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Abstract
The recent and still ongoing pandemic of SARS-CoV-2 has shown that an infectious

disease outbreak can have serious consequences on public health and economy. In this

situation, public health officials constantly aim to control and reduce the number of

infections in order to avoid overburdening health care system. Besides minimizing

personal contact through political measures, a fundamental approach to contain the

spread of diseases is to isolate infected individuals. The effectiveness of the latter

approach strongly depends on a timely detection of the outbreak as the tracking of

individuals can quickly become infeasible when the number of cases increases. Hence,

a key factor in the containment of an infectious disease is the early detection of a

potential larger outbreak, commonly known as outbreak detection.

For this purpose, epidemiologists rely on a variety of statistical surveillance meth-

ods in order to maintain an overview of the current situation of infections by either

monitoring confirmed cases or cases with early symptoms. Mainly based on statisti-

cal hypothesis testing, these methods automatically raise an alarm if an unexpected

increase in the number of infections is observed. The practical usefulness of such meth-

ods highly depends on the trade-off between the ability to detect outbreaks and the

chances of raising a false alarm. However, this hypothesis-based approach to disease

surveillance has several limitations. On the one hand, it is a hand-crafted approach

which requires domain knowledge to set up the statistical methods, especially if early

symptoms are monitored. On the other hand, outbreaks of emerging infectious dis-

eases with different symptom patterns are likely to be missed by such a surveillance

system.

In this thesis, we focus on data-driven disease surveillance and address these chal-

lenges in the following ways. To support epidemiologists in the process of defining

reliable disease patterns for monitoring cases with early symptoms, we present a novel

approach to discover such patterns in historic data. With respect to supervised learn-

ing, we propose a fusion classifier which can combine the output of multiple statistical

methods using the univariate time series of infection counts as the only source of in-

formation. In addition, we develop algorithms based on unsupervised learning which

frame the task of outbreak detection as a general anomaly detection task. This even

includes the surveillance of emerging infectious diseases. Therefore, we contribute

a novel framework and propose a new approach based on sum-product networks to

monitor multiple disease patterns simultaneously. Our results show that data-driven

approaches are ideal to assist epidemiologists by processing large amounts of data

that cannot fully be understood and analyzed by humans. Most significantly, the in-

corporation of additional information into the surveillance through machine learning

techniques shows reliable and promising results.





Kurzfassung

Die jüngste und immer noch andauernde Pandemie von SARS-CoV-2 hat gezeigt, dass

ein Ausbruch einer Infektionskrankheit schwerwiegende Folgen für die Bevölkerung

und die Wirtschaft haben kann. In dieser Situation sind die Gesundheitsämter ständig

bemüht, die Zahl der Infektionen zu kontrollieren und zu reduzieren, um eine Überlas-

tung des Gesundheitssystems zu vermeiden. Neben der Minimierung des persönlichen

Kontakts durch politische Maßnahmen ist ein wesentlicher Ansatz zur Eindämmung

der Ausbreitung von Krankheiten die Identifizierung von Infizierten. Die Effektivität

des letztgenannten Ansatzes hängt stark von einer rechtzeitigen Erkennung des Aus-

bruchs ab, da die Verfolgung von Einzelpersonen schnell undurchführbar werden kann,

wenn die Zahl der Fälle zunimmt. Daher ist ein Schlüsselfaktor bei der Eindämmung

einer Infektionskrankheit die frühzeitige Erkennung eines potenziellen größeren Aus-

bruchs, allgemein bekannt als Ausbruchserkennung.

Zu diesem Zweck stützen sich Epidemiologen auf eine Vielzahl statistischer

Überwachungsmethoden. Sie ermöglichen es einen Überblick über das aktuelle In-

fektionsgeschehen zu erhalten, indem sie entweder bestätigte Fälle oder Fälle mit

frühen Symptomen von Infektionskrankheiten überwachen. Diese Methoden, die

hauptsächlich auf statistischen Hypothesentests beruhen, lösen automatisch einen

Alarm aus, wenn ein unerwarteter Anstieg der Zahl der Infektionen beobachtet wird.

Ihr praktischer Nutzen hängt in einem hohen Maß von der Abwägung zwischen der

Fähigkeit Ausbrüche zu erkennen und der Wahrscheinlichkeit eines Fehlalarms ab.

Dieser hypothesengestützte Ansatz der Krankheitsüberwachung hat jedoch mehrere

Nachteile. Zum einen handelt es sich um einen sehr händisch geprägten Ansatz,

der Fachwissen zur Einrichtung der statistischen Methoden erfordert, insbesondere

wenn frühe Symptome überwacht werden. Zum anderen werden Ausbrüche neu

auftretender Infektionskrankheiten mit unterschiedlichen Symptommustern von einem

solchen Überwachungssystem wahrscheinlich übersehen.

Um diese Herausforderungen zu bewältigen, konzentrieren wir uns in dieser Arbeit

auf die datengesteuerte Überwachung von Krankheiten. Um Epidemiologen bei der

Definition zuverlässiger Krankheitsmuster für die Überwachung von Fällen mit frühen

Symptomen zu unterstützen, präsentieren wir einen neuartigen Ansatz, mit dem solche

Muster in historischen Daten erfasst werden. Im Hinblick auf das überwachte Ler-

nen stellen wir einen Fusionsklassifikator vor, der die Ergebnisse mehrerer statis-

tischer Methoden kombinieren kann, wobei die univariate Zeitreihe der Infektion-

szahlen als einzige Informationsquelle dient. Darüber hinaus entwickeln wir Algorith-

men auf der Grundlage des unüberwachten Lernens, die die Aufgabe der Erkennung

von Krankheitsausbrüchen als ein allgemeines Problem der Anomalieerkennung auf-

fassen. Dies schließt auch die Überwachung neu auftretender Infektionskrankheiten

ein. Hierfür stellen wir einen neuartiges Framework zur Verfügung und präsentieren
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einen neuen Ansatz auf der Grundlage von Sum-Product Networks, mit dem mehrere

Krankheitsmuster gleichzeitigen überwacht werden können. Unsere Ergebnisse zeigen,

dass datengesteuerte Ansätze ideal sind, um Epidemiologen bei der Verarbeitung

großer Datenmengen zu unterstützen, die von Menschen nicht vollständig verstanden

und analysiert werden können. Vor allem die Einbeziehung zusätzlicher Informationen

in den Überwachungsprozess durch maschinelle Lernverfahren zeigt zuverlässige und

vielversprechende Ergebnisse.
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1
Introduction

The rise of infectious diseases can be traced back to the beginning of agriculture around

11, 000 years ago. On the one hand, humans began to organize their life in larger and

more dense populations while, on the other hand, they also came into much closer and

more frequent contact with animals (Wolfe et al., 2007). This fostered the evolution

of pathogens, mostly caused by animals (60%–80%), which then could spread among

the human population (Morens and Fauci, 2013).

From a general point of view, the progression of an infectious disease in an individual

can be categorized into three stages as visualized in Figure 1.1. First, the individual

is exposed to the pathogen either through direct contact (e.g., droplet infection) or

indirect contact (e.g., contaminated food). If not immediately detected and contained

by the immune system, the pathogen begins to reproduce in its new host. After the

pathogen has multiplied to a certain level, the infected individual starts to show symp-

toms. Depending on the impact on the body and the ability of the immune system

to fight the disease, the infection can also turn into a severe illness or even death.

The success and thus the persistence of infectious diseases in the human population is

caused by continuously transmitting the disease. In particular, during the time period

from the infection until showing first symptoms (also referred to as incubation time)

the infection usually remains unknown while the disease may already be passed to

other individuals.

time

ch
an

ce

infection

symptom onset severe illness

incubation time

Figure 1.1: Stages of the progression of an infection (slightly adapted from Henning (2004)).
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Throughout history, major outbreaks of infectious diseases have caused millions of

deaths. Among the most well-known outbreaks is the Great Influenza Pandemic which

took place between the years 1918 and 1920 and has killed approximately 40 million

people worldwide (Barro et al., 2020). A distinctive feature of this pandemic was a

high mortality rate among young and healthy people. This emphasizes the potential

risk of commutable diseases independent of age or pre-existing medical conditions.

Nowadays, the threat of severe outbreaks even increased because of growing inter-

national traffic due to tourism and trade. Especially, the recently emerged and still

ongoing pandemic of SARS-CoV-2 has shown that the situation can quickly turn into

a global health threat with devastating consequences.

Epidemiologists typically classify the risk level of infectious diseases as endemic, epi-

demic, or pandemic based on the reproduction rate and the affected geographical

area (Grennan, 2019). More precisely, during an endemic the disease spreads with a

constant rate and is fixed to a particular region. The situation is under control but can

turn into an epidemic when the number of infections increases unexpectedly. If the

disease also spreads across international borders, it is termed a pandemic. While in an

epidemic the spread of the disease still can be prevented, a pandemic is considered to

be out of control with cases appearing all over the world. In this situation, the main

goal is to reach herd immunity either through vaccination or by recovered infected

individuals. However, mutations of the pathogen, mortality, and the long process of

developing vaccines and immunizing the population can have a significant impact on

reaching this goal.

1.1 Outbreak Detection

To ensure public health, it is crucial to control the number of cases of infectious dis-

eases with high reproduction and mortality rate. This can be accomplished either by

political measures (e.g., minimize social interactions) or by isolating infected individ-

uals. For the latter approach, a timely detection of outbreaks is important since the

tracking of individuals can quickly become infeasible when the number of infections

increases. Ideally, outbreaks of novel emerging infectious diseases should be contained

before they can spread globally and manifest in the world (Wolfe et al., 2007).

Two approaches to outbreak detection are distinguished in the literature. The tradi-

tional approach, to which we refer as traditional surveillance, is to monitor the number

of confirmed infections. This confirmation often requires laboratory testing which can

take up to several days until results are available, introducing a significant delay in

the process of outbreak detection. A more recent approach is syndromic surveillance

which aims to monitor the cases with early symptoms of an infectious disease. As it

can be seen in Figure 1.1, the onset of symptoms allows a much more timely detection
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of the infection. In contrast to traditional surveillance, cases do not need to be con-

firmed and thus can be obtained from many different data sources. For example, by

tracking over-the-counter sales of specific pharmaceuticals or by observing the number

of patients arriving at an emergency department with a particular medical condition

(Buckeridge, 2007). Even though it allows a more timely detection, the signal con-

tains much more noise since early symptoms are usually shared among many different

diseases.

1.1.1 The Statistical Perspective

At the lowest level of traditional as well as syndromic surveillance, the tracked number

of infections can be seen as a time series of count data. An example of such a time

series is depicted in Figure 1.2. The main goal of disease surveillance is to identify

any kind of changes as early as possible which indicate a shift from an endemic to an

epidemic situation.

For this purpose, epidemiologists mainly rely on statistical surveillance methods. More

precisely, for each disease and each geographical region under surveillance a particular

statistical method is used to model the number of infections over time. Based on

statistical hypothesis testing, these methods raise an alarm if an unexpected increase

of cases is observed. Each of these alarms are then reported to public health officials

which trigger a further investigation of the situation (Fricker, 2014).

Ideally, such methods are completely automated while still being able to be applied

on a wide spectrum of different infections and disease patterns (Noufaily et al., 2019).

However, if not chosen wisely or configured properly, they may also raise many false

alarms which can overwhelm epidemiologists. In particular for large surveillance sys-

tems, where many time series for different diseases and locations are monitored simul-

taneously, the false alarm rate is a major concern and therefore highly determines the

practical usefulness of an outbreak detection method (Shmueli and Burkom, 2010).

time

nu
m

be
r o

f i
nf

ec
tio

ns

endemic epidemic

epidemic cases
endemic cases

Figure 1.2: Exemplary time series of the number of cases for a particular infectious disease
over time.
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1.1.2 A Machine Learning Perspective

The configuration of hypothesis-driven approaches for disease surveillance can be a

time-consuming and laborious process. Even though data availability has increased

over recent decades, critical surveillance systems mainly remain on manually collected

and coded data (Bansal et al., 2016). Especially, the definition of disease patterns for

monitoring cases with early symptoms is usually based solely on expert knowledge of

epidemiologists (Mandl et al., 2004).

An interesting avenue to improve disease surveillance is the use of machine learning.

Compared to the hypothesis-driven approach, machine learning models are self taught

and aim to improve their predictive performance based on historic data (Bi et al.,

2019). More precisely, instead of formulating and evaluating a specific hypothesis, it

can be seen as a search through the space of possible hypotheses in order to generalize

from data (Witten and Frank, 2005). Rather than replacing statistical methods, the

main idea is to complement current surveillance systems with data-driven models.

This includes the design of algorithms which can support epidemiologists on the basis

of data-driven suggestions, such as tools for a user-guided generation and comparison

of disease patterns (Hopkins et al., 2017).

The main benefit of data-driven algorithms is to process large amounts of data that

cannot fully be understood and analyzed by humans. On the one hand, it allows to

include complex data sources into the surveillance process with which common statis-

tical methods would struggle (Bi et al., 2019). In particular, novel data sources, such

as web search data and social media updates, enable to put a much larger population

under surveillance (Althouse et al., 2015). On the other hand, it allows to augment

current hypothesis-driven approaches with additional information which may be diffi-

cult to incorporate. For example, epidemiologically relevant information (e.g., weather

data, holidays, seasonality) can be integrated into the monitoring process by learning

a model which combines the additional information with the output of the statistical

method. As a result, more accurate and reliable notifications can be obtained (Hay

et al., 2013).

Among major concerns for public health is also the emergence of new infectious dis-

eases (Jones et al., 2008; Lombardo and Buckeridge, 2012). While traditional and syn-

dromic surveillance only focus on the monitoring known infectious diseases, outbreak

detection can also be treated as a general anomaly detection problem. In particular,

an alarm can be triggered if the distribution of incoming data changes in an unfore-

seen and unexpected way. Combined with interpretable explanations, data-driven

surveillance can be an important tool to increase situational awareness about emerg-

ing diseases (Simonsen et al., 2016). For example, instead of monitoring a particular

disease pattern in an emergency department, complete patient information can be

analyzed to detect an increase of cases among any kind of clinical picture.
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1.2 Contributions and Structure of Work

Reliable and early outbreak detection is a key aspect in the containment of infec-

tious diseases. In this thesis, we concentrate on improving disease surveillance based

on data-driven models. Our proposed approaches are designed to support epidemi-

ologists with respect to traditional surveillance, syndromic surveillance and even the

surveillance of emerging diseases.

The structure of this work is described in the following:

Chapter 2: This thesis will continue with a brief introduction into statistical theory.

In particular, we focus on probability theory to model count data and statistical

hypothesis testing which is required to understand most algorithms developed

in the area of syndromic surveillance.

Chapter 3: Thereafter, basic concepts of machine learning and anomaly detection are

explained, including a short description of machine learning algorithms which

have been used throughout this thesis.

Chapter 4: We then proceed by providing a broad overview of disease surveillance.

This includes a formal definition of traditional and syndromic surveillance, in-

cluding concepts of data acquisition and evaluation. Afterwards, common statis-

tical surveillance methods are introduced and the relation to the area of machine

learning is discussed.

Chapter 5: The definition of disease patterns for syndromic surveillance is often chal-

lenging, as early symptoms are usually shared among many diseases and a par-

ticular disease can have several clinical pictures in the early phase of an infection.

In our first contribution, we present an approach which can support epidemi-

ologists to define such patterns. The general idea is to identify indicators in a

health-related data source which correlate with the reported number of infections

in the respective geographic region. This contribution is published in:

• M. Rapp, M. Kulessa, E. Loza Menćıa, and J. Fürnkranz. Correlation-

based discovery of disease patterns for syndromic surveillance. Frontiers in

Big Data, 4, 2022

Chapter 6: The practical usefulness of statistical surveillance methods highly depends

on the trade-off between the detection rate of outbreaks and the chances of

raising a false alarm. Our second contribution aims to improve these statistical

methods by fusing several of these based on a machine learning technique which

is known as stacking. In addition, for comparison and evaluation, a new measure

is introduced which captures the performance of an outbreak detection method

with respect to a low rate of false alarms more precisely than previous works.

These contributions are published in:
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• M. Kulessa, E. Loza Menćıa, and J. Fürnkranz. Improving outbreak de-

tection with stacking of statistical surveillance methods. In Workshop Pro-

ceedings: Epidemiology Meets Data Mining and Knowledge Discovery (held

in conjunction with ACM SIGKDD 2019), 2019b

• M. Kulessa, E. Loza Menćıa, and J. Fürnkranz. Improving the fusion of

outbreak detection methods with supervised learning. In Proceedings of

the 16th International Meeting on Computational Intelligence Methods for

Bioinformatics and Biostatistics, pages 55–66, 2020

Chapter 7: Most research in syndromic surveillance mainly focuses on the monitoring

of specific, known diseases, putting the focus on the definition of the disease

pattern under surveillance. Until now, only little effort has been devoted to

what we call non-specific syndromic surveillance that is the use of all available

data for detecting any kind of outbreak. This even includes the monitoring of

emerging infectious diseases. As our third contribution in this thesis, we revisit

published approaches for non-specific syndromic surveillance and present a set

of simple statistical modeling techniques which can serve as baselines for more

elaborate machine learning approaches. In addition, a unified framework based

on global and local modeling techniques is proposed. These contributions are

published in:

• M. Kulessa, E. Loza Menćıa, and J. Fürnkranz. Revisiting non-specific

syndromic surveillance. In Proceedings of 19th International Symposium

on Intelligent Data Analysis, pages 128–140, 2021a

• M. Kulessa, E. Loza Menćıa, and J. Fürnkranz. A unifying framework and

comparative evaluation of statistical and machine learning approaches to

non-specific syndromic surveillance. Computers (Special Issue: Artificial

Intelligence for Health), 10(3):32, 2021b

Chapter 8: Our work on non-specific syndromic surveillance had shown that our pro-

posed statistical baselines already achieve very competitive results and often

outperform more elaborate algorithms. For our last contribution, we enhanced

the concept of the baselines by modeling the joint probability distribution of syn-

dromic count data with sum-product networks, a generative machine learning

algorithm. Such a model is able to capture correlations in the monitored data

and even allows to consider environmental factors during the monitoring process

which might have an influence on the number of infections. In contrast to the

conventional use of sum-product networks, we present a new approach to detect

anomalies by evaluating p-values on the learned model. These contributions are

published in:

• M. Kulessa, B. Wittelsbach, E. Loza Menćıa, and J. Fürnkranz. Sum-

product networks for early outbreak detection of emerging diseases. In
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Proceedings of the 19th International Conference on Artificial Intelligence

in Medicine, pages 61–71, 2021c. (nominated for best student paper award)

Chapter 9: This chapter summarizes the findings and results of this work. Based on

that directions for future work are given.





2
Background on Statistics

To understand most of the algorithms developed in disease surveillance, a fundamental

understanding of statistical theory is required which is reviewed in this chapter. In

particular, we focus on probability theory (cf. Section 2.1) and how it can be used to

model count data (cf. Section 2.2). Given such a statistical model, hypotheses can be

tested (cf. Section 2.3) in order to validate certain questions of interest.

2.1 Probability Theory

We start with a brief review of probability theory which is mainly based on the book of

Shao (2003). It serves mainly the purpose of clarifying our terminology and notation,

and can be safely skipped by readers familiar with elementary statistics.

Probability theory aims to model the likelihood of outcomes of a random experiment

in terms of probabilities. We speak of a random experiment, when the outcome of

the experiment is uncertain. For example, rolling a dice can be considered as such

an experiment since it is unknown which exact value the dice will take before it is

thrown. The set of all possible outcomes of a random experiment is referred to as the

sample space which is denoted by Ω. With respect to our example of rolling a dice,

the sample space can defined as follows:

Ω =
{

, , , , ,

}
(2.1)

In case of rolling two dice at the same time, Ω would contain a total of 36 elements.

On the sample space Ω, an event of interest A ⊆ Ω can be specified. Considering our

example, we could be interested in the event { , , } which represents that the

outcome of the rolled dice is odd. A set of events A is referred to as an event space

or σ-algebra if the following conditions hold:

1. Ω ∈ A

2. If A ∈ A then AC ∈ A

3. If Ai ∈ A, i = 1, 2, . . . then
⋃
Ai ∈ A
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Note that the set of events A is closed under the complement as well as closed under

countable unions. In case that the sample space is continuous (e.g., Ω = R) the σ-

algebra is also called Borel σ-algebra. The pair (Ω,A) is called a measurable space.

With respect to rolling a single dice, the largest event space can be constructed by

taking the power set A = P(Ω) which is the set of all subsets of Ω. Conversely, if we

are only interested in the event { , , }, the minimal event space would contain

the following events:

A =

{
∅,
{

, ,

}
,
{

, ,

}
,
{

, , , , ,

}}
(2.2)

Given an event space A, a function P : A → [0, 1] is called a probability measure if

the following conditions hold:

1. P (∅) = 0

2. P (Ω) = 1

3. If A1 ∩A2 = ∅ then P (A1 ∪A2) = P (A1) + P (A2) where A1, A2 ∈ A

More precisely, a probability is assigned to each event A ∈ A. In terms of a continuous

sample space, such as Ω = R, probabilities are assigned to all intervals A ∈ A.

Considering our dice example, the mapping of the probability function for the event

space specified in Equation 2.2 over the sample space specified in Equation 2.1 could

be:

P (∅) = 0% P
({

, ,

})
= 50%

P (Ω) = 100% P
({

, ,

})
= 50%

2.1.1 Random Variables and Distributions

From the example above we can observe that the use of the measurable space (Ω,A)

can be inconvenient as always the complete set A ∈ A needs to be specified. Espe-

cially, this can be an obstacle when the sample space Ω becomes more complex. For

simplification, the measurable space (Ω,A) is often mapped onto a simpler measur-

able space (Λ,G) using a function g : Ω → Λ. Such a function is called a measurable

function and has the inverse image

g−1(B) = {g ∈ B} = {ω ∈ Ω : g(ω) ∈ B}, B ⊂ Λ.
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In particular, if Λ = R and G is a Borel σ-algebra then this kind of function is called

a random variable which is commonly denoted as X : Ω → R. The use of a random

variable is quite convenient when we are only interested in some of the subsets in the

sample space Ω. Moreover, the mapped space consists of numbers which are easier

to handle than sets. With respect to our dice example in which we are interested

in whether the outcome of the dice is odd, we could define the following random

variable:

X(ω) =

1, if ω ∈
{

, ,

}
0, otherwise

As it can be seen, the random variable X returns 1 is the outcome of the dice is odd

and otherwise 0. Instead of writing P ({ , , }), we can now define P (X−1(1)) as

P (X = 1) in order to obtain the probability of rolling an odd number with the dice.

In particular, P ◦X−1 is called the distribution of X.

Discrete random variables. A random variable X is considered to be discrete, if

the image of X is countable. With respect to the aforementioned example, the image

of the random variable only contains two values {0, 1}. To each specific value of the

image a particular probability can be assigned which is often denoted as the probability

mass function:

p(x) = P (X = x) = P (X−1(x))

If an order among the discrete values x1 < x2 < . . . in the image of the random

variable X exists, the cumulative distribution function can be denoted as:

F (x) =

{∑n
i=1 p(xi), if xn < x < xn+1

0, if −∞ < x < x1

2 3 4 5 6 7 8 9 10 11 12
x

0.00

0.05

0.10

0.15

p(
x)

(a) Probability distribution.

22 33 44 55 66 77 88 99 1010 1111 1212
x

0.00

0.25

0.50

0.75

1.00

F(
x)

(b) Cumulative probability distribution.

Figure 2.1: Probability and stepwise cumulative distribution for a discrete random variable
which represents the sum of two rolled dice.
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As an example, assume our random experiment consists of rolling two dice at the

same time and our random variable X maps on the space {2, 3, . . . , 12}, which is the

sum of the two rolled dice. An exemplary distribution of X is depicted in Figure 2.1a,

whereas the respective cumulative distribution is shown in Figure 2.1b.

Continuous random variables. In contrast, a random variable X is considered

to be continuous, if the image of X is uncountable infinite. For this kind of random

variable the cumulative distribution function is defined as F (x) = P (X ≤ x). As there

are infinite many values in the image of X, the probability of observing a specific value

is zero. On such a random variable probabilities can only be assigned to intervals of

the image. Nevertheless, to still obtain a point of reference for the likelihood for a

particular value x the probability density function is used which is the deviation of the

cumulative distribution:

f(x) =
∂F (x)

∂x

Vice versa the cumulative distribution function can be defined with the use of the

probability density function:

F (x) =

∫ x

−∞
f(u)du

For example, let us assume that the continuous random variable X maps on the

intelligence quotient. An exemplary probability density function f(x) is depicted in

Figure 2.2a, whereas the respective cumulative distribution is shown in Figure 2.2b.

60 80 100 120 140
x

0.00

0.01

0.02

f(x
)

(a) Probability distribution.

60 80 100 120 140
x

0.00

0.25

0.50

0.75

1.00

F(
x)

(b) Cumulative probability distribution.

Figure 2.2: Distribution of the probability density and cumulative probability distribution
of a continuous random variable which represents the intelligence quotient.
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2.1.2 Computation of p-values

Once the probability distribution for a random variable X is known, we have an

intuition about which outcomes are likely to occur. More precisely, we know what

to expect for future trials of the random experiment which allows us to reason about

upcoming events. In this thesis, we are interested in whether a new observed value x

of random variable X is likely to be generated by the given probability distribution.

Therefore, we can compute the following statistics for the observed value x based on

the respective cumulative distribution function F (x):

• The left-sided p-value represents the probability of observing smaller values

which are at least as extreme as the observed value x and can be obtained

by computing the probability:

pleft-sided = P (X ≥ x)

• The right-sided p-value represents the probability of observing higher values

which are at least as extreme as the observed value x and is computed as:

pright-sided = P (X ≤ x)

• The two-sided p-value represents the probability of observing values which are

at least more extreme as the observed value x. It can be obtained by computing

the probability:

ptwo-sided = 2 ·min{P (X ≥ x), P (X ≤ x)}

For example, let us assume that a continuous random variable for the intelligence

quotient is distributed according to the continuous probability distribution which is

60 80 100 120 140
x

0.00

0.01

0.02

f(x
)

left-sided 
 p-value

(a) Left-sided p-value.

60 80 100 120 140
x

0.00

0.01

0.02

f(x
)

right-sided 
   p-value

(b) Right-sided p-value.

Figure 2.3: Covered area of exemplary p-values on a continuous probability distribution for
x equal to 115.
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depicted in Figure 2.2a. If x is equal to 115, the probability for the left-sided p-value

of observing an equal or lower intelligence quotient than 115 is close to 84% while

the right-sided p-value would obtain a probability close to 16%. For the two-sided

p-value we would obtain a probability close to 32%. The respective areas over which

the p-values are computed is depicted in Figure 2.3.

2.2 Modeling Count Data with Probability Distributions

A fundamental concept of this thesis is the modeling of count data. From a theoretical

perspective, a count can take values of N0 and can be interpreted as the number of

occurrences of a specific event in a given time interval. For example, one could count

the number of influenza cases reported in a single day. We refer to count data as

a collection of such counts over time, each measured on a different time interval.

Figure 2.4 visualizes this concept where the x-axis represents the time and the blue

dots denote the events. The number of dots in each time interval visualized by the

orange lines represents the respective count.

In terms of probability theory, a count can be seen as the outcome of a random exper-

iment. For this setting, the random variable is discrete since the space N0 is countable

(cf. Section 2.1.1). Thus, it is possible to model count data with a probability distri-

bution. However, for most scenarios in the real world the true underlying probability

distribution is unknown. Usually the probability distribution is estimated based on a

finite random sample X = {x1, x2, . . . , xn} of the image of random variable X.

In this thesis, we mainly rely on parametric probability distributions which have been

widely used in disease surveillance before (cf. Section 4.4). A parametric probability

distribution Pθ is solely defined by its parameters θ and makes basic assumptions about

how the underlying data is distributed. For our application scenario, these parametric

probability distributions model basic properties of count data. The parameters θ

are usually obtained by computing the maximum likelihood estimate over the given

random sample X .

time

6 3 1 4 4

Figure 2.4: Exemplary collection of count data where the blue dots denotes the events of
random experiment over time and the orange lines represent the time intervals in which the
events are counted.
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Table 2.1: Overview of the described parametric probability distributions.

name type distribution

Poisson discrete p(x) = λxe−λ/x!
x ∈ N0

λ > 0

negative
binomial

discrete
(
x−1
r−1
)
pr(1− p)x−r

x ∈ N0

p ∈ [0, 1]
r > 0

Gaussian continuous
f(x) =

1√
2πσ

e−(x−µ)
2/2σ2

x ∈ R
µ ∈ R
σ > 0

An overview of the characteristics of the following described probability distributions

is provided in Table 2.1. To fit the parameters of these distributions via maximum

likelihood estimation, we rely on the empirical mean µ and the empirical standard

variance σ2 which can be computed over the sample X as:

µ =
1

|X |

|X |∑
i=1

xi σ2 =
1

|X | − 1

|X |∑
i=1

(xi − µ)2

2.2.1 Poisson Distribution

A natural choice to model count data is the Poisson distribution. It can be defined

with the following probability mass function:

p(x) = λxe−λ/x!
x ∈ N0

λ > 0

This distribution assumes that the underlying events are independent of each other

and occur with a constant probability over time. The main characteristic of the

Poisson distribution is that the mean and the variance of modeled data is always the

same which is also known as the equidispersion criterion (Hilbe, 2011). The maximum

likelihood estimation for the parameter λ is the empirical mean µ.

2.2.2 Negative Binomial Distribution

In fact, the assumptions of the Poisson distribution are hardly met in most of the

application scenarios in the real world (Hilbe, 2011). The most common problem



16 2. Background on Statistics

when modeling count data is overdispersion which occurs when the variance of the

data is greater than the mean. One of the reasons which can lead to overdispersed data

is occurrence dependence which violates the assumption of independence among the

events (Winkelmann, 2008). In particular, an observed event increases the probability

of observing an additional event over a certain time period. A good example for

occurrence dependence appears in count data of infectious diseases because infected

people are likely to transmit the disease to other people which increases the chance

to observe new cases.

The negative binomial distribution offers a wider range of variability and flexibility

to model count data than the Poisson distribution. In particular, the parameters of

the negative binomial distribution allow to adjust the variance of the model for the

count data which enables to also adapt to overdispersion. The negative binomial dis-

tribution is a discrete probability distribution which can be defined with the following

probability mass function:

p(x) =

(
x− 1

r − 1

)
pr(1− p)x−r

x ∈ N0

r > 0

p ∈ [0, 1]

The standard way to fit the parameters of the negative binomial distribution is to use

the maximum likelihood estimate:

r =
µ2

σ2 − µ
p =

r

r + µ

2.2.3 Gaussian Distribution

Even though count data consists of distinct values, it is quite common that statisticians

interpret the data as continuous (Hilbe, 2011). We include the Gaussian distribution

in the analysis of this thesis since it is a common approach to model count data

in disease surveillance methods (cf. Section 4.4). The Gaussian distribution can be

described by its probability density function:

f(x) =
1√
2πσ

e−(x−µ)
2/2σ2

x ∈ R
µ ∈ R
σ > 0

Strictly speaking, the Gaussian distribution is not suitable to represent count data

since it also models negative values. However, it can serve as a reference point when

comparing algorithms in an evaluation. The maximum likelihood estimation for the

parameters is the empirical mean µ and variance σ2 itself.
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2.3 Statistical Hypothesis Testing

Statistical hypothesis testing is a formal approach to verify a statement about data

of which only a sample is obtained. Since the true underlying probability distribu-

tion of the data is unknown, the statistical relationships in the sample can be inter-

preted either as they have occurred by chance or they reflect a relationship in the

data (Jhangiani et al., 2019). Therefore, the statement of concern is usually formu-

lated as two opposing hypothesis:

Null hypothesis (H0): The statement which is believed to be true.

Alternative hypothesis (H1): The logical counterpart to the null hypothesis.

The outcome of the statistical hypothesis test is either accepting the null hypotheses

or rejecting it, in which case the alternative hypothesis is considered to be correct.

In order to decide between the hypothesis, a test statistic T is computed over the

sample under the assumption that the null hypothesis is true. Depending on the used

statistical test and its assumptions at hand, the test statistic is distributed according

to a known probability distribution T ∼ PH0 representing the likelihood of accepting

the null hypothesis (cf. Section 2.1.1). For decision making, the sample space of this

probability distribution is divided into two complement regions: (1) The region of

acceptance R0 and (2) the region of rejection R1, also referred to as the critical region.

If the computed test statistic falls into R0, the null hypothesis is accepted (Lehmann

and Romano, 2005). When a statistical test is performed, two kinds of errors can be

made:

Type I error: Falsely accepting the null hypotheses when it is actually false.

Type II error: Falsely rejecting the null hypothesis when it is actually true.

Ideally, the probability for both types of errors is kept at a minimum but this is not

possible as they directly influence each other. However, depending on the context of

the statistical test, the minimization of the probability for one type of error might

be more important than the other one. In order to control the trade-off between

both errors, a significance level α is specified which assigns a probability to incor-

rectly rejecting the null hypothesis. Given the probability distribution PH0 of the test

statistic, the critical region R1 need to be chosen such that the following equation

holds (Lehmann and Romano, 2005):

PH0(R1) ≤ α

The choice for the significance level α is often arbitrary since there is not a precise limit

to the probability of type I error that can be tolerated. To avoid this, the specification

of the significance level α can be omitted by directly reporting the p-value of the test
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(cf. Section 2.1.2). The p-value represents the smallest significance level at which

the null hypothesis is rejected. In particular, Amrhein et al. (2019) argue that p-

values are superior to pre-specified significance levels since the strict binary decision

of significance can lead to wrong interpretations. In contrast, the p-value contains

information about the extent that the null hypothesis is contradicted.

2.3.1 Test Statistics

Given the formal approach to statistical hypothesis testing described in the previous

section, we only need to formulate the hypotheses and choose a suitable test statistic.

A variety of statistical hypothesis tests exist each tailored to answer certain types of

hypotheses. In the following, we review a few of these test statistics based on the

formulated hypotheses which are made in this work.

Out-of-distribution test. In disease surveillance it is common to use probability

distributions to model count data as described in Section 2.2. Under the assumption

that the fitted statistical model represents the count data correctly, a new observed

count can be checked whether it is likely to be generated by this probability distri-

bution. This task can be interpreted as a statistical hypothesis test for which we can

formulate the following hypotheses:

• Null hypothesis H0: The count has been generated by the given probability

distribution.

• Alternative hypothesis H1: The count has not been generated by the given

probability distribution.

Note that in contrast to conventional statistical hypothesis testing, we assume that

the fitted statistical model represents the true underlying probability distribution of

the count data. Therefore, it can be directly used as the probability distribution PH0

of the test statistic on which the p-value for the observed count can be computed.

Table 2.2: Contingency table.

x1 x2 . . . xk
y1 o1,1 o1,2 . . . o1,k
y2 o2,1 o2,2 . . . o2,k
. . . . . . . . . . . . . . .
ym om,1 om,2 . . . om,k

Table 2.3: Example for contingency table.

vaccine placebo
∑

infection 3 56 59
no infection 397 344 741∑

400 400 800
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Pearson’s chi-square independence test. The chi-square test of independence

by Pearson (1900) is used to examine the relationship between two discrete random

variables, X with outcomes {x1, x2, . . . , xk} and Y with outcomes {y1, y2, . . . , ym}.
The co-occurrences of these outcomes can be summarized in a contingency table by

counting their respective frequencies in the sample. Such a table is shown in Table 2.2

where oi,j represents the number of times that xi and yj appeared together. The

hypotheses for this test can be formulated as follows:

• Null Hypothesis H0: The random variables X and Y are independent of each

other.

• Alternative Hypothesis H1: Correlation among the random variables X and Y

exists.

For example, suppose a study has been conducted to evaluate the efficacy of a vaccine.

In this study, 3 out of 400 of the vaccinated participants have been infected with the

respective disease whereas in the control group, who only obtained a placebo, 56 out

of 400 participants contracted the disease. The contingency table for this example is

displayed in Table 2.3. By performing the above mentioned statistical hypothesis test,

the effectiveness of the vaccine can be evaluated.

Based on the expected frequencies of each cell in the contingency table

ei,j =
(
∑m

r=1 or,j)(
∑k

s=1 oi,s)

(
∑m

r=1

∑k
s=1 or,s)

the test statistic for the chi-square independence test is distributed according to a

chi-square distribution with (m− 1)(k − 1) degrees of freedom and can be defined as

(McHugh, 2013):

t =
m∑
i=0

k∑
j=0

(oi,j − ei,j)2

ei,j
t ∼ X 2

(m−1)(k−1)

Fisher’s exact test. The Fisher’s exact test by Fisher (1934) is used for the same

hypothesis as for the chi-square independence test. However, the drawback of the

chi-square test of independence is that the test statistic maps the discrete number

of co-occurrences onto an approximated continuous distribution. To obtain precise

results for this test statistic usually a large sample is required.

The Fisher’s exact test overcome this problem by using a discrete probability distribu-

tion for the test statistic and, therefore, it is well-suited for small sample sizes (Kim,
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2017). In its original form, it can only be applied on a 2× 2 contingency table. Under

the given null hypothesis, the Fisher’s exact test statistic is distributed according to

a hyper-geometrical distribution and can be defined as:

t = o1,1 t ∼ Hyp(K,n,N)

K = o1,1 + o1,2
n = o1,1 + o2,1
N = o1,1 + o1,2 + o2,1 + o2,2

2.3.2 Testing Multiple Statistical Hypotheses

In practice, it is often required to perform a set of statistical hypothesis tests at the

same time. For example, a set of out-of-distribution tests could be used to monitor

multiple infectious diseases at once. In this case, the overall null hypothesis is usually

that none of the underlying tests is significant. However, since the p-value of each

underlying test is distributed uniformly between 0% and 100% under the assumption

that the respective null hypothesis is true, the likelihood of observing at least one

extreme p-value in the whole set increases with the number of performed tests. For

example, if ten independent statistical hypothesis tests with a significance level of 5%

are performed, the chance of observing at least one significant result for one of the

tests is 1− (1− 0.05)10 ≈ 40% even though the null hypothesis might be true. Hence,

in the case that the multiplicity is disregarded the chance of obtaining type I errors

increases from 5% to 40%. This effect is also known as the multiple-testing problem

and need to be taken into account when performing multiple comparisons (Lehmann

and Romano, 2005).

Based on this problem, several methods have been proposed to aggregate p-values

which ideally provide a composite p-value for the overall null hypothesis. These meth-

ods can be mainly separated into two groups: (1) Methods which assume independence

among the underlying tests and; (2) Methods which can take dependence among the

tests into account. In the following, a few of these methods for each group are reviewed

which are relevant for this thesis.

Aggregation of independent hypothesis tests. If the underlying tests are inde-

pendent of each other, the problem of aggregating k independent p-values p1, . . . , pk
can be formulated as a statistical hypothesis test. Following Heard and Rubin-

Delanchy (2018), the hypotheses for this test can be formulated as:

• Null hypothesis H0: The p-values are independently uniformly distributed pi ∼
Uniform[0, 1] for (1, . . . , k).

• Alternative hypothesis H1: The p-values might follow a unknown distribution

pi ∼ fi for (1, . . . , k).
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For a detailed analysis of test statistics for this hypothesis, we refer to Heard and

Rubin-Delanchy (2018). In the following, we only consider test statistics which are

relevant for this thesis:

Tippett’s method: This test statistic is based on the minimal p-value which is closely

related to the Bonferroni correction. It favors the most extreme observation

among the underlying tests and, therefore, sensitive to small p-values. Under

the given null hypothesis, the test statistic is distributed according to a Beta

distribution and can be defined as followed:

t = min(p1, . . . , pk) t ∼ Beta(1, k)

Stouffer’s method: Rather than combining the p-values directly, the Stouffer’s

method first transforms the p-values into z-scores. Under the given null hy-

pothesis, the test statistic is distributed according to a Gaussian distribution

and can be defined as followed where φ−1 is the inverse of the cumulative stan-

dard Gaussian distribution:

t =
k∑
i=1

φ−1(pi) t ∼ N(0, k)

Fisher’s method: Probably the most well-known test statistic to combine several p-

values is the Fisher’s method. Under the given null hypothesis, the test statistic

is distributed according to a chi-square distribution and can be defined as fol-

lowed:

t = −2
k∑
i=1

log(pi) t ∼ X 2
2k

Aggregation of dependent hypothesis tests. If correlation among the test statis-

tics of the underlying hypothesis tests exists and the dependency structure is known,

it can be used reduce the chance of type I errors. As an extreme example consider

to perform the exact same hypothesis test simultaneously. In this case, the chance

for obtaining type I errors would be equal to the specified significance level α of the

test. Another example relates to the area of neuro-imaging, in which cluster-extent

based thresholding techniques are used to identify areas of brain activity (Lindquist

and Mejia, 2015). In this case, it is assumed that the statistical hypothesis tests are

spatially correlated.

However, often the dependency structure between the underlying tests is unknown.

Without any prior information about the correlations, the framework proposed by

Leek and Storey (2008) can be used, which captures the dependencies in the data



22 2. Background on Statistics

before the statistical tests are conducted. This information is then used to adjust the

data in a way so that the actually performed statistical tests are independent of each

other. In contrast, Vovk and Wang (2020) focus on simple aggregation functions and

recommend to use the harmonic mean in case of substantial dependence among the

merging p-values and even suggest to use the geometric or the arithmetic mean if the

dependence is really strong. In this thesis we consider the weighted versions of these

three merging functions:

p̄average =

k∑
i

wipi p̄geometric =

k∏
i

pwi
i p̄harmonic =

k∑
i

wi

/ k∑
i

wi
pi



3
Background on

Machine Learning
Machine learning is one of the main components of this thesis. In this chapter, we will

first discuss the basic concept of machine learning which includes learning scenarios (cf.

Section 3.1), model selection (cf. Section 3.2) and evaluation (cf. Section 3.3). Next, we

will briefly introduce a set of supervised learning algorithms (cf. Section 3.4) which

have been used throughout this thesis and sum-product networks (cf. Section 3.5)

which are used in Chapter 8. Finally, we take a closer look at the area of anomaly

detection in Section 3.6 and stream mining in Section 3.7.

3.1 Learning Scenarios

Similar to how a human learns from experience, a machine can learn from data by

analyzing and extracting patterns. In these terms data can be described as a finite

sample D of a set of explanatory random variables X1, . . . , Xm whose underlying

probability distribution is unknown. Depending on the learning scenario at hand,

machine learning algorithms are designed to capture certain relationships of interest

in the data. In this thesis, we focus on the following learning scenarios:

Supervised learning: For this learning scenario an additional target random variable

Y is given whose value need to be predicted solely based on the values of the

random variables X1, . . . , Xm. The data for this task can be represented as

D = {(xi, yi) | xi ∈ X1 × . . .×Xm ∧ yi ∈ Y } where i = 1 . . . n denotes the index

of a particular instance. Based on this data set a supervised machine learning

algorithm learns a mapping f : X1, . . . , Xm → Y which can assign to a given

instance a particular value. In case Y is a discrete random variable, this task

is known as classification while for a continuous random variable it is named

regression.

Unsupervised learning: Instead of only capturing relationships to one particular tar-

get random variable, unsupervised machine learning algorithms aim to extract

general patterns among the random variables X1, . . . , Xm. In this case no target
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random variable is given for which reason the finite sample can be described as

the data set D = {xi | xi ∈ X1× . . .×Xm} where i = 1 . . . n and n is number of

instances. For example, clustering algorithms separate the instances of this data

set into distinct groups based on their similarity while in the area of generative

machine learning, algorithms learn the underlying joint probability distribution

P (X1, . . . , Xm) of the data set.

The main strength of machine learning is that the extracted relationships of interest

not only cover the given data set but may also apply to future observations of the

random variables X1, . . . , Xm.

3.2 Model Selection

The most straightforward approach to machine learning is to extract all relationships

of interest which perfectly describe the learning task on the given data set D. However,

learning an exact mapping of the data is not ideal since the data set usually contains

noise and the extracted patterns should also generalize to newly obtained data. In

particular, we can distinguish between two types of error sources when learning a

model:

Bias: On the one hand, an error can be introduced by learning a model which is too

simple to adequately capture the relationships of interest in the data set D. This

error can be reduced by increasing the complexity of the model. Note that the

used machine learning algorithm might be limited in their model complexity due

to its design.

Variance: On the other hand, an error can be caused due to overly complex models.

Keep in mind that the data set D is only a finite sample which possibly con-

tains relationship due to the variance in the sampling. Capturing these chance

patterns can have an impact on the performance.

The interaction between these errors is commonly termed as the bias-variance trade-

off and is visualized in Figure 3.1. In particular, if the error of the bias surpasses

the error of the variance, we speak of underfitting while vice-versa it is named overfit-

ting. Ideally, the learned model neither underfit nor overfit by finding a compromise

between these errors (Japkowicz and Shah, 2011). A common approach to avoid over-

fitting is a technique called regularization (Bishop, 2006). In order to avoid to fit the

model on the noise in the data set D, a regularization term is used during the learning

process which penalizes overly complex models. This usually results in a more gen-

eral and interpretable model. In case we have to decide between two models which

perform equally well, the simpler should be preferred over the complex according to

the principle of Occam’s Razor (Blumer et al., 1987).
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Figure 3.1: Visualization of the bias-variance trade-off.

3.3 Evaluation

Even though overfitting can be avoided with regularization, it is often not known to

which extent regularization should be used. To find a model with good performance on

new data an evaluation is performed. Therefore, the data set D is split into three parts,

a train set Dtrain, a validation set Dval, and a test set Dtest. The idea is to exclude

instances from the learning process which then serve to measure the performance of

the created model on newly observed data.

First, the optimal parameter configuration for the model is determined by learning

models with different parameter settings on the train set Dtrain and evaluating them

on the validation set Dval. However, this only gives us the best performing model

with respect to the validation set Dval. In order to obtain the actual performance of

the model on new data, the best parameter configuration is used to learn a model on

the data Dtrain ∪ Dval which is then evaluated on the test set Dtest. In particular,

the results obtained on the test set Dtest allows us to reason about the performance

and compare different machine learning algorithms which can be used throughout this

optimization process.

However, the distribution of instances across the three sets, which is normally chosen

at random, has an influence on the evaluation. For example in a classification task,

it is possible that the validation set Dval mainly contains instances for class A while

in the test set Dtest class B is the most common. Such an imbalance has an impact

on the learning and, therefore, also on the evaluation and the comparison of the

algorithms. To reduce this influence cross validation can be used which performs

multiple evaluations on the data (Murphy, 2012).
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3.4 Supervised Learning Algorithms

In the following, we introduce a set of supervised machine learning algorithms which

have been used throughout this thesis. These algorithms are described only superfi-

cially since they are not a main component of this work. For a detailed description

we refer to the corresponding references.

3.4.1 Linear Regression

In linear regression, it is assumed that the mapping f : X1, . . . , Xm → Y between the

explanatory and the target random variables can be explained by a linear function:

Y = β0 + β1X1 + . . .+ βmXm

where β0, . . . , βm are coefficients. Given a data set D, these coefficients can be learned

by minimizing the mean squared error. Due to its simplicity and interpretability, it

is also commonly used in statistics. However, in the real world the assumption of a

linear relationship is often not fulfilled. For a gentle introduction to linear regression,

we refer to Montgomery et al. (2001).

3.4.2 K-Nearest Neighbour

Instead of learning a model, the idea of the k-nearest neighbour algorithm is to predict

the target random variable solely based on the most similar instances in the given data

set D. Therefore, the distance between the instance to be classified and each instance

in the data set D is computed using a common distance measure such as the Euclidean

distance. Based on the value of the target random variable of the k closest instances,

a value can be predicted. For example, in regression the average is taken whereas

in classification the majority class will be predicted. The major drawback of this

approach is the computational complexity since for each prediction the complete data

set need to be scanned for the most similar instances. For further information about

the algorithm, we refer to Jiang et al. (2007).

3.4.3 Random Forest

Introduced by Breiman (2001), random forest is an ensemble of randomized decision

trees. Each tree has been learned over a bootstrap sample which is obtained by uni-

formly sampling instances of the given data set D with replacement (Breiman, 1996).
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Starting from the root node, inner nodes of a random tree are constructed recursively

by distributing the training instances according to splits which maximize a particular

splitting criterion among a random subset of random variables. In case that no fur-

ther tests can be created, a leaf will be constructed in which information about the

assigned instances will be collected. Due to its state-of-the-art performance it is still

frequently used in the literature.

3.5 Sum-Product Networks

A sum-product network (SPN) is a generative machine learning algorithm and be-

longs to the family of probabilistic graphical models which model the joint probability

distribution P (X1, . . . , Xm) of a given data set D. Hence, it can be categorized as an

unsupervised learning algorithm (cf. Section 3.1). In contrast to other probabilistic

graphical models, such as Bayesian networks (Pearl, 1988), the main advantage of

SPNs is that they can efficiently compute exact inference for a large class of distribu-

tions (Poon and Domingos, 2011).
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Figure 3.2: Exemplary SPN learned over the random variables gender, student and age.
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3.5.1 Structure

The structure of an SPN is a rooted directed acyclic graph of sum, product and leaf

nodes. In this graph, the scope of a particular node is defined as the set of random

variables appearing in the subgraph below that node. Formally, sum nodes provide

a weighted mixture of distributions by combining nodes which share the same scope,

whereas product nodes represent the factorization over independent distributions by

combining nodes defined over disjunct scopes. Finally, each leaf node contains a

univariate distribution P (X) for a particular random variable X ∈ {X1, . . . , Xm} (cf.

Section 2.1.1). Given this formulation a tractable multivariate distribution can be cre-

ated by simply combining univariate distributions with sum and product nodes (Gens

and Pedro, 2013).

As an example, Figure 3.2 displays an SPN which has been learned over three random

variables: (1) the gender, (2) the status of being a student and (3) the age. From the

structure of the SPN, we can observe that the distribution of age is independent of the

other two random variables. In contrast, the sum node splits the population into two

sub-populations, one representing females which cover 60% and males which cover

40% of the total population. Within these sub-populations we can further observe

that females are more likely to be a student than males.

3.5.2 Learning

Similar to learning a neural neural network, the structure of an SPN can be specified

in advance. In this case only the weights of the sum nodes and the distributions in

the leaves of the SPN are learned using gradient descent (Poon and Domingos, 2011).

However, this approach also requires domain knowledge to create the structure which

is often not available or hard to acquire (Molina et al., 2018).

A more sophisticated approach is to learn the structure of the SPN from the data.

The general approach to structure learning is a top-down procedure in which the data

is recursively sliced into smaller chunks until leaf nodes can be created. Starting with

the whole data set D, the process of construction can be defined by three operations:

Leaf creation: If the assigned data slice only contains a single random variable, a

leaf node will be created in which the random variable will be captured by a

univariate distribution.

Decomposition: In case the data is multivariate, the next step is to check for in-

dependence between the assigned random variables. If independence between

subsets of random variables can be detected, a product node is created which

split the respective random variables.
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Conditioning: Lastly, in case no independence between the random variables can be

detected, clustering on the assigned data is performed. The resulting clusters

are then split by a sum node where the weights represent proportion of instances

assigned to the respective cluster.

The structure learning can mainly be controlled by two parameters: (1) A threshold

for the independence test and (2) an early stopping criterion for the growing of the

SPN. For example, if the given data slice contains less instances than a pre-specified

threshold, the creation a product node is forced which generates univariate data slices.

Algorithms for structure learning mainly differ in the independence test, the clustering

algorithm and the distributions used in the leaves. For example, Molina et al. (2017)

propose a structure learning algorithm with which count data can be modeled based

on Poisson distributions. For comprehensibility, we have visualized an example of how

an SPN can be constructed in Figure 3.3 based on the before introduced example. The

data available at a specific node during construction is highlighted with the respective

color.

Iteration 1: In the first step of the construction, the whole dataset is analyzed (cf.

green color in Figure 3.3a). Since the data is not univariate, decomposition is

performed which results in a product node which separates age from gender and

student, as it can be seen in Figure 3.3b.

Iteration 2: Continuing the construction process with the blue data slice in Fig-

ure 3.3b, neither the data is univariate nor independence among the random

variables can be detected. Hence, clustering is performed and a sum node is

created.

gender student age
female no 23
female no 24
female yes 21
female yes 19
female yes 18
female yes 20
male no 16
male no 22
male no 21
male yes 20

(a) Iteration 1.

*
gender student age
female no 23
female no 24
female yes 21
female yes 19
female yes 18
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male no 22
male no 21
male yes 20

(b) Iteration 2.
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gender student age
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male no 21
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(c) Iteration 3.
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gender student age
female no 23
female no 24
female yes 21
female yes 19
female yes 18
female yes 20
male no 16
male no 22
male no 21
male yes 20

(d) Iteration 4.

Figure 3.3: Exemplary construction of an SPN.
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Iteration 3: The random variables in the yellow and the pink data slice depicted in

Figure 3.3c are both independent of each other. Hence, for both data slices a

product node is created.

Iteration 4: Finally, the whole data set has been split up in univariate data slices

which can be seen in Figure 3.3d. To complete the construction process, leaf

nodes are created which capture the distribution of the respective data slices.

3.5.3 Inference

To answer a probabilistic query P (X1 = x1, . . . , Xm = xm), the evidence is forwarded

to the leaves of the SPN. For each univariate distribution in the leaves a probability

is computed for the condition of the respective random variable. In a bottom-up

procedure the probabilities are merged by multiplication in case of product nodes and

by a weighted average in case of sum nodes. The probability obtained at the root

node represents the result for the query. If the query only contains conditions for

a subset of the random variables, leaf nodes of irrelevant random variables can be

marginalized by returning a probability of 100%. For example, Figure 3.4 visualizes

how the probability for query P (student = yes) can be computed on our before

introduced example.
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Figure 3.4: Computing the probability P (student = yes).
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Figure 3.5: Conditional joint probability distribution P (gender, age|student = yes).

3.5.4 Conditioning

The structure of an SPN can be adapted to represent the conditional joint proba-

bility distribution P (X \ Xi | Xi = xi). Therefore, the probability of the condition

Xi = xi is evaluated in the leaves and the resulting probability is propagated bottom

up, performing multiplications at product and weighted sums at sum nodes. When-

ever a sum node is passed, the weight for a child node is updated by multiplying it

with the up-coming probability. In a final step, the weights for each sum node are

normalized and the leaves for attribute Xi are removed from the SPN. Conditioning

on multiple variables is done accordingly. For example, Figure 3.5 displays the condi-

tional joint probability distribution P (gender, age|student = yes) of the SPN shown

in Figure 3.2

3.6 Anomaly Detection

Anomaly detection is a sub-discipline of machine learning with the main objective of

finding patterns in data that do not conform to expected behavior (Chandola et al.,

2009). Based on a finite sample of a set of random variables X1, . . . , Xm, the goal is to

obtain a theoretical understanding of the data which allows to separate normal from

anomalous instances. To that extent we distinguish between the following learning

scenarios:
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Supervised anomaly detection: Given a labeled data set, in which each instance be-

longs to either the normal or the anomalous class, the task of anomaly detection

can be seen as a binary classification problem. Based on this setting, a classi-

fier f : X1, . . . , Xm → Y can be learned where Y = {normal, anomalous}. A

major drawback of this approach is that the data set need to cover all types of

anomalies to ensure that the classifier can properly identify these.

Unsupervised anomaly detection: In contrast, unsupervised anomaly detection ap-

proaches do not require labeled data. Under the assumption that anomalies are

rare, algorithms for this setting learn patterns with which most of the data can

be explained. Instances which do not conform to these general patterns are con-

sidered to be anomalous. In particular, the specification of anomalies is omitted

compared to the supervised setting. Generative machine learning algorithms are

frequently used for this type of scenario.

In many real world scenarios labeled data is often not available or difficult to acquire

for which reason the common approach to anomaly detection is the unsupervised

one.

After the learning scenario has been chosen, one need to specify which kind of anoma-

lies are of interest. Following Chandola et al. (2009) the types of anomalies can be

classified in the following three categories:

Point anomaly: A single instance which is anomalous compared to the rest of the

data set. This type of anomaly is also termed global anomaly. For example,

observing a patient with an age over 100 years in an emergency department.

Contextual anomaly: A single instance which is only anomalous in a specific context

but not otherwise. This kind is also named conditional anomalies. For example,

observing an influenza case during the summer.

Collective anomaly: A group of instances with similar properties which are different

with respect to the entire data set. For example, a group of patients with a

particular clinical picture in an emergency department which is otherwise not

so common.

3.7 Data Stream Mining

Data stream mining is concerned with a constant and possibly infinite stream of

instances which need to be processed and analyzed in order to extract knowledge.

In contrast to the finite data set D described in Section 3.1, instances arrive over

time and are associated with particular time stamps which imposes a temporal order.

Major challenges in stream mining are memory management and processing time
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since instances can arrive at a high rate. Therefore, algorithms developed in this area

usually aim to approximate solutions for the given learning task in order to use less

time and memory (Bifet et al., 2018).

According to Gaber et al. (2005), algorithms for stream mining can be categorized

into the following two groups:

Data-based techniques: The general idea of this kind of techniques is to map the

incoming data onto a smaller representation which is easier to process. Ac-

cordingly, algorithms aim to summarize the whole data stream (e.g., synopsis

data structures) or only analyze a subset of the incoming data (e.g., sampling

techniques).

Task-based techniques: Algorithms of this kind aim to adopt existing techniques or

invent new ones in order to achieve time and space efficient solutions. This in-

cludes approximation algorithms which have been specifically designed for com-

putationally difficult tasks and sliding window approaches which only focuses

on the most recent data of the stream.
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Background on

Disease Surveillance
This chapter covers the fundamentals of disease surveillance. First, a formal definition

of traditional and syndromic surveillance is given in Section 4.1 and 4.2. Thereafter,

possible data sources for monitoring diseases are discussed (cf. Section 4.3) and a set

of statistical surveillance methods which are relevant for this thesis are reviewed (cf.

Section 4.4). Next, the evaluation of these methods is addressed (cf. Section 4.5) and

a brief introduction into multivariate surveillance is given (cf. Section 4.6). Finally,

an overview is given in Section 4.7 about how machine learning algorithms can be

applied for disease surveillance.

4.1 Traditional Surveillance

The main objective of disease surveillance is to monitor the presence of an infectious

disease over time and to conduct an investigation by epidemiologists if an unexpected

high number of infections is observed (Jackson et al., 2007). The traditional approach,

also referred to as diagnosis-based surveillance (Henning, 2004), is to take only the

number of confirmed infections into account which have been reported to local health

departments. However, this verification often requires laboratory testing to confirm

the presence of the respective pathogen which can take up to several days until results

are available. In addition, delays in the reporting can have an significant impact on

the early detection of outbreaks.

4.2 Syndromic Surveillance

Rather than tracking the confirmed cases, syndromic surveillance focuses on early

indicators of a disease to allow a more timely detection of outbreaks (Shmueli and

Burkom, 2010). In the context of syndromic surveillance, such indicators are usually

encapsulated as syndromes:
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Definition 1 (Syndrome (Fricker, 2014)) A syndrome is a set of symptoms or

conditions that occur together and suggest the presence of a certain disease or an

increased chance of developing the disease.

Notably, this definition differs slightly from the original meaning of a syndrome, which

is only described by a set of symptoms, to also include the monitoring of nonclinical

data sources (Henning, 2004). For example, the sales of a specific pharmaceutical

product against flu could be used for the detection of influenza outbreaks but cannot

be described as a symptom directly. In general, syndromic surveillance can be defined

as:

Definition 2 (Syndromic surveillance (Buehler et al., 2008)) Syndromic

surveillance is an investigational approach where health department staff, assisted

by automated data acquisition and generation of statistical alerts, monitor disease

indicators in real-time or near real-time to detect outbreaks of diseases earlier than

would otherwise be possible with conventional reporting of confirmed cases.

The general approach to syndromic surveillance is to first decide on a disease under

surveillance and based on that a syndrome is specified which needs to be monitored.

Consequently, most surveillance approaches are tailored to specific diseases and their

unique characteristics, such as influenza (Hiller et al., 2013), pneumonia (Hope et al.,

2008), or norovirus (Edge et al., 2006). Several of these approaches are often bundled

into one surveillance system to monitor multiple diseases simultaneously (e.g., Ansaldi

et al., 2008; Heffernan et al., 2004; Ising et al., 2006; Lober et al., 2003; Wu et al.,

2008).

The above described approach has a strong focus on the definition of syndromes

which can be challenging since symptoms are often shared by different diseases and a

particular disease can have different disease patterns in the early phase of an infection.

Moreover, it is a handcrafted approach and only allows to monitor known infectious

diseases.

In contrast, only few algorithms have been proposed which aim to identify outbreaks

without specifying a particular disease in advance. For example, Reis et al. (Reis

and Mandl, 2003; Reis et al., 2003) monitor the total number of patient visits in an

emergency department rather than particular syndromes. However, a high number

of patient visits can be caused by various reasons, making the resulting signal of the

syndromic surveillance method noisy and unreliable. Better results in this setting can

be obtained with the help of machine learning techniques as we will see in chapters 7

and 8.
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Table 4.1: Exemplary data sources for syndromic surveillance.

clinical data source alternative data sources

emergency department visits school or work absenteeism
emergency hotline calls pharmacy sales
insurance claims internet-based searches
laboratory results animal illnesses or deaths
. . . . . .

4.3 Data Sources

The first step in syndromic surveillance is to choose a suitable data source that can

be used to track infected individuals. In general, the presence of an infectious disease

outbreak can only be determined through the actions of infected people. The infection

remains unknown, if an infected person does not contact any service that allows to

collect information about the case. According to Henning (2004), health-related data

sources can be separated into two categories (examples are listed in Table 4.1):

Clinical data sources: Sources which provide reliable measurements of symptoms.

For example, confirmed diagnosis by clinical experts.

Alternative data sources: Sources which indirectly measure the presence of a disease.

For example, internet-based health inquiries.

Figure 4.1 exemplary visualizes how the number of infections can be tracked. For

this purpose, let us consider a constant stream of patients arriving at an emergency

department (cf. Section 3.7) which can be classified as a clinical data source. First, the

patients are grouped together according to pre-specified time slots. Next, based on the

assigned diagnoses, the patients are identified which match the syndrome definition

(cf. patients highlighted in blue). Finally, a time series is constructed by counting the

number of infections in each group.
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Figure 4.1: Exemplary generation of the time series of infections from a data source.
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A specific characteristic of syndromic data is seasonality which is also known as also

known as cyclic drift in machine learning area (Webb et al., 2016). It is a special

form of concept drift in which the target concept changes over time with respect to a

fixed time frame. For example, Hughes et al. (2014) and Dirmyer (2018) show that

the cold weather in winter has an influence on the symptoms of the people arriving

in emergency departments. Furthermore, Johnson et al. (2014) capture seasonal pat-

terns in emergency department data due to respiratory illnesses. This kind of drift is

predictable, and syndromic surveillance algorithms can take advantage of it.

4.4 Statistical Surveillance Methods

A broad variety of disease surveillance methods have been studied in previous work.

Most of these approaches are based on statistics and are designed to monitor a single

time series of count data. In this thesis, we focus on statistical methods which require

comparably little historic data on their own. Such methods are universally applicable

and serve as drop-in approaches for surveillance systems. They only rely on the detec-

tion of a local increase in incidents without the need to capture effects like seasonality

and trend (Hutwagner et al., 2003).

Let us denote with (c(0), c(1), . . . , c(n)) ∈ Nn the time series of infection counts for a

particular disease (e.g., as shown in Figure 4.1). The methods rely on a sliding window

approach which uses the previous m counts as reference values for fitting a particular

parametric distribution (cf. Section 2.2). The sliding mean µ(t) and variance σ2(t)

can be computed over these m reference values as follows:

µ(t) =
1

m

m−1∑
i=0

c(t− i) σ2(t) =
1

m

m−1∑
i=0

(c(t− i)− µ(t))2

On the fitted distributions, a statistical significance test is performed (cf. out-of-

distribution test in Section 2.3.1) in order to identify suspicious spikes of counts.

For the purpose of outbreak detection, we rely on one tailed-tests for the statistical

algorithms in order to only capture the observation of unusual high number of infec-

tions. Therefore, the right-sided p-value for c(t) is computed on the fitted distribution

(cf. Section 2.1.2). The following algorithms have been considered in this thesis:

EARS C1 The C1 variant of the Early Aberration Reporting System (EARS) (Fricker

et al., 2008; Hutwagner et al., 2003) relies on the assumption of a Gaussian

distribution. The significance of the current observation ct with the C1 method

is computed as in the following:

ct
C1∼ N(µ(t), σ2(t))
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EARS C2 is a variation of C1, which adds a gap of two time points between the

reference values and the current observed count ct:

ct
C2∼ N(µ(t− 2), σ2(t− 2))

EARS C3 combines the result of the C2 method over a period of three previous obser-

vations. For convenience of notation, the incidence counts ct for the C3 method

are transformed according to the statistics so that it fits to the normal distribu-

tion: [
ct − µ(t− 2)√
σ2(t− 2)

−
2∑
i=1

max(0,
ct−i − µ(t− 2− i)√

σ2(t− 2− i)
− 1)

]
C3∼ N(0, 1)

Despite the inaccurate assumption of the Gaussian distribution for low counts,

the EARS variants are often included in comparative studies due to its simplicity

and still serves as competitive baseline (Bédubourg and Le Strat, 2017; Fricker

et al., 2008; Hutwagner et al., 2005).

RKI method. In contrast to the family of C-algorithms, the RKI algorithm assumes

a Poisson distribution for count data with a low mean. In Salmon et al. (2016)

it is implemented as follows:

ct
RKI∼

{
Poisson(bµ(t)c+ 1), if µ(t) ≤ 20

N(µ(t), σ2(t)), otherwise

Bayes method. The Bayes algorithm, as implemented by Salmon et al. (2016), relies

on the assumption of a negative binomial distribution:

ct
Bayes∼ NB(m · µ(t) +

1

2
,

m

m+ 1
)

4.5 Evaluation

The evaluation of disease surveillance methods is usually difficult due to the lack of

labeled data. In particular, for some scenarios of infectious disease outbreaks, such as

the intentional release of Bacillus anthracis, none or only very few outbreaks happened

in the past. Even though this data is sometimes available, it is rarely fully accessible

to the public (Lotze et al., 2007). In addition, a precise norm for the labeling of

outbreaks does not exist, making it difficult to obtain standardized data sets on which

algorithms can be evaluated. According to Buckeridge et al. (2005), the evaluation

data used for disease surveillance can be described by three categories:
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Wholly authentic: Data that capture a real infectious disease outbreak which has

been analyzed and labeled by epidemiologists. Although these data are genuine,

quantitative analysis often cannot be performed due to limited number and

variety of outbreaks and due to inconsistent labeling between different experts.

Wholly simulated: Fully synthetic data that allows to precisely control the underlying

environment and the characteristics of outbreaks. However, it is difficult to

generate realistic data and, therefore, it has only limited validity.

Simulated outbreaks in authentic data: This type of data uses real data as a basis

into which synthetic outbreaks are injected. It is superior to wholly simulated

but the problem with the validity remains since the simulated outbreaks may

not represent real outbreaks.

Most of the proposed algorithms in the literature are evaluated using wholly simulated

or simulated outbreaks superimposed on real data. This allows a detailed analysis of

the performance of the proposed algorithm in a controlled setting.

To measure the performance of outbreak detection methods, it is common to use

the activity monitor operating characteristic (AMOC) (Fawcett and Provost, 1999).

AMOC can be seen as an adaptation of the receiver operating characteristic (Spack-

man, 1989) in which the true positive rate is replaced by the detection delay, i.e., the

number of time points until an outbreak has been first detected by the algorithm.

In case the algorithm does not raise an alarm during the period of an outbreak, the

detection delay is equal to the length of the outbreak. Figure 4.2 shows an exemplary

AMOC-curve.

Moreover, for disease surveillance we are interested in a very low false alarm rate

for the algorithms and therefore only consider the partial area under AMOC-curve

(cf. blue highlighted area in Figure 4.2). Note that contrary to conventional AUC
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Figure 4.2: Exemplary visualization of a AMOC-curve. The blue highlighted area represents
the partial area under curve for a false alarm rate up to 5%.
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values in this case lower values represent better results. Since one data stream does

normally not contain enough outbreaks to draw conclusions, the evaluation is usually

performed on a set of data streams. To obtain a final score for the set, the average

over the results of each data stream is taken.

4.6 Multivariate Surveillance

The surveillance of multiple indicators or multiple data sources simultaneously facili-

tates the detection of outbreaks (Roure et al., 2007). This area is known as multivariate

disease surveillance for which we could identify the following categories:

Spatial surveillance: Simultaneously monitoring of disease counts at different loca-

tions with possible spatial correlations (e.g., Heffernan et al., 2004; Lober et al.,

2003). For example, monitoring syndromes in different emergency departments

simultaneously which are located in the same district.

Multiple syndrome surveillance: Simultaneous surveillance of multiple syndromes for

the same disease. In particular, for syndromic surveillance based on emergency

department data, it has been shown that the use of more data can improve

the ability of detecting outbreaks. For example, Reis and Mandl (2004) show

that the surveillance of chief complaints and diagnostic codes together in an

emergency department yield better results than alone. Moreover, Held et al.

(2005) simultaneously monitor a syndrome with respect to particular groups of

patients which differ in their demographic characteristics.

Multiple data source surveillance: Monitoring of different types of data sources at

the same time (e.g., Faverjon et al., 2016; Kulldorff et al., 2007). For example,

monitoring over-counter sales in pharmacies and emergency department visits

simultaneously.

4.7 Relation to Machine Learning

Seen from a machine learning perspective, syndromic data are a constant stream

of instances (cf. Section 3.7). To detect changes in the data stream, which might

indicate an outbreak, the instances are usually grouped together according to fixed

time intervals as it is done for modeling count data (cf. Section 2.2 and 4.3). For

example, all patients which arrive at an emergency department on a specific day are

grouped together as a set of instances. Hence, the stream can be represented as a

time series of sets of instances. The goal of disease surveillance is to detect any major

changes for the last observed set in the stream which might indicate an outbreak of
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an infectious disease. As stated in Section 4.2, one can either pre-process the data in

order to extract only the information pertinent to the definition of a specific syndrome

or monitor all available data for unusual distributional changes.

Generally speaking, the main objective of disease surveillance can be described as

anomaly detection (cf. Section 3.6). In particular, the focus is put on patterns which

indicate an increasing number of infections over time which can be described by col-

lective and sequential anomaly detection at the same time. Directly applying point

anomaly detection, which aims to identify single instances as outliers, such as en-

countering a patient over a hundred years old in an emergency department, is not of

interest for disease surveillance (Wong et al., 2002). However, by forming a univariate

time series of counts for a particular syndrome, as it is done in syndromic surveillance,

the problem can be reduced to point anomaly detection. Most approaches to disease

surveillance can be categorized as statistical anomaly detection techniques (e.g., EARS

(Hutwagner et al., 2003), Farrington (Noufaily et al., 2013), and many more).

In contrast, the area of emerging pattern mining (Dong and Li, 1999) directly relates

to the problem of disease surveillance. It aims to discover item sets whose support

increases significantly from one data set to the other. Similarly, contrast set mining

(Bay and Pazzani, 2001) aims to find conjunctions of attributes and values that dif-

fer meaningfully in their distributions across data sets. Such techniques can be used

to compare the last observed set of instances to the previous sets of instances in or-

der to detect significant changes in the frequencies of any group of instances. Both

approaches have also been viewed as instantiations of a general framework for super-

vised descriptive rule learning (Novak et al., 2009). The framework is a generalization

of subgroup discovery (Wrobel, 1997), where labels (e.g., with respect to a concrete

syndrome) are assumed to be available.

Due to the lack of labeled data, most algorithms for disease surveillance are unsu-

pervised. Apart from unsupervised anomaly detectors, generative machine learning

algorithms can also be used for disease surveillance, such as sum-product networks

(cf. Section 3.5) or Bayesian networks (Jensen, 1996). This type of algorithm allows

to capture the underlying probability distribution of the data source. Anomalies can

be detected by comparing the expected distribution of the data with the distribution

of the current observed set of instances. In this way, disease surveillance can also

be seen from the perspective of exceptional model mining (Duivesteijn et al., 2016).

Therefore, it can be formulated as the identification of a subset of instances in which a

model of the current set of instances differs substantially from the models for previous

sets of instances.

In general, the output of an anomaly detector for disease surveillance should be seen

as a signal that an outbreak may be occurring which triggers a further investigation

of the situation by public health officials (Fricker, 2014). To avoid unnecessary and

costly interventions, the signal ideally includes information about the reason of the
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detected anomaly allowing the epidemiologist to quickly judge the importance of the

alarm. Therefore, disease surveillance could also benefit from the area of interpretable

machine learning, focusing on approaches which can provide explanations to their

predictions (Molnar et al., 2020).





5
Correlation-based Discovery

of Disease Patterns for

Syndromic Surveillance

Starting with this chapter, we introduce novel algorithms to improve disease surveil-

lance. One of the major challenges in syndromic surveillance is the definition of

disease patterns (cf. Section 4.2). They highly depend on the infectious disease and

the health-related data source under surveillance. Since early symptoms are usually

shared among many diseases and because a particular disease can have several clinical

pictures at early stages of an infection, it is difficult to obtain reliable syndromes.

For this reason, the definition of disease patterns is usually based solely on expert

knowledge of epidemiologists, a time-consuming and laborious process (Mandl et al.,

2004). This motivates the demand for tools that allow for a user-guided generation

and comparison of syndrome definitions. To be useful in practice, such tools should

be flexible enough to be applied to different types of data (Hopkins et al., 2017).

In this chapter, we present a data-driven approach that aims at supporting epidemiol-

ogists in the process of identifying disease patterns for infectious diseases. It discovers

syndrome definitions from health-related data sources, based on their correlation to

the reported number of infections in the respective geographical area. First, we in-

troduce a formal definition of this correlation-based discovery task. Afterwards, we

present an algorithm for the automatic extraction of disease patterns that uses tech-

niques from the field of inductive rule learning. To provide insight into the data, the

syndromes it discovers may be suggested to epidemiologists, who can adjust the input

or the parameters of the algorithm to interactively refine the syndromes according

to their domain knowledge. To better understand the capabilities and shortcomings

of the proposed method, we evaluate its ability to reconstruct randomly generated

disease patterns with varying characteristics. Furthermore, we apply our approach

to emergency department data to learn disease patterns for Influenza, Norovirus and

SARS-CoV-2. To assess the quality of the obtained patterns, we discuss the indicators

they are based on and relate them to the number of infections according to publicly

available reports, as well as handcrafted syndrome definitions.
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5.1 Preliminaries

In the following, we formalize the problem that we address in this chapter, including

a definition of relevant notation and an overview of related work.

5.1.1 Problem Definition

We are concerned with the deduction of patterns from a health-related data source

X = (x1, . . . ,xN ) ∈ X . It incorporates information about individual instances xn ∈
X from a population X , which are represented in terms of a finite set of predefined

attributes A = {a1, . . . , aK}. An instance x = (x1, . . . , xK), e.g., representing a

patient that has received treatment in an emergency department, assigns discrete or

numerical values xk to the k-th attribute ak. For example, discrete attributes can be

used to specify a patients’ gender, whereas numerical attributes are suitable to encode

continuous values, such as body temperature, blood pressure or the like.

The values for individual attributes may also be missing, e.g., because some medical

tests have not been carried out as part of an emergency treatment. In addition, each

instance in a data source is subject to a mapping h : N+ → N+. It associates the n-th

instance with a corresponding period in time, identified by a timestamp t = h (n).

Instances that correspond to the same interval, e.g., to the same week, are assigned

the same timestamp t : 1 ≤ t ≤ T .

For each timestamp t, the instances in a data source may be associated with, a cor-

responding target variable yt ∈ y to be provided as part of a secondary data source

y = (y1, . . . , yT ) ∈ Y. The target space Y corresponds to the number of infections

that may occur within consecutive periods of time. Consequently, a particular target

variable yt ∈ N+ specifies how many cases related to a particular infectious disease

have been reported for the t-th time interval.

The learning task, which we address in this work, requires to find an interpretable

model f : X → Y. Given a set of instances X ⊂ X that are mapped to corresponding

time intervals via a function h, it provides an estimate ŷ = f (X,h) = (ŷ1, . . . , ŷT ) ∈ Y
of the number of infections per time interval. The selection of instances and the num-

ber of reported cases, which are provided for the training of such model, must neither

originate from the same source, nor comprise information about identical subgroups

of the population. As a consequence, the estimates of a model are not obliged to

reflect the provided target variables in terms of their absolute values. Instead, we

are interested in capturing the correlation between indicators that may be derived

from the training instances and the number of infections that have arised during the

considered timespan. To assess the quality of a model, we compare the estimates it

provides to the target variables with respect to a suitable correlation coefficient, such
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Figure 5.1: Exemplary comparison of two syndrome definitions (blue lines) with reported
cases (orange line). The Pearson’s correlation for “fever AND cough” is 0.98 and for “cough
OR runny nose OR sore throat” is 0.88.

as Spearman’s ρ, Kendall’s τ , or Pearson’s correlation. For example, one could align

patient data of an medical office with local reported flu cases. Figure 5.1 exemplary

visualizes two syndrome definitions which are obtained by counting the number of pa-

tients per timestamp which fulfill a particular clinical picture. The syndrome “fever

AND cough” covers less cases but it has an higher Pearson’s correlation coefficient

than the other syndrome (0.98 compared to 0.88).

5.1.2 Related Work

Disease patterns for syndromic surveillance are usually defined according to the knowl-

edge of domain experts. This requires a manual examination of the available health-

related data to identify indicators that may be related to a particular disease at hand.

For example, Edge et al. (2006) and Muchaal et al. (2015) analyze information about

the sales of pharmaceuticals to reason about the spread of Norovirus infections, based

on their effectiveness against gastrointestinal symptoms. Similarly, the data that is

gathered in emergency departments may also serve as a basis for the definition of

disease patterns. In this case, definitions are usually based on the symptoms of in-

dividual patients and the diagnoses made by the medical staff. For example, Ivanov

et al. (2002) and Suyama et al. (2003) rely on standardized codes for the International

Classification of Diseases (ICD) (Trott, 1977). Boender et al. (2021) additionally use

chief complaints of the patients at the emergency departments. The majority of syn-

drome definitions are targeted at common infectious diseases, such as gastrointestinal

infections, influenza-like illnesses or respiratory diseases (e.g., Boender et al. (2021);

Bouchouar et al. (2021); Heffernan et al. (2004); Suyama et al. (2003)). However,

they are also used to detect other health-related epidemics, e.g., increased usage of

psychoactive substances (Nolan et al., 2017).
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The deduction of indicators from unstructured data, such as textual reports of com-

plaints or diagnoses, is particularly challenging. To be able to deal with such data,

text documents are often represented in terms of keywords they consist of. For exam-

ple, Lall et al. (2017) use syndromes that apply to the keywords contained in medical

reports. Similarly, Heffernan et al. (2004) use a list of exclusive keywords to reduce

the chance of misclassifications, Bouchouar et al. (2021) utilize regular expressions to

extract symptoms from texts and Ivanov et al. (2002) use a classifier system that takes

textual data as an input to assign syndromes to individual patients. In order to train

a classifier, the latter approach requires labeled training data that must manually be

created by experts.

The analysis of textual data is even more profound in approaches to syndromic surveil-

lance that are based on web data. For example, Velardi et al. (2014) analyze Twitter

messages to capture indicators for the spread of influenza-like illnesses. Starting with

a handcrafted set of medical conditions that are related to the respective disease, they

learn a language model that aims to identify closely related terms based on cluster-

ing.

The problem of learning syndrome definitions in a data-driven way, without relying

on expert knowledge, has for example been addressed by Kalimeri et al. (2019). The

authors of this work propose an unsupervised, probabilistic framework based on ma-

trix factorization. Their goal is to identify patterns of symptoms in structured data

that has been obtained from participatory systems. Given a set of 19 symptoms, e.g.,

fever or vomiting, they construct a matrix that incorporates information about the oc-

currences of individual symptoms over time. Ultimately, syndromes can be generated

from this matrix by extracting latent features that correspond to linear combinations

of groups of symptoms.

Another method that relies on structured data is proposed by Goldstein et al. (2011).

It is aimed at capturing the likelihood of syndromes for a particular infectious disease.

The authors propose to use expectation maximization and deconvolution to identify

syndromes, which are highly correlated with the occurrences of symptoms that have

been reported in regular time intervals. However, their approach does only allow to

evaluate and compare disease patterns that have been specified in advance. Even

though the aforementioned algorithms deal with structured data that is less cumber-

some to handle than unstructured inputs, they have only be applied to small and

pre-selected sets of features.

The problem of learning from assignments of target variables to sets of instances,

rather than individual instances, is known as multiple instance learning (Dietterich

et al., 1997). Chevaleyre and Zucker (2001) tackle such task by adapting the quality

criterion used by the well-known rule learning method RIPPER. To be able to deduce

classification rules from sets of instances, Bjerring and Frank (2011) incorporate the

separate-and-conquer rule induction technique into a tree learner. Both approaches
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are limited to the assignment of a binary signal to a bag of instances and are not

intended to cope with multiple instance regression tasks (Ray and Page, 2001). The

mapping of numeric values to bags of instances, as in the syndrome definition learning

task at hand, is a much less explored problem in the literature. We are not aware

of any existing work that approaches this kind of problem with the goal to obtain

rule-based models.

5.2 Learning of Syndrome Definitions

In the following, we propose an algorithm for the automatic induction of syndrome

definitions, based on the indicators that can be constructed from a health-related

data source. Each indicator cm, which is included in such a model, refers to a certain

attribute that is present in the data. It compares the values, which individual instances

assign to this particular attribute, to a constant using relational operators, such as =

if the attribute is discrete, or ≤ and > if it is numerical. By definition, if an indicator

is concerned with an attribute for which an instance’s value is missing, the indicator

is not satisfied.

We strive for a combination of different indicators via logical and (∧) and or (∨)

operators. The model that is eventually produced is given in disjunctive normal form,

i.e., as a disjunction of conjunctions. Such a logical expression r = r1 ∨ · · · ∨ rL with

rl = cl,1 ∧ · · · ∧ cl,M evaluates to r (xn) = 1 (true) or r (xn) = 0 (false), depending

on whether it is satisfied by a given instance xn or not. If the context is clear, we

abbreviate cl,i with ci. The number of infected cases, which are estimated by a logical

expression r for individual time intervals t, calculate as

ŷ = r (X) =
(∑

xn∈X
Jh (n) = tKr (xn)

)
1≤t≤T

, (5.1)

where JpK = 1 if the predicate p is true, and 0 otherwise.

The representation of syndromes introduced above is closely related to sets of con-

junctive rules rl as commonly used in inductive rule learning which is an established

and well-researched area of machine learning (see, e.g., (Fürnkranz et al., 2012) for

an overview on the topic). Consequently, we rely on commonly used techniques from

this particular field of research to learn the definitions of syndromes. We use a se-

quential algorithm that starts with an empty hypothesis to which new conjunctions

of indicators r1, . . . , rL are added step by step.

Given a data source that incorporates many features, the number of possible com-

binations of indicators can be very large. For this reason, we rely on top-down hill

climbing to search for suitable combinations. With such an approach, conjunctions of

indicators that can potentially be added to a model are constructed greedily.



50 5. Correlation-based Discovery of Disease Patterns

At first, single indicators are taken into account individually. They are evaluated

relative to the existing model and the one that promises the highest improvement

in quality is ultimately selected. Afterwards, it is iteratively refined by evaluating

the combinations that possibly result from a conjunction of already chosen indicators

with an additional one. The search continues to add more indicators, resulting in

more restricted patterns that apply to fewer instances, as long as an improvement of

the model’s quality can be achieved.

Optionally, the maximum number of indicators per conjunction M can be limited via

a parameter. If M = 1, the algorithm is restricted to learn disjunctions of indicators.

Furthermore, we enforce a minimum support s ∈ R with 0 < s < 1, which specifies

the number of instances N · s a conjunction of indicators must apply to. Once it has

decided for a conjunction of indicators to be included in the model, the algorithm

attempts to learn another conjunction to deal with instances that have not yet been

adequately addressed by the model. The training procedure terminates as soon as

it is unable to find a new pattern that improves upon the quality of the model. In

addition, an upper bound can be imposed on the number of disjunctions L by the

user.

The search for suitable indicators and combinations thereof is guided by a target

function to be optimized at each training iteration. It assesses the quality that results

from adding an additional conjunction of indicators to an existing model in terms of

a numeric score. We denote the estimates that are provided by a model after the l-th

iteration as ŷ(l). When adding a conjunction of indicators rl to an existing model, the

estimates of the modified model can be computed incrementally as

ŷ(l) = r(l) (X) = r(l−1) (X) + rl (X) . (5.2)

We assess the quality of a model’s estimates in terms of the absolute Pearson’s correla-

tion coefficient. At a particular training iteration, it can be computed in a single pass

over the target time series y and the current estimates ŷ(l) according to the formula

mP

(
y, ŷ(l)

)
:=
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If the score that is computed for a potential modification according to the target

function mP is greater than the quality of the current model, it is considered an

improvement. Among all possible modifications that are considered during a particular

training iteration, the one with the greatest score is preferred.
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5.3 Evaluation

To evaluate the previously proposed learning approach, we have implemented the

methodology introduced above by making use of the publicly available source code

of the BOOMER rule learning algorithm (Rapp et al., 2020). In adherance to the

principles of reproducible research, our implementation can be accessed onlinei. A

major goal of the empirical study, which is outlined in the following, is to investigate

whether the proposed methodology is able to deduce patterns from health-related data

that correlate with the number of infections supplied via a secondary data source. For

our experiments, we relied on routinely collected and fully anonymized data from 12

German emergency departments which capture information about patients that have

consulted these institutions between January 2017 and April 2021.

In a first step, we conducted a series of experiments using synthetic syndrome def-

initions. The objective was to validate the algorithm and to better understand its

capabilities and limitations when it comes to the reconstruction of known disease

patterns in a controlled environment. On the one hand, we considered synthetic

syndromes with varying characteristics and complexity. On the other hand, we in-

vestigated the impact that the temporal granularity of the available data has on the

learning approach. As elaborated below, the health-related data used in this chapter

are available on a daily basis. By using synthetic syndromes, we were able to validate

the algorithm’s behavior when dealing with a broader or more fine-grained granular-

ity as well. The use of synthetic syndromes also allows to investigate the ability of

the proposed approach independently of the negative effects of artifacts that may be

present in real data. This includes delays of reports, inaccuracies in the reported dates

or instances that are present in one data source, but not in the other. For example,

cases may have been reported in one of the considered districts, but have not been

treated in one of the emergency departments included in our dataset. Vice versa, it is

also possible that cases have been treated at one of the considered departments but

have not been reported to the public agencies.

Such artifacts almost certainly play a role in our second experiment, where we tried

to discover patterns that correlate with the publicly reported cases. We selected cases

from the notifiable diseases of Influenza and Norovirus, which have extensively been

studied in existing work (e.g., Heffernan et al., 2004; Kalimeri et al., 2019; Muchaal

et al., 2015), as well as of the recently emerged SARS-CoV-2, which has for example

been analyzed by Bouchouar et al. (2021). To evaluate whether the algorithm is

able to identify meaningful indicators that are related to these particular diseases,

we provide a detailed discussion of the discovered syndromes and compare them to

manually defined disease patterns.

ihttps://github.com/mrapp-ke/SyndromeLearner

https://github.com/mrapp-ke/SyndromeLearner
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Table 5.1: Attributes included in the emergency department data.

missing
name type #values values in %

1 diagnosis
MTS presentation discrete 57 0.01
MTS indicator discrete 179 5.10
ICD code discrete 5901 65.45
ICD code (short) discrete 1509 65.45

2 demographic information
gender discrete 3 0.00
age discrete 21 0.00

3 vital parameters
blood pressure systolic numeric - 57.19
blood pressure diastolic numeric - 57.22
temperature numeric - 59.31
respiration rate numeric - 59.55
pulse frequency numeric - 91.91
oxygen saturation numeric - 57.18

4 contextual information
isolation discrete 11 1.81
transport discrete 6 59.74
disposition discrete 13 90.56

5.3.1 Experimental Setup

Health-related data. As shown in Table 5.1, we have extracted 15 attributes from

the emergency department data. Each of the available attributes corresponds to one

out of four categories. The first category, diagnosis, includes an initial assessment in

terms of the Manchester Triage System (MTS) (Gräff et al., 2014). It is obtained for

each patient upon arrival at an emergency department. Besides, this first category

also comprises an ICD (Trott, 1977) code that represents a physician’s assessment. In

addition to the full ICD code, we also consider a more general variant that consists of

the leading character and the first two digits (e.g., U07 instead of U07.1 ). Features

that belong to second category, demographic information, indicate the gender and age

of patients, whereas vital parameters correspond to measurement data, such as blood

pressure or pulse frequency, that may have been registered by medical staff. Features

of the last category, contextual information, may provide information about why a

patient was possibly quarantined (isolation), the means of transport used to get to

the emergency department (transport) and the status when exiting the department

(disposition).

In contrast to existing work on the detection of disease patterns (e.g., Goldstein et al.,

2011; Kalimeri et al., 2019), we have not applied any pre-processing techniques to
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the health-related data, such as a manual selection of symptoms that are known to

be related to an infectious disease. As a consequence, the data contains a lot of

noise, e.g., diagnoses related to injuries, and many missing values (cf. Table 5.1). In

accordance with the findings of Hartnett et al. (2020), we observed a reduced number

of emergency department visits during the first weeks of the SARS-CoV-2 pandemic.

However, preliminary experiments suggested that this anomaly has no effect on the

operation of our algorithm. To obtain a single dataset, we have merged the data

from the considered emergency departments. It consists of approximately 1,900,000

instances. Each of the instances corresponds to a particular week (i.e., around 8,500

instances per week). Additional information about the emergency data used in this

chapter is provided by Boender et al. (2021), who used a slightly different subset of

the data set to evaluate their handcrafted syndrome definitions.

Number of infections. The number of cases corresponding to the infectious dis-

eases Influenza, Norovirus and SARS-CoV-2 have been retrieved from the SurvStat ii

platform provided by the Robert Koch-Institut. To match the temporal information

in the health-related dataset, we have aggregated the weekly reported numbers for

German districts (“Landkreise” and “Stadtkreise”) where the considered emergency

departments are located.

Parameter setting. For all experiments that are discussed in the following, we

have set the minimum support to s = 0.0001. With respect to the approximately

1,900,000 instances contained in the training dataset, this means that each conjunction

of indicators considered by the algorithm must apply to at least 190 patients. In

preliminary experiments we have found this setting to produce reasonable results,

while keeping the training time at an acceptable level (typically under one minute).

In addition, we have limited the maximum number of disjunctions in a model to

L = 50. However, the algorithm usually terminates before this number is reached.

5.3.2 Reconstruction of Synthetic Syndromes

In our first experiment, we validated the ability of our algorithm to discover disease

patterns under the assumption that the reported cases are actually present in the

data. For this purpose, we defined synthetic syndromes with varying characteristics

from the emergency department data. For each syndrome, we determined the number

of instances they apply to over time. The goal of the algorithm was to reconstruct

the original syndrome definitions, exclusively based on the correlation with the cor-

responding number of cases. For this experiment, we focused on syndromes that use

ICD codes and MTS representations, since these indicators are most commonly used

iihttps://survstat.rki.de

https://survstat.rki.de
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in related work (e.g., Boender et al., 2021; Ivanov et al., 2002; Suyama et al., 2003).

We have not used short versions of the ICD codes due to their overlap with the full

codes. The following three different types of synthetic syndromes were considered:

1. Conjunctions of indicators (and):

r = c1 ∧ . . . ∧ cM , where M ∈ {2, 3}

2. Disjunctions of indicators (or):

r1 ∨ . . . ∨ rL, where rl = c and L ∈ [2, 9]

3. Disjunctions of conjunctions (and-or):

r1 ∨ . . . ∨ rL, where rl = c1 ∧ c2 and L ∈ [2, 5]

For each syndrome type, we generated 100 artificial definitions by randomly selecting

indicators that are present in the data, such that each indicator and each conjunction

of indicators applies to at least 200 patients. This ensures that the syndromes that

are ultimately generated apply to this particular number of patients at minimum. In

addition, we have considered three temporal granularities to determine the number

of cases different syndromes apply to. Experiments have been conducted with counts

that are available on a daily, weekly or monthly basis. To quantify to which extent

our approach is able to reconstruct the original syndrome definitions, we compute the

percentage of correctly identified patterns, i.e., syndromes that use the exact same

indicators, referred to as the reconstruction rate. A visualization of the experimental

results is given in Figure 5.2.
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Figure 5.2: Percentage of successfully reconstructed syndrome definitions of different types
for varying complexities of the predefined syndromes.
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Generally, we can observe that the algorithm’s ability to capture the predefined dis-

ease patterns benefits from a more fine-grained granularity of the available data (e.g.,

daily instead of weekly reported numbers). This meets our expectations, as a greater

temporal resolution results in more specific patterns of covered cases, given a par-

ticular syndrome. As a result, it is easier to identify the indicators that allow to

replicate a certain disease pattern and separate them from unrelated ones. In par-

ticular, syndromes that are exclusively based on disjunctions (or) or conjunctions

(and), regardless of their complexity, can reliably be captured when supplied with

daily numbers. When dealing with a broader temporal granularity, the uniqueness of

disease patterns vanishes and they become more likely to interfere with the numbers

resulting from similar syndromes.

Regarding the different types of predefined syndromes, it can be seen that their re-

construction becomes more difficult as their complexity increases. Especially when

dealing with syndromes that include both, disjunctions and conjunctions (and-or),

the reconstruction rate mostly depends on the number of indicators, whereas the tem-

poral resolution plays a less important role. This shows the limitations of a greedy

hill climbing strategy when it comes to the reconstruction of complex patterns. To

overcome these shortcomings, approaches for the re-examination of previously induced

rules, such as pruning techniques, could be considered. It is also possible to extend the

search space that is explored by the training algorithm, e.g., by conducting a beam

search, where several promising solutions are explored instead of focusing on a single

one at each step. However, if the patterns, which have been found by the algorithm,

only slightly differ from the predefined syndromes (e.g., by omitting or including in-

frequent ICD codes). While we did not evaluate this in depth, we believe they could

still comprise useful information, e.g., by providing alternative, but nearly equivalent,

descriptions of the syndrome.

5.3.3 Discovery of Syndrome Definitions from Real-World Data

In our second experiment, we used the proposed algorithm to obtain syndrome def-

initions for the infectious diseases Influenza, Norovirus and SARS-CoV-2. In the

literature, the quality of syndromes is either evaluated by experts (e.g., Bouchouar

et al., 2021; Heffernan et al., 2004; Ivanov et al., 2002; Lall et al., 2017) or by mea-

suring the correlation with reported infections, reported deaths or expert definitions

(e.g., Edge et al., 2006; Kalimeri et al., 2019; Muchaal et al., 2015; Nolan et al., 2017;

Suyama et al., 2003; Velardi et al., 2014). We follow the latter approach by reporting

the Pearson’s correlation coefficient of the automatically discovered disease patterns

with the publicly reported number of infections supplied for training, as well as syn-

dromes that have been handcrafted by ourselves. In addition, we provide a detailed

discussion of the indicators included in our models.
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Figure 5.3: Number of cases satisfying the discovered syndrome definition for Influenza
visualized as an stacked plot (blue). Rules of the discovered syndrome definition found during
early iterations are colored darker. We compared the syndrome definition to the actual cases
(top, orange) and the handcrafted syndrome (bottom, black).
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Figure 5.4: Number of cases satisfying the discovered syndrome definition for SARS-CoV-2
visualized as an stacked plot (blue). Rules of the discovered syndrome definition found during
early iterations are colored darker. We compared the syndrome definition to the actual cases
(top, orange) and the handcrafted syndrome (bottom, black).
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Figure 5.5: Number of cases satisfying the discovered syndrome definition for Norovirus
visualized as an stacked plot (blue). Rules of the discovered syndrome definition found during
early iterations are colored darker. We compared the syndrome definition to the actual cases
(top, orange) and the handcrafted syndrome (bottom, black).
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Table 5.2: Pearson’s correlation coefficient between cases identified by automatically learned
syndromes on different feature categories and actually reported cases as well as cases that
match the handcrafted syndrome definitions.

disease feature categories reported handcrafted
1 2 3 4 cases syndromes

Influenza X 0.9354 0.9917
X X 0.9357 0.9796
X X 0.9480 0.9768
X X 0.9366 0.9948
X X X X 0.9493 0.9800

SARS-CoV-2 X 0.9399 0.9473
X X 0.9454 0.9219
X X 0.9528 0.8689
X X 0.9464 0.9506
X X X X 0.9528 0.8689

Norovirus X 0.7669 0.2761
X X 0.7669 0.2761
X X 0.7303 0.1470
X X 0.7167 0.1608
X X X X 0.7242 0.1672

Inspired by the expert syndrome definitions for Influenza and SARS-CoV-2 used by

Boender et al. (2021), we created a set of similar, but much simpler, definitions solely

based on ICD codes. They incorporate the ICD codes that correspond to suspected or

confirmed cases of a particular disease, i.e., J10 (Influenza due to identified seasonal

influenza virus) or J11 (Influenza, virus not identified) for Influenza, A08 (viral and

other specified intestinal infections) for Norovirus and U07.1 (COVID-19, virus iden-

tified) or U07.2 (COVID-19, virus not identified) for SARS-CoV-2. We have found

the number of cases these ICD codes apply to be very similar to those matched by

the aforementioned expert definitions.

For each of the considered diseases, we trained several models using different sets of

features. First of all, for a fair comparison with the handcrafted syndromes, we pro-

vided our algorithm with the features that belong to the first category in Table 5.1,

i.e., ICD codes and MTS representations. A visualization of the number of infections

that correspond to the disease patterns that have been discovered with respect to

these features is shown for each disease in figures 5.3, 5.4, and 5.5. Each one of them

includes a comparison with the reported number of infections supplied for training and

the number of cases our handcrafted syndromes apply to, respectively. In the case of

Influenza and SARS-CoV-2, all of these numbers are strongly correlated. In the first

case, one can clearly observe an increase of infections during the first months of each

year. In the latter case, the different peaks of SARS-CoV-2 infections according to

the publicly reported numbers are replicated by both, the handcrafted syndromes and
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the automatically learned patterns. The correlation between syndromes and reported

numbers is less strong with respect to Norovirus. However, compared to the hand-

crafted syndromes, the automatically discovered patterns appear to better capture the

seasonal outbreaks of this particular disease. In general, the numbers that correspond

to the syndrome definitions are much lower than the reported numbers, as only a small

fraction of detected cases have actually been treated in emergency departments.

In addition to ICD codes and MTS representations, we have also conducted experi-

ments, where we provided the algorithm with one additional set of features, as well as

with all features available. To validate whether the availability of additional features

comes with an advantage for an accurate reproduction of the infected cases, we rely

on the Pearson’s correlation coefficients that result from different feature selections in

Table 5.2. For all experiments, we report the correlation of the autonomously learned

syndromes with both, the number of reported cases used for training and the cases

captured by the handcrafted syndromes. In the case of Influenza and SARS-CoV-

2, the inclusion of vital parameters introduces a minor advantage for matching the

reported numbers. Understandably, the use of additional features typically reduces

correlation with the handcrafted syndromes, as they do not make use of these features.

In the case of Norovirus, the Pearson’s correlation does not benefit from the availabil-

ity of vital parameters. Regardless of any specific disease, this does also apply to the

contextual and demographic information. We consider the absence of demographic

indicators as positive, as none of the diseases appears to be specific to gender or age.

5.3.4 Discussion of Discovered Syndrome Definitions

As the use of ICD codes and MTS representations is sufficient in most cases to match

the reported number of infections, we mostly focus on models that have been trained

with respect to these features in the following discussion. A selection of exemplary

syndromes that have been learned by our algorithm is also shown in Table 5.3.

Influenza. The indicators that have been selected by our algorithm for modeling the

number of Influenza cases include the ICD codes J10 and J11 that are also included

in our handcrafted definition. These indicators have been selected during the first

iterations of the algorithm and therefore are considered more important than the

subsequent ones. As indicated by using different shades of blue in Figure 5.3, patterns

found during early iterations (dark blue) mostly focus on the strongly pronounced

seasonal peaks. Indicators that have been selected at later iterations (lighter blue) are

more likely to match irrelevant cases and hence are often unrelated to the respective

disease. In the case of Influenza, this includes clearly irrelevant ICD codes, such as

Z96.0 (presence of urogenital implants) or S53.1 (dislocation of elbow, unspecified) as

fourth and fifth indicator, but also codes that may be related to Influenza-like illnesses,
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Table 5.3: Exemplary automatically induced syndrome definitions.

1 Influenza
J10 ∨ J11 ∨ “new confusion condition“ ∨ Z96.0 ∨ . . .

1 SARS-CoV-2
(J12 ∧ “breathing problems”) ∨ U07.1 ∨ “pain in lower abdomen” ∨ . . .

1 Norovirus
J21.0 ∨ D40 ∨ (J34 ∧ “recent problem“)

1 3 Influenza
J10
∨ (J11 ∧ diastolic ≤ 92.5 ∧ systolic ≤ 156.5 ∧ temperature > 38.5)
∨ (temperature ≤ 40.5 ∧ diastolic ≤ 108.5 ∧

systolic ≤ 162 ∧ 187.5 ≤ heart rate ≤ 207.5)
∨ . . .

1 2 3 4 Influenza
J10
∨ (J11 ∧ diastolic ≤ 92.5 ∧ systolic ≤ 156.5 ∧ temperature > 38.5 )
∨ (temperature ≤ 40.5 ∧ diastolic ≤ 110 ∧ systolic ≤ 162 ∧

187.5 ≤ heart rate ≤ 212.5 ∧ no isolation ∧ patient sent home)
∨ . . .

D40 = Neoplasm of uncertain/unknown behaviour of male genital organs
J10 = Influenza due to identified seasonal influenza virus
J11 = Influenza, virus not identified
J12 = Viral pneumonia, not elsewhere classified
J21.0 = Acute bronchiolitis due to respiratory syncytial virus
J34 = Other disorders of nose and nasal sinuses
U07.1 = COVID-19, virus identified
Z96.0 = Presence of urogenital implants

such as J18.8 (other pneumonia) or J34.2 (deviated nasal septum) at positions 10 and

15. When the algorithm has access to vital parameters, the indicator J11 is combined

with information about blood pressure and body temperature as follows:

J11 ∧ blood pressure diastolic ≤ 92.5

∧ blood pressure systolic ≤ 156.5

∧ temperature > 38.5

Due to the lack of domain knowledge, we are not qualified to decide whether such a

pattern is in fact characteristic of Influenza. This shows the demand for experts, who

are indispensable for the evaluation of machine-learned models.
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SARS-CoV-2. When used to learn patterns for SARS-CoV-2, our algorithm con-

siders the MTS presentation “breathing problem”, as well as the ICD codes J12 (viral

pneumonia) and U07.1 (COVID-19, virus identified), as most relevant. The latter of

these ICD codes is also included in the handcrafted syndrome definition. Besides

clearly irrelevant indicators, it further selects the ICD code J34.2 (deviated nasal sep-

tum) at a later stage of training that may be related to this particular illness. When

provided with vital parameters, the algorithm decides to use the ICD code J12 in

combination with data about a patients’ blood pressure and temperature in its most

relevant pattern:

J12 ∧ 81.5 < blood pressure systolic ≤ 149.5

∧ blood pressure diastolic ≤ 77.5

∧ temperature > 36.5

Norovirus. When it comes to modeling the infections with Norovirus, the algorithm

fails to identify any ICD codes that are related to this particular illness, such as the

ones included in our manual definition or codes related to symptoms like diarrhea.

Instead, it uses indicators like J21.0 (acute bronchiolitis due to respiratory syncytial

virus) or J34 (other disorders of nose and nasal sinuses) in combination with other

indicators to match the reported numbers. This is most probably due to the similar

seasonality of Norovirus and Influenza-like illnesses. This illustrates another difficulty

one may encounter when pursuing a data-driven approach to syndromic surveillance.

If high numbers of infections with respect to multiple diseases occur during a similar

timespan, the algorithm is not able to distinguish between indicators that relate to

different types of infections. In such case it is necessary to provide additional knowl-

edge to the learning algorithm, as it is unable to grasp the semantics of individual

features on its own. In particular, this motivates the need for an interactive learning

approach, where a human expert interacts with the computer in order to guide the

construction of models. For example, by prohibiting the use of certain indicators or

features that have been identified to be irrelevant to the problem at hand.

5.4 Discussion and Limitations

Our experimental evaluation using both, synthetic and real-world data, provided sev-

eral insights into the problem domain addressed in this chapter. First of all, we were

able to demonstrate that a correlation-based learning approach for the extraction of

disease patterns is indeed capable of identifying meaningful indicators that are closely

related to a particular disease under surveillance. In particular, the learned defini-

tions showed a similar fit to the real distributions as handcrafted expert definitions

(figures 5.3, 5.4, and 5.5). Also, the experiments with synthetic syndrome definitions
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showed a good reconstruction rate, and the discovered real-world syndrome definitions

contained plausible features.

Nevertheless, the frequent inclusion of unrelated indicators revealed some challenges

and limitations of such an approach. Most of them relate to the fact that the train-

ing procedure has only limited access to the target information associated with each

patient. In contrast to fully labeled data, where information about each patient’s

medical conditions are available, the learning method is restricted to broad informa-

tion about a large group of individuals. In addition, the use of temporally aggregated

data, depending on its granularity, introduces ambiguity into the learning process. As

a result of these constraints, several solutions that satisfy the evaluation criterion to

be optimized by the learner exist, even though many of them are undesirable from the

perspective of domain experts. This is evident from the fact that the tested algorithm,

regardless of the disease and the features used for training, was always able to find

strongly correlated patterns, despite the use of unrelated indicators.

As another source of problems, we identified the noise, potential inconsistencies and

missing pieces of information that may be encountered when dealing with unprocessed

and unfiltered real-world data. The consequences become most obvious when taking

a look at the results with respect to Norovirus, where the algorithm failed to detect

meaningful syndrome descriptions due to the overlap to other, more frequent, diseases

with a similar seasonality and more pronounced patterns in the reported numbers.

So far, we were only interested in the identification of patterns that match the target

variables as accurate as possible. However, the goal of machine learning approaches

usually is to obtain predictions for unseen data. To be able to generalize well beyond

the provided training data, this requires models to be resistant against noise and

demands for techniques that effectively prevent overfitting. The incorporation of such

techniques into our learning approach may improve its ability to find useful patterns

despite the noise and ambiguities that are present in the data.

For example, successful rule learning algorithms often come with pruning techniques

that aim at removing problematic clauses from rules after they have been learned.

This requires to split up the training data into multiple partitions in order to be able

to obtain unbiased estimates of a rule’s quality, independent of the data used for

its induction. By splitting up the time series data, the quality of indicators that are

taken into account for the construction of syndromes could more reliably be assessed in

terms of multiple, independent estimates determined on different portions of the data.

Despite such technical solutions, we believe that the active participation of domain

experts is indispensable for the success of machine-guided syndromic surveillance.

An interactive learning approach, where the syndromes that are discovered by an

algorithm are suggested to epidemiologists and feedback is fed back into the system,

may prevent the inclusion of undesired patterns and would most likely help to increase

the acceptance of machine learning methods among healthcare professionals.
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Furthermore, we consider the use of the Pearson’s correlation coefficient as a limitation

of our approach. When modeling the outbreak of a disease, it is especially important to

properly reflect the points in time that correspond to high numbers of infections. Other

correlation measures, like weighted variants of the Pearson’s correlation coefficient,

may provide advantages in this regard. We expect this aspect to be particularly

relevant when modeling rather infrequent diseases with generally low incidences.

Another problem are possible discrepancies between the data obtained from the emer-

gency departments and the data that incorporates information about the number of

infections, e.g., resulting from reporting delays. To circumvent potential issues that

may result from such inconsistencies, approaches that have specifically been designed

for measuring the similarity between temporal sequences, like dynamic time warp-

ing (Keogh and Pazzani, 2001), could be used in the future. They allow for certain

static, and even dynamic, displacements of the sequences to compare.

5.5 Conclusion

In this chapter, we have presented a novel approach for the automatic induction of

syndrome definitions from health-related data sources. As it aims at finding patterns

that correlate with the reported numbers of infections, as provided by publicly avail-

able data sources, there is no need for labeled training data. This reduces the burdens

imposed on domain experts, who otherwise must manually create labeled data in a

laborious and time consuming process. Although the proposed algorithm is able to

identify meaningful indicators, due to artifacts in the data and technical limitations,

we have found that autonomously created syndromes are likely to include indicators

that are unrelated to the disease under surveillance. As a result, the knowledge of

experts is still indispensable for the evaluation and supervision of such a machine

learning method. Nevertheless, our investigation shows the potential of data-driven

approaches to syndromic surveillance, due to their ability to process large amounts of

data that cannot fully be understood and analyzed by humans.

In the future, we plan to investigate technical improvements to our algorithm that

may help to prevent overfitting and allow for a more extensive, yet computationally

efficient, exploration of promising combinations of indicators. In addition, valuable

insights can possibly be obtained by applying our approach to different types of health-

related data sources, as well as by the investigation of different correlation measures

that can potentially be used to guide the search for meaningful syndromes.



6
Stacking of Statistical

Surveillance Methods

In the previous chapter, we focused on the definition of syndromes to track the num-

ber of infections for a particular disease. In order to detect an outbreak in such a

time series, the number of infections are usually monitored with statistical surveil-

lance methods. As outlined in Chapter 4, the practical usefulness of these methods

highly depends on the reliability of their output. As our first step towards improv-

ing the detection of outbreaks, we propose an approach to combine the output of

multiple statistical surveillance methods using a machine learning technique named

stacking (Wolpert, 1992). Therefore, we set our focus on traditional surveillance (cf.

Section 4.1) and use the univariate time series of infection counts as the only source

of information.

Prior work on improving disease surveillance mainly focuses on forecasting the number

of infections for a disease (e.g., Chakraborty et al. (2014); Farrow et al. (2017)). A

comparably lower amount of research has been devoted to improving statistical algo-

rithms to raise alarms. Jafarpour et al. (2015) used Baysian networks to identify the

determinants for detection performance to find appropriate algorithm configurations

for outbreak detection methods. In particular, classification algorithms and voting

schemes have been used for the fusion of outbreak detection methods on univariate

time series (Jafarpour et al., 2013; Texier et al., 2019) as well as on multi-stream time

series (Burkom et al., 2011; Lau et al., 2008; Mnatsakanyan et al., 2009). However,

the examined approaches only rely on the binary output (alarm or no alarm) of the

underlying statistical methods for the fusion which limits the information about a

particular observation. Prior research in the area of machine learning has shown that

more precise information of the underlying models improves the overall performance

of the fusion (Ting and Witten, 1999).

In this chapter, we propose an approach for the fusion of outbreak detection methods

which uses the p-values of the underlying statistical methods. Moreover, one can also

incorporate different information for the outbreak detection (e.g., weather data, holi-

days, or statistics about the data) by augmenting the data with additional attributes.

In addition, the way outbreaks are labeled in the data also has a major influence on
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the learnability of outbreak detectors. Thus, we propose adaptions for the labeling of

outbreaks in order to maximize the detection rate of machine learning algorithms.

Furthermore, in line with Kleinman and Abrams (2006), we propose a method which

uses the p-values of the statistical methods in order to evaluate their performance. In

particular, we propose a variant of Receiver Operating Characteristic (ROC) curves,

which shows the false alarm rate on the x-axis and the detection rate—in contrast

to the true positive rate—on the y-axis. By using the area under a partial ROC

curve (Ma et al., 2013), we obtain a measure for the performance of an algorithm that

satisfies a given constraint on the false alarm rate (e.g., less than 1% false alarms).

This criterion serves as the main measure for our evaluations and enables us to analyze

the trade-off between the false alarm rate and the detection rate of outbreak detection

methods precisely.

6.1 Statistical Algorithms for Disease Surveillance

The key idea of our approach is to learn to combine predictions of commonly used

statistical outbreak detection methods with a trainable machine learning algorithm.

Thus, we first need to generate a series of aligned prediction vectors, each consisting of

one entry for each method. This sequence can then be used for training the machine

learning model.

We have chosen the EARS methods, the Bayes method and the RKI method. For

detailed description of these methods, we refer to Section 4.4. They all have in common

that they require comparably little historic data on their own, which allows us to

train the machine learning method on longer sequences. Moreover, such methods are

universally applicable and serve as drop-in approaches for surveillance systems since

they only rely on the detection of a local increase in incidents without the need to

capture effects like seasonality and trend.

6.2 Fusion Methods

The combination of information from several sources in order to obtain a unified

picture is known as fusion (Khaleghi et al., 2013). Classifier fusion is a special case

which combines the outputs of multiple classifiers in order to improve classification

performance. In our context, the statistical algorithms for disease surveillance can be

seen as classifiers, each classifying the current observation into the classes alarm or no

alarm.
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A straightforward way for combining the predictions of multiple outbreak detection

methods is to simply vote and follow the majority prediction. A more sophisticated

approach consists of training a classifier that uses the predictions of the detection

methods as input, and is trained on the desired output, a technique that is known in

machine learning as stacking (Wolpert, 1992).

Recent work in the area of outbreak detection and fusion has focused on fusing the in-

formation obtained by simultaneously monitoring multiple time series for a particular

disease. Lau et al. (2008) have shown that the performance of statistical algorithms can

already be improved by combining them with simple voting schemes. Mnatsakanyan

et al. (2009) could further improve the performance using Bayesian networks and

including further information about the patients (e.g., age) as additional attributes.

Moreover, Burkom et al. (2011) have used a hierarchy of Bayesian networks in order to

incorporate additional information about health surveillance data and environmental

sensors.

Only little research has been devoted to improving the performance of statistical al-

gorithms on univariate time series. In particular, Texier et al. (2019) have used the

machine learning technique hierarchical mixture of experts (Jordan and Jacobs, 1994)

to combine the output of the methods from EARS. However, the authors note that all

algorithms rely on the assumption of a Gaussian distribution, which limits their diver-

sity. In contrast, Jafarpour et al. (2013) have used a variety of classification algorithms

(logistic regression, CART and Baysian Networks) for the fusion of outbreak detec-

tion methods. As underlying statistical algorithms they have used the Cumulative

Sum (CUSUM), two Exponential Weighted Moving Average algorithms, the EARS

methods (C1,C2,C3) and the Farrington algorithm (Noufaily et al., 2013). In general,

the results of Texier et al. (2019) and Jafarpour et al. (2013) indicate that machine

learning improves the ability to detect outbreaks while simple voting schemes (e.g.,

weighted voting and majority vote) did not perform well. Moreover, the algorithms

have not been evaluated with respect to data which include seasonality and trend.

6.3 Fusion with Augmented Stacking

Prior work only focused on the fusion of the binary outputs (alarm or no alarm)

of the underlying statistical methods, which limits the available information about a

particular observation. In this chapter, we show that the availability of additional

information can further improve the performance of the fusion classifier. Therefore,

we first propose to use p-values of the statistical methods for the fusion in order to

include information about the certainty of an alarm, and then show how to add addi-

tional external information to the learning process of the machine learning algorithm.

Finally, we investigate different variants for labeling outbreaks.
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6.3.1 Fusion with p-values

Given base estimators g1(x), . . . , gK(x), a fusion combiner h(g1(x), . . . , gK(x)) is a

function that combines the predictions of the base functions. In the simple case of

binary voting, i.e., gi(x) ∈ {0, 1}, the combiner h(x) = 1
K

∑
i gi(x) with a threshold

of 0.5 would model the majority rule. In stacking the function h : XK −→ Y is

learned by training a machine learning classifier on a set of previous observations

(g1(x1), . . . , gK(x1)), . . . , (g1(xn), . . . , gK(xn)) –derived from applying gi on xt– with

associated targets y1, . . . , yn ∈ Y . We refer to this as the training set in contrast to

the evaluation set, which contains new, unseen observations. In outbreak detection,

the instances xt correspond to the points in the time series C = (c0, c1, . . . , cn) ∈ Nn

of infection counts ct and yt ∈ {0, 1} denotes the labeling of a time point as belonging

to an outbreak (1) or not (0).

Previous approaches (Jafarpour et al., 2013; Texier et al., 2019) used the binary alarms

({0,1}) of base outbreak detectors. In this chapter instead, we propose to base our

stacking model on the p-values, i.e., gi(x) ∈ [0, 1], provided by the underlying sta-

tistical approaches (cf. Section 6.1). In fact, the p-values can directly be seen as the

certainty of currently observing an outbreak, enabling the learning algorithm to make

use of the base estimations in a much more fine grained way. This information is

otherwise lost when using binary alarms, which are indeed obtained by just applying

a fixed threshold on the computed p-values. In addition to the circumvented difficulty

of tuning such threshold, previous studies on stacking have shown empirically that

using the raw predictions can improve over the discretized option (Ting and Witten,

1999).

Figure 6.1 visualizes an example on how the data for the learning algorithm is created

by using the p-values of the statistical algorithms Bayes and RKI. The columns RKIt
and Bayest represent the computed p-values for the current observation while the other

columns (meant, RKIt−1 and Bayest−1) represent additional information explained in

the following section.

6.3.2 Additional Features

The use of a trainable fusion method allows us to include additional information

which can help to decide whether a given alarm should be raised or not. As additional

features, we propose to include the mean of the counts over the last m time points

(the same number of time points as used by the statistical methods), which can give us

evidence about the reliability of a particular outcome. For example, the assumption of

a Gaussian distribution for a low mean of count data (≤ 20) is known to be imprecise.

Therefore, a learning algorithm might induce in this scenario that the p-values of
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34 1.00 0.59 0.63 0.86 0.63 no
35 0.50 0.86 0.63 0.26 0.14 no
36 0.50 0.26 0.14 0.63 0.43 no
37 0.50 0.63 0.43 0.00 0.00 yes

38 1.50 0.00 0.00 0.14 0.10 yes

39 2.25 0.14 0.10 0.00 0.00 yes

40 4.50 0.00 0.00 0.13 0.12 yes

41 6.25 0.13 0.12 0.83 0.73 yes

42 6.00 0.83 0.73 0.99 0.98 yes

43 5.50 0.99 0.98 1.00 0.99 no
. . . . . . . . . . . . . . . . . . . . .

Figure 6.1: Example for the creation of training data for the learning algorithm including
the statistical algorithms Bayes and RKI with a window size of one (w = 1) and the mean
over the previous four counts (m = 4) as features. On the top, the time series for a particular
disease is visualized representing the number of cases of infections over time. The computed
p-values of the statistical algorithms (underneath) and the label indicating an outbreak for
each observation (above) are placed at the respective time index t. Using this information the
data instances can be created as shown on the bottom table: Each particular time point is
represented by one training instance, labeled according to the original targets O0.
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the EARS methods C1, C2 and C3 may not be trustworthy. Moreover, under the

assumption that a time series is stationary an unusual high mean can also be a good

indicator to detect an outbreak, especially in the case that an outbreak arises slowly

over time. The column meant in Figure 6.1 illustrates how the mean over the last four

observed counts (m = 4) is added as an additional feature.

Finally, we also include the output of the statistical methods for previous time points

in a window of a user-defined size w as additional features. For the example in

Figure 6.1, we have used a window size of one (w = 1) which includes the previous

output of both statistical algorithms.

6.3.3 Modelling the Output Labels for Learning

A major challenge for machine learning algorithms is that the duration of an outbreak

period is not clearly defined (Shmueli and Burkom, 2010). A simple strategy—which

we refer to as O0—is to label all time points positive as long as cases for the particular

epidemic are reported (e.g., time points prior to the peak of an outbreak and a few

time points after the peak). In this case, the goal of the learning algorithm is to

predict most time points in an ongoing epidemic as positive, regardless of their time

stamp. Indeed, our early results indicate that the predictor learns to recognize the

fading-out of an outbreak (e.g., weeks 40 to 42 in Figure 6.1). This is due to the fact

that the peak of the outbreak is included in the reference values which results in a

considerably high mean µ(t) for the significance test. Because of this, unusually high

p-values are generated for the counts after the peak, which provide sufficient evidence

for the stacking algorithm to raise an alarm. However, this also increases the number

of false alarms as the machine learning approach learns to raise alarms when the count

is decreasing outside an epidemic period.

To avoid this, we propose three adaptations of O0: O1 labels all time points until the

peak (the point with maximum number of counts during the period) as positive. O2

instead skips the time points whose count is decreasing compared to the immediate

previous count (i.e., it labels all increasing counts until reaching the peak). Finally,

O3 labels only the peak of the outbreak as positive. Figure 6.1 visualizes an example

outbreak with the corresponding options to label the epidemic period on the top.

6.4 Evaluation Measures

Instead of manually adjusting the α parameter of the statistical methods and exam-

ining the results individually, which is mostly done in previous works, we propose to

evaluate the p-value as it is done by Kleinman and Abrams (2006).
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In particular, the p-value can be interpreted as a score, which sorts examples according

to their degree to which they indicate an alarm. This allows us to analyze an algorithm

with ROC curves (Fawcett, 2006). A ROC curve can be used to examine the trade-off

between the true positive rate (i.e., the probability of raising an alarm in case of an

actual outbreak) and the false alarm rate (i.e., the probability of falsely raising an

alarm when no outbreak is ongoing). In order to only focus on high specificity results

(e.g., with a false alarm rate below 1%), which is of major importance for many

medical applications, we only consider partial ROC curves. By using the partial area

under the ROC curve as proposed in Ma et al. (2013), we obtain a simple measure

to evaluate the performance of an algorithm, satisfying particular constraint on the

false alarm rate. We refer to this measure as AUCτ where the parameter τ defines

the maximum allowed false alarm rate to be considered. It is computed as

AUC τ =

∫ τ
0 ROC(f) df

τ

where ROC(f) denotes the true positive rate given a false alarm rate of f .

However, alarms raised in cases when the epidemic has already been detected are

typically not very decisive and informative anymore. To incorporate this, we consider

the detection rate, which represents the proportion of recognized outbreaks (i.e., the

outbreaks in which at least one alarm is raised during their activity). Following

Kleinman and Abrams (2006) and Jafarpour et al. (2013), we therefore use a ROC

curve-like representation with the detection rate on the y-axis instead of the true

positive rate, and use dAUCτ to refer to the partial area under this curve. Figure 6.2

shows an example of the ROC-curve like representation and visualizes the area of
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Figure 6.2: ROC curve using the detection rate on the y-axis. The better-than-chance
performance is lifted above the diagonal since the detection rate is an interval-based metric.
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dAUC1%. Kleinman and Abrams (2006) proposed to use weighted ROC curves to

also incorporate the influence of the measure timeliness (mean time to detect an

outbreak). However, we argue that the weighing with the timeliness introduces a

trade-off (importance of timeliness over detection rate) and a loss in interpretability

of the absolute numbers. If timeliness is of interest, we suggest to use AMOC curves

(cf. Section 4.5) which use the timeliness on the y-axis instead of the true positive

rate or the detection rate.

6.5 Evaluation

The key aspect of our experimental evaluation is to demonstrate that the fusion of

p-values leads to a further improvement in performance compared to only using the

binary output of the statistical algorithms. For a deeper understanding of our pro-

posed approaches, we first performed experiments on synthetic data to evaluate the

influence of our adaptions on stacking and to compare it with the underlying statisti-

cal algorithms in a controlled environment. Afterwards, we test stacking on real data

in order to underline its practical utility.

6.5.1 Experimental Setup

Baselines. As an implementation baseline for the statistical methods, we have used

the R package surveillance (Salmon et al., 2016) and adapted the implementation

of the methods EARS (C1, C2, and C3), Bayes, and RKI so that they also return

p-values. All methods use the previous seven time points as reference values, which

is the standard configuration. We have evaluated the underlying statistical methods

itself which serve as a baseline to which the stacking approaches are compared. In

addition, we also evaluated the fusion method which only combines the binary outputs

of the statistical methods as proposed in Jafarpour et al. (2013); Texier et al. (2019)

and to which we refer to as standard fusion.

Measures. For all evaluations, we focus on the evaluation measure dAUC1% pro-

posed in Section 6.4. In addition, we evaluate the conventional area under partial

ROC-curve AUC1% to further investigate the effect of the labeling on the true posi-

tive rate.

Parameter optimization. We have evaluated three machine learning algorithms:

(1) Random Forest (cf. Section 3.4.3) with the different values for the minimum

number of samples per leaf {5, 10, 20, 30}, (2) Logistic Regression (cf. Section 3.4.1)
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with different values for the regularization parameter {2−3, 2−2, 2−1, 1, 21, 22, 23}, and

(3) K-Nearest-Neighbours (cf. Section 3.4.2) with different values for the number

of considered neighbours {1, 3, 5, 7, 9}. For the labeling, we have the parameters

{O0, O1, O2, O3}, {False, True} for the use of mean, and {0, 1, 2, 3, 4, 6, 9} for the

windowing where 0 represents no windowing. For each algorithm we performed a grid

search in which we evaluate all possible parameter combinations. For the standard fu-

sion approach, we have set the threshold of each single statistical method beforehand

on the validation data so that it has a false alarm rate of 1% and then performed the

parameter optimization. The reported results can always be attributed to one of the

random forest configurations since this approach always achieved the best results in

the parameter optimization, on the synthetic as well as on the real data.

Synthetic data. For the generation of synthetic data, we use the data generator

proposed in Noufaily et al. (2013). In total, 42 different settings to generate time

series (test cases) are proposed which reflect a wide range of application scenarios

allowing to explicitly analyze the effects of trend (T), seasonality (S1) and biannual

seasonality (S2). For each test cases, 100 time series are created, using the first 575

weeks of all 100 time series to train an machine learning model and evaluated the

created model on the last 49 weeks of the time series. The parameter k of the data

generator, used to estimate the number of cases per outbreak, is randomly drawn from

the range 1 . . . 10 for each outbreak. Instead of reporting averaged dAUC1% scores,

which could have different scales for different test cases, we determined a ranking over

the methods for each considered test case. Afterwards we computed each method’s

average ranking, 1 being the best rank.

For the parameter optimization on synthetic data, we created new time series for each

test case by using a different random seed and used these to evaluate all parameter

combinations. We wanted to optimize the performance across all test cases and,

therefore, picked the parameter combination with the best average rank.

Real data. For the evaluation on real data, we rely on the reported cases for the

diseases Salmonella (SAL) and Campylobacter (CAM) in Germany, which are cap-

tured by the Robert Koch-Institut. The reported cases are aggregated by the public

health offices with respect to the 401 districts (Landkreise and Stadtkreise) in Ger-

many and range from 2001 to 2018. Only for Berlin we obtain a finer granularity (12

sub-districts), resulting in a total of 412 time series for each disease. In addition, each

reported case can be associated with a specific outbreak. The outbreaks were labeled

in a retrospective manner by grouping all cases which can be assigned to a specific

outbreak reason. However, not always all cases relating to a specific outbreak are

reported since not all people visit the doctor nor is it possible to identify the source

for catching the disease (cf. Section 4.3). Due to this, a lot of outbreaks only contain

a few cases which are hard to detect. Therefore, we have generated three application
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Figure 6.3: Number of outbreaks for each application scenario and each district (ordered
according to number of outbreaks) in Germany from 2001 until 2018.

scenarios: (1) Use all outbreaks (all), (2) use the outbreaks consisting of at least two

cases (min=2 ) and (3) use the outbreaks which contain at least three cases (min=3 ).

We obtain the outbreak labeling by labeling all weeks positive as long as cases are

reported for a particular outbreak. In Figure 6.3 the number of outbreaks for the six

data configurations over all 18 years for each district is visualized.

We use the first 884 weeks (17 years) of all districts to train the machine learning model

and evaluate on the last 52 weeks of all districts with the trained model. For parameter

optimization, we split each time series into 18 folds {f1, . . . , f18} and performed for

each parameter combination five evaluations i ∈ {1, . . . , 5}, using the weeks of the

folds f1 to f11+i of all districts as training data and evaluated on the weeks of fold

f12+i of all districts. Afterwards, we average the result for the measure dAUC1%

across the five evaluations and then choose the parameter configuration maximizing

this score.

6.5.2 Results on Synthetic Data

Based on the controlled environment of the synthetic data, we first analyze the effect

of the additional information and the labeling. For these experiments, we chose to

evaluate random forest as the fusion classifier, which has proven to be robust in per-

formance theoretically and practically (Fernández-Delgado et al., 2014; Wyner et al.,

2017). Each model is, therefore, composed of 100 decision trees with a minimum

number of 5 instances per leaf and default settings otherwise. In addition, we have

used α = 0.5% for the underlying statistical methods of the standard fusion method

which performed best in our preliminary experiments. In the last experiment of this

section, the fusion approaches are compared to the underlying statistical approaches

using optimized parameter configurations.
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Table 6.1: Comparison of including or not including the mean in the data for machine learning algorithms. Each column shows the average
ranks considering different test case combinations: overall denotes all 42 test cases, the other columns cases (not) containing trend ([¬]T ), annual
([¬]S1) or biannual ([¬]S2) seasonality.

approach overall {¬T,¬S1,¬S2} {¬T, S1,¬S2} {¬T, S1, S2} {T,¬S1,¬S2} {T, S1,¬S2} {T, S1, S2}
standard fusion(no mean) 3.429 3.714 3.571 3.000 3.429 3.286 3.571
standard fusion(mean) 3.357 2.571 3.286 3.571 3.571 3.714 3.429
p-value fusion(no mean) 1.905 2.571 1.857 2.000 1.714 1.714 1.571
p-value fusion(mean) 1.310 1.143 1.286 1.429 1.286 1.286 1.429

Table 6.2: Comparison of different window sizes for the data (including the mean and using the labeling O0). Each column shows the average
ranks considering different test case combinations: overall denotes all 42 test cases, the other columns cases (not) containing trend ([¬]T ), annual
([¬]S1) or biannual ([¬]S2) seasonality.

approach overall {¬T,¬S1,¬S2} {¬T, S1,¬S2} {¬T, S1, S2} {T,¬S1,¬S2} {T, S1,¬S2} {T, S1, S2}
standard fusion(w = 0) 9.738 9.000 9.571 8.286 11.143 10.571 9.857
standard fusion(w = 1) 8.738 8.857 7.000 9.000 7.571 8.857 11.143
standard fusion(w = 2) 10.762 10.571 10.857 10.714 10.571 10.143 11.714
standard fusion(w = 4) 11.310 11.429 11.714 11.714 10.857 12.000 10.143
standard fusion(w = 6) 11.619 12.714 12.286 10.286 11.571 11.857 11.000
standard fusion(w = 8) 11.548 11.143 11.571 12.000 10.857 12.000 11.714
standard fusion(w = 12) 11.929 12.143 12.143 13.000 11.714 11.571 11.000
p-value fusion(w = 0) 5.000 5.714 5.000 5.714 4.429 3.714 5.429
p-value fusion(w = 1) 3.405 3.143 2.571 4.571 3.286 4.286 2.571
p-value fusion(w = 2) 4.381 5.000 4.714 4.000 4.571 4.571 3.429
p-value fusion(w = 4) 4.667 4.143 5.000 4.000 5.143 5.286 4.429
p-value fusion(w = 6) 4.310 5.000 4.429 3.857 3.857 3.857 4.857
p-value fusion(w = 8) 4.000 3.000 4.000 4.714 5.000 3.857 3.429
p-value fusion(w = 12) 3.595 3.143 4.143 3.143 4.429 2.429 4.286
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Evaluation of additional features. The first aspect to review concerns the inclu-

sion of the mean count over the last seven time points. Therefore, we have analyzed

the effect of this feature independent of the other parameters using O0 for the label-

ing of the outbreak and window size w = 0. The results for the average rank are

displayed in Table 6.1. Comparing the standard to the p-value fusion method reveals

a beneficial effect especially for the p-value approach, for which the variant including

the mean achieves an average rank of 1.31 over 1.91. In contrast, the average ranks

of 3.36 over 3.43 for the standard method not only shows that there are issues re-

garding the usage of the mean for some of the test case configurations, but also the

substantial gap between using the binary outputs and the more fine-grained p-values.

A closer examination reveals that the best improvement for both fusion methods can

be achieved on time series without trend and seasonality. By adding effects like trend

and seasonality, the mean changes over time, making it difficult for the learning algo-

rithm to use this information. In contrast to the standard fusion, the p-value fusion

method still enhances by including the mean over the previous time points.

The observation that the p-value fusion method is superior to the standard fusion can

also be seen when comparing different window sizes. The results of this experiment,

using O0 for the labeling of the outbreak and not including the mean, are displayed

in Table 6.2. In particular, no window configuration of the standard fusion method

can outperform any of the p-value configurations with respect to the average rank.

Overall, a window size of 1 performed best for both fusion approaches. Being able

to compare to the most immediate previous output of the underlying statistical algo-

rithms seems to make it easier to detect anomalies. In contrast, larger window sizes

harm the overall performance, which suggests that the additional information is not

relevant for detecting sudden changes and rather confuses the learner. Interestingly,

on certain combinations of trend and seasonality a larger window size for the p-value

fusion method seems to be beneficial. Actually, the increase of the window size also

results in taking a further look back in the past allowing to detect effects like trend

and seasonality achieving good results on the test cases which only contain biannual

seasonality. However, the observed results for larger window sizes are inconsistent

across the different test cases, making it difficult to draw valid conclusions.

Evaluation of the labeling adaptions. In addition to augmenting the input data,

we have evaluated the effect of adapting the labeling of the epidemic period for the

training of the stacking algorithm. The comparison shown in Table 6.3 was performed

without the augmentation.

In general, we can observe that by narrowing the labeling of the outbreak on particular

events (i.e., O1, O2 or O3) a better performance can be achieved. This effect is clearly

visible for the p-value fusion method and less obvious for the standard fusion method,

for which the adaption O1 seems to be an exception. In particular, learning only

the peaks (O3) achieved the best results for both fusion approaches. The benefit of
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Table 6.3: Comparison of the different labeling strategies for the epidemics (not using the average and w = 0). Each column shows the average
ranks considering different test case combinations: overall denotes all 42 test cases, the other columns cases (not) containing trend ([¬]T ), annual
([¬]S1) or biannual ([¬]S2) seasonality.

approach overall {¬T,¬S1,¬S2} {¬T, S1,¬S2} {¬T, S1, S2} {T,¬S1,¬S2} {T, S1,¬S2} {T, S1, S2}
standard fusion (O0) 6.476 6.286 5.571 4.857 7.143 7.571 7.429
standard fusion (O1) 6.738 7.286 6.714 6.286 6.429 7.000 6.714
standard fusion (O2) 5.738 6.286 5.714 5.286 5.429 6.000 5.714
standard fusion (O3) 5.524 5.286 5.143 5.429 6.000 5.429 5.857
p-value fusion (O0) 3.762 3.857 3.857 2.714 4.857 4.000 3.286
p-value fusion (O1) 3.262 2.857 4.143 4.857 2.429 2.429 2.857
p-value fusion (O2) 2.690 3.143 3.000 3.286 2.714 2.143 1.857
p-value fusion (O3) 1.810 1.000 1.857 3.286 1.000 1.429 2.286

Table 6.4: Results evaluated on synthetic data using optimized parameter configurations. Each column shows the average ranks considering
different test case combinations: overall denotes all 42 test cases, the other columns cases (not) containing trend ([¬]T ), annual ([¬]S1) or biannual
([¬]S2) seasonality.

approach overall {¬T,¬S1,¬S2} {¬T, S1,¬S2} {¬T, S1, S2} {T,¬S1,¬S2} {T, S1,¬S2} {T, S1, S2}
C1 5.738 6.571 6.000 4.571 6.857 5.428 5.000
C2 4.905 4.000 4.429 5.143 4.714 5.429 5.714
C3 4.857 5.143 5.143 4.143 5.571 5.000 4.143
Bayes 2.881 4.143 3.143 3.429 2.000 2.000 2.571
RKI 4.024 4.142 3.571 3.857 4.714 3.571 4.286
standard fusion 4.500 3.143 4.857 5.286 3.143 5.429 5.143
p-value fusion 1.381 1.143 1.143 1.857 1.286 1.429 1.429
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Figure 6.4: Results for the measures dAUC1% and AUC1%. Each box plot represents the distribution of measure values for a particular method
computed over all 42 test cases for a fixed outbreak size defined by the parameter k (a bigger value for k indicate more cases per outbreak).
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this variant is that the learner can actually focus on the identification of strong and

sudden peaks which is indeed the main goal of outbreak detection. However, in case

of biannual seasonality the frequent change of the counts over the season results in

many random peaks which apparently makes it difficult for the stacking approach

to distinguish between an epidemic peak and a peak caused by random effects. On

the test cases without trend ({¬T, S1, S2}) outbreaks are better identifiable by also

including the fading of the outbreak (O0), whereas on the test cases which contain

trend ({T, S1, S2}) the best option seems to be O2, which includes only the increasing

counts until the peak of the outbreak is reached (O2).

Evaluation with respect to the outbreak size. Furthermore, we have evaluated

the approaches with respect to the number of cases per outbreak. In contrast to the

previous experiments, where the value for the parameter k (used to define the number

of cases per outbreak) was randomly drawn between 1 and 10, we have fixed this

parameter to a particular value for all time series of the 42 test cases. The results for

the measure dAUC1% across the 42 test cases with a fixed value for the parameter k

is visualized as box plots, representing minimum, first quantile, mean, third quantile

and maximum, in Figure 6.4. In addition to dAUC1%, we include the analysis of the

AUC1% measure and compare to the original labeling O0 in order to further investigate

the effect of the labeling on detection rate and true positive rate.

As the cases per outbreak increases all methods are more likely to obtain a better

performance. While the C1, C2, C3 and RKI method achieve comparable results

across all outbreak sizes, we are surprised to observe that the Bayes method has

a better performance in case of larger outbreaks. This contradicts our expectation

that the RKI method should obtain the best results across these methods since the

Poisson assumption was specifically used to generate the synthetic data. Regarding

the p-value fusion approaches, the results confirm the better overall performance across

all outbreak sizes while the performance of the standard fusion approach gets worse

compared to the other methods with an increasing number of cases per outbreak. This

gives further evidence that the standard fusion is not ideal. A closer examination

of the graphs for the measures dAUC1% and AUC1% reveals the difference between

the adaption of the labeling for the learning. In particular, without adaption the

machine learning algorithm achieves a tremendously better performance for the trade-

off between the true positive rate and the false alarm rate. However, this also has an

effect on the ability to detect outbreaks as discussed in Section 6.3.3, yielding a slightly

worse result for the measure dAUC1% than with adapting the labeling.

Comparison to the statistical surveillance baselines. Considering the results

of the parameter optimization, we evaluated both fusion approaches with the adaption

of the labeling O3 and including the mean. For the p-value fusion a window size of

two and for the standard fusion a window size of four is used. The results in Table 6.4
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clearly show that p-value fusion performs best across all test cases, with average ranks

close to 1. In line with Texier et al. (2019) and Jafarpour et al. (2013), the results

show an improvement of the standard fusion approach on the time series without trend

and seasonality. However, this improvement is not consistent for all compared test

cases, resulting only in an average rank of 3.143. On the other test cases, the fusion

of binary outputs obtains often a low rank, making it often worse than the underlying

statistical algorithms. Indeed, the ability to detect outbreaks with the standard fusion

approach is reduced since it is based on the output of the statistical algorithms given a

particular pre-defined significance level α for them. This limits the information about

sudden changes encapsulated in the training data which makes it pretty difficult for

the machine learning algorithm to identify valuable patterns.

6.5.3 Results on Real Data

Comparison to the statistical surveillance baselines. Using the optimal pa-

rameters found by the parameter optimization, we obtain the results which are shown

in Table 6.5. Only considering the results of the statistical methods, we can observe

that the C2 method achieves the best results for SAL and the worst results for CAM.

This shows the diversity of the data but also highlights the difficulty in choosing a suit-

able statistical algorithm for a particular disease. Regarding our fusion approaches, we

are able to achieve better results compared to the underlying statistical algorithms for

the configurations all and min=2. However, the results for the configuration min=3

are indicating a somehow unexpected behavior: While the statistical methods can

double the dAUC1% score compared to configuration min=2, the stacking approaches

are unable to achieve such an improvement. Therefore, we further investigated the

results to understand these effects.

Table 6.5: Results for the measure dAUC1% evaluated on real data using optimized parameter
configurations.

approach SALall SALmin=2 SALmin=3 CAMall CAMmin=2 CAMmin=3

C1 0.1545 0.1763 0.3392 0.0473 0.0478 0.0799
C2 0.1599 0.1867 0.3692 0.0389 0.0383 0.0780
C3 0.1444 0.1668 0.3294 0.0442 0.0441 0.0894
Bayes 0.1212 0.1314 0.2811 0.0398 0.0428 0.0921
RKI 0.1495 0.1730 0.3303 0.0506 0.0526 0.1159

standard fusion 0.1591 0.1869 0.3300 0.1459 0.1457 0.0892
p-value fusion 0.1732 0.1901 0.3341 0.1589 0.1516 0.1300

Inconsistencies. From a machine learning point of view, an important reason for

low performance of learning algorithms are inconsistencies in the data. Roughly speak-

ing, inconsistent data points can not or only hardly be discriminated by the learning



6
.5

.
E

v
a
lu

a
tio

n
8
1

Table 6.6: Results for the measure dAUC1% evaluated on the training data.

approach SALall SALmin=2 SALmin=3 CAMall CAMmin=2 CAMmin=3

standard fusion 0.1982 0.2013 0.2693 0.1369 0.1404 0.1808
p-value fusion 0.2745 0.3006 0.5668 0.7208 0.7359 0.7548

Table 6.7: Results of the p-value fusion approach for the measure dAUC1% evaluated on the test data by including or excluding the location.

approach location SALall SALmin=2 SALmin=3 CAMall CAMmin=2 CAMmin=3

p-value fusion no 0.1732 0.1901 0.3341 0.1589 0.1516 0.1300
p-value fusion yes 0.1867 0.1968 0.3369 0.1689 0.1694 0.1501
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Figure 6.5: Exemplary results for two districts associated to two major cities for CAMall. The red lines above the plot indicate ongoing outbreaks
at the respective time steps.
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algorithm, but are associated with different outcomes (e.g., outbreak yes/no). Our hy-

pothesis is that such inconsistencies are the main cause for the observed results. They

can be identified by analyzing how well the model can adapt to the observed data.

Table 6.6 shows the training set performance of the random forest algorithm, which

is generally capable of memorizing observed data well Wyner et al. (2017). The low

values for SAL indicate that the dataset contains a high ratio of inconsistencies from

the perspective of the learner. Especially small outbreaks are difficult to differentiate

from ordinary cases.

Heterogeneous data sources. As already mentioned, in addition to undiagnosed

patients, our dataset may contain cases which were erroneously not attributed to an

epidemic outbreak, or even undetected outbreaks. Furthermore, the unequal distribu-

tion of outbreaks (cf. Figure 6.3) indicates that there may be some heterogeneity in the

district’s policies for reporting of cases and labeling of outbreaks. To support this as-

sumption, Figure 6.5 shows the results for CAMall for two districts. The alarms which

would have been triggered if the false alarm rate on all evaluated districts was set

to 1%, respectively for each approach separately, are visualized on top of the graphs.

Furthermore, the red lines indicate the outbreaks, which are as we see sometimes

overlapping. The stacking approaches achieve excellent results for district A while for

district B the predictions do not fit at all. Since a global model is learned, the ma-

chine learning algorithm is not able to differentiate between the districts. Therefore,

patterns are learned which work best across all districts, even though the predictions

for particular districts are incorrect. This assumption is somehow confirmed by our

experiments which include features which allow to differentiate between locations.

As it can be seen from Table 6.7, the detection quality benefits from including this

additional information.

Coarse grained observations. Apart from heterogeneous data, we also face prob-

lems due to the aggregation level of the data. In particular for the high populated

districts, the reports of multiple different health offices are merged together which

makes the identification of small local outbreaks difficult due to the high endemic

load. Furthermore, the aggregation over a high population also raises the probability

of having many small outbreaks which causes to be in an outbreak for almost all time

steps as it can be seen for district A in Figure 6.5a. Especially during the learning

process, the constant labeling makes it difficult for the machine learning approaches

to identify consistent patterns for outbreaks, since arbitrary increases, as well as de-

creases of the number infections, are labeled as positive. Our analysis reveals that

the p-value approach learns the pattern that there is a high probability of being in an

outbreak if the number of total cases is high, which is typically the case for the data

of district A, but not for district B.
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6.6 Conclusions

In this chapter, we introduced an approach for the fusion of outbreak detection meth-

ods using machine learning, more specifically stacking. The original idea is to use the

alarm or no alarm prediction of the underlying statistical algorithms as inputs to the

learner. We improved that setup by incorporating the p-values instead, which contain

more information about the certainty of an event than the simple binary outputs.

In addition, we proposed to incorporate additional information in the learning data

and to adapt the labeling of an outbreak in order to improve the ability to detect

outbreaks. For evaluation, we proposed a measure based on ROC curves which bet-

ter adapts to the specific need for a very low false alarm rate but still considers the

trade-off with the detection rate.

Our experimental results on synthetic data show that the fusion of p-values improves

the performance compared to the underlying statistical algorithms. Contrary to pre-

vious work, we could also observe that simple fusion of binary outputs using stacking

does not always lead to an improvement. By incorporating additional information to

the learning data, more specifically the mean count of the previous observations and

the previous outputs of the statistical methods, the machine learning algorithm is able

to capture more reliable patterns to detect outbreaks. Furthermore, the labeling of

an outbreak has an influence on the performance for the classification algorithm to

detect outbreaks. By setting the focus on the peak of an outbreak during the learning

process, a better performance to detect sudden changes can be achieved. However,

on real data, we face several issues regarding inconsistencies, heterogeneous labeling

and the aggregation level of the data which all need to be considered when learning a

fusion classifier.

For future work, it remains to analyze more deeply how the treatment of the outbreak

annotations during training can be selected in order to optimize the detection of

outbreaks. Moreover, stacking allows enriching the detection by additional signals

and sources of information in a highly flexible way, such as local weather data or data

from neighbor districts, which can be studied as well.





7
Non-Specific

Syndromic Surveillance
We have seen in Chapter 6 how supervised learning can improve outbreak detection.

However, the results we obtained on the real data are less clear due to inconsistent and

heterogeneous labeling of outbreaks. Especially this can have an impact on the learn-

ability of the model which in turn lead to unexpected results, reducing the acceptance

and trustworthiness in machine learning approaches among epidemiologists.

In addition, particularly for rare infectious diseases insufficient amounts of labeled data

are available to adequately learn a supervised classifier. Based on this knowledge, we

turn our attention towards unsupervised machine learning techniques (cf. Section 3.1

and 3.5) which do not depend on labeled data. In particular for syndromic surveillance

(cf. Section 4.2), these kind of algorithms offer a variety of opportunities to improve

outbreak detection.

Rather than developing highly specialized algorithms which are based on a specific dis-

ease and assume particular characteristics of outbreak shapes (Shmueli and Burkom,

2010), we argue that the task of outbreak detection should be viewed as a general

anomaly detection problem where an outbreak alarm is triggered if the distribution

of the incoming data changes in an unforeseen and unexpected way. Therefore, we

distinguish between specific syndromic surveillance, where factors related to a spe-

cific disease are monitored, and non-specific syndromic surveillance, where general,

universal characteristics of the stream of data are monitored for anomalies.

While specific syndromic surveillance is a well-studied research area, we found that

only little research has been devoted to non-specific syndromic surveillance with only

very few algorithms available. In particular, the close relation to anomaly detection (cf.

Section 3.6) motivated us to investigate the problem of non-specific syndromic surveil-

lance from a machine learning perspective and to make the task more approachable

for the anomaly detection community.

In this chapter, we revisit algorithms for non-specific syndromic surveillance and com-

pare them to a broad range of anomaly detection algorithms. In addition, we propose

a general framework for non-specific syndromic surveillance in which the approaches

can be integrated. Due to little effort on implementing baselines in previous works



86 7. Non-Specific Syndromic Surveillance

Table 7.1: Notation.

Notation Meaning
A = {A1, A2, . . . , Am} response attributes
E = {E1, E2, . . . , Ek} environmental attributes
C ∈ A1 ×A2 × . . .×Am population of instances
c ∈ C a single instance
t index for the time slot
C(t) ⊂ C cases of time slot t
e(t) ∈ E1 × E2 × . . .× Ek environmental setting for time slot t
(C(t), e(t)) information about time slot t
H = ((C(1), e(1)), . . . , (C(t− 1), e(t− 1))) information about previous time slots

G(e(t),H) = Ĉ(t) global model

Ĉ(t) expectation for C(t)
X = {X1, X2, . . . , Xr} set of patterns

X̂ = {X̂1, X̂2, . . . , X̂r} set of expectations for the patterns
L(X ,H) = {LX1

, LX2
, . . . , LXr

} local model creator
LX(e(t)) a local model monitoring pattern X
Sall set of all possible syndromes
s ∈ Sall a particular syndrome
S≤n = {s | s ∈ Sall ∧ |s| ≤ n} set of syndromes with max. n conditions
s(t) count of syndrome s for time slot t
Hs(t) = (s(1), s(2), . . . , s(t− 1)) time series of counts for syndrome s
R ⊂ C reference set of instances

on non-specific syndromic surveillance, we propose a set of baselines relying on sim-

ple statistical assumptions which nonetheless have been widely used before in disease

surveillance.

We experimentally compare the methods on an established synthetic dataset (Fanaee-

T and Gama, 2015; Wong et al., 2005) and real data from a German emergency

department in which we injected synthetic outbreaks. Our results demonstrate that

the simple statistical approaches, which have not been considered in previous works,

are quite effective and often can outperform more elaborate machine learning algo-

rithms.

7.1 Framework for Non-Specific Syndromic Surveillance

In this section, we formulate the problem of non-specific syndromic surveillance from

the perspective of machine learning and propose two modeling strategies which are

presented in an unified framework. The used notation is summarized in Table 7.1.
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7.1.1 Problem Definition

Syndromic data can be seen as a constant stream of instances of a population C.
Each instance c ∈ C is represented by a set of attributes A = {A1, A2, . . . , Am} where

each attribute can be either categorical (e.g., gender), continuous (e.g., age) or text

(e.g., chief complaint). Following the notation of Wong et al. (2005), we refer to these

attributes as response attributes. To be able to detect changes over time, instances

are grouped together according to pre-specified time slots (e.g., all patients arriving

at the emergency department in one day). Hence, the instances for a specific time slot

t are denoted as C(t) ⊆ C.

In addition, each group C(t) is associated with an environmental setting e(t) ∈
E1 × E2 × . . . × Ek where E = {E1, E2, . . . , Ek} is a set of environmental attributes.

Environmental attributes are independent of the response attributes and represent

external factors which might have an influence on the distribution of instances C(t)
(e.g., during the winter flu-like symptoms are more frequent). In particular, a spe-

cific characteristic of syndromic data is seasonality, in machine learning also known

as cyclic drift (Webb et al., 2016). Environmental variables can help the algorithm

to adapt to this kind of concept drift. Thus, the information available for time slot t

can be represented by the tuple (C(t), e(t)) and the information about prior time slots

can be denoted as H(t) = ((C(1), e(1)), . . . , (C(t− 1), e(t− 1))).

The main goal of non-specific syndromic surveillance is to detect anomalies in the

set C(t) of the current time slot t w.r.t. the previous time slots H(t) as potential

indicators of an infectious disease outbreak. Therefore, the history H(t) is used to fit

a model fH(t)(e(t), C(t)) which is able to generate a score for time slot t, representing

the likelihood of being in an outbreak.

Viewed from the perspective of specific syndromic surveillance, the non-specific setting

can be seen as the monitoring of all possible syndromes at the same time. The set of

all possible syndromes can be defined as

Sall =

{∏
i∈I

Ai | Ai ∈ A ∧ I ⊆ {1, 2, . . . ,m} ∧ |I| ≥ 1

}

where
∏
i∈I Ai for |I| = 1 is defined as {{a} | a ∈ A∧A ∈ A}. In addition, we denote

S≤n = {s | s ∈ Sall ∧ |s| ≤ n} as the set of all possible syndromes having a maximum

of n conditions and Hs(t) = (s(1), s(2), . . . , s(t− 1)) as the time series of counts for a

particular syndrome s ∈ Sall.
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7.1.2 Modeling

The general approach to non-specific syndromic surveillance is to model the normal

activity by analyzing H(t) and compare it to the set C(t). A significant difference

between the expectation to the actual observed set C(t) can indicate an outbreak of

an infectious disease. Especially an increase in the number of instances following a

particular syndrome can be a good indicator for an outbreak, while under normal

circumstances the absence is not of interest. The difference between the expectation

and the current observed subset C(t) can be modeled in two ways, namely via global

and local modeling.

While global modeling tries to solve the problem of outbreak detection with a single

universal model, a local modeling approach breaks down the problem into many local

tasks, each representing an expectation for a particular characteristic of C(t). For

example, an expectation could be the count for a specific syndrome which is then

compared to the actual count of the syndrome in C(t). The local tasks are executed

independently and their results need to be aggregated afterwards, in contrast to the

global modeling where the outcome is already a single result.

7.1.2.1 Global Modeling

The basic idea of global modeling is visualized in Figure 7.1. Given the information

of prior time slots H(t), which serve as training data, and the information about the

environmental attributes of the current time slot e(t), the learning objective of the

model is to create an expectation for the distribution of cases G(e(t),H(t)) = Ĉ(t). In

the following step, the distribution Ĉ(t) is compared to the actual observation of cases

C(t). Depending on the used algorithm, the representation of C(t) and Ĉ(t) can have

arbitrary forms. For example, the information about all cases for a particular time

slot can be encapsulated as one vector, as it is done by Fanaee-T and Gama (2015).

Depending on the representation of Ĉ(t), statistical tests such as the normality

(Fanaee-T and Gama, 2015) or the Fisher’s test (Brossette et al., 1998; Wong et al.,

2005) are typically used for assessing the difference between C(t) and Ĉ(t). However,

instead of making a binary final decision, it is much more preferable to directly use

the p-value (Amrhein et al., 2019). The complement of the p-value can be seen as

the likelihood of being in an outbreak and, therefore, contain much more information

about the belief of being in an outbreak than the binary decision. This allows us to

analyze the performance of the model in the evaluation more precisely and, moreover,

we are able to defer the specification of the significance level during the evaluation.

Depending on the results, an appropriate significance level can be selected for applying

the model in practice.
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Figure 7.1: Global modeling.
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Figure 7.2: Local modeling.
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7.1.2.2 Local Modeling

The major drawback of global modeling is that all the information about the cases

C is summarized in one representation. Thus, information about individual cases,

which could be a good indicator for an outbreak, might be lost. This is particularly

important for detecting outbreaks of very rare diseases, for which a relative small

increase of cases can be already alerting. Therefore, local modeling breaks down the

problem of non-specific syndromic surveillance into several local modeling tasks, each

focusing on a different characteristic of the data (cf. Figure 7.2). The general idea of

composing a global model from many local models has previously been proposed by

Knobbe et al. (2008).

Given some information of prior days H(t), local modeling generates a set of local

models L(X ,H) = {LX1 , LX2 , . . . , LXr}, each responsible for monitoring a specific

pattern Xi ∈ X = {X1, X2, . . . , Xr} of the data. As we will discuss in more detail

in Section 7.2, most of the algorithms differ in what patterns they monitor. For

example, one can use high-frequency association rules, as in DMSS (Section 7.2.1),

or all possible patterns up to a certain complexity, as in WSARE (Section 7.2.2). In

dependence of the environmental attributes of the current time slot e(t), each local

model defines an expectation LX(e(t)) = X̂ for their pattern.

A local model can monitor any kind of pattern which might be helpful to detect

an outbreak of an infectious disease. Subsequently, the expectation for the patterns

{X̂1, X̂2, . . . , X̂r} are compared to the actual observations of the patterns X obtained

from the data set C(t). Like for the global modeling, the comparison is usually per-

formed with statistical tests which yield a p-value. As each local model yields a single

p-value, the results of the local models need to be aggregated to a final p-value for the

respective time slot.

Heard and Rubin-Delanchy (2018) review multiple methods for combining p-values,

such as Edgington’s and Fisher’s methods which have already been used for syndromic

surveillance (Vial et al., 2016). More of these combination methods are discussed in

Section 2.3.2. Each of the combination procedures have different statistical properties,

not allowing to generally prefer one particular method. In addition to these methods,

we introduce as a simple baseline the naive approach that reports the smallest p-value,

which basically represents the most significant observation. If a relative assessment of

the findings is sufficient our proposed aggregation of taking the minimum is sufficient.

Nonetheless, more sophisticated approaches, such as the exploitation of correlations,

can likewise be integrated in our proposed framework. We leave the investigation for

future work.
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7.2 Machine Learning Algorithms

In a survey of the relevant literature we have identified only a few algorithms which

relate to non-specific syndromic surveillance, described in sections 7.2.1, 7.2.2, and

7.2.3. In Section 7.2.4 we introduce a way how common anomaly detection algorithms

can be applied in the setting of non-specific syndromic surveillance.

7.2.1 Data Mining Surveillance System (DMSS)

One of the first algorithms able to identify new and interesting patterns in syndromic

data was proposed by Brossette et al. (1998) who adopted the idea of association rule

mining (Zhang and Zhang, 2002) to the field of public health surveillance. The algo-

rithm follows the local modeling approach where each local model LX is represented

by an association rule X. In order to detect an outbreak for time slot t, an association

rule mining algorithm needs to be run on C(t) to obtain a set of association rules X .

Moreover, a reference set of patients R ⊂ C is created by merging the instances of a

selected set of previous time slots. For each association rule X ∈ X the confidence of

the rule on C(t) is compared to the confidence of the rule computed on R using a χ2

or a Fisher’s test (cf. Section 2.3.1). If the confidence has significantly increased on

C(t), the finding is reported as an unexpected event. In order to reduce the complex-

ity, the authors propose to focus only on mining high-support association rules. An

aggregation of the observations for one time slot is not performed and environmental

attributes are not considered by this approach.

7.2.2 What is strange about recent events? (WSARE)

The family of WSARE algorithms has been proposed by Wong et al. (2005). All algo-

rithms share the same underlying concept, namely to monitor all possible syndromes

having a maximum of two conditions S≤2 simultaneously. Again, these algorithms

can be categorized as local modeling in which each local model LX is responsible for

monitoring one particular syndrome s ∈ S≤2, hence X = s and X = S≤2. The basic

idea is to create a reference set of cases R ⊆ C on which the expected proportion for

each syndrome is estimated. For each local model LX , the expected proportion X̂

of the syndrome X is compared to the proportion of the syndromes observed on the

set C(t) using the χ2 or Fisher’s exact test (cf. Section 2.3.1). In order to aggregate

the p-values of the statistical tests for one time slot, a permutation test with 1, 000

repetitions is performed. As for DMSS, the authors of the WSARE algorithm focused

in their evaluation on patient data using single-day time slots.
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The three WSARE algorithms only differ in the way how the reference setR is created.

The following three versions have been considered:

WSARE 2.0 merges the instances of a selected set of prior time slots together for the

reference set R. Since their evaluation was based on single-day time slots, they

combined the instances of the previous time slots 35, 42, 49 and 56 to consider

only instances of the same weekday.

WSARE 2.5 merges the instances of all prior time slots together which share the same

environmental setting as for the current day e(t). This has the advantage that

the expected proportions are conditioned on the environmental setting e(t) and

that potentially more instances are contained in the reference set R, allowing to

have more precise expectations.

WSARE 3.0 learns a Bayesian network over all recent data H(t) from which 10,000

instances for the reference set R are sampled given the environmental attributes

e(t) as evidence. The authors make use of domain knowledge for the structure

learning of the Bayesian network by not allowing parent nodes for nodes of

environmental attributes. This can be done because environmental attributes

only serve as evidence for the sampling. The prediction of their distribution is

not of interest.

7.2.3 Eigenevent

The Eigenevent algorithm proposed by Fanaee-T and Gama (2015) can be categorized

as a global modeling approach. Its key idea is to track changes in the data correlation

structure using eigenspace techniques. Instead of monitoring all possible syndromes,

only overall changes and dimension-level changes are observed by the algorithm. The

global approach makes the Eigenevent algorithm less susceptible to noise resulting

in a lower false alarm rate. However, this also reduces the sensitivity of detecting

outbreaks which might be caused by only a few cases for a very rare disease.

In order to detect outbreaks, a dynamic baseline tensor is created using the information

of prior time slots H(t) which share the same environmental setting e(t). In the case

that not enough prior time slots are available, time slots with the most frequent

value combinations for the environmental attributes will be added. The conducted

experiments showed that this mixing improves the detection power of the algorithm for

unseen value combinations of environmental attributes. In the next step, information

of the instances C(t) and the baseline tensor are decomposed to a lower-rank subspace

in which the eigenvectors and eigenvalues are compared to each other, respectively.

Any significant changes in the eigenvectors and eigenvalues between the baseline tensor

and the information of instances C(t) indicate an outbreak.
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7.2.4 Anomaly Detection Algorithms

A direct application of point anomaly detection (cf. Section 3.6) is in general not

suitable for syndromic surveillance because these methods aim to identify single in-

stances c ∈ C as outliers and could thus, e.g., be triggered by a patient who is over a

hundred years old (Wong et al., 2005). In order to still apply point anomaly detectors

to discover outbreaks, we form a dataset D using the syndromes s ∈ S≤n as features

and the respective syndrome counts Hs(t) as values. Hence, each instance represents

the occurrence counts of all syndromes for one particular time slot and the dataset

contains t− 1 instances in total. This dataset can be used to fit an anomaly detector

which can be then applied to the instance of syndrome counts for time slot t. Hence,

an outbreak could be identified by an unusual combination of syndrome counts. The

basic concept of this approach can be described as global modeling since the anomaly

detector aims to capture the normal behaviour in one model.

In this chapter, we consider the following anomaly detection algorithms. We refer to

the respective references for a comprehensive review of these methods.

One-Class SVM (OSVM) extends the support vector machine algorithm to perform

outlier detection by separating instances D from the complement of D (Schölkopf

et al., 2001).

Local Outlier Factor (LOF) computes the outlier score for an instance based on how

isolated the instance is with respect to the surrounding neighborhood (Breunig

et al., 2000).

Gaussian Mixture Models (GMM) approximate the distribution of the dataset D us-

ing a mixture of Gaussian distributions. The outlier score is based on how dense

the region of the evaluated instance is (Reynolds, 2009).

Copula-Based Outlier Detection (COPOD) creates an empirical copula for the

multi-variate distribution of D on which tail probabilities for an instance can be

predicted to estimate the outlier score (Li et al., 2020).

Isolation Forest constructs an ensemble of randomly generated decision trees in which

anomalies can be identified by counting the number of splittings required to

isolate an instance (Liu et al., 2008).

Autoencoder learns an identity function of the data through a network of multiple

hidden layers. Instances which have a high reconstruction error are considered

to be anomalous (Zhou and Paffenroth, 2017).

Multiple-Objective Generative Adversarial Active Learning (GAAL)

constructs multiple generators having different objectives to generate outliers for

learning a discriminator which can assign outlier scores to new instances (Liu

et al., 2020).
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7.3 Basic Statistical Approaches

In addition to the machine learning models introduced in Section 7.2, we also include

statistical techniques, which are commonly used for specific syndromic surveillance

(cf. Section 4.4), into our comparison and adapt them to a non-specific syndromic

surveillance setting. The key idea of these adaptations is to monitor all possible

syndromes Sall simultaneously based on the local modeling approach.

Similar to the WSARE algorithms, each local model LX is responsible for monitoring

one particular syndrome s ∈ S≤n where X = s and X = S≤n. Therefore, a parametric

distribution Ps(x) is fitted in each local model for the respective syndrome s ∈ S using

the empirical mean µ and the empirical variance σ2 computed over Hs(t):

µ =
1

|Hs(t)|

|Hs(t)|∑
i=0

s(i) σ2 =
1

|Hs(t)| − 1

|Hs(t)|∑
i=0

(s(i)− µ)2

On the fitted distribution Ps(x), a one-tailed significance test is performed in order to

identify a suspicious increase of cases. For a particular observed count s(t), the p-value

is computed as the probability
∫∞
s(t) Ps(x)dx of observing s(t) or higher counts. Thus,

for evaluating a single time slot t, we obtain |S| p-values which need to be aggregated

under consideration of the multiple-testing problem. Following Roure et al. (2007),

we only report the minimum p-value for each time slot t because the Bonferroni cor-

rection can be regarded as a form of aggregation of p-values based on the minimum

function. In particular, note that scale-free anomaly scores are sufficient for the pur-

pose of identifying the most suspicious time slots. The complement of the selected

p-value represents the anomaly score reported for time slot t. For our baselines we

have considered the Poisson distribution, the Gaussian distribution and the negative

binomial distribution which we have reviewed in detail in Section 2.2.

Modifications for adapting the sensitivity. Modeling count data with a statis-

tical distribution is often challenging because of the different forms of count data and

distributional assumptions (cf. Section 2.2). Especially for our application scenario,

in which we perform multiple statistical tests in parallel, a fitted distribution which is

overly sensitive to changes can cause many false alarms. In fact, if the number of mon-

itored syndromes is much higher than the average number of cases observed each time

slot, most of the syndromes are rare. Statistical tests performed on these syndromes

report a very low p-value if only one case is observed in C(t). This problem becomes

more frequent with an increasing number of rare syndromes which are monitored si-

multaneously, which results in reporting many unusual observations throughout the

time slots.
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Since outbreaks are usually associated with a high number of infections, we propose

the following modifications for the baselines in order to reduce the sensitivity of sta-

tistical tests on rare syndromes. For the Gaussian distribution, we propose to use a

minimal value for the standard deviation to which we refer to as σmin. Moreover,

for the Poisson distribution, we use a minimal value for the lambda parameter λmin.

The negative binomial distribution is similarly lead by the mean number of cases.

Hence, we assume a minimal mean µmin for the negative binomial distribution before

setting the parameters as indicated. We leave the standard deviation untouched for

the negative binomial distribution since manipulating the overdispersion can lead to

extreme distortions in the estimation.

7.4 Experiments and Results

The goal of the experimental evaluation reported in this section is to provide an

overview of the performance of non-specific syndromic surveillance methods in general,

and in particular, to re-evaluate the established methods in context of the proposed

base statistical approaches and the anomaly detection algorithms. We conducted ex-

periments on synthetic data, which already have been used for the evaluation of the

algorithms Eigenevent and WSARE (Fanaee-T and Gama, 2015; Wong et al., 2005),

and on real data of a German emergency department (cf. Section 7.4.3). As the

emergency department data do not contain any information about real outbreaks, we

decided to inject synthetic outbreaks which is common practice in the area of syn-

dromic surveillance, allowing us to evaluate and compare the algorithms in a controlled

environment (cf. Section 4.5).

7.4.1 Evaluation Setup

The evaluation of syndromic surveillance methods is usually performed on a set of data

streams, to which we will refer as an evaluation set, since a single data stream does

normally not contain enough outbreaks to draw conclusions about the performance of

the evaluated algorithms.

To evaluate a data stream it is split into two parts, namely a training part, containing

the first time slots which are only used for training, and a test part, which contains

the remaining time slots of the data stream. The evaluation is performed on the

test part incrementally which means that for evaluating each time slot t the model

will be newly fitted on the complete set of previously observed data points H(t) =

((C(1), e(1)), . . . , (C(t−1), e(t−1))). Alarms raised during an outbreak are considered

as true positives while all other raised alarms are considered as false positives.
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Table 7.2: Information about the attributes of the synthetic data.

attribute type #values

age response 3
gender response 2
action response 3
symptom response 4
drug response 4
location response 9

flu level environmental 4
day of week environmental 3
weather environmental 2
season environmental 4

Table 7.3: Information about the attributes of the real data.

attribute type #values

age response 3
gender response 2
mts response 28
fever response 2
pulse response 3
respiration response 3
oxygen saturation response 2
blood pressure response 2

day of week environmental 7
season environmental 4
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Synthetic data. The synthetic data consists of 100 data streams, generated with

the synthetic data generator proposed by Wong et al. (2005). The data generator is

based on a Bayesian network and simulates a population of people living in a city

of whom only a subset are reported to the data stream at each simulated time slot.

Detailed information about the attributes in the data stream is given in Table 7.2.

Each data stream captures the information about the people on a daily basis over a

time period of two years, i.e., each time slot C(t) contains the patients of one day.

In average 34 instances are reported per time slot and 270 possible syndromes are

contained in the set S≤2. The first year is used for the training part while the second

year serves as the test part. Exactly one outbreak is simulated in the test part which

starts at a randomly chosen day and always lasts for 14 days. During the outbreak

period, the simulated people have a higher chance of catching a particular disease.

Real data. We rely on routinely collected, fully anonymized patient data of a Ger-

man emergency department, captured on a daily basis over a time period of two

years. We have extracted a set of response attributes and added two environmen-

tal attributes (cf. Table 7.3). Continuous attributes, such as respiration, have been

discretized with the help of a physician into meaningful categories. In addition, we

include the Manchester-Triage-System (MTS) (Gräff et al., 2014) initial assessment

which is filled out for every patient on arrival. To reduce the number of values for

the attribute MTS, we group classifications which do not relate to any infectious dis-

ease, such as various kinds of injuries, into a single value. In average 165 patients

are reported per day and in total 574 syndromes can be formed for the set |S≤2|. In

preparation for the injection of simulated outbreaks, we replicated the data stream

100 times. For each data stream, we used the first year as the training part and the

second year as the test part in which we injected exactly one outbreak. In order to

simulate an outbreak, we first uniformly sampled a syndrome from S≤2. In a second

step, we sampled the size of the outbreak from a Poisson distribution with mean equal

to the standard deviation of the daily patient visits and randomly selected the corre-

sponding number of patients from all patients that exhibit the sampled syndrome. To

avoid over-representing outbreaks on rare syndromes, only 20 data streams contain

outbreaks with syndromes that have a lower frequency than one per day. In total, 29

outbreaks are based on syndromes with one condition and 71 with two.

Additional baselines. We also include the control chart, the moving average and

the linear regression algorithms into our analysis. Compared to our syndrome-based

statistical baselines, these global statistical baselines only monitor the total number

of instances per time slot and therefore can only give a very broad assessment of

outbreak detection performance. For a detailed explanation of these algorithms, we

refer to Wong et al. (2005).
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Table 7.4: Results for the AAUC5% measure on the synthetic data.

name rerun min. p-value permutation test imported p-values

Eigenevent 4.993 – – 4.391
WSARE 2.0 – 2.963 3.805 4.925
WSARE 2.5 – 1.321 1.614 1.931
WSARE 3.0 – 0.899 1.325 1.610

Implementation and parameterization. For the Eigenevent algorithm we rely

on the code provided by the authors.i All other algorithms are implemented in

Python.ii Parameters for the DMSS and the anomaly detection algorithms have

been tuned in a grid search using 1000 iterations of Bootstrap Bias Corrected Cross-

Validation (Tsamardinos et al., 2018) which allows to integrate hyperparameter tuning

and reliable performance estimation into a single evaluation loop. The evaluated pa-

rameter combinations can be found in our repository. The WSARE, the Eigenevent,

the COPOD and the statistical algorithms do not contain any parameters which need

to be tuned.

Evaluation measures. For measuring the performance, we rely on the activity

monitor operating characteristic as described in Section 4.5. Since we are interested

in a very low false alarm rate, we only report the partial area under AMOC-curve for

a false alarm rate less than 5%, to which we refer to as AAUC5%.

7.4.2 Preliminary Evaluation

In a first experiment, we replicated the experiments on the synthetic data of Fanaee-T

and Gama (2015). More specifically, we imported and re-evaluated the outlier scores

for the synthetic data from the Eigenevent repository (imported p-values) and compare

these to our own results with rerunning the Eigenevent algorithm (rerun) and to our

implementation of the WSARE algorithms. For the latter, we additionally evaluate

the results of just reporting the minimal p-value for each time slot (min. p-value, cf.

Section 7.3) instead of performing an originally proposed permutation test with 1000

repetitions (permutation test). The results are shown in Table 7.4. Our rerun of the

Eigenevent algorithm returned slightly worse results than the imported p-values, which

could be caused by the random initialization. In a personal communication, one of the

authors of Eigenevent pointed out that the performance of Eigenevent depends on the

random initialization of the used tensor decomposition, and suggested BetaNTF as

an alternative (Fernandes et al., 2017). For the WSARE algorithms, we can observe

that our implementation achieves better results than the imported p-values, probably

ihttps://github.com/fanaee/EigenEvent
iiOur code is publicly available at https://github.com/MoritzKulessa/NSS

https://github.com/fanaee/EigenEvent
https://github.com/MoritzKulessa/NSS
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due to the different Bayesian network used. In particular, the results for the minimal

p-value were better than those for the more expensive permutation test. Thus, we

chose to only report the minimal p-value for the WSARE algorithms in the following

experiments.

7.4.3 Results

The results on the synthetic and real data are both shown in Table 7.5. For syndrome-

based algorithms, the results for monitoring S≤1 and S≤2 are reported in the respective

columns while results for the other methods are reported in the columns none. Note

that the worst possible result on the synthetic data is 14 while for the real data the

worst result is 1. In the first paragraphs, we will discuss the results without specifically

considering the size of the syndrome sets unless needed. The effect of using S≤1 or

S≤2 is discussed in the last paragraph.

Comparison between non-specific syndromic surveillance algorithms.

Firstly, we analyze the results of the non-specific syndromic surveillance approaches

which have been presented in Section 7.2.1 to 7.2.3. In general, the WSARE algo-

rithms outperform the other algorithms in the group. In particular, the results of the

Table 7.5: Results for the AAUC5% measure on the synthetic and real data.

category algorithm name
synthetic data real data

none S≤1 S≤2 none S≤1 S≤2

non-specific
syndromic
surveillance

WSARE 2.0 – 3.028 2.963 – 0.661 0.590
WSARE 2.5 – 1.099 1.321 – 0.917 0.867
WSARE 3.0 – 0.803 0.899 – 0.882 0.847
DMSS 2.430 – – 0.953 – –
Eigenevent 4.993 – – 0.878 – –

anomaly
detectors

OSVM – 1.043 1.262 – 0.468 0.495
LOF – 2.000 2.260 – 0.642 0.610
GMM – 1.117 3.547 – 0.444 0.791
isolation forest – 4.576 4.948 – 0.873 0.835
COPOD – 5.216 5.032 – 0.816 0.800
autoencoder – 1.521 1.643 – 0.550 0.576
GAAL – 7.024 6.766 – 0.792 0.866

global
baselines

control chart 5.086 – – 0.891 – –
moving average 7.012 – – 0.910 – –
linear regression 3.279 – – 0.819 – –

basic
statistical
baselines

Gaussian – 0.806 0.941 – 0.328 0.267
Poisson – 1.294 1.347 – 0.598 0.486
negative binomial – 0.895 0.958 – 0.299 0.216
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modified versions WSARE 2.5 and WSARE 3.0 on the synthetic data show that the

use of environmental attributes can be beneficial. However, the results on the real data

indicate the opposite. We further investigated this finding by rerunning WSARE 3.0

on the real data without the use of environmental variables and observed a substantial

improvement of the results to 0.613 for S≤1 and 0.570 for S≤2, respectively. Therefore,

we conclude that the modelling of the environmental factors should be done with care

since it can easily lead to worse estimates if the real distribution does not follow the

categorization imposed by defined attributes.

The results of the DMSS algorithm suggest that monitoring association rules is not as

effective as monitoring syndromes. In particular, the space of possible association rules

is much greater than the space of possible syndromes S which worsens the problem

of multiple testing. Especially on the real data this results in a bad performance

since the high number of instances per time slot yields too many rules. Conversely, by

monitoring only rules with very high support most of the outbreaks remain undetected

since the disease pattern could not be captured anymore. In contrast to the results

reported by Fanaee-T and Gama (2015), the Eigenevent algorithm performs poorly

compared to the WSARE algorithms. A closer analysis reveals that the difference

in these results can be explained by the used evaluation measure. Fanaee-T and

Gama (2015) consider only p-values in the range [0.02, 0.25] to create the AMOC-

curve. However, exactly the omitted low p-values are particularly important when

precise predictions with low false positive rates are required which is why we explicitly

included this range into the computation of the AMOC-curve.

Comparison to the anomaly detection algorithms. Regarding the synthetic

data, which was specifically created in order to evaluate the WSARE algorithms, we

can observe that no anomaly detection algorithm can reach competitive AAUC5%

scores to WSARE 3.0. Considering the gap to WSARE 2.0, which in comparison to

3.0 does not distinguish between environmental settings, one reason could be that the

anomaly detection algorithms are not able to take the environmental variables into

account. Another reason could be the low number of training instances (one for each

day) which might have caused problems, especially for the neural networks. Only the

SVM, which is known to work well with only few instances, and the Gaussian mixture

model are able to achieve acceptable results. These two approaches are in fact able to

outperform the WSARE variants on the real data for which we already found evidence

that the environmental information might not be useful.

Comparison to the baselines. In the following, we will put the previously dis-

cussed results in relation to the baselines. For the global baselines, we can observe

that monitoring the total number of cases per time slot is not sufficient to adequately

detect most of the outbreaks. Notably, many of the machine learning approaches do

in fact not perform considerably better than these simple baselines. The comparison
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to our proposed statistical baselines applied on each possible syndrome separately

allow further important insights. Our main observation is that, despite its simplic-

ity, they outperform most of the previously discussed, more sophisticated approaches.

In fact, in the case of the real data the Gaussian and the negative binomial baselines

achieve the best scores. On the synthetic data they are able to achieve results that are

competitive to WSARE 3.0 even though the baselines do not take the environmental

attributes into account.

Comparison between S≤1 and S≤2. We can make two basic observations regard-

ing the complexity of the monitored syndromes: Firstly, the outbreaks in the synthetic

data are better detected by the algorithms and baselines for non-specific syndromic

surveillance when monitoring single condition syndromes S≤1 while for the real data

we benefit from pair patterns S≤2. Secondly, almost no anomaly detector is able to

profit from the explicit counts for S≤2 regardless of the dataset. For understanding

the first effect, we take a closer look at the results of our proposed baselines. These

approaches can only take co-occurrences between conditions into account if explicitly

given or if the S \S≤1 patterns greatly affect the counts for the composing conditions.

Hence, monitoring a larger set of syndromes increases the sensitivity of detecting out-

breaks with complex disease patterns. However, it comes at the cost of a higher false

alarm rate due to multiple testing. For the real dataset, for which we know that it

contains more outbreaks based on two than on one condition, the higher sensitivity is

able to outweigh the increased false alarm rate. On the other hand, the results on the

synthetic dataset suggests that most of the outbreaks in the synthetic data are lead

by single indicators, resulting in more false alarms when monitoring S≤2.

In contrast to the non-specific syndromic surveillance approaches, only some anomaly

detectors benefit and only slightly from the explicit counts for S≤2, such as the local

outlier factor algorithm and the isolation forests. This indicates that the remaining ap-

proaches, such as SVM and neural networks, already adequately consider correlations

between attributes. Especially remarkable is the case of Gaussian mixture models,

which achieves the best results in the group when monitoring S≤1 but is strongly

affected by the S≤2 patterns.

7.5 Conclusion

In this chapter, we presented non-specific syndromic surveillance from the perspective

of machine learning and gave an overview of the few approaches addressing this task.

Furthermore, we introduced a way of how anomaly detection algorithms can be applied

on this problem and a set of simple statistical algorithms which we believe should

serve as reference points for future experimental comparisons. In an experimental



102 7. Non-Specific Syndromic Surveillance

evaluation, we revisited the non-specific syndromic surveillance approaches in face of

the previously not considered statistical baselines and a variety of anomaly detectors.

Eventually, we found that these baselines outperform most of the more sophisticated

techniques and are competitive to the best approaches in the field.

For future work it remains to improve the representation for the anomaly detectors

to include domain specific knowledge or even environmental variables. Moreover, the

problem of multiple testing seems to be countered by the possibility of replacing local

detectors by more appropriate ones, which for instance take the seasonality of specific

syndromes into account.



8
Sum-Product Networks

for Non-specific

Syndromic Surveillance

In Chapter 7, we have approached outbreak detection from a general unsupervised

anomaly detection perspective. One of our main results is that our proposed basic

statistical approaches (cf. Section 7.3) already achieved compelling performance com-

pared to the more elaborated machine learning algorithms (cf. Section 7.2). For our

last contribution in this thesis, we aim to improve upon this potential. The general

idea is to enhance the basic statistical approaches by capturing correlations between

syndromes in the monitored data and by incorporating environmental information

into the monitoring process.

More precisely, we transfer the idea of these basic statistical approaches to sum-product

networks (SPNs) (Poon and Domingos, 2011), a statistical and generative machine

learning algorithm (cf. Section 3.5). Instead of fitting one particular distribution for

each single syndrome, we use SPNs to model the joint probability distribution of

syndromic data. We further introduce a technique that allows to detect anomalies by

reasoning with the p-values in the SPN model. In addition, syndromic data can be

enriched with information about environmental factors, such as the weather or the

season, which can be used to condition the SPN on particular circumstances before

p-values are computed.

We experimentally compare our proposed approach to established algorithms for non-

specific syndromic surveillance (cf. Section 7.2) on a synthetic data set (Fanaee-T and

Gama, 2015; Wong et al., 2005) and real data from a German emergency department

in which we injected synthetic outbreaks. Our results demonstrate that SPNs can

further improve upon the state-of-the-art statistical modeling techniques.
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8.1 Non-Specific Syndromic Surveillance

Typically, syndromic surveillance monitors a small set of syndromes that are char-

acteristic for a specific disease. Outbreaks of other infectious diseases that do not

correspond to these pre-specified patterns cannot be detected with these systems. To

overcome this problem, we focus on what we refer to as non-specific syndromic surveil-

lance. It is an universal approach to syndromic surveillance which aim to detect any

suspicious anomalies in the given data, indicating a possible outbreak of any kind of

infectious disease. For a detailed formulation of non-specific syndromic surveillance

and the used notation, we refer to Section 7.1.1.

8.1.1 Creation of Structured Data

For this chapter, we transform H(t) into a structured format, which facilitates the

analysis with common machine learning algorithms. For a given set of syndromes S ⊆
Sall, we denote fS : 2C → N|S| as the function that counts the number of occurrences

fs(C(i)) for each syndrome s ∈ S in a given set of instances C(i) at time i. Based on

the syndrome counts, we form a data set D = {(fS(C(i)), e(i)) | (C(i), e(i)) ∈ H(t)}
in which each instance represents a single time slot.

Figure 8.1 depicts an example of how the data set is created for syndromes S≤1. Note

that in case of syndromes S≤2, the data set would additionally contain the columns

#(male ∧ cough), #(female ∧ cough), #(male ∧ fever), and #(female ∧ fever).

Figure 8.1: Example for the creation of a structured data set using syndromes S≤1.
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8.1.2 Related Work

While specific syndromic surveillance is a well-studied research area, we found out that

only little research has been devoted to non-specific syndromic surveillance. Brossette

et al. (1998) adopt the idea of association rule mining to identify anomalous patterns

in health data (cf. Section 7.2.1). Wong et al. (2005) first learn a Bayesian network

over historic health data and then compare a sample of historical cases to current

cases C(t) to detect potential outbreaks (cf. Section 7.2.2). Fanaee-T and Gama

(2015) track changes in the data correlation structure using eigenspace techniques to

identify anomalies (cf. Section 7.2.3). In particular, Wong et al. (2005) and Fanaee-T

and Gama (2015) distinguish between indicator and environmental attributes to im-

prove detection performance which is also known as contextual or conditional anomaly

detection (Song et al., 2007). For more details on these methods, as well as an empir-

ically comparison to common anomaly detectors and statistical modeling techniques,

we refer to sections 7.2 and 7.4.

A particular result of the previous chapter is that statistical techniques for a simulta-

neous and individual monitoring of syndromes S≤1 or S≤2 already achieve very com-

petitive results and often outperform more elaborate algorithms. More precisely, for

each syndrome s a distribution Ps(x) is fitted onH(t) such that fs(C(t)) ∼ Ps(x). The

Poisson and the negative binomial distribution are natural choices but also the Gaus-

sian distribution is used in practice (Hutwagner et al., 2003). However, this approach

has two main limitations. Firstly, independence among the monitored syndromes is

assumed and, secondly, environmental factors are not taken into account.

8.2 Sum-Product Networks for Syndromic Surveillance

Most statistical techniques, including those mentioned in the previous section, model

the joint probability distribution as a product of individual syndrome distributions.

Clearly, this is only valid if the syndromes are independent of each other. Sum-

product networks (Poon and Domingos, 2011) are an elegant way of extending this

simple model by taking dependencies between the monitored syndromes and even

dependencies to environmental factors into account.

A sum-product network (SPN) models the joint probability distribution P (X ) of a data

set, where X = {X1, X2, . . . , Xm} is a set of random variables, as a rooted directed

acyclic graph of sum, product and leaf nodes. In this graph, the scope of a particular

node is defined as the set of features appearing in the subgraph below that node.

Formally, sum nodes provide a weighted mixture of distributions by combining nodes

which share the same scope, whereas product nodes represent the factorization over

independent distributions by combining nodes defined over disjunct scopes. Finally,
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Figure 8.2: The left SPN represents P (#fever,#cough, season) while the right SPN represents P (#fever,#cough | season = summer) derived
from the left.



8.2. Sum-Product Networks for Syndromic Surveillance 107

each leaf node contains a univariate distribution P (X) for a particular feature X ∈ X .

In this chapter, we use mixed SPNs (Molina et al., 2018) which allow to learn an SPN

over both, continuous and discrete attributes.For a detailed explanation of SPNs, we

refer to Section 3.5.

Figure 8.2 shows an exemplary SPN, representing the joint probability distribution

P (#fever,#cough, season). The top product node indicates that the distribution of

#cough is independent of the other attributes. In contrast, the distribution of #fever

depends on season and, therefore, it is split into two clusters by a sum node, one

for the winter and one for the summer. Moreover, Figure 8.2 also shows the same

SPN which has been conditioned on season = summer to represent the conditional

probability distribution P (#fever,#cough | season = summer).

8.2.1 Inference of p-values in Sum-Product Networks

The main advantage of SPNs over other probabilistic models is that inference for

probabilistic queries is tractable and can be computed in linear time with respect to

the size of the network (Poon and Domingos, 2011). For syndromic surveillance we

are particularly interested in p-values, which express the chance of obtaining data at

least as extreme under a given null hypothesis. In the following, we propose novel

extensions to SPNs that allow them to properly reason with p-values.

To compute the p-value for a query q ⊆ {X1 ≥ x1, . . . , Xm ≥ xm} for arbitrary xi,

the conditions of q are forwarded to the leaves of the SPN. In case q contains con-

ditions only on a subset of attributes of X , the SPN is marginalized beforehand by

simply removing all leaves on attributes which are not contained in the query. In

the remaining leaves, the p-value for the respective condition is evaluated and prop-

agated upwards. At product nodes, we use either Fisher’s or Stouffer’s method (cf.

aggregation of independent hypothesis tests in Section 2.3.2) for merging independent

p-values (Whitlock, 2005). At sum nodes, which encode a mixture of distributions over

the same attributes, we need to merge dependent p-values. Vovk and Wang (2020)

recommend to use the harmonic mean in case of substantial dependence among the

merging p-values and suggest to use the geometric or the arithmetic mean for stronger

dependencies (cf. aggregation of dependent hypothesis tests in Section 2.3.2). We have

implemented the weighted versions of these three merging functions in order to con-

sider the weights of sum nodes during merging. As a result, the obtained value at the

root node of the SPN can be seen as a composite p-value for query q.
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8.2.2 Application to Non-Specific Syndromic Surveillance

The key idea of our approach is to learn an SPN over a data set that is structured

as described in Section 8.1.1. In particular, the SPN models the joint probability

distribution P (XS , XE) where XS = {Xs | s ∈ S} and XE = {XE | E ∈ E} are

random variables associated with syndromes S and environmental attributes E re-

spectively. For environmental attributes, categorical distributions are used in the

leaves, whereas for the syndrome counts we either use Gaussian, Poisson or nega-

tive binomial distributions, which are commonly used for monitoring count data in

syndromic surveillance.

To check for outbreaks in a given time slot t, we first condition the SPN on the

current environmental setting to obtain P (XS | XE1 = e1, . . . , XEk
= ek) where ei is

the i-th element of e(t). The set of queries Q1 = {{Xs ≤ fs(C(t))} | s ∈ S} is then

evaluated on the conditioned SPN, which results in a p-value for each syndrome s ∈ S.

This sensitivity to changes for each individual syndrome is indeed important if the

potential disease pattern for an outbreak is unknown beforehand. However, for our

empirical study in Section 8.3 a single score for the evaluated time slot is required.

Therefore, the p-values need to be aggregated under consideration of the multiple-

testing problem (cf. Section 2.3.2). Following Roure et al. (2007), we only report the

minimum p-value for each time slot t since the Bonferroni correction can be regarded

as a form of aggregation of p-values based on the minimum function. In particular,

note that scale-free anomaly scores are sufficient for the purpose of identifying the

most suspicious time slots. The complement of the selected p-value represents the

anomaly score reported for time slot t.

8.2.3 Handling of Higher Order Syndromes

Note that an SPN modeled over frequency counts of syndromes of length 1 (S≤1)
models the dependencies between the frequency counts of individual syndromes, but

it does not model the frequency of their co-occurrence. For example, if both cough

and fever occur with high frequency in the current window C(t), it does not imply that

there are many patients that exhibit both symptoms at the same time. For modeling

such interactions, we have two options: First, we can directly include syndromes of

length two (S≤2) or even higher. The obvious disadvantage is that the number of

possible syndromes grows exponentially with their length. Nonetheless, we can use

the SPN for making a best guess. More specifically, if we only model syndromes of

length 1 (S≤1), we can still form the query set Q2 = Q1 ∪ {{Xs1 ≤ fs1(C(t)), Xs2 ≤
fs2(C(t))} | s1 6= s2, s1 ∈ S, s2 ∈ S}, and use the resulting p-values as a heuristic best

guess for the p-values of syndromes S≤2. We will evaluate both approaches in the

experimental section.
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8.2.4 Interpretability

Due to the single evaluation of the queries for each time slot, we can always track

which query, and therefore which syndrome, is responsible for the found anomaly.

Combined with the functionality of the SPN to compute expectations, a ranking of

the most suspicious anomalies can be provided to local health authorities in order to

analyze and understand the found irregularities. An example of such a report can be

seen in Table 8.1.

Table 8.1: Exemplary report.

syndrome expected count observed count p-value

fever ∧ male 1 4 0.004
fever 2 5 0.017
male 5 7 0.133

fever ∧ female 1 1 0.264
. . . . . . . . . . . .

8.2.5 Scenario-based Modifications.

Our preliminary experiments showed that statistical tests on rare syndromes are of-

ten too sensitive to changes, causing many false alarms (cf. Section 7.3). In addition,

outbreaks are usually associated with a high number of infections. Therefore, we set

the standard deviation σ2 to a minimum of 1 before fitting the Gaussian distribution

in the leaves, and for the Poisson and the negative binomial distribution we set the

mean µ to a minimum of 1. We leave the standard deviation untouched for the nega-

tive binomial distribution since manipulating the overdispersion can lead to extreme

distortions in the estimation.

8.3 Experiments and Results

The goal of our experimental evaluation is to demonstrate that modeling of syndromic

data through an SPN can further improve state-of-the-art statistical modeling tech-

niques. To that end, we conducted experiments on synthetic data (Fanaee-T and

Gama, 2015; Wong et al., 2005) and on real data from a German emergency depart-

ment. As the latter did not contain any information about real outbreaks, we injected

synthetic outbreaks. This common practice allows the evaluation for arbitrary types

of outbreak patterns in a controlled environment. In our case the arrival of an in-

creased number of patients sharing the same symptoms. However, of course, it cannot

cover the full range of real life outbreaks, which remains a general challenge under
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Table 8.2: Information about the attributes of the synthetic data.

response attributes #values environmental attributes #values

age 3 weather 2
gender 2 flu level 4
action 3 day of week 3
symptom 4 season 4
drug 4
location 9

Table 8.3: Information about the attributes of the real data.

response attributes #values environmental attributes #values
age 3 weather 2
gender 2 flu level 4
symptom 28 day of week 3
fever 4 season 4
oxygen saturation 2
blood pressure 2
pulse 3
respiration 3

the non-availability of complete and certain disease patient data. The development of

more realistic evaluation strategies (or alternatively the acquisition of complete and

certain patient data) remains a major challenge for the research field (cf. Section

4.5).

8.3.1 Evaluation Setup

In both scenarios, we generate 100 data streams, where each data stream captures

daily information C(t) over a time period of two years. The time slots of the first

year are used for training, whereas the second year is reserved for testing only. Each

test data stream contains exactly one simulated outbreak starting on a randomly

chosen day. The synthetic data (Table 8.2) were generated as proposed by Wong et al.

(2005). In each stream, an outbreak is simulated which lasts for 14 days, during which

people have a higher chance of catching a particular disease. On average, 34 patients

are reported per time slot. The real data (Table 8.3) consist of fully anonymized

patient data from a German emergency department. With the help of a physician,

we have extracted a set of attributes and discretized them into meaningful categories.

In addition, we enriched the syndromic data with environmental attributes matching

the synthetic data. Information about the flu level has been obtained from SurvStat i

iRobert Koch-Institut: SurvStat@RKI 2.0, https://survstat.rki.de, 11.01.2021

https://survstat.rki.de
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Table 8.4: Results AAUC5%.

synthetic data real data
algorithm S≤1 S≤2 S≤1 S≤2

baseline Gaussian 0.859 0.957 0.331 0.296
baseline Poisson 1.312 1.321 0.283 0.220
baseline negative binomial 0.964 1.021 0.259 0.216

w
it

h
ou

t
E autoencoder 1.647 1.549 0.443 0.372

one-class SVM 1.031 1.536 0.353 0.350
Gaussian mixture models 1.128 3.601 0.332 0.449
WSARE 0.907 1.066 0.333 0.281
SPN( · , Q1) 0.913 1.082 0.271 0.200
SPN(S≤1, Q2) 1.102 0.250

w
it

h
E

autoencoder 2.523 1.629 0.452 0.365
one-class SVM 1.519 1.427 0.392 0.347
Gaussian mix. models 3.404 4.033 0.403 0.443
WSARE 0.907 0.996 0.302 0.266
SPN( · , Q1) 0.647 0.869 0.244 0.190
SPN(S≤1, Q2) 0.983 0.230

and weather data from the DWD.ii On average 165 patients are reported per day. To

simulate an outbreak, we first uniformly sampled a syndrome from S≤2. In a second

step, we sampled the size of the outbreak from a Poisson distribution with mean

equal to the standard deviation of the daily patient visits. To avoid over-representing

outbreaks on rare syndromes, we ensured that only 20 streams contain outbreaks

with syndromes that have a lower frequency than one per day.

We compare our approach to the statistical baselines, WSARE and anomaly detec-

tion algorithms which performed best in our evaluation in Section 7.4. Parameters

were tuned in a grid search using 1000 iterations of bootstrap bias corrected cross-

validation (Tsamardinos et al., 2018) which integrates hyperparameter tuning and

performance estimation into a single evaluation loop. The evaluated parameters com-

binations for all algorithms can be found in our repository.iii

As a performance measure, we report the partial area under AMOC-curve for a false

alarm rate less than 5% (referred to as AAUC5%) because of the importance of very

low false alarm rate in syndromic surveillance (cf. Section 4.5). We report average

AAUC5% scores over all 100 data streams. Note that the worst possible result for

AAUC5% is 14 on the synthetic and 1 on the real data, respectively.

iiDeutscher Wetterdienst: Open Data, https://www.dwd.de/opendata, 11.01.2021
iiiOur code is publicly available at https://github.com/MoritzKulessa/NSS.

https://www.dwd.de/opendata
https://github.com/MoritzKulessa/NSS
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Figure 8.3: AMOC-curve for monitoring S≤2 on the real data.

8.3.2 Results

Comparison of algorithms. Table 8.4 shows the results of all algorithms for mon-

itoring syndromes S≤1 and S≤2. As the consideration of environmental attributes

is one of the main differences compared to the baselines, we performed additional

evaluations without considering environmental attributes (cf. without E).

We can see that the SPNs with the conventional queries Q1 and taking environmental

variables into account outperform all other competitors, on both syndrome sets S≤1,
S≤2. The AMOC curve shown in Figure 8.3 confirms this result. Clearly, SPN(Q1)

offers the best trade-off between detection delay and false alarm rate, also for the

extended range from 0 to 0.5.

Going into more detail, we can observe that the improvement over the baselines is

more pronounced for the synthetic than for the real data. This is in line with previous

findings that indicated a higher dependency on environmental factors in the synthetic

data set (cf. Section 7.4). Regarding the exclusion of environmental attributes, we

expected an advantage of SPNs over the baselines due to the modeling of dependencies

between syndromes. Conversely, in accompanying analyses we found that overfitting

of the SPN can also result in less stable estimates. In fact, both effects seem to balance

each other out in our comparison since the SPNs are on par with the baselines.

Nonetheless, the results indicate that in our analyzed data SPNs can benefit from de-

pendencies between the syndrome patterns if they are combined with environmental

factors. Similar experiments have been conducted for the anomaly detectors. Contrary

to the SPNs, we can observe that these approaches do not benefit from environmental
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Table 8.5: Detailed SPN results.

synthetic data real data
setting distribution average harmonic geometric average harmonic geometric

S≤1, Q1

Gaussian 0.711 0.862 0.894 0.267 0.332 0.332
Poisson 0.660 1.317 1.130 0.276 0.244 0.243
neg. binomial 0.634 0.962 1.112 0.228 0.235 0.234

S≤2, Q1

Gaussian 0.853 0.966 0.966 0.276 0.284 0.278
Poisson 0.805 1.328 1.106 0.232 0.216 0.200
neg. binomial 0.876 1.026 1.127 0.207 0.178 0.187

S≤1, Q2

Stouffer

Gaussian 1.045 1.152 1.152 0.276 0.314 0.263
Poisson 0.993 2.322 1.549 0.261 0.250 0.252
neg. binomial 1.091 1.500 1.683 0.263 0.256 0.232

S≤1, Q2

Fisher

Gaussian 0.943 1.110 1.112 0.265 0.295 0.268
Poisson 0.930 2.099 1.414 0.262 0.254 0.253
neg. binomial 0.968 1.372 1.538 0.253 0.256 0.228
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information. An explanation could be the inability to condition on the given environ-

mental attributes as all attributes are treated in the same manner by the anomaly

detectors. For example, a rare environmental scenario can lead to an high anomaly

score even though the observed syndromic situation might not be exceptional.

Comparison between S≤1 and S≤2. We can observe that outbreaks in the syn-

thetic data are better detected when monitoring single condition syndromes S≤1 while

monitoring S≤2 works better for the real data. As discussed in Section 8.2.3, we can

approximate S≤2 results when using query Q2 on SPN(S≤1) (last line of Table 8.4).

We can see that in both cases, the approximation with SPN(S≤1,Q2) does not reach

the performance of directly modelling SPN(S≤2, Q1) but in the case of real data it

improves over SPN(S≤1, Q1). Thus monitoring Q2 can be beneficial when the com-

putational costs of direct modelling higher order syndromes are prohibitive.

Analysis of parameters of the SPN. Table 8.5 shows the results of different

methods for combining p-values with respect to the distributions used in the leaves of

the SPN. The columns correspond to the method for merging p-values in sum nodes

while rows represent the setting and the used distribution. Note that p-values in the

product node are only merged if we evaluate Q2, in which case, we tested merging

with Fisher’s or Stouffer’s method.

Most notably, we observe that a simple weighted average of p-values works best on

the synthetic data regardless of the other parameter settings. Following the theoretic

results of Vovk and Wang (2020), we can only hypothesize that this is the case due

to strong dependencies between the attributes. In contrast, the results are less clear

on the real data set. For instance, regarding the negative binomial distribution, the

arithmetic mean seems to be more preferable when using S≤1 whereas the harmonic

mean achieves the highest score on S≤2. With respect to Q2 the results suggest a slight

advantage of the Fisher’s method over the Stouffer’s method on both data sets.

In summary, the results exhibit clear differences between the merging options, but

these seem to be highly dependent on the data, distributions and architectures used.

An approach that goes beyond the proposed parameter selection and makes these

decisions at each inner node of the SPN in a data-driven way could be a way of

further exploiting these gaps. We leave these extensions for future work.

8.4 Conclusion

In this chapter, we proposed the use of SPNs for modeling the joint probability dis-

tribution of syndromic data. The main technical contribution is a method for prop-

agating p-values in SPNs in order to detect anomalies as potential indicators for an
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outbreak of an infectious disease. In addition, the SPN can consider environmental

factors, such as the season, the weather, or the current level of influenza infections,

which may increase or decrease the awareness of outbreaks with particular disease

patterns.

Our empirical study revealed that our proposed approach outperforms state-of-the-art

algorithms in the field of non-specific syndromic surveillance, hence, on the task of de-

tecting emerging diseases. In particular, by taking correlation between the monitored

syndromes and environmental factors into account, the performance of our approach

improved substantially.





9
Summary and Conclusions

Infectious disease surveillance is of great importance for the prevention of major out-

breaks which otherwise would have severe consequences on public health and economy.

One of the most effective approaches to contain the spread of a disease is an early

detection of the outbreak which allows to apply control measures as soon as possible.

Therefore, either the confirmed cases or the cases with early symptoms of a particular

disease are monitored with statistical methods. Mainly based on hypothesis testing,

these methods automatically raise an alarm if an unexpected increase in the number

of infections is observed.

This thesis contributes in a variety of ways to improve outbreak detection based on

data-driven models learned over historic data. In addition to presenting an approach

that supports epidemiologists on the basis of data-driven suggestions for syndrome def-

initions, we have developed algorithms that are better at detecting sudden increases in

the number of infections than common statistical methods. Throughout our research,

we focused on traditional as well as syndromic surveillance and even extended the

application scenario to also include outbreak detection of emerging diseases with an

beforehand unknown disease pattern.

9.1 Summary

In the first part, including chapters 2, 3, and 4, concepts of probability theory, sta-

tistical hypothesis testing, machine learning and disease surveillance are reviewed to

provide a broad background knowledge about the subject of this thesis.

Based on this knowledge, we first set our focus on syndromic surveillance (cf. Sec-

tion 4.2). A particular challenge in this area is the definition of disease patterns since

they highly depend on the infectious disease and the health-related data source under

surveillance. To support epidemiologists in this process, we have presented a novel,

data-driven approach in Chapter 5 to discover such patterns in historic data. The

key idea of the proposed algorithm is to extract indicators from the health-related

data source which correlate with the reported number of infections in the respective

geographic region.
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We have evaluated our approach on patient-based data of 12 emergency departments.

In a first experiment, we could show that our proposed method is capable to recon-

struct synthetic generated disease patterns with varying characteristics. Furthermore,

we have conducted experiments to discover real disease patterns for three infectious

diseases. Our results suggest that a correlation-based learning approach for the ex-

traction of disease patterns can identify meaningful indicators that are closely related

to a particular disease under surveillance. However, these extracted disease patterns

also often include indicators which do not relate to the respective disease.

In our next contribution, we set the focus on traditional surveillance which is the

monitoring of confirmed infections (cf. Section 4.1). In Chapter 6, we proposed an

approach for this scenario which combines the output of multiple statistical methods

using a machine learning technique called stacking. Instead of relying only on the

binary output (alarm or no alarm) of the statistical algorithms, we propose to make

use of their p-values for training a fusion classifier. In addition, we also show that

augmenting additional features and adapting the labeling of an epidemic period may

further improve performance. For comparison and evaluation, a new measure is intro-

duced which captures the performance of an outbreak detection method with respect

to a low rate of false alarms more precisely than previous works.

We have performed experiments on synthetic data to evaluate our proposed approach

and the adaptations in a controlled setting. Furthermore, we used the reported cases

for the disease Salmonella and Campylobacter from 2001 until 2018 all over Germany

to evaluate on real data. The experimental results show a substantial improvement

on the synthetic data when p-values are used for learning. The results on real data

are less clear. Inconsistencies in the data, which occur under real conditions, make it

more challenging for the learning approach to identify valuable patterns for outbreak

detection.

One of the major drawbacks of common disease surveillance is that only known dis-

eases are monitored. In particular, for syndromic surveillance major efforts are spent

on the definition of syndromes which only relate to specific diseases. Consequently,

outbreaks of emerging diseases are likely to be missed by such surveillance systems.

We addressed this problem in Chapter 7 by framing outbreak detection as a general

anomaly detection task. The general idea is to monitor all available data to detect

any kind of infectious disease outbreaks. We have termed it non-specific syndromic

surveillance and provided an overview of this area from the perspective of machine

learning.

Based on our proposed unified framework with local and global modeling techniques,

we revisited published approaches and applied common anomaly detection algorithms

to the problem. In addition, we also present a set of statistical modeling techniques

which can serve as baselines in future works. In an experimental comparison of dif-

ferent approaches to non-specific syndromic surveillance we found that these simple
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statistical techniques already achieve competitive results and sometimes even outper-

form more elaborate machine learning approaches.

The compelling performance of the aforementioned statistical baselines for non-specific

syndromic surveillance has shown us that there is still potential for improvement.

Inspired by the concept of these baselines, we proposed an approach based on sum-

product networks in Chapter 8 which models the joint probability distribution of

syndromic data. On the one hand, this enables us to capture correlations of the mon-

itored syndromes. On the other hand, it even allows us to incorporate environmental

information into the monitoring process. In contrast to the conventional inference of

probabilities or densities in a sum-product network, we presented a novel approach to

properly reason with p-values in order to detect anomalies.

The conducted experiments on synthetic and real data showed that our approach is

able to outperform state-of-the-art techniques for detecting outbreaks of emerging

diseases. In particular, the performance of our approach enhanced substantially by

taking correlation between the monitored syndromes and environmental factors into

account.

9.2 Conclusions

The presented work shows the potential of machine learning to improve outbreak

detection. However, throughout the years of our research we faced several challenges

when implementing data-driven approaches in this field. In the following paragraphs,

we summarize these challenges and conclude our work.

First of all, the knowledge of experts is still indispensable for the evaluation and

supervision of machine learning methods. In particular for our first contribution (cf.

Chapter 5), the extracted disease patterns need to be validated based on the semantic

meaning of the indicators. Such kind of semantic information is difficult to incorporate

into the learning process, especially if the algorithm should be applied to a variety of

different infectious diseases. As a solution to this problem, we propose that domain

experts are required to interact with the algorithms to successively refine syndrome

definitions.

Furthermore, the lack of labeled data is one of the major problems in the area of out-

break detection. The key takeaway of our second contribution (cf. Chapter 6) is that

even if labeled data is available, the annotation is often inconsistent and heterogeneous

since a precise norm for the labeling does not exist. Especially this has an impact on

the learnability of the model which in turn lead to unexpected results, reducing the ac-

ceptance and trustworthiness in machine learning approaches among epidemiologists.

In addition, particularly for rare infectious diseases insufficient amounts of labeled
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data are available to adequately learn a supervised classifier. To overcome these chal-

lenges, we suggest to shift the attention towards unsupervised learning which does not

depend on labeled data.

Indeed, with our framework to non-specific syndromic surveillance presented in Chap-

ter 7 we aim to make the task of unsupervised outbreak detection more approachable

for the machine learning community. Based on a general anomaly detection perspec-

tive, we even extend common disease surveillance by including the surveillance of

emerging diseases, a research area not extensively studied yet. On the one hand, it

relates to conditional anomaly detection since environmental attributes can be inte-

grated into the monitoring process. On the other hand, it is a special type of anomaly

detection in which we are only interested in unexpected increases in the number of

cases for any kind of symptom pattern.

Another key advantage of this general approach to outbreak detection is transfer-

ability. While syndromic surveillance requires to design disease patterns specifically

for each data source and disease under surveillance, non-specific syndromic surveil-

lance algorithms only require to choose a set of epidemiologically relevant attributes.

Hence, they are easy to implement on a variety of different data sources. Even if

such approaches are not integrated into the active surveillance system, they can al-

ways be taken into consideration as additional evidence. For example, they can assist

epidemiologists to further support decision making in difficult epidemiological situa-

tions (Althouse et al., 2015).

Among our contributions, we can observe that the inclusion of additional informa-

tion into the monitoring process facilitates the detection of outbreaks. While for our

stacking approach (cf. Chapter 6) further indicators of the univariate time series (e.g.,

mean over the last counts) helps, we could also show in Chapter 8 that conditioning

on environmental information improves outbreak detection performance. Therefore,

we conclude that machine learning techniques offer an elegant approach to enrich the

detection by additional signals and sources of information in a highly flexible and

data-driven way. With respect to the statistical methods, we suggest to make use of

their p-values instead of binary decisions according to a pre-specified significance level.

On the one hand, it requires less specification while, on the other hand, the learning

algorithm is able to differ between the outputs more precisely.

9.3 Perspectives

Throughout this thesis, we have introduced minor and major improvements to dis-

ease surveillance. However, we only scratched the surface of what is possible with

data-driven approaches. Under consideration of the presented approaches and the
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aforementioned conclusions a variety of exciting avenues for future work exist which

we will discuss in the following paragraphs.

Most importantly, more work can be spent on non-specific syndromic surveillance. In

particular, in our research we only focused on improving common statistical methods

with machine learning. If viewed from a different perspective (cf. Section 4.7), we be-

lieve that outbreak detection performance can be further enhanced with more reliable

methods to identify clusters of infections. Indeed, the presented and revisited tech-

niques based on sum-product networks, Bayesian networks, eigenspace techniques and

association rule mining (cf. Section 7.2 and Chapter 8) already show the diversity the

problem can be encountered with. Especially our proposed baselines for non-specific

syndromic surveillance presented in Section 7.3 can serve as reference points for fu-

ture experimental comparisons. This may foster the development of algorithms in this

newly emerging field.

A major drawback of most reviewed and proposed approaches in this thesis is that they

are mainly designed to identify sudden increases of infections in the monitored data

stream. However, slight but constant changes over time in the underlying probability

distribution of the syndromic data can be indicative for an ongoing outbreak as well.

In particular, for our stacking approach presented in Chapter 6, we could show that

the mean over the last time points and the previous outputs of the statistical methods

can improve outbreak detection performance. Such kind of indicators can also be

integrated in the other proposed approaches or considered during development of

more advanced techniques.

Furthermore, an interesting avenue for future work is also the inclusion of geo-spatial

information (Robertson et al., 2010). For example, residential information of patients

captured in emergency departments can be used to detect increases of infections with

respect to a particular area. If such detailed information is not available, information

about the location can still be used to enhance the surveillance of multiple data

sources. For example, spatial correlations of pharmaceutical purchases can be used in

a region-wide monitoring of pharmacies.

Regarding Chapter 5, further work can be spent on technical improvements for our

algorithm that help to prevent overfitting (cf. Section 5.4). This may include the use

of pruning techniques to remove problematic clauses from rules or the use of different

correlation measures during the learning process. Furthermore, we believe that an

interactive learning approach to discover disease patterns is indispensable to prevent

the inclusion of undesired indicators in the patterns. The general idea is to implement

a syndrome explorer in which epidemiologists can create disease patterns interactively

based on data-driven suggestions.

With respect to our contribution presented in Chapter 8, we believe that sum-product

networks can also be used for multivariate surveillance (cf. Section 4.6). Particularly
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in traditional surveillance the monitoring of multiple infectious diseases can be uni-

fied in one model. Such a model can be further enhanced by taking environmental

information into account.

Beyond outbreak detection, we think that our novel approach to reason with p-values

in sum-product networks also contribute towards anomaly detection in general (cf.

Section 3.6). Especially, if compared to density-based approaches, p-values are supe-

rior due to their scale invariance. Moreover, they even make it possible to perform

one-sided anomaly detection by considering only left-sided or right-sided p-values.

In addition, sum-product networks can easily be extended to perform conditional

anomaly detection (Song et al., 2007) and the probability distributions used in the

leaves can be changed as desired.
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