494 research outputs found

    Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review

    Get PDF
    Exoesqueleto para incrementar la fuerza en las rodillasThere are different devices to increase the strength capacity of people with walking problems. These devices can be classified into exoskeletons, orthotics, and braces. This review aims to identify the state of the art in the design of these medical devices, based on an analysis of patents and literature. However, there are some difficulties in processing the records due to the lack of filters and standardization in the names, generating discrepancies between the search engines, among others. Concerning the patents, 74 patents were analyzed using search engines such as Google Patents, Derwent, The Lens, Patentscope, and Espacenet over the past ten years. A bibliometric analysis was performed using 63 scientific reports from Web of Science and The Lens in the same period for scientific communications. The results show a trend to use the mechanical design of exoskeletons based on articulated rigid structures and elements that provide force to move the structure. These are generally two types: (a) elastic elements and (b) electromechanical elements. The United States accounts for 32% of the technological patents reviewed. The results suggest that the use of exoskeletons or orthoses customized to the users’ needs will continue to increase over the years due to the worldwide growth in disability, particularly related to mobility difficulties and technologies related to the combined use of springs and actuators

    Powered knee orthosis for human gait rehabilitation: first advances

    Get PDF
    This paper presents a new system for a powered knee orthosis, that was designed to assist and improve the gait function of patients with gait pathologies. The system contains the orthotic device (embedded with sensors for angle and user-orthosis interaction torque measurements, and an electric actuator) and wearable sensors (inertial measurement unit, force sensitive resistors, and electromyography sensors), which allows the generation of smart rehabilitation tools and several motion assistive techniques. The main goal is to present a conceptual overview and functional description of the system and use scenarios of each component. The attachment mechanism of the orthosis to the limb is also highlighted, being composed of a straps system fixed in the mechanical links of the joint. It was noticed that users with distinct lower-limb morphologies can presents difficulties wearing the orthosis, since the device needs constant adjust to align the mechanical and human joints. The system was validated in ground-level walking on healthy subjects, with emphasis on the impact of the device in the user. The subjects reported that the orthosis is comfortable to use, easy to wear, and no issues were raised regarding the aesthetics of the device. Only the weight was assimilated as a possible hindrance (compensated in the future). Future challenges involve the inclusion of an ankle joint in the system and the use of the proposed tool in rehabilitation.This work is supported by the FCT - Fundacao para a Ciencia e Tecnologia - with the reference scholarship SFRH/BD/108309/2015, with the reference project UID/EEA/04436/2013, and by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) - with the reference project POCI-01-0145-FEDER-006941, and partially supported with grant RYC-2014-16613 by Spanish Ministry of Economy and Competitiveness

    Comparing walking with knee-ankle-foot orthoses and a knee-powered exoskeleton after spinal cord injury: a randomized, crossover clinical trial

    Get PDF
    Recovering the ability to stand and walk independently can have numerous health benefits for people with spinal cord injury (SCI). Wearable exoskeletons are being considered as a promising alternative to conventional knee-ankle-foot orthoses (KAFOs) for gait training and assisting functional mobility. However, comparisons between these two types of devices in terms of gait biomechanics and energetics have been limited. Through a randomized, crossover clinical trial, this study compared the use of a knee-powered lower limb exoskeleton (the ABLE Exoskeleton) against passive orthoses, which are the current standard of care for verticalization and gait ambulation outside the clinical setting in people with SCI. Ten patients with SCI completed a 10-session gait training program with each device followed by user satisfaction questionnaires. Walking with the ABLE Exoskeleton improved gait kinematics compared to the KAFOs, providing a more physiological gait pattern with less compensatory movements (38% reduction of circumduction, 25% increase of step length, 29% improvement in weight shifting). However, participants did not exhibit significantly better results in walking performance for the standard clinical tests (Timed Up and Go, 10-m Walk Test, and 6-min Walk Test), nor significant reductions in energy consumption. These results suggest that providing powered assistance only on the knee joints is not enough to significantly reduce the energy consumption required by people with SCI to walk compared to passive orthoses. Active assistance on the hip or ankle joints seems necessary to achieve this outcome.Peer ReviewedPostprint (published version

    Feedback-error learning for gait rehabilitation using a powered knee orthosis: first advances

    Get PDF
    Powered assistive devices have been playing a major role in gait rehabilitation. Hereby, the development of time-effective control strategies to manage such devices is a key concern to rehabilitation engineering. This paper presents a real-time Feedback-Error Learning control strategy, by means of an Artificial Neural Network as a feedforward controller to acquire the inverse model of the plant, and a Proportional-Integral-Derivative feedback controller to guarantee stability and handle with disturbances. A Powered Knee Orthosis was used as the assistive device and a trajectory generator assistive strategy, previously acquired through an inertial system, was applied. A validation with one subject walking in a treadmill at 1 km/h with the Powered Knee Orthosis controlled by the Feedback-Error Learning control was performed. Evidences on the control behavior presented good performances, with the Artificial Neural Network taking 90 seconds to learn the inverse model, which enabled a decrease in the angular position error by 75% and eliminated the phase delay, when compared to solo Proportional-Integral-Derivative feedback controller. Robust reactions to external disturbances were also achieved. The implemented Feedback-Error Learning strategy proves to be a time-effective asset to control assistive powered devices.This work has been supported in part by the Fundacao para a Ciencia e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015, and part by the FEDER Funds through the Programa Operacional Regional do Norte and national funds from FCT with the project SmartOs -Controlo Inteligente de um Sistema Ortotico Ativo e Autonomo-under Grant NORTE-01-0145-FEDER-030386, and by the FEDER Funds through the COMPETE 2020-Programa Operacional Competitividade e Internacionalizacao (POCI)-with the Reference Project under Grant POCI-01-0145-FEDER-006941 and supported by grant RYC-2014-16613 by Spanish Ministry of Economy and Competitiveness

    Role of Gait Training in Recovery of Standing and Walking in Subjects with Spinal Cord Injury

    Get PDF
    Gait training has an important role in rehabilitation of standing and walking in spinal cord injury (SCI) patients. There were different types of gait training in these subjects. Both the body weight support treadmill training and robotic-assisted and robotic exoskeleton are effective and secure methods for gait training and improving the energy demand and metabolic cost in SCI patients in different level of injury. The powered exoskeletons can provide patients with SCI the ability to walk with the lowest energy consumption. The powered exoskeleton’s energy consumption and speed of walking depend on the training duration. Based on different types of gait training methods, training time, and other affected parameters, the aim of this chapter was to evaluate the role of gait training in recovery of standing and walking in SCI patients

    Towards a human-in-the-loop control for a smart orthotic system

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)Stroke is the main cause of paralysis. This pathology has provoked a considerable increase of persons with motor impairments. With a therapy focused on each clinical case, the total or partial recovery can be achieved. Powered orthoses have been developed to promote an effective recover, based on repetitive gait training and user’s active participation. Many control approaches have been developed to control these devices, but none of them promotes an user-oriented strategy focused to the user’s needs. In an attempt of solving this issue, a new approach named Human-in-the-loop is emerging. This strategy allows the adaptation of some assistive parameters based on the user’s energetic cost, promoting a therapy tailored to each end-user needs. However, to estimate the energy expenditure, the use of non-ergonomic sensors, not suitable for clinical context, is required. Thus, it is necessary to find new ways of estimating energy expenditure using wearable and comfortable sensors. In this dissertation, the first steps to introduce the Human-in-the-loop strategy into a powered orthosis are presented. For this purpose, two strategies were developed: a strategy that allows the angular trajectory adaptation in real-time and other that promotes a stiffness adaptation all over the gait cycle. Both strategies were validated with healthy subjects. In the first strategy, the orthosis was able to modify its assistance in a fraction of microseconds, and the end-users were able to follow her with a median error below 10%. Regarding the second strategy, the results show that the orthosis allowed an effective change in the systems’ interaction stiffness, promoting an active participation of each user during its assistance. The energetic impact of using the robotic assistive device is also presented. As it promotes an energy expenditure augmentation in more than 30% in comparison to walk without the device, the necessity of implementing the Human-in-the-loop strategy was highlighted. In an attempt of finding an ergonomic technique to estimate the energetic cost, the use of machine learning algorithms was tested. The results, obtained with a MLP and a LSTM, prove that it is possible to estimate the energy expenditure with a mean error close to 11%. Future work consists in the implementation of the model in real-time and the collection of more data with the aforementioned control approaches, in a way of constructing a more robust model.O AVC é uma das maiores causas de paralisia. Esta patologia, cada vez mais com maior incidência nos jovens, tem provocado um aumento considerável de pessoas com problemas de mobilidade. Com uma terapia focada a cada caso clínico, a recuperação total ou parcial pode ser conseguida. As ortóteses ativas têm vindo a ser desenvolvidas com o propósito de promover uma recuperação eficaz, baseada em treinos repetitivos e numa participação ativa dos utilizadores. Várias abordagens de controlo têm vindo a ser desenvolvidas para controlar estes dispositivos, mas nenhuma delas promove uma estratégia orientada às necessidades do utilizador. Na tentativa de solucionar este problema, uma nova abordagem, designada por Human-in-the-loop está a emergir. Baseada no custo energético, esta estratégia permite adaptar parâmetros da assistência, promovendo uma terapia focada e direcionada a cada utilizador. No entanto, para estimar o custo energético, recorre-se ao uso de sensores que não são adequados para contexto clínico. Assim, torna-se necessário estudar novas formas de estimar o custo energético. Nesta dissertação são apresentados os primeiros passos para introduzir o controlo Human-in-the-loop numa ortótese ativa. Para isso, duas estratégias foram apresentadas: uma estratégia que permite adaptar a trajetória angular da ortótese, em tempo real, e outra que promove a adaptação da complacência do sistema ao longo do ciclo da marcha. Ambas foram validadas com sujeitos saudáveis. Relativamente à primeira abordagem, a ortótese foi capaz de modificar a sua assistência em microssegundos, e os utilizadores foram capazes de a seguir com um erro mediano inferior a 10%. No que diz respeito à segunda abordagem, os resultados mostram que a ortótese promoveu uma alteração eficaz da complacência de interação, promovendo uma participação ativa do utilizador durante a sua assistência. O impacto energético do uso do sistema robótico é, também, apresentado. Promovendo um aumento do custo energético em mais de 30%, a necessidade da estratégia Human-in-the-loop foi realçada. Na tentativa de encontrar uma técnica para estimar o custo energético, recorreu-se ao uso de machine learning. Os resultados, obtidos com uma MLP e uma LSTM, provam que é possível estimar o custo energético com um erro médio próximo dos 11%. Trabalho futuro passa pela implementação do modelo em tempo real e a recolha de mais dados com as abordagens de controlo apresentadas, de forma a construir um modelo mais robusto

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    Design and Control of Lower Limb Assistive Exoskeleton for Hemiplegia Mobility

    Get PDF

    EMG-based motion intention recognition for controlling a powered knee orthosis

    Get PDF
    Powered assistive devices have been playing a major role in gait rehabilitation. This work aims to develop a user-oriented assistive strategy with an EMG-based control using a powered knee orthosis (PKO) to provide assistive commands according to the user's motion intention tracked by electromyography (EMG) signals. To achieve this goal, the work first comprised the development of a wired EMG acquisition system, the study and implementation of a knee joint torque estimation method, and the development of a real-time controller, which uses the estimated torque as the reference actuator's torque to provide user-oriented assistance in walking. We used a proportional gain method to estimate the knee torque, which required a calibration procedure, allowing to determine the relation between the EMG signal and the actuator's torque. The EMG-based control was validated with two subjects walking in a treadmill. The EMG-based control performed as expected since it proved to be functional and time-effective when assisting the user's movements in walking at different walking speeds. Findings show that the developed assistive strategy can effectively follow the user's motion intention and has the potential for gait rehabilitation of patients with residual muscular strength.This work has been supported in part by the Fundacao para a Ciencia e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015, the reference project UID/EEA/04436/2019, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) - with the reference Project POCI-01-0145-FEDER-006941; and the LIACC Project UID/CEC/00027/2019; and with national funds from FCT project SmartOs-under Grant NORTE-01-0145-FEDER-030386

    Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: a systematic review

    Get PDF
    Abstract Background: Robotic exoskeletons have been developed to assist locomotion and address gait abnormalities in children with cerebral palsy (CP). These wearable assistive devices provide powered assistance to the lower-extremity joints, as well as support and stability. Research Question: Does exoskeleton-assisted walking improve gait in children with CP? Methods: The PRISMA guidelines were used to conduct this systematic review. Articles were obtained in a search of the following electronic databases: Embase, CINAHL Complete, PubMed, Web of Science and MEDLINE. Studies investigating spatiotemporal, kinematic, kinetic, muscle activity and/or physiological parameters during exoskeleton-assisted walking in children with CP were included. All articles were assessed for methodological quality using an adapted version of the Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group, provided by NIH. Results: Thirteen studies were included. They involved the use of the following exoskeletons: tethered knee exoskeleton, pediatric knee exoskeleton (P.REX), untethered ankle exoskeleton, WAKE-Up ankle module, WAKE-Up ankle & knee module and unilateral ankle exosuit. Methodological quality varied, with key limitations in sample size and allocated time to adapt to the exoskeleton. There was a consensus that robotic exoskeletons improve gait given careful optimisation of exoskeleton torque and sufficient exoskeleton practice time for each participant. Improvements in gait included reduced metabolic cost of walking, increased walking speed, and increased knee and hip extension during stance. Furthermore, exoskeletons with an actuated ankle module were shown to promote normal ankle rocker function. Significance: Robotic exoskeletons have the potential to improve the mobility of CP children and may therefore increase community participation and improve quality of life. Future work should involve larger controlled intervention studies utilising robotic exoskeletons to improve gait in children with CP. These studies should ensure sufficient exoskeleton practice time for each participant
    corecore