
  

  

Abstract— Powered assistive devices have been playing a 

major role in gait rehabilitation. Hereby, the development of 

time-effective control strategies to manage such devices is a key 

concern to rehabilitation engineering. This paper presents a 

real-time Feedback-Error Learning control strategy, by means 

of an Artificial Neural Network as a feedforward controller to 

acquire the inverse model of the plant, and a Proportional-

Integral-Derivative feedback controller to guarantee stability 

and handle with disturbances. A Powered Knee Orthosis was 

used as the assistive device and a trajectory generator assistive 

strategy, previously acquired through an inertial system, was 

applied. A validation with one subject walking in a treadmill at 

1 km/h with the Powered Knee Orthosis controlled by the 

Feedback-Error Learning control was performed. Evidences on 

the control behavior presented good performances, with the 

Artificial Neural Network taking 90 seconds to learn the inverse 

model, which enabled a decrease in the angular position error 

by 75% and eliminated the phase delay, when compared to solo 

Proportional-Integral-Derivative feedback controller. Robust 

reactions to external disturbances were also achieved. The 

implemented Feedback-Error Learning strategy proves to be a 

time-effective asset to control assistive powered devices. 

I. INTRODUCTION 

Traditional gait rehabilitation is progressively being 
complemented with powered assistive devices to treat 
physical limb impairments [1], [2]. Particularly, powered 
lower-limb exoskeletons and orthoses have been highlighted, 
as they increase human motor function, build up joint 
strength and rehabilitate through task-oriented training, 
acting in parallel with the user lower limb [3], [4]. 

Furthermore, the human motor control system starts to 
influence the design of bioinspired architectures for lower-
limb robotic devices, with emphasis to the human-machine 
interface [5]. Assistive strategies that ensure repetitive 
movements of the user’s limbs to, improve the movement 
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coordination and control strategies capable of providing 
adequate responses should be a concern. For this matter, 
tracking control strategies can be developed to integrate 
mechanisms based on predefined trajectories [6]. These 
assistive strategies aim to predefine the joint trajectory 
through the gait analysis of limbs movement and/or joints 
kinematics [7]. Feedback control laws, such as the 
Proportional-Derivative (PD) and Proportional-Integral-
Derivative (PID), are commonly implemented to perform the 
set trajectory tracking due to its feasibility and easy to 
implement [1], [8], [9]. Nevertheless, measurement noise in 
the feedback loop, actuation saturation in fast changing 
systems and changes in the process dynamics are limitations 
that affect these control laws and can lead the system to 
instability [10]. 

In order to overcome these drawbacks, a control law with 
a feedforward block responsible to deal with the response to 
trajectory tracking and a feedback block to handle with 
disturbances and uncertainties gives a good solution to the 
control problem. For instance, Kawato [11] suggested the 
Feedback-Error Learning (FEL) control law. It uses an 
Artificial Neural Network (ANN) as feedforward block to 
learn the inverse dynamic model of the controlled plant, by 
means of the performed feedback command output. Kawato 
ground his study on the human central nervous system, 
describing the FEL law as an inverse model learning method 
for the cerebellum [11]. 

The goal of the current work was to design, tune and 
validate a real-time FEL control, using ANN as feedforward 
controller to acquire the inverse robotic model. A tuned PID 
was used to provide the feedback motor command, to 
guarantee stability during the real-time learning process, and 
to handle with disturbances after the training procedure is 
completed. The FEL control law was tuned and validated in a 
powered assistive device [12], using a trajectory tracking 
assistive strategy for gait rehabilitation of the knee joint. The 
applied control was designed using normalized inputs to 
handle with variations in the generated trajectory, allowing 
the application of this control in several user-oriented 
trajectories. 

II. METHODS 

The implemented real-time FEL control was developed in 
the STM32F4 Discovery Board, as well as the trajectory 
tracking assistive strategy that generates the knee trajectory.  
This control was validated with a healthy subject, walking in 
a treadmill. Fig. 1 illustrates de developed strategy. 

A. Powered Knee Orthosis 

The assistive device is a powered right knee orthosis, a  
module of the lower limb robotic H2-exoskeleton (Technaid 
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S.L., Spain), a full-body system designed to assist stroke 
survivors [6]. It has embedded an electronic actuator (DC 
brushless motor) and sensors (potentiometer, among others). 
For more details about the hardware and software of the 
device see Félix et al. [12]. 

B. Trajectory Tracking Assistive Strategy 

According to [5], the high-level control of bioinspired 
control architectures for lower-limb robotic devices, 
implements the perception layer, where the user’s state is 
inferred to adjust the motion assistance. Therefore, an inertial 
system was used to acquire the user’s right knee trajectory, so 
the trajectory generator could use it as reference. As seen in 
Fig. 1, according to the desired velocity and target joint, the 
trajectory generator system in the high-level yields the 
reference angular positions. With this kind of assistive 
strategy, repetitive motions are established during the 
rehabilitation therapy, improving muscular strength and 
movement coordination in neurological patients [6]. 

C. Feedback-Error Learning 

At the lower level of the bioinspired control architecture, 
the desired states provided by the high-level layer are 
tracked. The FEL control is responsible to infer about the 
correct control commands, in order to perform the intended 
movement by means of a tuned PID feedback controller and 
a feedforward controller comprised by an ANN with the 
trained plant’s inverse model. 

1) Feedback controller  
The discrete PID feedback controller implements the 

control law presented in (1), where 𝑒𝑘 and 𝑒𝑘−1 corresponds 
to the current and previous error between the reference and 
measured angular position. The Ziegler-Nichols method was 
applied to find the correct controller gains (Kp, Ki, and Kd). 

 𝑢𝑓𝑏 = 𝐾𝑝𝑒𝑘 + 𝐾𝑖 ∑ 𝑒𝑛∆𝑡 + 𝐾𝑑
𝑘
𝑛=1

𝑒𝑘−𝑒𝑘−1

∆𝑡
 () 

The feedback controller is responsible to provide the 

feedback commands to the feedforward controller and to 
manage with disturbances that could affect the system.  

2) Feedforward controller 
The feedforward controller aims to gather the inverse 

model of the plant. The chosen method to infer it, was the 
implementation of an ANN due to its proper estimation 
performance, good generalization and capabilities to map 
non-linearities [13]. Multi-Layer Perceptron (MLP) was the 
adopted structure for the network, where each neuron is only 
connected to every neuron in the adjacent layer and the 
supervised learning was the chosen training method. The 
approach taken for the weights update was the 
backpropagation algorithm, that is based on the 
minimization of the gradient descent of the error’s prediction 
with respect to the network’s weights change. To implement 
it, the stochastic gradient descent (SGD) approach was used, 
where the weights are updated on each online training 
iteration. Table 1, identifies the chosen set-up for the ANN. 

TABLE I.  ANN’S CHARACTERISTICS. 

Input 

Nodes 

Hidden 

Nodes 

Output 

Nodes 
Training Method Learning rate 

3 4 1 

Supervised, 

Backpropagation 
SGD 

Adaptive (0.0001 

and lower) 

 
The supplied input values for the ANN were the 

reference angular position (𝜃𝑟𝑒𝑓.), which is derived to obtain 

velocity (�̇�𝑟𝑒𝑓.)  and acceleration (�̈�𝑟𝑒𝑓.). A normalization 

method to scale the data between [-1;1] was performed, as it 
reduces the estimation error, accelerates the training phase 
[14]. Moreover, it provides versatility to the training and 
testing by handling with variations in the generated trajectory 
and speed, allowing the application of this control in several 
user-oriented trajectories. 

The provided feedback command (𝑢𝑓𝑏) acts as the error 

values for the ANN to decrease in order to acquire the plant’s 
inverse model and provide feedforward commands (𝑢𝑓𝑓). 

The implemented bioinspired real-time control observed 
in Fig.1 runs at 1 kHz, making it a time-effective strategy. 
Each reference value is updated at every 72 ms, establishing 
a gait cycle with 3.5 s, imposing the desired 1 km/h gait 
velocity.  

D. Validation 

 Firstly, a validation without a user (with the PKO 
deprived of load) was performed to investigate the behavior 
of the FEL control. 

 In the target validation, a user was asked to walk at 1.0 
km/h in a level-ground on a treadmill, with the PKO 
configured with the trajectory tracking assistive strategy. In 
the last phase of the experiment and under the same 
conditions as before, the user was asked to counter the PKO 
movement in the terminal stance phase (before toe-off event) 
in order to evaluate how the controller would react to such 
disturbance, which may occur during a gait therapy.  

III. RESULTS & DISCUSSION 

In order to validate the FEL control, we analyze the 
following signals: (1) PKO trajectory measured by a 

Figure 1 – Implemented FEL strategy for trajectory gait rehabilitation, 

where 𝜃𝑚𝑒𝑎𝑠.is the measured angular position 𝜃𝑟𝑒𝑓.is the reference angular 

position, �̇�𝑟𝑒𝑓. is the reference angular velocity, �̈�𝑟𝑒𝑓.is the reference angular 

acceleration, 𝑒 is the position error, 𝑢𝑓𝑏 is the feedback command, 𝑢𝑓𝑓 is the 

feedforward command, 𝑢 the total control command, A is the potentiometer 

and B the actuator. 



  

potentiometer and reference trajectory; (2) PID and ANN 
command and (3) Evaluation of PKO position error. All 
signals were sampled with 100 Hz of frequency. Fig. 2 
depicts the acquired signals under three different gait cycle 
periods: I Initial Phase; II Middle Phase and III Final Phase. 

The first row displays the trajectory, control and error 
signals in the Initial Phase (first 11 s) of the FEL control. 
During this phase, the feedforward controller is starting to 
tune its ANN and its contribution to the total control signal 
(𝑢) it is not significant, being the feedback PID controller the 
responsible to track the reference trajectory. In the second 
row, the FEL control has performed several iterations, having 
passed about 40 s (Middle Phase). The feedforward has much 
more relevance to the overall control command, although it is 
in the middle phase of tuning process. Lastly, in the lower 
row (Final Phase) of signals in Fig. 2, the FEL control has 
learned the plant’s inverse model dynamic, and it is the main 
contributor to the total control signal. 

Regarding the Initial Phase, it is possible to see in Fig. 
2.A that, the measured trajectory has approximately 0.21 s of 
delay to the generated reference signal. This outcome is 
produced mainly by the PID control, once the feedforward 
controller is in the initial learning phase, having a much 
lower influence in the total control signal (Fig 2.B). Hence, 
the error signal in Fig. 2.C has a variance of roughly 20o. 

As the FEL controller initiates to learn the inverse model 
of the PKO, the measured position starts to decrease the 
phase difference with the generated reference signal, as can 

be seen in Fig. 2.D. However, in order to correct its phase, 
the controller produces signals that causes the PKO to 
perform a trajectory with 10o more of amplitude, as stated in 
Fig. 2.D. This is due to the fact that the ANN has not leaned 
the inverse model with the best performance yet, being in the 
middle phase of its training. In Fig. 2.E, it is possible to 
realize the increase in the ANN command signal, and that, 
respectively, the PID command signal has decreased in 
relation to its previous state. The error signal given in Fig. 
2.F has now improved, varying from 10 to -20 degrees of 
angular position. 

By observing Fig.2.G, we verified that the FEL control 
has successfully aligned the PKO trajectory with the 
reference trajectory and corrected the amplitude divergence. 
This state was observed about 90 s from the start of the FEL 
control strategy. In this phase, the dynamic inverse model of 
the plant has been adequately obtained by the ANN, being 
the feedforward controller the main grantor of the total 
control command – Fig.2.H. The PID command has now a 
mean feedback command signal of 4.4% in regard to the 
feedback command, meaning that has decrease 95.6% 
concerning its initial phase. Respecting the error value, this 
signal has decreased about 75%, comparing Fig. 2.C and Fig. 
2.I.  

Table II reviews the discussed results, analyzing the Root 
Mean Squared Error (RMSE) and phase delay between the 
reference and measured trajectories, and the contributions of 
the feedforward control (𝑢𝑓𝑓) and feedback control (𝑢𝑓𝑏), in 

the Initial, Middle and Final Phase of the FEL controller. 

Figure 2 – FEL performance control signals. A, D, G: PKO Measured trajectory and Reference trajectory signals in the Initial, Middle, and 

Final Phase, respectively; B, E, H: ANN and PID command signals in the Initial, Middle, and Final Phases, respectively; C, F, I: PKO 

Position Error in the Initial, Middle, and Final Phase. 



  

TABLE II.  FEL CONTROL PERFORMANCE. 

FEL 

Phase 

Position 

RMSE (%) 

Delay 

(s) 

uff Contribution 

(%) 

ufb Contribution 

(%) 

Initial 18 -0.21 0 100 

Middle 19 -0.06 60 40 

Final 10 0 95.6 4.4 

A. Performance to Disturbances 

Fig. 3 shows the performance of the FEL control to the 
disturbances applied to the PKO, after the acquisition of the 
inverse model. The analyzed signals were the same as before, 
i.e., the: (1) PKO measured and reference trajectory; (2) PID 
and ANN command and (3) Evaluation of PKO position 
error. 

With the learned inverse model, it was possible to 
analyze the behavior of the FEL controller to disturbances 
that could affect its performance. Hereby, in Fig. 3.A it is 
possible to inspect the moments when the user countered the 
orthosis movement, preventing it from increasing its angular 
position, in two different occasions (98 s and 205 s). 
Looking to Fig. 3.B, in that same moments, the PID 
command (𝑢𝑓𝑏) signal increases, once the error signal grows 

(see Fig. 3D) due to the displacement between the reference 
and measured position signals. Respecting the command 
signal performed by the feedforward controller, it stayed 
periodic, as the reference signals and the learned inverse 
model did not change.  

Therefore, the feedback controller successfully canceled 
the increased error signal and corrected the PKO angular 
position, preventing the FEL control from fall into an 
instability state and from damaging the user and the device. 

IV. CONCLUSIONS & FUTURE WORK 

This paper implements a real-time FEL control, using an 
ANN and PID to control a PKO. The outcomes highlight the 
improvement of the studied strategy over the solo 
implementation of a PID feedback controller. It is verified a 
substantial decrease in the position error signal with the 
elimination of the phase delay, with low training time to 
acquire the inverse model of the system. Moreover, the PID 
feedback handles with random disturbances in normal gait 
and the NN is capable of adjusting to the user-oriented 
trajectory when needed.  These findings support that the 
integration of FEL control in the low-level architecture of 

assistive devices may yield more time-effective assistive 
strategies and consequently, well-performed gait training. 

Future work comprises the validation of the stated 
strategy with more subjects and different walking 
conditions, such as walking speeds and slopes. Also, its 
analysis with distinct high-level controllers and powered 
medical devices will be addressed.  
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