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ABSTRACT 

In a hybrid approach to geometric modelling and 

metrology, a computational model of an object 

(component or system) is formed and modified in 

the light of the known external conditions such as 

temperature and loading. Measurements of the 

physical component are taken and compared with 

the predictions obtained from finite element 

analysis. There are thus several models of the 

object: an accurate geometric CAD model; a 

point-based finite element mesh model prediction 

of distortion involving many points; and 

measurement results from a small number of points 

on the physical object. The research question is 

whether the information from these models can be 

combined to assist in down-stream activities such 

as assembly of components. The aim is to modify 

the mesh model continuously so that it agrees with 

the metrology results at the measured points. Each 

measured deformation corresponds to a rigid-body 

transform. The methodology is to treat the 

measured points as forming a polyhedron and to 

interpolate the local transform smoothly along the 

edges, across the faces, and away from the faces. 

The results from some examples, involving large 

distortions, are presented. 

KEYWORDS 

Model variation, thermal variation modelling,  

geometric algebra, metrology. 

1. INTRODUCTION 

Dimensional metrology has many sources of 

uncertainty, one of the most significant being 

temperature. For this reason, the standard 

dimensional metrology temperature is defined to 

be 20 degrees Celsius [4]. For large-scale 

assemblies, temperature control can be difficult so 

these are particularly prone to thermal effects. 

These effects include: thermal expansion of the 

measurand (the object being measured); and 

variation in the refractive index of air when optical 

instrumentation is used [11]. Particularly in large 

structures, significant thermal gradients can be 

present. Some indoor environments may 

experience gradients of 3-5 degrees Celsius in any 

direction, often predominantly vertically. 

Temperatures are also not static. Throughout the 

day, the temperature is likely to vary by several 

degrees and this can influence manufacturing 

operations. Temperature is considered to be one of 

the critical factors in the success of assembly 

processes [2]. 

Thermal compensation in metrology is generally 

attempted by simply scaling linearly, based upon 

coefficients of thermal expansion and often a 

single ambient temperature reading. This is of 

limited benefit. It assumes that temperature is 

uniform within (and around) the measurand, which 

it is not. For assembly operations, this is also 

limited. For example, it is far more helpful to be 

aware of the point-wise coordinate displacements 

at particular assembly fixtures or interfaces. A 

novel hybrid metrology method is being created in 

which the combination of more comprehensive 

temperature measurement and simulation allows 

predictions to be made at all parts of a component, 

a tooling structure, or a product assembly [32]. To 

improve simulation predictions, adaptations to the 

geometry of the measurand are required. 
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The conventional approach to the prediction of 

thermal distortion is the use of finite element 

analysis. The mesh model used for the analysis is 

typically derived from a geometric model created 

using a CAD system. A number of techniques are 

available for measuring physical objects. These 

include photogrammetry and laser scanning. 

Typically these provide accurate locations (in 

world space) for specific points on the physical 

structure. Thus there are a number of models in 

use. There are: the full nominal geometry 

described by the geometric model from the CAD 

system; the point-based mesh model of the 

distorted geometry derived from the finite element 

analysis and this often involves many thousands of 

nodes; and the physical distortion model based on 

a small number of measured points. 

The accuracy of the distorted mesh-model is only 

as good as the assumptions made by the finite 

element approach and the boundary conditions 

supplied by the user. The physical distortion model 

is highly accurate but only applies to a small 

number of individual points. The research question 

is whether it is possible to combine the information 

from the various models to provide information 

useful for down-stream activities such as assembly 

of components. The question is answered in this 

paper by using the physical distortion 

measurements to modify the mesh model so that 

the nodes corresponding to measured points have 

the measured distortion. The aim is to generate a 

rigid-body transform at each point in space which 

provides the appropriate transform at each 

measured point to “correct” the finite element 

prediction. If this transform varies smoothly (over 

space) then it can be applied to all the other points 

in the mesh model to “correct” their predictions of 

the distortion. What results is a point-based model 

of the thermally distorted object which agrees with 

the measured at distortion at the points where 

physical measurement has taken place. Naturally 

this point-based model does not have all the 

geometric detail of the original CAD model; it is 

not intended to. However it gives a clearer 

indication of the true distortion of the full structure 

which can be used to inform subsequent activity 

such as assembly operations. 

This paper investigates how the smoothly varying 

rigid-body transform can be constructed. The 

methodology is to regard the points where physical 

measurement takes place as forming a polyhedron 

in space. The required transform is derived at the 

vertices of the polyhedron from the measurement 

results. It is then extended to the whole of three-

dimensional space by interpolation, firstly along 

the edges of the polyhedron, then across its faces, 

and finally away from the faces. results are 

obtained from examples in which a metal frame 

framework is thermally distorted and finite element 

analysis used to model the process. It is shown that 

the deformations along the sides of the frame can 

be obtained from information about how the 

corners distort. 

Section 2 reviews the literature in the areas of 

compensation for thermal effects in metrology and 

of modelling of rigid-body transformations. The 

idea of combining predicted distortions and 

physical measurements is part of a hybrid approach 

to metrology and compensation which is discussed 

in section 3. Section 4 introduces the numerical 

scheme for establishing the correcting transform 

across an object Some examples are given in 

section 5. At this stage, the approach is still being 

developed and investigated, and the results seem 

encouraging. Conclusions are presented in section 

6. 

2. LITERATURE SURVEY 

Uncertainty evaluation of measurement with 

thermal variation can be challenging, further 

complicated by variation in thermal expansion 

coefficients in materials [37]. Various studies have 

considered measurement and compensation for 

thermal effects in different applications. One 

example is machining processes where the 

temperatures resulting from operations are usually 

significantly above the ambient room temperature 

[40]. This can result in poorly finished components 

especially if the specifications are demanding. In 

some cases, it is possible to compensate for 

machine tool errors arising from thermal effects in 

real time [13]. 

It is of course possible to measure the temperature 

of an object and its environment in many ways 

(and with various levels of accuracy) [31, 33]. 

These allow monitoring of what is happening in an 

assembly environment. There is then the possibility 

of using physical temperature measurements to 

inform thermal variation models and hence make 

appropriate compensation of thermal effects. 

Assessing the effect of temperature on the 

tolerance stack-up of assemblies is of importance 

in product design [21, 22]. Various methods and 
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software packages are available to perform 

tolerance analysis on assemblies [5]. A study of 

assemblies in the automotive industry suggested 

that simulations of assembly variation should be 

combined with studies of thermal expansion, rather 

than considering these two issues separately[24]. 

These methods are all typically used in the design 

phase, rather than being brought into the execution 

of manufacturing processes, which would confer 

the advantage of early warning when products are 

straying from specification. 

For large objects, an entirely different range of 

errors can be induced by gravitational effects. A 

body may distort under its own weight and the 

distortion varies according to how the object is 

orientated and supported. Again there are 

implications for assembly operations and stack up 

of the tolerances [25]. 

Measurement techniques, such as photogrammetry 

and laser trackers, are available to try to determine 

where distortions occur in a body. However during 

assembly it can be time-consuming to continually 

perform checks. However these may only be point-

based. Various computational procedures are also 

available to simulate what distortions occur. 

Methods based on finite elements are common 

[25]. Currently a hybrid approach [32] is being 

considered. This attempts to bring together the 

results of physical measurements of an object and 

mesh-based simulation of how it can distort. An 

overview is given in section 3. Using the physical 

measurements (assumed to be sufficiently 

accurate) can allow modifications to be made to 

the mesh model (which are naturally subject to 

modelling errors). 

Corrections to the point-based mesh model need to 

involve forms of geometric transforms and those 

which represent rigid-body movement preserve the 

local geometry. There are several ways of handling 

geometric transforms [30] of which the use of 4×4 

matrices and homogeneous coordinates is perhaps 

the most commonly used. Recently interest has 

been renewed in the techniques of geometric 

algebra deriving from the seminal work of 

Grassmann [17, 18], Hamilton [19], Clifford 

[7,38], and others in the 1800's. Shoemake used 

quaternions to represent rotations about an axis 

through the origin [36]. These idea have been 

extended to dual and double quaternions [1, 29]. 

These approaches have been applied in areas such 

as: robotics [16], folding operations [39], and 

mechanisms [14]. 

Geometric algebra provides an environment which 

extends the quaternions and provides a natural 

representation of three-dimensional space and so 

allows geometry to be represented and transformed 

[35]. Several forms of geometric algebra have been 

proposed [6, 15, 27, 34]. Although the 

constructions are different, their representations of 

geometry and transforms are very similar. They 

have been used for various applications including: 

robotic vision [3], free-form motions [9], and 

quantum systems [28].  

3. HYBRID APROACH 

A hybrid metrology system can be thought of as 

one in which measurements of various physical 

quantities of a component and its environment are 

made and used to inform and update computational 

models of the component [32]. The precise details 

of such a system depend of course upon which 

quantities are measured physically and simulated 

computationally. Figure 1 shows a typical form of 

the proposed approach. 

Key is a geometric model of the component itself 

with its nominal dimensions. This can be created 

within an appropriate CAD environment. It 

provides basic geometric details for various 

analysis packages. The figure suggest analysis in 

the forms of: thermal effects; distortion under 

loading (including self-loading); and assessment of 

errors in manufacture and/or tolerances in 

assemblies. Finite element software can deal with 

thermal and loading effects; specific packages are 

available for considering tolerance build-up [10]. 

Other analysis could include: modelling of fatigue 

damage [12], and the strength of composite 

structures [23]. Note that some of this analysis 

work depends upon results obtained from 

measuring the environment in which the real 

component has been placed. An obvious example 

here is the need to know the ambient temperature 

when undertaking thermal modelling. 

The results of the analysis are used to modify the 

nominal geometric model so as to produce a better 

prediction of the state of the actual component. 

Figure 1 describes this deformed model as 

“continuous” meaning that modifications are 

applied to the whole model. 
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The accuracy of this prediction is limited by 

whatever assumptions are made in setting up the 

analysis models and in their methods of solution. 

So the other main part of the hybrid approach is the 

use of metrology techniques on the real physical 

component. This can include: measurement of 

features on the component (perhaps with 

photogrammetry or a coordinate measuring 

machine), and the measurement of temperature on 

the component (perhaps using thermocouples) 

[33]. Typically, these measurements are at discrete 

points on the component. 

There is then the opportunity to compare the 

predicted model with the discrete measured results. 

This of course requires the ability to find the 

appropriate discrete points in the continuous 

geometric model and hence determine the 

associated predicted values there. If there are 

discrepancies, then there are (at least) two possible 

courses of action. One is to feedback the 

comparison and revisit the analysis stages 

imposing modified solution conditions. The other 

is to try to update the predicted model directly so 

that there is agreement between it and the 

measured results. If this is done continuously and 

the original discrepancies are small, it is assumed 

that this brings the rest of the model into closer 

agreement with the physical component. It is this 

updating approach that is the motivation for what 

is considered in this paper. 

Once sufficiently good agreement has been 

obtained between the deformed geometric model 

and the physical measurements, then it is possible 

to store the model along with the relevant 

environmental parameters. This allows the 

predicted model to be recovered if those external 

parameters are encountered again. It also provides 

good starting points for subsequent analyses when 

the environmental conditions have changed. 

One of the intended application areas for the 

hybrid approach is one in which a company is 

concerned with assembling large structures. These 

are likely to deform under changes in the ambient 

temperature and under their own weight 

(depending on how they are supported). It is 

important to be able to know whether assembly is 

no longer possible (perhaps because the tolerance 

build-up is no longer favourable), or whether it can 

still be achieved if the assembly strategy is 

modified. It is therefore important to have good 

geometric models of the components of the 

assembly for given external conditions. It is 

assumed that the external conditions vary slowly 

(over minutes rather than seconds). This means 

that it is possible to use the hybrid approach 

continuously to predict and update the geometric 

model since the times required to undertake with 

the analysis parts are not a critical consideration. 

4. MODELLING DISTORTIONS 

As indicated previously, the underlying idea is as 

follows. There is a point-based mesh model 

(usually obtained from finite element analysis) of 

Figure 1 Hybrid computational/metrology approach 
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an object which predicts the effects of disturbances 

due to thermal (and possibly other) effects. This is 

assumed to be accurate but may suffer from the 

limitations inherent in the modelling used. There is 

also information of the actual geometric distortion 

at a number of discrete “measurement” points on 

the physical object. These are assumed to be 

accurate. The interest is in modifying the mesh 

model so that it coincides with the physical 

measurements at the measured points. 

To investigate what can be done, this idea is 

initially abstracted as follows. It is assumed that 

there is a point-based model of an object. At a 

number of discrete measurement points, a rigid-

body transform is specified, corresponding to the 

required correction. The aim is to define a function 

providing a rigid-body transform at all points in 

space which coincides with the specified 

transforms at the measurement points. [Note that 

the approach is to distort the points in a point-

based model. There is no attempt here to distort the 

original geometric model of the object (as perhaps 

defined with a CAD systems). So there are no 

issues of trying to preserve any B-rep or CSG 

structures.] 

Use is made of the ideas of geometric algebra of 

which there are several formulations [6, 15, 26]. 

Any of these works appropriately: it is the G4 

given in [9, 26] which is used for the examples 

given here. Within the algebra, rigid-body 

transforms can be represented as elements of even 

grade, and the algebra allows such elements to be 

combined additively (as well as multiplicatively). 

The attraction of this approach is that rotations and 

translations are represented and manipulated in a 

common form. 

The measurement points at which the transforms 

are specified are taken to be the vertices of a 

polyhedron in space. The interest is in extending 

the given transforms at the discrete points so as to 

obtain a transform at any point in space. This 

interpolated transform needs to agree with the 

transform at each measurement point. 

It seems desirable that, at a point on a line joining 

two measurement points, the interpolated 

transform is simply an interpolation between the 

transforms at those measurement points. Similarly, 

if a point lies within the plane defined by three 

measurement points, then it is desirable that the 

interpolated transform depends only on those three 

measured transforms. 

 

 

 

However such desires cannot always be fulfilled 

since there may be contradictions inherent in the 

measured transforms. For example, if four 

measurement points happen to lie in a plane, then 

there is no reason to expect that interpolating 

separately along the two diagonals can lead to the 

same result at the intersection of those diagonals. 

Similarly interpolating for the plane using three out 

of the four measurement points is unlikely to give a 

result that is independent of which point is omitted. 

Hence the previous desires are restricted to lines 

and planes which are part of the polyhedron 

defined on the measurement points. 

Figure 2 Data structure for polyhedron 
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Figure 3 Relation: “member of” 

Figure 4 Relation: “within” 

 

Figure 5 Distance functions 

Figure 6 Weighting functions 
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4.1. Polyhedron structure 

The measurement points define a polyhedron. This 

is set up as a data structure representing its 

elements. This is a simplified version of the 

structure used by the ACIS geometric modeller [8]. 

[However note that, as stated before, it is point-

based model that is distorted. The data structure 

here is simply a convenient way of representing the 

geometry of the polyhedron and setting up the 

required interpolation of the transforms.] 

The structure is summarized in figure 2. At the 

base of the structure is a list of vertices. Each 

vertex is associated with a position vector in three-

dimensional space. The vertices hold the 

“geometry” of the object. For simplicity, the 

distinction between a vertex and its position vector 

is blurred and the two ideas are treated as the same. 

The “topology” of the object starts with a 

collection of nodes. Each node is associated with a 

vertex. Again the distinction between a node and 

its vertex and position vector is blurred in what 

follows. An edge of the object comprises a pair of 

nodes. 

A face of the object is an ordered collection of 

edges which are those bounding the face going in 

anticlockwise order when viewed from outside the 

object. The edges are coplanar and the face is a 

planar facet of the object. There is thus an implied 

orientation for the edges and the order of the nodes 

within each edge is such that the first node of an 

edge is the same as the second node of the edge 

that precedes it around the face. This also means 

that every “real” edge appears twice – once in each 

direction (this corresponds to the ACIS concept of 

a co-edge [8). 

A lump is a collection of faces which bound a 

polyhedron with planar faces. 

The polyhedron is used as the basis for defining 

weighting functions as discussed in the next 

subsection. 

 

4.2. Weighting functions 

A relation “is a member of” indicates whether a 

given geometric item from the polyhedral structure 

is part of another item in the structure. Figure 3 

gives the definitions for the various cases. 

A second relation is defined. This is “within” and 

is defined in figure 4. It is used to indicate how a 

general point in space relates to geometric items in 

the structure of the polyhedron. 

A number of projection functions are created. 

These given the nearest point on an object to a 

given point in space. 

If r is a point and N is a node, then proj(r,N) is 

simply the point at the vertex N, no matter what r 

is. 

If r is a point and E is an edge, then proj(r,E) is the 

point on the edge (possibly extended) nearest to the 

point. 

If r is a point and F is a face, then proj(r,F) is the 

point in (the plane of) the face nearest to the point. 

These projections allow the distance from a point 

to a geometric object to be defined. These 

definitions are given in figure 5. 

These, in turn, allow a number of weighting 

functions to be defined. These are shown in figure 

6. Each is defined for a given vertex V of the 

polyhedron and a three-dimensional point r. These 

are related to other items in the polyhedral 

structure. 

Note that the definitions involve the reciprocal of 

the distance function. The distance becomes zero 

when the point r lies on a geometric item in the 

polyhedron and care is required in carrying out the 

evaluation. In these cases, an infinite term appears 

in the numerator and denominator: these dominate 

the other terms involved and they themselves 

cancel out. This allows the effect of other 

geometric items to be ignored when the point lies 

on one particular item. This helps to ensure that the 

interpolated transform function behaves as required 

with respect to the given transforms at the 

measured points. 

4.3. Interpolated transform 

Even-grade elements of the geometric algebra can 

be assigned to the vertices. These generate the 

given rigid-body transforms at the measured 

points. Let S(V) be the transforming element at 

vertex V. 

Then, if r is any point in space, the following 

defines an even-grade element, and hence a 

transform, at that point. 

S(r) = ∑V in L wlump(V, r, L) S(V) (1) 
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It is also possible to achieve “morphing” from one 

set of measured transforms to another: the first set 

can be identity transform to represent the state 

before any change is made. For general morphing, 

two even-grade elements S0(V) and S1(V) are 

assigned to each vertex. Then for a given value of a 

parameter t (0 ≤ t ≤ 1), set 

S(V) = (1-t)S0(V) + tS1(V) (2) 

Now equation (1) defines an even-grade element, 

S(r), at any point r which varies smoothly with t. 

 

 

5. EXAMPLES 

The difficulty of presenting examples here is the 

fact that in the intended application the transforms 

involved are small, and so there is little to see. So 

three examples are provided in which the 

transforms are large enough that their effects are 

visible. The first two examples are simple test 

structures. The third example derives the 

“measured” transforms from the results of a finite 

element analysis of a frame structure. 

5.1. Example 1 

This first example is based on a block of size 

3×2×1 units. It is represented as a set of unit cubes 

as shown in the top part of figure 7. 

Eight “measurement” transforms are applied – one 

at each of the outermost corner vertices. Four of 

these (on the right back vertical face in the figure) 

act to keep the vertex in the same plane but move it 

in towards the centre of the face. The other four 

(on the left front vertical face) perform the same 

movement but also act to pull the face forward and 

to rotate it about its centre. 

Thus the overall effect is to twist and stretch the 

block in one direction and reduce its cross-section 

in planes normal to this direction. The other parts 

of figure 7 show the effect of morphing using 

equation (2) with t being 0.25, 0.5, 0.75 and 1.0. 

The last part therefore shows the effect of applying 

the full interpolated transform. 

 
 

 

Figure 7 Twisting and stretching of a single block 
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5.2. Example 2 

Here the object being deformed is an L-shaped 

block as seen in the top part of figure 8. As before, 

measurement transforms are applied at eight 

vertices. Four of these are the outer vertices of the 

back right vertical face in the figure. These applied 

transforms are all the identity so that these vertices 

(and their face) is fixed. 

The other four vertices are those of the face at the 

other end of the L-shape. The measured transforms 

here are all the same and act to rotate the face 

about a horizontal line through its centre and then 

to translate the face downwards. Since they are the 

same, the end-face is simply moved and not itself 

distorted. 

The eight measurement points form the 

polyhedron. This is shown with the thicker lines in 

the upper part of figure 8. 

The lines in the figure are made up of a number of 

small segments and the interpolated transform is 

applied to all their end points. The other parts of 

figure 8 show the effects of morphing in equal 

steps of the parameter. The final part shows the full 

effect of the interpolated transform. The back face 

remains fixed and the other end-face moves as 

expected. The other points move so that a smooth 

deformation is obtained. This is true even though 

most of the points being transformed lie outside the 

polyhedron of the measurement points. 

 

5.3. Example 3 

This last example is based on deformations arising 

from a finite element analysis of a simple cuboidal 

framework structure. 

The analysis considered the effect on the structure 

of applying loads to the two long lower members 

and heat to one side. The results are shown in 

figure 9, with the deformation magnified. In fact 

the cause of the deformation is not relevant here: 

the analysis is simply a source of deformations on 

a component. 

 
 

 

Figure 8 Twisting of an L-shaped block 
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From the finite element results, the nodes along the 

extreme edges of the structure were extracted. The 

displacements of these were increased by a factor 

of 1000 to provide deformations that are visible, as 

seen in part 1 of figure 10. There are four edges 

shown along each side of the structure. The 

innermost of each set of four is shown as a dashed 

line. These are shown separately in part 2 of the 

figure. 

The eight nodes where these innermost edges meet 

are used as the measurement points. The 

transforms taking these points from their original 

positions are determined by considered their new 

coordinates (to obtain the translation) and the new 

positions of neighbouring nodes (to obtain the 

rotation). 

The interpolated transform is obtained based on 

these eight measurement transforms and is then 

applied to all the original innermost edges. The 

result is shown in part 3 of figure 10, and part 4 

gives a comparison with how these edges 

transform in the finite element analysis. 

The match in the comparison is poor along the two 

long lower edges. This is hardly surprising as the 

interpolated transform is based solely on what 

happens at the ends and these edges are doubly 

curved in the finite element results. Conversely 

however it is interesting to note that the match on 

the other edges is good, even though the 

interpolation does only involve two points from 

each of these edges. 

6. CONCLUSIONS 

A hybrid approach to measuring and 

computationally modelling components involves 

the prediction of the geometric model based upon 

the use of analysis packages to take account of 

factors such are thermal effects and loading. 

 

Figure 9 Results of FE analysis of deformation of a frame structure 
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Results from measuring the physical component 

(usually at discrete) points allows the predicted and 

actual results to be compared and discrepancies 

noted. This process creates a number of models of 

aspects of the geometry. These include: the 

original CAD model of the object as a full 

geometric model; a point-based mesh model (with 

many nodes) of predicted distortions  derived from 

finite element analysis; and a point-based model of 

measured distortions based on few points. 

The interest is in combining the information from 

these models. One approach is to try to modify the 

mesh model continuously so that it agrees with the 

measured results at the relevant points. 

The approach for doing this has been abstracted to 

a situation in which the error at any measured point 

is represented by a rigid-body transform which 

maps its representation in the mesh-based model to 

its measured position. The methodology then 

requires these individual transforms to be 

interpolated so that a transform can be determined 

at any point in space.  A method has been 

presented for doing this. It is based on considering 

the polyhedron formed by the points at which 

physical measurement takes place. This allows 

Figure 10 Comparison of distortion from FE analysis and interpolation from corner vertices 
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weights for the measured transforms to be 

determined based on the distance of the typical 

point from the geometric elements of the 

polyhedron. 

The method has been demonstrated with some 

examples where the deformations are large enough 

that their effects can be seen. The results are 

encouraging. The next steps are to investigate what 

happens with the interpolating transform when the 

effects of the measured transforms are small, and 

then to test the method by considering geometric 

models and measurement of real components. 
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