368 research outputs found

    A data analytics approach to gas turbine prognostics and health management

    Get PDF
    As a consequence of the recent deregulation in the electrical power production industry, there has been a shift in the traditional ownership of power plants and the way they are operated. To hedge their business risks, the many new private entrepreneurs enter into long-term service agreement (LTSA) with third parties for their operation and maintenance activities. As the major LTSA providers, original equipment manufacturers have invested huge amounts of money to develop preventive maintenance strategies to minimize the occurrence of costly unplanned outages resulting from failures of the equipments covered under LTSA contracts. As a matter of fact, a recent study by the Electric Power Research Institute estimates the cost benefit of preventing a failure of a General Electric 7FA or 9FA technology compressor at 10to10 to 20 million. Therefore, in this dissertation, a two-phase data analytics approach is proposed to use the existing monitoring gas path and vibration sensors data to first develop a proactive strategy that systematically detects and validates catastrophic failure precursors so as to avoid the failure; and secondly to estimate the residual time to failure of the unhealthy items. For the first part of this work, the time-frequency technique of the wavelet packet transforms is used to de-noise the noisy sensor data. Next, the time-series signal of each sensor is decomposed to perform a multi-resolution analysis to extract its features. After that, the probabilistic principal component analysis is applied as a data fusion technique to reduce the number of the potentially correlated multi-sensors measurement into a few uncorrelated principal components. The last step of the failure precursor detection methodology, the anomaly detection decision, is in itself a multi-stage process. The obtained principal components from the data fusion step are first combined into a one-dimensional reconstructed signal representing the overall health assessment of the monitored systems. Then, two damage indicators of the reconstructed signal are defined and monitored for defect using a statistical process control approach. Finally, the Bayesian evaluation method for hypothesis testing is applied to a computed threshold to test for deviations from the healthy band. To model the residual time to failure, the anomaly severity index and the anomaly duration index are defined as defects characteristics. Two modeling techniques are investigated for the prognostication of the survival time after an anomaly is detected: the deterministic regression approach, and parametric approximation of the non-parametric Kaplan-Meier plot estimator. It is established that the deterministic regression provides poor prediction estimation. The non parametric survival data analysis technique of the Kaplan-Meier estimator provides the empirical survivor function of the data set comprised of both non-censored and right censored data. Though powerful because no a-priori predefined lifetime distribution is made, the Kaplan-Meier result lacks the flexibility to be transplanted to other units of a given fleet. The parametric analysis of survival data is performed with two popular failure analysis distributions: the exponential distribution and the Weibull distribution. The conclusion from the parametric analysis of the Kaplan-Meier plot is that the larger the data set, the more accurate is the prognostication ability of the residual time to failure model.PhDCommittee Chair: Mavris, Dimitri; Committee Member: Jiang, Xiaomo; Committee Member: Kumar, Virendra; Committee Member: Saleh, Joseph; Committee Member: Vittal, Sameer; Committee Member: Volovoi, Vital

    Data-driven Disease Surveillance

    Get PDF
    The recent and still ongoing pandemic of SARS-CoV-2 has shown that an infectious disease outbreak can have serious consequences on public health and economy. In this situation, public health officials constantly aim to control and reduce the number of infections in order to avoid overburdening health care system. Besides minimizing personal contact through political measures, a fundamental approach to contain the spread of diseases is to isolate infected individuals. The effectiveness of the latter approach strongly depends on a timely detection of the outbreak as the tracking of individuals can quickly become infeasible when the number of cases increases. Hence, a key factor in the containment of an infectious disease is the early detection of a potential larger outbreak, commonly known as outbreak detection. For this purpose, epidemiologists rely on a variety of statistical surveillance methods in order to maintain an overview of the current situation of infections by either monitoring confirmed cases or cases with early symptoms. Mainly based on statistical hypothesis testing, these methods automatically raise an alarm if an unexpected increase in the number of infections is observed. The practical usefulness of such methods highly depends on the trade-off between the ability to detect outbreaks and the chances of raising a false alarm. However, this hypothesis-based approach to disease surveillance has several limitations. On the one hand, it is a hand-crafted approach which requires domain knowledge to set up the statistical methods, especially if early symptoms are monitored. On the other hand, outbreaks of emerging infectious diseases with different symptom patterns are likely to be missed by such a surveillance system. In this thesis, we focus on data-driven disease surveillance and address these challenges in the following ways. To support epidemiologists in the process of defining reliable disease patterns for monitoring cases with early symptoms, we present a novel approach to discover such patterns in historic data. With respect to supervised learning, we propose a fusion classifier which can combine the output of multiple statistical methods using the univariate time series of infection counts as the only source of information. In addition, we develop algorithms based on unsupervised learning which frame the task of outbreak detection as a general anomaly detection task. This even includes the surveillance of emerging infectious diseases. Therefore, we contribute a novel framework and propose a new approach based on sum-product networks to monitor multiple disease patterns simultaneously. Our results show that data-driven approaches are ideal to assist epidemiologists by processing large amounts of data that cannot fully be understood and analyzed by humans. Most significantly, the incorporation of additional information into the surveillance through machine learning techniques shows reliable and promising results

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Deep Neural Networks and Data for Automated Driving

    Get PDF
    This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety? This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and, last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above

    Linearly Symmetry-Based Disentangled Representations and their Out-of-Distribution Behaviour

    Get PDF

    ISBIS 2016: Meeting on Statistics in Business and Industry

    Get PDF
    This Book includes the abstracts of the talks presented at the 2016 International Symposium on Business and Industrial Statistics, held at Barcelona, June 8-10, 2016, hosted at the Universitat Politècnica de Catalunya - Barcelona TECH, by the Department of Statistics and Operations Research. The location of the meeting was at ETSEIB Building (Escola Tecnica Superior d'Enginyeria Industrial) at Avda Diagonal 647. The meeting organizers celebrated the continued success of ISBIS and ENBIS society, and the meeting draw together the international community of statisticians, both academics and industry professionals, who share the goal of making statistics the foundation for decision making in business and related applications. The Scientific Program Committee was constituted by: David Banks, Duke University Amílcar Oliveira, DCeT - Universidade Aberta and CEAUL Teresa A. Oliveira, DCeT - Universidade Aberta and CEAUL Nalini Ravishankar, University of Connecticut Xavier Tort Martorell, Universitat Politécnica de Catalunya, Barcelona TECH Martina Vandebroek, KU Leuven Vincenzo Esposito Vinzi, ESSEC Business Schoo
    • …
    corecore