15 research outputs found

    Reputation assessment in collaborative environments.

    Get PDF
    The popularity of open collaboration platforms is strongly related to the popularity of Internet: the growing of the latter (in technology and users) is a spring to the former. With the advent of Web 2.0, not only the Internet users became from passive receiver of published content to active producer of content, but also active reviewers and editors of content. With the increase of popularity of these platforms, some new interesting problems arise related on how to choose the best one, how to choose the collaborators and how evaluate the quality of the final work. This evolution has brought much benefit to the Internet community, especially related to the availability of free content, but also gave rise to the problem of how much this content, or these people, may be trusted. The purpose of this thesis is to present different reputation systems suitable for collaborative environments; to show that we must use very different techniques to obtain the best from the data we are dealing with and, eventually, to compare reputations systems and recommender systems and show that, under some strict circumstances, they become similar enough and we can just make minor adjustment to one to obtain the other

    Reputation assessment in collaborative environments.

    Get PDF
    The popularity of open collaboration platforms is strongly related to the popularity of Internet: the growing of the latter (in technology and users) is a spring to the former. With the advent of Web 2.0, not only the Internet users became from passive receiver of published content to active producer of content, but also active reviewers and editors of content. With the increase of popularity of these platforms, some new interesting problems arise related on how to choose the best one, how to choose the collaborators and how evaluate the quality of the final work. This evolution has brought much benefit to the Internet community, especially related to the availability of free content, but also gave rise to the problem of how much this content, or these people, may be trusted. The purpose of this thesis is to present different reputation systems suitable for collaborative environments; to show that we must use very different techniques to obtain the best from the data we are dealing with and, eventually, to compare reputations systems and recommender systems and show that, under some strict circumstances, they become similar enough and we can just make minor adjustment to one to obtain the other

    Reputation assessment in collaborative environments.

    Get PDF
    The popularity of open collaboration platforms is strongly related to the popularity of Internet: the growing of the latter (in technology and users) is a spring to the former. With the advent of Web 2.0, not only the Internet users became from passive receiver of published content to active producer of content, but also active reviewers and editors of content. With the increase of popularity of these platforms, some new interesting problems arise related on how to choose the best one, how to choose the collaborators and how evaluate the quality of the final work. This evolution has brought much benefit to the Internet community, especially related to the availability of free content, but also gave rise to the problem of how much this content, or these people, may be trusted. The purpose of this thesis is to present different reputation systems suitable for collaborative environments; to show that we must use very different techniques to obtain the best from the data we are dealing with and, eventually, to compare reputations systems and recommender systems and show that, under some strict circumstances, they become similar enough and we can just make minor adjustment to one to obtain the other

    Keyword-Based Querying for the Social Semantic Web

    Get PDF
    Enabling non-experts to publish data on the web is an important achievement of the social web and one of the primary goals of the social semantic web. Making the data easily accessible in turn has received only little attention, which is problematic from the point of view of incentives: users are likely to be less motivated to participate in the creation of content if the use of this content is mostly reserved to experts. Querying in semantic wikis, for example, is typically realized in terms of full text search over the textual content and a web query language such as SPARQL for the annotations. This approach has two shortcomings that limit the extent to which data can be leveraged by users: combined queries over content and annotations are not possible, and users either are restricted to expressing their query intent using simple but vague keyword queries or have to learn a complex web query language. The work presented in this dissertation investigates a more suitable form of querying for semantic wikis that consolidates two seemingly conflicting characteristics of query languages, ease of use and expressiveness. This work was carried out in the context of the semantic wiki KiWi, but the underlying ideas apply more generally to the social semantic and social web. We begin by defining a simple modular conceptual model for the KiWi wiki that enables rich and expressive knowledge representation. A component of this model are structured tags, an annotation formalism that is simple yet flexible and expressive, and aims at bridging the gap between atomic tags and RDF. The viability of the approach is confirmed by a user study, which finds that structured tags are suitable for quickly annotating evolving knowledge and are perceived well by the users. The main contribution of this dissertation is the design and implementation of KWQL, a query language for semantic wikis. KWQL combines keyword search and web querying to enable querying that scales with user experience and information need: basic queries are easy to express; as the search criteria become more complex, more expertise is needed to formulate the corresponding query. A novel aspect of KWQL is that it combines both paradigms in a bottom-up fashion. It treats neither of the two as an extension to the other, but instead integrates both in one framework. The language allows for rich combined queries of full text, metadata, document structure, and informal to formal semantic annotations. KWilt, the KWQL query engine, provides the full expressive power of first-order queries, but at the same time can evaluate basic queries at almost the speed of the underlying search engine. KWQL is accompanied by the visual query language visKWQL, and an editor that displays both the textual and visual form of the current query and reflects changes to either representation in the other. A user study shows that participants quickly learn to construct KWQL and visKWQL queries, even when given only a short introduction. KWQL allows users to sift the wealth of structure and annotations in an information system for relevant data. If relevant data constitutes a substantial fraction of all data, ranking becomes important. To this end, we propose PEST, a novel ranking method that propagates relevance among structurally related or similarly annotated data. Extensive experiments, including a user study on a real life wiki, show that pest improves the quality of the ranking over a range of existing ranking approaches

    Complex Event Processing with XChangeEQ

    Get PDF
    The emergence of event-driven architectures, automation of business processes, drastic cost-reductions in sensor technology, and a growing need to monitor IT systems (as well as other systems) due to legal, contractual, or operational considerations lead to an increasing generation of events. This development is accompanied by a growing demand for managing and processing events in an automated and systematic way. Complex Event Processing (CEP) encompasses the (automatable) tasks involved in making sense of all events in a system by deriving higher-level knowledge from lower-level events while the events occur, i.e., in a timely, online fashion and permanently. At the core of CEP are queries which monitor streams of "simple" events for so-called complex events, that is, events or situations that manifest themselves in certain combinations of several events occurring (or not occurring) over time and that cannot be detected from looking only at single events. Querying events is fundamentally different from traditional querying and reasoning with database or Web data, since event queries are standing queries that are evaluated permanently over time against incoming streams of event data. In order to express complex events that are of interest to a particular application or user in a convenient, concise, cost-effective and maintainable manner, special purpose Event Query Languages (EQLs) are needed. This thesis investigates practical and theoretical issues related to querying complex events, covering the spectrum from language design over declarative semantics to operational semantics for incremental query evaluation. Its central topic is the development of the high-level event query language XChangeEQ. In contrast to previous data stream and event query languages, XChangeEQ's language design recognizes the four querying dimensions of data extractions, event composition, temporal relationships, and, for non-monotonic queries involving negation or aggregation, event accumulation. XChangeEQ deals with complex structured data in event messages, thus addressing the need to query events communicated in XML formats over the Web. It supports deductive rules as an abstraction and reasoning mechanism for events. To achieve a full coverage of the four querying dimensions, it builds upon a separation of concerns of the four querying dimensions, which makes it easy-to-use and highly expressive. A recurrent theme in the formal foundations of XChangeEQ is that, despite the fundamental differences between traditional database queries and event queries, many well-known results from databases and logic programming are, with some importance changes, applicable to event queries. Declarative semantics for XChangeEQ are given as a (Tarski-style) model theory with accompanying fixpoint theory. This approach accounts well for (1) data in events and (2) deductive rules defining new events from existing ones, two aspects often neglected in previous work of semantics of EQLs. For the evaluation of event queries, this work introduces operational semantics based on an extended and tailored form of relational algebra and query plans with materialization points. Materialization points account for storing and maintaining information about those received events that are relevant for, i.e., can contribute to, future query answers, as well as for an incremental evaluation that avoids recomputing certain intermediate results. Efficient state maintenance in incremental evaluation is approached by "differentiating" algebra expressions, i.e., by deriving expressions for computing only the changes to materialization points. Knowing how long an event is relevant is a prerequisite for performing garbage collection during event query evaluation and also of central importance for developing cost-based query planners. To this end, this thesis introduces a notion of relevance of events (to a given query plan) and develops methods for determining temporal relevance, a particularly useful form based on time-related information

    The TXM Portal Software giving access to Old French Manuscripts Online

    Get PDF
    Texte intégral en ligne : http://www.lrec-conf.org/proceedings/lrec2012/workshops/13.ProceedingsCultHeritage.pdfInternational audiencehttp://www.lrec-conf.org/proceedings/lrec2012/workshops/13.ProceedingsCultHeritage.pdf This paper presents the new TXM software platform giving online access to Old French Text Manuscripts images and tagged transcriptions for concordancing and text mining. This platform is able to import medieval sources encoded in XML according to the TEI Guidelines for linking manuscript images to transcriptions, encode several diplomatic levels of transcription including abbreviations and word level corrections. It includes a sophisticated tokenizer able to deal with TEI tags at different levels of linguistic hierarchy. Words are tagged on the fly during the import process using IMS TreeTagger tool with a specific language model. Synoptic editions displaying side by side manuscript images and text transcriptions are automatically produced during the import process. Texts are organized in a corpus with their own metadata (title, author, date, genre, etc.) and several word properties indexes are produced for the CQP search engine to allow efficient word patterns search to build different type of frequency lists or concordances. For syntactically annotated texts, special indexes are produced for the Tiger Search engine to allow efficient syntactic concordances building. The platform has also been tested on classical Latin, ancient Greek, Old Slavonic and Old Hieroglyphic Egyptian corpora (including various types of encoding and annotations)

    View-based textual modelling

    Get PDF
    This work introduces the FURCAS approach, a framework for view-based textual modelling. FURCAS includes means that allow software language engineers to define partial and overlapping textual modelling languages. Furthermore, FURCAS provides an incremental update approach that enables modellers to work with multiple views on the same underlying model. The approach is validated against a set of formal requirements, as well as several industrial case studies showing its practical applicability

    The Design of Graphical Process Modeling Languages: from Free Composition to Modular Construction

    Get PDF
    Un Process Modeling Language (PML) grafico \ue8 un linguaggio specializzato per la modellazione di sistemi software in termini di processi. Tale linguaggio \ue8 detto grafico perch\ue8 la rappresentazione principale dei modelli consiste in diagrammi ottenuti combinando costrutti grafici e componenti precedentemente definiti. Un Process-Aware Information System (PAIS) \ue8 un sistema software guidato da modelli di processi con lo scopo di coordinare e supportare gli agenti nello svolgimento delle loro attivit\ue0. Tale sistema \ue8 responsabile della gestione simulatanea di diverse istanze di processo e del bilanciamento delle risorse disponibili. Un PML \ue8 l'interfaccia principale di un PAIS ed un aspetto fondamentale della sua progettazione, poich\ue8 \ue8 utilizzato da utenti finali, consulenti, e sviluppatori al fine di comprendere, implementare ed eseguire processi complessi. L'utilizzo di tecnologie PAIS pu\uf2 essere considerevolmente limitato dalle carenze di un PML nel descrivere casi complessi. Lo scopo principale della tesi \ue8 migliorare la progettazione di PML grafici al fine di costruire PAIS pi\uf9 efficaci. Tale obiettivo \ue8 perseguito attraverso tre percorsi interconnessi: per prima cosa, i PMLs esistenti e la loro teoria sottostante sono stati analizzati al fine di individuare pregi e difetti; successivamente, una tecnica di verifica molto diffusa in questo campo \ue8 stata consolidata ed estesa con una nuova tecnica per la correzione automatica di processi. Infine, una diversa soluzione per il design di PMLs \ue8 stata esplorata attraverso la definizione di un nuovo linguaggio, chiamato NestFlow, che migliora la modularit\ue0 e la comprensibilit\ue0 attraverso l'adozione di un approccio strutturato alla modellazione di processi. Un approccio modulare \ue8 possible solo se gli aspetti legati ai dati sono accettati come aspetto primario nel design di un PML. NestFlow cerca di semplificare l'attivit\ue0 di modellazione fornendo un insieme integrato di costrutti di control-flow e data-flow, promuovendo i secondi come aspetti principali nella modellazione di processi.A graphical Process Modeling Language (PML) is a language tailored for modeling software systems by means of process models. It is said to be graphical because the primary representation of models are diagrams obtained combining visual constructs and previously defined components. Graphical PMLs are interesting as they open the design space to new geometric representations of complex interrelated aspects like concurrency and interaction. A Process-Aware Information System (PAIS) is a software system driven by explicit process models with the aim to coordinate and support agents in performing their activities. It is responsible for managing several process model instances at the same time balancing the available resources. A PML is the primary interface of a PAIS and a main concern in its design, because it is used by end-users, consultants, and developers for understanding, implementing and enacting complex processes. The adoption of PAIS technology may be severely limited by the weakness of PMLs in describing complex use cases. The overall aim of this thesis is to improve the design of graphical PMLs in order to engineer more effective PAISs. This goal is pursued following three intertwined paths: firstly, mainstream PMLs and their theoretical foundations are analyzed for exposing their features and limits; secondly, a widespread PML verification method is consolidated and then extended with a novel technique for automating process correction; finally, an alternative PML design solution is explored through a proof-of-concept language, called NestFlow, that improves both modularity and comprehensibility by providing a more structured modeling approach. A modular approach is only possible if data-flow dependencies are accepted as a main concern in PML design. NestFlow tries to ease the modeling activity by providing a comprehensive set of tightly integrated control-flow and data-flow constructs, promoting the latter as first-class citizens in process modeling

    Constructive Reasoning for Semantic Wikis

    Get PDF
    One of the main design goals of social software, such as wikis, is to support and facilitate interaction and collaboration. This dissertation explores challenges that arise from extending social software with advanced facilities such as reasoning and semantic annotations and presents tools in form of a conceptual model, structured tags, a rule language, and a set of novel forward chaining and reason maintenance methods for processing such rules that help to overcome the challenges. Wikis and semantic wikis were usually developed in an ad-hoc manner, without much thought about the underlying concepts. A conceptual model suitable for a semantic wiki that takes advanced features such as annotations and reasoning into account is proposed. Moreover, so called structured tags are proposed as a semi-formal knowledge representation step between informal and formal annotations. The focus of rule languages for the Semantic Web has been predominantly on expert users and on the interplay of rule languages and ontologies. KWRL, the KiWi Rule Language, is proposed as a rule language for a semantic wiki that is easily understandable for users as it is aware of the conceptual model of a wiki and as it is inconsistency-tolerant, and that can be efficiently evaluated as it builds upon Datalog concepts. The requirement for fast response times of interactive software translates in our work to bottom-up evaluation (materialization) of rules (views) ahead of time – that is when rules or data change, not when they are queried. Materialized views have to be updated when data or rules change. While incremental view maintenance was intensively studied in the past and literature on the subject is abundant, the existing methods have surprisingly many disadvantages – they do not provide all information desirable for explanation of derived information, they require evaluation of possibly substantially larger Datalog programs with negation, they recompute the whole extension of a predicate even if only a small part of it is affected by a change, they require adaptation for handling general rule changes. A particular contribution of this dissertation consists in a set of forward chaining and reason maintenance methods with a simple declarative description that are efficient and derive and maintain information necessary for reason maintenance and explanation. The reasoning methods and most of the reason maintenance methods are described in terms of a set of extended immediate consequence operators the properties of which are proven in the classical logical programming framework. In contrast to existing methods, the reason maintenance methods in this dissertation work by evaluating the original Datalog program – they do not introduce negation if it is not present in the input program – and only the affected part of a predicate’s extension is recomputed. Moreover, our methods directly handle changes in both data and rules; a rule change does not need to be handled as a special case. A framework of support graphs, a data structure inspired by justification graphs of classical reason maintenance, is proposed. Support graphs enable a unified description and a formal comparison of the various reasoning and reason maintenance methods and define a notion of a derivation such that the number of derivations of an atom is always finite even in the recursive Datalog case. A practical approach to implementing reasoning, reason maintenance, and explanation in the KiWi semantic platform is also investigated. It is shown how an implementation may benefit from using a graph database instead of or along with a relational database
    corecore