics

    Get PDF

    Infinity

    Get PDF
    This essay surveys the different types of infinity that occur in pure and applied mathematics, with emphasis on: 1. the contrast between potential infinity and actual infinity; 2. Cantor's distinction between transfinite sets and absolute infinity; 3. the constructivist view of infinite quantifiers and the meaning of constructive proof; 4. the concept of feasibility and the philosophical problems surrounding feasible arithmetic; 5. Zeno's paradoxes and modern paradoxes of physical infinity involving supertasks

    Point-Based Models For Compensation Of Thermal Effects In Dimensional Metrology

    Get PDF

    Smooth Tool Motions Through Precision Poses

    Get PDF

    Bibliographie

    Get PDF

    Relations between logic and mathematics in the work of Benjamin and Charles S. Peirce.

    Get PDF
    Charles Peirce (1839-1914) was one of the most important logicians of the nineteenth century. This thesis traces the development of his algebraic logic from his early papers, with especial attention paid to the mathematical aspects. There are three main sources to consider. 1) Benjamin Peirce (1809-1880), Charles's father and also a leading American mathematician of his day, was an inspiration. His memoir Linear Associative Algebra (1870) is summarised and for the first time the algebraic structures behind its 169 algebras are analysed in depth. 2) Peirce's early papers on algebraic logic from the late 1860s were largely an attempt to expand and adapt George Boole's calculus, using a part/whole theory of classes and algebraic analogies concerning symbols, operations and equations to produce a method of deducing consequences from premises. 3) One of Peirce's main achievements was his work on the theory of relations, following in the pioneering footsteps of Augustus De Morgan. By linking the theory of relations to his post-Boolean algebraic logic, he solved many of the limitations that beset Boole's calculus. Peirce's seminal paper `Description of a Notation for the Logic of Relatives' (1870) is analysed in detail, with a new interpretation suggested for his mysterious process of logical differentiation. Charles Peirce's later work up to the mid 1880s is then surveyed, both for its extended algebraic character and for its novel theory of quantification. The contributions of two of his students at the Johns Hopkins University, Oscar Mitchell and Christine Ladd-Franklin are traced, specifically with an analysis of their problem solving methods. The work of Peirce's successor Ernst Schröder is also reviewed, contrasting the differences and similarities between their logics. During the 1890s and later, Charles Peirce turned to a diagrammatic representation and extension of his algebraic logic. The basic concepts of this topological twist are introduced. Although Peirce's work in logic has been studied by previous scholars, this thesis stresses to a new extent the mathematical aspects of his logic - in particular the algebraic background and methods, not only of Peirce but also of several of his contemporaries

    Methods of symmetry reduction and their application

    Get PDF
    In this thesis methods of symmetry reduction are applied to several physically relevant partial differential equations. The first chapter serves to acquaint the reader with the symmetry methods used in this thesis. In particular the classical method of Lie, an extension of it by Bluman and Cole [1969], known as the nonclassical method, and the direct method of Clarkson and Kruskal [1989] are described. Other known extensions of these methods are outlined, including potential symmetries, introduced by Bluman, Kumei and Reid [1988]. Also described are the tools used in practice to perform the calculations. The remainder of the thesis is split into two parts. In Part One the classical and nonclassical methods are applied to three classes of scalar equation: a generalised Boussinesq equation, a class of third order equations and a class of fourth order equations. Many symmetry reductions and exact solutions are found. In Part Two each of the classical, nonclassical and direct methods are applied to various systems of partial differential equations. These include shallow water wave systems, six representations of the Boussinesq equation and a reaction-diffusion equation written as a system. In Chapters Five and Six both the actual application of these methods and their results is compared and contrasted. In such applications, remarkable phenomena can occur, in both the nonclassical and direct methods. In particular it is shown that the application of the direct method to systems of equations is not as conceptually straightforward as previously thought, and a way of completing the calculations of the nonclassical method via hodograph transformations is introduced. In Chapter Seven it is shown how more symmetry reductions may be found via nonclassical potential symmetries, which are a new extension on the idea of potential symmetries. In the final chapter the relationship between the nonclassical and direct methods is investigated in the light of the previous chapters. The thesis is concluded with some general remarks on its findings and on possible future work

    New Foundation in the Sciences: Physics without sweeping infinities under the rug

    Get PDF
    It is widely known among the Frontiers of physics, that “sweeping under the rug” practice has been quite the norm rather than exception. In other words, the leading paradigms have strong tendency to be hailed as the only game in town. For example, renormalization group theory was hailed as cure in order to solve infinity problem in QED theory. For instance, a quote from Richard Feynman goes as follows: “What the three Nobel Prize winners did, in the words of Feynman, was to get rid of the infinities in the calculations. The infinities are still there, but now they can be skirted around . . . We have designed a method for sweeping them under the rug. [1] And Paul Dirac himself also wrote with similar tune: “Hence most physicists are very satisfied with the situation. They say: Quantum electrodynamics is a good theory, and we do not have to worry about it any more. I must say that I am very dissatisfied with the situation, because this so-called good theory does involve neglecting infinities which appear in its equations, neglecting them in an arbitrary way. This is just not sensible mathematics. Sensible mathematics involves neglecting a quantity when it turns out to be small—not neglecting it just because it is infinitely great and you do not want it!”[2] Similarly, dark matter and dark energy were elevated as plausible way to solve the crisis in prevalent Big Bang cosmology. That is why we choose a theme here: New Foundations in the Sciences, in order to emphasize the necessity to introduce a new set of approaches in the Sciences, be it Physics, Cosmology, Consciousness etc
    corecore