
Complex Event Processing with XChangeEQ:
Language Design, Formal Semantics, and Incremental

Evaluation for Querying Events

Dissertation

zur Erlangung des akademischen Grades des
Doktors der Naturwissenschaften

an der Fakultät für Mathematik, Informatik und Statistik
der Ludwig-Maximilians-Universität München

von
Michael Eckert

22. Oktober 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Hochschulschriften der LMU

https://core.ac.uk/display/11030415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Erstgutachter: Prof. Dr. François Bry
(Ludwig-Maximilians-Universtät München)

Zweitgutachter: Prof. Dr. Martin L. Kersten
(Centrum Wiskunde & Informatica, Amsterdam)

Tag der mündlichen Prüfung: 09. Dezember 2008

3

Im Gedenken und Liebe/
In memory and love

Käthe Tomin, geb. Strathmann
∗ 15.06.1913 † 27.07.2005

4

5

Abstract

The emergence of event-driven architectures, automation of business processes, drastic cost-
reductions in sensor technology, and a growing need to monitor IT systems (as well as other
systems) due to legal, contractual, or operational considerations lead to an increasing generation
of events. This development is accompanied by a growing demand for managing and processing
events in an automated and systematic way. Complex Event Processing (CEP) encompasses the
(automatable) tasks involved in making sense of all events in a system by deriving higher-level
knowledge from lower-level events while the events occur, i.e., in a timely, online fashion and
permanently.

At the core of CEP are queries which monitor streams of “simple” events for so-called complex
events, that is, events or situations that manifest themselves in certain combinations of several
events occurring (or not occurring) over time and that cannot be detected from looking only at
single events. Querying events is fundamentally different from traditional querying and reasoning
with database or Web data, since event queries are standing queries that are evaluated permanently
over time against incoming streams of event data. In order to express complex events that are of
interest to a particular application or user in a convenient, concise, cost-effective and maintainable
manner, special purpose Event Query Languages (EQLs) are needed.

This thesis investigates practical and theoretical issues related to querying complex events,
covering the spectrum from language design over declarative semantics to operational semantics
for incremental query evaluation. Its central topic is the development of the high-level event query
language XChangeEQ.

In contrast to previous data stream and event query languages, XChangeEQ’s language design
recognizes the four querying dimensions of data extractions, event composition, temporal rela-
tionships, and, for non-monotonic queries involving negation or aggregation, event accumulation.
XChangeEQ deals with complex structured data in event messages, thus addressing the need to
query events communicated in XML formats over the Web. It supports deductive rules as an
abstraction and reasoning mechanism for events. To achieve a full coverage of the four querying
dimensions, it builds upon a separation of concerns of the four querying dimensions, which makes
it easy-to-use and highly expressive.

A recurrent theme in the formal foundations of XChangeEQ is that, despite the fundamental
differences between traditional database queries and event queries, many well-known results from
databases and logic programming are, with some importance changes, applicable to event queries.
Declarative semantics for XChangeEQ are given as a (Tarski-style) model theory with accompa-
nying fixpoint theory. This approach accounts well for (1) data in events and (2) deductive rules
defining new events from existing ones, two aspects often neglected in previous work of semantics
of EQLs.

For the evaluation of event queries, this work introduces operational semantics based on an
extended and tailored form of relational algebra and query plans with materialization points.
Materialization points account for storing and maintaining information about those received events
that are relevant for, i.e., can contribute to, future query answers, as well as for an incremental
evaluation that avoids recomputing certain intermediate results. Efficient state maintenance in
incremental evaluation is approached by “differentiating” algebra expressions, i.e., by deriving
expressions for computing only the changes to materialization points. Knowing how long an event
is relevant is a prerequisite for performing garbage collection during event query evaluation and also
of central importance for developing cost-based query planners. To this end, this thesis introduces
a notion of relevance of events (to a given query plan) and develops methods for determining
temporal relevance, a particularly useful form based on time-related information.

6

7

Zusammenfassung

Die Einführung von ereignisgesteuerten Architekturen, die Automatisierung von Geschäfts-
prozessen, kostengünstige Sensortechnik und die rechtlich, vertraglich oder betrieblich bedingte
Überwachung von Informationssystemen erzeugen mehr und mehr Ereignisse. Diese Entwicklung
wird begleitet von einer zunehmenden Notwendigkeit, Ereignisse systematisch und automatisch
zu verwalten und zu verarbeiten. Complex Event Processing (CEP) hat zur Aufgabe höheres,
wertvollen Wissen aus Ereignissen abzuleiten während diese passieren, also kontinuierlich und
zeitnah.

Zentral in CEP sind Anfragen, die Ströme von ”einfachen“ Ereignissen überwachen, um so-
genannte komplexe Ereignisse (engl.: complex events) zu erkennen. Komplexe Ereignisse sind Er-
eignisse oder Situationen, die sich durch das gemeinsame, zeitlich verteilte Auftreten (oder Nicht-
Auftreten) von mehreren Ereignissen äußern und nicht erkannt werden können, indem man nur
einzelne Ereignisse betrachtet. Anfragetechniken für Ereignisse unterscheiden sich grundlegend
von traditionellen Anfrage- und Schlußtechniken für Datenbanken oder Web-Daten, denn Ereig-
nisanfragen sind stehende Anfragen, die mit Zeit fortwährend gegen einen ankommenden Strom
von Ereignisdaten ausgewertet werden. Zur bequemen, kostengünstigen und leicht wartbaren Be-
schreibung von komplexen Ereignissen, die für eine bestimmte Anwendung oder einen bestimmten
Benutzer von Interesse sind, bedarf es spezieller Ereignisanfragesprachen.

Die vorliegende Arbeit beschäftigt sich mit praktischen und theoretischen Fragestellungen zu
Anfragen nach komplexen Ereignissen. Das abgedeckte Themenspektrum reicht von Sprachde-
sign über deklarative Semantik bis zu operationaler Semantik für eine inkrementelle Anfrage-
auswertung. Der rote Faden der Arbeit ist die Entwicklung der höheren Ereignisanfragesprache
XChangeEQ.

Im Gegensatz zu vorherigen Datenstrom- und Ereignisanfragesprachen trägt das Sprachdesign
von XChangeEQ den vier Anfragedimensionen Rechnung: Extraktion von Daten, Komposition von
Ereignissen, zeitliche Zusammenhänge und, für nicht-monotone Anfragen mit Negation oder Ag-
gregation, Akkumulation von Ereignissen. XChangeEQ kann mit komplex strukturierten Daten in
Ereignissen umgehen, wie sie häufig in Ereignissen, die in XML-Formaten über das Web kom-
muniziert werden, zu finden sind. Als Abstraktions- und Schlußmechanismus werden deduktive
Regeln unterstützt. Um eine vollständige Abdeckung der vier Anfragedimensionen zu erreichen,
baut XChangeEQ auf einer Trennung dieser Dimensionen auf, was die Sprache leicht benutzbar
und ausdrucksstark macht.

Ein Leitmotiv in den formalen Grundlagen von XChangeEQ ist, daß trotz der grundlegenden
Unterschiede zwischen traditionellen Datenbankanfragen und Ereignisanfragen viele bekannte Er-
gebnisse aus der Forschung über Datenbanken und Logikprogrammierung —mit einigen wichtigen
Änderungen— auf Ereignisanfragen anwendbar sind. Die deklarative Semantik von XChangeEQ

wird als (Tarski-)Modelltheorie mit begleitender Fixpunkttheorie angegeben. Dieser Ansatz eignet
sich besonders zur Behandlung von (1) Daten in Ereignissen und (2) deduktive Regeln, die neue
Ereignisse aus existierenden ableiten. Diese beiden Aspekte wurden in vorherigen Arbeiten zur
Semantik von Ereignisanfragesprachen oft vernachlässigt.

Zur Auswertung von Ereignisanfragen führt diese Arbeit eine operationale Semantik ein, die auf
einer erweiterten und spezialisierten Form von relationaler Algebra sowie auf Anfrageplänen mit
ausgezeichneten Punkten für Materialisierung aufbaut. Die Materialisierungspunkte dienen dazu,
Informationen über Ereignisse, die relevant für zukünftige Antworten sein können, zu speichern.
Ferner sind sie zweckdienlich für eine inkrementelle Auswertung, die eine wiederholte Berech-
nung bestimmter Zwischenergebnisse vermeidet. Die effiziente Aktualisierung der Zustände von
Materialisierungspunkten basiert auf der ”Differenzierung“ von Algebraausdrücke, d.h., darauf
neue Ausdrücke abzuleiten, die nur die nötigen Änderungen berechnen. Eine Speicherbereinigung
während der Anfrageauswertung setzt voraus zu wissen, wie lange ein Ereignis relevant ist. Die-
ses Wissen ist auch von zentraler Bedeutung, um kostenbasierte Anfrageoptimierer zu entwickeln.
Dazu führt diese Arbeit einen Begriff der Relevanz von Ereignissen (bezüglich einem gegebenen
Anfrageplan) ein und entwickelt eine Methode zur Bestimmung der temporalen Relevanz, einer
besonders nützlichen Form, die auf zeitbezogenen Informationen basiert.

8

9

Acknowledgments

The work presented in this thesis would not be what is today without the support and contribution
of many people. Foremost, I would like to express my gratitude to my thesis advisor François
Bry for his continuous support and encouragement. The many fruitful discussion with him have
shaped all aspects of this work as well as my life in research and teaching. I am also indebted to
Martin Kersten for taking on the burden of being the external reviewer for this thesis.

It has been a great pleasure to work with all the people in the programming and modeling
languages research group at the University of Munich (LMU). Sacha Berger, Norbert Eisinger,
Tim Furche, Alex Kohn, Jakub Kotowski, Benedikt Linse, Bernhard Lorenz, Hans Jürgen Ohlbach,
Paula-Lavinia Pătrânjan, Edgar-Philipp Stoffel, Klara Weiand, and Christoph Wieser, have been
fellow researchers and together created an excellent work environment. I greatly enjoyed the time
spent talking to you, listening to you, and teaching with you. The administrative and technical
staff of the group, Stefanie Heidmann, Martin Josko, Ellen Lilge, Uta Schwertel, and Ingeborg von
Troschke, have contributed greatly to making things run smoothly in our group. I thank them for
this and for sometimes even managing to make filling out the most confusing and boring forms a
fun experience.

The following students have worked with me on their theses and deserve my thanks: Hendrik
Grallert has worked on the demonstration of an XChange use case, Stephan Leutenmayr has sur-
veyed languages for Web Service composition, Fatih Coşkun has developed declarative semantics
for the pattern-based updates of XChange, and Hai-Lam Bui is currently working on a comparison
of event query languages in practical applications.

The following colleagues have worked with me on joint publications and on the project pro-
posal “Management of Events on the Web (MEOW)” and not been mentioned yet: Bruno Bers-
tel, Philippe Bonnard, Thomas Geyer, Martin Kluge, Peter Knaack, Inna Romanenko, Nikolaus
Seifert, and Sanja Vranes. I thank them as well as the numerous colleagues from the REWERSE
Network of Excellence.

The research in this work has been partly funded by the European Commission and the Swiss
Federal Office for Education and Science within the 6th Framework Programme project REW-
ERSE (number 506779, see http://rewerse.net). Not only has the funding of this project made
many travels to conferences possible; the network of colleagues that has grown in this project
has greatly helped improved this work. I am also indebted to the Studienstiftung des Deutschen
Volkes and the German-American Fulbright Commission for their financial and non-financial sup-
port during my studies prior to the work on this thesis.

Last but not least, I deeply thank my family, especially my parents, for always supporting and
encouraging me.

10

Contents

I Complex Event Processing 15

1 Introduction 17
1.1 Applications involving Complex Events . 19
1.2 Event Query Languages . 23
1.3 Motivation . 25
1.4 Contributions . 27
1.5 Organization of this Thesis . 28

2 From Data to Events on the Web 31
2.1 Data on the Web . 32
2.2 Reasoning on the Web . 34
2.3 Reactivity on the Web . 40
2.4 Events on the Web . 41

3 State of the Art 47
3.1 Querying Complex Events Unraveled . 47
3.2 Composition-Operator-Based Event Query Languages 49
3.3 Data Stream Query Languages . 56
3.4 Production Rule Languages . 63
3.5 Comparison . 68
3.6 Hybrid Approaches . 71

4 Background: Xcerpt and XChange 75
4.1 Xcerpt: Querying and Reasoning on the Web . 75
4.2 XChange: Reactivity on the Web . 80
4.3 Summary . 85

II XChangeEQ: An Expressive High-Level Event Query Language 87

5 Language Design 89
5.1 Four Dimensions of Querying Events . 89
5.2 Separation of Concerns: Expressivity and Ease-of-Use 90
5.3 Seamless Integration into the (Reactive) Web . 91
5.4 Reasoning with Events . 92
5.5 Declarative Language and Simplicity . 92
5.6 Semantics . 93
5.7 Extensibility . 93

11

12 CONTENTS

6 Syntax and Informal Semantics of XChangeEQ 95
6.1 Representation of Events . 95
6.2 Querying Simple Events . 96
6.3 Absolute Timer Events . 97
6.4 Deductive Rules for Events . 100
6.5 Reactive Rules for Events . 101
6.6 Composition of Events . 103
6.7 Relative Timer Events . 104
6.8 Temporal (and other) Relationships . 106
6.9 Event Accumulation . 109
6.10 Stratification: Limits on Recursion . 110
6.11 RelEQ: A Simplified, Relational Variant . 111

7 Use Cases 113
7.1 Business Activity Monitoring in Order Processing 113
7.2 Monitoring of Sensor Events in a SCADA Application 118

III Declarative Semantics 123

8 Declarative Semantics: Motivation and Overview 125
8.1 Motivation . 125
8.2 Requirements and Desiderata . 126
8.3 Overview of our Approach . 127

9 Model Theory 129
9.1 Basic Definitions: Time and Events . 129
9.2 Matching and Constructing Simple Events . 130
9.3 Interpretation and Entailment . 132
9.4 Models . 133

10 Fixpoint Theory 139
10.1 Stratification: Limits on Recursion . 139
10.2 Immediate Consequence Operator . 141
10.3 Fixpoint Interpretation . 142

11 Theorems 143
11.1 Well-Defined and Unambiguous Semantics . 143
11.2 Suitability for Event Streams . 143
11.3 Proof of Theorem 1 . 144
11.4 Proof of Theorem 2 . 147

IV Incremental Evaluation of Complex Event Queries 149

12 Operational Semantics: Requirements and Overview 151
12.1 Basics of Event Query Evaluation . 151
12.2 Desiderata and Design Decisions . 155
12.3 General Ideas . 158

13 Complex Event Relational Algebra (CERA) 161
13.1 Expressing Event Queries in Relational Algebra . 161
13.2 Formal Definition of CERA . 167
13.3 Temporal Preservation in CERA . 174
13.4 Translation of single XChangeEQ rules into CERA 175

CONTENTS 13

14 Query Plans and Incremental Evaluation 185
14.1 Incremental Evaluation Explained . 185
14.2 Query Plans with Materialization Points . 186
14.3 Incremental Evaluation and Finite Differencing . 189
14.4 Translation of Rule Programs into Query Plans . 193
14.5 Query Plan Rewriting . 197
14.6 Relationship with other Approaches . 200

15 Relevance of Events 203
15.1 Motivation: Garbage Collection, Query Planning 203
15.2 Temporal Relevance: Problem Definition . 204
15.3 Determining Temporal Relevance Conditions . 207
15.4 Algorithm . 211
15.5 Using Temporal Relevance for Garbage Collection 216
15.6 Outlook: Variations and other Forms of Relevance 217
15.7 Related Work . 220

16 Proof-of-Concept Implementation 223
16.1 Using the XChangeEQ Prototype . 223
16.2 Building XChangeEQ from the Source Code . 227
16.3 Overview of Source Code . 228
16.4 Current Limitations of Prototype . 233

V Conclusions and Outlook 237

17 Language Design Revisited 239
17.1 Separation of Concerns w.r.t. Four Dimensions . 239
17.2 Event Data and Querying Events in XML formats 241
17.3 Event Composition and Garbage Collection . 243
17.4 Temporal Relationships . 244
17.5 Event Accumulation . 244
17.6 Support for Deductive and Reactive Rules . 245
17.7 Formal Semantics . 246
17.8 Extensibility . 247
17.9 Summary . 247

18 Future Work on XChangeEQ 249
18.1 Rules and Language Design . 249
18.2 Time . 251
18.3 Data and State . 253
18.4 Event Query Evaluation . 255

19 Research Perspectives in Complex Event Processing 261
19.1 Querying Complex Events . 261
19.2 Event Query Evaluation and Optimization . 264
19.3 Beyond Querying of Complex Events . 268
19.4 Complex Event Processing an a Larger Context . 269

20 Summary and Conclusion 273

14 CONTENTS

VI Appendix 275

A EBNF Grammars 277
A.1 Conventions on EBNF Notation . 277
A.2 (Core) Xcerpt Term Grammar . 277
A.3 XChangeEQGrammar . 278
A.4 RelEQ Grammar . 279

B Proofs about Operational Semantics 281
B.1 Temporal Preservation of CERA . 281
B.2 Correspondence between Relations and Σ, τ . 281

Bibliography 283

About the Author 301

Part I

Complex Event Processing

15

Chapter 1

Introduction

Events are omnipresent in modern computer and information systems and play a key role in driving
their behavior. Current and future systems face an increasing generation of events, which can be
attributed to the following factors:

• a shift from the traditional user-request-driven interaction on the Web towards a more dy-
namic, event-driven interaction caused by Web 2.0 technology and subscription-oriented
services such as RSS feeds [VH07],

• a demand for automation of business processes [Hav05], which is accompanied by an adoption
of Web Service standards [ACKM04] and Service Oriented Architecture (SOA) [PvdH07],

• emerging popularity of Event-Driven Architecture (EDA), especially in the context of dis-
tributed systems [MFP06], Enterprise Application Integration (EAI) [HW03], and as a com-
plement to Service Oriented Architecture (SOA) [Sch03],

• drastic reductions in the cost of sensor hardware and new sensor technologies such as Ra-
dio Frequency Identification (RFID) [NMMK07] and intelligent networked sensor nodes
[ASSC02], which lead to a wide-spread deployment of sensors,

• a need to monitor IT systems (as well as other systems) due to legal, contractual, or opera-
tional considerations, often in near real-time [Luc02, McC02].

Unsurprisingly, this increase in the amount of generated events is accompanied by a growing
demand for managing and processing events in an automated and systematic way. The (automat-
able) tasks involved in making sense of all events in a system by deriving higher-level knowledge
from lower-level events while the events occur, i.e., in a timely, online fashion and permanently,
are commonly summarized under the term Complex Event Processing (CEP).

In particular, CEP involves monitoring streams of “simple” (or atomic) events for complex
(or composite) events, that is, events or situations that cannot be detected from looking only at
single events. They manifest themselves in certain combinations of several events occurring (or
not occurring) over time and have to be inferred. Combinations of events that are of interest to a
particular application or user are commonly expressed in a special purpose language, a so-called
(Complex) Event Query Language (EQL).

It is worth emphasizing that event queries are standing queries that are evaluated in an online
manner while events occur. This online processing distinguishes event queries and CEP from
other technologies like queries in databases or data warehouses. While these also sometimes work
with event-related data (e.g., a customer’s history of purchases), their processing is done in an
off-line manner after the events have occurred and they conceptually work with “spontaneous,”
one-time queries rather than standing queries. This difference between traditional database queries
and event queries is also illustrated in Figure 1.1, and will be discussed in more detail later on
(Section 1.2.2).

17

18 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the difference between traditional database queries and event queries.

This thesis investigates practical and theoretical issues related to querying complex events,
covering the spectrum from query language design over declarative semantics to techniques for
query evaluation (operational semantics). Its central topic is the development of a high-level
event query language called XChangeEQ. Outstanding features of its language design are that it
deals with complex structured data in event messages, thus addressing the need to query events
communicated in XML formats over the Web, that it supports deductive rules as an abstraction
and reasoning mechanism for events, and that it builds upon a separation of concerns in the
supported query features, which makes it easy-to-use and highly expressive. XChangeEQ builds
on the Web query language Xcerpt for accessing data in events; it design and foundations are
however generic in the sense that other query languages could be used for accessing event data,
too. In particular, XChangeEQ is not tied tightly to the XML data model, and extensions of Xcerpt
to support querying RDF [BFB+05, BFLP08] can be carried over into XChangeEQ without much
difficulty and effort.

A recurrent theme in the formal foundations of XChangeEQ is that, despite the fundamental
differences between traditional database queries and event queries, many well-known results from
traditional query answering from databases and logic programming are, with some importance
changes, applicable to event queries. Declarative semantics for XChangeEQ are given as a (Tarski-
style) model theory with accompanying fixpoint theory. This approach accounts well for (1) data in
events and (2) deductive rules defining new events from existing ones, two aspects often neglected
in previous work of semantics of event query languages.

Operational semantics are based on an extended and tailored form of relational algebra called
CERA and query plans that consist of equations in the style of (materialized) views. Building on
the foundation of database queries is not just helpful for understandability, it also lets event queries
benefit from many results in database research (e.g., join algorithms, adaptive query evaluation).
Further, the uniformity in the foundations of event queries and traditional queries is beneficial
in systems and languages where event and non-event data is processed together — and queries
should be optimized or analyzed together. This is quite common, especially for Event Condition
Action (ECA) rules, where the E-part is an event query, the C-part a traditional query, and the
parts share information through variable bindings.

1.1. APPLICATIONS INVOLVING COMPLEX EVENTS 19

Since complex event queries are standing queries that are evaluated over time against a stream
of incoming events and that produce answers (complex events) on the fly and promptly, their eval-
uation is very different from traditional queries. It requires storing and maintaining information
about those received events that are relevant for, i.e., can contribute to, future query answers.
For efficiency reasons, it usually also has to store and maintain intermediate results. To this end,
we introduce so-called materialization points in query plans that account for the information that
must be stored and maintaining. The state maintenance of these materialization points is ap-
proached by “differentiating” relational algebra expressions (more precisely, CERA expressions),
i.e., by deriving expressions for computing the state changes.

In this setting of evaluation over time, knowing how long an event is relevant (to a given set of
queries) is a prerequisite for performing garbage collection during event query evaluation and also
of central importance for developing cost-based query planners. To this end, this thesis introduces
a notion of relevance of events (to a given set of complex event queries) and develops methods for
determining temporal relevance, a particularly useful form based on time-related information. A
prototype implementation of XChangeEQ accompanies this thesis and demonstrates feasibility of
the proposed language and operational semantics.

1.1 Applications involving Complex Events

Event-driven applications are characterized by reacting automatically to events, which may be
generated by the application software itself or come from external sources such as other commu-
nicating applications, human users, or sensors. Complex Events in an event-driven application
usually originate from a need to acquire information that is spread over several simple events (as
well as other data sources).

We detail now some classes of applications that heavily involve complex events and thus can
benefit strongly from using dedicated Complex Event Processing technology such as an event
query language. We also mention some of the typical challenges these applications pose.

1.1.1 Asynchronous Messaging in Heterogeneous Environments

Different applications often use messages or events as a means to communicate and exchange
information. This is particularly common in Enterprise Application Integration (EAI) scenarios
[HW03]. For example it is common that applications such as a Web application for online shopping,
a desktop application for call-center agents entering purchase orders, an order processing system,
and several inventory management applications must exchange information. Asynchronous mes-
saging offers a flexible and scalable way to realize this integration. Asynchronous messaging also
has performance advantages over other ways when the applications are distributed (i.e., run on
different servers)

However, the different applications that are to be integrated often have been developed and
evolved independently leading to a heterogeneous environment. To integrate them properly, event
messages must be transformed, enriched, and combined on their way from one application to
another. Three common CEP-related problems and solutions encountered in such scenarios that
can benefit from using an event query language are:

Event Translation Due to heterogeneity, applications often speak a different “language,” i.e.,
use different data formats and schemas for their event messages. When one application should
react to events generated by another application, a translation of the events can be required as
an intermediate step. For example, an order processing application might produce an order event
in XML containing separate elements for a customer’s first name, last name, street, city, and zip
code. A shipping application that reacts to such an order event might however expect data in
a different format, e.g., just a single element with the whole address. Translation is not limited
to schemas and can also concern data formats, e.g., one application expecting events as XML
data, another as Java objects. Strictly speaking, such an event translation is not yet Complex

20 CHAPTER 1. INTRODUCTION

Event Processing. Rather it is “Simple” Event Processing since the information in an event is not
combined with other information. However, such “simple” transformations, which would typically
be realized using an XML query and transformation language such as XSLT, XQuery, or Xcerpt,
should of course be supported by CEP technology, and we will revisit this issue in Section 1.3 of
this chapter and also in Chapter 5.

Enrichment of Event Content with External Information In the case of a translation,
events contain all necessary information and it is just structured differently. Sometimes events
produced by one application simply lack information expected by a consuming application. In this
case it is necessary to “enrich” the event with information from external sources. For example,
a Web shop application might generate an order event containing only a customer number, while
the order processing system expects a customer’s address. A query to a customer database must
be used to obtain a customer’s address based on her number and provide the event with the
missing information. Importantly, the enrichment of the event happens outside this individual
applications, because changing the applications might be expensive or impossible.

Event Composition Lastly, there are situations where several events must be combined into
one single event. Consider a shopping application where products from several groups (e.g., books,
CDs, DVDs) can be purchased together and are delivered together; there is a single Web shop and
a single shipping system, but each product group might have a separate order processing system.
Order events from the Web shop need to first be split for processing individual items in their
appropriate order processing system. The output events from the order processing systems then
in turn must be pieced back together into a single (composed) shipping event for the shipping
system. Note that there are two reasons why event composition is needed: first there is a lack of
information and the difference from event enriching is that the required information comes from
other events and not a database or other static source; second there is a need to synchronize, i.e.,
execution of the common task shipping needs to be blocked until all order processing systems have
completed their tasks.

Enterprise Application Integration (EAI) based on asynchronous messaging is a broad subject
and there are many other CEP-related issues. We refer to [HW03] for a deeper introduction;
the three issues above correspond to its patterns Message Translator, Content Enricher, and
Aggregator, respectively.

An important challenges for CEP in EAI settings is that event data typically has a complex,
often document-like, structure. In particular, event messages are often in an XML format such as
SOAP1 [G+03], Common Base Event (CBE) [IBM04], or Electronic Business using XML (ebXML)
[ebX]. In addition to the complex structure, there is also great heterogeneity with respect to
schemas used in different applications, data formats, and communication platforms. A further
issue is that, in a business context, CEP must pay attention to issues such as reliability (no lost
events even in the presence of communication failures), security (encryption and authentication of
events), and transactions (atomicity of operations, order of events, compensation of uncompleted
actions etc.).

1.1.2 Monitoring in Computing Environments

In the EAI examples above, events have been drivers of primary (or operative) business functions
(such a selling goods). Event processing functionality (such as translation, aggregation) has been
used in realizing a specific business process. To properly manage their operations and detect
existing or emerging problems and opportunities, however, companies also require monitoring of
their business processes.

When performed in (near) real-time, this monitoring is called Business Activity Monitoring
(BAM) and driven by events [McC02, GDP+06, JP06]. Single events are usually not very mean-

1SOAP originally was an acronym for “Simple Object Access Protocol.” However, this meaning has been dropped
with version 1.2, since it was considered misleading.

1.1. APPLICATIONS INVOLVING COMPLEX EVENTS 21

ingful in a BAM context; instead many events have to be summarized to yield so-called key
performance indicators (KPIs). An example of a KPI could be the average time taken between a
customer’s order and shipping, and a manager might want to receive a warning automatically and
immediately when this number exceeds a limit of 24 hours. Since we aggregate (here: compute
an average), events from many business processes (and possibly also other sources such as IT
infrastructure) need to be combined and this is where CEP and event queries are useful.

BAM is just one particular instance of event-based monitoring in computing environments.
Another example is in the context of Service Level Agreements (SLAs) [PS06]: with an SLA,
the provider of a service (e.g., a credit card verification service) gives (contractual) guarantees
to service users concerning aspects such as the service’s availability (e.g., uptime of 99.9%), or
performance (e.g., average response time of less than 10 seconds). User will often want to monitor if
a provider keeps the agreed service level and this again requires processing of events and associated
information (e.g., service requests, replies, and the time elapsed between them).

It is worth noting in this context that one application’s or system’s complex event can be
conceived as an (incoming) atomic event by another application or system. For example an SLA
monitoring application may work hard to derive an SLA violation from many single events; once
it is detect it can be fed however as an atomic event into, e.g., a BAM application.

Important for monitoring applications such as BAM or SLA monitoring is that complex event
queries are easy to change and adapt because they have a strong dependency on the monitored
entities. For example, a change in a business process will usually lead to corresponding changes in
BAM queries in order to keep them working as intended. Further, defining “meaningful” queries,
i.e., that are useful to business, can be challenging. In the case of BAM, meaningful KPIs need to
be identified (usually together with thresholds) from a business perspective and then translated
into event queries. In the case of SLAs, translating an agreed service level (e.g., uptime of 99.9%)
into event queries raises difficult questions of how to actually measure it.

1.1.3 Processing of Sensor Data

Events from the physical world are observed in computers through sensors connected to communi-
cation networks. Sensor data is susceptible to faulty and imprecise measurements due to physical
limits (e.g., limited precision of a temperature sensor), outside influence (e.g., dust triggering a
smoke alarm), malfunctions (e.g., caused by a blown fuse or other hardware defects), as well as
lost data (e.g., due to communication failures) [JAF+06, EN03]. Further, sensor data provides
typically rather “low-level” input that is used to detect “higher-level” application-specific situa-
tions. For example, a burglar alarm system wants to detect break-ins (high-level situation) and is
provided with low-level data such as (intensity of) vibrations at doors and windows. The task of
combining data form multiple sensors is often also called Multi-Sensor Data Fusion.

Concrete examples of applications involving sensor networks are: supply chain management
using sensors to obtain location information of products equipped with RFID tags [NMMK07],
tracking and monitoring of cargo containers [SM06], intelligent intrusion detection on sensor-
equipped fences [WTV+07], and monitoring of industrial facilities such as factories or power
plants with Supervisory Control and Data Acquisition systems (see next section).

In contrast to the applications previously discussed, sensor data is mainly non-symbolic data
(i.e., measured numerical data) and can require rather application-specific computations. Ex-
amples of application-specific computations include smoothing of a series of sensor readings or
elimination of outliers in measurements.

A new aspect is also introduced by intelligent sensors (also known as motes or sensors nodes),
which combine an embedded processor, wireless networking facilities, and sensors, and are usually
powered by battery [ASSC02]. Power consumption characteristics of these sensors give rise to a
number of optimization problems. Computation is far less expensive than communication lead-
ing to a trade-off between local computation at the sensor and computation at a central node.
Short-range communication can be less expensive than long-range communication, which becomes
relevant when event detection requires data from several sensors that are in proximity (the central
node is usually further away than close-by sensor nodes) [WTV+07].

22 CHAPTER 1. INTRODUCTION

1.1.4 Supervisory Control and Data Acquisition

Supervisory Control and Data Acquisition (SCADA) [BW03] Systems are event-driven systems
used in monitoring and controlling large and distributed industrial installation and infrastructures
such as factories, manufacturing lines, power plants, oil and gas pipelines, and facilities in transport
systems (e.g., airports, train stations). They collect and interpret data such as meter readings from
sensors and equipment status reports from embedded control units with the aim of controlling the
overall system. It must be emphasized that they work on a supervisory level: A SCADA system
in a train station will, for example, monitor an elevator for its status but not control its normal
operations (taking requests, moving between floors, opening and closing doors). However in the
case of a fire emergency, the SCADA system will intervene or override the normal elevator control.
This may entail ensuring that the elevator is parked on a floor with a safe evacuation route for
passengers, opening doors, and switching the elevator off to avoid further use.

A trend in SCADA systems is to strive for generic systems [DS99a] and more recently to base
these systems on Web-standards such as XML and Web Services [BLO+08]. Instead of developing
a SCADA system from scratch for some given individual facility, a generic system is customized to
meet the needs of the facility is used. Currently customization is mainly based on “plugging-in”
modules written in some general purpose programming language (typically the same language used
to implement the generic part of the SCADA system). Complex event query languages, together
with reactive rules, are expected to play an important role for customizing generic SCADA systems
in the near future, since they are more flexible and easier to develop and maintain than procedural
code.

CEP in SCADA systems primarily addresses the need to derive higher-level, symbolic events
(e.g., fire) from lower-level, numeric sensory input (e.g., temperature, smoke), which has already
been mentioned for other applications involving sensor data. Higher-level symbolic events are in
particular important for programming automatic or semi-automatic reactions ranging from simple
rules (e.g., upon a fire alarm activate sprinkler) to complex workflows (e.g., emergency plans that
involve evacuation, shutting of fire doors, notification of rescue personal, etc.). Often inference
can be context-sensitive and depend on circumstances such as different modes of operation in a
system (e.g., summer vs. winter operations, normal vs. emergency operations).

Monitoring and control in SCADA systems often involves human operators. They thus also
raise issues concerning the presentation and visualization of information derived from events.
Human operators must be enabled to quickly judge situations and make decisions.

SCADA systems also face issues of heterogeneity. Manufacturers of different devices often
use different communications protocols. Recently, this issue is approached by building on open,
Web-based standards for data formats and communication protocols. Often are employed to
translate to and from existing proprietary protocols. An example of this is the Facility Control
Markup Language (FCML) [BLO+08], which provides an XML format for events and HTTP-based
communication.

Since SCADA systems are often used for detecting and reacting to emergencies, a further
unusual issue is found in them. Some CEP-related functionality is vital to the purpose of the
system, e.g., detection of emergencies, but is rarely exercised or used. Defects, be they from
design flaws in the software or from malfunctioning hardware, are thus easily overseen. Because
field tests of such emergencies can be potentially expensive, the use high-level languages and
formalism is particularly desirable to find defects through simulation and verification beforehand.

1.1.5 Summary: Causes of Complex Events

Not every event-driven application needs complex event processing. For example, almost all cur-
rent frameworks for programming graphical user interface are event-driven, but usually there are
no complex events involved. One can argue that the notion of what constitutes an event is often
a design choice made during application development. Accordingly, it is possible in many cases to
choose a design where simple events satisfy the needs of their consumers and no need to combine
information from several simple events, i.e., generate complex events, arises. However we have

1.2. EVENT QUERY LANGUAGES 23

just seen some cases where such a design is not possible or desirable. Looking at these example,
the need for complex events can typically be attributed to at least one of the following:

• Fusion: In sensor networks, information is spread over many events by inherent limitations
such as geographical distribution (one sensor can only measure at one location) or physical
and technical limits (e.g., measurement errors). These inherent limitations make a fusion of
event data through complex event processing necessary.

• Integration: In enterprise application integration, complex events are not inherent: appli-
cations could have been designed or be changed so that they can be integrated only using
simple events and no complex events. However this is often not possible (one cannot forsee all
later integration needs in the development process), not cost-efficient (changing applications
is expensive), or desirable (a design using only simple events is not necessarily better because
the granularity may be too coarse or too fine). Complex event processing is needed to inte-
grate applications and systems, especially when their integration has not been anticipated
in their original design.

• Monitoring: When events are used for monitoring, this often entails that they are used
for purposes other then intended. For example, business events have the primary purpose
of driving a business process. Business Activity Monitoring is not their primary purpose,
only a secondary use of them. Through this secondary use comes again the problem that
information is spread over several events and thus a need for complex event processing.
This is in contrast to the previous causes of fusion and integration, where complex event
processing was needed to realize primary functionality.

Note that the boundaries of the three causes are often overlapping and depend on the perspec-
tive on the system.

1.2 Event Query Languages

Event Query Languages are a vital part of Complex Event Processing, allowing users to specify
known queries or patterns of events.

1.2.1 Benefits of Event Query Languages

When an application requires detection of a given set of complex events, it is of course possible
to program their detection “manually” in a general purpose programming language (usually the
language used to program the application itself). There are however compelling reasons to use a
dedicated high-level event query language, such as the one developed in this thesis:

• Ease of programming: An event query language allows to program on a high abstraction
level that focuses on the query’s logic rather than programming on a low level an actual
detection algorithm. Even when they do not aim for high performance, detection algorithms
are usually complicated since they involve state maintenance (storing of events and partial
answers) and require a form of manual memory management (removing events and partial
answers that have become irrelevant).

• Flexibility and Maintainability: High-level languages make the resulting code more
flexible and easier to maintain. This is especially important in dynamic environments and
organizations where software has to be adapted frequently to meet changing requirements or
has to be integrated with other (independently developed) software. In particular, use of an
event query language leads to a decoupling of the event logic from the rest of the application
logic. Event logic (i.e., event queries) can be exchanged independently of application logic,
possibly even at runtime without recompiling as well as stopping and restarting the whole
application.

24 CHAPTER 1. INTRODUCTION

• Optimization: An event query language gives rise to query compilers and evaluation en-
gines that do automatic performance optimization, thus taking this burden off the program-
mer’s shoulders. This is especially important since many query optimization techniques
conflict with maintainability when they are programmed manually. A particularly severe
case of this is multi-query optimization, which exploits similarities between several queries.
Since it leads to a sharing of data structures and operations between queries, a change in a
single query will potentially affect all other queries.

• Program (or Query) Analysis: The restricted nature of special purpose event query
languages makes reasoning about (some) interesting properties of event queries more feasible
than in general purpose programming languages. Examples of interesting query analysis
tasks for event queries include the identification of temporal bounds on the relevance of
event as introduced in Chapter 15, which is a foundation for automatic garbage collection
and cost-based planning, or the verification of correctness with respect to some specification
as in [EPBS07].

1.2.2 Relationship to Traditional (Database) Query Languages

Querying events has much in common with traditional database query languages for relational data
(e.g., SQL [GUW01], datalog [AHV95]), Web data (e.g., XQuery [B+07b], Xcerpt [SB04, Sch04]),
and Semantic Web data (e.g, SparQL [PS08], OWL-QL [FHH04], Xcerpt [BFLP08, DW07]). In
particular, event messages are, as seen in Section 1.1, often in a conventional data format such as
XML. Processing of these messages includes tasks addressed by traditional query languages such
as selecting, transforming, and aggregating event data.

However, there are important discrepancies between the capabilities and premises of traditional
query languages and the specific requirements in querying events:

• Events are received over time in a stream-like manner, while in a database all facts are
available at once and usually stored on disk.

• Event streams are unbounded into the future, potentially infinite, whereas databases are
finite. This has especially consequences for non-monotonic query features such as negation
or aggregation. It also entails a need for garbage collection of events that become irrelevant
over time.

• Relationships between events such as temporal order or causality play an important role for
querying events. In databases, relationships between facts are usually part of the data (e.g.,
references with foreign keys).

• Timing of answers has to be considered when querying events: event queries are evaluated
continously against the event stream and generate answers at different times. These answers
may trigger actions such as updates to a database. Typically actions are sensitive to ordering;
hence it is important when an answer is detected.

• Query evaluation and optimization for event streams require different methods than for
databases. In event streams a large number of (standing) queries are evaluated against
small pieces of incoming data (events). Evaluation is thus usually data-driven rather than
query-driven. Evaluation also involves state maintenance for a (partial) history of events and
to avoid recomputing intermediate results. Many optimizations rely on exploiting similarities
between queries rather than clustering and indexing data.

These discrepancies make traditional query languages and engines unsuitable for the task of
querying events and entail a need for a tailored event query language and engine.

1.3. MOTIVATION 25

1.3 Motivation

Development of XChangeEQ is guided by the motivation of providing a high-level language for
querying events. It aims at a language design that is easy to use and allows query programmers
to work on a high abstraction level, as well as at strong formal foundations. Previous work
on event query languages, which is surveyed in Chapter 3, has paid considerably less attention to
language design and little work has been done on formal foundations such as declarative semantics
or mathematically clean operational semantics.

Our experience with other event query languages shows that many complex event queries are
hard to express, not expressible at all, or prone to misinterpretations (cf. Chapters 3 and 17).
This also includes our own, earlier approach for querying complex events in the reactive language
XChange [Păt05, BEP06b] based on composition operators, which is described in [Eck05, BEP06a,
BEP06b]. XChangeEQ’s language design incorporates lessons learned from these difficulties and
uses logic-like formulas (in a tailored syntax) to express complex event queries rather than a
multitude of algebra-like composition operators. XChangeEQ integrates as a “sub-language” into
the reactive language XChange, replacing its original event composition operators [Eck05, BEP06a,
BEP06b]. This relationship is also reflected in the name of XChangeEQ, where EQ stands for Event
Queries.

XChangeEQ goes beyond the state of the art in event query languages in the following ways:

Pattern-Based Querying of Event Data Events, or more precisely their representations,
contain data that describes the context and circumstances of the event. A purchase order2 event,
for example, will contain data describing buyer, seller, product, quantity, agreed price, and so on.
As we have seen in the application examples in the previous section, this data is often provided in
an XML format and can thus have a fairly complex, often document-like structure. XChangeEQ

addresses the need for dealing with semi-structured data by embedding the Web query language
Xcerpt [SB04, Sch04] for specifying classes of relevant events, extracting data (in form of variable
bindings), and constructing new events. Due to its pattern-based approach, where queries work
like a form or template that is put on top of the queried data, Xcerpt is easy to use and has a very
intuitive visualization, visXcerpt [BBS03, BBSW03]. Xcerpt also aims at being versatile in the
Web data formats that can be queries; extensions of Xcerpt to query, e.g., RDF data [BFLP08]
are therefore also immediately applicable to XChangeEQ.

Although it seems obvious that data in events must be accessed as part of (complex) event
queries, most early event query languages have neglected this aspect. Later event query languages
usually consider data in an event as a collection of attribute-value pairs or as a fixed arity tuple,
which is a considerable step forward but does not address the specifics of query semi-structured
data such as XML.3

Although XChangeEQ embeds Xcerpt and endorses its pattern-based approach, its design and
its foundations are generic in the sense that it can in principle also embed other query languages
for accessing and constructing event data. The common denominator is that the embedded query
language must expose in some form bindings for variables.

High Expressivity in all Querying Dimensions As part of work on XChangeEQ, we have
identified the following four complementary dimensions (or aspects) of event queries: data extrac-
tion, event composition, temporal (and other) relationships between events, and event accumula-

2A purchase order (PO) is formal document used in commerce constituting a buyer’s legal offer to a supplier to
buy products or services (with specified prices, quantities, etc.). In eCommerce, such documents are often written
in a standardized XML format in order to be machine processable.

3An exception are the original event composition operators in XChange, which use Xcerpt to query XML data
in same fashion as XChangeEQ. Note that despite its title, [BKK04] does not address querying events that include
XML data; rather it is about events such as insertions or mouse clicks that are generated by interacting with an
XML document according to the Document Object Model [Pix08]. Work in [BFF+07] adds construct for temporal
windows on streams to XQuery, but the stream there is a single XML document (with XML tags being “events”),
not a stream of events where each event is a separate XML document.

26 CHAPTER 1. INTRODUCTION

tion. How well an event query language covers each dimension gives a practical measure for its
expressiveness. The four dimensions are explained in detail in Chapter 5.

XChangeEQ’s language design enforces a separation of the four querying dimensions. This
yields in a very clear language design, syntax and semantics that are easy to read and understand,
and gives programmers the benefit of a separation of concerns. Event more importantly, this sep-
aration, where each dimension of a query is independent and arbitrary combinations are possible,
contributes to XChangeEQ’s high expressivity. Deficiencies in the expressivity as well as possible
misinterpretations found in other event query languages can often be attributed to the fact that
the querying dimensions are mixed (cf. Chapter 17). Furthermore, the separation contributes to
XChangeEQ’s extensibility, which is useful, e.g., for embedding a temporal reasoner such as CaTTS
[BRS05] that can support application-specific calendric notions such as “business day” or “lecture
period” or for supporting non-temporal relationships between events such as causality.

Deductive Rules XChangeEQ supports deductive rules for defining new, “virtual” events from
the existing ones (i.e., those that are received in the incoming event streams), much in the same
fashion one uses views (or rules) in databases to define new, derived data from existing base
data. Support for deductive rules in an event query language is highly desirable: Rules serve as
an abstraction mechanism, making query programs more readable. They allow to define higher-
level application events from lower-level (e.g., database or network) events. Different rules can
provide different perspectives (e.g., of end-user, system administrator, corporate management) on
the same (event-driven) system. Rules allow to mediate between different schemas for event data.
Additionally, rules can be beneficial when reasoning about (vertical) causal relationships of events
[Luc02].

Only very few event languages support purely deductive rules, and programmers often have
to resort to using reactive rules [BBB+07] to the same effect. We argue however, that deductive
(event) rules are inherently different from reactive rules because they aim at expressing “virtual
events,” not actions. Accordingly and importantly, deductive rules are free of side-effects. Imple-
menting deductive rules using reactive rules blurs this distinction with negative consequences for
development, maintainability, and optimization. Furthermore, deductive rules can be given very
clear logic semantics, while reactive rules only have execution semantics, which are intrinsically
more complicated.

Seamless Integration with Reactive Rule Language Deductive rules can be used to de-
rive new events, but they cannot specify to take certain actions such as updating a database
in response to events. Despite the advantages of deductive rules, event-based systems therefore
usually still require reactive rules, typically Event-Condition-Action (ECA) rules, or some similar
formalism.4 To this end, XChangeEQ integrates seamlessly as a “sub-language” into XChange
[Păt05, BEP06b].5

XChange is a reactive rule language addressing the need for both local (at a single Web node)
and global (distributed over several Web nodes) evolution and reactivity on the Web. It is based
on ECA rules of the form “ON event query IF Web query DO action.” When events answering the
event query are received and the Web query is successful (i.e., has a non-empty result), the rule’s
action is executed.

XChange, like XChangeEQ, builds on the pattern-based approach of Xcerpt for querying data,
and additionally provides for pattern-based updating of Web data [Păt05, Coş07]. Development of

4An example of a similar, alternative formalism is implicit invocation or “callback (registration),” where a
component can “register” a procedure for an event, and generation of the event by other components causes this
procedure to be called (see, e.g., [GS94]). The difference between reactive rules and implicit invocation is that
implicit invocation has to be programmed manually (requiring use of pointers or references to procedures or objects
implementing a specific event listener interface) and, as a consequence, hides the association of events and actions
(procedures) relatively deep in the application code.

5As mentioned previously, XChangeEQ replaces XChange’s original event composition operators, which are
described in [Eck05, BEP06a, BEP06b]. These original composition operators (together with other approaches
based on composition operators) will be discussed in Chapter 3, and also compared with XChangeEQ in Chapter 17.

1.4. CONTRIBUTIONS 27

Xcerpt, XChange, and now XChangeEQ follows the vision of a stack of homogenous languages for
performing common tasks on Web data such as querying, transforming, and updating static data,
as well as reacting to changes, propagating updates, and querying events. When a programmer
has mastered the basics of querying Web data with Xcerpt’s query terms, she can progress quickly
and with smooth transitions to more advanced tasks. XChange as well as Xcerpt are covered in
Chapter 4.

Further to XChangeEQ’s role as a sub-language in XChange, it can also be used as a stand-alone
event query engine or in other ECA languages or frameworks such as the General Semantic Web
ECA Framework described in [MAA05a, MAA05b] and its later incarnations MARS [BFMS06]
and r3 [AA07].

Formal Foundations Traditional (non-event) query languages have very strong formal foun-
dations. While a number of event query languages have been proposed both from research and
industry, the field of event querying still lacks comparable formal foundations. This lack of formal
foundations has also been a topic discussed on a recent Dagstuhl seminar on event processing
[CEvA07]. Most notably, both declarative and operational semantics are desirable.

This thesis attempts to rectify this situation by providing both declarative semantics and
operational semantics for XChangeEQ. It shows that many well-known approaches and results
from traditional database queries apply, or apply with changes, to event queries, too. In doing
so, it also shows where new concepts and methods are needed (e.g., data-driven evaluation, event
relevance) — and where existing ones can be leveraged (e.g., model-theoretic semantics, join
algorithms, program and query transformations).

While the formal foundations are developed for XChangeEQ, both the foundations themselves
and results obtains from them are important in their own right and transfer also to other event
query languages and evaluation formalisms. The background of XChangeEQ as a concrete language
makes the discussions easier to understand and helps to indicate the practical relevance of these
investigations. Last not least, XChangeEQ as a high-level language raises some issues that are not
present in lower-level and less expressive event query languages such as rule chaining or relevance
of events.

1.4 Contributions

The previous section has already given a first glimpse into the contributions of this thesis, mainly
from the focus of language development. We now elaborate the contributions in detail, and with
a more technical focus.

Survey and Comparison of Event Query Languages A number of event query languages
have been developed in the past, but so far there are no comprehensive surveys and comparisons
of these languages. We therefore survey existing languages and identify three prevalent “styles” of
languages: composition operators, data stream languages, and production rules. XChangeEQ, the
language developed in this work, introduces a fourth style, where queries are written in way that
is reminiscent of logical formulas (but in a tailored and more human-friendly syntax). We also
compare these different styles analytically in terms language design, expressiveness, semantics,
and the environments in which they are used.

Four Dimensions of Querying Events As part of the language design of XChangeEQ, we
identify four dimensions that a sufficiently expressive event query language must cover. These
dimensions are called data extraction, event composition, temporal and other relationships between
events, and event accumulation. At the very heart of XChangeEQ is the idea that a language must
separate these four dimensions in order to achieve full expressivity. This separation of dimensions
is in contrast to other, previous event query languages.

28 CHAPTER 1. INTRODUCTION

Event Query Language XChangeEQ The central topic of this work is the development of
the event query language XChangeEQ. The distinctive features of XChangeEQ have already been
discussed in Section 1.3: pattern-based querying of event data in particular in XML formats, high
expressivity, support for deductive rules, seamless integration with the reactive Web language
XChange, and strong formal foundations. We introduce the syntax and informal semantics of
XChangeEQ in a tutorial-like manner. Use cases illustrate the use of XChangeEQ in practical
applications and serve to substantiate its claims with regards to expressivity and ease-of-use.

Declarative Semantics We specify declarative semantics for XChangeEQ by a (Tarski-style)
model theory with accompanying fixpoint theory. This approach has the important advantage
that is accounts well for data in events and deductive rules, two aspects that have often been
neglected in semantics of other event query languages. While the model-theoretic approach is a
well-established for traditional, non-event query and rule languages, its application to an event
query language is novel and we highlight the extensions that are necessary. We also prove that our
declarative semantics are suitable for querying events that arrive over time in unbounded event
streams.

Complex Event Relational Algebra As first corner stone of operational semantics, we in-
troduce a variant of relational algebra called CERA. The core idea is to obtain an algebra that is
expressive enough to evaluate XChangeEQ but still restricted enough to be suitable for the incre-
mental, step-wise evaluation that is required for complex event queries. We also provide details
on how XChangeEQ rules are translated into CERA expression and prove correctness with respect
to the declarative semantics.

Query Plans and Incremental Evaluation The second corner stone of our operational se-
mantics are query plans with so-called materialization points and their incremental evaluation.
Incremental evaluation depends heavily on which intermediate results we “materialize,” that is,
store across the different evaluation steps. The materialization points of our query plans serve
to capture this information and also address other issues such as chaining of deductive rules and
multi-query optimizations. Our approach with materialization points is thus more flexible than
related approaches for event query evaluation because it is not bound to a fixed strategy for which
intermediate results are materialized. The changes that must be made in each evaluation step
to the contents of a materialization point are described by algebra expressions that are obtained
through a technique called finite differencing.

Temporal Relevance for Garbage Collection The third corner stone of our operational
semantics is to enable garbage collection based on the relevance of events and intermediate re-
sults. In other event query languages, the issue of garbage collection is usually not considered
because these languages either are less expressive (so that temporal relevance is trivial) or be-
cause they require more work from programmers (e.g., explicit specification of time windows or
manual garbage collection). We develop a precise definition of relevance and temporal relevance
and develop a method for statically (i.e., at compile time) determining temporal relevance based
temporal conditions in queries.

1.5 Organization of this Thesis

This thesis is structured into five parts, each consisting of several chapters.
The first part (Complex Event Processing), which includes this chapter, introduces into the

topic of CEP. Chapter 2 sets the stage for CEP on the Web and describes some basic Web
technology that is relevant in the scope of this thesis. Chapter 3 surveys and compares existing
event query languages. Chapter 4 describes the Web query language Xcerpt and the reactive Web
language XChange as needed for understanding XChangeEQ.

1.5. ORGANIZATION OF THIS THESIS 29

The second part (XChangeEQ: An Expressive High-Level Event Query Language) develops the
language XChangeEQ. Chapter 5 discusses the language design of XChangeEQ. Chapter 6 presents
the syntax and informal semantics of XChangeEQ. Chapter 7 illustrates the use of XChangeEQ

with practical use cases.
The third part (Declarative Semantics) develops declarative semantics for XChangeEQ. Chap-

ter 8 motivates the need for declarative semantics, establishes requirements and desiderata, and
gives an overview of our approach. Chapter 9 defines the model theory, which is the heart of our
declarative semantics. Chapter 10 defines a fixpoint theory (based on the model theory), which
serves to obtain a single model for stratified XChangeEQ programs. Chapter 11 shows that this
model is well-defined and unambiguous, and that our declarative semantics is suitable for queries
against event streams.

The fourth part (Operational Semantics) develops operational semantics that are the basis
of an incremental evaluation of XChangeEQ. Chapter 12 establishes requirements and gives an
overview of the used approach. Chapter 13 defines a variant of relational algebra called CERA,
shows that CERA is suitable for an incremental evaluation of event queries, and describes the
translation of XChangeEQ rules into CERA expressions. Chapter 14 introduces the notion of
query plans with materialization points and their incremental evaluation. Chapter 15 defines
the notion of relevance as needed for garbage collection and develops an algorithm for statically
determining temporal relevance. Chapter 16 describes the proof-of-concept implementation of
XChangeEQ that accompanies this thesis.

The fifth part (Conclusions) rounds off this thesis. Chapter 17 revisits language design and
illustrates the advantages of XChangeEQ over other event query languages. Chapter 18 discusses
opportunities for future work on XChangeEQ. Chapter 19 broadens the scope and discusses more
general research perspectives in Complex Event Processing. Chapter 20 is a summary and con-
clusion.

30 CHAPTER 1. INTRODUCTION

Chapter 2

From Data to Events on the Web

The World Wide Web (WWW or Web, for short) [BL99] started out as a distributed hypertext
system. User would retrieve documents as well as other information, e.g., pictures, from (Web)
servers on the Internet using the Hypertext Transfer Protocol (HTTP) [F+99]. Documents and
other files on the Web were identified by Uniform Resource Locators (URLs) [BLMM94], which
have been subsequently replaced by Uniform Resource Identifiers (URIs) [BLFM05] and Interna-
tionalized Resource Identifier (IRIs) [DS99b]. Documents were written in the Hypertext Markup
Language (HTML) [RHJ99], which provided means for structuring text for its visual presentation.
Important to the Web’s success, HTML provided the ability to link from one document to any
other document anywhere on the Web using its URL. Users could also interact with documents,
e.g., enter keywords for searching document collections or submit orders in e-commerce catalogs.
To this end, HTML allowed forms in documents, HTTP provided means to send information
to Web servers, and Web servers would generate documents dynamically using, e.g., programs
supporting the Common Gateway Interface (CGI).

While this is still a common use of the Web today, it has become much more. Today, its
is an infrastructure of any kind of information system, ranging from systems that are accessible
world-wide (e.g., Web sites for electronic shopping) over cross-enterprise systems (e.g., for sharing
demand information between a manufacturer and its suppliers) to private systems (e.g., intranets
in an enterprise or home networks).

Such information systems do much more than just providing access to data and documents.
Much data in these systems is dynamic and constantly changing (e.g., the status of a customer’s
order) and dependencies between data require other data to be created, deleted, or changed (e.g.,
completion of an order leads to a new invoice). Further, information systems provide services
to interact with data (e.g., submit a new order) and, possibly also the outside world (e.g., ship
ordered item by mail).

Such a active, dynamic Web information system is full of events and all these events require
proper processing. The necessary processing includes, for example, generation of events, com-
munication of events, logging of events, reacting to events, and of course detection of complex
events.

In this chapter, we summarize the foundations of the Web as relevant for this thesis. We
follow a path from representing data on the Web [ABS00] (Section 2.1) over reasoning with Web
data [BBFS05, FLB+06, BEE+07] (Section 2.2) and reactive behavior on the Web [BBB+07]
(Section 2.3) to events on the Web (Section 2.4). With the exception of the topic of events, this
chapter aims at giving brief overviews. Deeper explanations can be found in the references just
given.

31

32 CHAPTER 2. FROM DATA TO EVENTS ON THE WEB

2.1 Data on the Web

With the Web becoming a universal information system, information and data on the Web is not
only read and interpreted by humans. It is also consumed by machines and programs. Machines
perform task such as filtering, transforming, indexing, or deriving new information.

Documents in the Hypertext Markup Language (HTML) are structured along their intended
visual presentation as a text document. Depending on the desired layout, information about flight
connections inside an HTML document therefore might be structured as a table with rows and
cells or simply a list. When the only processing done by machines is a visual rendering, then this
structuring is fine. When machines however should perform other tasks, e.g., finding connections,
then the meaning of data in the document becomes important, e.g., which data represents flight
numbers, which departure airports, etc.

The need to represent information in a more structured way is addressed by the Extensible
Markup Language (XML) [B+06a, B+06b] and, more recently, also by the Resource Description
Framework (RDF) [MM04, KC04].

2.1.1 Extensible Markup Language (XML)

The Extensible Markup Language (XML) [B+06a, B+06b] is a so-called generic markup language
(or meta markup language), which means that, unlike HTML, it has no fixed vocabulary. It just
provides a syntax from which individual, more application-specific languages, e.g., a language for
representing information about flight connections, are derived. These specific markup languages
are obtained by restricting the vocabulary and assigning semantics. Such application-specific
languages are also sometimes called XML dialects.

An XML document consists of a prolog and a root element. Additionally, processing instruc-
tions and comments may appear inside the prolog, inside the root element, or after the root
element. All application-relevant data is contained in the root element. The underlying data
model of XML, formally specified in the XML Information Set [CT04], is that of an ordered tree.

Each element has a name (also called tag-name) and optionally a number of attributes with
assigned values. Elements are delimited by so-called tags. For an element with name element and
attributes attr1 and attr2 with respective values value1 and value2, the start tag has the form

<element attr1="value1" attr2="value2">

and the end tag the form

</element>

Elements can contain other elements as well as text, which we also call its children. This nesting
of elements gives rise to a tree structure. The order of the children is relevant. Note that ev-
ery element, except the root element, must be contained in another element (called its parent).
Figure 2.1(a) depicts an example XML document containing flight information. A correspond-
ing visual representation of its document tree structure is shown in Figure 2.1(b). In the visual
representation element nodes are ellipses while text nodes are rectangles.

XML has become a popular format for exchanging information and its use reaches far beyond
the Web. Its popularity can be attributed mainly to the fact that XML copes well with so-called
semi-structured data, which has an irregular (sometimes recursive) and often changing structure.
In contrast, the relational data model requires a rigid structure and makes structural changes
difficult. By using appropriate names for tags and attributes in XML, data in XML documents
also becomes self-describing.

XML has also some limitations though:

• Dealing with graph-structured data in XML can be tedious. The use of ID and IDREF
attributes in an XML document, the XML Linking Language (XLink), as well as the use
of element or attributes with similar, application defined semantics (e.g.,
in XHTML) allow to model graph-structured information in the XML tree data model.

2.1. DATA ON THE WEB 33

<?xml version ="1.0" encoding ="ISO -8859 -1"? >

<flights >
<flight >

<number >UA917 </number >
<from >FRA </from >
<to >IAD </to >

</flight >

<flight >
<number >LH3862 </number >
<from >MUC </from >
<to >FCO </to >

</flight >

<flight >
<number >LH3863 </number >
<from >FCO </from >
<to >MUC </to >

</flight >
</flights >

(a) XML document (b) Document tree

Figure 2.1: An XML document flights.xml and a visualization of its document tree.

However, these mechanisms are separate from the parent-child relation in the data model of
XML, and have to be resolved “manually” (e.g., through value joins or the id()-function in
XPath) in programs and queries.

• XML offers only limited support for identifying specific nodes (elements, attributes, etc.)
within a document. Elements carrying an ID attribute are easily identified, but for other
elements as well as other types of nodes this is not so easy. The so-called “node identity”
(typically the memory address of the object representing a node) can be used within a single
query, but not for identifying nodes over a longer period of time. In particular, node identity
might be completely lost if the document is updated, even if the change is minor (e.g., adding
an element). Issues related to identity are also discussed in [Fur08, Chapter 3.4].

• The self-describing nature of XML aims at making documents understandable for humans
but is not well-suited for making them “understandable” for machines. When seeing tags
called surname and last_name, humans will easily know that the are just different terms
for the same concept. For machines this is generally not possible. XML also offers no way
explicitly tell a machine that these terms are semantically equivalent and should be processed
in the same manner.

• Closely related, XML is purely a format for data representation. Its data model, as well as
it formalisms for typing data, do not support drawing inferences such as deriving new facts.
For example, XML can model a list of students together with their test scores, but it cannot
make any inferences such as deriving which students passed the test. Also, the data model
of XML is not suited for modeling existentially quantified information, that is, information
where an object or entity is only claimed to exist without naming the concrete object or
entity. For example it is difficult to express in XML that a person has a male child without
explicitly specifying the child.

The Semantic Web in an effort that seeks to overcome these difficulties of XML with the aim of
making Web data “meaningful to computers” [BLHL01]. Of particular relevance is the Resource
Description Framework (RDF), which will be described next.

2.1.2 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [MM04, KC04] provides syntax and semantics for
representing knowledge about “things,” which are called resources in the context of RDF. A

34 CHAPTER 2. FROM DATA TO EVENTS ON THE WEB

resource is anything that can be identified with a URI. This includes in particular Web documents,
but also objects such as physical items for sale in a catalog that are not “actually on the Web”
(i.e., cannot be retrieved by means of HTTP or another protocol). A typical application of RDF
is annotating a Web page with meta data like author, keywords, publication date, or licensing
terms.

Resources are described by means of statements of the form subject – predicate – object, so-
called (RDF) triples. The predicate is also called a property of the described resource, and the
object the property value. The subject and the predicate are given with URIs. The object can be
given with a URI or be a literal, i.e., a (possibly typed) constant value given as a character string
such as "IAD". (Blank nodes are an exception for subjects and objects that will be discussed
shortly.)

Such RDF triples form essentially an unordered, directed, labeled graph. The nodes in the
graph are the subjects and objects, and each RDF triple gives rise to an edge from its subject to
its object with the predicate as label. Note that literal nodes cannot have outgoing edges.

In some cases it is necessary or just convenient to make statements about resources without
knowing or assigning a URI for them. For example, one might want to express that there is a
flight from Frankfurt to Munich without knowing a URI for that flight. To this end, RDF offers
blank nodes. Blank nodes can be used instead of URIs for subjects and objects to express that
there is a resource with the specified properties without actually identifying that resource.

RDF is augmented by the RDF Vocabulary Description Language RDF-Schema [BG04]. RDF
Schema provides a type system for defining application specific vocabularies. By typing RDF, it
both constrains RDF graphs (e.g., by expressing that “flies from” is a property of resources of the
type “flight” that has a value a resource of the type “airport”) and allows simple inferences (e.g.,
if resource “John” is of type “employee” and “employee” is a subclass of “person” then “John”
is also of type “person”). Semantics of RDF, as well as of RDF with RDF Schema, are specified
formally as a model theory [Hay04].

Regarding syntax, an RDF graph can be written, stored, and exchanged in one of a multitude
of so-called serialization formats. The official format standardized be the W3C is the RDF/XML
Syntax [Bec04]; however there are many alternative formats. An overview over the different
serialization formats can be found in [Bol05].

To summarize, RDF goes beyond XML by having directed graphs as data model, providing
the ability to represent existentially quantified information through blank nodes, allowing simple
inferences through RDF Schema, and providing clear semantics in the form of a model theory.

2.2 Reasoning on the Web

An important part of processing data in information systems is querying and reasoning. Typical
task that involve querying and reasoning with Web data such as XML or RDF documents are:

• Selecting only relevant portions of a large volume of data: e.g., in a document about flights,
select only those flights going from Munich to Rome.

• Restructuring data into new formats: e.g., transform a document about flights like the one
from Figure 2.1(a) into an XHTML document that is suitable for rendering in a Web browser.

• Combining information: e.g., for each flight in a document about flight connections, find
appropriate connecting hotel shuttles from a document about ground transportation options.

• Derive new information: e.g., compute multi-stop flight connections from a document con-
taining only direct flight-connections or classify meals as vegan, vegetarian, or non-vegetarian
according to their ingredients.

We now look at prevalent query languages for Web data and at approaches for more advanced
reasoning and knowledge representation on the Web. Note that there is no sharp boundary between
querying and reasoning.

2.2. REASONING ON THE WEB 35

<?xml version ="1.0"? >

<xsl:stylesheet version ="1.0"
xmlns:xsl="http ://www.w3.org /1999/ XSL/Transform">

<xsl:output
method ="xml"
encoding ="iso -8859 -1"
doctype -public ="-//W3C//DTD XHTML 1.0 Transitional //EN"
doctype -system ="http :// www.w3.org/TR/xhtml1/DTD/xhtml1 -transitional.dtd"

/>

<xsl:template match ="/">
<html >

<head >
<title >Flight Connections </title >

</head >
<body >

<xsl:apply -templates/>
</body >

</html >
</xsl:template >

<xsl:template match =" flights">
<table >

<tr >
<th >Flight Number </th>
<th >From </th>
<th >To </th> </tr >

<xsl:apply -templates/>
</table >

</xsl:template >

<xsl:template match =" flight">
<tr >

<td > <xsl:value -of select =" number" /> </td >
<td > <xsl:value -of select ="from" /> </td >
<td > <xsl:value -of select ="to" /> </td >

</tr >
</xsl:template >

</xsl:stylesheet >

Figure 2.2: An XSLT program producing XHTML output.

2.2.1 Standard Web Query Languages

The World Wide Web Consortium (W3C) defines two standard languages querying (and trans-
forming) XML, XSL Transformations (XSLT)1 [Cla99, Kay07] and XQuery [B+07b]. Both XSLT
and XQuery make use of XPath [CD99, B+07a], a language for navigating the tree structure
of XML documents. In its abbreviated syntax, XPath expressions are reminiscent of the way
directory paths in file systems are written.

XSLT XSLT is the simpler of the two languages. As the term “stylesheet” in the name of XSLT
implies, XSLT is aimed at transformation tasks that address changing the style, i.e., the way infor-
mation is presented, of an XML document. Thus, XSLT is primarily intended for transformations
of documents that involve simple restructuring such as renaming of elements, filtering, or moving
subtrees up or down. A typical application of XSLT is transforming an XML document that uses
an application-specific vocabulary (e.g., the flight connection document of Figure 2.1(a)) into an
XHTML document suitable for rendering in a browser. In its output, XSLT is not restricted to
XML, but can also output “old,” non-XML-conforming HTML or plain text.

An XSLT program consists of templates, which specify patterns for elements in the input they
match as well as output they produce. Processing of an XML document starts at the root and
chooses a template with a pattern that matches the root. The output that this template produces
can then cause recursive matching of templates. Typically the recursion is on the children of the

1XSL stand for Extensible Stylesheet Language and is more precisely a family of languages comprising XSLT,
the XML Path Language (XPath), and XSL Formatting Objects (XSL-FO).

36 CHAPTER 2. FROM DATA TO EVENTS ON THE WEB

current node (however XSLT allows to specify deviations from this, where nodes for recursive
matching are explicitly selected or templates explicitly called). This processing model accounts
well for transformations that rename elements, insert elements between a node and children (i.e.,
“move a subtree down”), remove elements between a node and some descendants (i.e., “move a
subtree up”), or filter certain parts of the input out.

The expressivity of XSLT 1.0 beyond these transformations is rather limited, mainly because
it does not allow recursion processing where templates process the output of other templates (note
that this is very different from the structural recursion over the input tree!). In XSLT 2.0 this
limitation has been lifted however by adding so-called functions.

An example of an XSLT program for transforming a document like the one of Figure 2.1(a)
into an XHTML document is shown in Figure 2.2.

XQuery XQuery is designed for performing more general queries and at extracting information
from large volumes of XML data. XQuery is considered more expressive than XSLT and also more
feature-rich (and thus considered harder to learn). Whereas XSLT is targeted at transforming
a single XML document, XQuery is particularly suited for tasks requiring the extraction and
combination of data (also from several sources) such as joining data, grouping and aggregating
data, or reordering data.

An XQuery program essentially consists of so-called FLWOR (pronounced “flower,” note how-
ever that “W” comes before “O”) statements. The for-clause selects and iterates over nodes from
the input documents. Note that a for-clause can cause multiple iterations, or in other words,
produce a cross-product. A where-clause restricts the results produced by for-clause. A typical
restriction would be requiring some equality between nodes from different sources, which essen-
tially turns a cross-product into an equi-join. The iteration order can be changed using an order
by-clause. Results (for each iteration) are specified in the return-clause.

Note that FLWOR statements are similar to the SELECT – FROM – WHERE statements found
in SQL: the for-clauses (together with let-clauses) correspond loosely to the FROM part, the
where-clauses to the WHERE part, the return-clauses to the SELECT-part.

XQuery has many more language features beyond the basic FLWOR statements, including the
ability to define functions (with unrestricted recursion).

An example XQuery program is shown in Figure 2.3(b). From a document with flight connec-
tions (Figure 2.1(a)) and a document with information about airport shuttles (Figure 2.3(a)) it
produces as output a list of “travel options” that is a list of hotels that can be reached by means
of a flight and a connecting shuttle. The list is sorted by the name of the departing airport and
includes travel instructions about the flight and shuttle that has to be taken. The output for the
sample inputs of Figure 2.1(a) and Figure 2.3(a) is shown in Figure 2.3(c).

SPARQL For querying RDF data, the W3C has recently standardized a query language called
SPARQL [PS08]. A SPARQL query either yields a set of variable bindings or constructs a new RDF
graph. The former is convenient when results of a query are to be used inside some application
software, the latter when an RDF graph should be transformed. Variable bindings that are either
directly returned as a result or used for constructing a result RDF graph are obtained by matching
so-called graph-patterns against the input RDF graphs.

Sharing many of its keywords with SQL, a typical SPARQL query has the form SELECT – FROM
– WHERE or CONSTRUCT – FROM – WHERE. The FROM clause list the URIs of the RDF graphs that
are to be accessed for this query. The WHERE clause specifies a graph pattern in the form of a
set of triple patterns. Like an RDF triple, a triple pattern has the form subject – predicate –
object; unlike an RDF triple, it can contain free variables, however. The same variable can occur
in several triple patterns giving rise to the graph pattern. The graph pattern instructs the query
evaluation to look for variable bindings so that the graph obtained from replacing the variables
in the pattern with their bindings can be found as a subgraph in the input. The SELECT clause
specifies to return (some of) the variable bindings as result, while the CONSTRUCT clause construct
a new RDF graph using the variable bindings.

2.2. REASONING ON THE WEB 37

<?xml version ="1.0" encoding ="ISO -8859 -1"? >

<shuttles >
<shuttle >

<name >Lufthansa Airport Bus </name >
<airport >MUC </airport >
<hotel >Bahnhofshotel </hotel >

</shuttle >

<shuttle >
<name >Super Shuttle </name >
<airport >IAD </airport >
<hotel >Embassy Inn </hotel >

</shuttle >

<shuttle >
<name >AAA Airport Express </name >
<airport >BOS </airport >
<hotel >The Tipton Hotel </hotel >

</shuttle >
</shuttles >

(a) XML document shuttles.xml

<travel -options >
{

for $flight in doc(" flights.xml")/ flights/flight ,
$shuttle in doc(" shuttles.xml ")/ shuttles/shuttle

where $flight/to = $shuttle/airport
order by $flight/from
return

<option >
<departure -airport > {$flight/from/text ()}

</departure -airport >
<instructions >Take flight {$flight/number/text()},

then {$shuttle/name/text ()}. </instructions >
<arrival -hotel > {$shuttle/hotel/text ()} </arrival -hotel >

</option >
}
</travel -options >

(b) XQuery Program

<?xml version ="1.0" encoding ="UTF -8"?>
<travel -options >

<option >
<departure -airport >FCO </departure -airport >
<instructions >Take flight LH3863 ,

then Lufthansa Airport Bus. </instructions >
<arrival -hotel >Bahnhofshotel </arrival -hotel >

</option >
<option >

<departure -airport >FRA </departure -airport >
<instructions >Take flight UA917 ,

then Super Shuttle. </instructions >
<arrival -hotel >Embassy Inn </arrival -hotel >

</option >
</travel -options >

(c) Result

Figure 2.3: Combining information from a documents with flight connections and from a document
with airport shuttles using XQuery

38 CHAPTER 2. FROM DATA TO EVENTS ON THE WEB

Beyond the basic graph matching, SPARQL accommodates for alternatives in patterns (i.e.,
disjunctions, keyword UNION), optional parts of patterns (keyword OPTIONAL), and filtering of
results (keyword FILTER). By combining optional patterns and filtering (and using the bound
property), negation and universal quantification can be expressed in SPARQL. However, other
advanced queries (e.g., patterns involving search for graph nodes at arbitrary depths) are generally
not a strong point of SPARQL and go beyond its expressive capabilites. Further, SPARQL does
not allow any recursive inference in queries.

A criticism that is common to all three languages discussed here is that they are not versatile
in the data format they accept [BFB+05]. XSLT and XQuery are suited only for querying XML
data, while SPARQL is only suited for querying RDF data. However there are many potential use
cases for queries on the Web that involve interwoven access to both XML and RDF. For example,
a query might make use of domain-specific knowledge represented in RDF and RDFS to retrieve
data from Web pages written in XML which are again annotated with RDF meta data. A Web
query language that seeks to remedy this and offer versatility is Xcerpt, which we will be discussed
in Chapter 4.

2.2.2 Reasoning with Deductive Rules

Query languages excel at efficiently extracting, restructuring, and combining existing data. They
are not well suited for knowledge representation and reasoning tasks such as drawing inferences.
However, for making machines derive new information and “understand” Web data, such inferences
are needed.

Deductive rules (sometimes also called derivation rules) are a form of reasoning that has re-
ceived much attention in Web and Semantic Web research. They provide a high-level knowledge
representation mechanism that is both expressive and natural for human knowledge engineers.

While there are many variations of deductive rule languages, not just in syntax but especially
in their semantics, the general idea is always to specify knowledge in terms of rules. A rule mirrors
an if-then-sentence and states that a certain conclusion (then part) can be drawn if in the condition
(if part) is met. Conditions and conclusions are usually written as logical formulas. The conclusion
of a rule is also called its head and the condition its body, and rules are commonly written with
the head first: head ← body. Due to the close relationship of logical formulas and queries, the
body of a rule can also be understood as a query. We call these rules deductive, because they only
deduce conclusions but do not modify existing data or cause any other side-effects. They are in
contrast to rewriting rules, which specify transformations of terms or other data, reactive rules,
which specify to perform actions, and other forms of rules.

Since they derive from First Order Logic (FOL), most current deductive rule formalisms rep-
resent facts using predicates (or relations) and terms. They therefore essentially use the relational
data model with the important extension that many rule languages allow the use of function sym-
bols in terms (whereas databases usually only allow constants). The fact that there is a flight with
number “UA917” from “FRA” to “IAD” would, for example, be represented as a flight(”UA917”,
”FRA”, ”IAD”). Rules allow to represent knowledge that derives new facts from existing facts.
For example, we might know that every airline has a ticket office in every airport where one of its
fight starts. In the rule language datalog (see, e.g., [AHV95]), this knowledge could be formalized
as:

has ticket office(A,S) ← flight(N,S,L), operated by(N,A)

In this rule N , S, L, and A are free variables. The comma (“,”) in the rule body is read as a
conjunction. Importantly, most deductive rule languages allow for recursive inferences. Transitive
closures such as “if there is a connection from X to Y and from Y to Z, then there is a connection
from X to Z” are a typical application of such recursive inferences. The following rules realize
such knowledge using our flight example:

connection(X, Y) ← flight(N, X, Y)
connection(X, Z) ← connection(X, Y), connection(Y, Z)

2.2. REASONING ON THE WEB 39

Because of the natural correspondence of deductive rules with English language “if-then” sen-
tences, they are often considered to be very intuitive for humans. Further there are approaches
to rule languages that do not represent rules as logic formulas but in a limited, controlled English
which can be automatically parsed and translated to a representation like logic that is suitable for
processing in machines.

A particular trait of rules is their compositionality. For example, the above program only finds
connections using flights as a means of transportation (first rule in the program). By adding rules
similar to the first rule, the program can be extended easily to include busses or trains.

As mentioned earlier, most current rule languages use the relational model for representing
facts. This makes it necessary to convert Web data from its native XML, RDF, or other format,
before reasoning with it. Performing such a conversion in a natural way can be difficult, though.
Therefore, some rule languages aim at supporting data models that are better suited for Web
data. An example is Xcerpt, which works on rooted directed graphs.

Work towards standards for Web rule languages is underway with the Rule Interchange Format
(RIF) [RIF, BKPP07] at the W3C. RIF primarily uses a relational data model [BK08a, BK08b],
but also strives for compatibility with RDF and the Web Ontology Language (OWL) [dB08].

2.2.3 Knowledge Representation with Ontologies

Deductive rules are not the only form of reasoning on the Web. Another form of representing
knowledge and reasoning with it are ontologies. The W3C standard for representing ontologies
is the Web Ontology Language (OWL) [SWM04]. It actually consists of three sublanguages of
increasing expressivity: OWL Lite, OWL DL, and OWL Full. OWL is based on RDF and RDF
Schema and in terms of the inferences that can be drawn increases significantly the expressiveness
of RDF Schema.

OWL, like other ontology languages, is based on description logics. A description logic can
be understood as a fragment of First Order Logic (FOL), usually restricted in such a way that
typical reasoning tasks are, in contrast to full FOL, still decidable.2 Ontologies model domain
knowledge by specifying axioms about concepts and their relationships. (Relationships are also
sometimes called roles.) Concepts correspond to unary, relationships to binary relations of FOL.
Axioms correspond to FOL formulas, but are usually written in a tailored syntax that leaves
variables implicit. OWL and (most) description logics do not support relations that are ternary or
of higher arity, which can be a severe limitation on the knowledge that can be expressed in OWL.
Also, axioms in most description can only express a tree of relationships between concepts not an
arbitrary graph of relationships. (The formal reason for this is that axioms correspond to formulas
in the so-called two-variable fragment of FOL, that is, to formulas that use only two variables.)

As an example consider an ontology that models knowledge about food served on flights. There
are concepts such as FLIGHT, MEAL, INGREDIENT, and MEAT, and relationships such as serves and
contains. Axioms can define new concepts, for example VEGETARIAN MEAL could be defined as a
MEAL that contains no MEAT. Axioms can also specify type relationships such as that MEAT is a
type of INGREDIENT or more general conditions such as that every FLIGHT must serve at least one
VEGETARIAN MEAL. In typical description logic syntax these axioms would be written as

VEGETARIAN MEAL = MEAL u ∀contains.¬MEAT
MEAT v INGREDIENT
FLIGHT v ∃serves.VEGETARIAN MEAL

These axioms correspond to the following formulas written in traditional FOL syntax:

∀x(VEGETARIAN MEAL(x) ⇐⇒ (MEAL(x) ∧ ∀y(contains(x, y)⇒ ¬MEAT(y))))
∀x(MEAT(x)⇒ INGREDIENT(x))
∀x(FLIGHT(x)⇒ ∃y(serves(x, y) ∧ VEGETARIAN MEAL(y)))

2The letters “DL” in OWL DL reflect its correspondence to description logics. OWL DL and OWL Lite are
decidable whereas OWL Full is not.

40 CHAPTER 2. FROM DATA TO EVENTS ON THE WEB

While ontologies might be considered more popular than rules on the Web, in part because
there already is a finished W3C standard with OWL for representing ontologies, they are less
important in this thesis. Ontologies are well-targeted at reasoning tasks such as subsumption
(checking whether a concept A is a subset of concept B) or satisfiability (can a given set of axioms
be satisfied, i.e., does it have a model). They are however not as well-suited for querying data,
in particular because they are restricted to unary and binary relations and can only specify tree-
shaped combinations of relationships between concepts.3 Deductive rules, because of their close
relationship with querying, are therefore considered more interesting for querying events in this
thesis.

2.3 Reactivity on the Web

Queries, rules, and ontologies give a fairly passive impression of the Web: upon request certain
information can be obtained by accessing data sources on the Web. However, many data sources
on the Web evolve in the sense that they change over time and operations that change data
are an essential part of any information system. Even a simple address book application will
require at least operations to add and remove entries. An application for electronic shopping will
require more and more complicated interconnected operations to realize work-flows such as order
processing, shipping, and payment collection. Dealing with data sources that change over time
and realizing common operations of information systems entails a need for reactivity, the ability
to detect events and respond to them automatically in a timely manner.

Reactive behavior on the Web can be and has been for many years implemented using general
purpose programming languages. However, higher-level reactive languages have been and are
developed that aim at abstracting away network communication and system issues, at easing the
specification of complex updates of Web resources (in particular XML, RDF, or OWL documents),
and at being convenient for specifying complex flows of actions and reactions. In particular,
languages based on reactive rules have received attention in Web-focused research communities
lately [REW, P+06, PKB+07, BBB+07].

Reactive rules are statements that formalize executable knowledge by specifying actions to be
undertaken in response to certain events or situations. They are suited for both adding active
behavior to content (e.g., changing an address book entry in reaction to an event signifying user
input) and for formalizing content guiding active behavior of other entities (e.g., formalizing the
actions of humans and systems involved in an order processing work-flow). Reactive rules revolve
around events and actions and thus serve a different and complementary purpose from traditional
knowledge representation using ontologies and deductive rules, which focus on drawing conclusions
(implicit facts, classification in terminologies, etc.) from data.

The two most common forms of reactive rules are Event-Condition-Action (ECA) rules and
production rules (also called Condition-Action rules), originating from Active Databases research
[WC96, Pat98] and Artificial Intelligence research [FM77, For81, For82], respectively. ECA rules
have the structure “ON event (specification) IF condition DO action” and specify to execute the
action whenever an event matching event specification (which could be a complex event query)
happens and the condition, which usually is a query (e.g., to a local or remote Web resource),
holds. Production rules are similar but make no explicit reference to an event. They have the
structure “WHEN condition THEN action” and specify to execute the action whenever the condition
becomes true. In contrast to ECA rules, the condition can typically only refer to local data
which is accessible in the so-called working memory. Note the seemingly minor, but semantically
important, difference between the condition “being true” in ECA rules and “becoming true” in
production rules.

ECA rules are often argued to be more convenient in distributed Web-based applications than
production rules, since they make an explicit specification of events, which allows also for message-
based communication, and have no need for a local working memory [BE06b]. Explicit specification

3The difficulties in ontologies and querying are also reflected in research on combining rules and ontologies, a
topic that has received much attention recently (see, e.g., [Ros06] for an introductory overview).

2.4. EVENTS ON THE WEB 41

“Event: Anything that happens, or is contemplated as happening.”
“Event (also event object, event message, event tuple): An object that represents, en-
codes or records an event, generally for the purpose of computer processing.” Event
Processing Glossary [LS08]

“Any happening of interest that can be observed from within a computer is considered
an event.”
“A notification is a datum that reifies an event, i.e., it contains data describing the
event.” [MFP06]

“An event is a significant state change in the state of the universe. A significant state
change is one for which an optimal response by the system is to take an action. An
insignificant state change is one for which the system need take no action. An action
may be registering information about the event in the enterprise’s memory. Insignificant
state changes are not registered in memory; they are never ‘remembered.’ ” [CCC07]

“According to the dictionary, an event is a thing that happens, especially when it has
some relevance. Relevance can be measured by whether some sort of action has to be
taken as a result of the event. Consequently, an event can be seen as a specific situation
in which one or more reactions may be necessary.” [Pat98, Chapter 1]

“Messages (or ‘events’) flow across networks between enterprises and organizations.”
[Luc02]

Figure 2.4: Different definitions of “event” in literature related to event processing

of an event is also often more natural in event-driven applications. This is particularly true in
applications involving CEP such as the ones discussed in Chapter 1. An extensive survey of both
ECA and production rule languages is given in [BBB+07].

A concrete example of an ECA rule language for the Web will be introduced in Chapter 4
with the language XChange. Production rules will recur in Chapter 3, when discussing how they
can be used to implement complex event queries. (Note that this connection of production rules
and CEP, where the rules are used to implement complex event queries, is fundamentally different
from the connection between ECA rules and CEP, where a (complex) event query (sub)language
is used for the in the event specification).

2.4 Events on the Web

Reactivity and CEP entail the ability to detect simple (or atomic) events. We now discuss issues
related to simple events. While we focus on events “on the Web,” this should be understood in the
broader sense including any kind of information system that is built upon Web standards whether
it be publicly accessible or not. In particular it thus includes modern enterprise information
systems employing Web services, but also for example Web-based Supervisory Control and Data
Acquisition (SCADA) systems (see Chapter 1.1).

2.4.1 What is an Event?

A curiosity of event processing and related fields is that there can much discussion around the
question of what is and what is not an event. There is no singular, commonly agreed definition as
the selection of definitions from the literature in Figure 2.4 shows. However, the first two definitions
clearly indicate a necessity for the representation of an event in a computer as a message, object,
function call, or other entity with associated data. Since CEP deals only with these representations,
much of the discussion revolving around the term “event” is rather philosophical in its context.

42 CHAPTER 2. FROM DATA TO EVENTS ON THE WEB

Throughout this thesis, we adopt this way of looking at things and equate (simple) events with
their representation.

However, beyond the scope of CEP and this thesis, what is and what is not an event can be
of practical relevance. The design of an event-based system includes decisions of which events (in
the sense of something that happens) are given a representation that is then exposed to other
components. Essentially the types of events a component exposes become part of its external
interface. In this context, events are subjected to typical issues and discussions of interface design
such as responsibility (e.g., should the database or the application software signal that an address
has been changed) or granularity (e.g., one single event for an address change or one event for
each line in an address).

Additionally, there might be an issue how to detect an event that happens in a given application
when this application does not provide explicit support for the event, i.e., it does not explicitly
signal this event to the outside world, e.g., by sending a message. As an example consider a Web
site on which the event that its content changes should be detected. Most Web sites are simply
changed without providing a mechanism that signals this change to potentially interested parties.4

An option for an interested party in this case might be to periodically retrieve the Web site and
compare it with a previously stored version of the Web site to detect any changes. Issues relate to
detecting such events are beyond the scope of this thesis; however we will discuss how this issue
might related to CEP and complex event queries in Section 19 on research perspectives.

2.4.2 Data Formats and Models for Events

Since event-based systems and in particular CEP applications deal with representations of events,
their design is influenced by the way events are represented. It is common to represent events
and their associated data using existing data formats and models, e.g., as XML documents, Java
objects, or relational tuples. Such a representation of events as ordinary data is particularly
necessary when events must be communicated in a distributed system.

When events are transmitted over the Web as messages, then these messages are typically XML
documents. Note however, that the representation used for transmitting events is not necessarily
the same as the representation used for processing it by sender or receiver of the event. For ex-
ample, an event might be created as a relational tuple at the sender, this tuple then be serialized
into an XML message for transmission, and the XML message be de-serialized into a Java object
by the receiver. Also, an event might have multiple receivers and these might use different repre-
sentations. For example an order processing application might convert incoming XML messages
about order events into objects for processing them, while a monitoring application receiving the
same events might process the XML messages directly.

The following data models and data formats are commonly used for representing events:

• Typed events without data: an event is represented as a single symbol that signifies its
type but has no further data associated with it. Examples would be “AlarmFromSensorA”
and “AlarmFromSensorB” to signal alarms from sensors A and B respectively. This rep-
resentation is fairly limited and works well only for very simple applications.

• Typed events with attributes: an event has a type and provides data in the form of
named attribute-value pairs. An example would by “Alarm{sensor = “A′′, temperature =
42}” to signal that a sensor with the name “A′′ raises an alarm with a measured temperature
of 42. Note that there still remains an open question regarding the data model of the values;
these could be just atomic values (integers, strings, etc.) —in which case it is similar to the
relational model— or also list- or set-based values. Further there might be a requirement
that all events of the same type provide the same attribute or not.

• Relational tuples: an event is represented with a symbol denoting the type of the event
and values for attributes. All events of the same type must have the same attributes. These

4Note however, that there are some Web sites that will allow users to register so that they will receive an e-mail
informing them about changes.

2.4. EVENTS ON THE WEB 43

attributes and their respective types are typically specified in advance in a schema. Further
all attribute values are usually atomic. Attributes might be identified by their position or by
name. An example would be Alarm(”A”, 42) to represent the event from earlier and using
positions to identify attributes.

• Objects: an event is represented as an object of some object-oriented programming language
(e.g., Java, C++). To write such objects in a human-readable form, the notation of typed
events with attributes is commonly used. However using objects gives rise to aspects usually
not covered by the previous models. Object-oriented systems support type inheritance and
thus types are not mutually exclusive; an object of type A might be also of type B, e.g.,
if class A inherits from class B. Attribute values in objects might be references to other
objects, including other event objects. When references are used, this means that the event
data is not contained just in the event object but also other external objects, which might
be modified over time. Also references raise a number of issues in distributed systems when
an object refers to a remote object. Finally, objects can have methods associated with it to
query or modify the state of the object.

• XML messages: an event is represented as an XML message. An example might be

<?xml version="1.0"?>
<alarm>
<sensor>A</sensor>
<temperature unit="Celsius">42</temperature>

</alarm>

to represent the sensor event from earlier. The data model of XML can be seen as a labeled,
ordered tree. In contrast to the previous representations of events, XML provides not only
a data model but also and primarily a serialization format. This is particularly relevant for
transmitting events in a heterogeneous, distributed system such as the Web.

Because XML is the primary format for exchanging information on the Web, it can be expected
to become also the primary format for representing events on the Web. In particularly, other data
formats are often serialized into XML; in the case of objects, there is often significant tool support
for doing serialization and de-serialization without much manual programming work.

There are a number of XML-based envelope formats relevant for transmitting events. They are
called envelope formats because they leave application-specific content open and focus on issues
that are not application-specific such as routing of the message from the sender to the receiver(s)
or metadata associated with an event.

The most popular envelope format it SOAP [G+03]. A soap message consists of a header and a
body. The header contains information related to issues such as routing and relaying of messages
as well as message exchange patterns. The body contains application-specific XML content. SOAP
primarily focuses on messages, not events and as such does not address meta-data that is typically
associated with events such as occurrence time.

The Common Base Event (CBE) format [IBM04] is an XML format tailored for events. It
focuses on providing fields for meta-data typically associated with an event such as its origin, its
occurrence time, or its severity.

There are also some more application specific XML message formats. For exchanging messages
in Supervisory Control and Data Acquisition (SCADA) Systems, the Facility Control Markup
Language (FCML) [BLO+08] has been developed. Note that currently FCML is used in a context
where a system actively requests data from sensor rather than where sensors proactively send data
to the system.

So far, there has not been much work on using RDF to encode events. It is of course possible to
communicate RDF information in XML messages using its XML serialization. However, processing
the XML serialization of RDF rather than RDF in its native data model is very inconvenient, so
that RDF should be considered as data model in its own right not part of XML. With more

44 CHAPTER 2. FROM DATA TO EVENTS ON THE WEB

and more information on the Web being represented as RDF, we can expect RDF data in events
to become relevant in the near future. Particularly, many scientific data sets (e.g., biological
databases) use RDF, and a change notification service might generate events that contain the
changed data as RDF.

2.4.3 Communication of Events

As with all XML messages on the Web, events are primarily communicated between different Web
nodes using HTTP. A message can be sent to a Web node identified by its URI using either the
GET or the POST method of HTTP, but POST is preferable. When GET is used, the XML
message must be encoded as part of the URI and is then often subject to length restrictions.
Further, GET requests should be idempotent [F+99], i.e., when the same GET request is repeated
it should not have any further side-effects, which cannot always be assumed for the reception of
an event.

It is also conceivable to use other Internet protocols for communicating events. For example,
SOAP messages might also be transported using e-mail protocols, in particular the Simple Mail
Transfer Protocol (SMTP) [MKW+02]. This is particularly interesting in cases where the recipient
of an event might not be connected to the Web all the time. E-mail infrastructure will then provide
for storing the message until the recipient comes online and will retrieve e-mails.

Communication on the Web is, as in general for distributed systems, not reliable. When sending
a message, the sender cannot be sure if the recipient has received the message or not. Only by
having the original recipient sending an acknowledgment message back, the original sender can
be assured. However, in this case, the original recipient (and sender of the acknowledgment)
can now not be sure that the original sender (and recipient of the acknowledgment) has received
the acknowledgment. This unreliability causes problems when distributed nodes must agree on
a single common state, especially with distributed transactions. There are a number of solutions
to these issues such as a two-phase commit protocol (see, e.g., [CDK01]). While relevant in the
overall context of an event-driven application, these issues are not directly to CEP and will thus
not be detailed further.

2.4.4 Timing and Ordering of Events

Timing and order of events can be relevant for the processing of events and are of special interest in
CEP. However, timing and order are difficult issues in distributed systems. Each node (computer,
device, etc.) in a distributed system has its own local clock and the clocks of different nodes are
not and cannot be perfectly synchronized [CDK01]. The time it takes to transmit a message varies
depending on the sender and receiver, the route taken between them (if there are several), network
traffic, and other factors. These issues are somewhat related, because the precision that can be
reached when synchronizing clocks through message exchange is limited by the transmission times
of messages.

There are three main issues related to timing and ordering of events in distributed systems
such as the Web: assigning time stamps to events, logical order of events, and arrival order of
events. A deeper introduction into timing and ordering issues in distributed systems can be found,
e.g., in [CDK01].

Time stamping In event processing applications it is common to have temporal constraints on
events such as “event A must happen before February 20, 2009” or “events A and B must happen
within 5 minutes of each other.” This requires that events are assigned a time stamp signifying
their occurrence time, typically at the event source. In a distributed system, however, each nodes
has its own local clock and the different clocks are not perfectly synchronized. When events from
different sources are processed, then the time stamps of events are given according to different
clocks and thus comparisons and computations subject to imprecision.

When a synchronization protocol such as the Network Time Protocol (NTP) is employed in
a distributed system, the drift between different clocks will typically be in the order of tens of

2.4. EVENTS ON THE WEB 45

milliseconds [CDK01]. In many real-world applications, this imprecision can simply be tolerated.
For example, when there is a constraint like “an order must be shipped within 24 hours,” then it
can be expected that the processes generating these events will aim at shipping most orders within
a significantly lower time and not reach 24 hours. For those few events that come very close to
the 24 hours, the decision whether they are within or outside might be somewhat arbitrary.

Such arbitrary decisions relating to unsynchronized clocks are a fact of everyday life, and clocks
(watches, wall clocks, etc.) used by humans are often subject to much greater imprecision than
clocks in computer systems. That such imprecision is often tolerated is also evidenced by the
fact that temporal constraints are often specified using time units larger than second: these time
units do not have a fixed length and their interpretations might vary. A minute might last 60
or 61 seconds, the latter being the rare case when it contains a leap second. A distance of one
month between two events might be interpreted as the second event happening on the same day
in the next month, e.g., if the first event happens on February 20, then the second must happen
on March 20. (This also has a potential problem if this day does not exist in the next month, e.g.,
there is no February 30.) A distance of one month might also be interpreted as being 30 days or
some other length.

On the Web there is an additional problem that clocks might not be synchronized to a known
precision and, in particular, an event source might maliciously assign a time stamp that is earlier
or later than the actual time. To give an example, the date and time assigned to an e-mail are
given according to the sender’s clock which might diverge significantly from the actual time either
accidentally or deliberately. For Web applications that are sensitive to time (e.g., online auctions)
and that receive data from untrusted sources (e.g., bidders in an auction), it is therefore common
to time stamp event (e.g., bids) only at the event receiver (e.g., the auctioneer). Note that this
is also an issue common in everyday life: for messages that are associated with a certain deadline
such as job applications or entries into a lottery, the time assigned to the message is usually given
by the recipient (typically date of the reception of the letter) or a trusted third party (typically
the postal date stamp).

Logical order It is also common in event processing that the order of events is relevant, e.g., that
“event A happens before B.” While the imprecision of time stamps can usually be tolerated when
measuring distances between events, it makes time stamps in some cases ill-suited for ordering
events. Events can happen in very rapid succession with the distance between two event being
smaller than the imprecision associated with clocks in distributed systems. Accordingly when
events from different sources are ordered according to their time stamps, this order might not
mirror the logical order in which the events happened.

The logical order of events in a distributed system is determined by potential causal relation-
ships between the events based on the following principles:

• If two events happen at the same node, then their logical order is determined by the local
clock.

• If a message is sent between two nodes, then the event of sending the message happens before
the event of receiving the message.

• The potential causal ordering is transitive, i.e., when a happens before b and b before c, then
a happens also before c.

The partial order obtained from these principles is called the potential causal ordering (also
causal ordering or happens-before relation). Note that in contrast to an ordering based on time
stamps, this is only a partial order not a total order.

Lamport logical clocks [Lam78] are a mechanism for capturing the potential causal ordering
numerically. Each node in the distributed system has a logical clock Li that is incremented
whenever a new event is generated. When two nodes i and j exchange a message, the sender i
also sends its clock value Li with the message. The receiver j resets its clock Lj to the maximum
of its current value of Lj and the received value of Li. These logical clocks guarantee that if event

46 CHAPTER 2. FROM DATA TO EVENTS ON THE WEB

a happens before event b, then also the time stamp of a (given according to the local clock of its
source) is smaller than the time stamp of b. Note that the reverse does in general not hold. The
time stamps given by Lamport logical clocks do not introduce a total order on events because
event might have the same time stamp value. However by using an arbitrary but fixed order on
the nodes, it can be turned easily into a total order.

Note that mechanisms for determining the order of events such as Lamport logical clocks
require a cooperation of nodes in a distributed system. On the Web, such a cooperation and the
necessary trust between the involved parties cannot be assumed in the general case and only work,
e.g., in closed intranets.

Arrival order In event processing, there is a third relevant order for events, the order in which
events (more precisely the notifications about them) arrive at some receiving node. This order
might not correspond to the time stamp ordering or the logical order of events. The reason for
this is that transmission times for messages between different nodes might vary significantly.

Rather than discussing the effect of varying transmission times in term of the milliseconds
typical in computer networks, it is best to look at an example outside computer systems with
longer, “exaggerated” transmission times to explain their effect. Consider a mail order company.
An incoming order (event) is received at the order department. From there it is forwarded by
in-house mail to the billing department and by fax to the shipping department. The shipping
department ships the products almost immediately and sends a notice about the shipping (event)
to the billing department. Logically, the order event happens before the shipping event, and
typically this will also be true for the time stamps assigned in the order and shipping department.
However, in the billing department, the arrival order is reversed: since in-house mail takes much
longer than fax, the shipping notice arrives before the order notice. This reversed order can
significantly affect the way events must be processed at the billing department. For example,
the billing department might watch out for shipping events that are not preceded (logically) by
a corresponding order event. This cannot, however, be checked immediately when the shipping
event is received.

We can see from this example that the arrival order of events at a given event processor might
not correspond with either the time stamp ordering or the logical ordering. However, there are
typically upper bounds on the transmission times. We can use these upper bound to re-order
events upon arrival. For example, we might know that in-house mail takes at most one business
day. Accordingly, the corresponding order for a shipping notice received by fax can be delayed at
most by one business day. To check whether a shipping was not preceded (logically) by an order,
one might therefore have to wait at most one business day.

Chapter 3

State of the Art

Complex Event Processing has only recently emerged as a discipline in its own right. However,
CEP has many independent roots in various fields, including (see also [Luc08]):1

• pattern detection in discrete event simulation, e.g., of hardware designs, control systems,
and factory production lines (early 1990’s [GL92, LVB+93]),

• monitoring and intrusion detection in computer networks, usually as part of network man-
agement (roughly 1990’s [SR90, MSS97]),

• composite event detection in active database management systems (mainly in the early 1990’s
[GJS92a, GD93, CKAK94])

• message-oriented middleware for distributed systems (late 1990’s [HBBM96, SSS+03]) and
later on a higher abstraction level event-driven architecture (roughly since mid 2000’s [Etz05]),

• temporal representation and reasoning in Artificial Intelligence (roughly since the 1980’s
[All83, KS86], but with much earlier roots [MH69]).

Developments in each of these areas proceeded often in parallel and with little exchange among
the communities. Accordingly, there is a very diverse terminology, a wide range of approaches, and
different expectations and requirements in terms of functionality of CEP. For example, the terms
“complex event” and “Complex Event Processing” originate from David Luckham’s work in the
area of discrete event simulation. Research in the active database community, which took place
mainly around the same time, used the terms “composite event” and “composite event detection”
instead. In work on data streams processing finally, there are usually just tuples, streams, and
(continuous) queries and no designated terminology for complex events.

This section surveys the state of the art in CEP. Since CEP is a field that is very broad and
without clear-cut boundaries, this section focuses strongly on the topic of this thesis, that is,
on querying complex events. It concentrates on languages and formalism for detecting complex
events that are known and specified a priori. Other, less developed aspects of CEP, for example
detecting unknown complex events using approaches like machine learning and data mining on
event streams, are not discussed here but in Chapter 19 on future perspectives of CEP.

3.1 Querying Complex Events Unraveled

Many different languages for querying complex events have been developed in the past. To the best
of our knowledge, there are no other comprehensive surveys that compare the designs of different

1The given time frames given in parentheses are only rough estimations. The time frames are based on repre-
sentative publications that are cited here. Note that they are supposed to show when CEP-related work was done
first in the field. For example, discrete event simulation is a field as old as the 1950’s, but work explicitly related
to CEP happened mainly in the late 1990’s.

47

48 CHAPTER 3. STATE OF THE ART

event query languages so far. Both the multitude of languages and the lack of comprehensive
surveys can be attributed in part to the fact that CEP has evolved in many independent roots
and is only now recognized as field in its own right.

3.1.1 Three Styles of Querying Events

To bring some order into this multitude of event query languages, we try to group languages with
a similar “style” or “flavor” together. We will focus on the general style of the languages and
the variations within a style, rather than discussing each language and its constructs separately.
It turns out most approaches for querying events fall into one of the following three broad cate-
gories: languages based on composition operators (also called event algebras), data stream query
languages, and production rules. As we will see, the first two approaches are explicitly languages
dedicated for specifying event queries, while last one is only a clever way to use the existing
technologies of production rules to implement event queries. The language XChangeEQ that is
developed in this thesis introduces a fourth style where event queries are specified in a tailored
event query language that is somewhat reminiscent of logical formulas. Chapter 17 will contrast
this style with the others.

The three main styles for querying events are introduced in Sections 3.2, 3.3, and 3.4 and
compared in Section 3.5. Finally, we discuss some hybrid approaches that attempt to combine
different styles in Section 3.6.

3.1.2 Terminology and Basic Functioning of Event Queries

Before diving into matters it is worth to recall some terminology and the basic functioning of event
queries, and to make it more precise. Event queries are evaluated over time in a system called the
event processor, event query evaluation engine, or CEP engine. Its input are data objects called
simple events. Recall that we equate simple events with their representation as message or other
data object here.

Like for other types of data, it is common to classify event according to some type. The type
can be given through the schema in the case of events represented as XML message, through the
class in the case of events represented as objects, or as an explicit type name in the case of events
represented as tuples in a relational data model (the type in the case is the name of the relation
or predicate the tuple belongs to). In general, a given event can belong to several types, e.g., by
means of inheritance in object oriented models or by conforming to multiple schemas in XML.

Since simple events are received over time, the input takes the form of one or more streams.
Every simple event is associated with at least one time point or interval called its occurrence time.
Unless otherwise specified we assume here for simplicity of presentation that events have only one
occurrence time. Where issues related to timing and order of events (cf. also Chapter 2.4.4) affect
languages, this will be pointed out appropriately.

The event processor has a number of running event queries that specify interest in certain
patterns of events in the stream(s) of incoming events. Occasionally the event processor detects
a new answer to one of its queries. These answers are also called complex events. Note that the
term “complex event” always implies that there is a query. Like simple events, complex events are
always associated with a time stamp.

The output of the event processor are these query answers, or complex events. The output
typically takes the form of an new data object (e.g., a message to be communicated to another
system). However, the term output should be understood broadly to include for example also
cases where the event processor does not explicitly construct new data but directly initiates some
action, e.g., an update to a database or displaying something in a graphical user interface.

In order to evaluate its queries, an event processor has to maintain some information about
which events have been received so far in its input streams. Events that have been received up
to a given point in time are called a complete history. Often, an event processor will not store a
complete history of events but only a partial history, that is a selection of the events that have
been received up to a given point in time.

3.2. COMPOSITION-OPERATOR-BASED EVENT QUERY LANGUAGES 49

3.2 Composition-Operator-Based Event Query Languages

The first group of languages that we discuss builds complex event queries from simple event queries
using composition operators. Historically, these languages have their roots primarily in Active
Database Systems. Some examples include: the COMPOSE language of the Ode active database
[GJS92b, GJS92a, GJS93], the composite event detection language of the SAMOS active database
[GD93, GD94], Snoop [CKAK94] and its successor SnoopIB [AC05, AC06], the language proposed
in [Ron97], GEM [MSS97], SEL [ZS01], the language in [ME01], the language in [HV02], Amit
[AE04], the language in [CL04], CEDR [BC06], the language in [BKK04], ruleCore [SB05, MS],
the language in [SSSM05, SSS+03], the SASE Event Language [WDR06], and the original event
specification language of XChange [Eck05, BEP06a, BEP06b] (which is now being replaced by
XChangeEQ).

Such languages are also often called event algebras because they can be thought of as a set
(the simple events) and some operations on it (the composition operators). However the term
“algebra” gives many associations that often do not apply to these event query languages like a
restriction to binary operators, a richness in laws for restructuring expressions (e.g., associativity,
commutativity), neutral and inverse elements, or closure (i.e., the result of an operation is a
member of the base set). Also, the term “algebra” is often strongly connected with query evaluation
and the way queries are expressed on the user-level need not have much to do with that. We
therefore avoid the term event algebra here and talk more generally of composition-operator-based
languages.

3.2.1 General Idea

To explain composition-operator-based languages it is conceptually convenient to imagine all sim-
ple events being received in a single stream. The stream contains events of different types, i.e.,
when events are represented as XML messages, their schemas may be different, when events are
represented as objects, their classes may be different, and when events are represented as tuples
or collections of attribute-value pairs, their associated types may be different.

So-called simple event queries serve the purpose of specifying a certain class or type of simple
events such as “order” or “payment notification” in the stream of all incoming events. Accordingly,
these simple event queries primarily address the type of an event and are also often called event
types in the literature. A simple event query can be understood as taking the stream of all incoming
events as input and producing as output a sub-stream containing only events of the specified class
or type. Additionally, simple event queries also sometimes extract data from events (such as the
account number and amount for a payment notification), typically by binding variables. It should
be mentioned that in many event query languages based on composition operators, especially the
early ones, data in events has been treated with some neglect. When there is no data associated
with a simple event queries, we will write it as a single identifier (A, B, order, etc.).

Composition operators can be understood as functions whose input and output are streams of
events. Typical examples of composition operators are a binary conjunction and a binary sequence.
They take as input the two streams which are produced by their arguments, and produce as output
a single stream of composed events. Conjunction is often written A ∧ B and informally means
that events of types A and B must happen (at different times), regardless of their order, to yield
an answer for this operator. Sequence is often written A;B and additionally gives the constraint
the that A event must happen before the B event in time. There are also ternary operators, e.g.,
a negation to detect a sequence of A and C where not B event happens between them. Although
this is often written A;¬B;C, this must be understood as a ternary operator not an expression
formed with two binary sequences and a unary negation.

Composition operators allows to write common queries in a very compact form. With the
exception of very few languages, expressions formed with operators can be arbitrarily nested.
For example (A ∧ B);C would detect a conjunction A ∧ B being followed by an event of type
C. This nesting gives rise to more expressive queries. However, it also causes problems and
misunderstandings. Some equivalences that one would except such as (A∧B);C ≡ (A;C)∧(B;C)

50 CHAPTER 3. STATE OF THE ART

or (A;B);C ≡ A; (B;C) do not hold, or worse, do or do not hold depending on varying operator
semantics.

3.2.2 Sequence: One Operator, Many Semantics

The sequence operator A;B seems rather intuitive, it just detects complex events consisting of
an event of type A followed by an event of type B. A closer look however reveals that there are
at least six different semantics for the sequence operator [ZS01]. These are obtained by varying
the operator in two aspects: first in three ways of interpreting what it means that an event is
“followed by” an event, second in two ways of defining occurrence times of complex events.

An event a being followed by another event b can be interpreted as:

• the occurrence time of a being temporally earlier than that of b without any further restric-
tions,

• the occurrence time of a being temporally earlier than that of b and there being no event
between a and b that is relevant to the query (e.g., if the query is (A;B)∧C then there must
not be an event of C between a and b, but there may be events of a type D that is not A,
B, or C),

• the occurrence time of a being temporally earlier than that of b and there being no event
whatsoever between a and b.2

The latter two case can also be thought of a immediately following b. A related issue is also
discussed in [WRGD07], where a “next” operator that identifies a single event that immediately
follows a given event is defined and its computational complexity analyzed. (Note that the above
variations can have multiple immediately following events, esp. in cases where several events
happen at the same time.)

Occurrence times can either be

• time points, which implies that the occurrence time of an answer to A;B is the same as the
occurrence time of the B event, or

• time intervals, which implies that the occurrence time of an answer to A;B is the time
interval that has as start the start time of the A event and as end time the end time of the
B event.

Using time points or time intervals can have far reaching consequences. Consider a query A; (B;C)
under the first interpretation of “followed by” (i.e., non-immediately) and the events b, a, c arriving
in that order and being of types B, A, and C, respectively. Under time point semantics, they
yield an answer to the query: b and c satisfy (B;C) with the occurrence time (point) of c, which
in turn is later than that of a. Under time interval semantics, the events do not yield an answer
to the query: b and c satisfy (B;C), but their occurrence time is the interval starting at b which
is not later than a.

The semantics of operators also have consequences on equivalences between different queries. It
seems intuitive that a sequence operator is associative, i.e., A; (B;C) and (A;B);C are equivalent.
The example just used to contrast time point and time interval semantics shows however that this
is not the case under time point semantics, though it is the case under time interval semantics
[GA02].

Since time interval semantics seem more natural for complex events and have the intuitive
equivalences, most recent composition-operator-based languages therefore adopt time interval se-
mantics. Also there is a trend to interpret sequence as non-immediately following events, i.e.,
other events might occur in the meantime. In many languages, an immediate sequence can still
be expressed using an explicit negation of the events that must not happen in the meantime.

2Reference [ZS01] omits this last case and thus arrives at only four instead of six possible semantics for the
sequence operator.

3.2. COMPOSITION-OPERATOR-BASED EVENT QUERY LANGUAGES 51

The binary sequence operator is often generalized to an n-ary version A;B;C; This version
can be reduced a nested binary sequences (((A;B);C); . . .). Note that the parentheses must be
placed in this way in case the sequence operator is not associative (see above).

3.2.3 Core Composition Operators

Composition-operator-based languages offer a considerable amount of different operators. At the
core of all languages are four operators: sequence, conjunction, disjunction, and negation. The
sequence operator has already been discussed in detail, and we now discuss the other three core
operators.

Conjunction A conjunction A ∧ B specifies that both events of both types A and B must
happen. It is important to emphasize that conjunction is “temporal,” that is the events may
happen at different time points. Since the order of events is irrelevant, conjunction does not
have several semantic variants like the sequence operator. Because conjunction is “temporal”
(as opposed to “logical”), some equivalences that one might intuitively expect do not hold. For
example one might expect that (A∧B);C could be equivalently written as (A;C)∧ (B;C), which
is not case. Consider events a, c1, b, c2 of types A, C, B, and C arriving in that order. The first
expression gives on single answer using a, b, c2. The second expression gives two answers, one
(A;C) is matched with a, c1 and one where (A;C) is matched with a, c2. An n-ary version of the
binary conjunction is straightforward.

Disjunction A disjunction A ∨B specifies that an event of type A must happen or an event of
type B. Semantics of disjunction can vary when both events happen. Consider a query A; (B ∨
C);D and events a, b, c, d of types A, B, C, D arriving in that order. The query could either yield
one result a, b, c, d or two separate results a, b, d and a, c, d. Note that the former option might
be considered inconsistent with the fact that A; (B ∨ C) must delivers two answers (because the
query cannot know that b will be followed by c when processing b). Again, an n-ary version of the
binary disjunction is straightforward.

Negation Detecting the absence of events is important in many CEP applications, in particular
to detect malfunction, unavailability, or delayed processing. To this end, composition-operator-
based languages support a negation operator. Since the stream of incoming events is potentially
unbounded, absence of events makes sense only on a restricted finite extract, or “window,” of the
stream — otherwise the query would have to wait for the end of the stream, potentially forever,
to be sure that the event will not come.

Typically, negation is a ternary operator with the first operand specifying the start of the
window, the second the event that must be absent, and the third the end of the window. Although
it is often written as A;¬B;C, note that negation really is one ternary operator, not a combination
of two sequence operators with a unary negation operator. In languages where (complex) events
can be time intervals, such interval events also be used for specifying the window (rather than two
time point events for start and end). An example are the original event composition operators of
XChange [Eck05, BEP06b], where the negation operator then would be written as not A during
B (B being a complex event query).

3.2.4 Advanced Composition Operators

While the four operators discussed so far, sequence, conjunction, disjunction, and negation, are at
the core of virtually all languages based on composition operators, there is a multitude of further
operators that have been proposed in different languages. While it can be considered a strength of
the composition-operator-based approach that new operators can be added easily, this also shows
a weakness: there is so far no commonly agreed upon set of composition operators that offers a
sufficient expressivity for most CEP applications. We now look at a selection of further operators.

52 CHAPTER 3. STATE OF THE ART

Temporal Relation When events occur over time intervals, sequence is not the only temporal
order in which events can happen. The occurrence time intervals of two event can also overlap, con-
tain each other, etc. There are 13 such relationships possible [All83]: before, contains, overlaps,
meets, starts, finishes, equals, and the respective inverses after, during, overlapped by,
met by, started by, finished by. (For equals, the inverse is again equals itself.) The language
in [Ron97] proposes composition operators based on these relationships.3 The sequence operator
(under the “non-immediately following” interpretation) is the same as the before operator in this
case.

Note that there is an important difference between a temporal relationship like before and the
corresponding composition operator, though: as a temporal relationship it is simply a function
mapping two time intervals to a truth value; as a composition operator it is a function mapping
two input streams of events to an output stream of (complex) events. As will be discussed in
Chapter 17 this difference is important and can lead to misinterpretations of the operators. Unlike
the sequence operator, there are usually no n-ary generalizations of the binary operators.

Not all of the 13 relationships are equally important. Due to timing issues (see Section 2.4.4),
two different events rarely happen (or begin or end) at exactly the same time. The operators
meets, starts, finishes, equals (and their inverses), however, require some endpoints of the
occurrence time intervals of events to be exactly equal. These operators can therefore be considered
less useful than the other operators before, contains, overlaps (and their inverses).

Metric Temporal Restrictions Temporal relations are qualitative in the sense that they only
affect the relative order of events. Event queries however also require quantitative or metric
statements such as that two events happen within a specified length of time. On unbounded
event streams, such metric constraints are important to restrict queries in such ways that their
evaluation can remove every stored event after a finite, fixed amount of time.

Some languages introduce temporally restricted variations of their operators to this end [HV02,
CL04]. For example (A;B)2h would specify that A and B happen in sequence and within 2 hours.
Alternatively, some languages that are based on time interval events offer a single unary restriction
operator C within 2h a that restricts the duration of a complex event [BEP06b, Eck05]. Note that
through nesting of expressions, this single unary operator gives essentially the same effect as having
different variants of operators. For example (A;B)2h can be expressed be letting C := (A;B), i.e.,
(A;B) within 2h. Such a unary operator however only makes sense on time interval events.

It is worth noting that these temporal restrictions offered by composition operator-based-
languages are fairly limited in their expressivity. A query specifying that A happens, then B
happens within 1 hour of that A, and then C happens within 1 hour of that B, cannot in most
languages based on time intervals.4 Note that neither ((A;B)1h;C)1h nor (A; (B;C)1h)1h solves
the query correctly. Both would require C to happen within 1 hour of A (not B!). It would be
possible to define an n-ary temporally restricted sequence operator along the lines of A;1h B;1h ;C
that can solve this query. We are however not aware of a language that offers such an operator.

In addition to the relative restriction that events happen within a given length of time, some
event query languages also allow absolute or periodic restriction. An absolute restriction would be
that event A and B happen within a fixed time interval, e.g., a single day that given by its date.
A periodic restriction would be that event A and B happen in the same time interval of a given
sequence of (usually non-overlapping) time intervals. An example would be that events A and B
both happen on a Monday (but both events on the same Monday!). Such a periodic restriction is
found, e.g., in [GD93].

Temporal Events Temporal events are events that are not represented in the stream of in-
coming events but are generated at times specified in the query. One can distinguish relative and

3The inverses are left out in [Ron97], since instead of A after B, one can simply write B before A. Further,
before is called precedes in a deviation from the original terms of [All83] there.

4For languages based on time points, the same argument still can be made with a variant of the given query
that specifies that C happens within 2 hours of the A instead.

3.2. COMPOSITION-OPERATOR-BASED EVENT QUERY LANGUAGES 53

absolute temporal events. Relative temporal events are defined relative to another event, e.g., an
event “1 hour after A” would be relative to the event A. Relative temporal events are important
especially in connection with negation. For example that a request A has been “timed-out,” i.e.,
not received its answer B within 1 hour would be specified as a negation of B between event A and
the relative temporal event A + 1h: A;¬B;A + 1h. Note that the syntax A + 1h (which mimics
[GD93] and [MSS97] amongst others) is ambiguous in case an event query contains the event type
A multiple times.

Absolute temporal events specify fixed time points or intervals. They can be non-periodic,
i.e., a single time point or interval, or periodic, i.e., a sequence of time points or (usually non-
overlapping) intervals. Absolute temporal events are fairly uninteresting for event queries, because
they happen only once and accordingly they become irrelevant on unbounded event streams after
finite time. Periodic events have some applicability for collecting events, e.g., collecting all stock
price events on a given trading day.5 Arguable, one can claim that absolute temporal events
are not a composition operator in the narrower sense, rather a primitive event (query). However
there are also cases where they are explicitly operators, e.g., with the periodic operators of Snoop
[CKAK94, AC06], in which case they sometimes also realize further functionality such as collecting
event in a time interval.

Counting An operator that seems simple but turns out to have hidden difficulties is counting
of events. Counting of events of the same type (e.g., login attempts with incorrect passwords) and
generating complex events when the number exceeds a certain threshold (e.g., three such attempts
generate a notification to the administrator) is not uncommon in some CEP applications.

Such operations are supported in many languages [CKAK94, ZU96, AC06, ZS01, ME01, SB05,
BC06].6 However, there are many variations in the precise semantics of the different operators.
The variations come into play mainly when looking at what happens after the first answer has
been generated and when another event of the type that is counted is received (e.g., a fourth
attempt to login with an incorrect password). Some operators will generate a single new answers,
some several new answers (e.g., three answers, one for each combination of three login attempts
that uses the fourth), some will not generate an answer at all (e.g., only when again three new
attempts have been made after the first answer).

Some languages offer also operators that specify that a threshold may not be reached (“at most
n events”) or must exactly be reached. Like negation, these queries make only sense over a finite
window on the unbounded stream of incoming events.

Still More Operators Though many operators have been discussed so far, there are still more to
be found in the literature. Some operators that will not be elaborated on here include: repetition
in the sense of a closure operation that collects events of the same type (e.g., ∗-operator in
[GJS92a, MZ97], collect in [Păt05]), the periodic and a-periodic operators of Snoop and SnoopIB
(A, A∗, P, P∗ in [CKAK94, AC06]), selection of only certain occurrences such as only every n-th
event (e.g., every n in [Păt05]), and extended versions of counting that allow events of different
types (e.g., ANY in [CKAK94, AC06, GA02], m of in [Eck05, BEP06a], atleast, atmost, nth in
[AE04]).

3.2.5 Detection Time of Complex Events

Complex event queries are associated with actions that are to be performed whenever a complex
event is detected. Since actions are sensitive to timing and ordering, it is therefore important to
know when a complex event is detected (and thus an action executed) in order to understand the
behavior of an overall system.

5Note however that data stream systems (Section 3.3 of this chapter are often better suited for such queries
involving collecting events in order to perform aggregations (average, minimum, maximum).

6Counting operators are fairly similar to operators selecting only every n-th occurrence of an event type as they
can be found, e.g., in [GJS92b, GD94, HV02]

54 CHAPTER 3. STATE OF THE ART

The usual way, which works well for the core operators, is to detect a complex event when
the last contributing event happens, i.e., when the last event required to produce a new answer
to the complex event query happens. This last event is sometimes also called the terminator. (In
analogy, the first event is sometimes called the initator.) However, for some queries using advanced
operators, it is not alway clear what the last event actually is.

Especially when visualizing the time intervals, it might seem that a complex event answering
the query A overlaps B occurs over the time interval which is the intersection of the intervals for
A and B. Accordingly, one would expect the detection at the end of the time interval for A. This
is, in fact, the way the overlaps operator had been originally defined in [Ron97]. As is pointed
out in [GA04], however, the detection of the complex event cannot happen until end of the time
interval for B. During the complex event detection we cannot know that B actually happens (and
thus the complex event happens) until the detection of B is completed. For example in the case
that B = C;D we have to wait if a D event ever arrives. A similar argument can be applied to
the definition of during in [Ron97].

Counting is another operator where the detection time is not always clear. When the query
is for “at least” n events, the complex event can be generated with reception of the n-th event.
When the query is for “at most” or “exactly” n events, then the query has to wait for the end of
the window that must be associated with the counting operator.

Some composition-operator-based languages additionally introduce a detection mode such as
“immediate” or “deferred” [AE04, BZBW95]. While the former mode detects complex events as
soon as possible, the latter has an additional lifetime or transaction that is associated with the
query and the complex event will only be detected at the end of that. Note that such additional
lifetimes can be considered unnecessary, because waiting until the end of the lifetime could also be
expressed by placing the query as first operand in sequence and using an event signaling the end of
the lifetime as second operand. The detection modes can be understood historically though, con-
sidering that in Active Database Systems, Event-Condition-Action rules (that could have complex
event queries in the event-part) would often implicitly run inside database transactions.

3.2.6 Event Data and Correlation

So far, we have considered the types of events in complex event queries but not that data that
events carry. Especially in the early literature on composition-operator-based languages, data has
been treated with some neglect; these works would explain composition operators but make little
or no reference to how event data affects event composition.

It is a common requirement to compose only events that “belong” together by being correlated
on some data attributes. Consider an incoming event stream that has primitive events of types
“order,” “shipping,” and “delivery.” A complex event “order completed” could be detected as
events of these types occurring sequentially. However, the incoming event stream contains all order,
shipping, and delivery events that are produced, not just those for a given business transaction.
The complex event query therefore must ensure that an order event is only composed with shipping
and delivery events that are part of the same business transaction. To this end, events might have
a data attribute “order number” and the query would have to only compose events with the same
order number.

It would be a possibility to split the event stream with a mechanism separate from the complex
event query, so that we have separate event streams per business transaction and each event stream
then automatically contains only events that “belong” together by having the same order number.
In Active Database Systems, such an implicit correlation of events was often the case when an
event stream would only contain events from the same database transaction. This explains, in
part, why many early languages neglected data in the event composition.

However, such an implicit event correlation cannot be assumed in the general case. Many
complex event query compose events from different business or database transaction. An example
would be a complex event query that involves counting the number of orders per day. Further,
correlation is not necessarily on a single attribute. Instead of the order, shipping, and deliver event
all having a single attribute “order number,” the order event might have an “order number,” the

3.2. COMPOSITION-OPERATOR-BASED EVENT QUERY LANGUAGES 55

shipping event an “order number” and a “tracking number,” and the delivery event only a “tracking
number.”

Making the core composition operators sensitive to data in events is fairly straightforward,
when the data in events consists of simple attribute-value pairs. With O, S, D being the respective
event types for order, shipping, and delivery, the above example would then conceptually be
O(x);S(x, y);D(y), where the variable x is bound the order number and y to the tracking number.

The original event composition operators of XChange [Eck05, BEP06b, BEP06a] and the
TREPL language [MZ97] are examples of languages that support such data-sensitive operators.
XChange can compose events that are represented as XML messages and therefore have data with
a more complicated structure than simple attribute-value pairs. In Amit [AE04], events composi-
tion is sensitive to so-called local and global keys. This can be deemed less expressive and flexible
than arbitrary variables since there can only be a single key per event query (e.g., the correlation
over order number and tracking number is not possible with a single key).

Counting operators are more difficult to extend to be sensitive to data. This is largely due to
the fact that data can heavily affect what events are counted. One query might simply count the
number of orders in a given time window, while another might count the number of orders with
distinct items. Counting can also require some correlation with events that are not counted, for
example a query might count the number of inquires received for a particular order (requiring a
correlation on the order number). Most languages so far do not cater for these variation, however,
and propose only a single counting operator. The language in [ME01] offers two counting operators
timesEq and timesDf to count only events with the same values or only events with different
values.

3.2.7 Event Instance Consumption and Selection

The same primitive event can be used multiple times to generate different complex events for a
given query and several complex events can be generated at the same time. Consider the event
query A;B against an event stream a1, a2, b1, b2 (a1, a2 of type A, b1, b2 of type B). The event
a1 will be used twice to generate two different complex events, one when b1 is received and one
when b2 is received. When event b1 is received, two different complex event are generated at the
same time, one for a1 and one for a2.

Some languages offer ways to restrict the reuse of primitive events and the generation of
simultaneous complex events. Originally, this issue has been introduced in [CKAK94], where so-
called parameter contexts were applied to event queries. Five different contexts were supported:
unrestricted, recent, chronicle, continuous, and cumulative. Later this idea has been refined and
the issues separated into event instance consumption, which restricts the reuse of primitive events,
and event instance selection, which limits the generation of simultaneous events by considering
only selected primitive events for composition [ZU99].

Consumption allows to invalidate certain events so that, once they have been used in one
answer to a query, they cannot be used in other, later answers [GD94, ZU99]. Consumption can
be relative to single query, i.e., reuse of the consumed event is not possible for this single query, or
to a set of queries, i.e., also other queries will not reuse a consumed event. Note that consumption
has direct impact on semantics and should be distinguished from event deletion as a garbage
collection mechanism in evaluation algorithms (cf. Chapter 15).

Event instance selection allows to restrict the instances of an input event type that are consid-
ered for a composition with other input events so that, e.g., all event instances are considered, or
only the first, n-th, or last instance is considered [ZU99, AE04, HV02]. Note that notions such as
first or last only have an intuitive meaning when there is a linear order on the occurrence times of
events; however usually there is no clear linear order when events happen over time intervals not
points.

In general, both instance selection and event consumption should be sensitive to event data
(e.g., for each order number, select the last inquiry event), an aspect that has usually been ignored
in the literature so far. An exception is instance selection in Amit, which is sensitive local or global
keys [AE04].

56 CHAPTER 3. STATE OF THE ART

3.2.8 Formal Semantics and Representation of Answers

Although many composition-operator-based languages have been defined, these often lack precise
and formal semantics. A particular question raised is how an answer to a query, i.e., a complex
event, is represented both as a mathematical object and as a data structure that is provided for
the execution of reactions to the complex event.

Some works try to give semantics by defining a predicate O(q, t) which is true when there is
an answer to the query q with occurrence time t [GA02, AC06] (similar in [CKAK94]). The time
interval-based sequence operator would have the following definition for O then [GA02]:

O((E1;E2), [t1, t2]) ⇐⇒ ∃t∃t′. t1 ≤ t < t′ ≤ t2 ∧O(E1, [t1, t]) ∧O(E2, [t′, t2])

It is worth pointing out that the sequence operator has one of the shortest definitions. A difficulty
of this approach is that it only accounts for the occurrence time, but not the fact that at the
same time several complex events may be generated (cf. examples earlier in Section 3.2.7). The
reason for this is that complex events (answers to queries) do not have any explicit representation.
Further this approach does not account for event instance consumption and selection and data in
events.

An alternative approach is to use an explicit representation of complex events as a set or
sequence of their constituent events, that is, of the primitive events used in answering the complex
event query [HV02, CL04]. Every operator is then associated with a function that maps the
event histories of its operands to complex events. The event histories of operands are the sets or
sequences of events that have been produced so far for the operands; note that the elements can
be complex events themselves (i.e., sets of primitive events). This approach can account for event
instance selection. It does not account well for event instance consumption, however, because this
essentially requires changing the histories of the operands whenever complex events are detected
[HV02]. In its basic form, the approach usually does not account for data. However, a fairly
similar approach in [Eck05, BEP06b] can cope with data as variable bindings.

3.3 Data Stream Query Languages

The second style of languages has been developed in the context of relational data stream man-
agement systems. Data stream management systems are targeted at situations where loading
data into a traditional database management system would consume too much time. They are
particularly targeted at near real-time applications where a reaction to the incoming data would
already be useless after the time it takes to store it in a database. Having been developed in
the database field, query languages for data streams put their focus more strongly on data than
composition-operator-based languages. On the other hand, they pay less attention to issues such
as timing and temporal relationships that are important when processing events.

Much of the research on data streams focuses on optimizing particular classes of queries (e.g.,
different forms of filtering, joins, aggregation). These queries are then only expressed in a SQL-
like straw-man query language without much work on language design or formal language defini-
tion. An important exception of this is the Continuous Query Language (CQL) that is used in
the STREAM systems [ABW06]. There are so far no significantly different competing language
proposals in the data stream area. The general ideas behind CQL also apply to a number of
open-source and commercial languages and systems including Esper [Esp], the CEP and CQL
component of the Oracle Fusion Middleware [Ora], and Coral8 [MV07]. In the following, we
base our introduction to data stream query languages therefore on CQL as described in [ABW06].
However, we also discuss ideas and extensions from other systems that share the same basic model.

3.3.1 General Idea

A data stream is an unbounded sequence of time-stamped tuples. The time-stamps are only time
points (not intervals). In the context of complex event processing, an event typically corresponds

3.3. DATA STREAM QUERY LANGUAGES 57

SELECT Istream O.customer , S.trackingId
FROM O[Range 2 Hours], S[Range 2 Hours]
WHERE O.id = S.orderId

Figure 3.1: A first example of a CQL query

to a single tuple in a data stream, and the data stream that is belongs to has some correspondence
with an event type.

CQL aims at leveraging SQL for querying such data streams. However, SQL operates on
relations (or tables), which are in contrast to streams finite and not time-stamped. Therefore SQL
cannot directly operate on data streams.

The way that CQL applies SQL to data streams is essentially the following: For each point τ in
time, the data streams received so far are converted into relations. Then the query is evaluated on
these queries as a regular SQL query. The result can then be converted back into a stream. Note
that CQL requires that time points are taken from a discrete domain (e.g., integers). Regarding
semantics, it is important to emphasize that the conversion process from stream to relations and
back to streams happens conceptually at each point in time. The actual evaluation is however
for many queries more efficient by avoiding the conversion to relations and operating directly on
streams.

For converting streams to relations, CQL supports a number of so-called stream-to-relation
operators. An example of such a stream-to-relation operator is a sliding time window (of length
d) that produces a relation containing all tuples with a time stamp between the current time τ
and τ − d from a stream.

Transformations between relations (relation-to-relation operators) are performed using stan-
dard SQL queries, often with some restrictions (e.g., no nested queries). The abstract semantics
of CQL would allow to use other relational query languages as well, but this has not been done in
practice so far.

For converting relations back to streams, CQL supports a number of relation-to-stream oper-
ators. An example of such relation-to-stream operator is the Istream operator, which produces
a stream tuple for each tuple that has been inserted into the relation at the current time τ (in
comparison to the previous state of the relation at time τ − 1).

Note that in the original proposal of CQL [ABW06], there are no stream-to-stream opera-
tors. However, recently such operators, which are somewhat similar to the composition-operators
discussed earlier, have been proposed. These will be discussed later and separately in Section 3.6.1.

As a first example of a CQL query consider that a stream O contains order events (for some
customer and with a number id) and a stream S contains events that signify that an order
(with number orderId) has been shipped (with tracking number trackingId. The CQL query in
Figure 3.1 pairs up events with the same order number over a time span of two hours and produces
as output a stream containing customers together with the tracking numbers of their orders. Note
that since the relation-to-stream operator is Istream, there will be only one output tuple per pair
of order and shipping events. The output tuple will carry the time-stamp of the later of the two
events.7

We now look at the different stream-to-relation and relation-to-stream operators in more detail.
We then get back at the full picture of CQL by looking at how these operators are used together
with SQL as relation-to-relation operator to write common types of event queries. Finally we will
discuss semantics of CQL together with issues related to the detection time of events.

3.3.2 Stream-to-Relation Operators

The task of a stream-to-relation operator is to produce a relation R(τ) at a time point τ from the
tuples received up until τ in stream S. Typically the relation is simply a selection of tuples from

7Intuitively, a shipping event should always come after its order event. However, the query does not prescribe
this and would also allow order and shipping events to arrive in different order.

58 CHAPTER 3. STATE OF THE ART

the stream based, e.g., on the time stamp of the tuples. Since the relation contains only a finite
extract of the stream, one also refers to a stream-to-relation operator as a window that is applied
to the stream.

The syntax for applying a stream-to-relation operators to a stream S is S[spec]. The resulting
relation may then be used in the FROM-clause of a SQL expression. The window to select tuples
from the stream is specified in spec.

The most intuitive forms of windows select tuples based on their time stamps. Common forms
of time-stamp-based windows found in data stream management systems include:

• Now window: The resulting relation contains only the stream tuples with the time stamp τ .
The syntax for this window is S[Now]. In the earlier example of order and shipping events,
the query could be modified to use S[Now] instead of S[Range 2 Hours] if we assume
(as would typically be the case) that shipping events arrive after their corresponding order
events.

• Unbounded window: The resulting relation contains all stream tuples received up until
the time τ . The syntax for this window is S[Unbounded]. Note that unbounded windows
often —but, as we will see, not always— lead a forever increasing demand in memory over
time since the resulting relations grow with every new tuple in the stream. The syntax for
unbounded windows is S[Range Unbounded].

• (Simple) sliding windows: The resulting relation contains all stream tuples between τ − d
and τ , where d is a specified duration such as “1 minute” or “2 hours.” The syntax for a
sliding window of duration d is S[Range d]. For example a 30 second window would be
written as S[Range 30 Seconds].

• Sliding windows moving at fixed granularity: The resulting relation also contains tuples
within a window of a specified size d. However, the window does not move continually but
over a grid of s time units. In other words, every s time units, the start of the time window
is moved forward by s time units. The syntax for a window of duration d that moves by
a granularity of s is S[Range d Slide s]. For example a 24 hour window that moves in 1
hour increments would be written as S[Range 24 Hours Slide 1 Hour]

• Tumbling windows: These are a special case of sliding windows with fixed granularity, where
the window duration d is the same as the sliding granularity s, i.e., s = d. Note that the
windows do not overlap in this case and the end of one window becomes the start of the
next.

• User defined: The resulting relation contains tuples within time points f(τ) and g(τ), where
f and g are user-specified functions. Typically f and g are functions external from the
data stream management system, programmed, e.g., in Java or C++. It is required that
f(τ) ≤ g(τ) for all τ .

Instead of selecting tuples based on their time stamps, windows can also have a fixed capacity
of tuples. At time point τ , the tuple-based window specification S[Rows N] would contain the N
most recent tuples of the stream S, that is, those with the largest timestamps smaller or equal τ .
If there are several tuples with the same time stamp then it can be ambiguous, which of the older
tuples are in the relation in which are not. Tuple-based windows are computationally preferable to
time-stamp-based windows, since the size they take up in memory is fixed and known in advance.
Tuple-based windows can be useful in applications that average over measurements such as stock
ticks or sensor values in order to smooth and clean data. However, time-based windows are often
more natural in event processing both since they are easier to understand for human users and
because many business applications (e.g., order processing) refer directly to time.

A variant of tuple-based windows are partitioned windows. Partitioned windows split the
stream into substreams based on the values of some attribute (similar to a GROUP BY clause in
SQL). Then a tuple-based window is applied separately to each substream. The result relation

3.3. DATA STREAM QUERY LANGUAGES 59

then is the union of all the relations for the substreams. Note that partitioned windows usually
do not have a fixed size since the number of substreams depends on the (varying) number of
different attribute values. The syntax for partitioned windows is S[Partition By A1, ...Ak Rows
N], where A1, ...Ak are attributes of S.

Windows based on time-stamps or tuple order always contain recent tuples and tuples enter
and leave the window in a first-in-first-out (or first-in-first-expire) manner. Predicate windows
[GAE06] break this pattern and offer a more flexible approach, where tuples qualify and disqualify
for the window based on a predicate. The predicate can be defined over any attribute of the
stream. Note that the predicate windows in [GAE06] rely on tuples having a so-called correlation
attribute. A tuple with the same value for the correlation attribute as a previous tuple is considered
an update to that tuple and overrides the previous tuple.

Similar to predicate windows are the so-called basket expressions of the DataCell system in-
troduced in [KLG07]. In the DataCell, tuples arriving in streams feed into so-called baskets. The
basket produced from a stream is essentially the same as the relation produced by the unbounded
window in CQL. Tuples can be removed from baskets, however, using so-called basket expressions.
Basket expressions are regular SQL queries surrounded by square brackets. In contrast to SQL
queries they have a side-effect: they consume tuples, i.e., input tuples that are used in generating
an output tuple are removed from their baskets. Note that this is reminiscent of consumption
modes in composition-operator-based languages (cf. Section 3.2.7). Because predicate windows
decide what tuples remain in a window and basket expressions decide what tuples are removed
from a basket, the two can be understood as being loosely symmetrical. However, offering a more
fine-grained control, basket expressions are more flexible. Since they rely on side-effects, the Dat-
aCell also requires a more involved computational model based on Petri-Nets and thus does not
use the stream-relation conversion model and semantics of CQL. Aggregates and joins must also
be programmed on a more fine-grained level in the DataCell.

3.3.3 Relation-to-Stream Operators

As explained earlier, regular SQL queries are applied to the relations produced by the stream-
to-relation operators. The result of these queries is a relation R(τ) for each time point τ . In
order to get a stream of time-stamped tuples as a result rather than relations, relation-to-stream
operators are applied. There are three relation-to-stream operators in CQL: Istream, Dstream,
and Rstream.8

Rstream stands for “relation stream”. This operator produces a stream from its input relations
by simply inserting all tuples of R(τ) into its output stream with a timestamp of τ . Note that
since R(τ) often differs only slightly from its previous state R(τ − 1), the same tuple will often be
found several times in the output stream with different time stamps.

In contrast, Istream and Dstream do not produce the full state of a relation for each time
point τ , but only the changes to the previous state. Istream stands for “insert stream” and it
contains the tuples that are inserted into the relation R. More precisely, it contains a tuple t
with time stamp τ whenever t has been added to R(τ) in comparison to the previous state of
R, i.e., t ∈ R(τ) − R(τ − 1). Dstream stands for “delete stream” and is the opposite containing
the tuples that are deleted from the relation R. More precisely, it contains a tuple t with time
stamp τ whenever t has been removed from R(τ) in comparison to the previous state of R, i.e.,
t ∈ R(τ − 1)−R(τ).

Note that these relation-to-stream operators rely on a discrete notion of time, since the defini-
tions of Istream and Dstream make use of a notion of the previous state of a relation identified
by R(τ − 1). If the time domain was dense not discrete (e.g., isomorphic to the rational number
not the natural numbers), then the previous state of the relation cannot be identified by a time
point τ − 1.

8Note that in the Esper language [Esp], the Rstream operator corresponds to the Dstream of CQL and there is
no operator with the effect of the Rstream operator of CQL.

60 CHAPTER 3. STATE OF THE ART

SELECT Istream(*)
FROM O[Range Unbounded]
WHERE total > 1000

(a) Istream, Unbounded

SELECT *
FROM O
WHERE total > 1000

(b) Syntactic shortcuts

SELECT Rstream(*)
FROM O[Now]
WHERE total > 1000

(c) Rstream, Now

Figure 3.2: Simple filter queries for “big” orders in CQL

3.3.4 SQL as Relation-to-Relation Operator

The abstract model of CQL semantics would in principle allow for any kind of relation-to-relation
operation. However in practice, relation-to-relation operators are always expressed in SQL (or
a somewhat restricted subset of it). We now look at some common queries in CQL using the
stream-to-relation and relation-to-stream operators discussed so far and SQL as a relation-to-
relation operator.

In addition to the pure query language as will be discussed here, languages in data stream
systems also contain constructs for defining schemas, creating and removing streams, indexes,
etc.; these construct are similar to their corresponding SQL constructs (e.g., CREATE TABLE, DROP
TABLE) and of little relevance here.

Simple Filters Filters, which select tuples from a stream based on attributes, are the simplest
kind of query. They cannot really be considered complex event queries, since they apply to single
tuples or events without combining information of several tuples or events. However they are still
interesting to illustrate some salient points about CQL.

Consider again that O is a stream of order events. The query in Figure 3.2(a) filters this stream
so that the output contains only “big” orders, i.e., orders with a total of more than $1 000. For
each time point τ , the Unbounded operator produces a relation containing all orders with a time
stamp earlier or equal τ . This relation is filtered to contain only big orders (WHERE clause).
The Istream operator then converts the relations back into a stream. Since Istream produces
only those tuples that are added to the relation, each big order in the input stream O is also only
contained once in the output stream.

For a simple filtering query like this, the round trip from stream to relation, to relation, and
back to stream, might be considered somewhat unintuitive. In particular, although the window
specified in the query is unbounded, the query in fact does not have unlimited memory demands
since it can be evaluated on a per-tuple basis without storing tuples of O at all.

This weakness in the language design of CQL is somewhat remedied by syntactic defaults that
allow to write the query in a more intuitive form without the unbounded window and the Istream
operator as in Figure 3.2(b). Note however, that this is just a syntactic shortcut and its expanded
form is still that of Figure 3.2(a). The query can also be written in a different way using the now
window and an Rstream operator as in Figure 3.2(c).

Joins Tuples from different streams can be joined. Unlike the tuples produced by simple filtering
queries as above, output events (or tuples) of queries involving joins are generated from several
input events (or tuples) and thus are “real” complex events. An example of a query involving
a join as already been given earlier in Figure 3.1. Joins between data streams correspond the
conjunction operator in composition-operator-based languages (Section 3.2.3).

The streams that are joined should always have a finite window; an unbounded window on one
of the streams would lead to unbounded memory requirements for storing that stream. Note that
determining the appropriate windows for streams can be a difficult task for some event queries.
As an example consider having to join order, shipping, and delivery events. The events happen
in this sequence, order and shipping within 24 hours, and shipping and delivery within 48 hours.
The correct windows then would be sliding windows of a duration of respectively 72 hours and 48
hours for the order and shipping event streams, and a now window for the delivery event stream.

3.3. DATA STREAM QUERY LANGUAGES 61

SELECT Istream(count(id))
FROM O[Range 24 Hours]
WHERE O.total > 1000

(a) Counting big orders

SELECT Istream(payment , count(id))
FROM O[Range 24 Hours]
GROUP BY O.payment

(b) Counting orders per payment type

Figure 3.3: Aggregates in CQL

This issue will resurface in a different shape in connection with the temporal relevance and garbage
collection in XChangeEQ in Chapter 15.

Joins in CQL usually make no constraints to the order in which tuples from different streams
arrive, i.e., there is no real equivalent of the sequence operator in composition-operator-based lan-
guages (Section 3.2.2). In general it can be said that beyond time-stamp-based windows, CQL of-
fers little support for such temporal aspects of event queries. On the other hand, CQL has a strong
emphasis on data and supports more flexible correlation between events than most composition-
operator-based languages. For example the “order completed” query from Section 3.2.6, which
joins order and shipping events based on an order number and then shipping and delivery events
based on a tracking number, can be expressed easily in CQL.

Aggregates By using SQL’s aggregation functions such as MAX, MIN, COUNT, SUM, or AVG, data
from multiple tuples can be aggregated. Consider the query in Figure 3.3(a), where O is again a
stream of order events. The query counts how many “big” orders (total > $1 000) have been places
within the last 24 hours. Since the relation-to-stream operator is Istream, output is generated
whenever the number changes by either a new big order coming in or an old big order falling out
of the 24 hour window. Note that if the Istream operator is replace by Rstream, then the query
will generate an output tuple at every time instant, whether the value changes or not.9

By using the GROUP BY clause of SQL, tuples can also be first grouped together and then
aggregated on a per group basis. The query in Figure 3.3(b) counts the number of orders separately
for each type of payment (e.g., credit card, check). By applying an additional HAVING clause, one
could filter the output further, e.g., to generate output tuples only when the count exceeds a given
number.

In comparison to composition-operator-based languages, aggregation of data is much better
supported in data stream languages, especially from a single stream. Whether a given aggregation
query can be expressed in a data stream language depends crucially on the supported windows. For
example, a data stream language without support for tuple-based windows would have difficulties
to express a query such as “compute the average over the last 10 sensor values.” Further, most
current data stream management systems only support time-based and tuple-based windows.
When the window over which data is to be aggregated is however based on other events (e.g.,
“compute the number of failed requests between the server being switched off and on again”), this
becomes hard to express.

There has been a significant amount of work on aggregation queries on data streams that have
a high or bursty throughput. Techniques such as load shedding allow data stream management
systems to maintain their performance (in terms of throughput and latency) at the cost of precision,
e.g., by computing only approximate aggregates. There is a considerable number of applications
where such imprecision is tolerable, e.g., processing of sensor data, where already incoming data
is subject to measurement imprecision, but also some computations on stock market data which
are ultimately interested in trends (rather than some precise value).

9Note that some data stream management systems would interpret time as advancing only whenever a new tuple
comes in or an old tuple leaves its window. In this case, the query would return the almost the same result for
Istream and Rstream. The only difference then is in thouse cases when an equal number of tuples enters and leaves
the window at the same time where only the Rstream operator will generate output.

62 CHAPTER 3. STATE OF THE ART

SELECT Rstream(O.id , C.price , C.productGroup)
FROM O[Now], C
WHERE O.item = C.item

Figure 3.4: Access to database tables in CQL

Negation Negation (in the sense of absence of events or tuples) is less well supported in data
streams. The reason for this is that negation queries in event processing typically require a window
that is determined by other events, e.g., “event A does not happen between event B and C” or
“event A does not happen within 1 hour of B.” Thus, while the time-based and tuple-based
windows of data stream languages serve well for most common aggregation queries, they are often
insufficient for negation queries, even though negation and aggregation are otherwise quite similar.

In those cases where an appropriate window can be specified, negation must be expressed as
in SQL using either using a count aggregate (COUNT(...)=0) or the NOT IN set operation.

Views Most data stream query languages support the definition views over streams. Like views
on tables in SQL, a view on streams is defined by assigning a name to the result stream of a specified
query. This result stream can then be used as input in other queries by referring to its name.
Views are an important construct for organizing large query programs into smaller units that
logically belong together. Stream views often do not allow recursive cycles, i.e., in the definition
of a stream view one cannot refer directly or indirectly the this stream view. Computations such
as transitive hulls that require such recursive cycles thus cannot be expressed with these views.

Access to Database Tables Streaming tuples can also be joined with persistent relations.
Particularly common are queries that “enrich” events, i.e., add data to events using information
stored in a persistent database. For example a stream of order events might only contain a number
of the ordered item, however some query might be interested in the price and the product group
(e.g., books, electronics) of the ordered item. Then it is necessary to obtain this information
from a database table that contains among other information the price and product group for
each item number. Figure 3.4 shows how a query realizing this would be expressed in CQL. O is
again a stream containing order and C is a database table containing information about items, in
particular the product group of an item.

It should be noted that such joins with persistent relations are most times only meaningful when
using a now window as stream-to-relation operator and the Rstream stream-to-relation operator.
Otherwise a query might produce new output tuples at unexpected times, e.g., when the price in
the database table changes. Although it is generally a strong point of data stream query languages
that they allow such combined access to stream and non-stream (database) data, the issues when
database data changes cannot be considered fully solved.

3.3.5 Semantics and Detection Time

The semantics of CQL rely on a discrete notion of time: At each point τ in time, the streams
received so far are converted into relations, a query is evaluated on these relations to yield a result
relation, and this result relation is then converted back into a stream. Importantly, the conversion
back into a stream requires knowledge not only of the current result but also the result at the
preceding time point τ−1 in the case of the Istream and Dstream operator. Further, the Rstream
operator outputs the full result relation at every time point. Unless the query is to a single stream
to which the now window is applied (so that the resulting relation is empty when no new events
have been received), the Rstream operator also requires a discrete notion of time.

A dense time model (e.g., isomorphic to rational or real numbers) might in general be perceived
more natural that a discrete time model (e.g., isomorphic to integers). This is true even when
the actual realization in a computer system will always be discrete due to limited precision in the

3.4. PRODUCTION RULE LANGUAGES 63

representation of numbers; the granularity imposed by this precision might be too fine for a given
application. For example, when the Rstream operator is used, it is for performance reasons not
desirable to output a relation, e.g., every millisecond when an application is content with every
second. Specifying a fixed granularity of the time model that meets the needs of an application
would a conceivable approach, however this means that there is some external mechanism that
impacts the semantics and results of queries.

Rather than outputting the full relation at every time instant with the Rstream operator, it
might be more desirable to output the full relation only whenever a new tuple is received.10 It
would be possible to use an artificial “discretization” of regular wall-clock time so that a logical
clock advances on step whenever a new event is received. However there must then be a mapping
between this logical time and the wall-clock time to properly deal with time-based windows.
Further, the logical time must advance not only when new events are received, but also when old
events or tuples leave their time-window.

The semantics of CQL rely on the trinity of stream-to-relation, relation-to-relation, and relation-
to-stream operators. Understanding a query thus always involves a full round trip from streams
to relations, to a result relation, and then back to a stream. In order to know the result at a given
time point τ , it is not sufficient to apply this process only for the time point τ when an Istream
or Dstream operator is involved. The reason for this is that these operators deliver a difference
between the current state of the result relation and the previous state of the result relation. Fully
understanding a query might thus be a tedious task that involves mentally replaying the full
streams for each time instant, especially for large query programs that use views over streams.

CQL and other data stream languages offer only little support for queries that involve temporal
relationships between events or tuples and do not support events occurring over time-intervals. In
CQL, time is primarily referred to with time-based windows. On a secondary level, queries might
refer to time in the SQL (relation-to-relation) part of queries as regular data attributes of tuples.

In summary, CQL has very precise semantics for data but these semantics can be considered
somewhat unintuitive and less precise concerning detection time of complex events. Firstly, se-
mantics always involve a round-trip from streams to relations, to a result relation, and then back
to a stream. Secondly, they rely on a discrete time domain, which has some difficulties. In con-
trast, composition-operator-based languages seem very intuitive in their semantics and offer good
support for temporal relationships, but have several hidden problems of imprecision (e.g., seman-
tics that do not account for data in event, cf. Section 3.2.6) and potential misunderstandings (e.g.,
variations on the interpretation of the sequence operator, cf. Section 3.2.2).

3.4 Production Rule Languages

Production rules are not an event query language as such, however they offer a fairly convenient
and very flexible way of implementing event queries. The primary reason that production rules are
more convenient for implementing event queries than a general purpose programming language
is that their forward-chaining evaluation algorithm is very similar to the algorithms used for
evaluating event queries (see Chapter 12). In addition, many business rules management systems
(BRMSs) that are based on production rules offer support for defining domain-specific languages
(DSLs). A domain-specific languages hides the syntax of production rule languages as well as
some intricacies of the object model behind an interface of controlled natural language.

The first successful production rule engine has been OPS [FM77], in particular in the incar-
nation OPS5 [For81]. Since then, many others have been developed in research and industry,
including Drools (also called JBoss Rules) [JBo], ILOG JRules [ILO], and Jess [San]. The exam-
ples in this section are in the Drools Rule Language (DRL), but other production rule languages

10Note that many data stream management systems were perceived for processing high throughput (e.g., stock
tick data from financial markets), where there might be the implicit assumption that there is always at least one
tuple per time instant being received. In these cases there would be no difference. However, when data stream
languages are applied in other contexts, this assumption might not be sensible.

64 CHAPTER 3. STATE OF THE ART

are very similar. While the general ideas of production rules will be explained here, we refer to
[BBB+07] for a deeper introduction.

A production rule, sometimes also called condition-action (CA) rule (in contrast to event
condition action rules), is a statement of the form WHEN condition THEN action. It specifies that
the action is to be executed whenever the condition becomes true. It should be emphasized that
the action is only executed once when the condition becomes true (i.e., whenever its truth value
changes from false to true), not every time the condition holds (i.e., has the value true).

The condition is evaluated over a set of facts called the working memory. A production rule
engine is usually tightly coupled to a general purpose programming language such as Lisp or
Java. Accordingly, facts are typically represented in the data model of that host programming
language, i.e., as Lisp terms or Java objects. Facts must be explicitly inserted into or deleted from
the working memory. The operations a production rule engine offers for this are usually called
assert11 and retract.

There are no restrictions on the action, it can be an arbitrary method or procedure call in the
host programming language. Particularly interesting are actions that change the working memory
by asserting new facts, retracting existing facts, or updating existing facts. Production rules can
be used to implement deductive inferences by simply asserting the deduced facts. To this end,
many production rule languages also offer an assert logical action (in addition to the standard
assert), which has the effect that the asserted fact is automatically retracted when its associated
condition becomes false again.

Production rules are evaluated in a forward-chaining manner in so-called match-act cycles.
Their evaluation must be explicitly invoked with a method call such as fireAll() to the produc-
tion rule engine from the host programming.12 When invoked, the production rule engine checks
all rule conditions against the working memory (“match”). From all rule instances that can fire,
it selects a single one according to some conflict resolution strategy. The action of this single rule
instance is then executed (“act”) and possibly modifies the working memory. This match-act cycle
is then repeated until there are no rule instances that can fire. (Note that non-terminating rule sets
are possible.) Algorithms such as rete [For82] can realize the matching in a fairly efficient manner
by incrementally updating the results of the match phase when the working memory changes and
thus avoiding to re-check every condition in every match-act cycle.

3.4.1 General Idea

Production rules can be used to implement event queries “manually” by (1) asserting some fact
for each event that happens and (2) writing each event query as a condition over these facts. To
ensure timely detection of complex events, the evaluation of the production rules must be invoked
(with fireAll()) after each assertion of an event fact. Using production rules for CEP essentially
means that a complex event query is transformed into an expression over the state of the working
memory.

Figure 3.5 shows how the complex event that an order has been completed (again, this consist-
ing of order, shipping, and delivery) might be realized with a production rule in the Java-based
Drools Rule Language (DRL). The rule assumes that Java objects of classes Order, Delivery, and
Shipping are asserted in the working memory whenever respective events happen. The classes
have attributes for the order number (Order.id and Shipping.orderId and the tracking number
(Shipping.trackingId and Delivery.id). The rule fires and performs its action (simple console
output), whenever (1) a combination of objects o, s, d of the three respective classes can be found
in the working memory that satisfies the conditions on the order number and tracking number
and (2) the rule has not already been fired before for this particular combination.

11Since many newer programming languages use “assert” as a keyword, the assert operation is now also often
renamed to “insert” to avoid clashes.

12More precisely, the method call is usually not directly to the production rule engine object, but rather a so-called
session object which bundles an instance of a working memory together with one or more rule sets.

3.4. PRODUCTION RULE LANGUAGES 65

rule "Detect completed orders"
when

o: Order(),
s: Shipping(),
d: Delivery(),
o.id == s.orderId ,
s.trackingId == d.id

then

System.out.println (" Order " + o.id + " completed .");
end

Figure 3.5: A production rule for detecting “order completed” complex events

rule "Detect completed orders"
when

o: Order(),
s: Shipping(),
d: Delivery(),
o.id == s.orderId ,
s.trackingId == d.id,
Helper.withinHours(o.timestamp , s.timestamp , 24),
Helper.withinHours(s.timestamp , d.timestamp , 48),

then

System.out.println (" Order " + o.id + " completed on time .");
end

(a) Production Rule

import java.util.Calendar;

public static class Helper {
public static boolean withinHours(Calendar t1, Calendar t2 , int d) {

Calendar t1PlusD = t1.clone (). add(Calendar.HOUR , 24);
return t2.before(t1PlusD);

}
}

(b) Auxiliary Java class

Figure 3.6: Production rules and temporal conditions

3.4.2 Temporal Aspects

Production rules are designed to operate on facts, not events. Therefore, production rule languages
typically offer no designated construct for expressing the temporal aspects commonly needed in
event queries. However, it is possible to some degree to implement such temporal aspects of an
event query as a condition on attributes of event object.

For example, each event object could carry an attribute timestamp that signifies the occurrence
time of the event. Whether this is a time point or a time interval is a design choice left to the
programmer. Because production rules rely on the types and functions that are available in their
host programming language and because time points are better supported in most programming
languages, using time points might often be convenient where they are sufficient.

Consider a refinement of the “order completed” complex event to a “order completed on time”
complex event. This event has as additional constraint that an order must be shipped within 24
hours, and the shipping delivered within 48 hours. When the respective classes for the order, ship-
ping, and delivery event have an additional attribute timestamp (e.g., of the Java type Calendar,
which represents time points), then these temporal constraints can be expressed as conditions on
these attributes. Figure 3.6(a) shows a modified version of the earlier “order completed” rule from
Figure 3.5, where the time constraints for “order completed on time” have been added. This rules
makes use of an external helper function withinHours that realizes the necessary temporal com-
putations on the Java Calendar objects. A possible Java implementation of this helper function

66 CHAPTER 3. STATE OF THE ART

is shown in Figure 3.6(b).
While it is possible to express temporal conditions as conditions on attributes of events, pro-

duction rules offer no guidance to programmers on how to express such temporal conditions and
how to design their event classes appropriately (e.g., with attributes for time stamps). As will be-
come evident later, the way the example rules given here are written is influenced significantly by
the design of XChangeEQ. Neither production rule languages nor Java offer sufficient support for
typical temporal conditions of event processing. Helper functions such as the one in Figure 3.6(b)
will therefore be needed quite often. Note that such helper functions can have arbitrary side-
effects. In the example it would be easy to forget calling clone() and thus mistakenly modify a
time stamp of an object in the working memory in the helper method. Finally, the evaluation of
production rules is unaware of the special semantics of temporal conditions and cannot use them
to optimize query evaluation.

Production rules also offer little support for temporal events. If temporal events, be they
relative (e.g., “12 hours after event X”) or absolute (e.g., “at noon”), are needed in an event
query, then a fact must be asserted at the time this temporal event is supposed to happen.
This must be done externally from the production rule engine in regular Java code. This in
turn entails the use of fairly low-level functionality to schedule the execution of a thread that
asserts the corresponding fact for execution an a given time (e.g., using Java’s Timer class) and a
potential for race conditions. Also, it violates the principle that the event processing logic should
be encapsulated in the production rules: it can then not be simply changed by changing the
production rules, other (external) code must be changed as well.

Some production rule languages allow to delay the execution of a rule by a given duration (in
Drools this is expressed the duration keyword). This might be used in some cases as a substitute
for relative temporal events, but is fairly limited.

3.4.3 Garbage Collection

Asserting a fact for each event that happens raises a practical concern: over time, the number of
facts and thus the size of the working memory grows and grows. Since we often assume unbounded
streams of events in event processing, we will eventually run out of memory if we only assert facts
and never retract them. To avoid this we need some way to retract event facts that have become
irrelevant, i.e., some kind of garbage collection of event facts.

Since current production languages are not designed to work with events and their temporal
relations, they usually offer no help for garbage collecting event facts. Note also that the automatic
garbage collection of the host programming language (e.g., Java) will not help: the working
memory keeps a list of references to the objects representing its facts, so that any object in
the working memory is accessible and will never be subjected to automatic garbage collection.
Essentially, the programmer is left with programming garbage collection of event facts manually.
This can be done either by writing further production rules that retract events that have become
irrelevant or externally in the host programming language.

Garbage collection raises the question what it means for an event to be relevant, an issue that
will also be the subject of Chapter 15 of this thesis. A simple method might be to define a default
timeout for each event type. Any event older than the timeout is then deemed irrelevant. However,
this definition influences the logic and semantics of event queries since different timeouts might
lead to different query results.

In general, it would be preferable to use temporal (and other) conditions in the queries to figure
out when an event becomes irrelevant. Consider again the “order completed on time” query. We
can reason that a shipping event that is older than 48 hours is irrelevant to this particular query,
since there will be no joining delivery event that satisfies the constraint that shipping and delivery
must happen within 48 hours. However, for the order event things are more complicated. It might
seem that the same reasoning can be applied to deduce that it becomes irrelevant after 24 hours.
However this is not correct: if a joining shipping event has been found within those 24 hours,
the event must be kept in the working memory to join order and shipping with a later delivery
event. Therefore an order event might be relevant for up to 72 hours. Further, this reasoning only

3.4. PRODUCTION RULE LANGUAGES 67

concerns the single “order completed on time” query. There might be further event queries, e.g.,
a query to aggregate orders over a full week, that will lead to different relevance times.

We can see from this that figuring out whether an event fact is irrelevant or not —and thus can
be garbage collected or not— can be hard. Therefore programming garbage collection manually
is hard. Since an incorrect garbage collection will crucially affect the correctness of event queries
and might lead to memory leaks, manual garbage collection of events is also somewhat dangerous.
Further it leads to code that is hard to change and maintain: adding a single production rule for a
new event query might affect the relevance of the event facts it accesses and thus entails adapting
the code for garbage collection.

There has been some research on extending production rule engines and languages for event
processing [Ber02, WBG08]. In particular, production rules are extended in [WBG08] by adding
event composition operators and an automatic garbage collection of events. This work will be
discussed in Section 3.6.3. Such approaches have not yet found their way into current production
rule engines; however one can expect to see more work on this in the near future.

3.4.4 Negation and Aggregation

Negation and aggregation are supported in many production rule languages. For negation, the
not construct makes it possible to test for the absence of certain facts in the working memory. For
aggregation, facts can be collected into lists (using a list type of the host programming language
such as List in Java) with a construct such as collect or the more general accumulate. The
action of a rule can then use this list to compute an aggregate such as the average over an attribute.
Note that this aggregate must usually be programmed manually in an iteration over the list. (A
simple count aggregate is an exception, because lists typically provide a function giving their
length.) In particular, the iteration must also take care of grouping and duplicate elimination if
these are part of the event query specification.

The constructs for negation and aggregation are of course intended for processing normal facts
rather than events happening over time. Their typical use in event queries, e.g., aggregation over
a sliding time window or negation (absence) of an event between two other events, are therefore
hard to express. Again this requires the use of conditions on time stamp attributes and similar
mechanisms.

State-based processing, which we look at next, can in some cases also be used for expressing
event queries involving negation or aggregation in production rules. It thus provides an alterative
for the constructs not and accumulate. When to use state-based processing or these constructs,
is a design choice left to the programmer and often not an easy one.

3.4.5 State-based Processing

A strength of production rules is that they allow to combine state-based information with event-
based information. This is not surprising: Production rules are after all primarily intended for
state-based processing, i.e., performing specific actions when the working memory enters specific
states. When using production rules for event processing, asserting a fact for an event that happens
can be understood as a state where that event has happened.

Some situations which might be perceived as a complex event at first glance are easier to
specify and detect as a certain state rather than through a complex event query. Consider a room
that is equipped with sensors signaling events enter and leave whenever a person enters or leaves
the room through its door. An application for climate control might require to detect situations
where more than three persons are in the room. Expressing this situation as a complex event,
i.e., a combination of events happening over time, is typically hard: it is not simply a sequence
of three enter event, because (1) we must know how many persons are in the room when the
complex event query is started and (2) usually there will be leave events that cancel the effect a
preceding enter event.

Using production rules and state-based processing, however, this situation if fairly easy to
detect. We simply maintain a single fact to record the number of persons in the room. This fact

68 CHAPTER 3. STATE OF THE ART

just has a single counter attribute of type integer. When enter and leave events happen, we will
not assert facts for these events in the working memory. Rather we will only increase or decrease
the counter. A production rule for detecting the situation where more than three persons are in
the room then is simple to write (here in pseudo code): WHEN couter > 3 THEN action. Note that
it is fairly ease to incorporate new events that affect the number of persons in the room (e.g.,
persons entering through the window instead of the door) into this scenario.

In contrast, both composition-operator-based languages and data stream languages will have
significant difficulties for detecting such a situation. (One possible solution might be to count
enter and leave separately and then put a threshold on their difference. However this query
requires unbounded windows for both event types and the threshold depends on the number of
persons in the room at the beginning.) In their excuse however, the described situation should
conceptually really be seen as a state of the room object rather than a complex event.

State-based processing can in some cases also be used to program negation and aggregation.
Instead of collecting event facts in a list and then performing a computation of an aggregate
using this list, it is possible in some case to maintain only the aggregate value as a single fact
(similar to the counter in the previous example). This aggregate value must then be modified
by each event that happens. For aggregates such as maximum, minimum, count, or sum, the
modifications are straightforward. An average can also be expressed by a combination of sum and
count. A difficulty however arises when the aggregate is to be computed of a sliding window, e.g.,
counting the number of events within the last hour. Then it is not sufficient to just increase the
counter when a new event happens. One hour after the event has happened, the counter must
also be decreased. The decreasing of the counter requires essentially a relative temporal event,
and the issues associated with temporal events and production rules have already been discussed
in Section 3.4.2.

3.5 Comparison

Having introduces the three prevalent styles used for querying complex events, composition oper-
ators, data stream queries, and production rules, we now compare their strengths and weaknesses.

3.5.1 Support for Specific Query Features

The first aspect for comparison is how well each approach is suited for expressing certain types or
features found in event queries.

Temporal Aspects Composition-operator-based languages offer a very strong support for event
queries involving temporal events or temporal relationships between events. Data stream query
languages offer less support for such temporal aspects; their main capabilities in this respect derive
from temporal windows, which are fairly limited and inconvenient. Production rules usually offer
no built-in support for such temporal aspects. However, it is possible to treat timestamps like
regular (data) attributes and write appropriate functions for expressing temporal relationships.
Generating temporal events is also possible, but hard and in violation of the encapsulation principle
since it must be done in the host programming language outside of the production rules.

Negation and Aggregation Composition-operator-based languages offer good support for typ-
ical forms of negation of events. They offer little support for aggregation, in part because event
data is an aspect that is often somewhat neglected in these languages. Data stream query lan-
guages excel at aggregation of event data. They are less well-suited for queries involving negation.
In production rules, both negation and aggregation require a fair amount of manual, low-level
implementation.

3.5. COMPARISON 69

Consumption and Selection of Events Many composition-operator-based languages offer
ways to consume and select event instances in order to limit their use and re-use in event queries.
Prevalent data stream query languages offer no such mechanism. (Basket expressions discussed
in Section 3.3.2 are an exception.) In production rules, consumption and selection can be pro-
grammed manually, but again this requires a fair amount of manual, low-level implementation.

Incorporation of Facts and States Composition-operator-based languages do not offer any
support for querying non-event data such as facts in a database or states of objects and other
entities. In part this is due to their origins in active databases, where composition-operator-based
event queries would be used in the E-part of ECA rules, and database data only accessed in
the C-part. This separation however precludes the use of views that enrich events by accessing
database tables. Data stream query languages allow to query database relations together with
event streams and, since both the data stream queries and database queries rely on SQL, this
does not even require a switch between query languages. Some data stream query languages also
allow to access objects of some host programming language (e.g., in the case of Esper [Esp], Java
objects). Production rules excel at incorporating facts and states into event queries, since they are
primarily intended for state-oriented processing of facts rather than processing of events. When
tables in a database are to be accessed, this has to be done through the mechanisms offered by
the host programming language. In contrast to data stream query languages, production rules can
also directly modify states by updating the working memory as part of their actions.

3.5.2 Semantics and Language Design

The second aspect for our comparison looks at issues concerning the languages as a whole such as
semantics or ease-of-use.

Formal Semantics Current composition-operator-based languages have a tendency to lack for-
mal semantics, or only provide formal semantics that ignore aspects relating to data in events.
Data stream query languages have very precise semantics, but these semantics rely on a somewhat
unintuitive round-trip from event streams to relations. The semantics of production rules have a
strong imperative flavor, mainly specifying when which rule will execute. In particular when con-
flict resolution between several rules that can fire comes into play, these semantics can get rather
complicated. Further the semantics always rely on the host programming language for actions,
and this host programming language usually is an imperative and Turing-complete language.

Ease-of-Use and Learning Curve Composition operators are easy to use, intuitive, and
learned very quickly. They also provide a very compact notation for complex event queries.
However, some operators are prone to potential misunderstandings and might thus lead to sur-
prises for programmers. Data stream query languages are less intuitive because understanding
them involves the round-trip from event streams to relations. Since data stream query languages
leverage SQL, familiarity with SQL is necessary for their learning. Accordingly learning curves can
be expected to be quite different for programmers already familiar with SQL and programmers not
knowing SQL. Production rules as such are not difficult to learn, but their use for event processing
requires significant experience. Many aspects of event queries must be programmed manually. In
particular, the programmer has to think about manual garbage collection. Note that ease-of-use
of any of the three styles of event query languages always depends heavily on the types of queries
that one wants to program.

Occurrence and Detection Times of Events While composition-operator-based languages
started out using time points as occurrence times of simple and complex events, it has later become
more fashionable to use time intervals. The occurrence time of a complex event then is the time
interval covering all constituent events. In most cases it is clear by looking at a query when a
complex event will be detected. However there are some cases involving, e.g., relative temporal

70 CHAPTER 3. STATE OF THE ART

events, where the detection time is not always obvious. Data stream query languages use only time
points for the occurrence times of simple and complex events. The detection time of a complex
event is more difficult to determine by looking at a query because it depends on the relation-to-
stream operator. The relation-to-stream operator in turn might depend on the difference between
the current and the previous state of the result relation. With production rules, all issues related
to the representation of time and the detection time of complex events are left to the programmer.

Extensibility and Flexibility Extending a composition-operator-based language would typ-
ically consist in defining a new composition-operator. Since this actually means changing the
language and involves adapting its implementation, composition-operator-based languages are not
easy to extend. Data stream query languages often offer some limited support for user-defined
extensions, in particular user-defined windows and user-defined functions. Production rules are
very flexible and easily extended due to their close cooperation with a host programming language.

3.5.3 Environment

Our third and final aspect for comparing the three different approaches looks at their use and
implications in a larger environment.

Data Model and Integration There is no specific data model common to all composition-
operator-based languages. Many languages neglect the data aspect of event queries; those lan-
guages that pay attention to event data often assume an event to consist of attribute-value pairs
together with an event type. Very few languages offer direct support for events represented as
XML messages.13 Composition-operator-based languages are traditionally integrated into an ac-
tive database system, but more recently they are also used in ECA rule languages that are separate
from a database system. Data stream query languages use the relational data model for events,
i.e., each event is a tuple in a specific stream (corresponding to the event type) and has time
stamp. Support for events represented as XML messages is fairly limited, typically requiring a
conversion into relational data through a mechanism like SQL/XML [EMK+04]. Data stream
query languages are often tightly integrated with a database system, so as to access non-event
data in the database. However, some languages are also integrated with a regular programming
language (e.g., Esper [Esp] integrates with Java and can query events represented as Java objects).
Production rule languages use the data model of their host programming language and integrate
tightly into this host language.

Availability and Quality of Implementations While composition-operators have been pop-
ular in research, not many language implementations are available. We are only aware of two
products implementing a composition-operator-based language, ruleCore [MS] and AMiT [AE04].
For data stream query languages, there are a number of fairly recent commercial and open source
products. Since many commercial products address high-end markets such as algorithmic trading
where speed is essential, these products offer very good scalability and performance. Products for
production rules have been around for some time. In terms of scalability and performance, these
products are typically limited, especially compared to products for processing data streams. The
rete algorithm used in these systems is quite memory-intensive. Further the conflict resolution in
production rule languages leads to a computational overhead. Since event processing applications
often make little use of conflict resolution, the effort that goes into it can be deemed wasteful.

Development Tools Both composition-operator-based languages and data stream query lan-
guages do not offer very extensive development tools at present. There are some user interfaces
where queries can be specified by filling out forms or graphically in a data flow network. Mostly

13Note that while the title of [BKK04] contains “XML,” events there are DOM events [Pix08] that are generated
through interaction with an XML document (e.g., in a browser) and not XML messages.

3.6. HYBRID APPROACHES 71

it is still required that a programmer writes queries directly in textual syntax. With the com-
mercialization of CEP, however, it can be expected that more tool support will be available in
the future. Commercial production rule systems typically offer very strong development tools.
However these are not tailored towards event processing. Particularly interesting is that many
production rule systems offer tools to develop domain-specific languages. A domain-specific lan-
guage (DSL) allows users to specify their rules in a controlled natural language using the concepts
and vocabulary of the business domain at hand, ideally without needing much technical back-
ground knowledge. However, developing a DSL is an investment requiring significant effort from
technical experts. Further, we are not aware of any experiences so far with applying DSLs in event
processing contexts.

3.5.4 Summary

The table in Figure 3.7 summarizes the comparison of this section. The entries in the table use
the scale ++, +, 0, −, −− to indicate how well each approach supports a certain feature. As
with any such table, some entries will be generalizations; we refer to the previous text for deeper
discussion and explanations.

3.6 Hybrid Approaches

To complete our state-of-the-art survey, we now discuss some hybrid approaches that attempt to
combine the different styles of querying complex events.

3.6.1 Pattern Matching in Data Stream Query Languages

The original model of CQL provides only stream-to-relation, relation-to-relation, and relation-to-
stream operators. Pattern-matching on streams can be added to this model as stream-to-stream
operator. Such an operator allows to specify and match patterns that resemble regular expressions
(for pattern matching in strings) in data streams. These patterns have some similarities with
queries formed using event composition operators, which is why we classify pattern matching in
data stream query languages as a hybrid approach here.

Such operators are particularly useful in processing market data such as stock ticks. There it
is often important to recognize certain shapes in the graph of price ticks. For example, one might
look for situations where a price falls over a span of several price ticks and then rises, falls again,
and rises again, typically with some thresholds and relations between the minimum and maximum
prices. In terms of the corresponding price graph, one is looking for a “W”-shape with this query.
Such a query can be written as a regular expression F+R+F+R+, when F stands for a falling
price event (i.e., the previous price tick was higher then the current) and R for a rising price event
(i.e., the previous price was lower then the current).

Such pattern matching is recently supported in Oracle’s CEP product [Ora]. The idea and
efficient techniques for evaluating such pattern matching operations have been considered earlier
in [SZZA01, SZZA04]. Esper also provides some more restricted pattern matching operations on
streams [Esp].

3.6.2 Composition Operators on Top of Data Stream Queries

Another approach for combining the capabilities of composition-operators with the capabilities of
a data stream query language is described in [GAC06, CA08]. Incoming data streams are first
processed with a data stream query language, and then the output events are further processed
with a composition-operator-based language to detect the complex events desired by the appli-
cation. Note that this work does not propose an integrated language that has the capabilities of
both composition-operators and data stream queries; rather it proposed an architectural model
for using both within a single application and thus combining their respective strength.

72 CHAPTER 3. STATE OF THE ART

Composition operators Data stream lang. Production rules

Temporal
aspects

++ 0
(temporal windows)

−
(via host prog. lang.)

Negation + 0
(inconvenient in SQL)

−
(temp. aspects)

Aggregation −− ++ −
(temp. aspects)

Consumption
and selection

++ −− 0
(manually control)

Facts and States −
(C-part of ECA rules)

+ ++

Formal
Semantics

0
(data not considered)

+
(precise but
unintuitive)

−
(essentially imperative

programming)

Ease-of-Use,
Learning Curve

+
(misinterpretations of
operators possible)

0
(conversion between

streams and relations)

−
(e.g., manual garbage

collection)

Occurrence and
detection time

+ −
(depends on

relation-to-stream op.)

−−
(left to programmer)

Extensibility,
flexibility

− +
(user-defined functions

and windows)

++
(host prog. lang.)

Data model:
XML support

−−
(with exceptions)

+
(via SQL/XML)

−
(conversion to objects)

Integration Active database or
stand-alone

Database; sometimes
prog. lang.

Prog. lang.
(e.g., Java)

Implementations 0
(mainly prototypes)

++
(highly scalable)

+
(scalability issues)

Development
tools

− − 0
(not tailored for CEP)

Figure 3.7: Summary of the comparison between composition operators, data stream langauges,
and production rules for querying complex events

3.6. HYBRID APPROACHES 73

In comparison to the previous hybrid approach of adding pattern matching to a data stream
query language, this approach can be thought of being the other way round: it first applies
data stream queries and then the pattern matching through composition operators, whereas the
previously discussed approach first applies pattern matching and then data stream queries.

3.6.3 Event Composition Operators in Production Rules

Work in [WBG08] aims at adding event composition operators to a production rule system based
on the rete algorithm. Events occur over time intervals and the supported composition operators
are based on Allen’s Interval relations. So far, the work offers so far no operators for negation,
aggregation, counting, or similar advanced queries. The composition operators are implemented
as beta-nodes in the rete network.

Additionally, the composition operators support metric temporal constraints that pose limi-
tations on the distance between the start or end points of the occurrence time intervals. These
limitations can be upper bounds or lower bounds on the distance as well as exact specifications.
The metric temporal constraints are used to enable an automatic garbage collection of events that
become irrelevant (cf. also Chapter 15).

74 CHAPTER 3. STATE OF THE ART

Chapter 4

Background: Xcerpt and XChange

The event query language XChangeEQ, which is developed in this thesis and will be presented in
the following chapters, caters for specifics of Web data and reactivity on the Web. To this end,
it builds upon two existing projects: Xcerpt, a rule-based Web query language, and XChange, a
reactive rule language for the Web. This section gives an introduction into these two languages,
as necessary for understanding XChangeEQ.

4.1 Xcerpt: Querying and Reasoning on the Web

Xcerpt [SB04, Sch04] is a declarative, rule-based query language for Web data as well as other
kinds of semi-structured data. It is used in the event query language XChangeEQ for querying
data in simple events that are transmitted as XML messages.

4.1.1 Distinctive Features

Xcerpt has a number of features that distinguish it from the current standard Web query languages
XSLT, XQuery, and SPARQL, which have been introduced shortly in Chapter 2.2.1. Some of these
feature also make Xcerpt particularly suitable as a basis for an event query language.

Pattern-Based Approach Queries in Xcerpt are specified as patterns for the data that is
accessed to extract interesting portions from. Similarly, data that is to be newly constructed as
the result of a query is also specified by patterns. The patterns closely resemble data and can be
thought of as forms or templates for the data.

This pattern-based approach where queries are in close correspondence to data gives rise to
a language that is fairly intuitive and easy-to-use with a human-friendly syntax. Queries can
be written by cut-and-pasting fragments of example data for input and result and successively
modifying these fragments into patterns that either extract data (in the case of an example for
the input) or construct new data (in the case of an example for the result). The patterns also
give rise to a visual language called visXcerpt [BBS03, BBSW03] that realizes the vision of a close
correspondence between visual and textual syntax.

For querying simple events that are received as XML messages, the pattern-based approach
has a salient advantage, because querying simple events is actually a two-folded task: one has to
(1) specify a class of relevant events (e.g., all order events; this corresponds to the event type, cf.
Chapter 3) and (2) extract data from the events (e.g., the customer name and item number). As
we will see, the patterns of Xcerpt serve both purposes well since they both describe the structure
of data and bind variables.

Separation of Extraction and Construction of Data Xcerpt clearly distinguishes and sep-
arates patterns that access existing data to extract relevant portions of it (so-called query terms)

75

76 CHAPTER 4. BACKGROUND: XCERPT AND XCHANGE

and patterns that construct new data (so-called construct terms). In contrast, XQuery and XSLT
mix and nest the extraction of data (e.g., for or let statements in XQuery) and the construction
of new data (e.g., return statement in XQuery).

For querying events, a separation of the intrinsic query (where data is only extracted without
constructing new data; also sometimes called the “query proper”) and the construction proves
beneficial. It allow an author to first focus on the events that are to be detected over time together
with their data and relationships, and then separately on the result that should be generated upon
detection.

Rules and Reasoning Query (proper) and construction are brought together in deductive
rules; the rule body (“if”-part or antecedent) contains a query, the rule head (“then”-part or
consequent) contains a construction. When a rule is applied, we conceptually first evaluate the
query in its body. If this is successful, i.e., the patterns specified in the query can be matched to
existing data, then new data is constructed according to the specification in the head. Information
flows from the rule body to the head in form of variable bindings.

Such rules give rise to deductive reasoning (see also Chapter 2.2.2): a rule can query results
constructed by other rules (including itself) and construct new results from it. They also provide
an abstraction mechanisms and are convenient for mediating data of different schemas.

Rules can be argued to be as important for events as they are for regular, non-event data. It is
therefore conceptually convenient to base XChangeEQ on an existing rule language, even though
rules about events require some significant changes to the approaches used for rules about regular,
non-event data.

Versatility Xcerpt aims at being versatile with respect to data formats and models, allowing to
access and construct data in different formats even within a single query [BFB+05]. In particular
it aims at making it easy to query both XML and RDF data, as needed for example for querying
both XML documents and RDF meta data that is associated with the documents (e.g., through
GRDDL [Con07, BFHL07]). In contrast, most existing query languages for Web data support
only a single data format and model (e.g., XML for XQuery and XSLT, RDF for SPARQL).

Events are often used to signal changes in some data source (e.g., insertion, deletion) and
contain fragments of the changed data. Accordingly, versatility can be argued to be as important
for event queries on the Web as it is for regular, non-event Web queries.

4.1.2 Data Terms

XML and other Web data is represented in Xcerpt in a term syntax that is arguably more concise
and readable than the original formats, in particular when considering also query terms and
construct terms (Sections 4.1.3 and 4.1.4). The term syntax also provides two features that are
not found in XML: First, child elements in XML are always ordered. Xcerpt allows children to
be specified as either ordered or unordered, the latter bringing no added expressivity to the data
format but being interesting for efficient storage based on reordering elements and for avoiding
incorrect queries that attempt to make use of an order that should not exist. Second, the data
model of XML is that of tree. Xcerpt is more general supporting rooted graphs, which is necessary
to transparently resolve links in XML documents (specified, e.g., with IDREFs [B+06a, B+06b]
or with XLink [DMO01, BE05b, BE05a]) and to support graph-based data formats such as RDF.

Figure 4.1(a) shows an Xcerpt data term for representing information about flights; its structure
and contained information corresponds to the XML document shown in Figure 4.1(b). A data
term is essentially a pre-order linearization of the document tree of an XML document. The
element name, or label, of the root element is written first, then surrounded by square brackets or
curly braces, the linearizations of its children as subterms separated by commas. Square brackets
[] indicate that the order of the children is relevant and must be preserved. Curly braces { }
indicate that the order of children is irrelevant. In the example of Figure 4.1(a), the order of the
flight children of the flights element is indicated as relevant, whereas the order of the children
of the flight elements is not.

4.1. XCERPT: QUERYING AND REASONING ON THE WEB 77

flights [
flight {

number { "UA917" },
from { "FRA" },
to { "IAD" }

},

flight {
number { "LH3862" },
from { "MUC" },
to { "FCO" }

},

flight {
number { "LH3863" },
from { "FCO" },
to { "MUC" }

}
]

(a) Data term

<?xml version ="1.0" encoding ="ISO -8859 -1"? >

<flights >
<flight >

<number >UA917 </number >
<from >FRA </from >
<to >IAD </to >

</flight >

<flight >
<number >LH3862 </number >
<from >MUC </from >
<to >FCO </to >

</flight >

<flight >
<number >LH3863 </number >
<from >FCO </from >
<to >MUC </to >

</flight >
</flights >

(b) XML document

Figure 4.1: An Xcerpt data term and its corresponding XML document

flights {{
flight {{

to { var D },
from { "MUC" }

}},
}}

(a) Destinations from
MUC

flights {{
desc number { var N }

}}

(b) All flight numbers

flights {{
var F -> flight {{

number {{ var N }}
without to {{ "MUC" }}

}}
}}

(c) Flights not going to MUC

Figure 4.2: Examples of Xcerpt query terms

The data term syntax of Xcerpt also accommodates for graph edges beyond the tree-structure,
for other entities than element and text nodes (e.g., attributes), namespaces, etc. However for
understanding XChangeEQ in the scope of this thesis, these features are not necessary and we
therefore refer to [SB04, Sch04] for more details.

4.1.3 Query Terms

A query term describes a pattern for data terms; when the pattern matches, it yields (a set of)
bindings for the variables in the query term. Variable bindings are also called substitutions, and
sets thereof substitution sets. The syntax of query terms resembles the syntax of data terms and
extends it to accommodate variables, incompleteness, and further query constructs.

(Unrestricted) variables Variables in query terms are indicated by the keyword var. They
serve as placeholders for arbitrary content and keep query results in the form of bindings. Fig-
ure 4.2(a) shows a query term that extracts all possible direct destinations from Munich (MUC) from
a data term or document like the one in Figure 4.1. In the example there is only one variable, D,
and the result of evaluating the query term is a set of bindings for this variable. For the example
input data term of Figure 4.1, the result is {{D 7→ "FCO"}}, i.e., there is only a single binding.
Note that an empty set would signify that the query term and data term do not match.

Complete and incomplete subterm specification In the patterns of query terms, single
brackets or braces indicate a complete specification of subterms. In order for such a pattern to
match, there must be a one-to-one matching between subterms (or children) of the data term and

78 CHAPTER 4. BACKGROUND: XCERPT AND XCHANGE

the query term. Double brackets or braces in contrast indicate an incomplete specification (w.r.t.
to breadth): each subterm in the query term must find a match in the data term, but the data
term may contain further subterms. As with data terms, square brackets indicate that the order
of subterms is relevant to the query and curly braces that it is not. According to the query term in
the example, flight data terms must contain a subterm from and a subterm to and may contain
further subterms (e.g., number). In contrast, from may only have a single child "MUC", no further
children, and to also may only have a single child (but of arbitrary content).

Incompleteness in depth Incompleteness in depth, that is matching subterms that are not
immediate children but descendants at arbitrary depth, is supported with the construct desc.
The query term in Figure 4.2(b) extracts all flight numbers by searching for number elements at
arbitrary depths. The result for the example input contains three bindings for variable N :

{ {N 7→ "UA917"}, {N 7→ "LH3862"}, {N 7→ "LH3863"} }

Variable restrictions Variables can also be restricted using the “as” construct written using
an arrow (->) in the form var X -> q (with a query term q). The variable then does not match
arbitrary content like unrestricted variables, but only content that matches q. Restricted variables
are in particular useful for extracting whole subtrees (or subterms) from an XML document. The
variable F in Figure 4.2(c) is bound to flight subterms that match the specified pattern.

Subterm negation Patterns can also contain negations, that is the negated subterm may not
occur in the data. This is specified with the without keyword. Figure 4.2(c) locates all flights
(variable F) together with their flight numbers (variable N) that do not go to Munich (MUC), i.e.,
do not have a subterm to { "MUC" }. For the example input, the query gives two bindings for
the variables:

{ {F 7→ flight { number {"UA917"}, from {"FRA"}, to {"IAD"} } , N 7→ "UA917"},
{F 7→ flight { number {"LH3862"}, from {"MUC"}, to {"FCO"} } , N 7→ "LH3862"} }

Further constructs Xcerpt query terms also cater for optional subterms (optional), label
variables, positional variables (pos), regular expression matching, non-structural conditions such
arithmetic comparisons (where) and more. These construct will not be detailed here but discussed
when necessary in examples of XChangeEQ event queries.

4.1.4 Construct Terms and Single Rules

Construct terms are used to create new data terms using variable bindings obtained by a query.
A construct term describes a pattern for the data terms that are to be constructed. The syntax
of construct terms resembles the syntax of data terms and extends it to support variables and
grouping.

Rules Construct terms and queries are connected through rules of the form GOAL c FROM q END or
CONSTRUCT c FROM q END. In both cases, c is a construct term and q a single query term or formula
built from several query terms. GOAL rules directly generate output, while CONSTRUCT rules are
used for intermediate results in rule-based reasoning that are not in the output (see next section).

Variables In constructing new data, variables in construct terms are simply replaced by the
bindings obtained from the query. The result is a new data term. If there are no grouping
constructs, then a new data term is generated for each binding of the variables. The construct
term of the rule in Figure 4.3(a) will construct one query term for each non-stop destination from
Munich (MUC). Note that the query in the FROM part of the rule is the same as used previously in
Figure 4.2(a).

4.1. XCERPT: QUERYING AND REASONING ON THE WEB 79

GOAL

muc -dest [var D]
FROM

flights {{
flight {{

to { var D },
from { "MUC" }

}},
}}

END

(a) One term per destination

GOAL

ul [
all li [var D]
group by { var D }

]
FROM

flights {{
flight {{

to { var D },
from { "MUC" }

}},
}}

END

(b) Single list of destinations

GOAL

table [
all tr [

td [var S],
td [count(all var D)]

] order by (lexical) [var S]
]

FROM

flights {{
flight {{

to { var D },
from { var S }

}},
}}

END

(c) Numbers of destinations, sorted

Figure 4.3: Examples of Xcerpt construct terms

Grouping Constructing a separate term for each variable binding is fairly limited and more
complex restructuring of data is often needed. In particular data must be grouped together in a
single term. In our example, we might want a single term that contains all non-stop destinations
instead of separate terms, e.g., as a list in XHTML markup. Such grouping can be expressed as
a subterm in a construct term of the form all c group by { var V }. Its effect is to generate a
subterm from c for each distinct binding of the variable V . The construct term in Figure 4.3(a)
will thus generate a single ul term that contains multiple li subterms, one for each non-stop
destination (variable D). The group by part can be left out in this example and many other
cases. The default then is to group by the free variables immediately inside the construct term
after all.

Nested Grouping More complicated structures can be built by nesting grouping constructs.
The construct term in Figure 4.3(c) produces a table in XHTML markup. Its first column contains
airports that have at least one flight leaving this airport. The outer grouping generates a table
row (tr) for each airport; when an airport is the origin of several flights, it still leads to only one
table row. In doing so, the set of all variable bindings is divided into groups where the variable S
has the same value. Each such group of variable bindings is then used by the inner grouping for
the respective table row (tr).

Sorting and Nesting When grouping generates a list, the order of the generated subterms can
be influenced with an order by clause. The construct term in Figure 4.3(c) sorts the table rows
alphabetically by the airport codes (first column).

Aggregation Grouping is also used in conjunction with aggregation functions such as minimum,
maximum, sum, or count. The inner grouping in Figure 4.3(c) counts the number of different non-
stop destinations from the airport in the first column and puts this value into the second column.
The overall result of the rule in Figure 4.3(c) therefore is an alphabetically sorted table of airports
(first column) with the respective number of different non-stop destinations (second column).

Further constructs There are some further construct which will no be detailed here. Instead
of producing a subterm for all different bindings of a variable, some allows to restrict this to a
fixed number. When optional is used for a variable in the query of a rule, then it must also be
used for that variable in the construct term; an accompanying with default allows to specify a
value that is used in case the variable has no binding. Issues related to constructing graphs rather
than trees are discussed mainly in [Fur08].

80 CHAPTER 4. BACKGROUND: XCERPT AND XCHANGE

CONSTRUCT

connection {
from { var F },
to { var T }

}
FROM

desc flight {{
from { var F }
to { var T }

}}
END

(a) Base case

CONSTRUCT

connection {
from { var F },
to { var T }

}
FROM

and {
desc flight {{

from { var X },
to { var T }

}},
connection {

from { var F },
to { var X }

}
}

END

(b) Transitive closure

GOAL

table [
all tr [

td [var F],
td [

ul [
all li [var T]

]
]

]
]

FROM

connection {
from { var F },
to { var T }

}
END

(c) Generation of output

Figure 4.4: Rule-based reasoning with Xcerpt: program to find all connections

4.1.5 Reasoning with Rules

The rules in Figure 4.3 were fairly simple, each containing only a single query term and immediately
generating output. For more complicated queries, boolean connectives (and, or, not) can be used
to build formulas from query terms. Further Xcerpt supports rule-based reasoning, where results
of a rule can recursively be used by other rules (including the rule itself). As mentioned before,
rules are that used just for inference without generating output start with the keyword CONSTRUCT.

The three rules in Figure 4.4 use rule-based reasoning to find all connections between airports
using connecting flights. This reasoning task has already been mentioned in Chapter 2.2.2. The
first rule (Figure 4.4(a)) states that if there is a flight between two airports, then there is a
connection between these two airports. The second rule (Figure 4.4(b)) realizes the inference
based on transitive closure: if there is a flight from A to B and a connection from B to C, then
there is a connection from A to C. The third rule (Figure 4.4(b)) uses the information generated
by the other two rules to generate output. The result is a table in XHTML markup where the first
column contains airports. The cell in the second column contains a list of all possible destinations
that can be reached with connections of arbitrary length.

Note that such a program might not terminate in a simple backward-chaining evaluation when
data is cyclic. However, forward-chaining or more involved backward-chaining with memoization
could be used to evaluate this program in a terminating manner.

Like most rule languages, Xcerpt puts some limits on recursion to avoid query programs that
might be unintuitive and semantically difficult. In the simplest case [Sch04], programs must be
stratifiable with respect to negation and grouping, that is, they must not have recursive cycles
that involve negation or grouping. More liberal approaches have also been developed in [BS03]
and [Est08]. Stratification will be explained in Chapters 6 and 10 in more detail for XChangeEQ.

4.2 XChange: Reactivity on the Web

XChange [BBEP05, Păt05, BEP06b, BEP06c] is a reactive rule language for the Web. It addresses
challenges such as updating Web data in response to events, propagating updates over the Web,
and realizing simple workflows. The event query language XChangeEQ embeds into XChange as
a sublanguage for detecting relevant (complex) events.

4.2.1 Building Blocks of Reactivity

Reactivity can be described as the ability to detect events and respond to them automatically
in a timely manner. On the Web, reactivity bridges the gap between a passive Web, where

4.2. XCHANGE: REACTIVITY ON THE WEB 81

data sources can only be accessed to obtain information, and a more dynamic, “reactive” Web,
where data sources change (evolve) in reaction to events bringing in new information or rendering
existing information out-of-date. Reactivity spans a broad field from Web applications such as e-
commerce platforms that react to user input (e.g., putting an item into the shopping basket), over
Web services that react to notifications or service requests (e.g., SOAP messages), to distributed
Web information systems that react to updates in other systems elsewhere on the Web (e.g.,
update propagation among scientific Web databases).

XChange keeps with the basic assumptions of the Web. Nodes are identified by URIs. Each
node is autonomous and there are no centralized authorities, adhering to the Web decentralized
nature. However, XChange makes the assumption that nodes on the Web inform other interested
nodes about relevant events by sending appropriate messages. Events are communicated directly
and asynchronously in a push-manner as XML messages over HTTP. Push communication has
several advantages over pull communication: it allows faster reaction, avoids unnecessary network
traffic through periodic polling, and saves local resources.

An XChange program runs locally at a single Web node and reacts to incoming events. By
sending and receiving events it can coordinate its behavior with that of other Web nodes. These
Web nodes might realize their reactive behavior also as XChange programs or in any other way
that allows for message-based communication.

Typical reactions to events are updates to persistent data local to the Web node, requests for
updates at remote Web nodes, or sending event messages to other Web nodes. Both persistent data
and event messages are represented in XML (or by extension other Web data formats). XChange
is well-suited for realizing local updates, propagation of updates in a distributed Web information
system, and simple workflows. These applications will be discussed in Section 4.2.6.

4.2.2 Event-Condition-Action (ECA) Rules

An XChange program consists of one or more reactive rules of the form ON event query IF Web
query DO action.1 Such an ECA rule has the following meaning: When events matching the event
query are received and the Web query is successfully evaluated, then the action is performed. Both
event query and Web query can extract data through variable bindings, which can then be used in
the action. As we can see, both event and Web queries serve a double purpose of detecting when
to react and influencing —through binding variables— how to react. For querying data, as well
as for updating data, XChange embeds and extends the Web query language Xcerpt presented
earlier.

Figure 4.5 shows an example of an XChange ECA rule, which will be used for our subsequent
explanations. The individual parts of the rules employ Xcerpt and its pattern-based approach.
Patterns are used for querying data in both the event and condition part, for constructing new
event messages in the action part, and for specifying updates to Web data in the action part.

4.2.3 Events

Event messages Events in XChange are represented and communicated as XML messages.
The root element is for all events xchange:event, where the prefix xchange is bound to the
XChange namespace. Events messages also carry some meta-data as children of the root element
such as raising-time (i.e. the time of the event manager of the Web node raising the event),
reception-time (i.e. the time at which a node receives the event), sender (i.e. the URI of the
Web node where the event has been raised), recipient (i.e. the URI of the Web node where
the event has been received), and id (i.e. a unique identifier given at the recipient Web node).
An example event that might represent the cancellation of a flight with number “UA917” for a
passenger named “John Q Public” is shown in both XML and term syntax in Figure 4.6.

1In the course of the development of XChange, different keywords and orders for the rules have also been used.
In particular, rules can also be written as RAISE event raising action ON event query FROM Web query or TRANSACTION
update action ON event query FROM Web query.

82 CHAPTER 4. BACKGROUND: XCERPT AND XCHANGE

ON

xchange:event {{
flight -cancellation {{

flight -number { var N },
passenger {{

name { "John Q Public" }
}} }} }}

IF

in { resource { "http :// www.example.com/flights.xml", "xml" },
flights {{

flight {{
number { var N },

from { var F },
to { var T }

}} }} }
DO

and {
xchange:event [

xchange:recipient ["http ://sms -gateway.org/us/206 -240 -1087/"],

text -message [
"Hi , John! Your flight ", var N,
" from ", var F, " to ", var T, " has been canceled ."

]],

in { resource { "http :// shuttle.com/reservation.xml", "xml" },
reservations {{

delete shuttle -to -airport {{
passenger { "John Q Public" },

airport { var F },
flight { var N }

}} }} }
END

Figure 4.5: An XChange ECA rule reacting to flight cancellations for passenger “John Q Public”

<xchange:event xmlns:xchange ="http :// pms.ifi.lmu.de/xchange">
<xchange:sender > http :// airline.com </xchange:sender >
<xchange:recipient > http :// passenger.com </xchange:recipient >
<xchange:raising -time > 2005 -05 -29 T18 :00 </xchange:raising -time >
<xchange:reception -time > 2005 -05 -29 T18 :01 </xchange:reception -time >
<xchange:reception -id> 4711 </xchange:reception -id >

<flight -cancellation >
<flight -number >UA917 </flight -number >
<passenger >John Q Public </passenger >

</flight -cancellation >
</xchange:event >

(a) XML syntax

xchange:event [
xchange:sender ["http :// airline.com"],
xchange:recipient ["http :// passenger.com"],
xchange:raising -time ["2005 -05 -29 T18:00"] ,
xchange:reception -time ["2005 -05 -29 T18:01"] ,
xchange:reception -id ["4711"] ,

fligh -cancellation {
flight -number { "UA917" },
passenger { "John Q Public" }

}
]

(b) Data term syntax

Figure 4.6: Example of an event message

4.2. XCHANGE: REACTIVITY ON THE WEB 83

Simple (“atomic”) event queries The event part of a rule specifies a class of events that the
rule reacts upon. This class of events is expressed as an event query. A simple (or atomic) event
query is expressed as a single Xcerpt query term.

Event messages usually contain valuable information that will be needed in the condition and
action part of a rule. By binding variables in the query term, information can flow from the event
part to the other parts of a rule. Hence, event queries can be said to satisfy a dual purpose:
(1) they specify classes of events the rule reacts upon and (2) they extract data from events for
use in the condition and action part in the form of variable bindings.

An XChange program continually monitors the incoming event messages to check if they match
the event part of one of its XChange rules. Each time an event that successfully matches the event
query of a rule is received, the condition part of that rule is evaluated and, depending on the result
of that, the action might be executed.

The event part of the ECA rule from Figure 4.5 would be match the event message in Figure 4.6.
In the condition and action part the variable N would then be bound to the flight number “UA917”.

Complex (“composite”) event queries To detect complex events, the original proposal of
XChange supported composition operators (cf. Chapter 3.2) such as and (unordered conjunction of
events), andthen (ordered sequence of events), without (absence of events in a specified time win-
dow), etc. [Eck05, Păt05, BEP06a, BEP06b]. These composition operators share the weaknesses
and associated problems of other composition-operator-based event query languages discussed in
Chapter 3.2. The work of this thesis, XChangeEQ, seeks to replace these composition operators
with an improved and radically different approach to querying complex events.

4.2.4 Conditions

Web queries The condition part of XChange rules queries data from regular Web resources
such as XML documents or RDF documents. It is a regular Xcerpt query, i.e., anything could
come after the FROM part of an Xcerpt rule. Like event queries in the event part, Web queries in
the condition part have a two-fold purpose: they (1) specify conditions that determine whether
the rule’s action is executed or not and (2) extract data from Web resources for use in the action
part in the form of variable bindings.

The condition part in the rule from Figure 4.5 accesses a database of flights like the one from
Figure 4.1 located at http://www.example.com/flights.xml (the resource is specified with a
URI using the keyword in). It checks that the number (variable N) of the canceled flight exists
in the database and extracts the flight’s departure and destination airport (variables F and T ,
respectively).

Deductive rules Web queries can facilitate Xcerpt rule chaining (as introduced in Section 4.1.5).
For this, an XChange program can contain Xcerpt CONSTRUCT-FROM rules in addition to its ECA
rules. Such rules are useful for example to mediate data from different Web resources. In our
example we might want to access several flight databases instead of a single one and these might
have different schemas. Deductive rules can then be used to transform the information from several
databases into a common schema.

4.2.5 Actions

The action part of XChange rules has the following primitive actions: rasing new events (i.e.,
creating a new XML event message and sending it to one or more recipients) and executing simple
updates to persistent data (such as deletion or insertion of XML elements). To specify more
complex actions, compound actions can be constructed from these primitives.

Raising new events Events to be raised are specified as a construct terms for the new event
messages. The root element of the construct term must be labeled xchange:event and contain

84 CHAPTER 4. BACKGROUND: XCERPT AND XCHANGE

at least on child element xchange:recipient which specifies the recipient Web node’s URI. Note
that the recipient can be a variable bound in the event or condition part.

The action of the ECA rule in Figure 4.5 raises (together with performing another action) an
event that is sent to an SMS gateway. The event will inform the passenger that his flight has been
canceled. Note that the message contains variables bound in the event part (N) and condition
part (F , T).

Updates Updates to Web data are specified as so-called update terms. An update term is
a (possibly incomplete) query pattern for the data to be updated, augmented with the desired
update operations. There are three different types of update operations and they are all specified
like subterms in an update term. An insertion operation insert c specifies a construct term c
that is to be inserted. A deletion operation delete c specifies a query term q for deleting all data
terms matching it. A replace operation replace q by c specifies a query term q to determine data
items to be modified and a construct term c giving their new value. Note that update operations
cannot be nested.

Together with raising a new event, the action of the ECA rule in Figure 4.5 modifies a Web
resource containing shuttle reservations. It removes the reservation of our passenger’s shuttle to
the airport. The update specification employs variables bound in the event part (N) and condition
part (F).

Due to the incompleteness in query patterns, the semantics of complicated update patterns
(e.g., involving insertion and deletion in close proximity) might not always be easy to grasp. Issues
related to precise formal semantics for updates that are reasonably intuitive even for complicated
update terms have been explored in [Coş07]. So-called snapshot semantics are employed to reduce
the semantics of an update term to the semantics of a query term.

Compound Actions Actions can be combined with disjunctions and conjunctions. Disjunc-
tions specify alternatives, only one of the specified actions is to be performed successfully. (Note
that actions such as updates can be unsuccessful, i.e., fail). Conjunctions in turn specify that
all actions need to be performed. The combinations are indicated by the keywords or and and,
followed by a list of the actions enclosed in braces or brackets.

The actions of the rule in Figure 4.5 are connected by and so that both actions, the sending
of an SMS and the deletion of the shuttle reservation, are executed.

4.2.6 Applications

Due to its built-in support for updating Web data, an important application of XChange rules is
local evolution, that is updating local Web data in reaction to events such as user input through
an HTML form. Often, such changes must be mirrored in data on other Web nodes: updates need
to be propagated to realize a global evolution. Reactive rules are well suited for realizing such a
propagation of updates in distributed information portals.

A demonstration that shows how XChange can be applied to programming reactive Web sites
where data evolves locally and, through mutual dependencies, globally has been developed in
[Gra06] and presented in [BEGP06b, BEGP06a]. The demonstration considers a setting of several
distributed Web sites of a fictitious scientific community of historians called the Eighteenth Century
Studies Society (ECSS). ECSS is subdivided into participating universities, thematic working
groups, and project management. Universities, working groups, and project management have
each their own Web site, which is maintained and administered locally. The different Web sites
are autonomous, but cooperate to evolve together and mirror relevant changes from other Web
sites. For example, Web sites maintain information about personal data of members; a change
of member data at a university entails further changes at the Web sites of the management and
some working groups.

The propagation of updates and other functionality (e.g., sending of newsletters) of these
distributed Web sites are realized as XChange ECA rules. While a similar behavior as the one

4.3. SUMMARY 85

in the demo could be obtained with conventional programming languages, XChange provides an
elegant and easy solution that also abstracts away issues such as low-level network communication
protocols. Evolution of data and reactivity on the Web are easily arranged for by using readable
and intuitive ECA rules. Moreover, by employing and extending Xcerpt as a query language,
XChange integrates reactivity to events, querying of Web resources, and updating those resources
in a single, easy-to-learn language.

XChange ECA rules have also been investigated as way to realize workflows, e.g., in business
processes. More details on this can be found in [Rom06, BEPR06].

4.3 Summary

This chapter has introduced the Web query language Xcerpt and the reactive Web language
XChange. These two languages are the context in which XChangeEQ is being developed:
XChangeEQ, the topic of this thesis, employs Xcerpt to query XML data in simple events and it
can be used inside XChange as a sublanguage for specifying complex events. All three languages,
Xcerpt, XChange, and XChangeEQ, employ a pattern-based approach for dealing with Web data
and together give a suite of languages for realizing common tasks on the Web involving querying
and reasoning with regular Web data, reacting to and communicating events, updating Web data,
and detecting and reasoning with complex events.

86 CHAPTER 4. BACKGROUND: XCERPT AND XCHANGE

Part II

XChangeEQ: An Expressive
High-Level Event Query Language

87

Chapter 5

Language Design

The language design of XChangeEQ follows a clear rationale based on a few core principles. At
the very heart of XChangeEQ is the idea that event queries can be described according to the four
dimensions data extraction, event composition, temporal and other relationships between events,
and event accumulation (Section 5.1), and that an event query language must separate these four
dimensions in order to achieve full expressivity (Section 5.2). With the emergence of the Web as a
universal information system, XChangeEQ caters for the specific needs of querying and reasoning
with events on the Web (Sections 5.3 and 5.4). XChangeEQ aims at being a declarative, easy-to-
use language (Section 5.5) that comes with clear semantics (Section 5.6). Finally, acknowledging
that a single language can often not solve all problems, XChangeEQ is designed with extensibility
in mind (Section 5.7).

The language XChangeEQ has first been presented in [BE06a]. Issues related to its language
design (and language design of complex event query languages in general) is also discussed in
[BE06b, BE07d, BE07a, BE08b]

5.1 Four Dimensions of Querying Events

Characteristic for applications involving event queries is the need to (1) utilize data contained
in the events, (2) detect patterns composed of multiple events (i.e., complex events), (3) reason
about temporal and other relationships between events, and (4) accumulate events for negation and
aggregation. We can understand these requirements as four complementary dimensions that we call
data extraction, event composition, temporal (and other) relationships, and event accumulation.
These four dimensions, which will be detailed shortly, must (at least) be considered for querying
complex events. How well an event query language covers each of the dimensions gives a practical
measure for its expressiveness.

Data extraction Events contain data that is relevant for applications to decide whether and
how to react to them. The data of events must be extracted and provided (typically as bindings
for variables) to test conditions (e.g., arithmetic expressions) inside the query, combine event data
with persistent, non-event data (e.g., from a database), construct new events (e.g., by deductive
rules, see Section 5.4), or trigger reactions (e.g., database updates).

Often, events are transmitted as messages in XML formats (cf. Chapter 2.4); examples for
such message formats include SOAP [G+03], Common Base Event (CBE) [IBM04], and the Fa-
cility Control Markup Language (FCML) [BLO+08]. Data in such XML messages can be semi-
structured, i.e., have a quite complex and varying structure. This gives a strong motivation to
build upon and embed an already existing XML query language into an event query language.
Accordingly, XChangeEQ builds upon the XML query language Xcerpt; the advantages for us-
ing Xcerpt over the standard XML query languages XQuery and XSLT have been outlined in
Chapter 4.1.1.

89

90 CHAPTER 5. LANGUAGE DESIGN

Event composition To support complex events, i.e., events that consist of several events, event
queries must support composition constructs such as the conjunction and disjunction of events
(more precisely, of event queries). Composition must be sensitive to event data, which is often
used to correlate and filter events (e.g., consider only stock transactions from the same customer
for composition). Event composition also gives rise to relative temporal events, that is, timer
events that are defined relative to another event such as “2 hours after event X.” Since reactions
to events are usually sensitive to timing and order, an important question for complex events is
when they are detected. In a well-designed language, it should be possible to recognize when
reactions to a given event query are triggered without difficulty.

Temporal (and other) relationships Time plays an important role in event-driven applica-
tions. Event queries must be able to express temporal conditions such as “events A and B happen
within 1 hour, and A happens before B.” Temporal relationships between events can be quali-
tative or quantitative. Qualitative relationships concern only the temporal order of events (e.g.,
“shipping after order”). Quantitative (or metric) relationships concern the actual time elapsed
between events (e.g., “shipping and order more than 24 hours apart”).

Time takes dominating role in event processing, since it affects the timing and order of reactions
to complex events. Therefore, we concentrate on temporal relationships in XChangeEQ. However,
there might also be other relationships between events that are of interest in event queries. With
these relationships, there is always a consideration whether they should just be considered as
relationships between event data or deserve a special treatment. XChangeEQ’s language design is
kept extensible so that special treatment of other relationships can be easily added in the same
manner as temporal relationships.

For some event processing applications, it is interesting to look at causal relationships, e.g., to
express queries such as “events A and B happen, and A has caused B.” While temporality and
causality can be treated similarly in query syntax, causality raises interesting questions about how
causal relationships can be defined and maintained. This issue will be discussed in Chapter 19.

In event processing applications involving geographically distributed event sources, spatial
relationships between events can also be of interest. For example, a query might specify that two
events occur within 100 meters of each other. Spatial information about events might, as noted
above, be simply considered as ordinary data in events — more so than causality because there are
less issues regarding the definition and maintenance of it. However, special treatment of spatial
relationships might be of interest, e.g., in systems that involve mobile event sources and require
spatio-temporal reasoning [Sch08]. Further, spatial relationships might play a role in distributed
query evaluation. These issue will also be discussed in Chapter 19.

Event accumulation Event queries must be able to accumulate events to support non-
monotonic query features such as negation of events (understood as their absence) or aggrega-
tion of data from multiple events over time. The reason for this is that the event stream is —in
contrast to extensional data in a database— unbounded (or “infinite”); one therefore has to de-
fine a scope, e.g., a time interval, over which events are accumulated when aggregating data or
querying the absence of events. Application examples where event accumulation is required are
manifold. A business activity monitoring application might watch out for situations where “a
customer’s order has not been fulfilled within 2 days” (negation). A stock market application
might require notification if “the average of the reported stock prices over the last hour raises by
5%” (aggregation).

5.2 Separation of Concerns: Expressivity and Ease-of-Use

XChangeEQ aims at a high expressive power with a full coverage of all four query dimensions. The
four dimensions can be considered orthogonal and complementary. We argue that an expressive
event query language should use a language design that treats the querying dimensions separated

5.3. SEAMLESS INTEGRATION INTO THE (REACTIVE) WEB 91

from each other in syntax and semantics in order to reach high expressive power as well as ease-
of-use.

XChangeEQ’s language design realizes a separation of concerns in syntax and semantics with
respect to the four query dimensions. Because each individual dimension is well-covered, it can
be claimed that XChangeEQ reaches a certain degree of expressive completeness. The separation
of concerns also yields a clear language design, makes queries easy to read and understand, and
gives programmers the benefit of a separation of concerns. It further contributes to XChangeEQ’s
extensibility.

Experience with other event query languages shows that without such a separation not all
dimensions are fully covered. Composition operators mix the event querying dimensions, e.g., in
the case of the sequence operator, event composition and temporal relationships are mixed. This
leads difficulties in correctly expressing and understanding some event queries and also to a certain
lack in expressiveness. Some examples of such difficulties have already been shown in Chapter 3.

In Chapter 17, we will analyze several concrete examples of event queries and compare
XChangeEQ and its separation of concerns with other event query languages. This compari-
son will further substantiate the claim that a separation of the four query dimensions is beneficial
for ease-of-use and necessary for a high expressivity of an event query language.

5.3 Seamless Integration into the (Reactive) Web

XChangeEQ caters for the specific requirements of complex event processing on the Web and is
tailored towards a seamless integration into the reactive Web. Because integration and monitoring
is a common requirement on the Web, complex event processing can be expected to gain particular
momentum in Web-based settings. As discussed in Chapter 2, the Web is becoming the standard
infrastructure for information systems, also for those that are intended for a more confined scope
than the World Wide Web (e.g., intranets of enterprises). Service-oriented architectures in the
enterprise information systems world are commonly based on Web and Web Service standards, but
also other application domains such as Supervisory Control and Data Acquisition are employing
these standards.

It has become standard on the Web to represent and transmit events as XML messages.
Convenient and uncomplicated access to and querying of XML event messages is therefore the
first and most important step for making an event query language tailored towards the Web.
It should not be necessary to first convert incoming event messages into a different data model
(e.g., an object-oriented or relational model) as would be required by most current event query
languages. Also, such a conversion might often imply a necessity of strict types and thus go against
the idea of supporting semi-structured Web data. XChangeEQ natively supports querying XML
event messages. To this end and in order to not reinvent the wheel, it embeds the existing Web
query language Xcerpt.

Complex event queries are usually not an end in themselves. Rather the primary goal behind
detecting complex events is to perform some appropriate reaction. Such reactive behavior can
often be expressed in a convenient and declarative manner using a reactive rule language. Accord-
ingly, there is a close connection between complex event queries and reactive rules. XChangeEQ

pays tribute to this close connection by embedding into the reactive rule language XChange as a
sublanguage. The use of event queries as a sublanguage for the E-part of Event-Condition-Action
(ECA) rules, entails a need for event queries to be able to return variable bindings that can be used
subsequently in the C- and A-part of rules. However, XChangeEQ is designed in a way that also
allows its deployment as a stand-alone event mediation component in an event-driven architecture
[Etz05] or use in Semantic Web ECA frameworks [MAA05a, MAA05b, AA07].

With its close interaction with the Web query language Xcerpt and the reactive Web language
XChange, XChangeEQ realizes the vision of a seamless integration of event queries, Web queries,
and reactive behavior on the Web. The result is a set of cooperating languages that provide, due
to the pattern-based approach that is common to all of them, a homogenous look-and-feel.

92 CHAPTER 5. LANGUAGE DESIGN

5.4 Reasoning with Events

XChangeEQ supports reasoning with events and complex events based on deductive rules. Deduc-
tive rules allow to define new, “virtual” events from the existing ones (i.e., those that are received
in the incoming event stream). Deductive rules for events are thus used much in the same fashion
as one uses views (or rules) in databases to define new, derived data from existing base data.

Rule-based reasoning about events is highly desirable for a number of reasons: Rules give
answer-closedness, i.e., the result is of the same form as the input, allowing for complex events
generated by a deductive rule to be further processed by other rules. As such, rules serve as
an abstraction mechanism, making query programs more readable, and a mediation mechanism
between different schemas for event data. Rules allow to define higher-level application events
from lower-level (e.g., database or network) events. This is also useful when reasoning about causal
relationships between events, in particular so-called vertical causality [Luc02]. Different rules can
provide different perspectives (e.g., of end-user, system administrator, corporate management) on
the same event-driven system. Rules give a representation to the complex event that is detected
with them and this representation is helpful for testing larger complex event query programs:
query logic can now conveniently be considered in isolation of the concrete reactions associated
with complex event. Note that despite these good reasons, only very few current event languages
support such purely deductive rules (cf. Chapter 3).

Event-based systems usually provide reactive rules, typically Event-Condition-Action (ECA)
rules or production rules, to specify reactions to the occurrences of certain events [BBB+07]. While
deductive rules can be, and in existing systems often are, implemented using (or “abusing”) reac-
tive rules, we argue that deductive event rules are inherently different from reactive rules. They
aim at expressing “virtual events,” not actions. Accordingly and importantly, deductive rules are
free of side-effects. Implementing deductive rules using reactive rules blurs this distinction. This
has negative consequences for development and maintainability of the query logic, and restricts
optimization: techniques that are applicable for deductive rules such as backward chaining or pro-
gram rewriting are not generally applicable to reactive rules. Because of the imperative semantics
of reactive rules, checks such as detecting cycles that might lead to non-terminating programs
or non-stratified uses of negation that are possible for deductive rules are much harder or even
impossible for reactive rules.

5.5 Declarative Language and Simplicity

In its language design, XChangeEQ seeks to be a declarative query language that values simplicity.
Part of its declarative nature that the same expression (in syntax) should have the same mean-
ing (semantics) independently of the context it is used in. This entails that XChangeEQ avoids
language construct that would place a processing mode or other kind of context from the outside
onto expressions and affect their semantics. It further entails that the (declarative) semantics of
XChangeEQ are stateless.

For regular (non-event) query languages, such a declarative design is common and well-accepted.
However there are features in a number of current event query languages that conflict with a declar-
ative nature. For example event instance selection and event instance consumption, as found in
some composition-operator-based languages, constitute modes that are applied from the outside
to expressions and require stateful semantics for event queries. At a possible price of expressive
power, XChangeEQ avoids such “undeclarative” language constructs. In the particular case of
event instance selection and event instance consumption we also believe that their value is not
sufficiently proven from a practical standpoint and other approaches have not been given full
consideration so far. This issue is further discussed in Chapter 17.

XChangeEQ favors simplicity by trying to keep the number of necessary language constructs
at a minimum while still providing a language that is convenient for the human user. This
simplicity is aided strongly by the separation of concerns. Instead of supporting a multitude
of composition operators for different temporal relationship between the composed events, for

5.6. SEMANTICS 93

example, XChangeEQ uses only a composition of events through a conjunction and then a separated
specification of the temporal relationships that must hold between events.

A particular assumption to simplify XChangeEQ and its presentation in this thesis is that
occurrence times of events are all given according to a single, common time axis. As we have seen
in Chapter 2.4.4, this should not be assumed as the general case. However, the language design of
XChangeEQ has been engineered in a way that extending it to accommodate multiple time axes
is fairly straightforward. Hence the simplifying assumption about a single time axis is more of an
issue relating to the presentation of the language rather than inherent to its design.

5.6 Semantics

Both declarative and operational semantics are desirable for an event query language, and in this
work we provide both for XChangeEQ. We particularly aims at leveraging approaches and results
that are well-known and explored from traditional query languages and logic programming. By
putting event queries on the wheels of traditional queries, it becomes evident where new concepts
and methods are needed for querying events — and where they are not needed.

Declarative semantics of XChangeEQ aim at being intuitive and natural. As such they work
directly with a stream of incoming events and avoid, for example, a round-trip to relations as it is
found in the semantics of CQL (cf. Chapter 3.3.5). They further do not require the concept of state.
(Note that this cannot be said for the semantics of CQL since some relation-to-stream operators
rely on the difference between the previous and current state of a relation.) Declarative semantics of
XChangeEQ are provided as a (Tarski-style) model theory with accompanying fixpoint theory. This
well-known approach from deductive databases [AHV95] and logic programming [Llo93] accounts
well for (1) data in events and (2) deductive rules, two aspects sometimes neglected in other event
query languages. Declarative semantics of XChangeEQ put particular focus on the occurrence time
of complex events in recognition of the importance of timing and ordering of reactions to complex
events.

Operational semantics of XChangeEQ are targeted towards the efficient evaluation of event
queries. Note that operational semantics of event queries must, in contrast to the declarative
semantics, inherently refer to state since event query evaluation involves storing and garbage
collecting events over time. The operational semantics of XChangeEQ are grounded in a restricted
and extended variant of relational algebra. With this, many topics from database query evaluation
such as query rewriting, index structures, join algorithms, and adaptive query evaluation might
be reconsidered in the light of event query evaluation. Incremental evaluation of event queries,
stateful processing, and garbage collection are accommodated through so-called materialization
points.

5.7 Extensibility

XChangeEQ puts emphasis on a design that makes the language easily extensible. Given that
querying of complex events is still young field where the requirements on languages are not as
established as in other areas, we believe this of high importance. Throughout this work we will
therefore point out specific opportunities for possible extensions. That XChangeEQ can be easily
extended is largely due to its separation of dimensions, which allows to extend it in each dimension
independently.

Aspects where XChangeEQ can be easily extended include the following. New forms of temporal
relationships as well as expressions specifying new kinds of temporal events can be easily added.
This might be relevant in applications that use domain- or culture-dependent calendars (e.g.,
calendars including bank holidays for some business applications). In particular, an integration
of a calendrical reasoning system such as CaTTS [BRS05] might prove useful for XChangeEQ.
Similarly, other forms of relationships such as causal or spatial relationships are easy to add. While
XChangeEQ uses a single time axis for the occurrence times of events, its design keeps the relevance

94 CHAPTER 5. LANGUAGE DESIGN

of multiple time axes in mind and can accommodate them with only little effort. For querying
simple events, XChangeEQ relies on the Web query language Xcerpt. Extensions to Xcerpt, e.g., for
querying other data formats than XML, become immediately applicable to XChangeEQ. Further,
replacing Xcerpt with another language for querying simple events is possible without turning
XChangeEQ inside out.

Chapter 6

Syntax and Informal Semantics of
XChangeEQ

We now introduce the complex event query language XChangeEQ. In Chapter 3, we have dis-
cussed the three currently prevalent styles of querying events: composition operators, data stream
languages, and production rules. XChangeEQ introduces a fourth style where event queries are
specified in a way that is somewhat reminiscent of logical formulas. However, XChangeEQ has a
human-friendly syntax tailored towards querying events. This chapter is intended as a step-wise,
tutorial-like introduction to XChangeEQ. It describes the semantics of event queries only infor-
mally; formal semantics are developed in the later parts of this thesis. A context-free grammar
for XChangeEQ is given in Appendix A. Throughout this section, we use the example of a stock
market application.

6.1 Representation of Events

Events and Event Messages Events in XChangeEQ are represented as XML documents or
Xcerpt data terms and received by the event processor as messages, which we call accordingly
event messages. Since we assume a representation for all events that are of interest, we often
also use just the term event to mean the corresponding event message. Since there are a number
of envelope formats for messages in use on the Web (e.g., SOAP, CBE, FCML, cf. Chapter 2.4.2),
XChangeEQ does not commit itself to a specific message format but supports arbitrary XML
formats for event messages. In this chapter, we will not use any message envelope in order to keep
the examples compact and easy to read. Also, we will primarily use the data term representation
for events due to its resemblance with query and construct terms.

Where events are not natively represented as XML, as is for example the case with many
sensors that use proprietary data formats, events can still be conveniently converted into an
XML representation and queried as XML. Note that with appropriate mechanisms in the event
processing engine, it might not be necessary for the XML representation of a such an event to be
actually materialized (i.e., be constructed as a DOM tree [H+08] in memory or similar). Instead,
it might be possible to transform queries into expressions that work directly on the non-XML
format.

Occurrence Time Each event has an occurrence time associated with it. For simplicity and
ease of presentation, we assume that all occurrence times are given according to the same clock or
time axis. One easy way to achieve this would be to time stamp events only upon reception of the
event message by the event processing engine. Extensions of XChangeEQ to multiple time axes are
possible and discussed in Chapter 18. The occurrence time t of an event is a (closed and convex)
time interval, i.e., t = [b, e] with time points b and e. Time point b is called its starting time, e

95

96 CHAPTER 6. SYNTAX AND INFORMAL SEMANTICS OF XCHANGEEQ

its ending time. In examples we will often just use integers to represent time points. However
XChangeEQ aims at modeling our natural understanding of real time closely and thus does not
assume integers or another discrete domain for time. In particular, there is no assumption of a
unique successor for a given time point as in data stream languages like CQL (cf. Chapter 3.3.5).
More on the precise requirements for the time domain will be given in Chapter 9. Simple events
that are received in the event stream (see below) often happen only at a single time point p not
over a time interval. In these cases a degenerate interval t = [p, p] containing only this single time
point is used as occurrence time.

We write events as et where e is the event message (i.e., a data term) and t the occurrence
time (i.e., a time interval [b, e]). For example, hello {"world!"}[3,7] would be used to express
that an event hello {"world!"} happens with occurrence time [3, 7].

Event Stream Conceptually, all events arrive in a single stream at the event processing engine.
This stream is called the stream of incoming events or just the event stream. While there might
be several different streams from different event sources, conceptually we can equally use a single
stream of incoming events that corresponds to their union. A distinction of multiple streams would
only be relevant if either the stream is related to the type of an event or each stream has a separate
time axis and the time axes of different streams are not comparable. Using types for streams is
not necessary in XChangeEQ because this information can equally be modeled as content of the
XML event message. For time, we assume only a single time axis.

Events that are received in the incoming event stream are called base events to contrast them
with derived events, that is, events that are generated (“derived”) by deductive rules (cf. Sec-
tion 6.4).

Note that the occurrence time of a base event can be a true time intervals (i.e., one that is not
just a time point), although this is not that common in practice.1 Different events in the event
stream may happen at the same time or with overlapping occurrence times.

Example Events In our stock market application, there will be four different types of events:
buy order events signal that an order to buy some stock has been placed; sell order events signal
that an order to sell some stock has been placed; buy events signal a trade where some stock has
been bought; and sell events signal a trade where some stock has been sold.

All events are represented as data terms (or equivalently XML documents). Examples of the
buy order and buy events are shown in Figure 6.1. The sell order and sell events have the same
structure, only buy labels are replaced with sell labels.

The events contain relevant data such as the customer involved in an order or transaction and
the stock that being ordered or changing hands, together with the volume (number of stocks).
Order events contain a unique identifier orderId and the limit the customer sets on the price for
selling or buying the stock. Trade (buy and sell) events contain also a unique identifier tradeId
as well as the orderId of the order that has lead to the trade. Further they contain the price for
which the stock has changed hands.

Event sources in our example might generate further events. These would then not affect our
examples, unless they have a structure that is close enough to our four events so that they would
match any of the simple event queries in our examples.

6.2 Querying Simple Events

Querying simple events, that is events that are represented by a single event message, is a two-fold
task: one has to (1) specify a class of relevant events (e.g., all buy events) and (2) extract data
from the events (e.g., the price). XChangeEQ uses Xcerpt query terms for both specifying classes
of relevant events and extracting data from the events. Simple event queries are written in the

1It turns out that there is not much to be gained from restricting base events to time points. Further such a
restriction could be deemed irritating since it would require different treatment of base events and derived events.

6.3. ABSOLUTE TIMER EVENTS 97

<order >
<orderId >4711 </ orderId >
<customer >John </customer >
<buy >

<stock >IBM </stock >
<limit >3.14 </limit >
<volume >4000 </ volume >

</buy >
</order >

(a) Buy order event in XML syntax

order [
orderId { 4711 },
customer { "John" },
buy [

stock { "IBM" },
limit { 3.14 },
volume { 4000 }

]
]

(b) Buy order event in term syntax

<buy >
<orderId >4711 </ orderId >
<tradeId >4242 </ tradeId >
<customer >John </customer >
<stock >IBM </stock >
<price >2.71 </price >
<volume >4000 </ volume >

</buy >

(c) Buy event in XML syntax

buy [
orderId { 4711 },
tradeId { 4242 },
customer { "John" },
stock { "IBM" },
price { 2.71 },
volume { 4000 }

]

(d) Buy event in XML syntax

Figure 6.1: Example event messages for the stock market application

form event i: q, where event is a keyword, q a query term, and i an alpha-numeric identifier.
For now, this event identifier i is not interesting, but it will become important later for complex
event queries that involve multiple simple event queries.

As explained in Chapter 4.1.3, Xcerpt query terms describe a (possibly incomplete) pattern that
is matched against the data. Query terms can contain variables, which will be bound to matching
data. The result of matching them against data is a set Σ of variable bindings σ1, σ2, We also
call σ1, σ2, . . . substitutions and Σ a substitution set. Like Xcerpt, XChangeEQ allows to add a
where clause to queries in order to specify non-structural conditions, e.g., arithmetic comparisons
on values bound in variables.

Example In our stock market application, we might want to recognize “big buy” events, that
is buy events with a price total of $10 000 or more. The price total there is simply the product
of the price per stock and the volume. The following simple event query matches such big buy
events and extracts some relevant data from the event message into variables:

event b: buy {{
tradeId { var I },
customer { var C },
stock { var S },
price { var P },
volume { var V }

}}
where { var P * var V >= 10000 }

The query term of this simple event queries matches the structure of the buy event in Fig-
ure 6.1(d) (but not, for example, of the buy order in Figure 6.1(b)). The arithmetic condition in
the where clause would also be satisfied for the example buy event in Figure 6.1(d). The result
is a substitution set Σ = {σ1} containing only one substitution σ = {I 7→ 4242, C 7→ John, S 7→
IBM, P 7→ 2.71, V 7→ 4000}.

6.3 Absolute Timer Events

CEP applications often refer to specific time points or intervals on the time axis in order to perform
certain actions or as part or complex event queries. Our stock market application might want to

98 CHAPTER 6. SYNTAX AND INFORMAL SEMANTICS OF XCHANGEEQ

perform a specific action every day at 4pm such as sending a message to all customers to remind
them that the market will close in an hour. It also might have complex event queries that will
determine the average price of a stock over a trading day. Time points such as “every day at 4pm”
and time intervals such as “trading day” are usually not represented as messages in the incoming
event stream. Still, one needs the ability to query such timer events.

XChangeEQ supports queries for timer events in a manner that is syntactically similar to
queries against event messages. One can distinguish absolute and relative timer events. Absolute
timer events are time points or intervals defined without reference to the occurrence time of some
other event. They can be periodic, i.e., a sequence of time points or intervals as in “every day
at 4pm.” Relative timer events in contrast are defined dependent on some other event. Relative
timer events will be discussed in Section 6.7.

Example Queries to absolute timer events are specified just like queries to event messages. In
fact, one can imagine querying timer events as querying a “virtual” stream of event messages that
represent all possible time points and intervals. XChangeEQ offers one built-in way for specifying
absolute timer events. The “virtual message” for this built-in absolute timer event has the root
element timer:datetime and children to specify the time and data of the timer event. For
example, the following query would set off a timer at 14:35h on July 31, 2008:

event i: timer:datetime {{
time { "14:35" },
data { "2008 -07 -31" }

}}

Queries for absolute timer events can also specify periodic timers. For example, the following
query would set off a timer event at 16:00h (i.e., 4pm) on every day. A string representing the
particular date will be bound to the variable D, which would be useful for example to include the
data into a message that is generated from this event query.

event i: timer:datetime {{
time { "16:00" },
data { var D }

}}

Issues related to time and calendars are often difficult since they might be specific to culture or
application domain. For example, a stock market application might have the concept of a trading
day, which would be the time interval from 9am to 5pm on every day except Saturdays, Sundays,
and local bank holidays. XChangeEQ does not aim at providing a complete solution to these issues
within the event query language. Rather it allows to embed external calendars. These might be
specified using a calendar system such as CaTTS [BRS05] or just programmed manually. The
external calendar system basically has to generate an appropriate stream of messages from the
timer specification. For example, the following event query could set off a timer event for trading
days that might be specified in CaTTS. The variable D is bound to the day of the week.

catts:tradingDay {{
dayOfWeek { var D }

}}

Built-in timer events The built-in timer of XChangeEQ is modeled after the Calender class
of Java [Sun06]; objects of this class represent a specific date.2 Figure 6.2 shows an example of
the virtual message for the timer at 14:35h on July 31, 2008 in Central European Summer Time
(CEST).

2The class name “Calender” in Java is arguably a bit of a misnomer since its objects represent specific dates
according to a calendar system (e.g., Gregorian) and time locales (e.g., time zone), not a calendar system in itself.
However, by the time the Calender class has been introduced in Java, there already was a Date class, which
represents dates according to Coordinated Universal Time (UTC).

6.3. ABSOLUTE TIMER EVENTS 99

timer:datetime {
year { 2008 },
month { "July" },
day -of-month { 31 },
hour -of -day { 14 },
minute { 35 },
second { 0 },
millisecond { 0 },

week -of -year { 31 },
week -of -month { 5 },
day -of-year { 213 },
day -of-week { "Thursday" },
day -of-week -in -month { 5 },
am -pm { "pm" },
hour { 2 },
zone -offset { 1 },
dst -offset { 1 },

date { "2008 -07 -31" },
time { "14:35" },

}

Figure 6.2: Example of built-in timer message for 14:35h on July 31, 2008 CEST

The multitude of fields in the timer message is necessary to allow for flexible specifications of
periodic timer events. For example a query that sets off a timer at 9:00h on every second Tuesday
of the month might be specified as:

event i: timer:datetime {{
day -of-week { "Tuesday" },
day -of-week -in -month { 2 },
time { "9:00" }

}}

It is possible to write timer event queries that do not make sense because they specify impossible
dates. In this case, an XChangeEQ implementation might refuse to run programs containing such
queries or issue a warning. The following are two examples of such timer queries, because there is
no February 29, 2100 and because December 24, 2008 is a Wednesday not a Thursday.

event i: timer:datetime {{
date { "2100 -02 -29" },
time { "12:00" }

}}

event i: timer:datetime {{
data { "2008 -12 -24" },
day -of-week { "Thursday" }

}}

External calendars Absolute timer events that are defined in external calendar systems are rec-
ognized by XChangeEQ according to the namespace of the root element. In our catts:trading-day
example from earlier, the namespace prefix catts has to be bound to a namespace URI that is
associated in the XChangeEQ implementation with an external calendar.

External calendars must generate a sequence of messages together with associated occurrence
times from the timer specification (i.e., the query term). Because the sequence may be infinite, it
must be provided to XChangeEQ in an iterator style interface. The order of the iteration must be
ascending according to the ending time. External calendar can thus be understood as a function
c : N → M × T × T (M the set of all data terms/event messages, T × T the set of all time
intervals) with end(t(i) ≤ end(t(i + 1)) for all i ∈ N. To eliminate possibilities of race conditions,
XChangeEQ is then responsible for actually generating events out of the messages (i.e., initiating
a query evaluation step at the ending time associated with the timer message).

100 CHAPTER 6. SYNTAX AND INFORMAL SEMANTICS OF XCHANGEEQ

6.4 Deductive Rules for Events

Deductive rules are an appropriate way of capturing knowledge about events. They allow to define
new, “virtual” events from the base events that are received in the incoming event stream. These
new derived events can then in turn be again queried in other rules. For example, we might want
to give an explicit representation to big buy events from earlier. This can conveniently be done
with a deductive rule.

Deductive rules follow the syntax DETECT event construction ON event query END. Sometimes
we will abbreviate this with “event construction ← event query”; note however that this is only
for notational convenience when giving semantics in this thesis and not core syntax. For the event
construction in the rule head, XChangeEQ uses the construct terms from Xcerpt (cf. Chapter 4.1.4).

Example The following deductive rule on the left derives a big buy event from buy events using
the query from earlier. The derived event contains the identifier of the buy trade, the customer
name, and the stock. To its right, we show the new big buy event that would be constructed by
this rule from the event in Figure 6.1(d).

DETECT

bigbuy {
tradeId { var I },
customer { var C },
stock { var S }

}
ON

event b: buy {{
tradeId { var I },
customer { var C },
stock { var S },
price { var P },
volume { var V }

}}
where { var P * var V >= 10000 }

END

bigbuy {
tradeId { 4242 },
customer { "John" },
stock { "IBM" }

}

Use of such deductive rules in event query programs makes code more readable and easier to
maintain. The rule head gives already a first indication of the intention of the query in the rule
body (detecting “big buy” events). Rules processing only big buy events (e.g., to send notifications
to an auditor or to aggregate data from big buy events) will not repeat the query in the rule body
but can directly work with the big buy event. Should the definition of big buy events change, e.g.,
due to new legislation to buy events with a total of $20 000 or more, then the necessary change in
the code is only local in one rule instead of many rules.

Occurrence time The occurrence time of events that are derived with deductive rules is de-
termined by the events that are used in answering the query in the rule body. If the rule body
contains only a single simple event query like here, then the new event simply inherits the occur-
rence time of the simple event. If the rule body contains an actual complex event query then, as
we will see in Section 6.6, the occurrence time of the new event is the time interval covering all
events used in answering the complex event query.

Rules for schema mediation In addition to representing inferred event knowledge such as
big buy events, rules are also particularly useful for mediating between different event schemas.
Because CEP is often used in environments involving many heterogenous applications and event
sources, this is a common requirement. For example, our stock market application might receive
also orders that follow a different schema than the example in Figure 6.1(d).

Some exemplary variations in the schema are shown in Figure 6.3. In Figure 6.3(a), the event
message has the same general structure but different names (in German language) are used for the
individual elements. In Figure 6.3(b), the structure of the event message has been changed more
fundamentally. In Figure 6.3(c), the order provides a price limit on the total not on the price of a

6.5. REACTIVE RULES FOR EVENTS 101

bestellung [
nummer { 4711 },
kunde { "John" },
kaufen [

aktie { "IBM" },
limit { 3.14 },
anzahl { 4000 }

]
]

(a) Variation on naming

buyorder -ibm [
id { 4711 },
for { "John" },
maxprice { 3.14 },
quantity { 4000 }

]

(b) Variation in structure

buyorder [
orderId { 4711 },
customer { "John" },
stock { "IBM" },
volume { 4000 },
maxspending { 12560 }

]

(c) Variation in meaning

Figure 6.3: Example event messages for the stock market application

single stock. The following three deductive rules mediate the schemas by translating all variations
into the common schema that has been used so far. The div function in the head of the third rule
computes the price limit of a single stock as the division of the total price limit by the number of
stocks ordered.

DETECT

order [
orderId { var I },
customer { var C },
buy [

stock { var S },
limit { var L },
volume { var V }

]
]

ON

event b: bestellung [
nummer { var I },
kunde { var C },
kaufen [

aktie { var S },
limit { var L },
anzahl { Var V }

]
]

END

DETECT

order [
orderId { var I },
customer { var C },
buy [

stock { "IBM" },
limit { var L },
volume { var V }

]
]

ON

event b: buyorder -ibm [
id { var I },
for { var C },
maxprice { var L },
quantity { var V }

]
END

DETECT

order [
orderId { var I },
customer { var C },
buy [

stock { var S },
limit { div(var M, var V) },
volume { var V }

]
]

ON

event b: buyorder [
orderId { var I },
customer { var C },
stock { var S },
volume { var V },
maxspending { var M }

]
END

More variations in schema are easily conceivable. For example a variation on the order event
might also contain multiple orders for buying or selling different stocks that must be split up
into individual buy or sell events. It is interesting to note that this schema mediation already
shows a clear benefit of using an event query language with deductive rules like XChangeEQ in
our application — even though we have no been using actual complex event queries so far.

6.5 Reactive Rules for Events

Deductive rules only derive new events; they do no cause any side-effects. In specifying the event
logic of an event-driven system, programmers are concerned with issues of representing knowledge
about events and thus a side-effect-free formalism is well-suited. On a large scale however, the
eventual goal of event-driven, reactive systems however is to preform actions that have side-effects
as response to events. Therefore, it must also be possible to specify reactions to events not just
to derive new events.

Messages to external services XChangeEQ offers reactive rules for specifying a reaction to
the occurrence of an event. The event can be simple or complex, and it can be a base event that is
part of the incoming event stream or a derived event that has been generated by some deductive
rule.

102 CHAPTER 6. SYNTAX AND INFORMAL SEMANTICS OF XCHANGEEQ

A typical reaction to an event is to construct a new event message —as with deductive rules—
and use the message to call some external service, e.g., a Web Service, an external program, or
some procedure. Reactive rules that call to an external service have the form RAISE recipient
and message ON event query END. The following reactive rule is used to simply “forward” big buy
events to a Web service located at http://auditor.com using SOAP’s HTTP transport binding.
In the rule head to() is used to specify the recipient of the message and the transport method.

RAISE

to(recipient ="http :// auditor.com",
transport ="http ://www.w3.org /2003/05/ soap/bindings/HTTP")

{
var B

}
ON

event b: var B -> bigbuy {{ }}
END

Transport binding Other transport bindings (e.g., SOAP over SMTP) could be specified with
their URI. XChangeEQ further offers the “transport methods” console, java, and command. If
console is specified, the event message will just be printed on the console, which is mainly
useful for debugging of XChangeEQ programs. If java is specified, a static Java method is called
with the event message as parameter. The method must be specified as recipient in the form
QualifiedClassName.MethodName and accept a single parameter of type org.w3.dom.Document.
If command is specified, an external command or program is executed. The command must be
specified as recipient. The event message as passed to the program on standard input (stdin).

Integration with XChange For tasks involving accessing and updating persistent Web data,
XChangeEQ event queries can be used together with XChange. XChange Event-Condition-Action
rules can then use XChangeEQ event queries in their event part. For example, the following
XChange rule would maintain a log of buy orders for each customer in a customer database
customers.xml. Again these buy orders might be generated by deductive XChangeEQ rules such
as the schema mediation rules from the previous section.

ON

event o: order {{
customer { var C },
var B -> buy [[]]

}}
DO

in { resource { "file:customers.xml" },
orders {{

customer {
name { var C }
orders {

insert var B
}

}
}}

}
END

Reactive vs. deductive rules In principle, it is possible to abuse reactive rules to simulate the
effect of deductive rules by specifying as recipient the event processing engine itself. As argued in
Chapter 5.4, however, this is undesirable. Events generated by reactive rules are subject to timing
issues (i.e., they arrive after their cause in the event stream) and have no duration (i.e., even
when they are complex events they happen at time points instead of intervals), are misleading to
programmers and hinder maintainability of programs, and are less efficient in the evaluation.

6.6. COMPOSITION OF EVENTS 103

6.6 Composition of Events

So far, we have only been looking at queries to single events; we now finally turn to complex events.
Complex event queries are written in a style that is reminiscent of logical formulas. XChangeEQ has
only two operators to compose event queries into such formulas: conjunction and disjunction. Note
that this is in contrast to composition-operator-based languages (cf. Chapter 3.2), which offer and
require a multitude of composition operators. Due to the separation of concerns in XChangeEQ,
which treats temporal conditions and event accumulation separately from event composition, two
operators suffice in XChangeEQ.

Both disjunction and conjunction are multi-ary, allowing to compose any number (≥ 2) of
event queries without need for nesting. They are written in prefix notation. Since the simple
event queries usually extend over several lines of code this is considered to be more readable than
an infix notation. Conjunction uses the keyword and, disjunction the keyword or. For notational
convenience in the semantics, we will also use the infix symbols “∧” and “∨” instead. Expressions
build with or and and can be nested.

Conjunction When two event queries are composed with and, an answer to the composite
event query is generated for every pair of answers to the constituent queries. If the constituent
queries share free variables, only pairs with “compatible” variable bindings are considered. The
following rule illustrates the use of the and operator. A “buy order fulfilled” event is detected for
every corresponding pair of buy order and buy events. These events have to agree on variable O
(the orderId). The occurrence time of the detected buy order fulfilled event is the time interval
enclosing the respective constituent events.

DETECT

buyorderfulfilled {
orderId { var O },
tradeId { var I },
stock { var S }

}
ON

and {
event o: order {

orderId { var O },
buy {{

stock { var S }
}}

},
event b: buy {{

orderId { var O },
tradeId { var I }

}}
}

END

This composition of two events queries generalizes into compositions of three of more event
queries in the obvious manner.

Disjunction When event queries are composed with or, every answer to one of the constituent
queries is also an answer to the composite query. The following rule gives an example: every time
it recognizes a buy or sell event, it generates a new event signaling the fees (1% of the total) the
customer has to pay for the transaction.

104 CHAPTER 6. SYNTAX AND INFORMAL SEMANTICS OF XCHANGEEQ

DETECT

fees {
customer { var C },
amount { mult(0.01, var P, var V) }

}
ON

or {
buy {{

customer { var C },
price { var P },
volume { var V }

}},
sell {{

customer { var C },
price { var P },
volume { var V }

}}
}

END

Disjunctions are not strictly necessary since (in contrast to conjunction) they do not increase
expressive power. A rule with a disjunction can be written as multiple rules: Instead of one rule

DETECT

C
ON

or {
Q1, Q2, . . . Qn

}
END

we can simple write the following n rules

DETECT

C
ON

Q1
END

DETECT

C
ON

Q2
END

. . .
DETECT

C
ON

Qn

END

However, disjunction is a considerable convenience in practical programming since it avoids
repeating the same rule head multiple times.

6.7 Relative Timer Events

Conjunction of events gives rise to defining relative timer events. Like absolute timer events,
relative timer events are not represented as messages in the incoming event stream but must be
generated by the query engine “on demand.” The occurrence time of a relative timer event is
defined depending on some other event of the same event query. This other event is referred to
by its event identifier (event: i) in the definition of the relative timer event.

Example The following rule shows a complex event query that queries for an order event and a
relative timer event covering the whole time interval between the order event and one hour after
the order event.

6.7. RELATIVE TIMER EVENTS 105

DETECT

delayedorder {
var O

}
ON

and {
event o: order {{

orderId { var O }
}},
event t: datetime:extend[event o, 1 hour]

}
END

The effect of the rule is that the event that is generated in the rule head has as occurrence
time the time interval stretching from the begin of the order event to one hour after the end of the
order event. At present, it might seem that relative timer events are not very useful; essentially the
timer event in the example only allows to delay a reaction to order events by one hour if we react
to the generated “delayed order” events instead. However, we will see relative timer events become
more useful later connection with event accumulation (Section 6.9). With event accumulation we
can, for example, query for the absence of a corresponding buy event within the one hour time
interval of the timer event so as to detect orders that are “overdue.”

Built-In Relative Timers Relative timer events create a new event t with occurrence time
[begin(t), end(t)] from another event e with occurrence time [begin(e), end(e)]. The following
relative timer events are supported natively in XChangeEQ. They differ in the occurrence time
[begin(t), end(t)] of the created relative timer event t.

• timer:extend[event e, d]: the relative timer event extends the duration of e by a length
d at the end, i.e., begin(t) := begin(e), end(t) := end(e) + d.

• timer:shorten[event e, d]: the relative timer event shortens the duration of e by a length
d at the end, i.e., begin(t) := begin(e), end(t) := end(e)− d.

• timer:extend-begin[event e, d]: the relative timer event extends the duration of e by a
length d at the begin, i.e., begin(t) := begin(e)− d, end(t) := end(e).

• timer:shorten-begin[event e, d]: the relative timer event shortens the duration of e by
a length d at the begin, i.e., begin(t) := begin(e) + d, end(t) := end(e).

• timer:shift-forward[event e, d]: the relative timer event shifts e forward by length d,
i.e., begin(t) := begin(e) + d, end(t) := end(e) + d.

• timer:shift-backward[event e, d]: the relative timer event shifts e backward by length
d, i.e., begin(t) := begin(e)− d, end(t) := end(e)− d.

• timer:from-end[event e, d]: the relative timer extends over a length of d starting at the
end of e, i.e., begin(t) := end(e), end(t) := end(e) + d.

• timer:from-end-backward[event e, d]: the relative timer extends over a length of d
ending at the end of e, i.e., begin(t) := end(e)− d, end(t) := end(e).

• timer:from-start[event e, d]: the relative timer extends over a length of d starting at
the start of e, i.e., begin(t) := begin(e), end(t) := begin(e) + d.

• timer:from-start-backward[event e, d]: the relative timer extends over a length of d
ending at the start of e, i.e., begin(t) := begin(e)− d, end(t) := begin(e).

More complicated computations of timer events can be achieved by defining them relative to
other timer events. For example the occurrence time of an event e could be extended by one hour
at both the begin and end for a timer event t using a helper timer h as in the following event
query:

106 CHAPTER 6. SYNTAX AND INFORMAL SEMANTICS OF XCHANGEEQ

and {
event e: order {{ }}
event h: timer:extend[e, 1 hour]
event t: timer:extend -begin[h, 1 hour]

}

The durations d are specified in weeks, days, hours, minutes, seconds, and milliseconds, e.g.,
3 weeks 1 day 4 hours 1 min 59 sec 265 ms. For the keywords weeks, days, and hours, the
plural s at the end is optional to allow natural expressions when some values are 1.

External Calendars In principle, relative timer events could also be defined using external
calendar systems similar to the way XChangeEQ allows this for absolute timer events. However,
relative timer events have an intimate connection to the garbage collection based on temporal
events (cf. Chapter 15). Accordingly, while the language design of XChangeEQ is kept extensible
for externally defined relative timer events, they are not as easily integrated into the evaluation
of event queries as absolute timer events. One possibility of integrating them into the current
evaluation method might be to require a conservative approximation for each externally defined
relative timer event by one of the built-in timer events. This issue is also discussed further in
Chapter 18.

6.8 Temporal (and other) Relationships

Temporal conditions and relationships between events play an important role in querying events.
Temporal conditions are specified in the where-clause of an XChangeEQ event query —just like
conditions on event data— and make use of the event identifiers for referring to events.

Example The event query in the following rule involves temporal conditions. It detects situa-
tions where a customer first buys stocks and then (re)sells them again at a lower price within a
short time, here less than 1 hour. The query illustrates that typical applications require both qual-
itative conditions (b before s) and metric (or quantitative) conditions ({b,s} within 1 hour).
In addition, the query also includes a data condition for the price (var P1 > var P2).

DETECT

earlyResellWithLoss {
customer { var C },
stock { var S }

}
ON

and {
event b: buy {{

customer { var C },
stock { var S },
price { var P1 }

}},
event s: sell {{

customer { var C },
stock { var S },
price { var P2 }

}}
} where { b before s, {b,s} within 1 hour , var P1 > var P2 }

END

As we can see in this example, the approach XChangeEQ uses for querying events can be
considered as loosely inspired by event calculus. The use of an event identifier event i: is
somewhat reminiscent of the happens predicate found in some variants such as [Kow92] of the
event calculus [KS86]. Like an event identifier, the happens predicate reifies an event so that
conditions on its occurrence time (and other conditions) can be expressed elsewhere in the logical
formula. Note however that event calculus and XChangeEQ are otherwise very different and serve

6.8. TEMPORAL (AND OTHER) RELATIONSHIPS 107

different purposes. In Chapter 17 we will give examples why this reification and the separation of
the dimension that it achieves is considered better than, e.g., composition operators that include
temporal conditions (such a sequence).

In principle, various external calendar and time reasoning systems could be used to specify
and evaluate temporal conditions. The declarative semantics of XChangeEQ are organized in such
a way that embedding an external temporal reasoner is simple. Its operational semantics for
the evaluation of event queries however require deeper knowledge about temporal conditions for
garbage collection and some optimizations. In the example above, using the condition b before
s allows (1) to completely avoid evaluating the sell query until a buy event is received and (2) to
use the values for variables C and S obtained from buy events when evaluating the sell query.
Further, the condition {b,s} within 1 hour allows to garbage collect stored buy events after
one hour has elapsed. We now discuss first the core temporal conditions supported by the current
operational semantics of XChangeEQ. We then discuss further temporal conditions that might be
desirable but would require at least an extension on the notion of temporal relevance that is used
for garbage collection (cf. Chapter 15).

Qualitative Temporal Relations Since the occurrence times of events in XChangeEQ are
time intervals, Allen’s thirteen relations [All83] are the natural candidate to express qualitative
temporal conditions. XChangeEQ supports all thirteen relations, however they are not of equal
importance for querying events. Of primary interest in querying events are:

• i before j to express that event i ends before event j starts, i.e., the ending time end(i) of
i is lower than the beginning time begin(j) of j: end(i) < begin(j),

• i contains j to express that the time interval of event i contains the time interval of event
j, i.e., begin(j) < begin(i) and end(i) < begin(j).

• i overlaps j to express that event i starts before event j and overlaps j, i.e., begin(i) <
begin(j) and begin(j) < end(i) and end(i) < end(j).

Their inverses are available for convenience and named after, during, and overlapped-by,
respectively.

The other seven temporal relations can be considered less important since they require at least
two endpoints of the time intervals to be exactly equal. Generally in event processing, two different
events (or their begins or ends) rarely happen at the exactly same time and if so only accidentally.
Nonetheless, XChangeEQ supports these relations:

• i meets j expresses that the end time of i is the same as the beginning time of j: end(i) =
begin(j).

• i starts j expresses that i and j begin at the same time and i ends earlier: begin(i) =
begin(j) and end(i) < end(j).

• i finishes j expresses that i and j end at the same time and i starts later: end(i) = end(j)
and begin(i) > begin(j).

• i equals j expresses that the time intervals for i and j are exactly equal: begin(i) = begin(j)
and end(i) = end(j).

The respective inverses of the first three relations are named met-by, started-by, and
finished-by in XChangeEQ. The inverse of equals is of course again equals itself.

108 CHAPTER 6. SYNTAX AND INFORMAL SEMANTICS OF XCHANGEEQ

Metric Temporal Relations Qualitative conditions express only conditions that constrain the
relative positions of occurrence time intervals on the time axis. Complex event queries however
also often require conditions that affect the duration of or between events. Since these conditions
involve actual values (lengths of time), they are called metric or quantitative.

The metric condition {i1, ...in } within d (i1, . . . in event identifiers, n ≥ 0, d a duration)
limits the overall duration of a set i1, . . . in of events. All events must “fit” into a time interval
of length d. More formally: max{end(i1), . . . end(in)} − min{begin(i1), . . . end(in)} ≤ d. The
duration d is specified as described previously in Section 6.7. This metric condition is particularly
useful for garbage collecting events (cf. Chapter 15)

XChangeEQ also supports a constraint that requires a given duration to separate two events.
It is written {i, j} d apart (i, j event identifiers, d a duration). Formally it means that either
end(i)− begin(j) ≥ d or end(j)− begin(i) ≥ d.

Further Temporal Conditions XChangeEQ can easily be extended to accommodate further
temporal conditions. In principle, various external calendar and time reasoning systems could also
be included. The following gives a flavor of conditions that might be desirable in XChangeEQ in
addition to the currently supported conditions discussed above.

Qualitative conditions may also refer to a fixed time point or interval on the time axis instead
of an event identifier. For example, the following event query would detect only sell events that
happen before 9am on September 18, 2006:

event s: sell {{ }}
where {

s before datetime(
"2006 -09 -18 T09 :00")

}

Note that there is an important difference between timer events used in queries and references
to time as part of where-conditions. Timer events have to happen for the event query to yield
an answer i.e., they are waited for. Time references in conditions can be in the future and only
restrict the possible answers to an event query. The following two event queries are therefore
fundamentally different. To illustrate this, consider the following query where the date 9am on
September 18, 2006 is used as a timer event:

and {
event s: sell {{ }},
event t: timer:datetime {{

date { "2006 -09 -18" },
time { "9:00" }

}}
} where { s before t }

All answers to this event query on the are detected at the same time (2006-09-18T09:00). In
contrast, the answers to the event query further up occur at different times (whenever a sell event
is received).

Interesting in temporal conditions are in particular also periodic time intervals. For example
an application might have a variant of the early resell complex event from earlier where the buy
and sell events must happen on the same trading day (instead of within one hour). This might
be specified as follows using an external calendar system such as CaTTS to define the concept of
trading day:

6.9. EVENT ACCUMULATION 109

DETECT

sameDayResellWithLoss {
customer { var C },
stock { var S }

}
ON

and {
event b: buy {{

customer { var C },
stock { var S },
price { var P1 }

}},
event s: sell {{

customer { var C },
stock { var S },
price { var P2 }

}}
} where { {b,s} in catts:tradingDay () , b before s, var P1 > var P2 }

END

Other Event Relationships The language design of XChangeEQ allows easy extension to
accommodate other conditions on events such as causal or spatial relationships. This is the power
of the separation of the four dimensions of XChangeEQ. One could for example have conditions
such as i causes j for a causal relationship or i colocated-with j for a spatial relationship.
These relationships have been discussed in Chapter 5.

6.9 Event Accumulation

Event querying displays its differences to traditional querying most perspicuously in non-monotonic
query features such as negation or aggregation. For traditional database queries, the data to be
considered for negation or aggregation is readily available in the database and this database is
finite.3 In contrast, events are received over time in an event stream which is unbounded, i.e.,
potentially infinite. Applying negation or aggregation on such a (temporally) infinite event stream
would imply that one has to wait “forever” for an answer because events received at a later time
might always change the current answer.

Therefore, XChangeEQ must provide a way to restrict the event stream to a finite temporal
extent (i.e., a finite time interval) and apply negation and aggregation only to the events collected
in this accumulation window.4

It should be possible to determine this accumulation window dynamically depending on the
event stream received so far. Typical cases of such accumulation windows are: “from event a until
event b,” “one minute until event b,” “from event a for one minute,” and (since events can occur
over time intervals, not just time points) “while event c.” The last case subsumes the first three,
since the they can be defined complex events. Since XChangeEQ aims for simplicity with only few
language constructs, it supports the last case.

Negation Negation is supported by applying the not operator to an event query. The window
is specified with the keyword while and the event identifier of the event defining the window. The
meaning is as one might expect: the negated event query while t: not q is successful if no event
satisfying q occurs during the time interval given by t. The following example detects buy orders
that are overdue, i.e., where no matching buy transaction has taken place within one hour after
placing the order.

3Recursive rules or views may allow to define infinite databases intensionally. However, the extensional data
(the “base facts”) is still finite.

4Keep in mind that accumulation here refers to the way we specify queries, not the way evaluation is actually
performed. Keeping all events in the accumulation windows in memory is generally neither desirable nor necessary
for query evaluation.

110 CHAPTER 6. SYNTAX AND INFORMAL SEMANTICS OF XCHANGEEQ

DETECT

buyOrderOverdue {
orderId { var I }

}
ON

and {
event o: order {{

orderId { var I },
buy {{ }}

}},
event t: timer:extend[event o, 1 hour],
while t: not buy {

orderId { var I }
}

}
END

The accumulation window is specified by the event query t, which is the relative timer event
we have seen earlier in Section 6.7. Observe that the negated query can contain variables that are
also used outside the negation, here variable I. The example reveals the strong need to support
this.

Aggregation Following the design of the embedded query language Xcerpt, aggregation con-
structs are used in the head of a rule, since they are related to the construction of new data. The
task of the event query in the body is only collecting the necessary data or events. Collecting
events in the body of a rule is similar to negation and indicated by the keyword collect instead
of not. The following reactive rule has an event query collecting sell events over a full trading day.

RAISE

to(recipient ="http :// example.com",
transport ="http ://www.w3.org /2003/05/ soap/bindings/HTTP")

{
reportOfDailyAverages {

all entry {
stock { var S },
avgPrice { avg(all var P) }

} group -by var S
}

}
ON

and {
event t: catts:tradingDay {{ }},
while t: collect sell {

stock { var S },
price { var P }

}
}

END

The actual aggregation takes place in the head of the rule, where all sales prices (P) for the
same stock (S) are averaged and a report containing one entry for each stock is generated. The
report is sent at the end of each trading day; this is reflected in the syntax by the fact that
catts:tradingDay{{ }} must be written as an event, i.e., must actually occur.

Aggregation follows the syntax and semantics of Xcerpt, see Chapter 4.1 for an introduction and
[Sch04] for a full account. This shows again that it is beneficial to base an event query language on
a data query language. The keyword all indicates a structural aggregation, generating an entry
element for each distinct value of the variable S (indicated with group-by). Inside the entry-
element an aggregation function avg is used to compute the average price for each individual
stock.

6.10 Stratification: Limits on Recursion

A common problem in deductive rule languages is that recursion and negation make it possible to
write programs that do not make sense to the human intuition and are semantically problematic.

6.11. RELEQ: A SIMPLIFIED, RELATIONAL VARIANT 111

The standard example for regular (non-event) rule languages is a program with two rules p← ¬q
and q ← ¬p. It is possible to write a similar example in XChangeEQ:

DETECT

p []
ON

and {
event s: s [],
while s: not q []

}
END

DETECT

q []
ON

and {
event s: s [] ,
while s: not p []

}
END

In case the incoming event stream contains an event s[]t it is questionable if the events p[]t

and q[]t should be derived or not.
To avoid such programs, XChangeEQ restricts the use of recursion in rules to so-called statifiable

programs. A formal definition is given in Chapter 10. More liberal approaches that have been
investigated for Xcerpt such as [BS03] and [Est08] are also be applicable to XChangeEQ but not
investigated here further.

6.11 RelEQ: A Simplified, Relational Variant

Queries to XML event messages are highly important in practice and therefore a cornerstone of
XChangeEQ. However a disadvantage of this is that event queries are rather verbose. Especially
for formal and theoretical investigations this verbosity is considered a bit disturbing. Further
investigations that relate only to complex events would alway have to carry the full weight of the
XML data model and query semantics of Xcerpt. We therefore introduce also a simplified variant
called RelEQ, which also uses a more compact syntax.

The difference between RelEQ and XChangeEQ is that events in RelEQ are just simple relational
facts instead of XML messages. We will however see that RelEQ preserves all the essentials of
XChangeEQ and the step of adding XML queries between the two is a small step.

An event in RelEQ is a simple relational fact together with an occurrence time interval t. It
has a predicate name, which corresponds to the event type, and zero or more parameters. For
example, the buy event given in XML in Figure 6.1(c) might be expressed as a relational fact
of the form buy(4711, 4242, "John", "IBM", 2.71, 4000) (analogous for sell events). The
XChangeEQ “early resell with loss” rule from Section 6.8 would be expressed in RelEQ as follows:

loss(c, s) ← b : buy(i1, t1, c, s, p1, v1), s : sell(i2, t2, c, s, p2, v2),
b before s, {b, s} within 1h, p1 > p2;

As we can see, rules use simply a left arrow (head ← body;) instead of the lengthier DETECT
head ON body END. The keyword event before event identifiers is skipped, as is the keyword var
before variables. The rule body is implicitly surrounded by an and conjunction. Disjunction is
not supported since its effect can be obtained through writing several rules. Conditions of the
where clause are written as part of the conjunction. The time units second, minute, hour are
abbreviated as s, m, h, or left out altogether is all queries use the same time unit.

The keywords while, not, collect for event accumulation are still used in RelEQ. Relative
temporal events are written with round parentheses instead of square brackets to homogenize
syntax with events, e.g., extend(o, 1h). The following rule would detect overdue orders in the
same way as the first XChangeEQ rule from Section 6.9.

overdue(i)← o : order(i, c1, s1, l, v1), t : extend(o, 1h), while t : not buy(i, t, c2, s2, p, v2);

Note that the simple event queries in RelEQ have no sense of incompleteness as the Xcerpt
queries used in XChangeEQ. Therefore RelEQ queries must use some variables that would not be
needed in XChangeEQ queries. This includes i1, i2, v1, v2, and others in the above examples.

112 CHAPTER 6. SYNTAX AND INFORMAL SEMANTICS OF XCHANGEEQ

For aggregation, RelEQ supports the aggregation functions min, max, sum, count, and avg.
Since the data model are flat relational facts, they cannot be nested and no structural aggregation
like building of lists is supported. There is no explicit grouping (like the group by clause); instead
the other non-aggregated variables in the rule head are used for that. The following rule reports
the number of orders that have been placed in the last hour whenever an overdue event happens:

report(count(i)) ← o : overdue(i1), t : extend-begin(o, 1h),
while t : collect order(i, c, s, l, v);

To count the number of orders in the last hour before an overdue event on a per stock basis,
the rule could be modified to:

report-per-stock(count(i), s) ← o : overdue(i1), t : extend-begin(o, 1h),
while t : collect order(i, c, s, l, v);

Because variable s is now in the head, different report-per-stock events are generated for
each distinct value of s.

Chapter 7

Use Cases

To deepen our informal understanding of XChangeEQ and to see it in action, this chapter de-
scribes and implements a number of practical use cases. The use cases aim to be illustrative
for XChangeEQ and thus only show the event logic in a number of possible application scenarios
without worrying about the full application logic. The previous chapter has already given a flavor
of a use case with its stock market application. In this chapter, we consider two further use cases,
monitoring the business activities in an order processing application (Section 7.1) and working
with sensor events in a SCADA Application (Section 7.2).

7.1 Business Activity Monitoring in Order Processing

Our first use cases is concerned with monitoring of events that signify business activities in an order
processing application. Complex events in this application include for example the completion of
an order processing or reports of the daily and weekly activities.

7.1.1 Mediating Order Events

Orders in our application might be placed in a number of different ways. We use rules to mediate
these different events that signify orders into a single common type of order event. We first
consider event that signify a single order but use different XML tags (here: in German language)
than our desired mediated order event. An example of the incoming order event is shown on the
left, the rule on the right “translates” this event into the mediated order event.

bestellung {
nummer { 4711 },
kunde { "John" },
produkt { "Muffins" },
anzahl { 23 }

}

DETECT

order {
id { var I },
customer { var C },
product { var P},
quantity { var Q }

}
ON

event b: bestellung {
nummer { var I },
kunde { var C },
produkt { var P },
anzahl { var Q }

}
END

As we can see from the rule head, orders in our application have the following event data
associated with them: an id to uniquely identify our order, the name of the customer that places
the order, the ordered product, and the quantity that is ordered.

An order might also be a complex event. For example, an order might come about by an
offer that a customer chooses to accept. The following rule on the right detects an order event as

113

114 CHAPTER 7. USE CASES

composition of a weekly offer event and an acceptance of the offer. Examples for these two events
are shown on the left. The offer, and thus the resulting order event, include a discount.

weekly -offer {
code { 42 },
product { "Muffins" },
discount { 10 },
max-quantity { 50 }

}

accept -offer {
code { 42 },
orderId { 4711 },
customer { "John" },
quantity { 29 }

}

DETECT

order {
id { var I },
customer { var C },
product { var P},
quantity { var Q },
discount { var D }

}
ON

and {
event o: weekly -offer {

code { var K },
product { var P },
discount { var D },
max -quantity { var MQ }

},
event a: accept -offer {

code { var K },
id { var I },
customer { var C },
quantity { var Q }

}
} where { o before a, {o,a} within 1 week , var Q <= var MQ }

END

One might argue that the order event might simply be detected through the acceptance of the
offer without composing this with the preceding weekly offer. This is however not sound: First,
note that the acceptance event misses certain data that is part of the resulting order event. This
includes the ordered product and the discount; both must be extracted from the weekly offer.
Second, weekly offers are only valid for a given time, here one week. This constraint is expressed
in the where-clause of the event query. Third, weekly offers also specify a maximal quantity
(max-quantity) that may be ordered for the discounted price. The event query checks that the
ordered quantity does not exceed this maximum. Finally, the composition of offer and acceptance
ensures that customers cannot “cheat” and accept offers that do not actually exist or prematurely
accept offers (i.e., send an acceptance before an offer).

Our order events contain only a single product. However, a customer might place multiple
orders with a single event, e.g., by going to checkout with a shopping basket including several
products on a Web site. A possible example of such an event that includes multiple orders is
shown on the left. The rule on the right splits these orders into separate order events as desired
for our order processing application.

multi -order {
customer { "John" },

item {
id { 4711 },
product { "Muffins" },
quantity { 29 }

},

item {
id { 4712 },
product { "Coffee" },
quantity { 2 }

}
}

DETECT

order {
id { var I },
customer { var C },
product { var P },
quantity { var Q }

}
ON

event m: multi -order {{
customer { var C },

item {
id { var I },
product { var P },
quantity { var Q }

}
}}

END

Note that all incoming events include already identifiers for the orders, which become the id
elements in the resulting order events. In some applications, such an identifier should rather be
generated by the event logic than expected in the input events. However, generation of such

7.1. BUSINESS ACTIVITY MONITORING IN ORDER PROCESSING 115

identifiers poses some problems, in particular for declarative semantics. We discuss this issue in
Chapter 18.3.4.

7.1.2 Completed Orders

In our application, we might want to detect situations when the processing of a given order has
been completed. “Completed” here means that the ordered products have been delivered to the
customer. A possible reaction to such a completion event then might be to initiate the billing
process; we will also see the completion event be used later for counting the number of completed
orders on a per-day basis.

Our complex event query to detect such completed orders involves the composition of three
events: the original order event, the shipping event that is generated when the package is dis-
patched to a shipping company, and the tracking event that signals the successful delivery of the
package. Examples of these events are shown on the left, the rule detecting the completion event
on the right.

order{
id { 4711 },
customer { "John" },
product { "Muffins" },
quantity { 29 },
discount { 10 }

}

shipping {
orderId { 4711 },
trackingNumber { 4242 }

}

tracking {
trackingNumber { 4242 },
status { "delivered" }

}

DETECT

completion {
id { var I },
product { var P }

}
ON

and {
event o: order {{

id { var I },
product { var P }

}},
event s: shipping {

orderId { var I },
trackingNumber { var T }

},
event d: tracking {{

trackingNumber { var I },
status { "delivered" }

}}
}
where { o before s, s before d,

{o,d} within 1 week }
END

Note that, as before with the offer and acceptance of an offer, a reaction only to the tracking
event is not sound. Our application might receive other tracking events that are not related to
orders, e.g., for shipments of replacements or free catalogs. Further, the tracking events does not
contain all necessary information needed to generate the completion event. The shipping event in
the middle is needed in order to connect together the order event, which has only an order id, and
the tracking event, which only has a tracking number. The query also includes a metric temporal
constraint {o,d} within 1 week. Even if not necessary for the event logic as such, this constraint
is necessary to enable garbage collection of events. Other forms of garbage collection that might
not require such a temporal constraint are discussed in Chapter 15 and 18. The time frame of one
week here is chosen conservatively so that other events would signal incomplete orders before (see
the rules coming just up).

7.1.3 Overdue Orders and Late Deliveries

In our scenario it might be useful to monitor the quality of service of our order processing. For
example, we might want to detect orders that have not been shipped within a given time, i.e.,
that are overdue. The time frame when an order is overdue might however be different depending
on whether the order makes use of a discount or how many items were ordered. The following
three rules detect overdue orders as follows: orders of less than 10 items without a discount must
be shipped within 6 hours, order of less than 10 items with a discount have 12 hours, and orders
of 10 or more items have 24 hours.

116 CHAPTER 7. USE CASES

DETECT

overdue{ var I }
ON

and {
event o: order {{

id { var I },
quantity { var Q },
without discount {{ }}

}}
event w: timer:extend[

event o,
6 hours

],
while w: not shipping {{

orderId{ var I }
}}

} where { var Q < 10 }
END

DETECT

overdue{ var I }
ON

and {
event o: order {{

id { var I },
quantity { var Q },
discount {{ }}

}}
event w: timer:extend[

event o,
12 hours

],
while w: not shipping {{

orderId{ var I }
}}

} where { var Q < 10 }
END

DETECT

overdue{ var I }
ON

and {
event o: order {{

id { var I },
quantity { var Q }

}}
event w: timer:extend[

event o,
24 hours

],
while w: not shipping {{

orderId{ var I }
}}

} where { var Q >= 10 }
END

In a similar manner, we might want to monitor the tracking events from our shipping company
to detect when it is late with its delivery. The company has 1 day for orders involving less then
10 items and 2 days for larger orders. The following rule uses an or nested into the outer and to
cover both cases within one event query.

DETECT

late[var I, var T]
ON

and {
event o: order {{

id { var I },
quantity { var Q }

}},
event s: shipping {

orderId{ var I },
trackingID { var T }

}
or {

event w: timer:extend[event s, 1 day] where { var Q < 10 },
event w: timer:extend[event s, 2 days] where { var Q >= 10 }

}
while w: not tracking {{

trackingNumber { var I },
status { "delivered" }

}}
}
where { {o,s} within 1 day }

END

Whether a single rule like this or two separate rules are preferable is often a matter of taste.
A single rule like this bundles all event logic for late deliveries in one place and is more compact.

7.1.4 Diagnostics for Overdue Orders

When an overdue event such as above occurs, we might want to automatically generate some
diagnostics that help us identify potential problems in our order processing. For example we
might want to count the number of shipping events that have occurred in the last 24 hours before
the overdue order. A high number might indicate that the shipping department is overloaded,
a lower number that the problem is elsewhere. The following rule implements this counting of
shipping event and reports the result immediately whenever an overdue event happens.

7.1. BUSINESS ACTIVITY MONITORING IN ORDER PROCESSING 117

DETECT

shipping -load { count(all var S) }
ON

and {
event o: overdue {{ }},
event w: timer:from -end -backward[event o, 24 hours],
while w: collect var S -> shipping {{ }}

}
END

Note that in the rule the 24 hour time interval starts with the end of the overdue event.

7.1.5 Daily and Weekly Reports

Monitoring of events is also interesting for generating periodic reports. The following rule on the
right generates a daily report, which includes the number of orders on that day as well as the
number of completed orders. Over time, these report events might be used to identify trends in
the number of orders received or potential upcoming bottlenecks in our order processing. The rule
on the left generates an event for every day using the timer:datetime events.

DETECT

day [var WD , var DATE]
ON

and {
event b: timer:datetime {{

day -of-week { var WD },
date { var D },
time { "0:00" }

}},
event e: timer:datetime {{

time { "23:59" }
}}

}
where { b before e, {b,e} within 1 day }

END

DETECT

daily -status -report {
var D,
orders { count(all var O) },
completed { count(all var C) }

}
ON

and {
event w: var D -> day [[]],
while w: collect order {{

id{ var O }
}},
while w: collect completion {{

id{ var C }
}}

}
END

Instead of using two absolute timer events in the left rule, it would also be possible to use just
one absolute timer event and a relative timer event that extends this absolute timer by one day.

We also might want to generate reports of our weekly sales figures (or rather: “order figures”).
The following left rule generates a week event for this. The rule on the right generates the weekly
report. It list every product that has been ordered together with the number of orders and the
total quantity of ordered items of that product.

DETECT

week [var W, var Y]
ON

and {
event b: timer:datetime {{

year { var Y },
week -of -year { var W },
day -of-week { "Monday" },
time { "0:00" }

}}
event e: timer:datetime {{

day -of-week { "Sunday" },
time { "23:59" }

}}
}
where { b before e, {b,e} within 1 week }

END

DETECT

weekly -sales -report {
var W,

all item {
var P,
total -orders { count(all var I) },
total -quantity { sum(all var Q) }

} group by { var P }
}

ON

and {
event w: var W -> week {{ }},
while w: collect order {{

id { var I },
var P -> product {{ }}},
quantity { var Q }

}}
}

END

118 CHAPTER 7. USE CASES

Interesting in the right rule is particularly the use of nested grouping and aggregation. It
shows a complexity of querying and constructing XML data that is not possible when events are
represented only as relational tuples as in some other event query languages.

7.2 Monitoring of Sensor Events in a SCADA Application

Our second use case is concerned with events that are generated by sensors. We consider a larger
scale facility (e.g., a train station) in which temperature and smoke sensors are deployed. A
SCADA system for such a facility might want to monitor the events generated by these sensors to
detect emergencies such as fires but also necessary maintenance work of detect sensors.

We assume that our facility is divided into several areas. These areas may be overlapping so
that a single sensor can belong to several areas.

7.2.1 Simple Sensor Failures

Temperature sensors in our scenario periodically generate an event roughly every 10 seconds that
contains the currently measured temperature. Smoke sensors only generate events when they
actually detect smoke. Additionally, they periodically signal that they are still working, roughly
every 60 seconds. The events from both types of sensors also include a serial number identifying
the particular sensor generating the event and list the areas in which the sensor is located. The
following are examples for a temperature reading event, a smoke event, and an alive event.

temperature -signal {
sensor { "ABCD -1234" },
areas {

area { 51 },
area { 66 }

},
temperature { 20 }

}

smoke -signal {
sensor { "EFGH -5678" },
areas {

area { 51 },
area { 42 }

},
smoke { }

}

smoke -signal {
sensor { "EFGH -5678" },
areas {

area { 51 },
area { 42 }

},
alive { }

}

The simplest kind of sensor failure is when a sensor stops sending events, e.g., because it
is disconnected from the network or has a hardware defect. In our scenario we can detect such
failures as absences of sensor events. Temperature sensors send a reading roughly every 10 seconds.
Therefore if some reading is not followed by another reading within a time span slightly larger
than 10 seconds (say, 12 seconds) we can conclude a failure of the temperature sensor. Similarly
for the smoke sensors, only here we use alive events and a longer time span of say 65 seconds. The
following rules detect failures of temperature and smoke sensors this way:

DETECT

failure {
sensor -type { "temperature" },
var S,
var A,
last -temperature { var T }

}
ON

and {
event t: temperature -signal {

var S -> sensor {{ }},
var A -> areas {{ }},
temperature { var T }

},
event w: timer:extend[event t, 12 sec],
while w: not temperature -signal {{

var S
}}

}
END

DETECT

failure {
sensor -type { "smoke" },
var S,
var A

}
ON

and {
event t: smoke -signal {

var S -> sensor {{ }},
var A -> areas {{ }},
alive {{ }}

},
event w: timer:extend[event t, 65 sec],
while w: not smoke -signal {{

var S,
alive {{ }}

}}
}

END

7.2. MONITORING OF SENSOR EVENTS IN A SCADA APPLICATION 119

7.2.2 Cleaning of Sensor Data

Sensor measurements are typically subject to certain errors in measurement as well as to influences
from the environment. For example, a smoke sensor might be momentarily set of by dust particles
in the air. Similarly, temperature measurements are subject to fluctuations. Complex event queries
can be useful for cleaning such sensor data.

Data from temperature sensors can be cleaned effectively by simply averaging measurements
over a time interval. Here we use time intervals of one minute lengths that are adjacent and
non-overlapping, starting with every full minute of wall clock time. The average is computed
individually for each sensor (due to the group by on the sensor serial number in variable S).

DETECT

all temperature -avg {
var S,
var A,
average { avg(all var T) }

} group by { var S }
ON

and {
event m: timer:datetime {{

second { 0 },
millisecond { 0 }

}},
event w: extend[event m, 1 min],
while w: collect temperature -signal {

var S -> sensor {{ }},
var A -> areas {{ }},
temperature { var T }

}
}

END

Such an averaging smoothes out outliers in the temperature values where a sensor momentarily
measures a far to high or low temperature and then immediately returns to regular measurements.

Our smoke sensors do not supply numeric values or measurements. However they are still
susceptible to false alarms. Because, for example, dust particles and the like might set of a smoke
sensor, a single smoke event from a sensor should not be considered an alarm. Further, several
smoke events within a short period of time might be generated due to the same dust particles.
We therefore want to consider if smoke has already been detected in a time interval somewhat
before a given smoke event. The following two rules realize this. The first rule counts the number
of smoke signal that happen in a 10 second interval not immediately preceding a smoke signal,
but happening another 10 seconds before that smoke signal (i.e., in the time interval starting 20
seconds before the signal and lasting until 10 seconds before the signal). This count is used to
generate a helper event that is queried by the third rule. If it exceeds three, then an actual alarm
is raised.

120 CHAPTER 7. USE CASES

DETECT

smoke -counter [
var S,
var A,
signals { count(all var C) }

]
ON

and {
event s: smoke -signal {{

var S -> sensor {{ }},
var A -> areas {{ }},
smoke {{ }}

}},
event h: timer:shift -forward[event s, 10 sec],
event w: timer:extend -begin[event h, 10 sec],
while w: collect var C -> smoke -signal {{

var S,
smoke {{ }}

}}
}

END

DETECT

smoke -alarm {
var S,
var A

}
ON

smoke -counter [
var S,
var A,
signals { var C }

]
where { var C >= 3 }

END

Note that in XChangeEQ two rules must be used to express a condition on aggregated values
such as the count of smoke signals here. This is inherited from the underlying Web query language
Xcerpt, where also two rules would have to be used. Some query languages would allow to do
this more conveniently in one expression, e.g., SQL uses the HAVING clause in queries to express
conditions on aggregated values. For more convenience, Xcerpt could be easily extended to provide
such syntactic sugar and these extensions would be directly applicable to XChangeEQ.

7.2.3 Fire Alarm

Both, a single (averaged) high temperature or a single smoke alarm might not reliably indicate
an actual fire. For example, a smoke alarm might be go off due to a cigarette smoke or a high
temperature might be measured due to direct exposure to sun light. In our scenario, we therefore
detect detected fire alarms as a combination of high average temperatures at two different sensors
and a smoke alarm. Of course, all sensors must be located in the same area. These events must
happen within a short period of time, here 90 seconds. (Note that average temperature events
extend over a duration of one minute, therefore durations close to or under 60 seconds would not
have the intended result.)

DETECT

fire -alarm {
area { var A }

}
ON

and {
event t1: temperature -average {{

sensor { var S1 },
areas {{

area { var A }
}},
average { var T1 }

}},
event t2: temperature -average {{

sensor { var S2 },
areas {{

area { var A }
}},
average { var T2 }

}},
event s: smoke -alarm {{

area { var A }
}}

}
where { var T1 > 60, var T2 > 60, var S1 != var S2 ,

{t1 ,t2 ,s} within 90 seconds }
END

7.2. MONITORING OF SENSOR EVENTS IN A SCADA APPLICATION 121

Note that the condition var S1 != var S2 is needed to ensure that different temperature
sensors are actually used in detecting the complex event. Without this condition both t1 and t2
might be bound to the same event from the same sensor.

The logic of this rule for detecting a fire entails that sensors manage to communicate their
readings before they are affected by the fire in their area. This might not always be the case, the
fire might destroy the communication links or the sensors themselves before. We therefore also
might want a rule that raises an alarm if three or more sensors in the same area fail (as detected
with earlier rules) within a short time (here again 90 seconds). Because we cannot be sure that the
sensor failures are due to fire —they might also be due to flooding or other causes— the following
rules raise general alarm rather than a fire alarm.

DETECT

failure -counter {
area { var A },
failures { count(all var S) }

}
ON

and {
event f: failure {{

areas {{
area { var A }

}}
}},
event w: timer:from -end -backward[event f, 90 sec],
while w: collect failure {{

sensor { var S },
areas {{

area { var A }
}}

}}
}

END

DETECT

general -alarm {
area { var A }

}
ON

event f: failure -counter {
area { var A },
failures { var C }

}
where { var C >= 3 }

END

Note that as before, the condition on the count must be realized through two separate rules.

7.2.4 Remarks on Avoiding Alarm Fatigue

The realization of fire alarm events above might be considered to have a minor shortcoming.
It potentially generates many alarms for the same area. For example if there are three sensors
reporting high average temperatures, not just two, then the query would generate an alarm for
each pair of the three, i.e., three alarms. Similarly, two smoke alarms from different sensors would
lead to two fire alarms for the same area. This issue is a common issue also with other event query
languages. One potentially dangerous effect of this can be “alarm fatigue,” where users start
ignoring alarms or alarms of a certain kind because too many alarms that are not meaningful are
generated.

A possibility to avoid such alarm fatigue in our use case might be to avoid the generation of
alarms when there already has been an alarm in a given previous time frame. To do this, we need
two rules: one detects candidates for fire alarms like the first rule from the previous section; the
other generates actual alarms from a alarm candidates but avoids generating such an actual alarm
when there has already been some alarm candidate within a time frame of one hour earlier.

122 CHAPTER 7. USE CASES

DETECT

fire -alarm -candidate {
area { var A }

}
ON

and {
event t1: temperature -average {{

sensor { var S1 },
areas {{

area { var A }
}},
average { var T1 }

}},
event t2: temperature -average {{

sensor { var S2 },
areas {{

area { var A }
}},
average { var T2 }

}},
event s: smoke -alarm {{

area { var A }
}}

}
where { var T1 > 60, var T2 > 60,

var S1 != var S2 ,
{t1 ,t2 ,s} within 90 seconds }

END

DETECT

fire -alarm {
area { var A }

}
ON

and {
event c: fire -alarm -candidate {

area { var A }
},
event h: timer:shift -forward[

event c, 1 sec],
event w: timer:extend -backward[

event h, 1 hour],
while w: not fire -alarm -candidate {

area { var A }
}

}
END

In the second rule we are using a “trick” that is somewhat unsatisfactory by having the time
window last only until one second before the candidate alarm not until the alarm candidate.
Consider what would happen when we write the second rule incorrectly as follows:

DETECT

fire -alarm {
area { var A }

}
ON

and {
event c: fire -alarm -candidate {

area { var A }
},
event w: timer:extend -backward[event c, 1 hour],
while w: not fire -alarm -candidate {

area { var A }
}

}
END

The body of this rule is unsatisfiable, i.e., never can have an answer (taking essentially the
form like the logic contradiction x∧¬x): any event for the c alarm candidate lies also in the time
window of w where we query the absence of such an alarm candidate. Hence, the rule will never
derive an actual fire alarm.

One way to avoid using an unsatisfactory trick like in the correct solution above would be to
support variants of while that collect not over the closed interval of w but (half-)open intervals,
i.e., intervals where one of the boundaries or both are not considered part of the interval. In the
example when w is open, the candidate alarm event for c will not lie in w and thus the incorrect
rule be made to work correctly. We discuss this extension to XChangeEQ in Chapter 18.2.4.

Event instance consumption and selection in composition-operator-based event query languages
might provide an alternative solution to working with negation (over a time window) for avoiding
alarm fatigue. However they cannot be considered a satisfactory solution.

A further option might be to work with activating and deactivating rules (which is not possible
in XChangeEQ). This however would make semantics of the query language very involved and
state-based (to maintain which rules are active and which are not). Also, such an activation
and deactivation might lead to incorrect results: we still want fire alarms for other areas to be
generated.

Part III

Declarative Semantics

123

Chapter 8

Declarative Semantics: Motivation
and Overview

Having introduced XChangeEQ informally in the preceding chapters, we now supply formal, declar-
ative semantics for XChangeEQ in the following chapters. This chapter gives first a motivation for
developing declarative semantics (Section 8.1), in particular in contrast to giving only operational
semantics. It then outlines the requirements and desiderata for declarative semantics of an event
query language such as XChangeEQ (Section 8.2). Finally, it gives a brief overview over the general
approach used for the declarative semantics of XChangeEQ (Section 8.3). The declarative seman-
tics of XChangeEQ that are presented in this and the following chapters have also been discussed
with less detail in [BE07a] and [BE07c].

8.1 Motivation

Formal and declarative semantics are as desirable for an event query language as they are for
“non-event” query languages, i.e., database query languages, Web query languages, etc. Formal,
declarative semantics relate the syntax of the language to mathematical objects and expressions
that capture the intended meaning. Being grounded in the rigor of mathematics, formal semantics
avoid ambiguities that might exist in informal descriptions of the language semantics [McD86].
They thus provide a reference to implementors of the language and help greatly in standardization
efforts.

Declarative semantics focus on expressing what a sentence in the language means, rather than
how that sentence might be evaluated. Declarative semantics thus provide a convenient basis to
prove the correctness of various operational semantics. In particular in the area of query languages
there are usually a myriad of equivalent ways to evaluate a given query, that is, of possible
operational semantics. If on the other hand formal semantics of a language were specified only in
an operational way, proving the correctness of other operational semantics would be significantly
harder: since operational semantics focus on how the result is computed not on what is the result,
we have to reason about the equivalence of two computations. When we prove correctness of
operational semantics w.r.t. declarative semantics, we instead just reason about properties of the
output of one computation. This use of declarative semantics to prove correctness of evaluation
methods is particularly useful in research on optimization.

Formal, declarative semantics also give rise to proofs about the event query language in general,
certain classes of queries, or individual queries. For query languages, it is for example common to
identify classes of queries with complexity classes. In the context of event queries, we might ask if
a language actually “makes sense” on event streams. That is, can all queries that can formulated
in it be evaluated without waiting for the end of the event stream.

Finally, easy to understand and “mathematically aesthetic” declarative semantics are arguably
an indication of a good language design and work towards such declarative semantics might help

125

126 CHAPTER 8. DECLARATIVE SEMANTICS: MOTIVATION AND OVERVIEW

identifying incongruities and flaws in the language.
Declarative semantics have often been neglected in event query languages so far (see also Chap-

ter 3). Semantics of composition-operator-based, if specified at all, usually have an operational,
“algebraic” flavor. The semantics of a composition operator are often specified as a function
between sequences (or histories or traces) of events [HV02, CL04]. When the language includes
consumption modes, then the sequence of events must be modified when answers are detected,
making the semantics essentially state-based (like those of imperative programming languages).
Further, event data is an aspect typically neglected in the semantics of composition operators.

Semantics of data stream query languages are based on the semantics of a relational query lan-
guage (such as SQL), which typically will provide well-rounded declarative semantics. However,
the conversion of streams into relations and back again makes semantics of data stream languages
somewhat unnatural and unintuitive. The semantics of the relation-to-stream operators Istream
and Dstream further are defined as the difference between the current and previous state of the re-
sult relation. They thus also become to some degree stateful, although not as much as composition
operators with consumption.

Semantics of production rules finally are fully state-based and might be argued to be as dif-
ficult and undeclarative as semantics of traditional imperative programming languages. This is
particularly so when considering that actions in production rules are usually expressed in a host
programming language. Further, the semantics of production rule languages include an involved
conflict resolution scheme to determine the order in which conflicting rules, i.e., rule that are
triggered at the same time, fire.

8.2 Requirements and Desiderata

Our goal with XChangeEQ are semantics that are natural on event streams; they should not
require a conversion from streams to relations and back. Also, they should be as declarative as
possible and thus avoid any notion of state. Since event queries in XChangeEQ are affected by
data in events, declarative semantics for XChangeEQ must put emphasis on this event data that
is extracted into variable bindings. XChangeEQ supports deductive rules over events that must be
accommodated in its declarative semantics.

A recurrent theme in this thesis is to apply and adapt formalisms from traditional, non-event
query languages to event query languages. This allows to leverage —sometimes with important
changes— many existing results from database theory and logic programming, sheds light on
where new concepts are needed for event queries, and finally avoids reinventing the wheel where
not necessary.

Query languages with deductive rules such as datalog [AHV95] or Xcerpt [Sch04] specify their
semantics with a model theory. Obviously, this approach accounts well for data in events as well
as deductive rules. Model theories are considered highly declarative, in particular since they are
defined recursively over the structure of a formula, allowing to consider sub-formulas in isolation.
Model theories are also theoretically well-understood and relatively easy to understand. Because
of their connection with first order logic, model theories are also interesting for extending a rule-
based event query language towards more advanced knowledge representation or for specifying the
semantics of integrity constraints.

For these reasons and because XChangeEQ builds upon Xcerpt, it is desirable to also use a
model theoretic approach for specifying declarative semantics of XChangeEQ. There are however
some important differences between traditional, non-event query languages and an event query
language such as XChangeEQ. These differences make some adaption of the traditional approach
necessary:

• Temporal relations and timer events have a fixed interpretation.

• In addition to normal variables, event queries in XChangeEQ use event identifiers. These
event identifiers differ from regular variables in that they are bound to events, rather than
data terms.

8.3. OVERVIEW OF OUR APPROACH 127

• Events and, importantly, answers to complex event queries have an occurrence time.

• Most importantly, the semantics must be sensible for infinite streams.

The last and most important difference between event queries and traditional queries will not
inherent to the approach used for giving declarative semantics of XChangeEQ. Rather we will have
to prove as a theorem that the declarative semantics of XChangeEQ really satisfy this requirement.

8.3 Overview of our Approach

The problem that the declarative semantics of XChangeEQ address can be described on an a very
abstract level as follows: given a set of deductive rules (also called program) together with an
incoming event stream, i.e., the set of events that happen in the outside world and are not derived
by rules, it tells us all events that are derived by the rules. This approach then also covers the
issue of finding the answers for a given event query (e.g., that is used in a reactive rule) w.r.t. a
program and an incoming event stream.

The idea behind the model theory of XChangeEQ (and other model theories) is view expressions
of the language (rules, queries) as sentences of first order logic (or, since events are represented
as data terms with occurrence times not logic facts, something similar). These sentences are
related to an interpretation by defining an entailment relation. An interpretation contains all
events that happen, the base events from the incoming event stream and the derived events. The
entailment relation is defined recursively over the structure of the sentences. Of interest for the
semantics are those interpretations that (1) satisfy all rules of a program w.r.t. the entailment
relation and (2) contain the stream of incoming events. These interpretations are then called
models. The model theory of XChangeEQ takes into accounts the special requirements of an event
query language as discussed above and will be defined in Chapter 9.

A model theory has the issue of allowing many models for a given program. To give precise
semantics to XChangeEQ, we need a unique model and this model should be natural and intuitive.
A common and convenient way to obtain such a unique model is to define an accompanying
fixpoint theory, which is based on the model theory. The fixpoint interpretation specified by the
fixpoint theory is the intended model of an XChangeEQ program. When non-monotonic features
like negation or aggregation are combined with recursion of rules, this might lead to some issues
that have been mentioned in Chapter 6.10. By restricting ourselves to stratifiable programs, we
avoid such cases and ensure that a unique fixpoint interpretation exists. A formal definition of
stratification is given together with the definition of the fixpoint interpretation in Chapter 10.

We then have to show that the fixpoint interpretation of stratified programs is really well-
defined and unambiguous. Further, and more importantly, we have to show that the seman-
tics specified by the model theory and the fixpoint interpretation “make sense” on infinite event
streams. It must be possible to evaluate queries in a streaming manner, where answers are gen-
erated “online” and we never have to wait for the stream to end. We state all this formally as
theorems and give proofs in Chapter 11

128 CHAPTER 8. DECLARATIVE SEMANTICS: MOTIVATION AND OVERVIEW

Chapter 9

Model Theory

The idea of a model theory, as it is used in traditional, non-event query languages [Llo93, AHV95,
Sch04], is to relate expressions to an interpretation by defining an entailment relation. Expres-
sions are syntactic fragments of the query language such as rule, queries, or facts viewed as logic
sentences. The interpretation contains all facts that are considered to be true. The entailment
relation indicates whether a given interpretations entails a given sentence from the language, that
is, if the sentence is logically true under this interpretation. Of interest for the semantics of a
given query program and a set of base facts are then those interpretations that (1) satisfy all rules
of the program and (2) contain all base facts. Because it satisfies all rules, such an interpretation
contains in particular also all facts that are derived by rules. We call these interpretations models.

When we replace facts that are true with events that happen, this approach can also be applied
to event query languages. The problem, of course, is that events are associated with occurrence
times and event queries are evaluated over time against a potentially infinite event stream. At each
time point during the evaluation we know only which events have happened (i.e., been received in
the event stream) so far, not any events that might happen in the future.

A core idea in giving model-theoretic semantics to XChangeEQ is to pretend a kind of “om-
niscience.” We assume that we know the full, infinite event stream that contains all events that
ever happen together with their occurrence times. The semantics are then specified irrespective
of the evaluation times of event queries and rules.

With this approach, it is however not clear that the semantics actually “make sense” for event
queries. The semantics might easily imply cases where the streaming evaluation of an event query
over time is simply impossible because it might require waiting indefinitely for the end of the
event stream or crystal gazing into the future. Of course, XChangeEQ and its semantics have
been defined in such a way that a streaming evaluation is possible, and we will prove formally in
Chapter 11.

The idea of pretending omniscience in the definition of the semantics of an event query language
might seem simple enough. However, it turns out that previous event query languages have not
defined their semantics this way (see Chapter 3). The semantics that they end up with can be
considered more complicated and, because they are to some degree stateful, less declarative. The
approach of XChangeEQ in contrast leads to very intuitive and highly declarative semantics.

9.1 Basic Definitions: Time and Events

We start of with some basic definitions that explain how we represent time and events in the
semantics of XChangeEQ.

129

130 CHAPTER 9. MODEL THEORY

9.1.1 Data Terms

Data terms from Xcerpt are used to represent data and type information for events. Data terms
are just syntactic objects. We have seen many examples of data terms in the previous sections. A
simplified grammar for Xcerpt data terms is given in Appendix A.2, full grammars can be found
in [Sch04] and [Fur08]. For the semantics of XChangeEQ, details on data terms are not important,
as we will see in Section 9.2. The set of all data terms is denoted DataTerms.1

9.1.2 Time

Time is represented by a linearly ordered set (T, <) of time points (or time instants). Note that
this time domain may be dense, in contrast to the time domain of for example CQL which must
be discrete (see Chapter 3.3.5). An example of a suitable time domain would be the real numbers
under their usual order. This could represent the number of seconds and fractions thereof elapsed
since some epoch such as midnight of January 1, 1970.

To support relative temporal events such as timer:extend, we also need the possibility to add
a duration d to a time point p (p+ d) and to subtract a duration from a time point p (p− d). The
result in both cases is another time point. Let D represent durations (such as 1 week 2 days).
Addition and subtraction of durations to or from time points are then functions + : T × D → T
and − : T× D→ T.

To support metric temporal constraints such as within, we further need the possibility to
measure the duration t1 − t2 between two time points t1, t2 and to compare two durations d1, d2

(d1 < d2). This gives a function − : T × T → D and an order relation <⊆ D × D. In context, it
will always be clear if − means the subtraction between time points or between a time point and
a duration.

A time interval t is in our context always a closed an convex subset of T, i.e., t = [b, e] = {p |
b ≤ p ≤ e}, and can be represented by its endpoints b ∈ T and e ∈ T (b ≤ e). Note that this
definition allows degenerated time intervals t = [p, p] that consist only of a single time point p ∈ T.
The set of all time intervals is TI = {[b, e] | b ∈ T, e ∈ T, b ≤ e}. For convenience we define the
following functions and relations on time intervals:

• begin([b, e]) = b,

• end([b, e]) = e,

• [b1, e1] t [b2, e2] = [min{b1, b2},max{e1, e2}],

• [b1, e1] v [b2, e2] iff b2 ≤ b1 and e1 ≤ e2.

9.1.3 Events

An event happens over a given (closed and convex) time interval and has a representation as data
term, which we also call event message. Formally, an event is therefore a tuple of a time interval t
and a data term e, written et. The set of all events is denoted Events; Events = DataTerm×TI.

9.2 Matching and Constructing Simple Events

To explain how simple event queries are matched against incoming events and how events derived
by rules are constructed, we have to explain some concepts of the Web query language Xcerpt,
whose query and construct terms are used in XChangeEQ. We try too keeps these explanations
brief, concentrating on the “interface” to XChangeEQ without providing much details about the
inner workings of Xcerpt. This also serves to illustrate that the general concepts of XChangeEQ

and its declarative semantics might easily be applied also to using other languages for querying
and constructing simple events.

1In [Sch04], DataTerms is written as T d. We use a more verbose and meaningful notation here.

9.2. MATCHING AND CONSTRUCTING SIMPLE EVENTS 131

9.2.1 Substitutions and Substitution Sets

Since query terms and construct terms in rules contain free variables that are bound to values in
the application of a rule, we need the concepts of substitution and substitution set.

Let V ars denote the set of all variable names. A substitution σ then is a partial mapping from
these variable names to the data terms the variables are bound to, i.e., σ : V ars→ DataTerms.
We write substitutions as σ = {X1 7→ v1, . . . , Xn 7→ vn}, meaning that σ(Xi) = vi for i ∈
{1, . . . , n} and σ(Y) = ⊥ for Y 6∈ {X1, . . . , Xn}.

The application of a substitution σ to a query term q replaces the occurrences of free variables
V in q with their values σ(V). The result is denoted σ(q). If σ(q) is a ground query term, that is,
a query term that does not contain variables anymore, we call σ a grounding substitution. In
the application of σ to q we always assume that σ is defined on all free variables of q.

To accommodate for grouping and aggregation in construct terms, our model theory will mostly
work with substitution sets Σ, which are just sets of substitutions. For convenience, we define
the application of a substitution set Σ to a query term q as Σ(q) = {σ(q) | σ ∈ Σ}. The application
of a substitution set to a construct term will be discusses later.

9.2.2 Matching: Simulation

Simple event queries in XChangeEQ are single Xcerpt query terms q that are matched against
the data term part e of incoming events et. This matching of simple event queries is based on
simulation between ground terms —that is, terms not containing free variables— as defined for
Xcerpt [Sch04].

Simulation is a relation between ground terms denoted �. Intuitively, q � d means that
the nodes and the structure of the graph that the query term q represents can be found in the
graph of the data term d. This simulation relationship of Xcerpt is especially designed for the
variations and incompleteness in semi-structured data. We will not reproduce the full definition
of simulation here and refer to [Sch04]; for the understanding of the semantics of XChangeEQ the
intuitive understanding of matching should suffice and we can treat simulation as a “black box.”

Simulation naturally extends to a non-ground query term q′ by asking whether there is a
(grounding) substitution such that the ground query terms q = σ(q′) obtained by applying the
substitution σ to q′ simulates with the given data term d. Note that for a given (non-ground)
query term q and a given data term d, there are often several substitutions that allow a simulation
between the two.

The result of matching a query term q against a data term d thus is the set of all possible
substitutions so that q and d simulation under each substitution. An empty substitution set σ 6= ∅
means that q and d do not match. Substitution sets are also the results of complex event queries,
which include several query terms as simple event queries.

Example The query term

q = a {{ desc var X, e ["f", var Y] }}

matches the data term

d = a [b {"c"}, "d", e ["f", "g"]]

with substitution set Σ = {σ1, σ2, σ3}, where

σ1 = {X 7→ b{”c”}, Y 7→ ”f”},
σ2 = {X 7→ ”c”, Y 7→ ”f”},
σ3 = {X 7→ ”d”, Y 7→ ”f”}.

132 CHAPTER 9. MODEL THEORY

9.2.3 Construction: Application of Substitution Sets

Rule heads contain Xcerpt construct terms for constructing new, derived events. This construction
uses the set of substitutions obtained from the evaluation of the query in the body to replace
variables and grouping constructs with values.

Construction is based on the application of a substitution set Σ to a construct term c. The
result is denoted Σ(c) and is, provided that all substitutions in Σ are grounding, a set of data
terms. Again, we will not reproduce the full definition of this application here and refer to [Sch04];
for the understanding of the semantics of XChangeEQ the intuitive understanding of construction
should suffice and we can treat application of a substitution set to a construct term as a “black
box.”

Example The application of the substitution set Σ from the previous section to the construct
term

q = z[var Y, var X]

constructs the three data terms

d1 = z["f", b {"c"}],
d2 = z["f", "c"],
d3 = z["f", "d"].

Its application to

q′ = z{var Y, all var X}

constructs the single data term

d′ = z{ "f", b {"c"}, "c", "d" }.

9.3 Interpretation and Entailment

We can now define interpretations and entailment, which are the core of the model theory of
XChangeEQ.

9.3.1 Interpretation

An interpretation for a given XChangeEQ query, rule, or program is a 3-tuple M = (I,Σ, τ)
where:

1. I ⊆ Events is the set of events et that “happen,” i.e., are either in the stream of incoming
events or derived by some deductive rule.

2. Σ 6= ∅ is a grounding substitution set containing substitutions for the “normal” variables
(i.e., data variables, but not event identifiers).

3. τ : EventIdentifiers → Events is a substitution for the event identifiers, i.e., a mapping
from the names of event identifiers EventIdentifiers to Events.

The substitution τ for event identifiers is, compared to model theories of traditional, non-
event query languages, unusual. It is needed for evaluating temporal conditions, relative temporal
events, etc. Since τ signifies the events that contributed to the answer of some query, we also call
it an “event trace.”

9.4. MODELS 133

I, Σ, τ |= (event i : q)t iff exists et′ ∈ I with τ(i) = et′ , t′ = t,
and for all e′ ∈ Σ(q) we have e′ � e

M |= (q1 ∧ q2)
t iff M |= qt1

1 and M |= qt2
2 and t = t1 t t2

M |= (q1 ∨ q2)
t iff M |= qt

1 or M |= qt
2

I, Σ, τ |= (Q where C)t iff I, Σ, τ |= Qt and WΣ,τ (C) = true

I, Σ, τ |= (while j : not q)t iff exists et′ with τ(j) = et′ , t′ = t,

and for all t′′ v t we have I, Σ, τ 6|= qt′′

I, Σ, τ |= (while j : collect q)t iff exists et′ with τ(j) = et′ , t′ = t, and exist n ≥ 0,
Σ1, . . . Σn, t1 v t, . . . tn v t with Σ =

S
i=1..n Σi,

and for all i = 1..n we have I, Σi, τ |= qti

I, Σ, τ |= (c← Q)t iff (1) Σ′(c)t ⊆ I for Σ′ maximal (w.r.t. FreeV ars(Q)) and τ ′

such that I, Σ′, τ ′ |= Qt, or (2) I, Σ′, τ ′ 6|= Qt for all Σ′, τ ′

Figure 9.1: Entailment relation defining the model theory for XChangeEQ

9.3.2 Entailment

The entailment (or satisfaction) M |= F t of an XChangeEQ expression F over a time interval t in
an interpretation M is defined recursively in Figure 9.1 and 9.2.

Figure 9.1 defines the more salient cases of the model theory. For the sake of brevity, XChangeEQ

expression in this figure use binary “and” with symbol ∧ and binary “or” with symbol ∨ instead of
the multi-ary and{ ...} and or{ ...}. Also, rules are written as c← Q instead of DETECT c ON
Q END. In the definitions of the last case, we write Σ′(c)t as obvious shorthand for {et | e ∈ Σ′(c)}.

Figure 9.2 defines the cases of the relative temporal events. For the sake of brevity, the prefix
“timer:” and the keyword “event” within the relative timer specification have been skipped.

Our entailment relation uses a fixed interpretation W for all conditions that can occur in the
where-clause of a query. This includes the temporal relations like before as well as conditions
on data such as arithmetic comparisons. This fixed interpretation of the temporal conditions is
another feature of our model theory that is not common in model theories for traditional, non-event
query languages.

W is a function that maps a substitution set Σ, an event trace τ , and an atomic condition
C to a boolean value (true or false). We usually write Σ and τ in the index. WΣ,τ extends
straightforwardly to boolean formulas of conditions. Figure 9.3 gives the definitions of W for the
temporal conditions of XChangeEQ that have been described in Chapter 6.8. The definition of
W is deliberately left outside the “core model theory” to make it more modular and demonstrate
that it is easy to integrate further conditions or even a separate, external temporal reasoner.

9.4 Models

Recall our primary goal in specifying declarative semantics for XChangeEQ: given an XChangeEQ

program P and an event stream E, we want to find out all events that are derived by the rules in
P . This means that we must find an interpretation that contains the event stream E and satisfies
all rules of P . Such an interpretation is called a model. However, there are many models (infinitely
many, in fact) for a given program P and event stream E. From these models, we will select a
single on based on the fixpoint interpretation that is the topic of Chapter 10.

134 CHAPTER 9. MODEL THEORY

I, Σ, τ |= (event i : extends[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et,
begin(t) = begin(t′), end(t) = end(t′) + d

I, Σ, τ |= (event i : shorten[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et,
begin(t) = begin(t′), end(t) = end(t′)− d

I, Σ, τ |= (event i : extend-begin[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et,
begin(t) = begin(t′)− d, end(t) = end(t′)

I, Σ, τ |= (event i : shorten-begin[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et,
begin(t) = begin(t′) + d, end(t) = end(t′)

I, Σ, τ |= (event i : shift-forward[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et,
begin(t) = begin(t′) + d, end(t) = end(t′) + d

I, Σ, τ |= (event i : shift-backward[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et,
begin(t) = begin(t′)− d, end(t) = end(t′)− d

I, Σ, τ |= (event i : from-end[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et,
begin(t) = end(t′), end(t) = end(t′) + d

I, Σ, τ |= (event i : from-end-backward[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et,
begin(t) = end(t′)− d, end(t) = end(t′)

I, Σ, τ |= (event i : from-start[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et,
begin(t) = begin(t′), end(t) = begin(t′) + d

I, Σ, τ |= (event i : from-start-backward[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et,
begin(t) = begin(t′)− d, end(t) = begin(t′)

Figure 9.2: Entailment of relative temporal events in XChangeEQ

9.4. MODELS 135

WΣ,τ (i before j) = true iff end(τ(i)) < begin(τ(j))

WΣ,τ (i after j) = true iff end(τ(j)) < begin(τ(i))

WΣ,τ (i during j) = true iff begin(τ(j)) < begin(τ(i)) and end(τ(i)) < end(τ(j))

WΣ,τ (i contains j) = true iff begin(τ(i)) < begin(τ(j)) and end(τ(j)) < end(τ(i))

WΣ,τ (i overlaps j) = true iff begin(τ(j)) < begin(τ(i)) < end(τ(j)) < end(τ(i))

WΣ,τ (i overlapped-by j) = true iff begin(τ(i)) < begin(τ(j)) < end(τ(i)) < end(τ(j))

WΣ,τ (i meets j) = true iff end(τ(i)) = begin(τ(j))

WΣ,τ (i met-by j) = true iff end(τ(j)) = begin(τ(i))

WΣ,τ (i starts j) = true iff begin(τ(i)) = begin(τ(j)) and end(τ(i)) < end(τ(j))

WΣ,τ (i started-by j) = true iff begin(τ(j)) = begin(τ(i)) and end(τ(j)) < end(τ(i))

WΣ,τ (i finishes j) = true iff begin(τ(j)) < begin(τ(i)) and end(τ(i)) = end(τ(j))

WΣ,τ (i finished-by j) = true iff begin(τ(i)) < begin(τ(j)) and end(τ(j)) = end(τ(i))

WΣ,τ (i equals j) = true iff begin(τ(i)) = begin(τ(j)) and end(τ(i)) = end(τ(j))

WΣ,τ ({i1, . . . , in} within d) = true iff E −B ≤ d with E := max{end(τ(i1)), . . . end(τ(in))}
and B := min{begin(τ(i1)), . . . begin(τ(in))}.

WΣ,τ ({i, j} apart-by d) = true iff end(τ(i))− begin(τ(j)) ≥ d or end(τ(j))− begin(τ(i)) ≥ d.

Figure 9.3: Fixed interpretation for conditions in the where clause

136 CHAPTER 9. MODEL THEORY

DETECT

d[var X]
ON

and {
event b: b[var X],
event c: c[var X]

}
where { b before c }

END

(a) First rule

DETECT

b[var X]
ON

event a: a[var X]
END

(b) Second Rule

Figure 9.4: Example program P containing two rules

9.4.1 Definition

We now define the notion of a model formally. The definition that follows has a minor caveat:
queries in an XChangeEQ program might refer to absolute timer events. These absolute timer
events are not part the event stream E and thus need additional treatment. For now, we ignore
this and cover it later in Section 9.4.3. In the following, let P be an XChangeEQ program that
does not use any absolute timer events.

Given an XChangeEQ program P and a stream of incoming events E, we call an interpretation
M = (I,Σ, τ) a model of P under E if

• M satisfies all rules r = (c← Q) ∈ P for all time intervals t, i.e., M |= rt for all t ∈ TI and
all r = (c← Q) ∈ P , and

• M contains the stream of incoming events, i.e., E ⊆ I.

On close inspection of the entailment relation, we can see that Σ and τ are actually irrelevant
to whether a given interpretation M is a model or not; it depends only on I: M must satisfy all
rules and the rule application in the entailment relation (last case in Figure 9.1) does not refer to
Σ and τ in its definition (only to the existence or non-existence of some Σ′ and τ ′). We therefore
can identify the notion of a model with just the I-part of the interpretation, M = I.

9.4.2 Example

Consider the XChangeEQ program P in Figure 9.4 and the event stream

E = {a["z"][1,2], a["y"][1,3], c["z"][3,5], a["z"][6,9]}.

The interpretation

M1 = { a["z"][1,2], b["z"][1,2], a["y"][1,3], b["y"][1,3], c["z"][3,5], d["z"][1,5],

a["z"][6,9], b["z"][6,9]}

is a model for P under E: by applying the recursive definition of |= from Section 9.3 we can check
that M1 |= rt for all t ∈ TI, r ∈ P , and we also have E ⊆M1.

The interpretation

M2 = { a["z"][1,2], b["z"][1,2], a["y"][1,3], b["y"][1,3], c["z"][3,5], d["z"][1,5],

d["y"][1,5], a["z"][6,9], b["z"][6,9], e["y"][7,9]}

where we “added” the two events d["y"][1,5] and e["y"][7,9] in comparison to M1 is also a model
of P under E. Clearly, however, M2 is not the model we intend for our program to have, because
the two “additional” events are “unjustified.” More precisely, these two events are neither in the
event stream E nor derived by a rule of P . M1 is the intended model, because all events in it are
justified.

9.4. MODELS 137

To unambiguously settle on a single, intended model, we will use the fixpoint theory that will
be defined in the next chapter. The fixpoint theory builds upon the model theory defined in this
chapter. Note that the problem of specifying the intended model out of the many possible models
is common part of the model-theoretic approach. It is not specific to event query languages and
exists also with all model theories of traditional, non-event query languages.

9.4.3 Incorporating Absolute Timer Events

We have yet to explain how to incorporate absolute timer events into the model theory. One
possibility would of course be to extend our definition of the entailment relation to have one or
more cases for the queries to absolute timer events. This approach has already been used for the
relative timer events. However the right hand side of this definition would be rather involved and
the approach would not be very modular in case we want to embed other calendric systems than
the built-in timer:datetime of XChangeEQ.

Instead we use a more modular approach. Absolute timers are modeled as a (usually infinite)
set C of events, that is, of data terms that are associated with an occurrence interval. We call C
a calendar specification.

If our time domain T relates to real time as seconds (or fractions thereof) elapsed since midnight
of January 1, 1970 (UTC) and the local time zone is Central European Time (CET), then C would
for example contain the following events with an occurrence time t = [0, 0] (and more events for
the other time zones):

timer:datetime {
year {1970} ,
month {" January"},
day -of-month {1},
hour -of -day {0},
minute {0},
second {0},
millisecond {0},

week -of -year {1},
week -of -month {1},
day -of-year {1},
day -of-week {" Friday"},
day -of-week -in -month {1},
am -pm {"am"},
hour {0},
zone -offset {0},
dst -offset {0},

date {"1970 -01 -01"} ,
time {"00:00Z"},

}

timer:datetime {
year {1970} ,
month {" January"},
day -of-month {1},
hour -of -day {1},
minute {0},
second {0},
millisecond {0},

week -of -year {1},
week -of -month {1},
day -of-year {1},
day -of-week {" Friday"},
day -of-week -in -month {1},
am -pm {"am"},
hour {1},
zone -offset {1},
dst -offset {0},

date {"1970 -01 -01"} ,
time {"01:00"} ,

}

timer:datetime {
year {1970} ,
month {" January"},
day -of-month {1},
hour -of -day {1},
minute {0},
second {0},
millisecond {0},

week -of -year {1},
week -of -month {1},
day -of-year {1},
day -of-week {" Friday"},
day -of-week -in -month {1},
am -pm {"am"},
hour {1},
zone -offset {1},
dst -offset {0},

date {"1970 -01 -01"} ,
time {"01:00+01:00"} ,

}

With this approach, treatment of absolute timer events is now reduced to entailment of simple
event queries (first case in Figure 9.1). We only have to adapt or notion of model as follows:

Let C be a calendar specification as described above. Given a an XChangeEQ program P and
a stream of incoming events E, we call an interpretation M = (I,Σ, τ) a model of P under E if

• M satisfies all rules r = (c← Q) ∈ P for all time intervals t, i.e., M |= rt for all t ∈ TI and
all r = (c← Q) ∈ P , and

• M contains the stream of incoming events and the calendar specification, i.e., C ∪ E ⊆ I.

138 CHAPTER 9. MODEL THEORY

Chapter 10

Fixpoint Theory

In the previous chapter we have defined a model theory for XChangeEQ programs. As we have
seen in Chapter 9.4.2, however, there are many models for a given program. A common and
convenient way to obtain a unique model is to define a fixpoint theory. The intended model is
the (least) fixpoint of the immediate consequence operator, which derives new events from known
events (based on the model theory).

Non-monotonic features such as negation and aggregation introduce well-known issues when
they are combined with recursion of rules. In particular, there might be not be a fixpoint or
several. To ensure that a single fixpoint exists, we restrict XChangeEQ programs to be stratifiable.
This is a common approach from logic programming introduced first in [ABW88].

In addition to giving unambiguous semantics to stratifiable XChangeEQ programs, the fixpoint
theory also describes an abstract, simple, forward-chaining evaluation method, which can easily
be extended to work incrementally as is required for event queries (see Chapter 12).

10.1 Stratification: Limits on Recursion

Consider the event stream E = {s[][1,2]} and following program P , which has already been
discussed in Chapter 6.10:

DETECT

p []
ON

and {
event s: s [],
while s: not q []

}
END

DETECT

q []
ON

and {
event s: s [] ,
while s: not p []

}
END

Both M1 = {s[][1,2], p[][1,2]} and [M2 = {s[][1,2], q[][1,2]} are models of P under E. Because
the two models are symmetric, there is also no clear criterion to select one or the other as intended
model of this XChangeEQ program. This is a common and inherent difficulty when rules and
negation are combined. (It is in fact just an adaption of the standard non-event example p ←
¬q, q ← ¬p from logic programming and deductive databases.) A simple and established solution
is to avoid such situations by requiring programs to be stratifiable.

Stratification restricts the use of recursion in rules by ordering the rules of a program P into
so-called strata (sets Pi of rules with P = P1] · · ·] Pn) such that a rule in a given stratum
can only depend on (i.e., access results from) rules in lower strata (or the same stratum, in some
cases).

Three types of stratification are required:

139

140 CHAPTER 10. FIXPOINT THEORY

1. Negation stratification: Events that are negated in the query of a rule may only be con-
structed by rules in lower strata. Events that occur positively may only be constructed by
rules in lower strata or the same stratum.

2. Grouping stratification: Rules using grouping constructs like all in the construction may
only query for events constructed in lower strata.

3. Temporal stratification: If a rule queries a relative temporal event like timer:extends[event
i, 1min] then the anchoring event (here: i) may only be constructed in lower strata.

While negation and grouping stratification are fairly standard, temporal stratification is a
requirement specific to complex event query programs like those expressible in XChangeEQ. We
are not aware of former consideration of the notion of temporal stratification.

To define stratification, we first need the notion of dependency.

10.1.1 Rule dependencies

We say that some rule r depends on another rule r′ if r (potentially) queries events that have been
constructed by r′. We distinguish different kinds of dependency:

• r = c ← Q ∈ P depends temporally on r′ = c′ ← Q′ ∈ P if there exists a query term q in
Q with an event identifier j attached to it such that j is used elsewhere in Q to define a
relative temporal event and q � c′.1

• r = c ← Q ∈ P grouping depends on r′ = c′ ← Q′ ∈ P if c contains grouping constructs
(such as all) and there exists a query term q in Q such that q � c′.

• r = c ← Q ∈ P depends negatively on r′ = c′ ← Q′ ∈ P if there exists a query term q that
occurs negated (i.e., within a not) in Q such that q � c′.

• r = c ← Q ∈ P depends positively on r′ = c′ ← Q′ ∈ P if r does not depend on r′ by the
previous dependencies and there exists a query term q in Q such that q � c′.

Note that positive, negative, and grouping dependencies are analogously defined for the (non-
event) query language Xcerpt [Sch04] that underlies XChangeEQ.

10.1.2 Stratified Programs

A stratification P = P1] · · ·]Pn for an XChangeEQ program P is a partitioning of the rules of
P such that for each pair of rules r = c← Q ∈ Pi, r′ = c′ ← Q′ ∈ Pj :

• if r depends temporally on r′, then i > j,

• if r grouping depends on r′, then i > j,

• if r depends negatively on r′, then i > j

• if r depends positively on r′, then i ≥ j.

An XChangeEQ program is called stratifiable, if there exists a stratification for it. By building
a dependency graph [ABW88] as outlined in Chapter 11.3.4, we can check if a given XChangeEQ

is in fact stratifiable and obtain a stratification for it. The dependency graph is sometimes also
called a precedence graph [AHV95].

1In slight abuse of notation, we write q � c′ for ∃Σ∃e ∈ Σ(q)∃e′ ∈ Σ(c).e � e′.

10.2. IMMEDIATE CONSEQUENCE OPERATOR 141

10.1.3 Hierarchical Programs

To obtain more efficient evaluation algorithms, it might be desirable to restrict the use of recursion
in XChangeEQ programs even further. Hierarchical programs do not allow any recursion cycles
[Llo93].

An XChangeEQ program is called hierarchical, if there exists a partitioning P = P1]· · ·]Pn

of the rules of P such that for each pair of rules r = c← Q ∈ Pi, r′ = c′ ← Q′ ∈ Pj :

• if r depends temporally on r′, then i > j,

• if r grouping depends on r′, then i > j,

• if r depends negatively on r′, then i > j

• if r depends positively on r′, then i > j.

Note that the difference between stratifiable and hierarchical programs is in the last line of
the definition: stratifiable programs allow positive recursion cycles within a stratum, hierarchical
programs exclude this. Obviously, every hierarchical program is stratifiable.

For our declarative semantics, the restriction to hierarchical programs brings no additional
benefit, so we treat the more general case of stratifiable XChangeEQ programs. The operational
semantics for XChangeEQ will focus on hierarchical programs, but an extension to stratifiable
programs is straightforward (see Chapter 18.1.1).

10.1.4 Remarks

The restriction to stratifiable programs is necessary for the fixpoint semantics given in the next
section. Note that this is not a very severe restriction in the domain of event queries.

It would also be conceivable to (partially) lifted the restriction to stratifiable programs at the
cost of a more involved semantics and evaluation. Approaches to this have been explore in depth
in research related to logic programming and deductive databases.

Extending the semantics of XChangeEQ beyond stratified programs is possible with the estab-
lished approaches from logic programming, but outside the scope of this work. See also Chapter 18.

10.2 Immediate Consequence Operator

The basic idea for obtaining the fixpoint interpretation of a stratified XChangeEQ program is to
apply the rules stratum by stratum: first apply the rules in the lowest stratum to the incoming
event stream, then apply the rules in the next higher stratum to the result, and so on until the
highest stratum.

This requires the definition of the immediate consequence operator TP for an XChangeEQ

program. It is defined as:

TP (I) = I ∪ {et | there exist a rule c← Q ∈ P, a maximal substitution set Σ,

and a substitution τ such that I,Σ, τ |= Qt and e ∈ Σ(c)}

The repeated application of TP until a fixpoint is reached is denoted Tω
P . A fixpoint here means an

interpretation I such that TP (I) = I. As we will see in Chapter 11.3, Tω
P is also a least fixpoint.

Because we are interested in fixpoints of the immediate consequence operator, it is sometimes
also called fixpoint operator.

142 CHAPTER 10. FIXPOINT THEORY

10.3 Fixpoint Interpretation

Let Pi =
⋃

j≤j Pj denote the set of all rules in strata Pi and lower. The fixpoint interpretation
MP,E of an XChangeEQ program P with stratification P = P1] · · ·]Pn under event stream E is
defined by computing fixpoints stratum by stratum:

M0 = E = Tω
∅ (E),

M1 = Tω
P1

(M0),
. . . ,

MP,E = Mn = Tω
Pn

(Mn−1).

The fixpoint interpretation MP,E is also called the intended model of P under E and specifies
the declarative semantics. The first theorem in the next chapter will show that these semantics
are, in fact, well-defined and unambiguous and thus justifies our definition. As we will see, a
similar theorem must usually proven also for fixpoint semantics of non-event query languages.

Fixpoint semantics straight-forwardly outline a forward-chaining evaluation of queries, which
is the evaluation method of choice for event query programs (see Chapter 12). The main differ-
ence between fixpoint semantics and an actual evaluation method is that the actual evaluation
should work incrementally, i.e., operate only on the part of the event stream received so far. The
second theorem in the next chapter will show that this is, in fact, possible. Note that this is
not self-evident: a regular, non-event query language that supports non-monotonic features such
as negation (e.g., Xcerpt) could not be evaluated in a manner where only part of the base facts
(which correspond to the event stream) are known.

Chapter 11

Theorems

We now give two theorems about the declarative semantics of XChangeEQ that have been specified
in Chapters 9 and 10. The first theorem shows that the semantics provided by the fixpoint
interpretation are well-defined and unambiguous. The second theorem shows that the semantics
are suited for infinite event streams and justify a streaming evaluation.

We first state and explain the two theorems (Sections 11.1 and 11.2) and then give their proofs
(Sections 11.3 and 11.4).

11.1 Well-Defined and Unambiguous Semantics

The following theorem states that the semantics provided by the fixpoint interpretation defined in
Chapter 10.3 are well-defined and unambiguous. It also shows that they correspond to our natural
intuition in that all events it contains are justified by either being in the incoming event stream
or being derived by a rule.

Theorem 1 For a stratifiable program P and an event stream E, MP,E is a minimal model of
P under E. Further, MP,E is independent of the stratification of P .

“Minimal” in the theorem entails that all events in the model are either in the stream of incoming
events or have been derived by rules, i.e., no events have been added without justification.

Note that this theorem is not specific to event query languages. Similar theorems must be
shown also for non-event query languages. In fact the proof given in Section 11.3 is an adaption
of a standard proof from [Llo93] to the query and construct terms of Xcerpt.

While the model and fixpoint theory of XChangeEQ bears some resemblance to that of the
underlying query language Xcerpt, however, such a theorem has not been proven for Xcerpt so
far (cf. Chapter 7 of [Sch04]). The proof of the theorem for XChangeEQ given in Section 11.3 also
applies to Xcerpt if the temporal aspects of XChangeEQ’s semantics are ignored. It thus also fills
in this minor gap in the semantics of Xcerpt.

11.2 Suitability for Event Streams

More interestingly in the context of event queries, we must and can show that the model theory and
fixpoint semantics are sensible on infinite event streams. The next theorem justifies a streaming
evaluation, where answers to complex event queries are generated “online” and we never have to
wait for the stream to end. This is especially important since event streams can conceptually be
infinite and thus not end at all.

In particular it ensures an event et can be detected at the time point end(t) since no knowledge
about any events in the future of end(t) is required. Ensuring that evaluation methods are not

143

144 CHAPTER 11. THEOREMS

expected to “crystal gaze” is of course an important requirement and one example where we
can use the declarative semantics to prove interesting statements about a (complex) event query
language.

Theorem 2 Let E | t denote the restriction of an event stream E to a time interval t, i.e.,
E | t = {et′ ∈ E | t′ v t}. Similarly, let M | t denote the restriction of an interpretation M to t.
Then the result of applying the fixpoint procedure to E | t is the same as applying it to E for the
time interval t, i.e., MP,E|t | t = MP,E | t.

Simply stated, the theorem says that in order to evaluate a program over a time interval t, we
do not have to consider any events happening outside of t.

11.3 Proof of Theorem 1

We now turn to the proof of the first theorem.

11.3.1 Minimal Model

We want to prove that the fixpoint interpretation MP,E of a stratified XChangeEQ program P
under an event stream E is a minimal model, i.e., there is no model M ′ of P under E with M ′ (
MP,E . An analogous statement for stratified logic programs is well-established [ABW88]. For our
proof in the world of XChangeEQ, we adapt the proof from [Llo93].1 The most important hurdle in
transferring this proof is that the stratification of XChangeEQ programs is defined differently: in
XChangeEQ strata consist of rules, while in logic programming strata consist of predicate symbols.

Before starting with our proof, we repeat a well-known result on fixpoints due to Tarski (as
presented in [Llo93]): Let L be a complete lattice with order ≤ and T : L→ L monotonic. Then
T has a least fixpoint, lfp(T), that is the greatest lower bound (glb) of the set of all fixpoints of
T as well as of the set of all prefixed points: lfp(T) = glb{x | T (x) = x} = glb{x | T (x) ≤ x}.

Let P = P1]· · ·]Pn be a stratified XChangeEQ program and E an event stream. We show by
induction on the number n of strata that MP,E = Mn is a minimal fixpoint of TP with E ⊆MP,E .
For the induction base n = 0 this is obvious since then P = ∅ and thus TP is simply the identity
transformation.

For the induction step n− 1→ n, we will make use of Tarski’s theorem from above. Of course
we cannot apply the theorem to TP directly since TP is, in general, not monotonous. However we
can apply it to a certain restriction. Let Λ be the following complete lattice:

Λ = {Mn−1 ∪ S | S ⊂
⋃
r∈P

gi(r)}

Here gi(r) denotes the set of all events a rule r = c← Q can query or construct. Speaking in
the language of logic programming, the “ground instances” of the terms occurring in the rule2.
Formally:

gi(c← Q) = {et | t ∈ TI and ∃Σ.e ∈ Σ(c)} ∪
{et | t ∈ TI and ∃query term q in Q ∃σ.e � σ(q)}

Lemma 1 The restriction TP |Λ of TP to the complete lattice Λ is well-defined (i.e., application
of TP to an element of Λ yields an element that is again in Λ) and monotonous (i.e., I ⊆ J implies

1As we will see, the proof in [Llo93] uses the existence of least fixpoints for monotonic operators on complete
lattices, a well-known result established by Knaster and Tarski. The earlier proof in [ABW88] works without this
result. We base our proof on [Llo93] because it is shorter and seems more intuitive and easier to understand than
[ABW88].

2To avoid any confusion: note that we talk about the ground instances of the terms occurring in the rule, not
about ground instances of the rule itself.

11.3. PROOF OF THEOREM 1 145

TP |Λ (I) ⊆ TP |Λ (J)). To avoid distraction from the main proof, we give the proof for this
lemma later.

With Tarski’s theorem from above, this lemma gives us that TP |Λ has a least fixpoint M:

M = lfp(TP |Λ) = glb{I ∈ Λ | TP (I) = I}
= glb{I ∈ Λ | TP (I) ⊆ I}

Note that M = MP,E simply by definition of MP,E = Tω
P (Mn−1). Further, M is a model for

P under E due to the following Lemma.
Lemma 2 An interpretation I is a model for an XChangeEQ program P (“I |= P”) if and

only if TP (I) ⊆ I. Again, we delay the proof for this lemma.
We now show that M is minimal, i.e., if some M ′ ⊆ M is a model of P and E ⊆ M ′ then

M ′ = M . By induction hypothesis, we have that Mn−1 ⊆M ′ (since Mn−1 is a minimal model for
P1] · · ·] Pn−1). By definition of Λ this gives us that M ′ ∈ Λ. Lemma 2 and M being also the
least pre-fixed point of TP |Λ yield M ′ ⊆M .

11.3.2 Proof of Lemma 1

To show that T |Λ is well-defined, let I ∈ Λ. By definition of Λ, I = Mk−1] SI for some
SI ⊆

⋃
r∈P git(r). Now TP (I) = I ∪ {et | et generated by some rule r ∈ P} and the right

side of the union is a subset of
⋃

r∈P git(r). This gives us that TP (I) = Mk−1] ST for some
ST ⊆

⋃
r∈P git(r) (ST is the union of {et | . . . } and SI) and thus TP (I) ∈ Λ.

For TP |Λ monotonic, let I ∈ Λ, J ∈ Λ, I ⊆ J and et ∈ TP (I). What we want to show is that
et ∈ TP (J).

If et ∈ I we immediately have et ∈ TJ(P) by I ⊆ J and the definition of TP . Otherwise there is
a rule r = c← Q ∈ P and a maximal Σ and a τ with I,Σ, τ |= Q and et ∈ Σ(c). If r ∈ Pn−1, then
et ∈Mn−1 and thus also et ∈ TP (J) since Mn−1 ⊆ TP (J) (remember that TP | Λ is well-defined).
It remains to consider the case where r ∈ Pn, where we have to show that et ∈ Σ(c).

We distinguish whether c is free of grouping constructs or not. In the former case it suffices to
show that J,Σ, τ |= Qt. In the latter case we have to show additionally that Σ is maximal.

Case 1: c free of grouping constructs. By induction on Q we show that J,Σ, τ |= Qt. Besides
the induction hypothesis (IH) and the definition of the model theory (Def|=) from Figure 9.1, we
have available that I,Σ, τ |= Qt with Σ being maximal (∗) and that I ⊆ J (∗∗).

Case 1.1: Q = (event i : q). By (Def|=) and (∗), we have et ∈ I and by (∗∗) we get the et ∈ J .
Case 1.2: Q = (event i : extends[j, d]). Trivial, since (Def|=) makes no reference to the

interpretation I (J , respectively). As in Figure 9.1, we skip the other temporal events since they
are analogous.

Case 1.3: Q = (q1∧q2). (Def|=) and (∗) gives us I,Σ, τ |= qt1
1 and I,Σ, τ |= qt2

2 with t = t1tt2.
Applying (IH) we get J,Σ, τ |= qt1

1 and J,Σ, τ |= qt2
2 and can apply (Def|=).

Case 1.4: Q = (q1 ∨ q2). Obvious application of (IH), see case 1.3.
Case 1.5: Q = (Q′ where C). Obvious application of (IH).
Case 1.6: Q = (while j : not q). (∗) gives us an et with τ(j) = et and I,Σ, τ 6|= qt′′ for all

t′′ @ t. We have to show that also J,Σ, τ 6|= qt′′ for all t′′ @ t. Now, if there were a t′′ such that
J,Σ, τ |= qt′′ , then already Mn−1,Σ, τ |= qt′′ due to the (negation) stratification. This however
would imply I,Σ, τ |= qt′′ in contradiction to our assumptions.

Case 1.7: Q = (while j : collect q). Again a simple application of (IH).
Case 2: c contains grouping constructs. As in case 1 we get that J,Σ, τ |= Qt. It remains to

show by induction on Q that Σ is in fact maximal, i.e., J,Σ∪{σ}, τ |= Qt with some σ 6∈ Σ (∗ ∗ ∗)
leads to a contradiction with the maximality in (∗).

Case 2.1: Q = (event i : q). Suppose by (Def|=) and the assumption (∗ ∗ ∗) that there is an
et ∈ J with σ(q) � e. Due to stratification, et ∈Mn−1 and thus I,Σ∪{σ}, τ |= Qt in contradiction
to (∗).

Case 2.2: Q = (event i : extends[j, d]). Trivial since I,Σ, τ |= Qt for any Σ, i.e., also for
Σ ∪ {σ}.

146 CHAPTER 11. THEOREMS

Case 2.3: Q = (q1 ∧ q2). (Def|=) and (∗ ∗ ∗) give J,Σ ∪ {σ}, τ |= qt1
1 and J,Σ ∪ {σ}, τ |= qt2

2

and t = t1 t t2. Application of (IH) leads to the contradiction.
Case 2.4: Q = (q1 ∨ q2). Obvious application of (IH), see case 1.3.
Case 2.5: Q = (Q′ where C). Obvious application of (IH).
Case 2.6: Q = (while j : not q). (Def|=) and (∗ ∗ ∗) give an et with τ(j) = et such that

J,Σ ∪ {σ}, τ 6|= qt′′ for all t′′ @ t. The maximality in (∗) however gives I,Σ ∪ {σ}, τ |= qt′′ . By
(IH) then the contradiction J,Σ, τ |= qt′′ .

Case 2.7: Q = (while j : collect q). By (Def|=) and (∗∗∗) there must exist an et with τ(j) = et

such that there are Σi and ti @ t with J,Σi ∪ {σ}, τ |= qti . Application of (IH) now gives the
contradiction.

11.3.3 Proof of Lemma 2

We want to show that M |= P if and only if TP (M) ⊆M . From right to left, suppose TP (M) ⊆M ,
but M 6|= P , i.e., there is s a rule r = c← Q ∈ P with M 6|= r. Accordingly we must have a t ∈ T,
a τ , and a maximal Σ with M,Σ, τ |= Qt but Σ(c)t 6⊆ M . I.e., there must be an e ∈ Σ(c) such
that e 6∈M , which however is in contradiction to e ∈ TP (M) ⊆M .

From left to right, let M |= P and et ∈ TP (M) and suppose et 6∈M . Then et must have been
generated by a rule r = c ← Q ∈ P . Accordingly we must have a τ and a maximal Σ such that
M,Σ, τ |= Qt and e ∈ Σ(c). This however would mean that et ∈ M since M |= r, which gives us
the contradiction.

11.3.4 Independence from Stratification

To prove that MP,E is said to be independent of the given stratification of P , we show that any
two possible stratifications of P are equivalent, i.e., the fixpoint procedure yields the same model.
In the world of stratified logic programs, this is again a well-established result. In fact, the roof of
this statement for datalog¬ found in [AHV95] (Theorem 15.2.10) transfers directly to XChangeEQ.
Only two things need to be adapted to deal with XChangeEQ’s notion of stratification, which is
defined over rules not predicate symbols: the notion of the precedence graph (sometimes this is
also called a dependency graph) and a lemma that enables us to argue that if two strata that are
independent of each other then they can be permuted in the fixpoint procedure. We do not repeat
the proof from [AHV95] here, but give only the two adaptations just mentioned.

The precedence graph GP for an XChangeEQ program P is a directed graph with edges
labeled either “+” (called positive edges) or “−” (called negative edges). The vertices of the
graph are the rules of P . There is a positive edge from r to r′ if r depends positively on r′. There
is a negative edge from r to r′ if r′ depends on r′ in any other way (negatively, temporally, or by
grouping).3

We have to show the following lemma as a replacement for lemma 15.2.9 in [AHV95] (note
that this is the only point where the proof of [AHV95] is specific to datalog¬): If P is a semi-
positive XChangeEQ program, i.e., it only contains positive dependencies, and P = P1] P2 is
a stratification of P , then the fixpoint procedure yields the same model for P and for P1] P2:
Tω

P (E) = Tω
P2

(Tω
P1

(E)) for all event streams E.

Proof. Observe that TP = TP2
is monotonous (just like in Lemma 1 from above). With

the inclusion E ⊆ Tω
P1

(E) = Tω
P1

(E) this yields Tω
P (E) ⊆ Tω

P2
(Tω

P1
(E)). On the other hand, the

inclusion Tω
P1

(E) = Tω
P1

(E) ⊆ Tω
P (E) gives Tω

P2
(Tω

P1
(E)) ⊆ Tω

P2
(Tω

P (E)) = Tω
P (Tω

P (E)) = Tω
P (E).

3Admittedly, we are a bit abusive of notation here, using “−” to label not only negative dependencies but also
grouping and temporal dependencies. However, it is not necessary to distinguish negative, grouping, and temporal
dependencies here, since also in the definition of a stratification the are treated the same (requiring the dependent
rule to be in a strictly higher stratum).

11.4. PROOF OF THEOREM 2 147

11.4 Proof of Theorem 2

We have to show that MP,E|u | u = MP,E | u for an arbitrary time interval u. For this, we first
make the following observation.

Lemma 3 Let t and u be time intervals with t v u and let Q be a query. We then have:

I | u, Σ, τ |= Qt iff I,Σ, τ |= Qt

The proof for this is by a trivial induction on Q. With the definition of the immediate conse-
quence operator TP , the above observation gives us that

TP (I | u) | u = TP (I) | u

for all time intervals u and all programs P .
Further, the definition of TP says that all events et constructed by a rule r “inherit” their

occurrence time t from the rule’s query. Thus it holds that (TP | u)ω = (Tω
P) | u and we get

MP,E|u | u = MP,E | u.

148 CHAPTER 11. THEOREMS

Part IV

Incremental Evaluation of
Complex Event Queries

149

Chapter 12

Operational Semantics:
Requirements and Overview

While the declarative semantics developed in the preceding chapters give XChangeEQ programs a
clear and formal meaning, they offer little help for the actual evaluation of XChangeEQ complex
event query programs. The following chapters develop operational semantics that describe how
XChangeEQ programs can be evaluated efficiently. The operational semantics provide an abstract
description of an implementation of an XChangeEQ evaluation engine and are a basis for query
optimization.

In this chapter, we explain the basic concepts involved in evaluating event queries and the
motivation and ideas behind the operational semantics of XChangeEQ. Chapters 13, 14, and 15 will
then fully develop the operational semantics. Chapter 16 describes the prototype implementation
of the XChangeEQ engine that is based on these operational semantics. The results of these
chapters have been presented with a strong focus on temporal relevance in [BE08a]. Earlier work
towards operational semantics for XChangeEQ can be found in [BE07b] and [BE07c].

12.1 Basics of Event Query Evaluation

Event query evaluation means evaluating standing (complex) event queries against a stream of
incoming events. For each incoming event, we have to check if this event together with some
of the events received previously leads to new answers for the standing event query. Records of
these previous events must be maintained in the event query evaluation engine in a data structure
commonly called event history. In addition to checking for new answers, therefore, we also have
to update this event history with the current event in order to prepare it for future incoming
events. Separately or as part of updating the event history, events in the history that have become
irrelevant over time must be removed to free up their memory.

Event query evaluation has much in common with traditional query evaluation in databases or
on Web documents, as this work tries to emphasize. There are however also important differences:

• Event queries are standing queries that are evaluated against event data that is coming in
as a streams. In a database, data is “standing” (or maybe rather lying around) and queries
are coming in to be evaluated.

• Accordingly, event query evaluation is a step-wise process over time, where each step is
initiated by an incoming event. In contrast, traditional query evaluation is a one-time
process initiated by an “incoming” query.

• Event streams conceptually stretch out infinitely into the future and at each point in time
at most the history of the stream up to that point is known. Database data is finite and all
data is known.

151

152 CHAPTER 12. OPERATIONAL SEMANTICS: REQUIREMENTS AND OVERVIEW

• Event query evaluation has to actively maintain a history of events that have been received
so far from the event stream and perform garbage collection in this history to free up memory
from irrelevant events. Database query evaluation does not have a need for such histories or
for garbage collection.

• Timing and order of answers to event queries, i.e., of detected complex events, play an
important role because actions that might be triggered as response to complex events are
generally sensitive to execution time and order. Answers to a database queries are concep-
tually delivered all at once and there is no notion of order or timing in the data.

• Efficient query evaluation and query optimization have some different assumptions and re-
quire some different techniques. In the compilation of event queries no or only little infor-
mation about the data distribution characteristics of the event stream are available and an
important optimization technique is to exploit similarities between different queries (multi-
query optimization). The evaluation is usually done in main memory, where the difference
between sequential and random access is fairly small. In the compilation of database queries
a fair amount of information about the data distribution characteristics is available and
multi-query optimization is not that relevant. The evaluation retrieves data from a hard
disc and puts emphasis on having few and sequential page accesses.

We now detail the most important aspects of event query evaluation further.

12.1.1 Step-Wise Evaluation over Time

Evaluating an event query or an event query program (which contains several rules and thus several
event queries) is a step-wise procedure. Evaluation is done over time so that each evaluation step
is associated with a time point now at which it is executed.

An evaluation step at time now is initiated by incoming events. We assume here that the eval-
uation step has knowledge of all events that have an occurrence time ending at now. (Variations
on this where events might be delayed and arrive out of order are discussed in Section 12.2.2 and
Chapter 18).

Incoming events might be events that are actually present in the event stream as messages.
They might however also be absolute or relative timer events. These timer events are not present
in the event stream and the query evaluation engine is responsible for “waking itself up” and
generating these timer events. Note that if a timer event and a message in the event stream have
occurrence times that are in close temporal proximity, then there is a potential for race conditions
where the later event of the two might “overtake” the earlier. This race condition is due to
the imprecision of thread and process scheduling and timers in current operating systems and
programming platforms. If we assume that events are processed in an order determined by their
occurrence times (cf. Section 12.2.2), then careful programming is necessary to maintain order in
the presence of timer events.

12.1.2 Input and Output

For an evaluation step at time now, the input consists of all events with an occurrence time ending
at now. More precisely, it is representations of the events together with occurrence times. In the
case of XChangeEQ, the event representations are XML messages or (equivalently) data terms. In
the case of the simplified RelEQ, the event representations are relational tuples. Occurrence times
of events are time intervals t = [b, e] and we have end(t) = e = now. Recall that events can either
be from the event stream or timer events that must be “generated” by the evaluation engine.

In terms of our declarative semantics (see Chapter 10), the input is the following fragment of
the event stream E: {et | et ∈ E, end(t) = now}.

The output of an evaluation step at time now in turn are the events derived by deductive
rules with an occurrence time ending at now. Again, these events consist of a message and an

12.1. BASICS OF EVENT QUERY EVALUATION 153

occurrence time t, where we have end(t) = now. (A caveat on this notion of output follows in
Section 12.1.5.)

In terms of our declarative semantics, the output is the following fragment of out intended
model MP,E : {et | et ∈ MP,E , end(t) = now}. The second theorem about the declarative
semantics (Chapter 11.2) ensures that this output can be computed from the event stream received
so far, i.e., from E |[0,now]= {et | et ∈ E, end(t) ≤ now}. The time point 0 here denotes the
earliest time point, i.e., the time point when the overall process of event query evaluation has been
started.

As an example for the inputs and outputs of evaluation steps over time consider evaluating the
following RelEQ program with two event query rules:

c(x) ← i : a(x), j : b(x), {i, j} within 7
d(x) ← i : a, k : extend(i, 5), while k : not b(x)

The following table shows the input and output of evaluation steps. In the input, we distinguish
between events of the event stream and timer events.

eval. step at now = 1 3 4 6 8
input event stream a(42)[1,1] a(20)[2,3] b(20)[3,4] — b(42)[6,8]

input timer events — — — extend(i, 5)[1,6] extend(i, 5)[2,8]

expected output — — c(20)[2,4] d(42)[1,6] c(42)[1,8]

When we consider only a single event query q instead of a full rule or set of rules, then there
is no construction of a new event message. Accordingly, the proper output of the evaluation of
the single event query q is not an event message. Instead it is the bindings for variables obtained
from the query. As far as the ideas behind event query evaluation are concerned, these two
types of output are however mostly interchangeable: Variable bindings might be given a generic
representation as message. For example, Σ = {{X 7→ "y"}, {X 7→ "z"}} might be represented as
term subset { subst { map["X","y"] }, subst { map["X","z"] } }. Similarly, a message
might be represented as substitution set by using an artificial variable that is bound the message.
For example, using D as artificial variable, the message a[b,c] might be represented as Σ =
{{D 7→ a[b,c]}}. Importantly, both event messages and variable bindings have an associated
occurrence time in event query evaluation.

12.1.3 (Partial) Event Histories

The output of the evaluation step at time now depends on more than the current input of the
step. The current input is only {et | et ∈ E, end(t) = now}. To compute the output, however,
{et | et ∈ E, end(t) ≤ now} is needed, i.e, also events with an occurrence time ending prior to
now. These events have been the input of earlier evaluation steps.

Accordingly, evaluation steps have to preserve (some) of its current input for later steps. The
data structure that is used for this is called event history. In addition to producing output, each
evaluation step therefore also has to maintain the event history by updating it with the events
from its current input.

The event history does not have to be a complete and explicit list or set of all events (messages
and occurrence times) that have been received so far. Some information in the event history will
become irrelevant over time and can be discarded (see next section). The event history therefore
is only a partial history. Further the necessary information can be implicit. For example instead
of storing the message of an input event (an XML document or data term), it is usually sufficient
to store only the variable bindings obtained from evaluating simple event queries (query terms)
against the message. The message itself is not relevant for constructing output events, only the
variable bindings are.

We will see that it is desirable and common in event query evaluation to not just store records
about incoming events but also to store some intermediate results (cf. Section 12.2.1). These
intermediate results are also called partial answers or semi-composed events and are also stored

154 CHAPTER 12. OPERATIONAL SEMANTICS: REQUIREMENTS AND OVERVIEW

in the event history. These partial answers are another case where information about base events
can be implicit in the event history: instead of having an explicit record about a base event, there
might only be records of partial answers that were generated using that base event.

The event history is often subdivided into groups of records of events that have the same
type, match the same simple event query, or have been generated by the same deductive rule.
Accordingly, we will also often speak of many event histories (meaning the individual subdivisions)
rather than a single event history (meaning the union of all the subdivisions).

12.1.4 Garbage Collection

The event history stores information about events that are relevant for, i.e., might contribute
to, future answers. Over time, some information about events in the event history becomes
irrelevant however because it cannot contribute to future answers. Garbage collection of irrelevant
information in the event history is required to free up memory used by it. Since event streams are
conceptually infinite, garbage collection is an important requirement in event query evaluation.
Without garbage collection, the event history would grow at least linearly in the size of the event
stream received so far.1 Sooner or later we will run out of memory.

To illustrate the relevance of events and garbage collection consider again the first rule from
our earlier example:

c(x) ← i : a(x), j : b(x), {i, j} within 7

When event a(42)[1,1] initiates an evaluation step at now = 1, a record of this event must be
stored in the event history because a later event —such as b(42)[6,8]— might be composed with
it. However, the rule has a condition that the composed events must happen within 7 time units.
Our a event cannot be composed with a b event that is received at a later time point than now = 8
because these events would not be within 7 time units. For example it cannot be composed with
b(42)[7,8.5]. Therefore the stored a event becomes irrelevant when now > 8 and can be garbage
collected.

Garbage collection is not only necessary for records of simple events in the event history. If
semi-composed events are stored in the event history, a garbage collection of these is also needed.

Garbage collection can be performed as part of evaluation steps or asynchronously in a separate
execution thread. The core issue of garbage collection is not the removing irrelevant events as such,
but recognizing if an event is relevant or not. In our example query, this is still fairly simple: event
older than 7 time units are irrelevant. We will however see that this not always straight-forward
and that semi-composed events also influence relevance.

12.1.5 Output of Event Query Programs, Refined

There is a caveat to consider with the definition of output from Section 12.1.2. So far, we have said
that the output should be the events that have been derived by deductive rules. This corresponds
to our intuition and is also important for debugging event query programs. However, we actually
do not care that much about derived events — we care about the reactions to events. These
reactions are specified with reactive rules, not deductive rules. Consider the following XChangeEQ

program that has one reactive rule and two deductive rules.

1Because the event history also contains semi-composed events, as explained in the previous section, it might
actually grow faster than linearly. For example is a semi-composed event is the cross-product of two simple events,
then the event history will grow quadratically.

12.2. DESIDERATA AND DESIGN DECISIONS 155

RAISE

to (...) {
r [var X]

}
ON

and {
event i: a [var X],
event j: b [var X]

}
where { i before j }

END

DETECT

b[var X]
ON

and {
event k: c [var X],
event l: d [var X]

}
where {k before l}

END

DETECT

e[var X]
ON

event k: c [var X]
END

With this program, the thing we are primarily interested in is sending out event r[...] to
some recipient (specified in to(...)). This sending out is a reaction with a side-effect. For the
output we are not really interested in derived b[...] and e[...] events since these are side-effect
free and do not constitute a reaction. In fact, for that purpose the following program that has just
one reactive rule would be sufficient. In this program the first deductive rule has been unfolded
into the query of the reactive rule and the second deductive rule completely dropped.

RAISE

to (...) {
r [var X]

}
ON

and {
event i: a [var X],
event k: c [var X],
event l: d [var X]

}
where { i before k, k before l }

END

It turns out however, that it is much more intuitive to think of event query evaluation in terms
of deriving new events with deductive rules. Also it is important to have an evaluation method
that can derive all events generated by deductive rules for a better debugging of event query
programs. We therefore keep with the original notion of output for an evaluation step for most of
this and the following chapters. The evaluation method that will be developed is general enough
so it can be re-framed to only derive those events that are actually needed for reactions.

Note that the same dual notion of output exists for rule programs in logic programming or
deductive databases. Semantics of a program, i.e., a set of deductive rules, are specified in terms
of the derived facts. However, the output expected in practice are not all derived facts but the
answers to a so-called goal. A goal is a query that is asked against the program and the base facts.
Goals correspond to the reactive rules, or more precisely the query part of reactive rules.

Logic programming mostly uses a backward chaining evaluation, where the evaluation starts
with the goal. The notion of goal is therefore integral to the operational semantics there and
the two notions of output are not easily interchangeable. For event query programs, however, we
usually use a forward chaining evaluation (see Section 12.2.1), where we start with base events.
Therefore in evaluating event queries, the two notions of output are in a sense interchangeable.
We can think of obtaining the specialized case where we only care about the output for reactive
rules as a transformation of the rule program (like in the example above) or as a transformation
of the query plan.

12.2 Desiderata and Design Decisions

The previous section has only explained the basic task of event query evaluation; it provides still
little guidance for actually developing an event query evaluation, however. We now describe the
desiderata for operational semantics that build the foundation of an efficient event query evaluation
method. We also describe some of the design decisions that have been made in the operational
semantics of XChangeEQ.

156 CHAPTER 12. OPERATIONAL SEMANTICS: REQUIREMENTS AND OVERVIEW

12.2.1 Incremental Evaluation with Intermediate Results

For efficiency reasons, it is desirable to use an incremental, data-driven evaluation method for
complex event queries and rules. An incremental evaluation ensures that in an evaluation step
only the required output, i.e., events with an occurrence time now, is produced. Events with an
earlier occurrence time < now, that have been in the output of earlier steps, need not and will
not be produced again.

Different evaluation steps often require computation of the same intermediate results. It is
often desirable to store and update such intermediate results across steps to avoid recomputing
them in every step. Note however that storing intermediate results consumes additional memory.
Therefore, there is always a trade-off between memory usage and computation time involved.

To illustrate the importance of incremental evaluation and intermediate results, consider eval-
uating the following event query rule:

d(x, y)← i : a(x), j : b(x, y), k : c(y).

A naive way to evaluate it might be to maintain sets of a, b, and c events as event histories.
When ever some event happens at time now we perform an evaluation step. In the step we first
add the new event to its corresponding history. Then we use the event histories to evaluate the
event query from scratch with some traditional, non-event method. Because of the shared variables
in the simple event queries, this essentially this means performing a three-way join (in the sense
of relational algebra) of the sets of events stored in the event histories. The result of this join,
however, contains not only our desired output of complex events with occurrence time now . It
also contains complex events with occurrence time < now. We therefore need to filter the result
further to obtain the desired output.

This naive method has two major issues. First, in each step we compute far more than the
necessary output. We compute not only results with occurrence time now, but also all results with
an occurrence time ≤ now. Only later we select the desired output from these results. In general,
the number of complex events with an occurrence time < now can be expected to be much larger
than the number with occurrence time now. Therefore a considerable amount of computation is
wasted on producing unneeded results.

Second, each step recomputes intermediate results that have already been computed in previous
steps. For example if a step is initiated by a c event, then the binary join of the event histories
for a and b events is computed as an intermediate result in the three-way join. However, previous
steps have done the same computation and the result has not changed because the contents of
these event histories have not changed.

An incremental evaluation with intermediate results that computes only the necessary output
and stores not only incoming events in the event history but also some intermediate results can be
expected to perform much better. As we will see in later chapters, the term “incremental” derives
from the idea that in each step we compute only the changes relative to the previous results given
by the current incoming events. These changes, it will turn out, correspond exactly to our desired
output of complex events with occurrence time now.

12.2.2 Timing and Order of Events

For the presentation of our operational semantics we assume that all incoming events are given
occurrence times according to a single time axis. We further assume that they are received and
processed by the event query evaluation engine in the order of their occurrence times. Occurrence
times can be time intervals t = [b, e], so more precisely we mean by this that events arrive ordered
by the end time point e of that time interval. Recall that our domain of time points is linearly
ordered (Chapter 9.1.2).

It is important that the assumptions of a single time axis and of an ordered arrival can be
given up in the operational semantics. As discussed in Chapter 2.4.4, they might not be suited
for distributed systems. Clocks in a distributed system cannot be perfectly synchronized and thus

12.2. DESIDERATA AND DESIGN DECISIONS 157

give rise to several time axes when events are time-stamped at different nodes. Varying network
latencies in event transmission give rise to an unordered arrival of events.

While we will start with these assumptions, they are not an integral part of the operational
semantics that we develop in the following chapters. The operational semantics are designed so
that they can be easily modified to work without these assumptions. Typically they would be
replaced by an assumption of a so-called scrambling bound [MWA+03] that limits the disorder
and divergence of time axes.

Still, starting with these assumptions simplifies presentation of operational semantics tremen-
dously and make it much easier to get the general ideas across. Also in some applications, a simple
solution where event are assigned time stamps upon reception and according to a local clock of
the event query evaluation engine is sufficient. In this case, a single time axis and ordered arrival
are given by definition. When assumptions hold, they give rise to some interesting optimizations
in the query evaluation. And in turn these optimizations can often be modified to work also in
cases where the assumptions do not hold.

12.2.3 (Framework for) Query Optimization

For a given event query there is not just one single way for evaluating it, there are many different
ways that all achieve the same result. Such a “way” to evaluate a query is also called query plan.
Different query plans for the same query differ for example in the order they perform certain
operations or in the concrete data structures used for the event histories. Consider again the rule

d(x, y)← i : a(x), j : b(x, y), k : c(y).

For example, one query plan might choose to first combine a events with b (performing something
like an equi-join on the x variable) and then combine this intermediate result with c events (equi-
join on y variable). Another might first combine c with b events, and then with a. One plan might
use arrays for event histories, another hashes.

The performance of these different query plans will differ, in fact, might vastly differ. Perfor-
mance depends highly on characteristics of the event stream and the data contained in events.
Accordingly, a query plan that outperforms others on one event stream might be much worse than
its alternatives on another event stream. Query optimization, that is considering different query
plans for evaluating a given query and choosing one that is expected to perform well, is a vital
and deeply explored issue in database systems. We can expect query optimization to be equally
important for event queries.

Operational semantics for event queries should therefore not just describe one single way to
evaluate a query or rule program. They should be able to capture a whole space of different query
plans and provide a framework for query optimization (e.g., through rewriting query plans).

12.2.4 Soundness, Completeness, Termination

Declarative semantics for XChangeEQ have been given in the form of a model theory and associated
fixpoint theory (Chapters 9 and 10). It is obvious that operational semantics should be sound and
complete w.r.t. the declarative semantics. Soundness here means that any answer produced by
the operational semantics is also an answer according to the declarative semantics. Completeness
means the converse, anything that is an answer according to the declarative semantics will be
produced by the operational semantics. Another, in the field of algorithms more common term,
for soundness and completeness taken together would be (partial) correctness. Since XChangeEQ is
a rule-based language the terminology from logic programming is deemed more suitable, however.

Soundness and completeness is of course more an obvious requirement than a desideratum.
However, they lead to an important desideratum and are therefore listed in this section: our
operational semantics should make proving soundness and completeness reasonably simple. Com-
plicated proofs would not only be prone to contain oversights or errors (i.e., not be proofs at all);
they might also be an indication that optimization (e.g., in the form of rewriting query plans) is
difficult.

158 CHAPTER 12. OPERATIONAL SEMANTICS: REQUIREMENTS AND OVERVIEW

Event query evaluation is not a simple algorithm that just runs once. It is a step-wise procedure
that involves updating and garbage collecting information in the event histories across steps.
Operational semantics that can be proven sound and completeness are therefore a considerable
challenge. We will see that the operational semantics of XChangeEQ use several intermediate
representations and transformations between them to get from a given XChangeEQ program to
the final query plan. Arguably, this chain of transformations makes the operational semantics a bit
long-winded to understand at first; however is helps greatly in proving correctness: the individual
transformations are all quite intuitive and their correctness is easy to see.

Along with soundness and completeness comes the question of termination of the event query
evaluation. Since we work on unbounded streams, termination here means that every evaluation
step terminates — not that the whole evaluation terminates (which it should not on infinite
streams). Termination is of course desirable. However there is a trade-off between a language’s
expressiveness and termination. If the language is such that it allows an operational semantics
that guarantees termination, then the language’s expressiveness it limited (in particular it is not
Turing complete). A very typical approach to this dilemma is to give an operational semantics
that is, in the general case, not guaranteed to terminate, but for which subsets of the language
can be identified that guarantee termination.

The operational semantics for XChangeEQ focus on hierarchical programs (cf. Chapter 10.1.3).
For these programs termination of each evaluation step is guaranteed. However, the operational
semantics can easily be extended to stratified programs (cf. Chapter 10.1.2). In this case, some
programs might lead to non-terminating evaluation steps. Usually this is simply because the
evaluation step would have to produce an infinite number of events as output. In Chapter 18,
we resume this discussions and look at alternatives and extensions to the current operational
semantics that could avoid producing such an infinite number of events.

12.2.5 Extensibility and Applicability to Other Settings

Because querying events is a young and dynamic research area, it is desirable to develop operational
semantics that are extensible and applicable to other settings than just XChangeEQ running on a
single machine.

The design of XChangeEQ already anticipates certain points where the language might be
extended. These include: new calendric systems for generating absolute and relative timers and
for expressing temporal conditions, new relationships between events such as causal or spatial
relationships, enriching events with (non-event) database data, or using a different data model
and query language for simple events. Our operational semantics should be able to accommodate
such extensions with relative ease. In the same direction, if possible the operational semantics
should be suitable not just for evaluating XChangeEQ programs. Ideally they should provide a
common basis that could also be used for implementing other, different event query languages
(e.g., composition-operator-based languages).

Further our operational semantics should not just be usable in a setting where an event query
program is evaluated with a fixed query plan on a single machine. They should, for example,
also provide a suitable basis for investigating adaptive query evaluation techniques that modify
the query plan during its execution, distributed and peer-to-peer evaluation of event queries, or
event query evaluation in mobile systems with limited connectivity, bandwidth, and computation
resources.

12.3 General Ideas

We now describe the general ideas behind the operational semantics of XChangeEQ, which will be
detailed in full in the next chapters. The focus of our operational semantics are logical query plans
that describe the necessary operations in evaluating a query in a still fairly abstract way. For a
given operation on the logical level (e.g., a join), there are typically many possible realizations on
the physical level (e.g., nested loop join, hash join, merge join).

12.3. GENERAL IDEAS 159

The logical query plans of XChangeEQ are based on an extended and tailored variant of re-
lational algebra called Complex Event Relational Algebra (CERA). For incremental evaluation
and maintenance of event histories, algebra expressions are “differentiated” into expressions that
compute only changes to event histories (this includes the output as a special case). Intermediate
results are captured through so-called materialization points. For garbage collection, so-called
temporal relevance conditions are derived statically at compile time from a query plan. Dur-
ing runtime, these conditions allow to identify events and intermediate results that have become
irrelevant due to the progressing of time and can be garbage collected.

12.3.1 Relational Algebra as Foundation

A core observation in this work is that evaluation of complex event queries can be based on
relational algebra and, more importantly, that we can separate the algebraic query plan and its
incremental evaluation. Relational algebra is an attractive candidate for formalizing operational
semantics of an event query language:

• It is a established and successful formalism in the database field. Expressiveness and com-
plexity of relational algebra are well-understood. We can expect that proving soundness and
correctness w.r.t. our declarative semantics is manageable.

• Event query evaluation can build upon a myriad of work on query optimization from databases
and reconsider it in the new light of incremental evaluation on event streams. In particular
this includes query rewriting and cost-based heuristics [GM93, Gra95], physical implemen-
tation of operators and index structures [Gra93], and adaptive query evaluation [DIR07].

• Relational algebra lends itself to incremental evaluation relatively easily. Issues related to
that have been considered for the incremental maintenance of materialized views [GL95] and
also in production rule systems [For82, Mir87].

• Optimizations that utilize temporal conditions in queries together with assumptions about
the timing and arrival order of events are possible, as we will see in this work.

In our operational semantics, single XChangeEQ or RelEQ rules are translated into relational
algebra expressions. Simple event queries give rise to the base relations in these expressions.
Complex event queries use the a set of operators that together form a special variant of relational
algebra called Complex Event Relational Algebra (CERA). This variant is particularly suited for
complex event queries and restricted somewhat to make incremental evaluation easy and efficient.

For the translation of single rules into CERA, there are two important ideas: First, we “pre-
tend” that the base relations contain all events that ever happen and (at first) ignore that expres-
sions must eventually be evaluated in an incremental way. Of course, this is by now an “old trick”
that we have used before in our declarative semantics (cf. Chapter 9). The design of CERA will
ensure that the expression will still deliver the correct result up to a time point now when the base
relations contain only events up to that particular time point now. Second, time stamps of events
are, for most part, treated like regular data attributes. Accordingly temporal conditions will be
expressed, for example, simply as selections. Allowing to treat time like data gives important
flexibility and extensibility for the operational semantics. However we will make use of the special
meaning of these time stamp attributes in the incremental evaluation, in optimizations, and in
the garbage collection.

12.3.2 Incremental Evaluation

Simply evaluating CERA expressions from scratch in every evaluation step would be inefficient as
discussed in Section 12.2.1. For a more efficient, incremental evaluation we employ a technique
called finite differencing. From a given CERA expression, we will obtain a new expression that
will compute only the changes to the result from changes to the base relations. The design of
CERA ensures that these changes are exactly the output we require in each evaluation step.

160 CHAPTER 12. OPERATIONAL SEMANTICS: REQUIREMENTS AND OVERVIEW

An important issue in the incremental evaluation is indicating which intermediate results should
be materialized across steps to avoid their recomputation. To this end, we will extend the algebra
to query plans with materialization points. A materialization point is an equation giving the
result of a CERA expression a name (similar to view expressions in databases) so that it can
be used like a base relation in other CERA expressions. Materialization points correspond to
event histories and thus treat storing materialized intermediate results and incoming events in
a uniform way. (Accordingly, we will then often refer to intermediate results also as “events.”)
Further, materialization points address chaining of rules in a program when one rule accesses the
results of another.

12.3.3 Relevance of Events for Garbage Collection

The incremental evaluation with materialization points addresses how new events and intermediate
results are added to the event histories. It does not address how irrelevant events and intermediate
results are removed from the event histories. Garbage collection is based on the idea of formalizing
the notion whether an event in an event history is still relevant to the query plan at a given time
point as so-called relevance conditions. These relevance conditions are evaluated at query runtime,
either as part of evaluation steps or asynchronously in a separate execution step, and irrelevant
events removed.

The core issue of garbage collection then is determining these relevance conditions. In this
thesis we focus on a particular form of relevance, temporal relevance, which is determined from
time-related conditions in queries. We develop a method for statically (at query compile time)
determining temporal relevance conditions for a given query plan.

This formalization of garbage collection through relevance conditions is important in order to
prove correctness of the garbage collection. We will see that this can be done in a fairly elegant way:
because the relevance conditions are determined statically (at compile time) we can switch back
in the proof to an “omniscient” perspective on query plans that ignores the step-wise incremental
evaluation over time to some degree.

Chapter 13

Complex Event Relational
Algebra (CERA)

The first building block of our operational semantics is a special variant of relational algebra called
Complex Event Relational Algebra (CERA). The core idea in the design of CERA is to obtain an
algebra that is expressive enough to translate XChangeEQ rules but still restricted enough to be
suitable for the incremental, step-wise evaluation that is required for complex event queries.

We explain the basic idea of using relational algebra for evaluating single event query rules
focusing on the simplified event query language RelEQ (Section 13.1). Some basic familiarity
with relational algebra is assumed (see, e.g., [AHV95, GUW01]). We then define CERA formally
(Section 13.2) and show a property of CERA called temporal preservation (Section 13.3), which
is important for the incremental evaluation in the next chapter. Finally, we provide full details
for the translation of XChangeEQ rules into CERA expressions (Section 13.4).

13.1 Expressing Event Queries in Relational Algebra

To explain the basic idea of using relational algebra for event query rules, we focus first on the
simplified event query language RelEQ: this hides the complexity of XChangeEQ, in particular
with regards to constructing and querying simple events, and allows us to concentrate on the core
topic of detecting complex events. For illustration, we use the following three RelEQ rules, which
cover all relevant aspects of querying events:

(1) comp(id, p) ← o : order(id, p, q), s : shipped(id, t), d : delivered(t)
o before s, s before d, {o, s, d} within 48

(2) overdue(id) ← o : order(id, p, q), w : extend(o, 6h),
while w : not shipped(id, t), q < 10

(3) load(count(id)) ← o : overdue(oid), w : from-end-backward(o, 24h),
while w : collect shipped(id, t)

Conceptually similar rules have been used in the use cases of XChangeEQ in Chapter 7.1. The
first rule detects completed order events as a composition of order, shipped, and delivery events.
The events must happen in said temporal order within 48 hours. Variable id is the order number,
p the product name, q the quantity, and t the tracking number. The second rule detects overdue
orders as the absence of a shipped event in the time span of 6 hours after an order event. It applies
only to orders with a quantity of less than 10 items. The third rule reports the number of shipped
events that have taken place in the last 24 hours prior to an overdue event.

161

162 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

13.1.1 Relations for Events and Event Data

We associate a relation Ri with each simple event query i : R(x1, . . . , xn) in the rule body.
Each event of type R that happens corresponds to one tuple in Ri. Its occurrence time interval
is part of that tuple, and expressed with its starting time i.s and ending time i.e (where i is
name of the event identifier bound in the atomic event query). Accordingly, Ri has the schema
sch(Ri) = {i.s, i.e, x1, . . . , xn}.

Note that we use the named perspective on relations and relational algebra here, where tu-
ples are viewed as functions that map attribute names to values. Because variables give rise to
attributes, this is more intuitive here than the unnamed perspective where attribute names are
identified by their position in an ordered tuple.

Example rule (1) thus gives rise to three such relations: Ro with sch(Ro) = {o.s, o.e, id, p, q} for
o : order(id, p, q), Ss with sch(SS) = {s.s, s.e, id, t} for s : shipped(id, t), and Td with sch(Td) =
{d.s, d.e, t} for d : delivered(t). These relations will be the input of the relational algebra expression
into which we will translate the rule.

13.1.2 Event Composition and Temporal Conditions

By virtue of representing occurrence times as part of tuples, translating the complex event query in
the body of example rule (1) into a relational algebra expressions becomes quite straightforward.
The combination of the three simple event queries with conjunction is expressed with natural joins.
Maybe a bit surprisingly, temporal conditions (such as o before s) are expressed as selections; this
works because we made temporal information (i.e., occurrence times of events) part of the data
of our base relations.

In our example, we will have to join Ro, Ss, and Td. The temporal condition o before s
gives a selection with condition o.e < s.s, the temporal condition s before d a selection with
condition s.e < d.s. The metric condition {o, s, d} within 48 gives a selection with condition
max{o.e, s.e, d.e} −min{o.s, s.s, d.s} ≤ 48.

With this, the rule body could be translated into the following relational algebra expression:

σ[max{o.e, s.e, d.e} −min{o.s, s.s, d.s} ≤ 48](
σ[s.e < d.s](

σ[o.e < s.s](
(Ro on Ss) on Td))).

For readability, we write parameters of operators in square brackets, e.g., σ[o.e < s.s], rather
than in the more conventional way of subscripts, e.g., σo.e<s.s.

There are of course a number of alternative relational algebra expressions that compute the
same result. For example the expression

σ[o.e < s.s](
σ[max{o.e, s.e, d.e} −min{o.s, s.s, d.s} ≤ 48](

Ro on
σ[s.e < d.s](Ss on Td)))

would do the same as the one above. Rewriting rules could be used to transform one expression into
the other. This is a well-explored topic for relational algebra and gives rise to query optimizations
on the logical level such as pushing selections or reordering joins. There is also potential to
simplify the relational algebra expression by reasoning about the temporal selections. For example,
σ[max{o.e, s.e, d.e} −min{o.s, s.s, d.s} ≤ 48] could be simplified to just σ[d.e− o.s ≤ 48] because
of the other temporal conditions o.e < s.s and s.e < d.e and the implicit knowledge that i.s ≤ i.e
for any i. The implicit knowledge i.s ≤ i.e for any i comes from the fact that the ending time of
an event can never be before its starting time.

13.1. EXPRESSING EVENT QUERIES IN RELATIONAL ALGEBRA 163

13.1.3 Rule Head

The expression just seen translates only the rule body. To translate the full rule, we still have to
drop attributes that are not in the head (here q and t) and to generate the occurrence time of the
result. Dropping attributes is simply a projection.

The occurrence time of the result will be expressed with time stamps r.s and r.e. By definition,
r.s must be the smallest value of the time stamps of the input events and r.e the largest (cf. Chap-
ter 6.4 and the last line in the model theory of Figure 9.1). Here, therefore r.s = min{o.s, s.s, d.s}
and r.e = max{o.e, s.e, d.e}.

To generate the occurrence time of the result, we introduce an operator µ that is not part
of standard relational algebra. The merging operator µ[j ← i1 t · · · t in](E) computes a new
occurrence time interval (with start and end time stamps j.s and j.e) from existing occurrence
times so that it covers all these intervals, i.e., j.s = min{i1.s, . . . in.s} and j.e = max{i1.e, . . . in.e}.
The result contains only the new occurrence time, the input occurrence times are dropped.

Merging of time intervals is not really a new operation for relational algebra. It is equivalent
to the following extended projection [GUW01], a common practical extension of relational algebra
used to compute new attributes from existing ones:

π[j.s← min{i1.s, . . . in.s}, j.e← max{i1.e, . . . in.e},
sch(E) \ {i1.s, . . . in.s, i1.e, . . . in.e}](E).

However, we do not want to allow arbitrary extended projections on time stamp attributes —
they could violate the temporal preservation of CERA (cf. Section 13.3). Therefore we only allow
its restricted use through the new µ operator.

The full rule of our example (1) then becomes the following relational algebra expression. Note
that only the π and µ operator on the top have been added compared to the expression from
earlier.

π[r.s, r.e, id, p](
µ[r ← o t s t d](

σ[max{o.e, s.e, d.e} −min{o.s, s.s, d.s} ≤ 48](
σ[s.e < d.s](

σ[o.e < s.s](
(Ro on Ss) on Td))))).

13.1.4 Relative Timer Events and Negation

To translate example rule (2), we have to accommodate two further issues: the generation of rel-
ative timer events and the negation of an event. Relative timer events are expressed as auxiliary
relations that will be joined with the relations of the other events. Negation can be expressed
through an anti-semi-join, or more precisely a θ-anti-semi-join that uses the θ condition for ex-
pressing the event accumulation window.

The timer event w : extend(o, 6h) in our example is defined relative to the event o : order(id, p, q),
which has the corresponding relation Ro. The relation for the timer event will be denoted Xw and
defined as

Xw := {x | (x(o.s), x(o.e)) ∈ π[o.s, o.e](Ro), x(w.s) = x(o.s), x(w.e) = x(o.e) + 6}.

In this definition, x(y) denotes the value for attribute y of a tuple x as usual. Relation Xw contains
four time stamps: the timer event’s w.s and w.e, which are computed based on the time stamps
r.s and r.e of R, and also r.s and r.e, which are needed for the join Ro on Xw. Naturally, the
definition of Xw is dependent on Ro.

Recall that negation of events must still be sensitive to data. In our example rule (2), only
shipped events with the same value for id as the order event are of relevance. Accordingly, an
anti-semi-join is appropriate (rather than, say, a difference). In addition, negation is restricted by
a time window, which is specified by another event through the while keyword. This time window
can be expressed as a condition, here w.s ≤ s.s ∧ s.e ≤ w.e, where w.s and w.e are the time

164 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

stamps of the event giving the time window and s.s and s.e are the time stamps of the negated
event. This condition is added to the anti-semi-join so that it becomes a θ-anti-semi-join. Recall
that a θ-anti-semi-join of a relation R with a relation S can be defined in terms of other relational
algebra operators as R nθ S = R \ πsch(R)(σθ(R on S)). Here \ is the usual difference operator of
relational algebra.

Because the expression w.s ≤ s.s∧ s.e ≤ w.e is somewhat longwinded and we will use it fairly
often, we abbreviate it also with w w s and write accordingly just nwws.1 The intuition is that
the time interval s = [s.s, s.e] is a subset of w = [w.s, w.e], i.e., [s.s, s.e] v [w.s, w.e], if and only
if w.s ≤ s.s ∧ s.e ≤ w.e. To further emphasize that w is on the left hand side and s on the right
hand side of the anti-semi-join, we use w instead of v.

With this, example rule (2) can be expressed as the following relational algebra expression.
Note that the condition on data (q < 10) simply becomes an ordinary (data) selection.

π[r.s, r.e, id](
µ[r ← o, w](

σ[q < 10](
(Ro on Xw) nwws Ss))),

where Xw := {x | (x(o.s), x(o.e)) ∈ π[o.s, o.e](Ro), x(w.s) = x(o.s), x(w.e) = x(o.e) + 6}

There are two things to remark on this expression. First, it might seem that instead of joining
with the auxiliary relation (Ro on Xw) to generate the relative timer event, one might also use an
extended projection in form π[w.s ← o.s, w.e ← o.e + 6, sch(Ro)](Ro). However, this extended
projection would cause difficulties in the incremental evaluation because it does not satisfy the
temporal preservation of CERA. Using the auxiliary relation also gives a considerable gain in
flexibility and expressivity. Novel relative timer events that cannot be expressed as simple addition
or subtraction (e.g., “the next Thursday after event o”) can be modeled simply as such auxiliary
relations and thus integrated in the operational semantics easily. Second, one might argue that
the θ-anti-semi-join is an unnecessary operation because it can be expressed using the “low-level”
operations difference, projection, selection, and join. This is true, but as we will see, CERA does
not allow that particular expression.2 The reason for this is again that the operators needed
for that expression one could also be used to build expression that do not satisfy the temporal
preservation. Also, a θ-anti-semi-join is very valuable for an efficient incremental query evaluation.

13.1.5 Aggregation

Dealing with the event accumulation (while/collect) used to aggregate data (e.g., count) as in the
example rule (3) can be broken down into two tasks. First, we have to “supply” all the data
that will be aggregated. Second, we then have to actually aggregate the data. Aggregation is an
operation not supported by standard relational algebra. However, the grouping operator γ is a
common extension to relational algebra to support aggregation [GUW01].

Supplying the necessary data for aggregation will be done with a θ-join. As with negation and
its θ-anti-semi-join, the θ condition is used to expresses the temporal window over which events
are collected. For our example rule, the θ-condition is w.s ≤ s.s∧s.e ≤ w.e, or abbreviated w w s,
as before. However w.s and w.e are now from a different auxiliary relation Y because we have
a different relative timer event for w. Here Yw := {y | (y(o.s), y(o.e)) ∈ π[o.s, o.e](Uo), y(w.s) =
y(o.e)− 24, y(w.e) = y(o.e)}, where Uo is the relation for the overdue events.

Unlike the θ-anti-semi-join nθ, the θ-join onθ is not really necessary. It could be just expressed
with a selection σθ and a regular join on. However the θ-join is convenient because it indicates
that it comes from an event accumulation rather than an event composition.

1Because the operator is written in infix notation, we prefer to have the θ-condition in subscript here rather
than write it in square brackets as we have with prefix operators such as σ.

2The expression R\πsch(R)(σθ(R on S) is not allowed because CERA does not support a difference operator (cf.
Section 13.2.13) and, more importantly, projections in CERA must not discard time stamps (cf. Section 13.2.7).

13.1. EXPRESSING EVENT QUERIES IN RELATIONAL ALGEBRA 165

Because the grouping operator is an extension to relational algebra that might not be familiar
to all readers it deserves some more explanation. A grouping operator γ[a1, . . . , an, a← F (A)](E)
takes as parameters a number of attribute names {a1, . . . , an} ∈ sch(E) (n ≥ 1) and a single
aggregation expression a ← F (A). (The extension of the grouping operator to have multiple
aggregation expressions is straightforward.) The aggregation expression contains an aggregation
function F (A) such as COUNT (x) or MAX(x) and x is an attribute name (x ∈ sch(E), usually
also x 6∈ {a1, . . . , an}). The grouping operator partitions its input tuples into groups of tuples
having equal values on the grouping attributes a1, . . . , an. For each group it outputs a single tuple.
Each output tuple contains the grouping attributes a1, . . . , an and a single aggregated attribute a
built by applying the aggregation function to the group. Note that all other attributes from the
input are simply dropped.

In our example rule (3), we use as aggregation attributes the time stamps r.s and r.e of the
result and accordingly end up with γ[r.s, r.e, c ← COUNT (id)]. Taken together this gives the
following relational algebra expression for example rule (3):

γ[r.s, r.e, c← COUNT (id)](
µ[r ← o t w t s](

(Uo on Yw) onwws Ss)),

where Yw := {y | (y(o.s), y(o.e)) ∈ π[o.s, o.e](Uo), y(w.s) = y(o.e)− 24, y(w.e) = y(o.e)}.

A naive evaluation of this expression, where each operation has a direct correspondent in
the physical query plan, might be deemed rather inefficient. It would store all Ss events (right
input to the θ-join) and only compute the count aggregate from these events whenever a Yw

event happens. A more efficient physical query plan might combine the join and grouping into a
single operator. This combined operator could then avoid to store Ss events explicitly and only
maintain aggregated counts. However, such a single operator cannot be used in all cases. It works
well only on monotonous aggregates (such as COUNT or MAX).3 Further, more complicated
queries might involve both negation and aggregation (and even multiple ones). In these cases the
more general translation that splits collecting data (θ-join) and computing the aggregate (γ) is
needed. Because we are here concerned with logical query plans (and not yet so much with the
most efficient physical realization), we use the more general solution.

13.1.6 Matching and Construction in XChangeEQ

So far, we have only been looking at RelEQ, where an event is represented by a single tuple. Our
eventual goal however are operational semantics for XChangeEQ, where events are represented as
data terms not relational tuples. However, it turns out that relational algebra is still suitable for
evaluating XChangeEQ. The reason for this is that the evaluation of rules is primarily concerned
with variable bindings (substitutions and substitution sets).

Substitutions can be perceived as relational tuples.4 Then, relational algebra can be used to
express computations on substitutions and substitution sets. Simple event queries, which match
query terms against the data terms of incoming events, produce substitution sets. Rule heads,
which contain construct terms that create data terms for new derived events, consume substitution
sets. The heart of complex event query evaluation are the computations and transformations done
with substitutions and substitution sets on their way from simple event queries to rule heads, and
for this we will use relational algebra.

To step up from RelEQ to XChangeEQ, we have to

• incorporate matching of query terms to evaluate simple event queries,
3One might try to argue that all practically relevant aggregates are monotonous. For example, this is true for

all aggregate functions supported in SQL. However, in XChangeEQ construct terms also use a non-monotonous
aggregation: the construction of a set or list of subterms with all. While not common for relational data, non-
monotonous aggregation is common and important for restructuring XML data.

4The correspondence between substitutions and relational tuples is particularly emphasized here by taking the
named perspective on relational algebra rather then the unnamed, positional perspective.

166 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

DETECT

order {
id { var I },
customer { var C },
product { var P},
quantity { var Q },
discount { var D }

}
ON

and {
event o: weekly -offer {

code { var C },
product { var P },
discount { var D },
max -quantity { var MQ }

},
event a: accept -offer {

code { var C },
id { var I },
customer { var C },
quantity { var Q }

}
} where { o before a, {o,a} within 1 week , var Q <= var MQ }

END

Figure 13.1: Example XChangeEQrule for translation into relational algebra

• incorporate construction of new data terms to evaluate rule heads, and

• deal with the technicality that matching and construction work with substitution sets not
single substitutions.

For matching and construction we introduce a matching operator QX[i : q] (or QX
i:q), and a

construction function CX[c] (or CX
c). Here, i is just a name giving rise to the time stamps i.s, i.e, q

a query term, and c a construct term. QX is a unary operator in the algebra, CX is an aggregation
function (like COUNT or MAX) that is used as a parameter in the grouping operator γ.

In our operational semantics QX and CX realize functionality that XChangeEQ inherits from
Xcerpt. Because they are basically treated as “black boxes,” the general approach of the oper-
ational semantics XChangeEQ might still be applicable when another underlying query language
than Xcerpt is used, provided that matching and construction operations can be given for that
other query language. The superscript X emphasizes that QX and CX are the “Xcerpt versions.”

To group together substitutions that belong to the same substitution set (i.e., were obtained
from the same incoming event), we introduce an additional attribute in tuples called event refer-
ence. An event reference i.ref is basically just an identifier so that tuples with the same value
belong to the same substitution set.5 Like time stamps, event reference attributes are a kind of
administrative meta-data that is used in the evaluation. They are generated by the matching
operator. An alternative to event reference could be to work with relations that are in non-first
normal form (NFNF), i.e., that allow nesting. However, this would lead to operational semantics
that are further away from the traditional relational model and thus harder to understand and
implement.

We will formally define QX and CX later in Sections 13.2.11 and 13.2.12. To give a first taste
however, consider the rule in Figure 13.1. The incoming event stream is modeled with a single
relation E, which will be accessed by a matching operator for each simple event query. (Note that
in contrast to RelEQ, there is no event type that would give rise to separate relations for incoming
events.) The relation E has three attributes: time stamps e.s and e.e, as we have used them before,
and a data attribute term for the data term of an event. With this, the rule can be translated

5The name “event reference” has been chosen to avoid confusion with the term event identifier already used on
the language level (such as “i” in event i: q) and because one way to implement event references would be to
use a memory address (i.e., a pointer or reference) of the event.

13.2. FORMAL DEFINITION OF CERA 167

into the following expression of relational algebra extended with matching and construction:

π[r.s, r.e, term](
γ[r.s, r.e, o.ref, a.ref, term← CX

c (I, C, P, Q, D)](
µ[e← o t a](

σ[o.e < a.s](
σ[max{a.e, o.e} −min{a.s, o.s} ≤ 1](

σ[Q ≤MQ](
M [o : q1](E) on M [a : q2](E)))))))

In this expression c abbreviates the query term in the head of our example rule, q1 the first
simple event query in the rule body, and q2 the second.

13.2 Formal Definition of CERA

We now formally define the operations of our Complex Event Relational Algebra (CERA). This
formal definition makes clear that we use only a restricted set of relational algebra operations
(e.g., no difference and union operators), have some restrictions on operators (e.g., projection
must not drop time stamp attributes), and have some additional operations that are not part
of the standard relational algebra (e.g., grouping or merging). After the definition, we shortly
summarize these differences between CERA and traditional relational algebra. A so-incline reader
may want to jump directly to this summary in Section 13.2.13 and only go back to the formal
definition of CERA in case some notation or definition later in this and the next chapters cannot
be grasped fully from the context.

13.2.1 Relations and Schemas

Let AttrNames denote a set of possible attribute names. It is partitioned into four disjoint sets,
one for names for start time stamps (form i.s), one for end time stamps (form i.e), one for event
references (form i.ref), and one for regular data attributes (form x, not containing a dot). Let
dom denote the domain, i.e., the set of all possible attribute values. Since we need to represent
time stamps and data terms amongst others, T ⊆ dom and DataTerms ⊆ dom.

The basic data objects our algebra operates with are tuples under the named perspective. A
named tuple t is a partial function t : AttrNames → dom from attribute names to attribute
values. We write r(X) = ⊥ when r is undefined for the attribute name X. Named tuples will
usually be denoted with lower case letters r, s, t.

A relation R is a set of tuples. Each relation R is associated with a schema sch(R). For all
tuples r ∈ R it must hold that r(X) 6= ⊥ if X ∈ sch(R) and r(X) = ⊥ if X 6∈ sch(R).

An important constraint is that every schema must contain at least one pair of time stamps, i.e.,
∃i {i.s, i.e} ⊆ sch(R). Time stamps occur only pairwise, i.e., ∀i i.s ∈ sch(R) ⇐⇒ i.e ∈ sch(R).

For a given schema sch(R), we also introduce the following “subschemas”:

• schstart(R) = {i.s | i.s ∈ sch(R)} is the set of all attribute names for start time stamps in
the schema,

• schend(R) = {i.e | i.e ∈ sch(R)} is the set of all attribute names for end time stamps in the
schema,

• schtime(R) = schstart(R) ∪ schend(R) is the set of all attribute names for start or end time
stamps in the schema,

• schref (R) = {i.ref | i.ref ∈ sch(R)} is the set of all attribute names for event references,
and

• schdata(R) = sch(R) \ (schtime(R) ∪ schref (R)) is the set of all attribute names for regular
data attributes.

168 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

The notion of a schema for a relation extends straight-forwardly to the notion of a schema for
a CERA expression formed using operators. We will define it along with the operators.

We make two “sanity” assumptions about contents of relations. First, no starting time stamp
in a tuple r of a relation R may be later than its corresponding end time stamp. Formally,

∀r ∈ R. r(i.s) ≤ r(i.e).

Second, all tuples with the same event reference must have the same values for the time stamps
that correspond to the event reference. Formally,

∀i.ref ∈ schref (R)∀r ∈ R∀r′ ∈ R. r(i.ref) = r′(i.ref) =⇒ (r(i.s) = r′(i.s) ∧ r(i.e) = r′(i.e)).

If these sanity assumptions hold for the input relations of a CERA expression, they also hold for
the result of the expression. (We don’t give a formal proof of this; it is just a trivial structural
induction with one case for every CERA operator.)

13.2.2 Equality and Simulation Equivalence

For values from the domain of data terms (DataTerms), a small but important remark is necessary.
When we compare the equality of two data terms, t1 = t2, we must do this with simulation
equivalence as defined in [Sch04]. This ensures that terms that are syntactically different such as
a{b,c} and a{c,b} but have the same semantics in the data model are recognized as equal, i.e.,
a{b,c} = a{c,b} is true.

13.2.3 Selection

Selection in CERA is the same as in traditional relational algebra. For a given condition C, the
selection operator takes as input a relation R and delivers as output all those tuples from R that
satisfy C.

σ[C](R) = {t ∈ R | C(t) is true},
sch(σ[C](R)) = sch(R).

There are no restrictions on the condition C of a selection. Typically, a condition involves
a comparison operator (=, <, >, ≤, ≥), attribute names from sch(R), and possibly constants.
Importantly, the condition may operate on time stamp attributes, e.g., C ≡ i.e < i.s. The
condition may also do some more computations, e.g., computing maxima, minima, and differences
that are then used in a comparison. The typical example are conditions such as C ≡ max{i.e, j.e}−
min{i.s, j.s} ≤ 1 used for translating the within metric temporal constraint.

We note that the selection operator σ[C] should not be confused with a substitution named
σ. Fortunately, this danger is slim since in the operational semantics, the substitutions have been
“replaced” by tuples in relations and will not appear anymore.

13.2.4 Renaming

The named perspective of relational algebra sometimes requires for technical reasons a renaming
operator, which changes the names of attributes without affecting the result. For example, the
CERA expression for rule (2) in Section 13.1 produces a relation with an attribute id. This relation
is accessed in the CERA expression for rule (3) but the attribute is called oid there. (Note that
simply changing oid to id is not possible, because id is already used elsewhere in rule (3) and its
corresponding CERA expresssion.)

Renaming is denoted ρ[a′1 ← a1, . . . a
′
n ← an](R) and renames attributes a1, . . . , an respectively

to a′1, . . . , a′n. Recall from Section 13.2.1 that time stamps must always occur pairwise; accordingly,
they can only be renamed pairwise.

13.2. FORMAL DEFINITION OF CERA 169

ρ[a′1 ← a1, . . . a
′
n ← an](R) = {t | ∃r ∈ R. t(a′i) = r(ai) and ∀X 6∈ {a1, . . . an} t(X) = r(X)},

sch(ρ[a′1 ← a1, . . . a
′
n ← an](R)) = (sch(R) \ {a1, . . . , an}) ∪ {a′1, . . . , a′n}),

where {a1, . . . , an} ⊆ sch(R), {a′1, . . . , a′n} ∩ sch(R) = ∅,
and j.s← i.s ∈ {a′1 ← a1, . . . a

′
n ← an} iff j.e← i.e ∈ {a′1 ← a1, . . . a

′
n ← an}

13.2.5 Natural Join

Natural join in CERA is the same as in traditional relational algebra. It combines those tuples
from its input relations R and S that agree on the values of shared attributes into output tuples.
Note that if sch(R) ∩ sch(S) = ∅, the natural join “degenerates” to a Cartesian product.

R on S = {t | ∃r ∈ R∃s ∈ S∀X. if X ∈ sch(R) \ sch(S) then t(X) = r(X),
if X ∈ sch(S) \ sch(R) then t(X) = s(X),
if X ∈ sch(R) ∩ sch(S) then t(X) = r(X) = s(X),
t(X) = ⊥ otherwise},

sch(R on S) = sch(R) ∪ sch(S).

Recall from Section 13.2.2 that if r(X) and s(X) are data terms, then their equality in the
definition means simulation equivalence. As value that is assigned to t(X), either one of the two
can be chosen.

13.2.6 Temporal θ-Join

Because they can be expressed as a combination of selection and natural join, θ-joins are not
strictly necessary in CERA. However, the translation of while/collect in XChangeEQ and RelEQ

is conveniently expressed with a particular θ-join. In this temporal θ-join R onθ S, the condition
θ has the form i.s ≤ j.s ∧ j.e ≤ i.e, where {i.s, i.e} ⊆ sch(R) and {j.s, j.e} ⊆ sch(R). We also
abbreviate this with i w j (to emphasize that i.s and i.e are on the left side, we write “w” rather
than “v” with swapped arguments).

Because the temporal θ-join is expressible through other CERA operators, formal proofs about
properties of CERA may ignore it.

R oniwj S = σ[i.s ≤ j.s ∧ j.e ≤ i.e](R on S).

In addition to providing some notational convenience, temporal θ-joins are interesting because
they allow certain optimizations based on the temporal condition [BE07b].

Up until this point, the definitions of CERA operators were identical with traditional relational
algebra. The operators that we will meet in the remainder of this section will diverge and be
restricted some way. The restrictions all serve the purpose of achieving the temporal preservation
property of CERA (see Section 13.3) that enables a step-wise and incremental evaluation as
necessary for complex event queries.

13.2.7 Projection with Preservation of Time Stamp Attributes

Projection in CERA is subject to an important constraint: it must preserve all time stamp at-
tributes and thus may only drop data attributes and event reference attributes. For a given set
A of attribute names and an input relation R, where A ⊆ schdata(R) ∪ schref (R), it delivers as
output a relation that is reduced to the schema A but otherwise equal to R.

π[A](R) = {t | ∃r ∈ R∀X. if X ∈ A then t(X) = r(X), otherwise t(X) = ⊥},
sch(π[A](R)) = A,
where A ⊆ schdata(R) ∪ schref (R).

170 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

The restriction that time stamps must be preserved by projection is important for the temporal
preservation of CERA (see Section 13.3).

13.2.8 Merging of Time Intervals

Merging is a new operator in CERA that is not found in traditional relational algebra. The
operator builds new time stamps i.s, i.e in the output from time stamps j1.s, j1.e, . . . jn.s, jn.e.
The new time stamps are constructed so that the interval i = [i.s, i.e] covers exactly all the
intervals j1 = [j1.s, j1.e], . . . , jn = [jn.s, jn.e]. Using the notation “t” from Chapter 9, this is
written i = j1 t · · · t jn and thus explains the notation used for the µ operator. The old time
stamps j1.s, j1.e, . . . jn.s, jn.e are simply dropped.

µ[i← j1 t · · · t jn](R) = {t | t(i.s) = min{r(j1.s), . . . , r(jn.s)},
t(i.e) = max{r(j1.e), . . . , r(jn.e)},
t(X) = r(X) if X ∈ sch(R) \ {i.s, i.e, j1.s, j1.e, . . . , jn.s, jn.e},
t(X) = ⊥ otherwise},

sch(µ[i← j1 t · · · t jn](R)) = (sch(R) \ {j1.s, j1.e, . . . , jn.s, jn.e}) ∪ {i.s, i.e},
where {j1.s, j1.e, . . . , jn.s, jn.e} ⊆ sch(R).

As noted earlier, merging can be understood just as a restricted version of an extended pro-
jection. However, full extended projection is not allowed in CERA. It would be possible to add
extended projection to CERA provided that it does not modify or drop time stamps (i.e., with
the same restriction as standard projection). However, extended projection is not really necessary
in CERA because the grouping operator performs the same duty (together with the construction
function).

13.2.9 Temporal Anti-Semi-Join

CERA does not support arbitrary difference or anti-semi-join operations. However it does allow
a special form of θ-anti-semi-joins, where the θ-condition gives a restriction so that temporal
preservation (cf. Section 13.3) is assured and thus step-wise, incremental evaluation possible. The
θ condition must have the form i w j (short for i.s ≤ j.s ∧ j.e ≤ j.e) where i.s, i.e are some time
stamp attributes of the left input relation and j.s, j.e are the only time stamp attributes of the
right input relation.

The temporal anti-semi-join R niwj S takes as input two relations R and S, where {i.s, i.e} ⊆
schtime(R) and {j.s, j.e} = schtime(S). (Note that it is “⊆” for the time stamps of the left side of
the anti-semi-join and “=” for time stamps on the right side!) Its output is R with those tuples r
removed that have a “partner” is S, i.e., a tuple s ∈ S that agrees on all shared attributes with r
and whose time stamps s(j.s), s(j.e) are within the time bounds r(i.s), r(i.e) given by r.

R niwj S = {r ∈ R | ∀s ∈ S. if ∀X ∈ sch(R) ∩ sch(S) r(X) = s(X)
then [r(i.s), r(i.e)] 6v [r(j.s), r(j.e)]}

= {r ∈ R | ∀s ∈ S. ∃X ∈ sch(R) ∩ sch(S) r(X) 6= s(X)
or r(i.s) > r(j.s) or r(j.e) > r(i.e)},

sch(R niwj S) = sch(R),
where {i.s, i.e} ⊆ schtime(R) and {j.s, j.e} = schtime(S).

This definition is a somewhat length; therefore it might be easier to think of the temporal
anti-semi-join as being defined as a combination of other operators:

R niwj S = R \ πsch(R)(σiwj(R on S)).

Keep in mind, however, that the expression on the right hand side of this definition is not allowed
in CERA because there is no difference operator in CERA and because its projection does not
preserve all time stamps.

13.2. FORMAL DEFINITION OF CERA 171

13.2.10 Temporal Grouping

Grouping is an operator that is not part of the traditional relational algebra, but a common prac-
tical extension to it for dealing with aggregation (e.g., COUNT , MAX, MIN , SUM). Grouping
in CERA is subject to an important restriction: all time stamps of the input relation must be
used as grouping attributes. We therefore also call it temporal grouping. Again, this restriction
serves to ensure temporal preservation in CERA (cf. Section 13.3).

The temporal grouping operator γ[G, a← F (A)](R) takes as input a relation R. Its parameters
are set of attributes G, the so-called grouping attributes, and an aggregation expression. All time
stamps of the input relations must be grouping attributes, i.e., schtime(R) ⊆ G. The aggregation
expression consists of an attribute name a and an aggregation function F (A) with parameters
A (attribute names). The grouping operator partitions R into groups Pi, one group for each
combination of values of the grouping attributes G (that is, all tuples in Gi have the same values
for the grouping attributes). Each group Pi gives rise to one output tuple. The output tuple
contains the grouping attributes G with the corresponding values and additionally the attribute
a. The value of a is obtained by applying the aggregation function F (A) to Pi.

γ[G, a← F (A)](R) = {t | ∃∅ 6= P ⊆ R. ∀p ∈ P∀X ∈ G t(X) = p(X),
∀p′ ∈ (R \ P)∃X ∈ G t(X) 6= p′(X),
g(a) = F (A)(P)}

sch(γ[G, a← F (A)](R)) = G ∪ {a},
where schtime(R) ⊆ G ⊆ sch(R), a 6∈ G is the name of a data attribute, and A ⊆ sch(R).

The generalization of the grouping operator γ[G, a ← F (A)](R) with a single aggregation
expression a← F (A) to a grouping operator γ[A, a1 ← F (A1), . . . an ← F (An)](R) with multiple
aggregation expressions is straightforward and will therefore not be detailed here further.

The aggregation function F (A) is any function that takes as input a single relation and produces
as output a single value. Common aggregation functions are COUNT (A), MAX(A), MIN(A),
and SUM(A). They have the following definitions:

COUNT (A)(P) = | π[A](P) |,
MAX(A)(P) = max{v | ∃p ∈ P.v = p(A)},
MIN(A)(P) = max{v | ∃p ∈ P.v = p(A)},
SUM(A)(P) =

∑
p∈P p(A).

In the first case, A can be a set containing one or more attribute names. In the other three
cases, A must contain only a single attribute name, and all values of that attribute in A must be
numbers.

Another aggregation function is CX
c , which is used for the construction of new data terms

(as needed for translating XChangeEQ, not just RelEQ). This aggregation function is detailed in
the next section. Because construction may actually produce not just one new data term but
several, we generalize our temporal grouping operator. In the generalized version, it produces for
each group not just a single tuple but a one tuple per value in the result (which is a set) of the
aggregation function. Note that all that changes in the definition that follows is that we have
g(a) ∈ F (A)(G) instead of g(a) = F (A)(G).

γ[G, a← F (A)](R) = {t | ∃∅ 6= G ⊆ R. ∀g ∈ G∀X ∈ G t(X) = g(X),
∀g′ ∈ (R \G)∃X ∈ G t(X) 6= g(X),
g(a) ∈ F (A)(G)}

sch(γ[G, a← F (A)](R)) = G ∪ {a},
where schtime(R) ⊆ G ⊆ sch(R), a 6∈ G is the name of a data attribute, and A ⊆ sch(R).

When the aggregation functions COUNT (A), MAX(A), MIN(A), and SUM(A) are adapted
so that they deliver a singleton set instead of directly delivering a value, this generalized version
can be used for them as well.

172 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

13.2.11 Construction

The construction of data terms is realized as an aggregation function CX
c (A) (also written CX[c](A)),

where c is a construct term and X a set containing one or more attribute names. Like other
aggregation functions, CX

c takes as input a relation provided by the grouping operator. As output
it produces a set of data terms. These data terms are constructed from the construct term c
by interpreting the input relation as a substitution set (and accordingly the tuples of the input
relations as the individual substitutions of the substitution set).

CX
c (X) is more or less a black box operation defined by Xcerpt, the Web query language

underlying XChangeEQ. The result of CX
c (A)(P) is the application Σ(c) of the substitution set

Σ that corresponds to πA(P) to the construct term c as defined for Xcerpt in Chapter 7.3.3 of
[Sch04]. Recall that we have met this application Σ(c) already in Chapter 9.2.3.

CX
c (X)(P) = ΣA,P (c)

where ΣA,P := {σ | ∃p ∈ P∀X. σ(X) = p(X) if X ∈ A, σ(X) = ⊥ otherwise}

Keep in mind that CX
c (X) is an aggregation function (like COUNT or MAX), not an algebra

operator (like σ or on). It can only be used inside a temporal grouping expression.
Note that as already mentioned in Section 13.1.6, other construction operations, for example

from other query languages than Xcerpt could be easily integrated into CERA. All we need for
this is an appropriate construction function CL for that language. This shows that CERA is a very
general formalism for the evaluation of complex event queries that is applicable beyond RelEQ and
XChangeEQ.

13.2.12 Matching

Obtaining variables bindings by matching the query term q of a simple event query event i: q
against data terms of events is realized by the matching operator QX

i:q (also written QX[i : q]).
The input of QX

i:q is a relation R with schema sch(R) = {e.s, e.e, term}. The relation contains one
tuple for each simple event; its starting time the value of e.s, its ending time the value of e.e and
its data term the value of term. The result Qi:q(R) is a relation that contains a tuple for each
substitution obtained from matching the query term q against all the term values in the input
relation. These tuples have an attribute for each free variable in q, and additionally the three
administrative attributes i.s, i.e, and i.ref , which will be detailed shortly.

Note that matching of q against a single data term yields a set of substitutions (not a single
substitution). Now, QX

i:q matches against all data terms in R, and each of these terms yields an
individual set of substitutions. The result relation Qi:q(R) is however just a “flat” set of tuples
for substitutions, not a set of sets. We therefore need a way to reconstruct from the flat set
Qi:q(R) the tuples belonging together because they were obtained from the same simple event.
To this end, tuples in Qi:q(R) contain the additional attribute i.ref . This attribute, called event
reference, is an identifier that tells us which tuples belong together. For tuples that were obtained
from the same simple event, the values of i.ref are the same, for tuples obtained from different
simple events they are different. There are no restrictions on the domain of the event reference
attribute or how it is generated as long as it fulfills this purpose. It could be implemented for
example by simply assigning consecutive numbers to simple events or as a memory address of the
simple event. One could also concatenate the string representations of start time stamp, end time
stamp and data term of the simple event, because the string obtained this way would be unique.
(Note however that this is only interesting for theoretical investigations; the strings would consume
an unnecessarily large amount of memory compared to consecutive numbers.) The generation of
event references is handled by a designated function ref below.

The tuples also contain the start and end time stamp of the simple event they were obtained
from. For convenience, the matching operator renames them from e.s, e.e to i.s, i.e.

The matching itself is (like construction) a black box operation realized by Xcerpt. Be-
low we write it as a function match(q, d), where d is a data term and q is a query term that
does not contain negated variables. Negated variables in query terms are those that occur

13.2. FORMAL DEFINITION OF CERA 173

only inside a subterm negation (keyword without) such as the variable Y in the query term
a {{ b { var X }, without c [var Y] }}. The reason that negated variables are not al-
lowed is that they would lead to an infinite number of possible substitutions because there are
always infinitely many possible bindings for the negated variable.

As detailed in work on Xcerpt [Sch04] and mentioned in Chapter 9.2.2, match(q, d) = {σ |
σ(q) � d, ∀X 6∈ FV (q) σ(X) = ⊥}. Recall that � is the simulation between ground terms. FV (q)
denotes the free variables in q. The result of match(q, d) is finite because negated variables are
not allowed and we only look at substitutions σ that are defined for the free variables in q.

The matching operator QX
i:q then has the following definition:

QX
i:q(R) = {t | ∃r ∈ R∃σ ∈ match(q, r(term)). t(i.s) = r(e.s), t(i.e) = r(e.e),

t(i.ref) = ref(r),
∀X ∈ FV (q) t(X) = σ(X)},

sch(QX
i:q(R)) = {i.s, i.e, i.ref} ∪ FV (q),

where ref is a function so that for all r, r′ ∈ R : r 6= r′ iff ref(r) 6= ref(r′),
and q a query term not containing negated variables.

Translation of simple event queries q containing negated variables requires some more work,
which will be detailed in Section 13.4.4. Essentially, we have to split q into two query terms and
use an anti-semi-join in the algebra to subtract variable bindings obtained from the two query
terms.

As with the construction function, it is easy to extend CERA to incorporate matching opera-
tions from other query languages than Xcerpt. All it needs is a new operator QL that is defined
similar to QX but for example with a different matching function match.

Note that we require only the matching between a query term and a data term in our algebra.
A full unification between a query term and a construct term is neither supported nor necessary,
since we aim at a forward-chaining evaluation. Unification of terms as it would be required by a
backward-chaining evaluation has been developed for Xcerpt and is described in [Sch04].

13.2.13 Summary of Differences to Traditional Relational Algebra

Since CERA is a variant of relational algebra, it is helpful to highlight its differences with the
traditional model. The first difference it that we use some administrative attributes in addition
to regular data attributes in CERA:

• All relations must have at least one pair {i.s, i.e} of time stamps attributes.

• Some relations have event reference attributes such as i.ref .

• There are “sanity” assumptions about these administrative attributes, namely ∀r ∈ R. r(i.s) ≤
r(i.e) and ∀r ∈ R∀r′ ∈ R. r(i.ref) = r′(i.ref) =⇒ r(i.s) = r′(i.s) ∧ r(i.e) = r′(i.e).

The following operators in CERA are the same as in traditional relational algebra and have
no special restrictions:

• selection σ,

• renaming ρ, and

• natural join on.

The following operators in CERA are the same as in traditional relational algebra (with com-
mon extensions such as grouping), but have some special restrictions:

• Projection π must not drop time stamp attributes.

174 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

• Anti-Semi-Joins n must have a θ-condition of the form i w j where i is an occurrence time
of the left relation and j the only occurrence time of the right input relation.

• Grouping γ must use all time stamp attributes of its input relation as grouping attributes.

The following CERA operators are new and not part of traditional relational algebra:

• Merging µ creates a new time interval (as a time stamp attribute pair) by merging and
discarding time intervals (given by several time stamp attribute pairs) from each input
tuple. Note that merging could also be seen as a restricted version of extended projection.

• Matching QX “converts” data terms (represented as a single attribute term) into variable
bindings (represented several attributes corresponding to the variable names). Additionally,
matching equips its result tuples with time stamp and event reference attributes.

• Construction CX, which is not really an operator but an aggregation function, “converts”
tuples representing variable bindings back into data terms.

The following operators are not part of CERA, although they can be found in traditional
relational algebra:

• difference \, and

• union ∪.

A difference operation is simply not necessary in CERA, because we already have the (re-
stricted) anti-semi-join. Union has not been included in CERA for cosmetic reasons that have to
do mostly with the presentation of the algorithm for determining temporal relevance (see Chap-
ter 15). Union could easily be added to CERA, because the temporal preservation property (cf.
Section 13.3) would still hold. For the translation of rules, union is not needed in CERA because
we can split rules that contain disjunction into several rules. However, the query plans for eval-
uating full programs (not just single rules) that will be presented in next chapter support some
form of union.

As mentioned in the beginning of this chapter, the core idea in the design of CERA is to obtain
an algebra that is

• expressive enough to translate XChangeEQ rules (entailing a need for operations such as
grouping, matching, and construction), but still

• restricted enough to be suitable for the incremental, step-wise evaluation that is required to
evaluate complex event queries.

13.3 Temporal Preservation in CERA

CERA expressions pretend a kind of “omniscience” that we will not have in the actual query
evaluation, which must be done over time in a step-wise manner as events are received: the
relations contain conceptually all events that ever happen. In the actual evaluation of event
queries, on the other hand, we can work only with histories of events and have no way of knowing
future events.

The restrictions CERA imposes on expressions (as compared to an unrestricted relational
algebra), make a step-wise evaluation over time reasonable since we do not need any knowledge
about future events when we want to obtain all results of an expression with an occurrence time
until now. More precisely, to compute all results of a CERA expression E with an occurrence
time before or at time point now, we need to know its input relations only up to this time point
now.

This property called the temporal preservation of CERA, because when we replace the “om-
niscient” input relations of an expression E with histories up to now, then all results with an
occurrence time up to now are preserved. To formally state this property, we define the term “oc-
currence time” of an event tuple and introduce two related shorthand notations for convenience.

13.4. TRANSLATION OF SINGLE XCHANGEEQ RULES INTO CERA 175

Definition The occurrence time of a tuple e in the result of an expression E is the latest time
stamp in e, i.e., mE(e) := max{e(i.e) | i.e ∈ schend(E)}.

The shorthand mE(e) is introduced because we will need this longwinded expression fairly
often. To refer to the occurrence time in selections we also introduce the shorthand ME :=
max{i1.e, . . . , in.e} where {i1.e, . . . , in.e} = schend(E). ME is basically the same as me, only on
the syntactic level of the algebra (as needed in conditions of selections) instead of the semantic
level of individual tuples.

Theorem Let E be an CERA-expression with input relations R1, . . . , Rn. Then for all time
points now: σ[ME ≤ now](E) = E′, where E′ is obtained from E be replacing each Rk with
R′k := {r ∈ Rk | mRk

(r) ≤ now}. We call this the temporal preservation property of CERA.

Proof By design of CERA, each operator is restricted in such a way that it maintains the
temporal preservation property. Therefore the proof is a simple structural induction with cases
for each operator; it is sketched in Appendix B.1.

Counter-Example Consider the following relational algebra expression E that has two input
relations R and S for events with sch(R) = {i.s, i.e, x} and sch(R) = {j.s, j.e, x}:

E = R n π[x](S).

This expression is not a CERA expression because it uses an unrestricted anti-semi-join and a
projection that discards time stamps. The expression does not satisfy temporal preservation. That
is, we cannot compute σ[ME ≤ now] from R′ := {r ∈ R | mR(r) ≤ now} and S′ := {s ∈ S |
mS(s) ≤ now}. In fact to compute σ[ME ≤ now], we have to know the full relation S instead of
just its history up until the time now. Therefore, E cannot be evaluated in the step-wise manner
over time that is associated with event queries.

This general idea behind this theorem about our operational semantics is similar to the idea be-
hind the second theorem about our declarative semantics (see Chapter 11.2). Both theorems show
that the suitability of the semantics for complex event queries that must be evaluated over time
in a step-wise manner. Apart from one being about operational and the other about declarative
semantics, there is another important difference between the two theorems. The theorem about
operational semantics given here is concerned with deriving all events for a single rule. (In the
next chapter, we will see that temporal preservation extends beyond CERA expressions for single
rules to query plans for full programs.) The theorem about declarative semantics is concerned
with checking the entailment of a single event under a full program.6

13.4 Translation of single XChangeEQ rules into CERA

In Section 13.1, we have explained the basic idea for translating RelEQ and XChangeEQ rules into
CERA expressions. We have however not provided full details or an indication that the translation
is correct with respect to our declarative semantics. The translation of single XChangeEQ rules
into CERA expression is now the topic of this section.

13.4.1 Normalization of Rules

The translation of rules is more convenient if we consider them only in a normalized form. In the
normal form, the rule body contains a single multi-ary conjunction (i.e., a single and). Further, the
literals bi in the rule body must be in an order so that simple event queries come first, relative timer
events next, then while/collect literals, and at the end while/not literals. Relative timer events

6From this it follows that the temporal preservation theorem here only has an “upper bound” now, while the
theorem for declarative semantics has both an “upper” and “lower bound” given by the time interval t in it.

176 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

DETECT

h
ON

and {
b1,

.

.

.,
bk,

9>>=>>; bi ≡ event ji : qi (1 ≤ i ≤ k)

bk+1,

.

.

.,
bl,

9>>=>>; bi ≡ event ji : relative-timer-speci[jai
, di] (1 ≤ i ≤ k; ai < i)

bl+1,

.

.

.,
bm,

9>>=>>; bi ≡ while ji : collect qi (l + 1 ≤ i ≤ m)

bm+1,

.

.

.,
bn,

9>>=>>; bi ≡ while ji : not qi (m + 1 ≤ i ≤ n)

} where { c1, . . ., cp }
END

Figure 13.2: Normal form for rules

h← or{q1, . . . , qn} where C
h← q1 where C

...
h← qn where C

h← and{q1, . . . , or{q′1, . . . q′m}, . . . qn} where C
h← and{q1, . . . , q

′
1, . . . , qn} where C
...

h← and{q1, . . . , q
′
m, . . . , qn} where C

h← and{q1, . . . , and{q′1, . . . q′m}, . . . qn} where C
h← and{q1, . . . , q

′
1, . . . , q

′
m, . . . , qn} where C

h← q
q is a simple event query

h← and{q}

Figure 13.3: Rewriting rules for obtaining a set of normalized rules

must be ordered so that the event identifier that is used in the definition of a timer event (e.g., i in
event i : extend[i, 5]) has been defined previously (e.g., with an event i : extend-begin[o, 3]).

The structure of a rule in normal form is depicted in Figure 13.2.
In the normal form, query terms must not contain optional or negated variables (i.e., variables

that occur only inside Xcerpt’s optional or without). Optional variables can be dealt with by
splitting a rule into two rules (similar to disjunction). Negated variables are a bit more tricky.
Both topics are addressed in Section 13.4.4.

Given an arbitrary XChangeEQ rule, we can translate it into a set of rules in normal form with
a few rewriting rules that are shown in Figure 13.3. These rewriting rules eliminate disjunction
(or) by splitting up rules. Additionally, they remove unnecessary nesting of and. That rewriting
a set of XChangeEQ rules with them does not affect semantics, terminates, and is confluent (i.e.,
the final result does not depend on the order in which the rewriting rules are applied) should be
clear since the rewriting rules are just standard transformations.

When the rewriting rules have been applied, we only have to reorder the literals in each rule
so that we obtain rules in normal form. Within the relative timer events, temporal stratification
ensures that we actually can order them appropriately because it forbids cyclic definitions of
relative timers (cf. Chapter 10.1)

A normal form for RelEQ rules would be defined similarly. Since RelEQ rules have no disjunc-
tion, only reordering of the literal is needed for their normal form there so that, as in XChangeEQ

simple event queries come first, then relative timer event literals, then while/collect literals, and
finally while/not literals.

13.4. TRANSLATION OF SINGLE XCHANGEEQ RULES INTO CERA 177

13.4.2 Translation of Normalized Rules

We now turn to the translation of a single XChangeEQ rule that has the described normal form
into a CERA expression. Recall that the normalization of a single rule usually yields a set of rules
not a single rule. The translation of rule sets requires additionally the notion of query plans, which
will be introduced in the next chapter. While we focus here on the translation of XChangeEQ, the
translation of RelEQ would be analogous, just without matching and construction operators.

The translation is mostly concerned with the conjunction in the rule body; recall that is has the
form and{b1, . . . , bn}. We will translate it with a series B1, . . . , Bn of CERA expressions, where
each Bi translates the fragment of the rule body consisting of the literals up i, i.e., translates
and{b1, . . . , bi}, and depends on the previous one (except of course the first). The last one, Bn,
is the translation of the full conjunction in the rule body. Based on this Bn, we will then define
an expression C that translates the full rule body, i.e., “adds” the conditions of the where-clause.
Based on C, we then finally define an expression Q that translates the full rules, i.e., “adds” the
rule head.

In the following, we consider a single normalized XChangeEQ rule which we want to translate.
We use the notation from Figure 13.2; in particular, k denotes the position of the last literal that is
a simple event query, l the position of the last literal that is a relative timer event, m the position
of the last while/collect literal, and n the total number of literals.7 Further let E be a relation
that denotes the stream of incoming events with sch(E) = {e.s, e.e, term} (cf. Section 13.1.6). In
the translation we ignore absolute timer events because, as described in Chapter 9.4.3, they can
be translated like simple event queries, only against a different stream of incoming events that
represents the “calendar.”

Single Simple Event Query (B1)

The CERA expression B1 translates only the literal b1. This literal must be a simple event query,
i.e., b1 ≡ eventj1 : q1.8 We translate b1 with the matching operator for the query term q1. Its
input is the stream of incoming events E.

B1 = QX[j1 : q1](E)

Further Simple Event Queries (Bi, 1 < i ≤ k)

For i > 1, Bi translates the conjunction and{b1, . . . , bi}. We have to distinguish four cases,
depending on what kind of literal bi is. The first case is that 1 < i ≤ k, meaning that bi is a simple
event query, bi ≡ eventji : qi. We translate the single literal bi itself as described above with a
matching operator for qi. This is then joined with Bi−1, the translation of and{b1, . . . , bi−1}.

Bi := Bi−1 on QX[ji : qi](E) (1 < i ≤ k)

Relative Timer Events (Bi, k < i ≤ l)

The second case is that bi is a relative timer event, event ji : relative-timer-speci[j, di]. We
translate bi with an auxiliary relation Xji and join it with Bi−1.

Bi = Bi−1 on Xji

The definitions of the auxiliary relations are straightforward and according to their definitions
in the model theory of Figure 9.2. For example event ji : extend[j, 6] has the following auxiliary
relation Xji , provided that the literal that defines j is not in turn itself a relative timer:

Xji := {x | (x(j.s), x(j.e)) ∈ ρ[j.s← e.s, j.e← e.e](π[e.s, e.e](E)),
x(i.s) = x(j.s), x(i.e) = x(j.e) + 6}.

7If there are no relative timer event literals, then l := k. If there are no while/collect literals, then m := l.
8Note that b1 cannot be a while/collect or while/not literal, because the event identifier after while must be

defined earlier somewhere in the rule body. Further b1 cannot be a relative timer event, because of temporal
stratification.

178 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

In this translation, we define Xji
relative to the stream of incoming events E. Alternatively, we

could also define it relative to the expression used for translating the literal that defines i. (See
also Chapter 14.4.4)

This alternative is mainly interesting for a more efficient implementation. If the literal defining
j is also a relative timer event, then we have to use the auxiliary relation Xj of j instead of E in
the definition of Xji :

Xji := {x | (x(j.s), x(j.e)) ∈ π[j.s, j.e](Xj),
x(i.s) = x(j.s), x(i.e) = x(j.e) + 6}

Event Accumulation for Collection (Bi, l < i ≤ m)

The third case is that l < i ≤ m, meaning that bi ≡ while ji : collect qi (qi query term) is a
while/collect literal. The query term qi is translated with a matching operator QX[i′ : qi], where
i′ is fresh event identifier (i.e., one that is not used elsewhere in the rule or its translation). A
temporal join combines this with Bi−1 and is followed by a projection that discards i′.ref (which
will not be needed anymore).

Bi := π[Sch \ i′.ref](Bi−1 onjiwi′ QX[i′ : qi](E)) (l < i ≤ m)
where Sch := sch(Bi−1 onjiwi′ QX[i′ : q](E))
and i′ is a fresh event identifier

Event Accumulation for Negation (Bi, m < i ≤ n)

The last case for the translation of the conjunction is that m < i ≤ n, meaning that bi ≡
while ji : not qi (qi query term) is a while/not literal. The query term qi is again translated
with a matching operator QX[i′ : qi], where i′ is a fresh event identifier. A temporal anti-semi-join
is used to combine it with Bi−1.

Bi := Bi−1 njiwi′ QX[i′ : qi](E) (m < i ≤ n)
where i′ is a fresh event identifier

Conditions (C)

To translate the full rule body (i.e., the conjunction together with the where-condition), we add
selections for the individual conditions c1, . . . cq “on top” of Bn.

C := σ[c′1 ∧ · · · ∧ c′q](Bn)

Each individual condition ci on the level of the language XChangeEQ must be transformed into a
condition on the level of the algebra. For example c ≡ i before j would become c′ ≡ i.e < i.s.
Figure 13.4 shows the translations of the temporal conditions (compare this also with Figure 9.3
defining the semantics of the temporal conditions in the model theory).

If the rule contains no where clause, then of course just C := Bn. Note that instead of
a single selection with a conjunction, we could also chain multiple selections in the manner of
σ[c′q](. . . σ[c′1](Bn) . . .).

Full Rule (Q)

For the translation of the full rule, it remains to add the translation of the head. This means
adding a merge operator that generates the time stamps r.s and r.e of the resulting events, a
construction that generates their data term term, and finally a projection that discard the event
reference attributes that should not be part of the output.

13.4. TRANSLATION OF SINGLE XCHANGEEQ RULES INTO CERA 179

c (XChangeEQ syntax) c′ (Algebra)
i before j i.e < j.s
i after j j.e < i.e
i during j j.s < i.s ∧ i.e < j.s
i contains j i.s < j.s ∧ j.e < i.s
i overlaps j j.s < i.s ∧ i.s < j.e ∧ j.e < i.e
i overlapped-by j i.s < j.s ∧ j.s < i.e ∧ i.e < j.e
i meets j i.e = j.s
i met-by j j.e = i.s
i starts j i.s = j.s ∧ i.e < j.e
i started-by j j.s = i.s ∧ j.e < i.e
i finishes j j.s < i.s ∧ i.e = j.e
i finished-by j i.s < j.s ∧ j.e = i.e
i equals j i.s = j.s ∧ i.e = j.e
{i1, . . . , in} within d max{i1.e, . . . in.e} −min{i1.s, . . . in.s} ≤ d
{i, j} apart-by d min{i.e, j.e} −max{i.s, j.s} ≥ d

or equivalently (i.e− j.s ≥ d ∨ j.e− i.s ≥ d)

Figure 13.4: Translation of conditions in where clause

Q := π[r.s, r.e, term](
γ[r.s, r.e, Schref , term← CX

h(Schdata)](
µ[r ← j1 t · · · t jl](C)))

where Schref = schref (C), Schdata = schdata(C)

Summary

To summarize the translation process, the general structure of the resulting CERA expression
Q is illustrated in Figure 13.5. The “heart” of Q is a tree of joins, which from left to right are
first regular natural joins for the simple event queries, then regular natural joins for the relative
timer events, then temporal joins (together with projection to discard the event references) for
the while/collect literals, and finally temporal anti-semi-joins for while/not literals. On top of this
join tree sits a selection for the conditions of the where clause, followed by a merge operator to
generate the occurrence time of the result, and a temporal grouping operator that produces the
data terms of the result events.

Keep in mind that the illustration of Figure 13.5 describes the most general case, and thus
gives a fairly huge and complex CERA expression. In practice, rules will rarely use all features
together so that their CERA expressions will be smaller and look less complex.

13.4.3 Correctness

We now want show the correctness of the translation of a normalized rule h ← B. We give the
main ideas here; the proof is completed in Appendix B.2.

First it is appropriate to recall some details from the declarative semantics to explain what
correctness here means. The semantics are given by M{h←B},E , where {h ← B} is the program
containing only the single rule h ← B. Since we consider only hierarchical programs and only a
single rule, we have M{h←B},E = Tω

{h←B}(E) = T{h←B}(E) so that the semantics are given by
applying the fixpoint operator to the program {h ← B} and the event stream E once. That is,
the declarative semantics of a single rule h← B are given by:

T{h←B}(E) = E ∪ {et | there exists a maximal substitution set Σ,
and a substitution τ such that E,Σ, τ |= Bt and e ∈ Σ(h)}

180 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

Figure 13.5: General structure of CERA expression for translation of a normalized rule

13.4. TRANSLATION OF SINGLE XCHANGEEQ RULES INTO CERA 181

Let Q be the CERA expression that translates of rule h ← B. We identify events et with
tuples r of Q and E by r(r.s) = begin(t), r(r.e) = end(t), r(term) = e. In the other direction we
identify tuples r with events r(term)[r(r.s), r(r.e)]. (Analogous for e.s, e.e instead of r.s, r.e.) We
then have to show for the correctness of our translation that9

Q ∪ ρ[r.s← e.s, r.e← s.e](E) = T{h←B}(E).

For this it suffices to show that

Q = {et | there exists a maximal substitution set Σ,
and a substitution τ such that E,Σ, τ |= Bt and e ∈ Σ(h)}.

Next, we have to find a correspondence between the contents of the relations generated by
subexpressions of Q and the combined Σ and τ . This correspondence is given by “bundling
together” tuples in a relation with the same values for the event references. Each “bundle”
corresponds to a Σ, τ combination. The data attributes of the tuples in a bundle correspond to
the individual substitutions in Σ and the event references and time stamps (which are equal for
all tuples in a bundle!) to the information in τ .

We use this correspondence to show a lemma about each subexpression S of Q that translates
a subexpression F of the rule body B. The subexpressions S of Q are B1, . . . , Bn, C and they
translate b1, . . . , and {b1, . . . bn}, and {b1, . . . bn} where {c1, . . . cp}, respectively. Explanations
on notation following shortly, the lemma is:

if S′ ⊆bundle S, t = occtime(S′)
then E,ΣS′ , τS′ |= F t,ΣS′ maximal w.r.t. FV (F)

and, conversely,
if E,Σ, τ |= F t,Σ maximal w.r.t. FV (F)
then S′Σ,τ ⊆ S, t = occtime(S′).

The first part of the lemma is soundness (“results produced by the operational semantics
are results according to the declarative semantics”). The second part is completeness (“results
according to the declarative semantics are actually produced by the operational semantics”).

The following notation is used in this lemma. S′ ⊆bundle S means that S′ is a maximal subset
of S s.t. the values of its tuples for their event reference attributes are all equal.

S′ ⊆bundle S :⇐⇒ S′ 6= ∅ ∧ ∀s′ ∈ S′. ∀s′′ ∈ S′∀x(s′(x.ref) = s′′(x.ref))
∧ ∀s ∈ S \ S′∃x(s′(x.ref) 6= s(x.ref))

The occurrence time of a bundle S′ is a time interval given by

occtime(S′) = [min{s′(x.s) | x.ref ∈ schref (S′)},max{s′(x.e) | x.ref ∈ schref (S′)}],
where s′ some arbitrary tuple of S′

Note that the choice of s′ ∈ S′ does not matter due to the sanity assumptions about S. (Tuples
with the same value for the event references have the same values for the time stamps.)

ΣS′ and τS′ are the substitution set and event trace corresponding to S′ as described informally
earlier. Similarly, S′Σ,τ is the subset of S (the “bundle”) corresponding to Σ and τ . Their formal
definitions are given in Appendix B.2.

The proof of the lemma is shows by induction that it holds for each Bi (as defined in the
previous section), and then additionally that is then also holds for C. The details are given in
Appendix B.2.

Knowing that the lemma holds for C, it is easy to reason that Q is correct. C represents
(with the correspondence of the lemma) all possible Σ, τ combinations. The merging operator of
Q generates the appropriate occurrence time [r.s, r.e] for each bundle C ′ ⊆bundle C) because of

9The renaming (ρ) is just a minor technical matter that is needed because we the time stamps in the E are
named e.s and e.e, and thus must thus be renamed to r.s and r.e for the union.

182 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

the part about occtime(C) = t in the lemma. The following grouping operator γ forms groups
that correspond exactly to the bundles C ′ of C, because all event reference attributes are grouping
attributes. The generated data term for each bundle is correct simply by definition of CX

h. The
final projection just discards the event reference attributes that should not be part of the output.

13.4.4 Incorporating Negated and Optional Variables

So far we have made the assumption that query terms do not contain negated or optional vari-
ables as defined by Xcerpt. Negated variables are variables that occur inside a subterm nega-
tion without, optional variables are variables that occur inside an optional subterm specification
optional. We refer to [Sch04] for details.

Subterm negation and optional subterm specifications are important features of Xcerpt for
making incomplete queries against Web data (i.e., queries that do not rely on a strict schema
of the data). However, this thesis focuses on complex event queries, only building upon Xcerpt.
Therefore, we shortly sketch here how negated and optional variables can be incorporated in the
operational semantics developed here without providing much detail.

When we match a query term such as q = a{{without var X}} against a data term such as
a{1,2,3}, then we need some way to capture the information that X may never be bound to
bindings 1, 2, or 3. This is important for cases where the variable X is used in another query term
of the same event query. In our operational semantics, the result of matching (i.e., of the matching
operator QX) is a relation and tuples in the relation cannot capture such negative information.
Consider the following example XChangeEQ query:

and {
event i: a {{ without var X }},
event j: b {{ var X }}

}

For events a{1,2,3}ta and b{2,4}tb , it should yield only the variable binding X = 4. However,
the CERA expression

QX[i : a{{without var X}}] on QX[j : b{{var X}}]

would also generate X = 2 because the result of QX[i : a{{without var X}}] does not capture
that X must not be 1, 2, or 3.

One way to incorporate negative bindings would be to allow tuples r to represent negative
information, here for example by having tuples that have something like r(X) = ¬{1, 2, 3}. The
equality used in joins must then be adapted appropriately so that a tuple s with s(X) = 2 will not
join with r, but a tuple s with s(X) = 4 will. However, because that solution would be a severe
“intrusion” into the algebra it is not considered further here.

Another, simpler and cleaner possibility is to split up the query term. In the example, the
query term would be split into two positive queries a{{ }} and a{{var X}}. We can then use an
anti-semi-join to subtract the “forbidden” bindings from those obtained from the positive bindings.
The corresponding CERA expression for our example is:

(QX[i : a{{}}] on QX[j : b{{var X}}]) ni.ref=i′.ref QX[i′ : a{{var X}}]

It is important that the anti-semi-join comes after the join of the other two matchings. The
operation R ni.ref=i′.ref S has not been defined in CERA earlier, but is just a variant of the
temporal anti-semi-join because equal event references imply equal time stamps (i.e., i w i′ is
implied by i.ref = i′.ref).

The situation for optional variables is similar. When we match a query term such as a{{
optional b { var X } }} against data terms, then X may or may not have a binding. One way
to deal with this is to represent non-existing bindings with null-values and modify the equality
of the joins appropriately. Another is to split the rule into one rule where the optional and

13.4. TRANSLATION OF SINGLE XCHANGEEQ RULES INTO CERA 183

its subterm is removed and another rule where only the keyword optional is removed but the
subterm stays. These rules are then translated separately. While simpler, this second option is
likely to be less efficient however.

184 CHAPTER 13. COMPLEX EVENT RELATIONAL ALGEBRA (CERA)

Chapter 14

Query Plans and Incremental
Evaluation

So far, we have translated rules into expressions of our Complex Event Relational Algebra (CERA).
While these expressions describe abstractly the operations involved in query evaluation, they do
not describe how query evaluation performed in a step-wise manner with new event arriving over
time and how it can be efficient with an incremental evaluation that avoids recomputing some
intermediate results in each step.

As we will see, incremental evaluation depends heavily on which intermediate results we “ma-
terialize,” that is, store across the different evaluation steps. To capture this information we
introduce query plans that have so-called materialization points. A materialization point cor-
responds to a materialized intermediate result (or some output or input). The importance of
materialization points goes beyond incremental evaluation, however. They help us with the eval-
uation of hierarchical rule programs (not just single rules), where results of one rule can be input
to another through rule chaining, and can account for multi-query optimizations, where results
of common subexpressions are shared. Garbage collection, which will be the topic of Chapter 15,
will also refer to materialization points.

We now first explain the general ideas behind incremental evaluation of complex event queries
to motivate the need for materialization points (Section 14.1). We then formally define query plans
with materialization points (Section 14.2) and address their incremental evaluation by applying a
technique called finite differencing (Section 14.3). We also give the translation of rule programs into
such query plans (Section 14.4) and discuss how query rewriting can be applied as an optimization
technique to query plans (Section 14.5), focusing especially on rewritings that go beyond the
traditional rewritings of relational algebra. Finally, we discuss the relationship of the query plans
and their incremental evaluation as introduced here with related work (Section 14.6).

14.1 Incremental Evaluation Explained

Recall from Chapter 13 that the event stream is represented by a relation E with schema sch(E) =
{e.s, e.e, term}. A CERA expression Q that translates a complex event query rule has the similar
schema sch(Q) = {r.s, r.e, term}. The occurrence time of an event tuple q of Q is mQ(q) :=
max{q(i.e) | i.e ∈ schend(Qk)}. To express mQ on the syntactic level of the algebra we used the
shorthand MQ := max{i1.e, . . . , in.e} where {i1.e, . . . , in.e} = schend(Q).

The task of evaluating a complex event query given by a CERA expression Q is a step-wise
procedure over time: A step is initiated by one or more base events (an event not defined by
a rule or a timer event) happening at the current time, which we denote now. We assume for
simplicity here that the base events are processed in the temporal order in which they happen,
i.e., with ascending end time stamps. Extensions where the order of events is “scrambled” (within
a known bound) are possible, however (see Chapter 18). Note that while the time domain can be

185

186 CHAPTER 14. QUERY PLANS AND INCREMENTAL EVALUATION

continuous (e.g., isomorphic to real numbers), the number of evaluation steps is discrete since we
assume a discrete number of incoming events.

The required output for the evaluation step then is all result tuples q of Q that “happen” at
the current time now, i.e., where mQ(q) = q(r.e) = now. In other words in each step, we are not
interested in the full result of Q, but only in 4Q := σ[MQ = now](Q).

The computation of 4Q does not involve any knowledge about future events (i.e., events
might happen later than the current time now). The temporal preservation property of CERA
(cf. Chapter 13.3) ensures this and thus makes it possible to deliver results of Q immediately at
their occurrence time.

However, the computation of 4Q usually requires knowledge of past events (i.e., events that
have happened before the current time now). Accordingly, in each step we also have to maintain
some data structures that store knowledge about these events for use in future evaluation steps.
These data structures are called event histories.

A naive, non-incremental way of query evaluation would be: Maintain a stored version of the
event stream so far across steps as a relation.1 (And similarly stored versions of the auxiliary
relations for the relative timer events.) In each step simply insert all new events into the relation
and evaluate the CERA expression Q with these stored relations as input from scratch according
to its non-incremental semantics (see Chapter 13.2). Then apply the selection σ[MQ = now] to
output the result of the step.

Such a naive, non-incremental query evaluation is, however, rather inefficient: we compute not
only the required result 4Q = σ[MQ = now](Q), but also all results from previous steps, i.e., also
σ[MQ < now](Q).

It is more efficient to use an incremental approach, where we store not just the input relations
of Q but also some intermediate results. In each step we then compute only the changes to the
result of Q and to the intermediate results. It turns out that due to the temporal preservation
of CERA, the change to (the result of) Q only involves inserting new tuples, and that these
tuples are exactly the ones from 4Q, which is also required as the result of the evaluation step.
Similarly, the change to each intermediate result V involves only inserting new tuples, and these
are 4V := σ[MQ = now](V).

This general idea leaves us with the following questions that will be addressed in the remainder
of this chapter:

• Which intermediate results will be materialized (i.e., stored across steps different evaluation
steps)?

• How do we compute 4Q (as well as the 4V s) efficiently (i.e., in an incremental manner that
avoids unnecessary recomputations by using the materialized intermediate results)?

• How can we extend the incremental evaluation of a single CERA expression that translates
a single rule to an incremental evaluation of a hierarchical rule program (in particular one
that uses rule chaining)?

• How can we perform important optimizations (e.g., multi query optimizations) on the level
of the logical query plan?

14.2 Query Plans with Materialization Points

We now introduce so-called query plans with materialization points. Materialization points serve
to describe which intermediate results will be materialized in the incremental evaluation (with the
aim of avoiding their re-computation). Further they will account for the flow of information from
one rule to another, i.e., chaining of rules, when we translate full rule programs (not just single
rules).

1Somewhat more intelligently, we could store only the results of the matching operators QX
i:q(E) in separate,

individual relations instead of storing of the actual event stream in a single relation. The issues of the non-
incremental evaluation that are illustrated here however remain.

14.2. QUERY PLANS WITH MATERIALIZATION POINTS 187

The decision whether some intermediate result should be materialized or recomputed in the in-
cremental evaluation is always a trade-off. Simply put, materializing an intermediate result should
save computation time at the price of consuming more memory compared to recomputing the in-
termediate result. The trade-off is however not always that simple. Materializing intermediate
results entails a need for garbage collection (cf. Chapter 15) and this garbage collection requires
computation time that is not needed when recomputing results. The increased demand of memory
can lead to the materialized results being stored at a lower level in the memory hierarchy (e.g.,
disc instead of main memory).2 The time needed to access a lower level in the memory hierarchy
might outweigh the benefit of a materialized result compared to recomputing it (from data at a
higher level in the memory hierarchy).

Therefore in our operational semantics for XChangeEQ we do not want to commit to a single,
fixed strategy for all queries that determines which intermediate results are materialized. Rather
we want to develop a framework with our query plans that allows to describe each of the many
possibilities so that query plans can be the output of a query compiler and optimizer that uses
various heuristic and cost-based planning to compare different options.

14.2.1 Definition

The intuition of our query plans is that they describe relations that represent the materialized
intermediate results (and the final results, i.e., the outputs of rules). These relations are called
materialization points and the query plan contains equations that describe the contents of mate-
rialization points with CERA expressions. Evaluation steps of the incremental evaluation update
the contents of materialization points with new events so that after each step the contents of a ma-
terialization point reflect the result of its defining CERA expression. As we will see in Section 14.3,
the update of a materialization point is computed not with the defining CERA expression itself
but more efficiently.

Definition A query plan is a sequence

QP = 〈 Q1 := E1,
. . . ,
Qn := En 〉

of materialization point definitions Qi := Ei. Qi is a relation name and called a materialization
point. Ei is either a CERA expression or a union R1 ∪ . . . ∪ Rn of relations. The relations R1,
. . . , Rn can be base relations3 or materialization points. Each materialization point Qi is defined
only once in QP , i.e., Qi 6= Qj for all 1 ≤ i < j ≤ n. The materialization point definitions must
be acyclic, i.e., if Qj occurs in Ei then j < i for all 1 ≤ i ≤ n and all 1 ≤ j ≤ n.

Remarks Unions R1 ∪ . . .∪Rn are needed in query plans amongst others to properly translate
some rule programs such as A(x)← i : B(x), j : C(x), A← i : B(x), j : D(x). A union could also
have been added as an operator to CERA itself — temporal preservation, the central property of
CERA needed for an incremental evaluation, would be unaffected. However allowing unions only
at materialization points not at arbitrary places in CERA expressions is convenient for the to keep
the presentation of the algorithm for determining temporal relevance in the next chapter simple.
(Chapter 15.3.7 explains the necessary extensions to allow unions in arbitrary places.)

The restriction to acyclic definitions of materialization points makes their semantics straight-
forward (see below). For translating hierarchical rule programs our query plans are sufficient. For
translating more complicated rule programs that are stratified but not hierarchical, the notion of

2The same principle also applies between levels in the memory hierarchy, e.g, main memory and processor caches,
although there is an important difference: Between disc and main memory, the decision which data is stored where
can be controlled by the query engine. Between main memory and processor cache, it is controlled by the caching
strategy of the processor.

3When translating an XChangeEQ program, the base relations are the relation E representing the incoming
event stream and the auxiliary relations Xi for relative timer events

188 CHAPTER 14. QUERY PLANS AND INCREMENTAL EVALUATION

query plans would have to be extended and a slightly more involved semantics needed. We favor
simplicity of presentation here and focus on hierarchical programs. Once that is understood, the
extension to stratified programs is not hard and there are no aspects to it that are specific to
complex event queries.

14.2.2 Semantics

Since a query plan is acyclic, its semantics are straightforward: compute the results of its ex-
pressions from left to right (from Q1 := E1 to Qn := En), replacing references to materialization
points Qj in expressions Ei with their (already computed) result. The result of a query plan QP
is then just the sequence of the contents (i.e., relations) of the materialization points.

Note that the semantics of query plans still have the “omniscient” perspective like CERA
expressions and do not (yet) reflect the step-wise evaluation over time.

14.2.3 Temporal Preservation

The temporal preservation property of CERA continues to hold for query plans. That is, to
compute the contents of the materialization points in QP up to a time point now it suffices to
know the input relations up to that time point now. No knowledge about the future (i.e., tuples
with occurrence times after now) is needed. The rationale for this is that temporal preservation
holds for any CERA expression as well as for unions of relations, and query plans contain nothing
else.

14.2.4 Example

To illustrate query plans consider the following XChangeEQ rule:

DETECT

d [var X, var Y]
ON

and {
event i: a {{ var X }},
event j: b [var X, var Y],
event k: c {{ var Y }}

}
END

Figure 14.1 shows two possible query plans for evaluating this rule. We can easily see that both
query plans correspond to the CERA expression obtained from the translations of that rule as
it has been described in the previous chapter: from top to bottom, we simply have to expand
references to materialization points in expressions on the right hand sides with their definitions.

While both query plans obviously deliver the same results for Q, they materialize different
intermediate results. Both query plans materialize the variable bindings obtained from matching
the simple event queries in materialization points A, B, C. (It is generally a good strategy
to materialize these because this way we avoid storing the incoming event stream E and avoid
repeating in each step the matching of simple event queries, which is a potentially expensive
operation.) Query plan 1 then uses these directly to compute the final result Q. In the incremental
evaluation it will therefore compute the join A on B in each step and not utilize the intermediate
result of that join from the previous step. Query plan 2 “remembers” intermediate results for
A on B across steps and uses them in its evaluation of Q. This is indicated by introducing the
materialization point V for A on B.

We can see from this that the difference between (A on B) on C and V on B with V := A on B
is not just an insignificant change in notation. While both query plans give the same result for
Q, they are different in the incremental evaluation because they materialize different intermediate
results. This will become clear in Section 14.3.

As already discussed at the beginning of this section, the performance of a query plan depends
on many aspects such as characteristics of the event stream, available main memory, used physical

14.3. INCREMENTAL EVALUATION AND FINITE DIFFERENCING 189

Query Plan 1:

A := QX[i : a{{var X}}](E)
B := QX[i : b[var X, var Y]](E)
C := QX[i : c{{var Y}}](E)
Q := π[r.s, r.e, term](

γ[r.s, r.s, i.ref, j.ref, k.ref, term← CX[d[var X, varY]]](
(A on B) on C))

Query Plan 2:

A := QX[i : a{{var X}}](E)
B := QX[i : b[var X, var Y]](E)
C := QX[i : c{{var Y}}](E)
V := A on B
Q := π[r.s, r.e, term](

γ[r.s, r.s, i.ref, j.ref, k.ref, term← CX[d[var X, varY]]](
V on C))

Figure 14.1: Two different example query plans for the same rule

operator implementations, etc. Therefore there is no general principle to tell which of the two
query plans presented here for the example rule would be more efficient. The aim of the query
plans that have been defined here is to give a representation to the different options of materi-
alizing intermediate results in a way that a query compiler and optimizer can compare different
alternatives and choose.

14.3 Incremental Evaluation and Finite Differencing

We have already explained the basic idea of step-wise evaluation over time in Section 14.1 for
a single CERA expression Q. The idea extends straightforwardly to query plans QP . In the
incremental evaluation, we are not only concerned with computing the output in each step, but
also with maintaining the event histories (i.e., the contents of the materialization points). We will
see, however, that solving one issue also solves the other.

14.3.1 Input and Output in Incremental Evaluation

Each step of the incremental evaluation of a query plan QP = 〈Q1 := E1, . . . , Qn := En〉 is
initiated by one or more base events happening at the current time, which we denote now. The
available input of the evaluation step is:

• 4B1, . . . , 4Bm are relations that contain the new base events that happen at the current
time now. We have 4Bi = σ[MBi = now](Bi), where Bi is the conceptual “omniscient”
base relation that contains all events that ever happen (past, present, and future).

• ◦Q1, . . . , ◦Qn are relations for the event histories of the materialization points that store
results and intermediate results from previous evaluation steps. We have ◦Qi = σ[MQi <
now](Qi), where Qi is the “omniscient” result for Qi (as described in Section 14.2.2).

• ◦B1, . . . , ◦Bm are relations for the event histories of the base events. We have ◦Bi =
σ[MBi < now](Bi). In practice, ◦B1, . . . , ◦Bn are often not needed because we have
materialization points that capture their information.4

4An example of this are the two query plans from Section 14.2.4. For their incremental evaluation the history
◦E of the stream of incoming events E is not needed because the histories ◦A, ◦B, ◦C of the materialization points
A, B, and C store all information that is needed in the incremental evaluation.

190 CHAPTER 14. QUERY PLANS AND INCREMENTAL EVALUATION

4σC(E) = σC(4E)
4ρA(E) = ρA(4E)
4πP (E) = πP (4E)
4µM (E) = µM (4E)
4γG(E) = γG(4E)
4QX

i:q(E) = QX
i:q(4E)

4(E1 ∪ E2) = 4E1 ∪4E2

4(E1 on E2) = 4E1 on ◦E2 ∪
4E1 on 4E2 ∪
◦E1 on 4E2

4(E1 oniwj E2) = 4E1 oniwj ◦E2 ∪
4E1 oniwj 4E2

4(E1 niwj E2) = 4E1 niwj ◦E2 ∪
4E1 niwj 4E2

◦σC(E) = σC(◦E)
◦ρA(E) = ρA(◦E)
◦πP (E) = πP (◦E)
◦µM (E) = µM (◦E)
◦γG(E) = γG(◦E)
◦QX

i:q(E) = QX
i:q(◦E)

◦(E1 ∪ E2) = ◦E1 ∪ ◦E2

◦(E1 on E2) = ◦E1 on ◦E2

◦(E1 oniwj E2) = ◦E1 oniwj ◦E2

◦(E1 niwj E2) = ◦E1 niwj ◦E2

Figure 14.2: Equations for finite differencing

The output of the evaluation step must be:

• 4Q1, . . .4Qn the results for current step for all materialization points. As explained earlier,
they must be 4Qi = σ[MQi = now].

In addition to producing the output, the evaluation step must perform an important side-effect
as preparation for future evaluation steps:

• After the evaluation step, the event histories ◦B1, . . . , ◦Bm, ◦Q1, . . . , ◦Qn must be updated
(to ◦B′1, . . . , ◦B′m, ◦Q′1, . . . , ◦Q′n) so that they can become the input of the next evaluation
step. This means that we must have ◦B′i = σ[MB′

i
≤ now](Bi) and ◦Q′i = σ[MQ′

i
≤

now](Qi).

Since ◦Q′i = ◦Qi ∪4Qi (analogous for ◦B′i), computing the output also solves the main issue
of the side-effect. Therefore, the main concern of the incremental evaluation is to compute the
4Qi’s efficiently.

14.3.2 Finite Differencing

We can compute each4Qi for a materialization point Qi := Ei in QP efficiently using the changes
4Rj to its input relations Rj , together with ◦Rj = σ[MRj < now](Rj), their materialized histories
from the previous evaluation step. Note that the input relations Rj can be base relations (B1,
. . . , Bn) or other materialization points that are defined (and computed) earlier in the query plan
(Q1, . . . , Qi−1).

Using a technique called finite differencing, we can derive a relational algebra expression 4Ei

so that4Ei involves only4Rj and ◦Rj and4Ei = 4Qi (for each step). Finite differencing works
by pushing the differencing operator 4 inwards according to the equations in Figure 14.2. The
equations might yield expressions where the “history operator” ◦ is applied to an expression that
is not a base relation or materialization point. In those cases, we also need to push the “history
operator” ◦ inwards; the appropriate equations are also given in Figure 14.2.

Finite differencing is a method originating in the incremental maintenance of materialized views
in databases, which is a problem very similar to incremental event query evaluation [GL95]: the
materialization points in our query plans can be understood as definitions of (materialized) views
that must be updated (“maintained”) whenever new events are added to their input relations.
In contrast to the general view maintenance problem, however, we only have to consider adding
events (not also removing or changing them). This is due to the temporal preservation of CERA.
An extension where we would also consider removing events (by introducing 5Qi and 5Ri) would
be interesting to deal with out of order arrival of events (cf. Chapter 18)

14.3. INCREMENTAL EVALUATION AND FINITE DIFFERENCING 191

Note that finite differencing has similarities with obtaining the derivate of a function through
symbolic differentiation (e.g., with equations such as d

dx (fg) = f d
dxg + d

dxfg) in mathematical
calculus. However, finite differencing is not concerned with a differential quotient f(x+4x)−f(x)

4x
but the finite difference of the contents of an event history between two different steps. If we
see an event history ◦Q as a time-varying function f(t), then this difference is the set difference
f(t +4t)− f(t) where 4t is the time that elapses between two steps.

14.3.3 Correctness

To show that the equations for finite differencing of Figure 14.2 are correct, we have to show that
for all time points now and all materialization points Q := E (E a CERA expression or a union
of relations) it holds that

4E = σ[MQ = now](Q) and ◦ E = σ[MQ < now](Q)

provided that

4Ri = σ[MRi
= now](Ri) and ◦Ri = σ[MRi

< now](Ri)

for all the input relations Ri of E.
The proof is a simple structural induction on E and makes similar arguments about time

stamps (and related restrictions of CERA compared to traditional relational algebra) as the proof
of the temporal preservation property of CERA (cf. Chapter 13.3 and Appendix B.1).

Note that finite differencing of arbitrary relational algebra expressions is not always as simple
as it is here for CERA. In traditional algebra, care must be taken for example with projections
that 4πP (E) does not produce any “duplicate” tuples that are already in ◦πP (E) (and therefore
the equation 4πP (E) = πP (4E) does not hold in general for relational algebra). Further new
tuples on the right hand side of an anti-semi-join or a difference might actually remove tuples from
the result so that there not tuples that are added to the result (4E) play a role but also tuples
that are removed from the result (5E). The time stamps that are part of every relation and the
related restrictions in CERA make finite differencing much easier because they enure that there
are no difficulties with respect to duplicates and no tuples must ever be removed from the result.5

14.3.4 Finite Differencing of Multiple Joins

When applying finite differencing to expressions with multiple joins such as E = R on S on T
(or more generally E = R1 on . . . on Rn), the equations of Figure 14.2 have a disadvantage: the
resulting expression 4E is exponential in size compared to the original expression E and some
subexpressions occur multiple times. For example

E = R on S on T

gives
4E = 4R on (◦S on ◦T)

4R on (4S on ◦T ∪ 4S on 4T ∪ ◦S on 4T)
◦R on (4S on ◦T ∪ 4S on 4T ∪ ◦S on 4T) .

Notice that the subexpression (4S on ◦T ∪ 4S on 4T ∪ ◦S on 4T) occurs twice. For a join of
n relations E = R1 on . . . on Rn, the resulting expression 4E will have a size of O(2n) compared
to the original expression E. (Each of the n− 1 joins doubles the size of the original expression.)

5Note that tuples being removed from the result would be a big difficulty for the step-wise evaluation of event
queries over time: in essence it would mean that the event query evaluation gives an answer at one point in time
and “retracts” it at a later point in time.

192 CHAPTER 14. QUERY PLANS AND INCREMENTAL EVALUATION

An alternative equation for the finite differencing of a join of n relations that would avoid that
the same subexpression occurs several times would be:

4(R1 on R2 on . . . on Rn) = 4R1 on 4R2 on . . . on 4Rn ∪
◦R1 on 4R2 on . . . on 4Rn ∪
4R1 on ◦R2 on . . . on 4Rn ∪
◦R1 on ◦R2 on . . . on 4Rn ∪
. . . ∪
4R1 on 4R2 on . . . on ◦Rn ∪
◦R1 on 4R2 on . . . on ◦Rn ∪
4R1 on ◦R2 on . . . on ◦Rn

This expression basically makes a union of all combinations of 4Ri and ◦Ri, except for ◦R1 on
◦R2 on . . . on ◦Rn. In total there are 2n − 1 = O(2n) such combinations, so the length of resulting
expression is still exponential.

However, this equation is very systematic so that there is no need to explicitly represent it in an
implementation of the query evaluation engine. (It can internally just use the original expression
E instead of 4E). This is particularly interesting because in practice in each step most 4Ri’s
will be empty anyway and only one or two 4Ri contain new event tuples. The joins in the union
containing at least one 4Ri = ∅ will deliver an empty result, so that it suffices to consider only
those few joins that contain at least one 4Ri 6= ∅.

A further alternative would be the following equation for the finite differencing of a join of n
relations.6

4(R1 on R2 on . . . on Rn)
= 4R1 on ◦R2 on . . . on ◦Rn ∪
4(R2 on Rn) on (4R1 ∪ ◦R1)

= 4R1 on ◦R2 on . . . on ◦Rn ∪
4R2 on ◦R3 on . . . on ◦Rn on (4R1 ∪ ◦R1) ∪
. . . ∪
4Ri on ◦Ri+1 on . . . on ◦Rn on (4R1 ∪ ◦R1) on . . . on (4Ri−1 ∪ ◦Ri−1) ∪
. . . ∪
4Rn on (4R1 ∪ ◦R1) on . . . on (4Rn−1 ∪ ◦Rn−1)

The length of the resulting expression is quadratic in the size of the original expression. Particularly
interesting about expressions that take this form is that they contain subexpressions of the form
4Ri ∪ ◦Ri, which is turn is just ◦R′i (cf. Section 14.3.1), the value that ◦Ri should have after
each evaluation step. When reading (and evaluating) the subexpressions of the union from top to
bottom, then all subexpressions before the ith (i.e., before the line starting with 4Ri on . . .) access
only ◦Ri and all subexpressions after it only 4Ri ∪ ◦Ri. As long as ◦Ri is not accessed in any
other materialization points of a query plan, the side-effect ◦R′i = 4Ri ∪ ◦Ri can be performed
immediately when evaluating the ith subexpression.7

14.3.5 Overall Query Evaluation Algorithm

To get back to the overall picture of incremental event query evaluation, let us again consider how
a given query plan QP = 〈Q1 := E1, . . . , Qn := En〉 is conceptually evaluated. Let QP use the
base relations B1, . . . , Bm.

6Note that this equation has different join orders in the different subexpressions of the union. Some care is
therefore necessary when trying to transfer this equation from the named perspective on relational algebra to the
unnamed, positional (which is relevant for an implementation). Under the named perspective R on S = S on R.
Under the unnamed perspective, however, S on R has a different order of attributes than R on S. This different
order must be “rectified” with a projection (which might be implemented as part of the join operation).

7This is particularly advantageous for hash joins: we only have to compute the hash value for a tuple r ∈ 4Ri

once and use it both for joining r with ◦Ri+1, . . . , 4Ri−1 ∪ ◦Ri−1 and for inserting r into ◦R′
i.

14.4. TRANSLATION OF RULE PROGRAMS INTO QUERY PLANS 193

As part of query compilation, we apply finite differencing to QP by simply applying it to
every materialization point definition Qi := Ei. The result will be written 4QP = 〈4Q1 :=
4E1, . . . 4 Qn := 4En〉. Note that the base relations of 4QP are 4B1, . . .4Bm, . . . ◦B1,
. . . ◦Bm, ◦Q1, . . . ◦Qn.

The evaluation of QP then conceptually follows the following schema, where each iteration of
the (infinite) loop corresponds to an evaluation step.

◦B1 := ∅; . . . ; ◦Bm := ∅;
◦Q1 := ∅; . . . ; ◦Qn := ∅;

while(true) {
advance now to the occurrence time of the next incoming event(s);
4Q1 := ∅; . . . ;4Qn := ∅;
initialize 4B1, . . . ,4Bm with the current events;
compute 4Q1, . . . ,4Qn according to 4QP ;
for i := 1 . . . n {

◦Qi := ◦Qi ∪4Qi;
}
output 4Q1, . . . ,4Qn;

}

The evaluation of 4QP in each step is as described in Section 14.2.2. Keep in mind however
that the base relations are 4QP are 4B1, . . .4Bm, . . . ◦B1, . . . ◦Bm, ◦Q1, . . . ◦Qn (not B1, . . . ,
Bm as in the original, “omniscient” QP). Also, expressions of materialization point definitions in
4QP can contain unions at arbitrary places 4QP .

14.4 Translation of Rule Programs into Query Plans

Having formally defined the notion of query plans and considered how they are evaluated incre-
mentally, we now turn to translating a given XChangeEQ program P into a query plan QP . This
QP is just a first query plan for P that can then be optimized further (e.g., through rewritings
that are discussed in Section 14.5). The most important part of the work, translating single rules
into CERA expressions, has already been addressed in the previous chapter. The main issue that
we must address now is rule chaining, and here the materialization points in our query plan will
help us greatly.

14.4.1 Basic Translation

Let P = P1] . . .]Pn be a stratification of the hierarchical XChangeEQ program P . It is preferable
but not necessary that there are as few strata as possible. The query plan QP will be the concate-
nation of n sequences of materialization point definitions, where each such sequence corresponds
to one stratum. The idea is that each rule r gives rise to one materialization point definition Q
using the translation from the previous chapter. Additional materialization points Z “collect” the
results of all rules of stratum so that the rules of the next higher stratum use Z as their incoming
event stream. This additional materialization point therefore solves the issue of rule chaining.
(Improvements on this first translation will be discussed later.)

Let P1 = {r1, . . . , rk} be the rules of the first stratum. We translate it into a sequence

S1 = 〈 Q1,1 := ρ[e.s← r.s, e.e← r.e](translateE(r1))
. . . ,
Q1,k := ρ[e.s← r.s, e.e← r.e](translateE(rk)),
Z1 := E ∪Q1,1 ∪ . . . ∪Q1,k 〉

of materialization points definitions. Here, translateE(ri) denotes the translation of the rule ri

194 CHAPTER 14. QUERY PLANS AND INCREMENTAL EVALUATION

into a CERA expression with the incoming event stream being E. We deviate in one point from
the way the translation has been described in the previous chapter:

For higher strata Pi = {r1, . . . , rl}, the sequence is similar, only the translation of rules uses
Zi−1 instead of E the as incoming event stream, so that the “input” to rules in stratum Pi includes
events that have been derived in lower strata.

Si = 〈 Qi,1 := ρ[e.s← r.s, e.e← r.e](translateZi−1(r1)),
. . . ,
Qi,l := ρ[e.s← r.s, e.e← r.e](translateZi−1(rl)),
Zi := Zi−1 ∪Qi,1 ∪ . . . ∪Qi,l 〉

The query plan QP for P then is just the concatenation of S1, . . . , Sn: QP = S1 · . . . · Sn.
Because the program P was hierarchical, QP is acyclic as required.

14.4.2 Correctness

The intended output of QP is Zn; for a correct query plan, it must hold that Zn = MP,E , where
MP,E is the fixpoint interpretation of P under E as defined in Chapter 10. We sketch the main
idea of the proof here shortly.

By induction on i we show that each Zi in QP computes exactly Mi = Tω
Pi

(Mi−1) (with
M0 = E). Because our program is hierarchical, we have Tω

Pi
(Mi−1) = TPi

(Mi−1). With this, both
the proofs for the basis (Zi) and induction step (Zi−1 → Zi) just rely on the correctness of the
translation of an individual rule (see previous chapter).

It follows then that Zn = Mn = MP,E .

14.4.3 Example

As an example for the translation of a rule program into a query plan consider following program
consisting of three rules shown in Figure 14.3(a). The stratification P = P1] P2 that we use for
the translation has two strata, P1 contains the first two rules, P2 the third rule. The corresponding
query plan in shown in Figure 14.3(b).

14.4.4 Improvements

There are two important improvements that can be made to the translation of a rule program into
an initial query plan as it has just been described. All these improvements could also be made by
means of rewriting the query plan as will be discussed in Section 14.5. However, the improvements
that we discuss here are of a nature that one might decide to always perform them without the
need for comparing and exploring alternatives in a branch-and-bound style of a query planner. In
this case, applying the improvements as part of the translation phase is generally easier and with
less computational overhead than in the query rewriting phase.

Materialization points for simple event queries In the example of Section 14.2.4, we have
discussed that it is generally a good strategy to have materialization points for all simple event
queries. This avoids repeating the potentially expensive pattern-matching operation in each eval-
uation step (note that this operation would have to be preformed not just for the incoming events
of the current step but all events in the history of the event stream). If we have a materialization
point for every simple event query, we further can avoid maintaining a history of the event stream
(and also histories for the materialization points Zi).8

When we apply this improvement to the example of Figure 14.3(b), it leads to the improved
query plan in Figure 14.4. Note that here we have recognized that the simple event query c[var
X] is shared in Q1 and Q2 and thus only introduce one materialization point for it. (In Q2 then

8The algorithm for determining temporal relevance of the next chapter will detect whether a history for the
incoming event stream and any materialization point is needed or not.

14.4. TRANSLATION OF RULE PROGRAMS INTO QUERY PLANS 195

DETECT

y[u[var X]]
ON

and {
event i: a[var X],
event j: b[var X],
event k: c[var X]

}
END

DETECT

y[v[var X]]
ON

and {
event i: c[var X],
event j: d[var X]

}
where { i before j }

END

DETECT

z[var X]
ON

and {
event i: f[var X],
event j: y[var X]

}
where { {i,j} within 4h }

END

(a) Example Rule Program

QP = 〈 Q1 := ρ[e.s← r.s, e.e← r.e](
π[r.s, r.e, term](
γ[r.s, r.e, i.ref, j.ref, k.ref, term← CX[y[u[var X]]]](
µ[r ← i t j t k](

QX[i : a[var X]](E) on
QX[j : b[var X]](E) on
QX[k : c[var X]](E))))),

Q2 := ρ[e.s← r.s, e.e← r.e](
π[r.s, r.e, term](
γ[r.s, r.e, i.ref, j.ref, term← CX[y[v[var X]]]](
µ[r ← i t j](
σ[i.e < i.s](

QX[i : c[var X]](E) on
QX[j : d[var X]](E)))))),

Z1 := E ∪Q1 ∪Q2,

Q3 := ρ[e.s← r.s, e.e← r.e](
π[r.s, r.e, term](
γ[r.s, r.e, i.ref, j.ref, term← CX[z[var X]]](
µ[r ← i t j](
σ[max{i.e, j.e} −min{i.s, i.s} ≤ 4](

QX[i : f[var X]](Z1) on
QX[j : y[var X]](Z1)))))),

Z2 := Z1 ∪Q3

〉
(b) Corresponding Query Plan

Figure 14.3: Example for translation of a hierarchical rule program into a query plan

196 CHAPTER 14. QUERY PLANS AND INCREMENTAL EVALUATION

QP = 〈 A := QX[i : a[var X]](E),
B := QX[j : b[var X]](E),
C := QX[k : c[var X]](E),
D := QX[j : d[var X]](E),

Q1 := ρ[e.s← r.s, e.e← r.e](
π[r.s, r.e, term](
γ[r.s, r.e, i.ref, j.ref, k.ref, term← CX[y[u[var X]]]](
µ[r ← i t j t k](
A on B on C)))),

Q2 := ρ[e.s← r.s, e.e← r.e](
π[r.s, r.e, term](
γ[r.s, r.e, k.ref, j.ref, term← CX[y[v[var X]]]](
µ[r ← k t j](
σ[k.e < i.s](

C on D))))),

Z1 := E ∪Q1 ∪Q2,

F := QX[i : f[var X]](Z1),
Y := QX[j : y[var X]](Z1),

Q3 := ρ[e.s← r.s, e.e← r.e](
π[r.s, r.e, term](
γ[r.s, r.e, i.ref, j.ref, k.ref, term← CX[z[var X]]](
µ[r ← i t j](
σ[max{i.e, j.e} −min{i.s, i.s} ≤ 4](

F on Y))))),

Z2 := Z1 ∪Q3

〉

Figure 14.4: Improvement: materialization points for all simple event queries

14.5. QUERY PLAN REWRITING 197

the event identifier i had to be replaced with k.) In a simple case like this, performing this (limited
form of) multi-query optimization is fairly easy because the simple event queries are syntactically
equal. The more general case where simple event queries are only semantically equivalent (like
a{{ b[var X], c[var Y] }} and a{{ c[var Z], b[var Y] }} with appropriate renaming of
the variables) is much harder. Depending on the expressivity of the underlying query language,
deciding equivalence of simple event queries might have a very high complexity or be undecidable.

Note that such materialization points for simple event queries also allow us to define auxiliary
relations for relative timer events using not the incoming event stream E but just the material-
ization point of the simple event queries used to define the timer (see also Chapter 13.4.2).

Restricting incoming information for simple event queries When we look at the materi-
alization point F in the query plan of Figure 14.4, we can see that its matching operator matches
against Z1, which is defined as E ∪Q1 ∪Q2. However, neither Q1 nor Q2 can generate any sim-
ple event that would match f[var X]. The query plan could therefore further be improved by
changing the definition of F to F := QX[i : f[var X]](E).

The necessary information for detecting that results of Q1 and Q2 cannot be relevant for F is
contained in the dependency graph that must computed as part of query compilation to determine
a possible stratification for a program. Therefore this improvement, which restricts unnecessary
flow of information in our query plan, is usually easier to perform as part of the translation phase
than as part of query rewriting.

14.5 Query Plan Rewriting

An important motivation for introducing a formal representation of query plan as we have done in
this chapter is that it enables us to use query plan rewriting as an optimization technique. Query
rewriting is a central technique in the optimization of database queries and it can be expected to
be of similar importance for event queries.

Query rewriting is usually based on rewriting rules that express a transformation of a given
query plan into another, equivalent query plan. Equivalence between query plans means for our
purposes that the result for Zn is the same for all possible values of the incoming event stream E.

14.5.1 Traditional Relational Algebra Equivalences

Since the expression on the right hand side of materialization point definitions are based on CERA,
which in turn is a variant of relational algebra, many well-known rewriting rules using laws about
equivalences in relational algebra are applicable. This includes for example the following laws that
give rise to corresponding rewriting rules:

• Changing join order: R on S = S on R, (R on S) on T = R on (S on T)

• Pushing selections: σC(R on S) = σC(R) on S, σC(R niwj S) = σC(R) niwj S, (provided
that C contains only attributes from sch(R))

• Changing selection order: σC1(σC2(R)) = σC1∧C2 = σC2(σC1(R)).

• Pushing projection: πP (R on S) = πP (πP1(R) on πP2(S)), where P1 = P ∩ sch(R), P2 =
P ∩ sch(S)

• Projection before grouping γG,a←F (A)(R) = γG,a←F (A)(πG∪A(R)) (the purpose of this law
is usually to then push the projection πG∪A further down in R with the equivalence above)

Comprehensive lists of these laws can be found in most books on databases (see, e.g., [AHV95]
or [GUW01]); because they are not specific to event queries and event query plans we do not go
into further detail on these rewritings.

198 CHAPTER 14. QUERY PLANS AND INCREMENTAL EVALUATION

14.5.2 Equivalences Based on Temporal Reasoning

More interesting in our context are rewritings that are specific to event queries, e.g., because
the leverage temporal reasoning to simplify temporal conditions. Examples are the following
equivalences:

• Simplifying maxima on time stamps: σ[max{i1, i2 . . . in} − min{j1, . . . jm} ≤ d ∧ i1 ≤
ik](R) = σ[max{i2 . . . in} − min{j1, . . . jm} ≤ d ∧ i1 ≤ ik](R), where k 6= 1; similar
equivalences can be given for minima.

• Elimination of implied conditions: σ[i ≤ j, j ≤ k, i ≤ k](R) = σ[i ≤ j, j ≤ k](R); note
that such an elimination may also use implicit assumptions about time stamps, e.g., σ[i.e ≤
j.s, i.s ≤ j.s](R) = σ[i.e ≤ j.s](R) because we always assume i.s ≤ i.e.

14.5.3 Introduction of New Materialization Points

Even more interesting are rewritings that affect not just the right hand side of a single material-
ization points definition but affect the query plan as a whole. Because they may affect incremental
evaluation by changing which intermediate results are materialized, these rewritings are a very
important part of query optimization for event query plans.

The most important rewriting is to create a new materialization point V for some subexpression
E′ in a materialization point definition Q := E. Written as a rule, the rewriting is:

〈 . . . ,
Q := E (E contains subexpression E′),
. . . 〉

〈 . . . ,
V := E′, (V new name)
Q := E[E′/V], (E[E′/V] denotes replacing E′ with V in E)
. . . 〉

Typically this rewriting rule should only be considered when E contains at least one join
inside E′ and one outside E′. The reason for this is that the additional materialization point
has a significant effect on incremental evaluation only when this is the case. For example when
〈Q := R on S on T 〉 is changed to 〈V := R on S, Q := V on T 〉, then the incremental evaluation
will utilize stored intermediate results for R on S in ◦V and avoid recomputing them.

On the other hand, changing for example 〈Q := π(σ(R))〉 to 〈V := σ(R), Q := π(V)〉 has little
effect. The incremental evaluation of Q := π(V) uses only 4V and not ◦V , so that no benefit in
terms of avoiding to recompute intermediate results in different evaluation steps is given.

Note that the rewriting rule given here could also be applied in the other direction to remove
an existing materialization point (provided that V is not used in the definition of another materi-
alization except Q). This direction is less relevant here, because we have translated rules in way
that the do not create any “unwanted” materialization points (see Section 14.4). However another
strategy might be to work from the opposite direction and create, e.g., a materialization point
for every binary join in the translation phase and then remove “unwanted” ones in the rewriting
phase. (“Unwanted” here means that heuristics or cost-measures in a query planner indicate that
the query plan without that specific materialization point is more efficient.)

14.5.4 Multi-Query Optimization

A salient feature of our query plans is that they can describe multi-query optimizations well.
For example the following rule will utilize the result of another materialization point V if it is
equivalent to (i.e., provides the same results as) the subexpression E′′ in Q := E′.

14.5. QUERY PLAN REWRITING 199

〈 . . . ,
V := E,
. . . ,
Q := E′, (E′ contains subexpression E′′ with E′′ ≡ E)
. . . 〉

〈 . . . ,
V := E,
. . . ,
Q := E[E′/V],
. . . 〉

Note that the hard problem in multi-query optimization is recognizing equivalent subexpres-
sion, i.e., that E′′ ≡ E. It usually has a high computational complexity or might even be un-
decidable.9 Our notion of query plans helps us to describe the multi-query optimization in the
operational semantics but not much in recognizing possibilities for multi-query optimization.

Because event query evaluation usually entails evaluating several, often very many, event
queries at the same time, multi-query optimization is of high importance there. In particular,
it is more important than in databases where the traditional model is to evaluate a single query at
a time. (Accordingly, multi-query optimization there is often limited to equivalent subexpressions
within the same query — this can be expected to be far less the case than equivalent subexpressions
over many different queries.)

14.5.5 Outlook: Query Planning in Complex Event Processing

Rewriting rules as they have been shown in this section are only one part of a query optimizer.
The second part is to have good cost measures to compare alterative query plans that have
been generated using the rewriting rules. Such cost measures and how to efficiently explore the
search space of alternative query plans in a branch and bound manner are issues that have been
investigated deeply for traditional database systems (see, e.g., [GM93, Gra95]).

The general approach of database systems transfers to event queries. However, there are two
important difficulties:

• Event queries require different cost measures because they are evaluated differently. Their
evaluation is usually main-memory-based whereas traditional cost measure estimate number
of page accesses on disc. The goal of optimization is also different. Databases aim at reducing
the overall cost, event queries often aim also at having the cost distributed well over different
evaluation steps in the incremental evaluation.

• Cost measures require statistics and estimations about data distribution etc. in the input
data; in the case of event queries this would mean information about the incoming event
stream. Such statistics and estimations might not be available at the time of query com-
pilation, simply because the event stream that will be received in the future is not known.
In a database, all data —and thus necessary statistics and estimates— are readily available
during query compilation.

One possible solution to these issues might be to generate several query plans solely based on
simple heuristics that do not use cost measures, start the evaluation of all plans in parallel, and
drop plans that turn out (by using appropriate measurements) to be inefficient at runtime.

9Note that since it is an optimization technique, it usually is not necessary to recognize all equivalences. We would
be content just with recognizing many common cases. In so far, sound but incomplete recognition of equivalent
subexpressions can be interesting.

200 CHAPTER 14. QUERY PLANS AND INCREMENTAL EVALUATION

14.6 Relationship with other Approaches

To conclude this chapter, we compare our approach to query plans and their incremental evaluation
with other approaches to evaluate complex event queries and with approaches to other related
issues.

14.6.1 RETE and TREAT

Our query plans with materialization points and their incremental evaluation can be understood as
a generalization of RETE networks [For82] in the following sense: RETE always materializes the
(intermediate) results of binary joins, while our query plans can choose their materialization points
more freely, e.g., also materialize joins of higher arity. In this respect it is therefore also a gen-
eralization of TREAT [Mir87], which in contrast to RETE does not materialize any intermediate
join results.

However our approach is also very much a restriction of RETE and TREAT in that in our
incremental evaluation we only add tuples to materialization points. Deletion due to the retraction
of facts, which is necessary in production rule systems, is not needed for our event query evaluation.
We only need deletion as a garbage collection mechanism that does not influence query semantics
(see next chapter). Neither RETE nor TREAT have any notion of automatic garbage collection
in their original versions.

Our event query evaluation can process multiple tuples in a 4Q at once, which usually is more
efficient. RETE and TREAT in contrast process one tuple (also called token there) at a time.
Because of the conflict resolution and side-effects of rules that are fired, extending RETE and
TREAT to process multiple tuples at once would probably be hard.

Query optimization by changing the structure of a RETE network has not been explored
much (usually RETE uses the join order given by the textual order in which literals occur in the
production rules). In contrast, query plan rewriting has been highlighted here as an important
optimization technique (although not yet explored in its full depth).

14.6.2 Event Trees and Graphs

A popular approach for evaluating event queries in composition-operator-based languages (cf.
Chapter 3.2) are event trees (or graphs) [CKAK94, MSS97, ME01, AC06]. The event tree mirrors
the syntactic structure of an event query expression, with each composition operator (e.g., con-
junction, sequence) giving rise to a tree node. Leaves correspond to simple event queries. Simple
and “semi-composed” events flow upward along the edges from the bottom to the top of the tree.
Semi-composed events are sets of events that satisfy a subexpression in the operator tree; they
correspond to intermediate results in CERA (e.g., the output of a join). Operators must maintain
histories for some of their incoming edges. For example, a binary conjunction must have a history
for both its inputs, a binary sequence only for its left input. By exploiting subtrees that are shared
between several such event trees, one can build up an event graph.

The operation each node performs (i.e., producing output, storing input in the histories) is
usually described only in a procedural manner and often the aspect of data in events in completely
ignored. When considering the aspect of event data, many nodes have direct correspondences to
relational algebra (or CERA) expressions. For example, the conjunction corresponds to a join, the
sequence to a join followed by a selection expressing that the events from the left must happen
before the events from the right. In as far, our query plans can be understood as a generalization
of event trees that explains better how data is treated and gives a strong theoretical foundation
due to its rooting in relational algebra.

Like RETE, event trees have a fixed notion which intermediate results are materialized. Trans-
formations of event trees to make their evaluation more efficient are also difficult. Our query plans
with materialization points are more flexible in both points.

14.6. RELATIONSHIP WITH OTHER APPROACHES 201

14.6.3 Petri Nets and Finite State Automata

Petri nets have been suggested in [GD93, GD94] as an alternative to event trees for evaluating
a composition-operator-based language. Tokens correspond to simple and semi-composed events.
A close inspection of the approach shows however that they are not as different from the event
tree approach as it might seem at first glance. Essentially each composition operator gives rise to
one petri-net that has several incoming transitions and one outgoing transition. The petri-nets of
the individual operators are then “wired” according to the syntactic structure of the event query
expression. This of course means that the structure is the same as for an event tree. The only
difference is that the internal implementation of the nodes is described more detailed trough its
petri net. Therefore, the discussion about the differences between our query plans and event trees
applies to petri nets as well.

Another approach for the evaluation of event queries coming from composition-operator-based
languages are finite state automata [GJS92a, BC06]. They are based on the idea of interpreting
the event stream as a sequence of “letters” and the evaluation of an event query as a string search
(or more generally search for a textual pattern) in the text represented by the event stream.

Automata-based approaches are therefore particularly interesting for event queries that involve
mainly detecting particular sequences of events occurring at time points. However, the approach
does not explain well how to deal with events occurring over time intervals and how to deal with
event data. Further note that conceptually each incoming event must start a new instance of
the automaton because the event sequence to be detected can start with any event. (There are
of course well-known solutions to this issue such as the Knuth-Morris-Pratt algorithm for string
search, see, e.g., [KJP77]). Query optimizations (e.g., by changing the structure of the automaton)
have also not been explored for automata in the context of complex event queries.

14.6.4 Query Evaluation in Data Stream Management Systems

Query evaluation in data stream management systems uses data flow networks with stateful op-
erators that correspond the relational algebra operations [ACÇ+03, ABB+03, ABW06]. In this
respect they are similar to RETE, event trees, and to our query plans. Note that most work in
data stream management systems research is concerned with the lower, physical level of imple-
mentation of these operations. Little work has been done with regards to the representation and
rewriting of logical query plans as it has been discussed in this chapter. The research done on
data stream management systems is highly relevant for the efficient physical implementation of
our logical query plans.

Like RETE and event trees, data stream management systems usually use a fixed strategy
to decide which intermediate results are materialized. Usually each operator is responsible for
maintaining the “event history” of its input (which is usually called a synopsis). Therefore data
stream management systems also do not have the flexibility of different materialization strategies.

Most data stream management systems have a notion of “negative tuples,” which are similar
to deletions of tuples in RETE. (Usually these negative tuples are generated for events that leave
the window that is used to turn the event stream into a relation, cf. Chapter 3.3.2.) By design
of CERA and its temporal preservation property (cf. Chapter 13.3), our query plans require
only propagation of positive information (finite differencing only describes new tuples 4R). As
discussed earlier in Section 14.3 our approach to finite differencing could be extended to propagate
also negative information (i.e., extended to also compute tuples to be removed 5R). However, for
the translation of XChangeEQ programs, CERA is sufficient and thus also our query plans.

14.6.5 Conclusion

The logical query plans that have been presented in this chapter offer a theoretically well-founded
description of the incremental evaluation of event query programs. Unsurprisingly, they describe
well the operations that are performed in many related approaches to event query evaluation (in
particular, RETE, TREAT, event trees, and query evaluation on data stream). A considerable

202 CHAPTER 14. QUERY PLANS AND INCREMENTAL EVALUATION

strong point of our query plans is that they can describe different strategies to materializing inter-
mediate results (e.g., both the RETE and the TREAT strategies and any in-between solutions).
Since related approaches always use a single, fixed strategy for materializing intermediate results,
these approaches do not have a notion of “materialization points” like our query plans and do not
separate the query plan and its incremental evaluation (through finite differencing) as we have
done here. The comparison in this section also shows that many approaches to evaluating complex
event queries are, at least on the logical level describing which computations must be performed,
more similar than they might seem at the first glance.

Chapter 15

Relevance of Events

Evaluation of complex event queries over time involves storing information about past events
(as well as intermediate results) in the event histories, as we have seen in the previous chapter.
The incremental evaluation described in Chapter 14.3 simply stores all event tuples for each base
relation and materialization point for an unlimited amount of time.

While it is necessary to store received events for some time, it is however often not necessary
to store them forever. Temporal conditions in queries render certain events irrelevant after some
time. We call the period of time for which an event or an intermediate result must (at least) be
stored its temporal relevance.

After motivating the need for a notion of relevance in event query evaluation (Section 15.1),
we give a precise definition of relevance and temporal relevance (Section 15.2). We then develop a
method for statically (i.e., at compile time) determining temporal relevance, expressing it in the
form of so-called temporal relevance conditions (Sections 15.3 and 15.4). During query evalua-
tion (i.e., at run time), this enables garbage collection of events that become irrelevant as time
progresses (Section 15.5). In addition, temporal relevance is also important at compile time for
cost-based query planning. An outlook that discusses variations on the problem of determining
temporal relevance (Section 15.6) and a discussion of related work (Section 15.7) complete this
chapter.

15.1 Motivation: Garbage Collection, Query Planning

Consider the following XChangeEQ program consisting of a single rule and a possible query plan
QP for it.

DETECT

c[var X]
ON

and {
event i: a[var X],
event j: b[var X],

}
where {

{i,j} within 2 hours
}

END

QP = 〈 A := QX[i : a[var X]](E)
B := QX[i : b[var X]](E)
C := σ[max{i.e, j.e} −min{i.s, j.s} ≤ 2](

A on B) 〉

When during the evaluation of this query an event a[42] is received at time t1, then an
appropriate tuple has to be stored in ◦A since it might contribute to an answer to the query when
an event b[42] is received at a later time t2 > t1.

While it is necessary to store received events for some time, it is for this query not necessary
to store them forever. In our example, the condition that the a and b events happen within 2
hours of each other renders any a or b event tuple that is older than 2 hours irrelevant for future

203

204 CHAPTER 15. RELEVANCE OF EVENTS

answers to this specific query or rule. Since we have only this single rule, any stored event tuple
in ◦A or ◦B can be removed after 2 hours.

We call this period of time for which an event or an intermediate result must (at least) be
stored its temporal relevance. As we will see, determining temporal relevance becomes an involved
problem when more complex queries than this example are considered and when we take into
account an incremental evaluation that materializes intermediate results. The relevance of in-
termediate results is a noteworthy issue since it does not simply derive from the relevance of its
constituent events.

Knowing how long an event (or an intermediate result) is relevant is a prerequisite for per-
forming garbage collection during event query evaluation. Garbage collection removes events that
have become irrelevant from their stores and thus frees up memory. It is important for event query
evaluation for two reasons. First, if no garbage collection is performed, then the number of stored
events always grows over time, usually at least linearly w.r.t. the size of the event stream received
so far. When we assume an infinite stream of events, then we are thus guaranteed to run out of
memory sooner or later. Second, garbage collection can be relevant even when the event stream is
not infinite and running out of memory not a concern (e.g., in cases where event queries are part
of a business or database transaction of limited duration). Because the search time for a stored
event (e.g., as part of the evaluation of a join) grows with the number of stored events, garbage
collection can contribute to the efficiency of event query evaluation by reducing the number of
stored events.

Temporal relevance is also of central importance for developing cost-based query planners
(akin to cost-based query planners found in traditional databases): an important input of any
cost estimation function is the cardinality of event stores, which in turn is proportional to the
length of time events are stored.

15.2 Temporal Relevance: Problem Definition

If we were to evaluate query plans incrementally as described in the previous chapter without any
notion of temporal relevance, we would have to store the full history of all event tuples for each
base relation and materialization point. Our goal with temporal relevance is to limit the stored
history of event tuples to only the necessary knowledge of the past (as needed for producing all
answers).

Temporal relevance is in this sense symmetrical to temporal preservation (cf. Chapter 13.3):
temporal preservation makes a statement about what knowledge of the future is needed for query
evaluation, temporal relevance about knowledge of the past. However they are asymmetrical in
that no knowledge whatsoever is needed about the future, while a significant amount of knowledge
about the past can be needed. Further, temporal preservation is a property that is always given
(by design of CERA), while temporal relevance is specific to a given query plan and has to be
determined in some algorithmic way.

15.2.1 Relevance and Temporal Relevance

The need to store histories of event tuples comes from joins in CERA expressions. Only joins com-
bine event tuples received at different times. The relational algebra expression obtained through
finite differencing (cf. Figure 14.2) 4(R on S) = ◦R on 4S ∪ 4R on 4S ∪ 4R on ◦S shows this
since it contains event histories (◦R, ◦S). We can remove event tuples from the histories, when
we know for sure that they will not affect any future answers, i.e., when they become irrelevant.

Definition Let E be a CERA expression with input relations R1, . . . Rn. A tuple r of an input
relation Ri is relevant for E at time now, if it might be joined (now or at a later time) with
tuples from the other relations to produce an answer e to E with an occurrence time mE(e) of or
later than now.

15.2. TEMPORAL RELEVANCE: PROBLEM DEFINITION 205

Query Plan 1:
C := µ[c← a t b](

σ[max{a.e, b.e} −min{a.s, b.s} ≤ 2](
A on B))

F := µ[f ← c t d t e](
σ[c.e < d.s](
σ[max{c.e, d.e} −min{c.s, d.s} ≤ 4](
σ[d.e < e.s](
σ[max{d.e, e.e} −min{d.s, e.s} ≤ 1](

(C on D) on E)))))

Query Plan 2:
C := µ[c← a t b](

σ[max{a.e, b.e} −min{a.s, b.s} ≤ 2](
A on B))

V := σ[c.e < d.s](
σ[max{c.e, d.e} −min{c.s, d.s} ≤ 4](

C on D))
F := µ[f ← c t d t e](

σ[d.e < e.s](
σ[max{d.e, e.e} −min{d.s, e.s} ≤ 1](

V on E)))

Figure 15.1: Example query plans with different materialization points

Note that the occurrence time of the answer implies that at least one of these other tuples
has a time stamp ≥ now. When a tuple joins with other tuples, it might actually not produce an
answer for E. This is the case when the resulting tuple(s) of the join are eliminated by a selection
in E.

Temporal relevance Temporal relevance is a particular form of relevance that is derived only
from selections expressing temporal conditions and where we make no assumptions about what
other tuples are currently stored or might arrive in the future. We discuss other, more involved
forms of relevance in the outlook of Section 15.6

Example For our examples in this chapter, we will mainly use RelEQ instead of XChangeEQ.
This preserves the essentials of temporal relevance but gives us the benefit of more compact
notation and examples (e.g., because there are no pattern matching or construction operations).
The concepts and solutions in this chapter are immediately applicable also to XChangeEQ, however.
Consider the following example RelEQ program.

F(x) ← c : C(x), d : D(x), e : E(x), c before d, {c, d} within 4, d before e, {d, e} within 1
C(x) ← a : A(x), b : B(x), {a, b} within 2

Two possible query plans for this program are shown in Figure 15.1. The base relations of both
query plans are A, B, D, and E, which contain the event tuples for A(x), B(x), D(x), and E(x),
respectively.1 Query plan 2 uses a materialization point V for evaluation of F , while query plan
1 does not.

For an example of events becoming irrelevant over time, consider the expression for C in
Figure 15.1, which is the same for both query plans. Let a = {a.s = 9, a.e = 10, x = 42} and

1Note that since we consider RelEQ here, we do not have a single stream of incoming events E here, but separate
streams A, B, D, E for each type of event.

206 CHAPTER 15. RELEVANCE OF EVENTS

b = {b.s = 11, b.e = 11, x = 42} be tuples in the event histores ◦A and ◦B of A and B, respectively.
At time now = 12, tuple a is not relevant anymore: any tuple r resulting from joining a with
a B-tuple arriving at this or a later time (i.e., having b.e ≥ now = 12) will be eliminated by
the expression’s selection σ[max{a.e, b.e} − min{a.s, b.s} ≤ 2] and thus not produce an answer.
Tuple b is still (temporal) relevant at time now = 12, and also —to recall that the time domain
is not limited to integers— at time now = 12.3. It becomes irrelevant when now > 13 due to the
selection.

15.2.2 Temporal Relevance Conditions

Temporal relevance must be expressed in a formal way and in a restricted syntax so that we
have (1) a clear notion of output of an algorithm that statically determines temporal relevance,
(2) a basis for implementing garbage collection in query evaluation, and (3) means for correctness
proofs. One might expect that temporal relevance could be expressed just as time window for each
relation that states how long each tuple must be kept. However, since tuples have several time
stamps —which is necessary for expressive event queries— this is not sufficient, and we express
temporal relevance as so-called temporal relevance conditions. Conditions have also the advantage
that they generalize well to other forms of relevance (cf. Sections 15.6.

For each materialization point Q in a given query plan QP , and each input relation R (base
relation or materialization point) of Q, we will have a temporal relevance condition TRR in Q. If
TRR in Q is true for a tuple r ∈ R at the current time now, then this tuple is still relevant. If it is
false, the tuple is irrelevant and can be removed by the garbage collector. Removing is “optional,”
i.e., irrelevant tuples that are not removed do not disturb query evaluation. Temporal relevance
conditions derived in this work have the following form:

TRR in Q ≡ i1 ≥ now − rt1 ∧ . . . ∧ im ≥ now − rtm∧
im+1 > now − rtm+1 ∧ . . . ∧ in > now − rtn

where {i1, . . . in} ⊆ schtime(R) are some time stamps of R. All rtk are fixed durations (lengths
of time) and can be understood as individual time windows for each time stamp in the condition.
A rtk is called the relevance time of time stamp ik, and also written rt(ik) or, making explicit
the input relation R and the expression or materialization point Q, rtR in Q(ik). Note that the
syntax of temporal relevance conditions is such that they can be used as a conditions of selection
operators when we read now as a constant expressing the current time. This is convenient because
garbage collection can be implemented using existing functionalities from selection operators.

15.2.3 Correctness Criterion

Definition Let QP be a query plan and K = {TRR in Q, . . . } a set of temporal relevance
conditions, one for each input relation R of each materialization point Q := E. K is correct
if for all possible base relations of QP the following holds for each time point now and each
materialization point Q := E of QP : all current (at time now) and future results of E are the
same as those of E′, i.e., σ[ME ≥ now](E) = σ[ME′ ≥ now](E′), where E′ is obtained from E
by replacing each input relation R (base relation or materialization point) with any R′ such that
{r ∈ R | TRR in Q(r)} ⊆ R′ ⊆ R.

Note that when the input relation R is a materialization point, then R′ derives from the
definition of R := ER in the original query plan QP , and not from some “E′R” where in turn a
replacing of the input relations of ER has taken place.

The intuition of correctness is simple: the temporal relevance conditions are correct when
removing tuples that are, according to the conditions, deemed irrelevant from the event histories
(which corresponds to replacing the full history R with R′) does not influence the query result at
the current time now or in the future. We do not care about past results because they have already
been produced in earlier evaluation steps. Note that since σ[ME ≥ now](E) = σ[ME′ ≥ now](E′)
must hold for all possible times now, we could equally write σ[ME = now](E) = σ[ME′ = now](E′)
in the definition.

15.3. DETERMINING TEMPORAL RELEVANCE CONDITIONS 207

Query Plan 1:
TRA in C ≡ a.s ≥ now − 2 ∧ a.e ≥ now − 2
TRB in C ≡ b.s ≥ now − 2 ∧ b.e ≥ now − 2
TRC in F ≡ c.s ≥ now − 5 ∧ c.e ≥ now − 5
TRD in F ≡ d.s ≥ now − 1 ∧ d.e ≥ now − 1
TRE in F ≡ e.s > now − 1 ∧ e.e ≥ now − 0

Query Plan 2:
TRA in C ≡ a.s ≥ now − 2
TRB in C ≡ b.s ≥ now − 2
TRC in V ≡ c.s ≥ now − 4
TRD in V ≡ d.s > now − 4 ∧ d.e ≥ now − 0
TRV in F ≡ d.s ≥ now − 1
TRE in F ≡ e.s > now − 1 ∧ e.e ≥ now − 0

Figure 15.2: Temporal Relevance Conditions

In the following when we talk about determining temporal relevance conditions, we of course
always mean implicitly that these conditions must be correct according to the definition just given.

Example The temporal relevance conditions for the query plans from Figure 15.1 are shown
in Figure 15.2. The first four conditions of query plan 1 are longer than they need to be: the
comparison a.e ≥ now − 2 is superfluous since it is implied by a.s ≥ now − 2 and the temporal
conditions of the query expression (analogous for b.e and c.e). For query plan 2, all conditions
are minimal in the sense that they contain no superfluous comparisons. For both query plans,
each condition is optimal in the sense that the time windows cannot be made tighter for any time
stamp.

15.3 Determining Temporal Relevance Conditions

Our task now is to determine the relevance time rtR in E(i) of each time stamp i of an input relation
in a given expression E. We focus in this section on the general idea and give a full algorithm
in the next section. Note that we determine the relevance times statically at the compile time
of a query. Accordingly when we speak of a “time stamp” in the following, we always mean the
element of the schema (e.g., i.e), not a concrete value of a given tuple (e.g., r(i.e) = 42). Since
our method runs at compile time we do not have any concrete values but reason abstractly about
all possible values.

15.3.1 Temporal Distances

For determining relevance times, we use an auxiliary computation. For each pair i, j of time stamps
in the expression E, we establish from the temporal selections in E an upper bound td(i, j) ≥ 0
such that any tuples in the result of E will obey j− i ≤ td(i, j). The upper bound depends on the
temporal selections in E and we want it to be as small as possible. For reasons that will become
clear shortly, we call this least upper bound the temporal distance from i to j. The temporal
distances from i to j and from j to i can be different. For example in the expression of Ff of
query plan 1, td(c.e, d.s) = 4 but, since c must happen before d, td(d.s, c.e) = 0.

For a given time stamp i, its relevance time rt(i) then simply is the longest of all temporal
distances td(i, j) from i to some other time stamp j of E, i.e.,

rt(i) = max{td(i, j) | j ∈ schtime(E)}.

208 CHAPTER 15. RELEVANCE OF EVENTS

This equation for the relevance time can be explained as follows. Let the current time be now.
Consider a time stamp i for a tuple r1 that is stored in an input relation R1 of expression E.
Note that since the tuple is already stored, the value for the time stamp i is r1(i) < now. Now let
another tuple r2 of another relation R2 arrive at the current time now, i.e., mE(r2) = now. Let
the two tuples join (together with other tuples from other relations in case there are more than
two input relations) to yield a tuple e. Let j ∈ schtime(R2) be a time stamp such that its value
r2(j) = now; since mE(r2) = now such a j must exist. Suppose now that r1(i) < now − rt(i),
i.e., r1 is deemed irrelevant according to its relevance time. Then r2(j) − r1(i) > rt(i), and thus
also e(j) − e(i) > rt(i). Construction of rt(i) ensures that there must be a selection in E that
eliminates e. Note that this selection does not necessarily involve either i or j.

15.3.2 Temporal Distance Graph

It turns out that all temporal conditions in selections that are of interest for determining temporal
relevance are equivalent to a conjunction of comparisons of the form j−i < t or j−i ≤ t, where i, j
are time stamps. For example, max{a.e, b.e} −min{a.s, b.s} ≤ 2 (translated from {a,b} within
2 hours) is equivalent to b.e − a.s ≤ 2 ∧ a.e − b.s ≤ 2 ∧ a.e − a.s ≤ 2 ∧ b.e − b.s ≤ 2. Similarly,
c.e < d.s (from c before d) gives us d.s − c.e < 0. To simplify explanation, we assume for now
that we only have conditions of the form j − i ≤ t. The extension to < later is simple and given
in Section 15.3.3.

This observation is very helpful because it allows us to frame the problem of computing all
temporal distances in an expression E as an “all pairs shortest paths” (APSP) problem in a
directed, weighted graph. We refer to the graph we construct as the temporal distance graph
(TDG) of an expression E. Its nodes are all the time stamps occurring in E. Each temporal
condition j − i ≤ t in a selection of E generates a directed edge from node i to j with weight t.2

Further, for each pair i.s, i.e of time stamps, we generate an edge with weight 0 from i.e
to i.s. These edges reflect that the ending time of an event cannot be before its starting time
(i.s ≤ i.e ⇐⇒ i.e− i.s ≤ 0). We will later see that edges will also be generated for information
known about input relations or for merging of time intervals.

Since the temporal distance td(i, j) between two time stamps is the least upper bound t so
that j − i ≤ t, it corresponds to the (length of the) shortest path from i to j in the graph. The
reason for this is that, like path length in a graph, bounds between time stamps obey the triangle
equality, i.e., from k − j ≤ t1 and j − i ≤ t2 we can conclude that k − i ≤ t1 + t2.

The matrix of all shortest paths between all time stamps in E can be computed using a standard
algorithm for solving the all pairs shortest paths (APSP) problem such as Floyd-Warshall [Sed90].
The relevance time rt(i) for i then is simply the maximum entry in the row corresponding to i in
this matrix.

Example Figure 15.3 shows the temporal distance graph for the expression of F of query plan 1
of Figure 15.1 and the corresponding matrix of shortest paths. Compare the maximum entries
in each matrix row with the relevance times of Figure 15.2. The graph does not (yet) include
nodes for the time stamps f.s and f.e. It has an edge from c.s to c.e with weight 2, which reflects
knowledge about input relation C. Details for this will be provided shortly. Note that it is not the
general case that the lower-left half of the matrix is 0; this is only because this particular query
demands the events c, d, e occur sequentially.

Having presented the general idea, the remainder of this section refines it with some necessary
details, before the full algorithm is given in the next section.

2A mnemonic for the direction of the edge is as follows: The less-or-equal sign (≤) in j − i ≤ t faces in the
direction from i to j — that is the same direction that the arrow head of the directed edge in a drawing of the
temporal distance graph would have. The intuition becomes even clearer if we reform j − i ≤ t to the equivalent
i + t ≥ j, which we can read as “a tuple with time stamp i has to wait for tuples with time stamp j at most for t
units of time.”

15.3. DETERMINING TEMPORAL RELEVANCE CONDITIONS 209

from�to c.s c.e d.s d.e e.s e.e
c.s 0 2 4 4 5 5
c.e 0 0 4 4 5 5
d.s 0 0 0 1 1 1
d.e 0 0 0 0 1 1
e.s 0 0 0 0 0 1
e.e 0 0 0 0 0 0

Figure 15.3: Temporal distance graph and matrix shortest paths

(<, x) + (<, y) = (<, x + y)
(<, x) + (≤, y) = (<, x + y)
(≤, x) + (<, y) = (<, x + y)
(≤, x) + (≤, y) = (≤, x + y)

(<, x) < (<, y) ⇐⇒ x < y
(<, x) < (≤, y) ⇐⇒ x ≤ y
(≤, x) < (<, y) ⇐⇒ x < y
(≤, x) < (≤, y) ⇐⇒ x < y

Figure 15.4: Strict and (non-)strict edges

15.3.3 Strict Inequalities

So far we have pretended that we have only non-strict inequalities such as j − i ≤ t and ignored
the fact that some are in fact strict, i.e., of the form j − i < t. We suggest two ways to deal with
strict inequalities.

First, we can simply treat all strict inequalities as non-strict when building the temporal
distance graph, as we have done so far. (Of course, in the actual evaluation of the query plan, we
will distinguish < and ≤.) This is leads to a marginal “over-estimation” on the temporal relevance
conditions and we will store in some cases more tuples than necessary. Since we only store more
tuples, the result of the real evaluation is still correct. Because the difference between ≤ and <
amounts only for very few more tuples being stored, the consequences on performance are usually
minimal.

Second, we can explicitly distinguish < and ≤ by “extending” our time domain for durations
D to {≤, <} ×D. The duration (≤, t) simply corresponds to the “old” t. Its sister duration (<, t)
can be imagined as t− ε with an infinitesimally small ε. Conditions such as i− j < t can then be
read as i− j ≤ (<, t). The operation + and the relation < on durations, which are needed in the
computation of shortest paths and relevance times, must be adapted appropriately, as shown in
Figure 15.4. Note that the relation < automatically gives a definition for min and max operations
on the extended time domain.

When we have determined the relevance time rt(i) for a time stamp i (as maximum of i’s row in
the matrix), the first component (< or ≤) in the tuple of will indicate whether the corresponding
temporal relevance condition contains i > now − w (in case rt(i) = (<,w)) or i ≥ now − w (in
case rt(i) = (≤, w)).

15.3.4 Recognizing Superfluous Relevance Times

In Figure 15.2, the first four temporal relevance conditions of query plan 1 contain superfluous
comparisons: each right comparison is implied by the left. It is desirable for performance to avoid
such unnecessary comparisons and have minimal temporal relevance conditions as those of query
plan 2.

We can remove implied comparisons in a post processing. To do this, we must distinguish
whether an edge in a temporal distance graph is already guaranteed to hold for all time stamps
by the input relation (i.e., independently of the expression) or whether it has been added by
some selection of the expression (and must be tested in the query plan evaluation). We will mark
guaranteed edges with an exclamation mark (!) and non-guaranteed edges with a question mark
(?). Now we can define when the relevance time of a time stamp covers the relevance time of

210 CHAPTER 15. RELEVANCE OF EVENTS

(?, x) + (?, y) = (?, x + y)
(?, x) + (!, y) = (?, x + y)
(!, x) + (?, y) = (?, x + y)
(!, x) + (!, y) = (!, x + y)

(?, x) < (?, y) ⇐⇒ x < y
(?, x) < (!, y) ⇐⇒ x < y
(!, x) < (?, y) ⇐⇒ x ≤ y
(!, x) < (!, y) ⇐⇒ x < y

Figure 15.5: Guaranteed and non-guaranteed edges

another time stamp to express that the comparison of the covered one is unnecessary.
Definition: The relevance time rt(i) of a time stamp i is said to cover the relevance time

rt(j) of another time stamp j, if the shortest path from j to i in the temporal distance graph uses
only edges marked as guaranteed and for its length td(j, i) it holds that td(j, i) + rt(i) = rt(j).

This can be explained as follows: Since the shortest path from j to i uses only guaranteed edges,
i−j ≤ td(j, i) is true for any tuple in the input relation. Then, i−j+rt(i) ≤ rt(i)+td(j, i) = rt(j)
(assumption) and i ≥ now − rt(i) together imply that j ≥ i + rt(i)− rt(j) ≥ now − rt(j).

Commonly when solving the all pairs shortest path (APSP) problem we compute only the
length of the shortest paths and not the paths themselves. The definition above however refers
to the shortest paths itself to test whether they use only guaranteed edges. It turns out that
we do not need the actual shortest paths but can make the information about guaranteed and
non-guaranteed edges part of the time domain, much like we did with the < and ≤ markings
earlier. The corresponding definitions for addition and comparison are given in Figure 15.5. Note
that the time domain that is extended can be already {≤, <} × D from earlier (Section 15.3.3).

15.3.5 Merging of Time Intervals

In the example of Figure 15.3, we have neglected time stamps f.s and f.e, which are generated
by the merging operation (µ) in F of query plan 1. One might be tempted to disregard such time
stamps in the temporal distance graph since they do not occur in any of the temporal relevance
conditions. However, (1) a temporal selection such as σ[f.e−f.s < 1] could be performed after the
merging and its effect should be propagated to the time intervals f has merged (in the example:
c, d, e); and (2) knowledge about a time stamp generated by merging (e.g., c in the expression for
C) might be needed in other expressions (e.g., c.e− c.s < 2 in F).

To include time stamps j.s and j.e generated by a merging µ[j ← i1, . . . in](E) into the temporal
distance graph, we add them as nodes and add edges as follows: Since j.s = min{i1.s, . . . , in.s},
it holds that j.s− ik.s ≤ 0 for k = 1, . . . , n and we add corresponding edges into the graph, which
are marked as guaranteed (!). Analogously for j.e = max{i1.e, . . . , in.e}, we add guaranteed edges
for ik.e − j.e ≤ 0 (k = 1, . . . , n). Further we add an edge from j.s to j.e, its length being the
longest of all temporal distances between any ik.s and il.e.

The edges between j.s and the ik.s, and between j.e and the ik.e will propagate any temporal
selection involving j.s or j.e “down” to the ik. The length of the edge from j.s to j.e is justified by
the definition of j.s and j.e as minimum and maximum. As will become clear in the full algorithm
(cf. Section 15.4), the length can be computed immediately when j.s and j.e are added to the
temporal distance graph since the merging operator discards the ik.s and ik.e, and accordingly
the edges between them are all already known.

15.3.6 Propagation in Query Plans

The temporal distance graph for a given expression E should make use of knowledge about input
relations. An example is the constraint that c.e − c.s < 2 in the graph of Figure 15.3, which
derives from the expression that computes the input relation C as a materialization point. When
E has an input relation that is defined by a materialization point Q, the temporal distance graph
for E should contain the subgraph of Q’s temporal distance graph that contains only the nodes
of schtime(Q) and edges between them. These edges should all marked as guaranteed (!) now in
E’s temporal distance graph since they are automatically satisfied.

15.4. ALGORITHM 211

Since query plans are acyclic, we can compute temporal relevance conditions from left to right
so that Q’s temporal distance graph is readily available when we have to compute the one for E.

15.3.7 Unions in Materialization Points

Recall that CERA does not have a unions, but that they can be expressed in materialization points
of the form Q := R1 ∪ . . .∪Rn, where each Ri is either a base relation or a materialization point.
We do not need to derive temporal relevance conditions for the input relations Ri in unions since
there is no need to store them. However expressions referring to Q as an input relation need a
temporal distance graph for Q (cf. Section 15.3.6.

The temporal distance graph for Q derives from the temporal distance graphs of the input
relations R1,. . .Rn. The nodes are the time stamps of schtime(Q); note that schtime(Q) =
schtime(R1) = . . . = schtime(Rn). Each edge from i to j in the temporal distance graph of
Q is assigned the maximum of the individual lengths of the shortest paths between from i to j in
the temporal distance graphs of the input relations R1, . . . Rn. Keep in mind that the length of
this shortest path can be ∞, and an edge with weight ∞ is the same as having no edge.

Having unions only in this limited form at materialization points, not in CERA itself makes
our explanations and the algorithm in the next section somewhat simpler. Consider an expression
such as Q := σ[max{i.e, j.e} − min{i.s, j.s} < 2](R1 ∪ R2), which is not allowed in CERA. The
temporal distance graph for it would contain only four time stamps i.s, i.e, j.s, j.e. However we
should distinguish the time stamps of R1 and R2, since they can give different temporal relevance
conditions. For example, R1 might guarantee (from its definition as a materialization point) that
i.e < j.s, while R2 does not guarantee this. Then TRR1 in Q ≡ i.s ≥ now−2 is correct, but for R2

the relevance time of j.s is not covered by that of i.s, i.e., TRR2 in Q ≡ i.s ≥ now− 2∧ j.s ≥ now.
An alternative to restricting CERA as done here would be to distinguish time stamps of input

relations, i.e., have eight time stamps iR1 .s, iR2 .s, . . . in the example above. Making the adaption
to this alternative is not hard. However, for the purpose of this thesis we found that it would
make explanations and notation unnecessarily longwinded.

15.4 Algorithm

We now give an algorithm to compute all temporal relevance conditions for a given query plan
QP . The algorithm is specified on a high abstraction level with mathematical functions. An
implementation in a functional programming language could mirror the specification very closely.
An implementation in an imperative language is also straight-forward (see also Chapter 16. Reader
comfortable with the explanations of the previous section and less inclined to the algorithmic
details may want to skip ahead to Section 15.4.4.

15.4.1 Computing the Temporal Distance Graph

Definition The temporal distance graph tdgQP (E) of an expression E in the context of a query
plan QP is a directed graph G = (VG, EG) with weighted edges. Its vertices are all time stamps
occurring in E. Its edges have temporal distances (marked as strict or non-strict, and guaranteed
or non-guaranteed) as weights, i.e., EG ⊆ VG ×W× VG with W = {?, !} × {<,≤}×D. Note that
we allow multiple edges with different weights between the same two nodes; however since we are
eventually only interested in shortest paths, only the edge with the least weight is relevant.

Simplifying Assumption We assume for ease of presentation of the algorithm that E does
not contain any renaming operations (ρ) on time stamps. For the query plans generated by the
translation of the previous chapter, this is the case with the exception of the top-most renaming
(which renames the result time stamps r.s, r.e to e.s, e.e so that they can become the input
of other expressions). This top-most renaming can be easily ignored in computing the temporal

212 CHAPTER 15. RELEVANCE OF EVENTS

distance graph when taking it into consideration in the propagation of temporal distances between
different expressions in the query plan.

In a similar manner, we assume that no relation or materialization point occurs more than once
in the expression E. For query plans that have been translated using the improvement where every
XChangeEQ pattern matching operation QX has its own materialization point (cf. Chapter 14.4.4)
this is necessarily the case.3

An extension of our algorithm to properly deal with renaming of time stamps and multiple
occurrences of the same relation in an expression is not hard. It requires to distinguish time
stamps from different input relations and the output relation as has already been been discussed
in Section 15.3.7. To keep explanations simple and short, however, we refrain from making this
extension in the description here.

Auxiliary Functions We use two auxiliary functions. The length of the shortest path between
nodes i and j in a temporal distance graph G is given with sp(G, i, j) ∈W. The addition operation
and order relation on path lengths, which are necessary to define and compute shortest path
lengths, have been given in Figures 15.4 and 15.5. The function g operates on edge weights, turning
a non-guaranteed edge (?) into a guaranteed edge (!), i.e., g(?, <, t) = (!, <, t), g(!, <, t) = (!, <, t),
etc.

Abstract Interpretation The computation of the temporal distance graph tdgQP (E) can be
understood as an abstract interpretation (or pseudo-evaluation) [Cou96] of the expression E: the
expression is evaluated in the same manner as usual, but on a different domain and with different
interpretations of the operators. Instead of the standard domain (sets of tuples) we use a so-called
abstract domain (temporal distance graphs) and instead of the standard interpretation of each
operator (e.g., a join on relations) we use an abstract interpretation (e.g., for a join the union of
graphs). Importantly, elements of the abstract domain correspond to (“are an abstraction of”)
sets of elements from the standard domain: a temporal distance graph corresponds to all relations
whose tuples obey the restrictions set forth in the graph (e.g., if (i, !, <, t, j) is an edge of tdg(E)
then in all possible results of E, all tuples obey j − i < t).

Keep in mind however that most of the literature on abstract interpretation focuses on the
analysis of imperative programs, whereas we analyze relational queries. In comparison to abstract
interpretation of imperative programs, computing temporal distance graphs is much simpler.

Like the standard interpretation of expressions, the temporal distance graph is defined in-
ductively on the structure of expressions (with an additional case for unions of materialization
points).

Base relations For a base relation R with schtime(R) = {i.s, i.e}, there is a question what
temporal distance durR should be assigned for the edge from i.s to i.e. Without any further
knowledge about a maximal duration for the base events in R we can simple let durR = ∞.
However, it is often the case that base relations deliver “duration-less” events, i.e., events that
happen at time points not over time intervals. (This is especially the case when the events arrive
as messages and are assigned occurrence times by the evaluation engine not the event source.) In
this case durR = 0. Any intermediate cases are also conceivable and covered by the algorithm.

We also create an edge from i.e to i.s with weight (!,≤, 0), which reflects that we always assume
that i.s ≤ i.e.

• tdgQP (R) = (VG, EG) for a base relation R with schtime(R) = {i.s, i.e}, where
VG = {i.s, i.e}
EG = {(i.s, !,≤, durR, i.e), (i.e, !,≤, 0, i.s)}

3Note that even when the same simple event query (e.g., a[var X]) is used twice in a rule body, the two
occurrences have different event identifiers (e.g., i and j) and accordingly lead to two different matching operations
(e.g., QX[i : a[var X]] and QX[j : a[var X]]).

15.4. ALGORITHM 213

The auxiliary base relations for timer events Xj are a special case of base relations. Since they
define new time stamps i.s, i.e relatively to time stamps j.s, j.e of another event, they implicitly
introduce conditions on the temporal distance between i.s, i.e, j.s, and j.e. We use a set EX to
express the edges generated from these constraints (an example follows).

• tdgQP (Xj) = (VG, EG) for an auxiliary timer event relation Xj with schtime(Xj) =
{i.s, i.e, j.s, j.e}, where
VG = {i.s, i.e, j.s, j.e}
EG = {(i.e, !,≤, 0, i.s), (j.e, !,≤, 0, j.s)} ∪ EX

EX is a set of edges reflecting the definition of Xj

The set of edges EX reflecting the definition of Xj depends straightforwardly on the way that
i.s and i.e, the new time stamps that are defined in Xj , depend on j.s and j.e, the time stamps
of the anchor event that is used to define the relative timer event. For example for an auxiliary
relation defined as

Xj =: {x | (x(j.s), x(j.e)) ∈ ρ[j.s← e.s, j.e← e.e](π[e.s, e.e](E)),
x(i.s) = x(j.s), x(i.e) = x(j.e) + 6}

we would have

EX = {(i.s, !,≤, 0, j.s), (j.s, !,≤, 0, i.s), (i.e, !,≤, 0, j.s), (j.e, !,≤, 6, i.e)}.

Materialization Points The following three cases realize the propagation of results through
materialization points and take care of unions in materialization points.

• tdgQP (Q) = (VG, EG) for a materialization point Q defined as Q := E in QP (E not
containing any renaming operation ρ), where
(V ′G, E′G) = tdgQP (E)
VG = schtime(E)
EG = {(i, g(w), j) | i ∈ VG, j ∈ VG, (i, w, j) ∈ E′G}

• tdgQP (Q) = (VG, EG) for a materialization point Q defined as Q := ρ[e.s← r.s, e.e← r.e](E)
in QP with schtime(E) = {r.s, r.e}, where
(V ′G, E′G) = tdgQP (E)
VG = {e.s, e.e}
EG = {(e.x, g(w), e.y) | e.x ∈ VG, e.y ∈ VG, (r.x, w, r.y) ∈ E′G}

• tdgQP (R1 ∪ . . . ∪Rn) = (VG, EG), where
VG = schtime(R1) = . . . = schtime(Rn)
EG = {(i,m, j) | i, j ∈ VG,m = maxk=1,...,n sp(tdgQP (Rk), i, j)}

CERA Operators Finally, the following cases inductively define the temporal distance graph
for a CERA expression. The ideas behind the individual cases have already been discussed in
Section 15.3.

• tdgQP (E1 on E2) = (V 1
G ∪ V 2

G, E1
G ∪ E2

G), where
(V 1

G, E1
G) = tdgQP (E1)

(V 2
G, E2

G) = tdgQP (E2)

• tdgQP (µ[j ← i1 t . . . t in](E)) = (VG, EG), where
(V ′G, E′G) = tdgQP (E)
w = max{sp(tdgQP (E), ik.s, il.e) | k = 1, . . . , n, l = 1, . . . , n}
VG = V ′G ∪ {j.s, j.e}
EG = E′G ∪ {(j.s, !, w, j.e), (j.e, !,≤, 0, j.s)}

∪ {(ik.s, !,≤, 0, j.s) | k = 1, . . . , n}
∪ {(j.e, !,≤, 0, ik.e) | k = 1, . . . , n}

214 CHAPTER 15. RELEVANCE OF EVENTS

• tdgQP (E1 niwj E2) = (V 1
G ∪ V 2

G, EG), where
(V 1

G, E1
G) = tdgQP (E1)

(V 2
G, E2

G) = tdgQP (E2)
EG = E1

G ∪ E2
G ∪ {(j.s, ?,≤, 0, i.s), (i.e, ?,≤, 0, j.e)}

• tdgQP (E1 oniwj E2) = (V 1
G ∪ V 2

G, EG), where
(V 1

G, E1
G) = tdgQP (E1)

(V 2
G, E2

G) = tdgQP (E2)
EG = E1

G ∪ E2
G ∪ {(j.s, ?,≤, 0, i.s), (i.e, ?,≤, 0, j.e)}

• tdgQP (QX[i : t](E)) = (VG, EG), where
(V ′G, E′G) = tdgQP (E)
VG = V ′G ∪ {i.s, i.e}
EG = E′G ∪ {(i.s, !,≤, 0, e.s), (e.s, !,≤, 0, i.s), (i.e, !,≤, 0, e.e), (e.e, !,≤, 0, i.e)}

• tdgQP (π[X](E)) = tdgQP (E)

• tdgQP (γ[G, a← F (A)](E)) = tdgQP (E)

• tdgQP (σ[C](E)) = tdgQP (E) for a non-temporal condition C (i.e., a condition not involving
time stamps)

• tdgQP (σ[i− j ≤ t](E)) = (V ′G, EG), where
(V ′G, E′G) = tdgP (E)
EG = E′G ∪ {(j, ?,≤, t, i)}

• tdgQP (σ[i− j < t](E)) = (V ′G, EG), where
(V ′G, E′G) = tdgP (E)
EG = E′G ∪ {(j, ?, <, t, i)}

• tdgQP (σ[max{i1, . . . , im} −min{j1, . . . , jn} ≤ t](E)) = (V ′G, EG), where
(V ′G, E′G) = tdgP (E)
EG = E′G ∪ {(jk, ?,≤, t, il) | k = 1, . . . , n, l = 1, . . . , n}

• tdgQP (σ[i ≤ j](E)) = (V ′G, EG), where
(V ′G, E′G) = tdgP (E)
EG = E′G ∪ {(j, ?,≤, 0, i)}

• tdgQP (σ[i < j](E)) = (V ′G, EG), where
(V ′G, E′G) = tdgP (E)
EG = E′G ∪ {(j, ?, <, 0, i)}

Note that for selection, the last three cases are just variations of the two cases before them
and are given for the sake of completeness.

15.4.2 Computing Relevance Times and Temporal Relevance Condi-
tions

Function rtQP (i, R,E) computes the temporal relevance time rtR in E(i) of a time stamp i ∈
schtime(R) of an input relation R of an expression E or materialization point Q := E in a given
query plan QP :

• rtQP (i, R,E) = max{sp(tdgQP (E), i, j) | j ∈ J}, where
R1, . . . , Rn are the input relations of E
J = schtime(R1) ∪ · · · ∪ schtime(Rn)

15.4. ALGORITHM 215

Function trs(QP) spells out all temporal relevance conditions for a given query plan QP
in a straight-forward manner based on the relevance times. These temporal relevance condi-
tions are still “maximal,” i.e., contain also superfluous comparisons. It uses auxiliary functions
trQP (Q), which gives the temporal relevance condition of a single materialization point Q := E,
and comp(rt, i), which spells out the comparison in a temporal relevance condition corresponding
to a given relevance time rt of a time stamp i.

• trs(QP) =
⋃

Q:=E∈QP trQP (Q)

• trQP (Q := E) = { TRR in Q ≡
∧

i∈schtime(R) comp(rtQP (i, R,E), i) |
R is an input relation of E }

• comp(?,≤, t, i) = i ≥ now − t
comp(?, <, t, i) = i > now − t
comp(!,≤, t, i) = i ≥ now − t
comp(!, <, t, i) = i > now − t

15.4.3 Minimal Temporal Relevance Conditions

To obtain minimal temporal relevance conditions, which do not contain superfluous, “covered,”
comparisons, we define the boolean-valued function coversQP (R,E, i, j) in analogy of the definition
in Section 15.3.4.

• coversQP (R,E, i, j) ⇐⇒ sp(tdgQP (E), j, i) = (!, ·) ∧
sp(tdgQP (E), j, i) + rtQP (i, R,E) = rtQP (j, R,E)

Note that there is, in some cases, not a single unique minimal storage condition. This occurs
for example when two time stamps of an input relation are guaranteed to happen at the same
time, i.e., i = j, and thus each covers the other. Unless both i and j are covered by some third
time stamp, we can remove either but not both from the temporal relevance condition.

In practice this doesn’t cause any problems, because it does not matter which one we remove
and there usually is a natural tie breaker like the processing order of time stamps (e.g., in the for
each loop below). Function trminQP (Q := E) is the analog of trQP (Q := E) with the difference
that it gives a minimal storage condition. The set S ⊆ schtime(R) of time stamps where no time
stamp in S covers another in S is used in its definition and can, e.g., be obtained with the given
procedure.

• trminQP (Q := E) = {TRR in Q ≡
∧

i∈S comp(rtQP (i, R,E), i) | R is an input relation of E}

• Computation of S:
S ← ∅
For each i ∈ schtime(R):

If ¬∃j ∈ S coversQP (R,E, j, i)
S ← (S \ {j ∈ S | coversQP (R,E, i, j)} ∪ {i}

15.4.4 Complexity

The proposed algorithm can be implemented as a linear pass over the query plan with one step for
each materialization point in it. Each step involves solving one all pairs shortest path problem.
Using the Floyd-Warshall algorithm this can be done in time cubic in the number of time stamps
occurring in the materialization point. Note that the intermediate shortest paths computation
needed at a merging operator is part of solving the full all pairs shortest paths problem. Hence,
it can be implemented in such a way that the work done there is saved in the later shortest paths
computations and does not affect complexity.

216 CHAPTER 15. RELEVANCE OF EVENTS

While there are also subcubic algorithms for computing shortest paths, their associated over-
head entails that they usually will not pay off in a practical implementation since the number of
time stamps is too small (say < 20).

Our algorithm’s complexity is easily acceptable because it is run only once during query com-
pilation and because query compilation contains far more expensive operations. It might be
interesting however, e.g., for branch and bound optimization of query plans, to investigate dy-
namic algorithms that can efficiently compute the effect of changes to an existing query plan on
temporal relevance conditions or temporal distance graphs.

15.4.5 Correctness

The core ideas for a correctness proof have been given already in Section 15.3. By induction on
the structure of expressions, one shows that the temporal distance constraints laid out by the
computed temporal distance graph are satisfied by all possible results of an expression. That is,
if the temporal distance graph contains an edge for i− j < t or i− j ≤ t then all possible tuples
in a result satisfy this. The argument of the end of Section 15.3.1 explains the correctness of the
temporal relevance conditions derived from the temporal distance graph.

15.5 Using Temporal Relevance for Garbage Collection

Temporal relevance conditions give rise to garbage collection in our incremental query evaluation.
This garbage collection can be done as part of each evaluation step. However, since irrelevant
event tuples that have not been removed yet been from their event histories do no affect the
result of query evaluation, garbage collection can also be performed in other ways. For example
it might only be performed in regular intervals (e.g., every n-th evaluation step), be performed
“on demand” (i.e., when memory gets scarce), or asynchronously in a separate thread that runs
in parallel with the regular query evaluation.

15.5.1 Query Evaluation Algorithm with Garbage Collection

For illustration we describe here the simplest case where we perform garbage collection as part of
every evaluation step of the conceptual algorithm described in Chapter 14.3.5. At the end of each
step, we not only add the corresponding new events to each event history ◦Qi, but also remove
those events from ◦Qi that are irrelevant to all queries that access Qi.

Note that there may be several temporal relevance conditions TRQi in Qj1
, TRQi in Qj2

, . . . for
a given materialization point or base relation Qi. This is the case when Qi is used in multiple
materialization point definitions Qj1 := Ej1 , Qj2 := Ej2 , . . . of the query plan QP .

In the conceptual algorithm given here, we assume that each materialization point Qi is asso-
ciated with single event history (◦Qi). In principle it is however also conceivable to use several
different event histories for a given materialization point. These different event histories might for
example provide different index structures.4 This could be useful when the materialization point
is used in different expressions that perform joins on different attributes. Then it makes sense to
have different event histories, where each provides an index for one of the different join attributes.

When we assume a single event history ◦Qi per materialization point Qi, then tuples must be
kept in ◦Qi as long as one of the temporal relevance conditions TRQi in Qj1

, TRQi in Qj2
, . . . for Qi

return true. Conversely, a tuple can be removed from ◦Qi when all temporal relevance conditions
TRQi in Qj1

, TRQi in Qj2
, . . . for Qi return false.

For the algorithm that follows let

TRQi
:=

∨
{F | TRQi in Qj ≡ F ∈ trs(QP)}

4Note that an event history in this context is only the interface though which the evaluation of a given expression
(after finite differencing) accesses the contents of a materialization point. Therefore the event history might just
be an index that does not also store the event tuples physically.

15.6. OUTLOOK: VARIATIONS AND OTHER FORMS OF RELEVANCE 217

be the disjunction of the temporal relevance conditions TRQi in Qj1
, TRQi in Qj2

, . . . for Qi in the
query plan QP . (Recall from Section 15.4.2 that trs(QP) is a function computing the temporal
relevance conditions of all materialization point definitions Q := E in a given query plan QP .) As
just explained, if TRQi

is true for a tuple in ◦Qi, then it must be kept; if it is false, the tuple can
be removed from ◦Qi.

The evaluation of QP with garbage collection then follows the following schema, which extends
the conceptual algorithm from Chapter 14.3.5 by adding garbage collection.

◦B1 := ∅; . . . ; ◦Bm := ∅;
◦Q1 := ∅; . . . ; ◦Qn := ∅;

while(true) {
advance now to the occurrence time of the next incoming event(s);
4Q1 := ∅; . . . ;4Qn := ∅;
initialize 4B1, . . . ,4Bm with the current events;
compute 4Q1, . . . ,4Qn according to 4QP ;
for i := 1 . . . n {

◦Qi := σ[TRQi
](◦Qi ∪4Qi);

}
output 4Q1, . . . ,4Qn;

}

Note that Qi := σ[TRQi
](◦Qi ∪4Qi) could equivalently be written as

◦Qi := (◦Qi \ σ[¬TRQi
](◦Qi)) ∪4Qi,

which reflects an efficient evaluation of that expression in the form of an update more closely.
Note that TRQi could be simplified with some temporal reasoning. For example when TRQi ≡

i.s ≥ now − 5 ∧ i.s ≥ now − 7, then we can just use TRQi ≡ i.s ≥ now − 7 instead because the
first condition is implied by the second.

15.5.2 Remark on Index Structures for Garbage Collection

An important aspect for implementing garbage collection efficiently is to quickly search and remove
irrelevant tuples, i.e., tuples satisfying ¬TRQi

, in ◦Qi. Appropriate index structures can help here
greatly. A simple, but efficient index structure might just keep tuples sorted by one of the time
stamps used in the temporal relevance conditions. Note that often there is only one such time
stamp after the temporal relevance conditions have been minimized. Even when there are multiple
time stamps, garbage collection might simply designate one to be used, ignoring the others at the
cost of keeping sometimes more tuples in event histories then strictly necessary.

15.6 Outlook: Variations and other Forms of Relevance

Relevance of stored events and intermediate results in complex event queries is an issue that has
been given only little consideration before (cf. also Section 15.7). Therefore it is worth discussing
it beyond the concrete solution for determining temporal relevance conditions in XChangeEQ

that has been given in this chapter. We now broaden the scope and discuss variations on and
generalizations of relevance.

15.6.1 Multiple Time Axes

In the presentation of the algorithm for determining temporal relevance as well as in our operational
semantics in general, we have made the assumption that base events have two time stamps for
start and end. As discussed in Chapter 2.4.4, however, there are situations in distributed systems
where events are time stamped according to multiple time axes (e.g., one time axis for the clock

218 CHAPTER 15. RELEVANCE OF EVENTS

of the event source and another for the clock of the event receiver). Our operational semantics
can be easily extended to accommodate such multiple time axes. Because time stamps are largely
treated like regular attributes, the main thing that would be required are additional time stamp
attributes in the base events.

When such an extension is made to the operational semantics, the algorithm for determining
temporal relevance of this chapter is still applicable. Only the case for base relations has to be
changed to include the additional time stamps of the further time axes. Edges between the time
stamps of different time axes in the same event could express relations between the different time
axes. For example, in a distributed system that needs multiple time axes because clocks cannot
be perfectly synchronized, there will typically be a bound on the drift between different clocks.
When two time stamps i.s and j.s are conceptually the same time but given according two two
different clocks, then this maximal drift between the clocks is the temporal distance between i.s
and j.s. Accordingly, we can add edges in both directions between i.s and j.s with the drift bound
as weight in the temporal distance graph. (The same goes for i.e and j.e.)

15.6.2 Generalization of Temporal Relevance

We have made the assumption that all temporal conditions can be written as a conjunction
of comparisons of the form i − j < t or i − j ≤ t. This covers a significant, and for many
practical applications sufficient, spectrum of possible temporal conditions. In particular it covers
all temporal conditions described in the model theory of XChangeEQ(see Figure 9.3).5 Not covered
are, for example, conditions involving periodic time intervals such as “workday” (defined, e.g., as
Monday through Friday, 9am to 5pm, except holidays) which are often also based on domain-
specific calendars (see also Chapter 6.8).

Our algorithm can still be used by “approximating” these conditions. For example, {i,j}
within workday implies that {i,j} within 8 hours if “workday” is defined as above. While
always correct, this approximation can be crude: an event received at 4pm will be stored for 8
hours instead of just 1 hour.

An alternative is to keep the general framework laid out in this article, but use a more advanced
form of temporal reasoning. For example, one could allow not only numeric edge weights in the
temporal distance graph but also symbolic ones like “workday.” The notion and computation
of the temporal distances (shortest paths) and the longest temporal distance (longest shortest
path) must be adapted then. An important challenge is that calendrical notions are not generally
comparable and summable like the numeric edge weights were, e.g., “workday” and “1 hour”
cannot be compared or added easily. Research on temporal reasoning [FGV05] will provide an
extensive foundation for answering problems like this; note however that the particular problem
that must be solved for temporal relevance (establishing temporal distances) is a not a standard
problem.

15.6.3 Dynamically Changing Query Plans

We have assumed the query plan to be static, i.e., the set of queries does not change at runtime.
Removing queries from a query plan at runtime is without problems — with removing the query,
we also remove all its relations (if they are not needed by other queries) and the corresponding rel-
evance conditions. Adding a new query can be problematic, however, depending on the semantics
of adding a query.

In the simplest case, a new query that is added at a time point t0 “sees” only events happening
after t0. Any result tuples that are generated using incoming events before t0 are not considered
part of the query’s answer. This situation is fairly similar to the static case, and all we have to do
for the new query is to determine its relevance conditions and add them to the existing relevance
conditions.

5The condition for {i,j} apart-by d cannot be expressed as a conjunction of comparisons of the form. However,
this condition has no impact on temporal relevance because it does not help us in limiting the time events have to
be stored in any way.

15.6. OUTLOOK: VARIATIONS AND OTHER FORMS OF RELEVANCE 219

In the most general case, a new query is supposed to see also all events that happened before
its adding at time t0. If there is no knowledge about the queries that can be added, no event
can ever be deleted because it always might be needed by some query that is added in the future.
This makes all events relevant, and there is no real need for relevance conditions.6 It should be
noted that this general case can be considered unsolvable because it implies maintaining a history
of events that grows at least linearly with the length of the (potentially infinite!) event stream.

We can also consider an in-between case where a new query can see events that happened before
it adding at time t0, but the query is restricted some way. The restriction can be, e.g., that only
some specific events during a finite time windows [t0−w, t0] will be relevant for answering it. This
restriction could be included into the static determination of relevance conditions by including it
into the original query plan, e.g., as a kind of “artificial query” that simulates the restrictions on
queries that can be added in the future. The artificial query then expresses a kind of “worst case”
for any future queries.

In another in-between case, we can use our method to determine whether adding a given new
query (which is supposed to see events before its t0) is possible. For this we would determine the
relevance conditions of the new query Q and then compare it with the existing relevance conditions
to see if all required event are available.

Note that the issues mentioned here are inherent to the semantics and evaluation of event
queries and exist independently of any method for determining temporal relevance.

15.6.4 Joins in Temporal Relevance Conditions

Our temporal relevance conditions use only comparisons of the form i > now − t or j ≥ now − t.
More expressive temporal relevance conditions, e.g., containing joins with other relations, could
in some cases allow to remove more events. Consider TRC in F of query plan 1 (Figures 15.1
and 15.2). A tuple r ∈ C that is older than 4 hours should already have a corresponding tuple
r′ ∈ D that will join with it. The selection σ[max{c.e, d.e} − min{c.s, d.s} ≤ 4] will eliminate
join results produced with D-tuples arriving after more than 4 hours of (the starting time of) this
r ∈ C. The temporal relevance condition for C could therefore be stronger, e.g., using a strawman
notation akin to nested queries:

TR′C in F ≡ c.s ≥ now − 5 ∧ c.e ≥ now − 5∧
(c.s < now − 4⇒ x ∈ π[x](σ[d.s ≥ now − 4](D))

The nested query of “x ∈ . . . ” in the condition leads to a (semi-)join with relation D in the
evaluation.

Such a join in relevance conditions is rather undesirable. It is expensive to perform, in particular
since the intermediate result is not materialized and used in the query evaluation. We can achieve
a similar effect, however, by using a different query plan that materializes the join of C and D. An
example is query plan 2 of Figure 15.1; its TRV in F has the same effect as the join of the above
TR′C in F . As an additional benefit, the join is materialized and thus used in the query evaluation.
Testing the relevance condition therefore does not add any overhead.

Note that the choice which query plan to use, i.e., in particular which intermediate results to
materialize, is the responsibility of the query planner. Relevance times are an important input for
its cost metric (cf. Section 15.1), and the cost metric should take into account not only the cost
of producing query results but also of garbage collection, i.e., of evaluating temporal relevance
conditions and removing tuples from their stores.

15.6.5 General Relevance

The (temporal) relevance conditions derived in this paper rely only on temporal conditions and we
have made no assumptions on the contents of event streams, in particular their unknown future

6Even in such a scenario, relevance conditions can still be interesting though, e.g., if only those events that
are needed for the current queries should be kept in main memory while a history of all events is maintained in
secondary memory.

220 CHAPTER 15. RELEVANCE OF EVENTS

content (cf. the definition of temporal relevance in Section 15.2.1). There are also other ways
to determine the relevance of event tuples than temporal conditions; we call this relevance also
“general relevance” to contrast it with (purely) temporal relevance.

On particularly interesting problem of determining relevance is using axiomatic knowledge
about the future content of event streams; we also call this “axiomatic relevance.” Such axiomatic
knowledge can be stated explicitly as rules or derived implicitly from other sources such as business
process descriptions. Axioms about event streams are similar to integrity constraints in databases
in that they limit possible contents of the event streams. They are however differently used: In
databases integrity constraints are checked to avoid or react to updates that violate them. In
determining axiomatic relevance, the axioms are in contrast assumed to be true without checking
them.

A vivid example of axiomatic knowledge about event streams are constraints on key references
between event streams, which are natural in many applications: In a typical shipping application,
a “shipping notice” event must be followed by either a single “delivery” event or a single “return
to sender” event. A tracking identifier acts as a key that correlates these events. In event queries
involving a join between “shipping notice” events and either “delivery” or “return to sender”
events, “shipping notice” event tuples become irrelevant (and can be removed) as soon as they
have found their unique join partner. Without the constraint, the event tuple would have to be
stored in case further join partners arrive.

In [BSW04], it is discussed how such a constraint speeds up query evaluation in data streams.
Note however that there, the constraints are dynamically “mined” from the data streams not a
priori specified as axioms.

15.7 Related Work

The problem of determining temporal relevance introduced and solved in this chapter has been
given little consideration in work on complex event queries before. In part, this can be attributed
to characteristics of earlier languages for complex event queries, which are restricted in comparison
to XChangeEQ (see also Chapter 3).

Composition Operators Most composition-operator-based event query languages do not have
temporal restrictions that would allow garbage collection through temporal relevance (e.g., [GJS92a,
GD93, CKAK94, AC06]). In part, this is due to their origin in active database systems research,
where event queries are often assumed to run inside (short-lived) database transactions. Out-
side of transactions, however, bounds on the “life-spans” of events and garbage collection become
important [BZBW95].

Some composition-operator-based languages therefore allow to add a temporal window to an
operator or a subexpression (e.g., [ZS01, HV02, CL04, BEP06a]), e.g., (A;B)1h to indicate that B
must follow A within 1 hour (see also Chapter 3.2.4). The life-spans in the language of Amit [AE04]
are also similar to this. Since the time window is applied to the full subexpression, determining
temporal relevance of the involved events in trivial. However, this specification of a time window is
very limiting, and many temporal conditions —like those of the query for F(x) in Section 15.2.1—
cannot be expressed with it.7 Further, rewriting such event algebra expressions for the purpose of
query optimization is far more constrained [CL04] than for a relational algebra variant like CERA.

In addition, some composition-operator-based languages offer event instance consumption and
selection, which also affects the relevance of events and allows for garbage collection (see also
Chapter 3.2.7). These mechanism are however very different and have in contrast to temporal
relevance a direct impact on query semantics.

Data Stream Systems Query languages for data streams such as CQL [ABW06] typically
require users to explicitly specify a time window with each input event stream (as part of the

7Note that ((C; D)4; E)1 does not express the conditions of the query under interval-based semantics since the
outer conditions entails that C and E happen within 1 hour not as required D and E.

15.7. RELATED WORK 221

stream-to-relation operation; see also Chapter 3.3.2). For base relations, such time windows
loosely correspond to temporal relevance conditions (although they usually are only for one time
stamp).

The main difference is that in our work, temporal relevance conditions are derived automatically
from queries, while in data stream query languages temporal windows must be explicitly specified
and affect query semantics. This is difference remains also when other types of windows in data
stream systems such as predicate windows [GAE06, KLG07] are considered.

In Chapter 3.3.4, we have seen an example that determining the temporal windows in data
stream languages is not easy when joins are involved. It essentially requires a similar reasoning
about temporal distances by the programmer as the algorithm given in the chapter does auto-
matically. Note also that data stream query languages usually have only very limited support
for temporal conditions beyond the specification of such time windows, especially compared to
XChangeEQ.

Production Rule Systems As discussed in Chapter 3.4, production rules are also often used to
detect complex events, though they are not dedicated event query language. Events (and states)
are asserted as facts and production rules then derive and assert new facts, e.g., complex events,
or retract facts. Garbage collection, that is, retracting facts of events that have become irrelevant
(to a given set of production rules), must traditionally be programmed manually, e.g., by writing
appropriate rules to retract them. Programming errors in this garbage collection are easy to make
and will cause incorrectness of query results or memory leaks.

An automatic garbage collection, as enabled by temporal relevance investigated in this work, is
clearly preferable. In [WBG08] the production rule system Drools is extended with an automatic
garbage collection of facts for events that have become irrelevant. The approach for determining
how long events are relevant is similar to the temporal distance graph that has been used in this
chapter.8

The approach presented in this chapter is more general than [WBG08] in some aspects. The
automatic garbage collection of [WBG08] is done in the context of RETE networks, which have a
fixed strategy for materializing intermediate results, and it relies on a left-deep join tree structure in
RETE networks. Our approach is more flexible in that we consider more general query plans that
support different materialization points (as discussed in Chapter 14.6.1) and have no restrictions
on structure of CERA expressions and materialization points.

Further, garbage collection in [WBG08] works only by removing event facts from alpha nodes,
which loosely correspond to event histories of base relations in our approach. Intermediate results,
which are stored in the beta nodes of the RETE network, are only removed when a corresponding
fact is removed from an alpha node. Our approach is different here. Garbage collection in base
relations and materialization points is done independently. This allows for a more aggressive
garbage collection. It is often possible to remove an event tuple from the history of a base relation
while some tuples in histories of materialization points that have been generated using this base
event tuple must still be kept. An example of this can be seen in query plan 2 of Figure 15.1: A
C event tuple has to be kept in ◦C only for four hours (cf. also the temporal relevance conditions
in Figure 15.2), while a V event tuple that has been generated from this C tuple (through joining
it with a D tuple) has to be kept longer in ◦V , namely for five hours.

8Note [WBG08] has been published at the same time as [BE08a], which first presented the approach described
in this chapter.

222 CHAPTER 15. RELEVANCE OF EVENTS

Chapter 16

Proof-of-Concept Implementation

The operational semantics that have been developed in the previous chapters are accompanied by
a proof-of-concept implementation of XChangeEQ. This prototype implementation is written in
Java and available open source.

This chapter describes the current implementation of the XChangeEQ prototype, which realizes
the core concepts of the event query language XChangeEQ. We first explain how the XChangeEQ

prototype can be used for querying events (Section 16.1). Then we focus on its actual implemen-
tation, explaining how to build the prototype from its source code (Section 16.2) and providing
an overview of the source code (Section 16.3). Finally we discuss some of the current limitations
of the prototype (Section 16.4).

16.1 Using the XChangeEQ Prototype

The XChangeEQ prototype interacts with the outside world through a Java object that is called an
“XChangeEQ engine.” An engine evaluates a given XChangeEQ program. Note that there can in
principle be multiple engines that evaluate different XChangeEQ program or even multiple engines
for the same XChangeEQ program. The XChangeEQ program is passed to the engine object during
the object creation (i.e., in the constructor).

After the creation, events can be sent to an XChangeEQ engine and the engine will evaluate
the queries of it XChangeEQ program and trigger reactive rules in the program.

Providing the XChangeEQ prototype as a Java object gives great flexibility on how it can be
used. For example it can be used just as an ordinary object that runs in the same execution thread
as the sender of the events, it could be run in a separate thread, or it could be wrapped into a
Web service.

16.1.1 Manual Stratification in XChangeEQ Programs

The current XChangeEQ prototype has some limitations with regards to the syntax of XChangeEQ

program. While we will discuss limitations in detail in Section 16.4, an important restriction should
be mentioned here already: XChangeEQ programs must be hierarchical (i.e., free of any recursive
cycles, cf. Chapter 10.1.3) and explicitly divided into strata, that is, the programs must indicate
which rules belong together in a stratum and how the strata are ordered. This division into
strata can be done manually be the programmer; it is however also no big challenge to write
a preprocessor that accepts a program without explicit division into strata, confirms that it is
hierarchical, and derives an explicit stratification (cf. Section 16.4.1).

To this end, the prototype requires that the rules that are to be grouped together in one
stratum are in textual block that is surrounded by the keywords STRATUM and END. The textual
order of these blocks in the program indicates the order of the strata, with the lowest stratum
(i.e., the stratum that operates only on incoming events not on any derived events) first.

223

224 CHAPTER 16. PROOF-OF-CONCEPT IMPLEMENTATION

STRATUM
DETECT

c { all var X }
ON

and {
event a: a{{ var X }},
event b: b{{ var X }}

}
where { {a,b} within 10 sec }

END

END

STRATUM
DETECT

f { all var X }
ON

and {
event c: c{{ var X }},
event d: d{{ var X }},
while c: not e { var X }

}
where { {c,d} within 20 sec , c before d }

END

END

STRATUM
RAISE

to(recipient =" EngineUsageExample.raised", transport ="java") {
result { var X }

}
ON

event f: var X -> f {{ }}
END

END

Figure 16.1: Example an XChangeEQ program with “manual” stratification

Figure 16.1 shows an example of an XChangeEQ program that is annotated with the subdivision
of its rules into strata as required by the current prototype. We will use this example program in
the following, assuming that is in a file named example.xchange.

16.1.2 Simple Usage Example for an XChangeEQ Engine

There are several forms of XChangeEQ engines that differ in the control they provide over the
time stamps that are assigned to events received by the engine. We start with the simplest case
where events are time stamped by the engine upon reception with the current system time. The
class for engine objects of this kind is called TimeStampingXChangeEQEngine.

Figure 16.2 shows a Java program that illustrates the use of the
TimeStampingXChangeEQEngine with the example XChangeEQ program by generating some
events. The main method first creates a new engine object using the example XChangeEQ program
example.xchange. Then it sends the engine an event with the data term a{"1", "2", "3"}.
Approximately one second later it sends the engine the event b{"2", "3", "4"}. (The call
Thread.sleep(1000) causes the execution to pause for approximately 1000 milliseconds. Note
that the two lines after this call are commented out.) Another three seconds later it sends the
engine the event d{"3"}.

At this point, the reactive rule in the XChangeEQ program of Figure 16.1 will fire and call
the method raised in our Java program. As explained in Chapter 6.5, the method receives as
parameter the XML document constructed in the rule head of the reactive rule. The method will
then simply print this XML document on the console.

When our Java program is executed, it will produce the following output:

16.1. USING THE XCHANGEEQ PROTOTYPE 225

import org.w3c.dom.Document;

import xchangeeq.TimeStampingXChangeEQEngine;
import xchangeeq.commons.Util;

public class EngineUsageExample {
public static void main(String [] args) throws InterruptedException {

TimeStampingXChangeEQEngine engine =
new TimeStampingXChangeEQEngine (" example.xchange ");

System.out.println (" Starting ...\n");
System.out.flush ();
engine.stepWithTermAsString ("a{ \"1\" , \"2\", \"3\" }");
Thread.sleep (1000);
// engine.stepWithTermAsString ("e{ \"3\" }");
// Thread.sleep (1000);
engine.stepWithTermAsString ("b{ \"2\" , \"3\", \"4\" }");
Thread.sleep (3000);
engine.stepWithTermAsString ("d{ \"3\" }");
System.out.println ("End .");
System.out.flush ();

}

public static void raised(Document doc) {
System.out.println(Util.xmlToString(doc));
System.out.flush ();

}
}

Figure 16.2: Example for using the TimeStampingXChangeEQEngine

Starting ...

<result >
<f>3</f>
</result >

End.

Note that there is a pause of roughly four seconds between the first line and the rest of the output.
We can also uncomment the two lines that are commented out in of Java program of fig-

ure 16.2. In this case, the engine will receive an event e{"3"} between event a{"1", "2", "3"}
and b{"2", "3", "4"}. The effect of this is that the event query of the second rule in our example
XChangeEQ program of Figure 16.1 will not have an answer due to the negation. Accordingly, the
reactive rule will not be triggered, the raise method in our Java program not be called, and the
output just be:

Starting ...

End.

There will be a pause of roughly five seconds between the first line and the rest of the output.

16.1.3 Different XChangeEQ Engines and Event Time Stamps

The current XChangeEQ prototype supports three different engines that differ mainly in the control
they give the user over the occurrence times of events.

Methods in TimeStampingXChangeEQEngine The TimeStampingXChangeEQEngine provides
the following methods for receiving events (all with return type void and visibility public):

• stepWithTermAsString(String termAsString)

226 CHAPTER 16. PROOF-OF-CONCEPT IMPLEMENTATION

• stepWithTerm(Term term)

• stepWithXML(Document doc)

• stepWithTermsAsStrings(List<String> termsAsStrings)

• stepWithTerms(List<Term> terms)

• stepWithXMLs(List<Document> docs)

In the parameters of these methods, the type Term is from the package xchangeeq.minixcerpt
(which belongs to the XChangeEQ prototype) and represents an Xcerpt data term. The type
Document is from the package org.w3c.dom (which is usually provided by the Java distribution)
and represents an XML document through the Document Object Model (DOM) [H+08].

The first three methods are for sending a single event to the engine, the other three for sending
several events to the engine. Whenever one or more events are sent to the engine, the engine time
stamps these events with the current system time and preforms an evaluation step for the event
queries in the engine’s XChangeEQ program. Note that multiple calls to stepWithTermAsString
with one event each are not equivalent to a single call to stepWithTermsAsStrings with a list
of all the events. The reason for this is that in the former case the events may receive slightly
different time stamps while in the latter case all events are assigned the same time stamp. (The
same is true for the other corresponding pairs of methods.)

An events can be sent to the engine as a String that is a textual representation of an Xcerpt
data term, as a data term object (type Term), or as an XML document (type Document).

More flexibility with XChangeEQEngine There are cases in event processing where the time
stamp of an event should be determined by the event source not the recipient of the event as is
the case with the TimeStampingXChangeEQEngine. To this end, the XChangeEQ prototype offers
a more flexible engine called XChangeEQEngine. With this engine, the control for time stamps of
events is outside the engine. XChangeEQEngine supports the following methods (again all with
return type void and visibility public):

• addEventAsTermAsString(TimePoint start, TimePoint end, String termAsString)

• addEventAsTerm(TimePoint start, TimePoint end, Term term)

• addEventAsXML(TimePoint sStart, TimePoint end, Document doc)

• step(TimePoint now)

The first three methods are for sending events to the engine. In contrast to the methods of
TimeStampingXChangeEQEngine, these methods of XChangeEQEngine allow to assign an occur-
rence time to the events. The occurrence time is a time interval represented as start and end time
points, which are objects of the class TimePoint (of package xchangeeq.time). We discuss this
class further down.

Also in contrast to the methods of TimeStampingXChangeEQEngine, the methods of
XChangeEQEngine do not immediately cause query evaluation. Query evaluation must be ini-
tiated with a call to step giving the current time as parameter.

Note that these methods give the user a very fine grained control over the event query eval-
uation. Accordingly, some care is necessary with respect to the timing of events. When several
events are sent to the evaluation engine between evaluation steps, they must all have the same
end time. Only after a call to step that has this end time as parameter, events with a later end
time may be added. Note that adding events out of order (i.e., adding an event with an earlier
end time that the time of the last step) is not allowed.

16.2. BUILDING XCHANGEEQ FROM THE SOURCE CODE 227

Simplification with SimplifiedXChangeEQEngine It is common in event processing that the
base events that will be received by the XChangeEQ engine occur only at time points rather than
over (true) time intervals. The XChangeEQ prototype therefore offers also a simplified engine that
has methods for only receiving such time point events. It is called SimplifiedXChangeEQEngine
and has the following methods:

• stepWithTermAsString(TimePoint now, String termAsString)

• stepWithTerm(TimePoint now, Term term)

• stepWithXML(TimePoint now, Document doc)

• stepWithTermsAsStrings(TimePoint now, List<String> termsAsStrings)

• stepWithTerms(TimePoint now, List<Term> terms)

• stepWithXMLs(TimePoint now, List<Document> docs)

As with the TimeStampingXChangeEQEngine, receiving events and initiating query evaluation
is done in just one method call (not separate methods calls as in the XChangeEQEngine). In
contrast to TimeStampingXChangeEQEngine, the occurrence time is assigned by the sender of the
event not the engine. Again, care is necessary so that these methods are called only with strictly
increasing time stamps.

Creating TimePoint objects Time points are represented with objects of the abstract class
TimePoint. The XChangeEQ prototype supports in principle different time domains. For time
points that are based on Java’s standard representation for date and time (Date class in package
java.util), the concrete subclass RealTimePoint is used. The constructor of this class takes a
Date object for the time point or alternatively the number of milliseconds elapsed since the epoch
(midnight, 1 January 1970) as long integer.

The XChangeEQ prototype usually works with RealTimePoint to represent time points. How-
ever it also provides a class UnitTimePoint that models the time domain simply as integers. These
UnitTimePoints is mainly useful for testing and debugging of the XChangeEQ prototype and not
so much for practical applications.

16.2 Building XChangeEQ from the Source Code

We now describe how the XChangeEQ prototype can be built from its source code.

16.2.1 Obtaining Source Code

The source code of the current version of the XChangeEQ prototype is available in its Subversion
repository [Sub], which is located at:

https://svn.cip.ifi.lmu.de/~eckert/svn/xchangeeq/

An archive of the source code is also available from

http://www.pms.ifi.lmu.de/projekte/xchangeeq/

16.2.2 Requirements

To build the prototype, Java and the Java SE Development Kit (JDK), Version 1.6.0 [Sun] are
required. Additionally, the following freely available tools and libraries are needed:

• ANTLR Parser Generator, Version 3.0.1 [ANTb, Par07], which is used to generate the
XChangeEQ parser from a grammar description.

228 CHAPTER 16. PROOF-OF-CONCEPT IMPLEMENTATION

• Java Universal Network/Graph Framework (JUNG) 1.7.6 [JUN], which is use to display
algebra expressions as tree (useful mainly for debugging purposes).

• Commons-Collections [Com], which is required by JUNG.

• CERN Colt Scientific Library 1.2.0 [CER], which is also required by JUNG.

Binaries of these libraries are also distributed with the XChangeEQ source code in the lib/
directory.

16.2.3 Building in Eclipse

To build the XChangeEQ prototype within the Integrated Development Environment Eclipse [Ecl],
it is recommended to use the ANTLR IDE Eclipse plug-in [ANTa].

The ANTLR IDE Eclipse plug-in does not automatically generate the parsers from grammar
descriptions as part of the build process of Eclipse. One has to manually select “Generate Code” in
each grammar descriptions. In the XChangeEQ prototype there are two such grammar descriptions:
src/xchangeeq/compiler/parser/NormalizedXChangeEQ.g and src/xchangeeq/minixcerpt/
parser/DataTerm.g.

Other than this, the regular build process of Eclipse should work without any further caveats.
You can also use the ANT build file, which is described next, in Eclipse.

16.2.4 Building with ANT

The XChangeEQ prototype can also be built using the Apache ANT build tool, version 1.7.0 [Apa].
An appropriate build.xml file is distributed with the source code. It requires the ANTLR v3 task
for Ant [ANTc], which is also located in the lib/ directory.

The default target compile in build.xml simply compiles all classes of the XChangeEQ proto-
type into the directory bin/. The additional target dist packages all classes into a Java Archive
file (JAR) for distribution.

16.3 Overview of Source Code

We now give an overview of the source code of the XChangeEQ prototype. The aim is not to cover
all aspects but to give a general understanding and point out some salient aspects as necessary to
explore the prototype and modify or extend it.

16.3.1 Packages

The source code is subdivided into the following packages and sub-packages:

• Package xchangeeq contains the XChangeEQ engines that have been described in Sec-
tion 16.1.

• Package xchangeeq.commons contains several classes that are used all over the source code.

• Package xchangeeq.compiler contains the classes that are responsible for compiling an
XChangeEQ program into a physical query plan. They are described in Section 16.3.2.

• Package xchangeeq.gui contains some classes to graphically display logical query plans, see
Section 16.3.3.

• Package xchangeeq.logical contains classes for representing logical query plans, i.e., data
structures that are used in the compilation process. The algebra operators are in xchangeeq.
logical.algebra, conditions for selections in xchangeeq.logical.conditions, and query
plans themselves in xchangeeq.logical.queryplan.

16.3. OVERVIEW OF SOURCE CODE 229

• Package xchangeeq.minixcerpt contains a limited implementation of Xcerpt, see also the
discussion in Section 16.4.4

• Package xchangeeq.physical contains classes for representing physical query plans, i.e.,
the data structures used in the actual query evaluation. They are shortly described in
Section 16.3.4

• Package xchangeeq.temprlv defines data structures such as the temporal distance graph
that are needed for determining temporal relevance as part of the compilation process.

• Package xchangeeq.time contains classes for representing time points and durations.

16.3.2 Compilation Process

Figure 16.3 illustrates the process of compiling a given XChangeEQ query program into the physical
query plan that is used in all XChangeEQ engines for query evaluation. Data structures that are
created and passed along in the compilation process are depicted as rectangles with sharp corners.
Functions that transform these data structures are depicted as rectangles with rounded corners.

With each data structure and function, the most prominent source file is indicated. Source
files for related classes (e.g., the classes for algebra operators that are used in a query plan) are
usually located nearby in the package hierarchy.

The functions that transform the data structures are related to the previous chapters as follows:

• Compilation to logical query plan (Ast2Log.java) implements the translation of rule pro-
grams into query plans that has been described in Chapter 14.4 and Chapter 13.4.

• Finite differencing (Log2Diff.java) has been described in Chapter 14.3.

• Computation of temporal distances (Log2Tdgs.java) implements the building of the tempo-
ral distance graphs as described in Chapter 15.4.1.

• Determination of temporal relevance implements the computation of the relevance times
and temporal relevance conditions from the temporal distance graphs as described in Chap-
ter 15.4.2, together with their minimization as described in Chapter 15.4.3.

16.3.3 Logical Query Plans

To gain a better understanding of logical query plans in the XChangeEQ prototype, we explain
some conventions and salient points about them and about and how they are compiled.

Visualization of query plans As an aid for analyzing, testing, and debugging, the XChangeEQ

prototype includes functionality for graphically displaying logical query plans. Figure 16.4 shows
two screenshots of this functionality in the prototype. A query plan is displayed with a tab for each
materialization point. In each tab, the corresponding algebra expression for this materialization
point is shown as a tree.

Both screen shots show the query plans for the program of Figure 16.1 and have the tab for the
materialization point “Q2” and its expression opened The first screenshot (Figure 16.4(a)) shows
the query plan after compilation but before finite differencing, the second screenshot shows the
query plan after finite differencing (Figure 16.4(b)).

The notation used in the algebra expressions is close to the one that has been used in the
previous chapters. Relations on the leaves of the expression tree are followed by the schema that
is associated with them, written in square brackets. Note that the screenshots use a triangle
symbol . instead of the symbol n for anti-semi-joins.

It is possible to drag and drop nodes in the expression trees in case the automatic layout does
not achieve a satisfying display. When the mouse pointer hovers over a node in the tree, the
schema of the output of the corresponding subexpression is displayed as a tooltip.

230 CHAPTER 16. PROOF-OF-CONCEPT IMPLEMENTATION

Figure 16.3: Compilation process of an XChangeEQ query program into a physical query plan

16.3. OVERVIEW OF SOURCE CODE 231

(a) Before finite differencing

(b) After finite differencing

Figure 16.4: Visualization of logical query plans in XChangeEQ prototype

232 CHAPTER 16. PROOF-OF-CONCEPT IMPLEMENTATION

Materialization points In the current XChangeEQ prototype, each simple event query has its
own materialization point in the logical query plan as described in Chapter 14.4.4. The prototype
uses the following conventions for the names of relations and materialization points (n being some
integer):

• E is the relation for the incoming event stream.

• Mn are materialization points for simple event queries.

• Qn are materialization points for deductive rules (DETECT. . . ON. . . END).

• Rn are materialization points for reactive rules (RAISE. . . ON. . . END).

• Zn are materialization points that collect the results for each stratum.

Schemas Logical query plan use the named perspective on relational algebra. However, all
algebra operations in the prototype keep a stable order of the attributes, which simplifies the
translation to a physical query plan (which uses the unnamed/positional perspective on relational
algebra). The prototype keeps the names of event identifiers and variables from the source code
of the XChangeEQ program that is compiled.

In the previous chapters, the event identifiers r and e had special significance as the event
identifiers for events that are respectively in the result of a deductive rule and in the incoming
event stream E. In the prototype, these are named r and e to avoid clashes with a potential
use of these event identifiers in rules (i.e., in the form event e:...). Event identifiers that are
generated due to event accumulation (through while i:..., cf. Chapter 13.4.2) are named i#n
with n some integer.

Finite Differencing In the translation from the abstract syntax tree to a logical query plan,
the prototype uses n-ary joins (class MultiJoin) rather than just binary joins. Finite differencing
of these n-ary joins is done with the second method described in Chapter 14.3.4, which avoids an
exponential blow-up in the size of the expression resulting from finite differencing.

It is a common convention for the physical evaluation of a query plan that the smaller relation
should be to the left side. The method for finite differencing from Chapter 14.3.4 already orders
the relations in a way that delta relations, which can be expected to be smaller than history
relations, are to the left side.

Care has to be taken with the ordering of relations in a join however when going from the named
perspective on relational algebra to the unnamed perspective because joins are not commutative
in the unnamed perspective. An additional reordering of the attributes in the output of a join is
needed. To simplify the translation from the logical level (where we use the named perspective)
to the physical level (where we use the unnamed perspective), the prototype uses a “reverse join
operator,” which is displayed as on-R (e.g., in Figure 16.4). It performs the same operation as a
regular join, but orders the attributes in its output as if the arguments of the regular join were
swapped.1

16.3.4 Query Evaluation

The actual query evaluation is performed with physical query plans that are represented by objects
of the class PQueryPlan in package xchangeeq.physical. Event histories are stored in objects
of the class History. The method garbageCollect in this class performs garbage collection
using temporal relevance conditions. Delta relations (i.e., the changes to history relations that are
computed in each evaluation step) are represented by objects of the class Delta. The class Delta
has a subclass ReactionDelta. Objects of this class are generated by reactive rules (or in turn

1As mentioned before, we want to keep to the convention that the smaller relation is on the left side and therefore
do not want to directly use a regular join with swapped arguments.

16.4. CURRENT LIMITATIONS OF PROTOTYPE 233

materialization points named Rn in logical query plans) and additionally trigger the reactions
specified in the reactive rules.

As the focus of the operational semantics of XChangeEQ has been on the logical level, the cur-
rent prototype does not provide advanced index structures and algorithms for the implementation
of relational algebra operations. Joins, for example, are performed as simple nested loop joins.

16.4 Current Limitations of Prototype

The current XChangeEQ implementations is a research prototype, not a product. As such it cuts
some corners that are not essential for a proof-of-concept. We now describe its current limitations.
None of the limitations that will be discussed are inherent to the prototype’s architecture, which
has been designed to be easily extended.

16.4.1 Explicit Stratification

As pointed out already in Section 16.1.1, the prototype requires that XChangeEQ programs indicate
a stratification of their rules through STRATUM . . . END blocks. The reason for this limitation is that
the current XChangeEQ prototype uses a fairly limited implementation of Xcerpt. This limited
Xcerpt implementation supports matching between query terms and data terms (as needed for
the matching operator QX in CERA) but does not support the full simulation unification between
query terms and construct terms. For computing the rule dependency graph that is used to stratify
programs (cf. Chapter 10.1.2), full simulation unification would be necessary. The algorithm for
simulation unification has been details in [Sch04]. The algorithm could, e.g., be implemented
as a preprocessor that transforms regular XChangeEQ programs into XChangeEQ programs that
explicitly indicate stratification.

16.4.2 Normalized Programs

The current prototype only supports programs with normalized rules (as described in Chap-
ter 13.4.1). Since any XChangeEQ program can be converted into a program that contains only
normalized rules, this is not a severe limitation. The prototype can be extended to arbitrary
XChangeEQ rules easily. Apart from extending the parser accordingly, one only has to implement
the rewriting rules of Chapter 13.4.1 as a transformation on the abstract syntax tree so that the
compiler can then work only with normalized rules.

16.4.3 Timer Events

Timer events are not supported in the current prototype. They could be added either as base
relations (like they were treated in the previous chapters) or by collapsing the base relation and the
associated join into one operator. The main issue about timer events is that the query evaluation
has to be “woken up” when a timer event happens. For example for a timer event extend[event
i, 1h], a query evaluation step has to be performed one hour after each i-event. Scheduling
such an event query evaluation step could be realized, e.g., with Java’s Timer facility (package
java.util).

16.4.4 Xcerpt Implementation

The current Xcerpt implementation [Xce] has been written in the functional programming lan-
guage Haskell [Tho99] and there is so far no stable Java implementation of Xcerpt that would have
been suited to embed in the XChangeEQ prototype. Therefore the XChangeEQ prototype provides
its own, limited implementation of Xcerpt (in the package xchangeeq.minixcerpt). Note that
implementing the XChangeEQ prototype in Haskell would not have been a good option: incremen-
tal event query evaluation is inherently a stateful process that is difficult to express in a functional

234 CHAPTER 16. PROOF-OF-CONCEPT IMPLEMENTATION

programming language (in particular in Haskell which aims at being a “purely functional” language
and which uses lazy evaluation).

The Xcerpt implementation in the XChangeEQ prototype covers only a limited set of query
and construct terms. Supported are currently only the following constructs in them:

• total and partial, ordered and unordered term specifications ([], [[]], {}, {{}}),

• descendant specifications (desc),

• regular variables (var X),

• variable restrictions (var X -> term), and

• grouping with all (and an optional group by)

Not supported are currently:

• negation of subterms (without),

• optional subterms (optional),

• label variables (var X {. . . }, etc.),

• position specifications (pos n),

• grouping with some, and

• functions such as + or concat as well as aggregation functions such as avg or max.

The Xcerpt implementation in the XChangeEQ prototype has been designed so that these un-
supported constructs can be added easily. The Xcerpt implementation does not focus on efficiency.
In particular it does not implement memoization as part of the matching process as described in
[Sch04] and [BFLS06].

16.4.5 Actions in Reactive Rules

For reactive rules of the form RAISE. . . ON. . . END, the current prototype supports only specifying
the action of calling a static Java method. Accordingly, the to(...) specification that follows
RAISE (see Chapter 6.5) must contain transport="java". Note that calling a static Java method
is the most general case for a reactive rule and all other cases (e.g., console output or calling a
Web service) can be programmed using this a static Java method.

16.4.6 Error Reporting and Exception Handling

As a prototype, the current XChangeEQ implementation does not pay much attention to good error
reporting and exception handling. It does not perform many syntax checks on input XChangeEQ

programs. When a syntactically incorrect XChangeEQ program is encountered, it relies on the error
messages that are automatically generated by ANTLR and does not provide further assistance to
the user.

16.4.7 Query Rewriting

The current prototype follows a single strategy for introducing materialization points in query
plans: all simple event queries have their own materialization points and no further materialization
points are introduced. It does not perform any query rewriting that would introduce further
materialization points, e.g., to materialize intermediate results that are generated by joins. It also
does not perform any query rewriting such as pushing selections that would likely make query
plans more efficient.

16.4. CURRENT LIMITATIONS OF PROTOTYPE 235

Such a rewritings could be implemented as transformations of the logical query plan. However,
the issue in event querying (and querying in general) is not the rewriting of query plans itself but
rather the development of query planners that provide heuristics and cost measures that indicate
which of a number of possible query plans obtained through rewriting is more likely to be more
efficient (cf. Chapter 14.5).

236 CHAPTER 16. PROOF-OF-CONCEPT IMPLEMENTATION

Part V

Conclusions and Outlook

237

Chapter 17

Language Design Revisited

Having introduces the syntax, declarative semantics, and incremental evaluation of XChangeEQ we
now revisit its language design and illustrate some of its advantages over the existing approaches
that have been discussed in Chapter 3.

A central design idea in the event query language XChangeEQ is to treat each querying di-
mension separately (Section 17.1), which contributes to high expressivity given that the language
is highly expressive in each of the four dimensions event data (Section 17.2), event composi-
tion (Section 17.3), temporal relationships (Section 17.4), and event accumulation (Section 17.5).
Further we discuss the importance of both deductive and reactive rules in the language design of
XChangeEQ (Section 17.6), its formal semantics (Section 17.7), and its extensibility (Section 17.8).
In a final summary (Section 17.9), we complete the earlier tabular comparison of the existing ap-
proaches from Figure 3.7 by including XChangeEQ.

17.1 Separation of Concerns w.r.t. Four Dimensions

As mentioned in Chapter 5.1, a sufficiently expressive event query language should cover at least
the four querying dimensions event data, event composition, temporal (and other) relationships,
and event accumulation. A core idea in the language design of XChangeEQ is to enforce a separa-
tion of these querying dimensions.

Queries in XChangeEQ are written in a style that is reminiscent of logical formulas, and the
different dimensions are expressed in different parts of the formula. Event data is reflected in
simple event queries and in data conditions of the where-clause. Event composition is expressed
through the and and or junctors. Temporal relationships are expressed as temporal conditions
in the where-clause. Event accumulation finally is expressed through the while construct that
defines the accumulation window.

Arguably, this separation of concerns yields a clear language design with clear semantics and
little potential for misinterpretations. It also makes queries easy to read and understand. More
importantly, this separation allows to argue that the language reaches a high degree of expressivity
since it is, as we will discuss in the next sections, highly expressive in each individual dimension.

Composition Operators Composition-operator-based languages mix some of the querying di-
mensions in their syntax and semantics. It can be argued that this impacts ease of use negatively,
offers potential for misinterpretations of queries, and can be held responsible for some lacks in
expressivity.

The simplest and most intuitive example of mixing of dimensions in composition-operator-
based languages is the sequence operator A;B. It mixed the composition of events (“A and
B must happen”) with their temporal relationship (“A is before B”). We now illustrate with
example some of the difficulties this causes. In the examples we assume the interpretation of

239

240 CHAPTER 17. LANGUAGE DESIGN REVISITED

the sequence operator with non-immediately following events that happen over time intervals (cf.
Chapter 3.2.2).

Consider an event query asking for events A, B, C to happen, where A happens before C and
B happens before C. Using the temporal conditions in XChangeEQ, this is straight-forward:

and {
event a: A,
event b: B,
event c: C

}
where { a before c, b before c }

With composition operators, one might be tempted to write this event query as (A;C)4(B;C).
This however does not yield the intended result since different C-events can be used in answering
the query. (A correct way to write the query would be (A4B);C.) Further examples that show
similar potential misinterpretations are in [ZS01, GA02, AC06, BE08b].

As a further example that illustrates a lack of clarity that might make composition operators
hard to use, consider now an event query asking for events A, B, C and D to happen, with the
constraints that A happens before B, A also happens before C, and C before D. The XChangeEQ

query is analogous to this natural language description.

and {
event a: A,
event b: B,
event c: C,
event d: D

}
where { a before b, a before c, c before d }

Similar to the previous example, note that the query cannot be expressed with composition
operators as (A;B)4(A;C)4(C;D) because this would allow different instance of A and C to be
used. A correct way to express the query would be A; (B4(C;D)).

Consider now, what happens if we only add an additional constraint that B happens before
D. In the XChangeEQ query we simply have to add this statement as b before d to the where-
clause. With composition operators, however, the new query bears only little resemblance to the
old: A; (B4C);D. In fact, even though we added a constraint in our specification, the number
of operators stays the same.1 This can be argued to be quite unnatural and might easily cause
programming errors.

For a final example, we consider queries that involve also metric temporal constraints such as
“event A and B happen within 1 hour.” The following XChangeEQ query specifies that A happens,
then B happens within 1 hour of that A, and then C happens within 1 hour of that B,

and {
event a: A,
event b: B,
event c: C

}
where { a before b, {a,b} within 1 hour ,

b before c, {b,c} within 1 hour }

Many composition operator based languages support metric temporal constraints by offering
extended operators. For example, (A;B)t would denote that B happens within t time units after
A, and (A4B)t would denote that A and B happen within t time units (regardless of their order).
However with these operators, the above query cannot be expressed. Note that the expression
((A;B)1h;C)1h would require C to happen within 1 hour of A, not of B (symmetrically for

1In composition-operator-based languages that support n-ary versions of the sequence operators (such as andthen
in [Eck05, BEP06a]), it could even be said to be one operator less.

17.2. EVENT DATA AND QUERYING EVENTS IN XML FORMATS 241

(A; (B;C)1h)1h).2 Of course, what can or cannot be expressed in a given event algebra always
depends on the operators it offers. For example, an event algebra could also offer a sequence
operator of higher arity with temporal constraints and thus be able to express the query (e.g., as
A;1h B;1h C).

Data Stream Languages Like composition-operator-based languages, data stream languages
can also be argued to mix some of the querying dimensions. There, the mixing of dimensions
primarily leads to an restricted coverage in each of the dimensions, as will be discussed further
down.

Production rules Since production rules are not a dedicated event query language, rather a
lower-level programming model that is relatively well-suited for event processing, they offer no
built-in support whatsoever for any of the dimensions. As explained in Chapter 3.4), support for
certain aspects of event queries such as temporal relationships must be programmed manually,
usually by reverting to the host programming language. In this sense, production rules can
neither be said to separate nor mix the four querying dimensions — it simply depends on the
way programmers design and structure their rules.

It is possible to a large extend to write production rules in a structure that mimics XChangeEQ

and its separation of dimensions. This particularly so for the first three dimensions, event data,
event composition, and temporal relationships. The examples in Chapter 3.4 have been written
in such a way so that they are as close as possible to their counterparts in XChangeEQ. Mimick-
ing XChangeEQ for queries requiring event accumulation is more difficult, primarily because the
constructs for it in production rule languages are very low level and not tailored for the temporal
aspect of accumulating events rather than facts (cf. Chapter 3.4.4). A separation of the dimensions
can however usually still be achieved.

17.2 Event Data and Querying Events in XML formats

Events and their associated data are often represented in XML formats such as SOAP, CBE, or
FCML (cf. Chapter 2.4.2). XChangeEQ addresses the need to query events in such XML formats
by building upon the Web query language Xcerpt [SB04, Sch04].

For embedding it into XChangeEQ, Xcerpt has a number of advantages that we believe outweigh
its potential disadvantage of not being one of the conventional XML query languages XSLT and
XQuery that are standardized by the W3C:

• Xcerpt’s query terms describe a pattern for incoming data. As such, they serve a dual
purpose in XChangeEQ by (1) specifying implicitly a kind of event type and (2) extracting
data from events. The (implicit) notion of an event type is relevant in querying events
because one typically only wants to compose or accumulate events of certain types. XSLT
and XQuery focus primarily on extracting data and are not as well suited for describing also
an event type.

• Xcerpt separates access to existing data (with query terms) and construction of new data
(with construct terms). This makes it possible to embed Xcerpt’s query terms and con-
struct terms as “black boxes” into XChangeEQ, while still achieving a language that looks
natural and homogenous. Because XSLT and XQuery inter-mix data access and construc-
tion [BFB+05], such a “black box” approach for embedding them would be less natural
there.

• Xcerpt uses substitutions and substitution sets as output of matching query terms against
data and as input to construct terms for constructing new data. This has been a key enable

2Note that if we were to take the interpretation of the sequence operator based on time points, then the query
could be written as ((A; B)1h; C)1h. However then the modified query where C is supposed to happen after B
within 2 hours of A (as opposed to within 1 hour of B) cannot be expressed.

242 CHAPTER 17. LANGUAGE DESIGN REVISITED

in the design of Xcerpt as a rule-based Web query language, where rule bodies resemble
logic formulas, and has similarly been key enabler in the design of XChangeEQ as a rule-
based event query language. Further we have seen in this work that this makes declarative
semantics with a model-theoretic approach and operational semantics building on relational
algebra possible. XSLT and XQuery in contrast are more similar to functional programming
languages (esp. in their semantics) than rule-based logic programming languages.

• Xcerpt aims at being a versatile Web query language. Conceptually, it can be used for
querying data in different Web data format, e.g., not just XML but also RDF, even within a
single query or program. Extending Xcerpt to other Web data formats is an ongoing work,
and results obtained there are easily integrated into XChangeEQ.

• Finally, Xcerpt has already been successfully built upon in the reactive language XChange,
and a design goal of XChangeEQ has been that is can be used as an event query language
inside the reactive language XChange.

The advantages of Xcerpt aside, XChangeEQ’s language design is extensible to build upon other
query languages for accessing event data as well. With RelEQ, which follows XChangeEQ’s ideas
but represents and queries events as relational facts, we have already seen an example of this (cf.
Chapter 6.11). The essential requirement for using another data query language with XChangeEQ’s
approach to querying event is that it must have the ability to produce sets of variable substitutions
when matching against incoming events and the ability to consume sets of variable substitutions
for constructing new events.

Composition operators Most composition-operator-based event query languages neglect the
aspect of event data (at least as far as their descriptions in the literature and their formal semantics
are concerned). They do not build upon an existing query language nor do they define their own
query language.

Some composition-operator-based languages support event data in the form of attribute-value
pairs (or equivalently relational facts). For querying XML, however, this can be deemed insuf-
ficient since XML data might have a more complex structure and require queries that support
incomplete specifications (e.g., searching for elements in an unknown depths as supported with
XPath’s descendant axis or Xcerpt’s desc construct).

The only composition-operator-based language that natively supports querying XML data that
we are aware of are the composition operators of XChange (that have preceded and, through the
difficulties found with them, motivated the development of XChangeEQ). Like XChangeEQ, they
build upon Xcerpt.

Production rules Production rules work with the data model of the host programming language
(e.g., Java), which is usually object-oriented. Accordingly they usually require to model each type
of event with a class and to represent events as objects of these class. There is no dedicated query
language for accessing the data of events in production rules; this is done with the constructs of
the host programming language.

When events are communicated as XML, this typically requires to serialize and de-serialize be-
tween the XML and object representation. Modern development tools offer considerable support
for automatic serialization and de-serialization between objects and XML. However, they usually
require that the objects (or rather classes) have been defined first and derive from that corre-
sponding XML schemas. The other direction, where the XML schemas for objects are defined first
and appropriate classes and objects have to be generated usually involves a significant amount of
manual labor by programmers. Further, finding a good object representation for a complicated
XML schema (containing, e.g., recursive definitions or many alternatives) is a hard task.

It might be conceivable to access the Document Object Model (DOM, [H+08]) object structure
of events in XML formats directly in production rules. However, querying XML through DOM is
already very inconvenient if done in regular code and would be even worse if done in production

17.3. EVENT COMPOSITION AND GARBAGE COLLECTION 243

rules. Therefore, a conversion to an object model as described above is generally preferable despite
the involved work.

Data stream languages Data stream languages such as CQL represent events as relational
tuples and build upon the existing query language SQL. However the way CQL builds upon SQL
is conceptually very different form the way XChangeEQ builds upon Xcerpt: CQL converts the
event streams received so far into tables that are then operated on by SQL as if they were normal
tables, and finally converts the result back. (A comparable approach to deal with XML events
would be to create one big XML documents that is the concatenation of all events received so
far, then use an XML query language on that document, and finally convert the result document
back into events.) XChangeEQ in contrast operates “natively” on events and uses Xcerpt only to
extract data from events and to construct new event data

Processing XML events with a CQL-like language is possible using the XML extensions to
SQL (SQL/XML, [EMK+04]). Arguably, SQL/XML is not the most intuitive way to deal with
XML data. SQL/XML essentially allows to query attribute values of a tuple that contain XML
fragments and construct new tuples with atomic attribute values (such as strings or integer) from
them within a SQL query. (They way SQL/XML works is somewhat reminiscent of the matching
operator and construction function in CERA that have been described in Chapter 13.1.6.) When
using SQL/XML as part of CQL, this means that in addition to the conversion between event
streams and tables there also is a conversion between XML and tables. This can make CQL queries
that have to deal with XML events very hard to understand in comparison to similar XChangeEQ

queries.

17.3 Event Composition and Garbage Collection

Due the separation of the querying dimensions, event composition in XChangeEQ is fairly simple
and only two operators, conjunction and disjunction, are needed. The operators have clear and
intuitive semantics and there is little potential for misinterpretation. The time a complex event is
detected (and any reactions executed) is always simply the time that the last constituent event is
detected.

Event composition in XChangeEQ is sensitive to data: a variable that occurs in different simple
event queries of the same complex event query must be bound to the same value. Data-sensitive
event composition (sometimes also called “event correlation”) is important in practice as evidenced
by the queries in Chapter 7.

Event composition entails a need to store events in the query evaluation for some time and
thus a need for garbage collection of events that have become irrelevant. XChangeEQ supports a
sophisticated automatic garbage collection based on temporal relevance.

Composition operators The simplicity of event composition in XChangeEQ is in contrast to
composition-operator-based languages that provide a multitude of different operators that must
be learned by the programmer. The operators do not always have clear and intuitive semantics
and have a potential for misinterpretations (e.g., sequence, counting, cf. Chapter 3.2). For most
operators the detection time of the complex event is clear, but there are exceptions (e.g., overlaps or
counting, cf. Chapter 3.2.5). Some composition-operator-based language further support so-called
detection modes that can have an impact on the detection time of a complex event.

Data-sensitive composition of events is often not considered or requires fairly complicated
mechanisms such as the local and global keys in Amit [AE04]. Garbage collection is a less involved
problem than in XChangeEQ because of the limitations on the expressions that can be formed using
composition operators (see the discussion in Section 17.1).

Production rules As mentioned earlier (Section 17.1), production rules can partially mimic
the ideas of XChangeEQ. This especially applies to event composition: like XChangeEQ, produc-

244 CHAPTER 17. LANGUAGE DESIGN REVISITED

tion rules primarily supply a conjunction for this. However, garbage collection must usually be
performed manually, which is a considerable inconvenience and potential for programming errors.

Data stream languages Event composition in data stream languages is done by joining the
relations that have been obtained from streams with stream-to-relation operators (or “windows”).
The composition is sensitive to data. The detection time of a complex event depends on the
relation-to-stream operator (together with the evolution of the state of the result relation) and is
thus sometimes hard to grasp. Garbage collection is a fairly simple issue since only the stream-
to-relation operators determine how long events must be stored. However this entails that pro-
grammers have to work on a lower level, describing exactly how long events are stored rather than
relying on a mechanism that automatically determines this for them as in XChangeEQ.

17.4 Temporal Relationships

XChangeEQ offers a very extensive support for expressing temporal relationships in event queries.
Because of the separation of the querying dimensions, it is fairly easy to extend the temporal
relationships that are currently supported, e.g., also add relationships that rely on domain- or
culture-specific calendars.

XChangeEQ’s language design also emphasizes a strong distinction between references to time
points or intervals that signify timer events and references to time points or intervals that are part
of temporal conditions (see Chapter 6.8).

Production rules Production rules offer no built-in support for temporal relationships. They
have to be programmed manually as described in Chapter 3.4.2. A distinction between timer
events and references to time in conditions is possible, however the distinction is less clear in the
syntax (no explicit where-clause as in XChangeEQ) and its enforcement the responsibility of the
programmer.

Data stream languages Some temporal relationships can be expressed in data stream lan-
guages indirectly by using temporal windows. For example that events of types A and B should
happen within one hour can be expressed by applying a one hour window to stream A and B
each. However, this can be considered fairly inconvenient and the temporal relationships that can
be expressed are rather limited.

Composition operators Composition operators have extensive support for temporal relation-
ships, however, we have seen in Section 17.1 that there are some (maybe unexpected) limitations
in the expressivity that result from the mixing for the querying dimensions.

The distinction between timer events and references to time in temporal conditions is less
clear in composition-operator-based languages than it is in XChangeEQ. For example in event
query such as A;B;A + 5h one might consider A + 5h either as a timer event that is waited
for (and thus the detection time is five hours after the A event) or as expressing a temporal
conditions (and thus the detection time is that of the B event). For consistency reasons (e.g., with
A;¬B;A + 5h) the former should usually be the case. Some languages would express the latter
with temporally restricted operators (e.g., (A;B)5h); however these allow only to express relative
temporal constraints (e.g., within five hours) and do not allow to express restrictions that refer to
absolute time points (e.g., before 5pm on a specific date).

17.5 Event Accumulation

Negation and aggregation are treated uniformly in XChangeEQ through event accumulation. The
reason for this uniform treatment is that both give rise to so-called non-monotonic queries and
accordingly require a restriction to some window in querying events. Event accumulation in

17.6. SUPPORT FOR DEDUCTIVE AND REACTIVE RULES 245

XChangeEQ is sensitive to data, which can play a role in event accumulation similar to its role in
event composition.

XChangeEQ offers great flexibility with regards to the temporal windows that can be used for
event accumulation: a window is simply specified by another event. This event can be a simple
event, a relative timer event, an absolute or periodic timer event, or an event constructed by a
deductive rules from other events.

Composition operators Negation is supported in composition-operator-based languages, usu-
ally by a ternary operator A;¬B;C that resembles a sequence. With this operator there is less
flexibility with regards to the accumulation window, which is essentially restricted to being given
by two events. (Note that composition operators typically have no notion of deductive rules, so
that these events cannot be derived events.) As mentioned before, data is an often neglected
aspect in composition operators. There is usually no support for aggregation.

Production rules Event accumulation for negation or aggregation is possible in production
rules. However the language constructs that are used for this can be considered fairly inconvenient,
even outside of the event processing context (i.e., when processing regular facts not events). In an
event processing context, there is no direct support for the important event accumulation window
that describes a time window over which events are to be accumulated. As with event composition,
garbage collection of accumulated events must be performed manually.

Data stream languages Data stream languages support both aggregation and negation. How-
ever the latter is often somewhat inconvenient to express, simply because SQL requires the use
of a “back door” like COUNT(X)=0 or NOT EXISTS. There is fairly extensive support for temporal
accumulation windows, but is can be considered less flexible than the approach of using another
(interval-based) event in XChangeEQ. In particular, the common case where one event does not
happen between two other events (A;¬B;C in composition operators) is very hard to express in a
data stream language. On the other hand, data stream languages allow tuple-based windows for
event accumulation, something that is not supported in XChangeEQ.

17.6 Support for Deductive and Reactive Rules

Deductive rules are as important for querying events as they are for traditional querying of non-
event data. Accordingly, they are an an integral concept in XChangeEQ. Beyond their usual use
as a reasoning, abstraction, and mediation mechanism, deductive rules in XChangeEQ are also
important to define events which will be used as accumulation windows in other deductive rules
(cf. Section 17.5) or in advanced uses of grouping.3 XChangeEQ’s approach of writing complex
event queries in the style of logic formulas is particularly well-suited for the bodies of deductive
rules.

The current declarative semantics of XChangeEQ restrict the use of recursion to stratified
rule programs (see Chapter 10). However, it is conceivable to be less restricted at the price of
more involved semantics. Less restrictive approaches have been well-investigated in the non-event
context of logic programming and deductive databases and should be applicable to XChangeEQ as
well. The current operational semantics of XChangeEQ are restricted to hierarchical rule programs,
but an extension to stratified rule programs is straight-forward (see Chapter 18.1.1).

In addition to deductive rules, XChangeEQ supports reactive rules to specify reactions to
(complex) events. When XChangeEQ is used in conjunction with the reactive Web language
XChange, then is possible to express fairly advanced reactions (including, e.g., updates to Web
resources) in a homogenous and fairly declarative language.

3For example separate deductive rules must be used when event data is aggregated and then events further
filtered based on this aggregated value. The reason for this is that XChangeEQ like Xcerpt does not have a
mechanism like SQL’s HAVING clause that allows to express conditions on constructed data within the same query.
See also Chapter 18.1.3

246 CHAPTER 17. LANGUAGE DESIGN REVISITED

Composition operators Current languages based on composition operators do not offer any
support for deductive rules. Typically composition operators are used as part of reactive Event-
Condition-Action (ECA) rules. These reactive rules can be used to simulate deductive rules to
some degree, but this has considerable disadvantages that have been discussed in Chapter 5.4.

Production rules Production rules are reactive rules, although they are often used (also in
other contexts than event processing) to express deductive knowledge. The fact (or event) that
is derived from some condition over facts (or events) is simply asserted in the action part of a
rule. Many production rules languages support the notion of a “logical assertion,” which has the
effect that a fact (or event) is automatically retracted when its associated condition does not hold
anymore. In this respect, simulating deductive rules with production rules is slightly better than
simulating deductive rules with the ECA rules that are associated with composition operators.
However production rules still offer no support for true deductive rules.

Data stream languages Many data stream languages support views, which can be considered
a form of deductive rules. However they are typically more limited than the deductive rules in
XChangeEQ and do not permit recursion or permit only linear recursion. Data stream languages
typically have no notion of reactive rules. Reactions to complex events are typically implemented
separately by some entity that consumes output streams of the data stream management systems.4

17.7 Formal Semantics

With its model theory and accompanying fixpoint theory, XChangeEQ provides highly declarative
semantics for querying events based on an approach that is well-established for traditional, non-
event queries. Consideration of event data is inherent to the semantics of XChangeEQ. Since
these semantics work directly on streams and are stateless, they are also very intuitive. A possible
drawback of stateless semantics is however that XChangeEQ does not support event instance
consumption and selection (as found in composition-operator-based languages) or tuple-based
windows (as found in data stream languages).

Composition operators Many composition-operator-based languages neglect formal seman-
tics, in particular as far as event data is concerned. When selection or consumption should be
described formally for composition operators, the semantics necessarily become stateful, losing a
declarative nature and becoming harder to understand.

Production rules The semantics of production rules can be considered intricate and undeclar-
ative. They are stateful and have much in common with the semantics of imperative programming
languages. Conflict resolution between rules complicates semantics of production rules further.
Because production rules are not a dedicated event query language, their semantics do not work
directly on event streams but rather depend on a conversion of events into facts, which might even
happen externally to the rules.

Data stream languages The semantics of data stream languages can be said to not work
directly on event streams, because they essentially require the conversion of the event streams into
relations (through the stream-to-relation operator). The conversion back to streams makes the
semantics also stateful: relation-to-stream operators such as Istream and Dstream depend on the
difference between the current result of a SQL query and its previous result.

4Note however, that many data stream management systems are engineered in a way that this “separate entity”
can run in the same operating system process as the data stream management system. This is important in some
applications that require low latency (such as algorithmic trading) to avoid the delay caused by a context switch
between different processes.

17.8. EXTENSIBILITY 247

17.8 Extensibility

The language design of XChangeEQ emphasizes extensibility. Its extensibility is greatly aided by
the separation of dimensions. Examples of where XChangeEQ might be extended fairly easily
include the following:

• further temporal relationships, e.g., based on culture- or domain-specific calendars,

• further relative, absolute, or periodic timer events, again e.g, based on culture- or domain-
specific calendars [BRS05],

• support of other relationships between events such as causal [Luc02] or spatial relationships
[Sch08],

• extensions to the underlying Web query language Xcerpt such as support for querying RDF,
which are currently investigated [BFLP08],

• embedding another query language for querying simple events, which might also be for events
in other data formats than XML,

• access to non-event data (e.g., in a database or in Web documents) in event queries, and

• user-defined functions for constructing new event data and for testing conditions on event
data.

Note that the first two points, temporal relationships and timer events, have potentially an
impact on temporal relevance, which has been discussed in Chapter 15.6.2.

Composition operators Extending a composition-operator-based language typically involves
defining new operators. This is can be considered more invasive into the language and its design
than the possible extensions to XChangeEQ that have just been mentioned.

Production rules Because of their intimate connection with a host programming language, pro-
duction rules can be extended fairly easy in most directions. The price however is that production
rules work on a relatively low abstraction level.

Data stream languages Some data stream languages support user-defined functions and win-
dows. However, other issues such as adding new relationships between events or embedding a query
language for querying simple events can be considered hard and fairly invasive to the language.

17.9 Summary

Figure 17.1 summarizes how XChangeEQ relates to the other approaches for querying events. It
completes the table that has previously been given in Figure 3.7 of Chapter 3.5. We refer to the
previous sections in this chapter and to Chapter 3.5 for a deeper discussion of the individual points
in the table.

248 CHAPTER 17. LANGUAGE DESIGN REVISITED

Comp. op. Data stream
lang.

Production
rules

XChangeEQ

Temporal
aspects

++ 0 − ++

Negation + 0 − ++
(data-sensitive, flexible

windows)

Aggregation −− ++ − ++
(flexible temporal

windows)

Consumption
and selection

++ −− 0 −−
(not supported)

Facts and States − + ++ −/+
(currently not supported,

but extensible)

Formal
Semantics

0 + − ++
(intuitive, highly

declarative)

Ease-of-Use,
Learning Curve

+ 0 − ++

Occurrence and
detection time

+ − −− ++

Extensibility,
flexibility

− + ++ ++

Data model:
XML support

−− + − ++
(builds on Xcerpt)

Integration see Fig. 3.7 see Fig. 3.7 see Fig. 3.7 standalone, reactive Web
language (XChange),
prog. lang. (Java)

Implementations 0 ++ + −/+
(only prototype, but

operational semantics like
data stream lang.)

Development
tools

− − 0 −

Figure 17.1: Summary of the comparison between XChangeEQ and other approaches for querying
events; completes summary of Figure 3.7 with an additional column for XChangeEQ. See Chapter 3
for further details and references to the considered languages.

Chapter 18

Future Work on XChangeEQ

This thesis has put forward the foundations of the event query language XChangeEQ. However the
work also opens up opportunities for future work in the realm of querying events. In this chapter,
we discuss concrete future work on the language XChange; the next chapter will broaden scope to
issues in querying events and beyond that are not tied directly to XChangeEQ.

18.1 Rules and Language Design

We start by discussing future work on XChangeEQ that relates to the current design of XChangeEQ

and the use of rules in it.

18.1.1 Stratified Programs and Beyond

The operational semantics that were presented in this work (Chapters 12–16) and the current
prototype implementation focus on hierarchical rule programs, that is, programs without any
recursion cycles. The operational semantics and their implementation can easily be extended to
stratified programs like they are covered by the declarative semantics of this work (cf. Chapter 10).

To this end, the notion of query plans would have to be extended to allow cyclic definitions
of materialization points (with restrictions that correspond to stratification). When an evaluation
step is initiated in the incremental evaluation, it would not just preform the computation of changes
to event histories once but repeat the process of computing changes and adding these changes to
the histories until there are no further changes (i.e., until a fixpoint is reached). Note that this
corresponds closely to the fixpoint theory of the declarative semantics and also the semi-naive
evaluation of datalog programs [AHV95].

It might also be interesting to develop both declarative and operational semantics for
XChangeEQ that go beyond stratified programs. An example might be well-founded semantics
that are popular for traditional non-event rule languages. It is likely that approaches that are cur-
rently investigated for Xcerpt and its non-standard, asymmetric unification [Est08] will be highly
relevant to XChangeEQ. How important non-stratified rule programs are in practice for event
queries, can be considered an issue that is still unresolved.

18.1.2 Modularity

When developing large event query programs, it becomes important to be able to subdivide these
programs into modules. Such modules might group together rules that logically belong together
and limit the interaction with rules in other modules. At present, XChangeEQ offers no module
system. However, there is an approach for a module system for Xcerpt [ABB+07] that would
also be applicable to XChangeEQ. This approach relies on a source-to-source transformation

249

250 CHAPTER 18. FUTURE WORK ON XCHANGEEQ

that rewrites modular rule programs to regular rule programs. To implement this approach for
XChangeEQ, therefore, no additional work on declarative and operational semantics is necessary.

18.1.3 Syntactic Sugar

The current language design of XChangeEQ (and the underlying Web query language Xcerpt)
focuses on providing a core of language constructs but avoids introducing unnecessary “syntactic
sugar.” Syntactic sugar here means language constructs that do not increase expressivity but that
might be convenient to make some common expressions easier and shorter to read and write.

As an example of syntactic sugar that might be convenient in XChangeEQ consider a query that
some event B does not happen between event A and C. This query, which can be expressed very
compactly in composition-operator-based languages (as A;¬B;C), becomes somewhat longwinded
in XChangeEQ, because it requires the use of an auxiliary rule to generate the event accumulation
window:

DETECT

AC
ON

and {
event a: A,
event c: C

}
where { a before c }

END

DETECT

R
ON

and {
event w: AC
while w: not B

}
END

By introducing syntactic sugar in the form of a from-until construct as supplement to the
event accumulation with while, one might write such a query more compactly as something like:

DETECT

AC
ON

and {
event a: A,
event c: C,
from a until b: not B

}
END

A similar example where auxiliary rules are needed is when event data is to be aggregated and
a certain complex event to be generated only if some conditions hold on this aggregated value.
This is not uncommon in event queries, especially if cleaning of sensor data is involved (cf. the use
case in Chapter 7.2). For a simple example consider the following rule program that sums up the
prices of items in an order and then detects orders over a given threshold:

DETECT

ordersum[var ID , sum(all var P)]
ON

event o: order {{
id { var ID }
items {{

item {{
price { var P }

}}
}}

}}
END

DETECT

bigorder [var ID]
ON

event o: odersum[var ID , var S]
where { var S > 1000 }

END

By introducing an additional having-clause (in allusion to HAVING in SQL) that can operate
on aggregated values this might be written more compactly as a single rule:1

1Note that such a having-clause would be as desirable in the query language Xcerpt as it is in XChangeEQ.

18.2. TIME 251

DETECT

bigorder [var ID]
ON

event o: order {{
id { var ID }
items {{

item {{
price { var P }

}}
}}

}}
having { sum(all var S) > 1000 }

END

Note that avoiding auxiliary rules by syntactic sugar as in these two example may not just
be a matter of convenience. In practice limiting the use of rule chaining can also help avoiding
programming mistakes that are due to unindented interaction of rules. Further the syntactic sugar
may simplify the identification of optimization opportunities for query evaluation. For example if
the condition on the sum above were “≤ 1000” instead of “> 1000,” one could stop evaluation as
soon as the partial sum so far exceeds 1000.

18.2 Time

XChangeEQ emphasizes the important role time plays in querying complex events and is highly
flexible and extensible in this respect. We now discuss some opportunities for future work that
relate to time in XChangeEQ.

18.2.1 Time Model

The current semantics of XChangeEQ use a simple linear notion of time with a single time axis.
As discussed in Chapter 2.4.4, this notion of time may not be the right choice for some distributed
applications. Such distributed applications may require multiple time axes, where each axis models
time given according to a different local clock in a distributed systems, or they may require a
time domain that is only partially ordered. Both the declarative and operational semantics of
XChangeEQ have been designed with that in mind and the current time model can be exchanged.
In particular, modeling time stamps as attributes of event tuples in the operational semantics
helps greatly. We have, for example, already discussed the effect multiple time axis have on
temporal relevance of events in Chapter 15.6.1. To conduct such investigations in XChangeEQ it
may be particularly important to derive the motivation for a different time model from a practical
application.

18.2.2 Advanced Calendric Specifications

Even though XChangeEQ offers already more extensive support for timer events and temporal
relationships than other event query language, some applications may still not be satisfied with
the current constructs. In particular, in many business applications domain- or culture-specific
concepts such as holidays or work hours are relevant [BRS05]. These concepts may have com-
plicated definitions (e.g., the date of Easter), be subject to irregularities or arbitrary definitions
(e.g., no regular date for company outing), and require different treatment in different context
(e.g., date of company outing counted as working day in payroll accounting but not for handling
of customer orders).

In recognition of the complicated nature of such time- and calendar-related notions, XChangeEQ

has been designed to be very easy to extend in its support for timer events and temporal rela-
tionships. Since it seems impossible to arrive at a set of core constructs that can be considered
sufficient for all applications, it may be particularly relevant to investigate how such calendars can
be defined externally from XChangeEQ. Such external definitions may take the form of simple

252 CHAPTER 18. FUTURE WORK ON XCHANGEEQ

tables that represent calendars (up to a specific date), functions written in some regular program-
ming language, or integration of external temporal reasoners. While XChangeEQ is open to all
these solutions it remains to explore issues such as the design of an Application Programming In-
terface (API) for such calendric definitions and the impact of such calendric definitions of garbage
collection through temporal relevance (cf. also Chapter 15.6.2).

18.2.3 Occurrence Time of Complex Events

In XChangeEQ, the occurrence time of a complex event, i.e., an event that is derived by a deductive
rule, is the time interval covering all its constituent events, i.e., all events that have been used for
answering the query in the rule body. This has the advantage of being a consistent and natural
definition.

There may be some applications where it is more natural to assign another occurrence time to
the complex event. For example it is conceivable that an alarm that is generated as a combination
of sensor events should be given the time point of the last sensor event not the time interval of all
sensor events. This is particularly important when this alarm is further queries in other rules. An
extension may be made to XChangeEQ to allow programmers a choice for the occurrence time of
complex events. Note however that this may affect the suitability of the semantics of XChangeEQ

for event streams (cf. Chapter 11.2).
Further there may be applications that want to distinguish the occurrence time and the detec-

tion time of complex events. For example, the time when a fire outbreak will be detected (through
sensors, human reports, etc.) will generally be later than its actual occurrence. Note that similar
issues exist in the research area of temporal databases, where it is common to distinguish for
example valid time and transaction time [JCG+92].

18.2.4 Boundaries in Event Accumulation

Event accumulation over a window w with the keyword while in XChangeEQ accumulates all
events with an occurrence time t such that start(w) ≤ start(t) and end(t) ≤ end(w). We have
seen in Chapter 7.2.4 a case where we would rather like to accumulate events with start(w) ≤
start(t) and end(t) < end(w), i.e., with one of the equalities being strict. Whether the inequality
should be strict or not matters in particular in cases where the event that (indirectly) defines the
accumulation window is of the same type as the events that are accumulated. As an example
consider the following:

DETECT

b { count(all var X) }
ON

event a: a{{ }},
event w: timer:extend -backward[event a, 1 hour],
while w: collect a {{ var X }}

END

With a strict equality (end(e) < end(w)) the values of the a event will not be counted in the
construction of the rule head. However with a non-strict equality (end(e) ≤ end(w)), they will be
counted. Clearly it important to support both options in practice.

We might do this in XChangeEQ by adding variants of the while keyword where the bound-
aries of the event accumulation window are excluded from the accumulation. In total, this
would lead to four variants of while: The regular while (or while(incl,incl)) where both
boundaries are included, the variant where the left boundary is included and the right excluded
(while(incl,excl)), the variant where the left boundary is excluded and the right included
(while(excl,incl)), and the variant where both boundaries are excluded (while(excl,excl)).

For the declarative and operational semantics such variants of while do not pose any challenges.
It might however be a challenge to find a more intuitive syntax than the suggestion above and
also several variants of while might be a challenge to programmers.

18.3. DATA AND STATE 253

An alternative to variants of while would be to support relative timer events that are not
always closed time intervals (such as the current ones) but that may be left-open, right-open,
or open on both ends. Because having open time intervals will affect the semantics of other
language features (such as temporal relationships) and are probably not easy to understand for
programmers, variants of while seem preferable though.

18.3 Data and State

The next topics for future work that we discuss relate to processing of data in event queries. When
data may change during complex event detection this immediately leads to issues related to state.

18.3.1 Support for Self-Definable Functions

The event query language XChangeEQ and its underlying Web query language Xcerpt offer several
predefined functions such as addition or string concatenation for computing new data that can be
used in conditions or in construct terms. However, at present neither XChangeEQ nor Xcerpt offer
capabilities for adding and using self-definable (or user-definable) functions, that is, functions that
are defined and programmed by the user not the language itself.

Both querying of XML data and querying of events call for self-definable functions. Such self-
definable functions may for example be used to express specific financial calculations (e.g., when
processing market data) or to apply certain averaging or smoothing algorithms to measured data
(e.g., for cleaning of sensor data).

Primarily, support for self-definable functions is an issue that resides with Xcerpt and not
so much with XChangeEQ, which simply “inherits” the capabilities of Xcerpt in this respect.
However, the incremental manner in which event queries are evaluated may make API design for
self-definable functions and their incorporation into the operational semantics an interesting issue
for XChangeEQ: for some functions, especially aggregation functions that work with data that is
collected over time, we may want to provide an API that also allows our self-defined functions to
compute their results incrementally.

To keep with the declarative nature of the query languages, it will usually be desirable that
self-defined functions are true functions, that is, if called with the same arguments they will always
deliver the same results and will not cause any side-effects.

18.3.2 Combined Access to Event and Non-Event Data

At present XChangeEQ operates only on event data; it does not support accessing non-event data,
e.g., of database tables or regular Web documents, in its queries. In practice, combined access to
event and non-event data can be important, however. For example sensor events in a Supervisory
Control and Data Acquisition (SCADA) application might contain only simple identifiers for the
sensors. However some query might require further data about the sensor (e.g., its location), which
is stored in some database. As a further example, order events in an order processing application
might contain only the customer number, which then must be used to look up further data (e.g.,
name and address of the customer) in a database.

When non-event data is completely static, i.e., does not change over time, realizing combined
access to event and non-event data is a fairly simple issue. In fact it might be realized in a manner
similar to self-definable functions (see above).

When non-event data is however dynamic so that is changes over time, possibly during the
course of the detection of a complex event, this raises an important semantic question: Which of
the various states the non-event data takes over time should be used for answering the complex
event query?

A possibility to integrate access to dynamic non-event data in XChangeEQ might be to specify
in queries the time point that we want to access non-event data. To this end, we could introduce
literals of the form at i: q (in addition to event i: q and while i: q literals). These literals

254 CHAPTER 18. FUTURE WORK ON XCHANGEEQ

would specify to perform a non-event query q (i.e., a regular Xcerpt query to some Web document)
at a time point that is determined by some event i. For example, the following rule would detect
a customer’s order as combination of an offer and its acceptance (cf. Chapter 7.1.1), using the
shipping address from a Web document http://example.com/customers.xml. In our query, this
Web document is queried when the offer is issued, not when it is accepted. If the customer address
is changed after the offer, the result of the query is not affected.

DETECT

order {
id { var I },
customer { var C },
product { var P},
quantity { var Q },
discount { var D },
ship -to { var S}

}
ON

and {
event o: weekly -offer {

code { var K },
product { var P },
discount { var D },
max -quantity { var MQ }

},
event a: accept -offer {

code { var K },
id { var I },
customer { var C },
quantity { var Q }

}
at o: in { resource {"http :// example.com/customers.xml"}

customers {{
customer {

name { var C },
ship -to { var S }

}
}}

} where { o before a, {o,a} within 1 week , var Q <= var MQ }
END

Integrating such an access to non-event data in the declarative semantics of XChangeEQ would
entail adding a set that captures the non-event data to interpretations. That is, we need a set I ′

of non-event facts (associated with a time interval over which they are valid) in addition to the
set I of events that “happen” (cf. Chapter 9.3).

Since they are based on relational algebra, the operational semantics of XChangeEQ are well-
suited for integrating access to non-event data. However there are some important design issues
and research questions for an incremental evaluation. For example, will the event query evaluation
engine be notified when non-event data is updated? Does the engine have to ensure that non-event
data is accessed at the right time or can it issue historical queries against the non-event data?
Note also that query optimization and efficient query evaluation in such scenarios have been given
only little consideration in research so far.

18.3.3 State-Based Processing

Like composition operators and data stream languages, XChangeEQ focuses on querying complex
events, that is, combinations of events occurring over time and has little support for performing
state-based processing, which is a particularly strong point of production rules. State-based pro-
cessing can be important in some event processing applications and we have discussed a case of
this in Chapter 3.4.5 with the example of reacting to certain thresholds on the number of persons
in a room (which increases and decreases according to events such as “enter” or “leave”).

It may be conceivable to extend the event query language XChangeEQ in way that it also
includes constructs for dealing with this kind of state-based processing. For example, with an
extension to querying non-event data (see above) one might also try to add production rules to

18.4. EVENT QUERY EVALUATION 255

XChangeEQ. Such production rules would react to changes in the state of non-event data rather
than to incoming event messages.

With the integration of production rules (or other reactive rules), giving declarative semantics
for the event query language, however, becomes very hard or even impossible. It may therefore
also be interesting to investigate alternative approaches that allow only more limited state-based
processing but in a more declarative and less imperative manner than production rules.

18.3.4 Access to Time and Event References as Data

XChangeEQ makes a fairly strong distinction in its language design between explicit regular data
in events and implicit “meta-data” about events such as occurrence time. There may be cases,
where it is desirable to cross the borders between time and data more easily.

For example, when constructing a new derived event, we might want to include a string rep-
resentation of its occurrence time or the occurrence time of some constituent event as a data
attribute. This is particularly relevant when the derived event should be processed by some other
entity than XChangeEQ.

In a similar manner, events might contain in their data string representations of times, dates,
or durations that should be used in temporal conditions. For example, a special offer event might
contain a data attribute that indicates how long this special offer is valid. When an acceptance
event to this special offer is received, we might to check whether offer and acceptance are within
the valid time (which is in event data, not a fixed temporal duration that is specified in the query
as in the example of Chapter 7.1.1).

Because event data and time stamps are treated uniformly in operational semantics, inter-
changing data and time stamps is fairly easy to realize there. Determination of the temporal
relevance may require more dynamic approaches however, e.g., in the second example the rele-
vance time of special offer events would be affected by a valid time in those events and, since it is
part of data, this valid time is not known at query compile time.

A related aspect is that in our operational semantics we generate unique identifiers (called event
references) for events with the matching operator. It may be worthwhile to provide capabilities
to access these event references also on the level of the query language. In scenarios like order
processing, we often have to generate a new order number (cf. Chapter 7.1.1). This order number
must be unique so that the event reference (or a number that is computed from it, e.g., using a
self-definable function) could be used for it.

18.4 Event Query Evaluation

The operational semantics in this thesis focus on the logical level of an efficient incremental evalu-
ation of event queries. Much remains to be done here, however, to obtain an efficient event query
evaluation engine, especially on the physical level. We focus here mainly on issues that are closely
related to XChangeEQ and its logical query plans. Event query evaluation, also on the physical
level, will be discussed further in the research perspectives in the next chapter (Chapter 19.2).

18.4.1 Arrival Order of Simple Events

The current operational semantics assume that events arrive in the order of their occurrence times
(or, more precisely, the end time stamps of their occurrence times). This may not always be the
case, e.g., due to different delays in communication of a distributed system. Typically there are
however still some limits on the order of events, e.g., a maximal delay for events, which is also
often called scramble bound.

There are various possibilities to extend the current operational semantics to deal with events
that arrive in such an unordered manner. The simplest solution would be to just buffer events for a
time determined by the scramble bound and reorder them before feeding them into the evaluation
engine. While this does not affect the throughput of query evaluation (i.e., volume of event data

256 CHAPTER 18. FUTURE WORK ON XCHANGEEQ

that can be processed in a given time unit), however, it increases latency (i.e., the delay between
the last constituent event and detection of a complex event).

An alternative that does not affect latency in this way may be to allow the query evaluation
engine to deliver unordered results, that is the order in which complex events are detected may
not correspond to their occurrence times. For monotonic queries, that is queries that do not
involve negation or aggregation, this is easily done with the current operational semantics. For
non-monotonic queries, it is in general not possible to avoid a latency up to the order of the
scramble bound unless we accept that the event query evaluation may deliver incorrect results.

An option may be to accept that the query evaluation engine may produce incorrect results
for non-monotonic queries at first, but require that it will produce corrections later. This might
be useful in some applications where it is preferable to raise (potential) alarms early and, if they
turn out to be false alarms, give an all-clear signal later.2 To incorporate such corrections this
into the incremental evaluation of Chapter 14, it would be necessary to not only compute positive
changes 4R but also negative changes 5R.

18.4.2 Query Rewriting and Query Planning in XChangeEQ

In this work, we have introduced logical query plans for XChangeEQ and discussed that these
query plans are well-suited for performing logical query optimization by rewriting of relational
algebra expressions. In practice, this requires the development of a query planner component
that uses heuristics and cost estimations to transform and select query plans. The development
of query planners and their prerequisites such as cost estimation functions is a general topic for
research in querying complex event that has not received very much attention so far. We therefore
will discuss it in the next chapter. However, there are also some issues that are specific to the
logical optimization of XChangeEQ because of its nature as a rule language or because it builds
upon Xcerpt. These will be discussed next.

18.4.3 Avoiding Intermediate Construction

In the current query plans, matching and construction are black box operators. When rule chaining
is used, we always first apply a construction and then match against the constructed result. This
intermediate construction can be a source of inefficiency in cases where we first “wrap” some data
in the construction (by putting it into XML elements) only to “unwrap” it again in the following
matching (by extracting it from the XML elements). As an example consider the following two
rules, where the second rules queries the results of the first:

DETECT

c{ b{var X} }
ON

event a: a{ var X}
END

DETECT

d{ var X }
ON

event c: c{ b {var X} }
END

These two rules may be more efficiently written in just one rule that avoids wrapping and
unwrapping the values for variable X:3

DETECT

d{ var X }
ON

event a: a{ var X}
END

2Note that in a concrete application involving human recipients of alarms (e.g., in health care), there is a trade-
off between raising alarms early and generating too many false. Many false alarms may lead to alarm fatigue that
tempts human recipients to ignore or react slowly to some alarms.

3This transformation is not fully correct: the stream of incoming events might contain events that match the
query from the second rule c{b{var X}}. However, we ignore this here to keep things simple.

18.4. EVENT QUERY EVALUATION 257

Note that such an optimization may be done either on the level of logical query plans or as a
source-to-source transformation. In either case, it requires an intimate knowledge about simulation
unification and essentially means reasoning about query equivalences. A further variant of such
optimizations is that there may also be schema constraints on events.

18.4.4 Goal-Directed Forward-Chaining

Another potential source of inefficiency in our present operational semantics for XChangeEQ is
that their forward-chaining evaluation is not goal-directed. Accordingly it may compute results
that are not actually needed. Consider as a trivial example the following program containing one
deductive rules and one reactive rule.

DETECT

b { var X }
ON

event a: a{ var X }
END

RAISE

to (...) {
d{ var X}

}
ON

event c: c{ var X }
where { var X > 100 }

END

Eventually we only care about the reactions such a query program causes; the results of
deductive rules are not relevant outside of our query program. In this sense reactive rules are
the counterpart of goals in logic programming and deductive databases. Since the deductive rule
in our example derives events that are not relevant to any reactive rule in the program, it may be
dropped and the reactions would stay the same.

A more involved example, where a deductive rules may generate events that are not relevant
to any reactive rule, is the following.

DETECT

b[var X, var Y]
ON

event a: a[var X, var Y]
END

RAISE

to (...) {
d[var X]

}
ON

event c: b[var X, "const"]
END

Here, the reactive rule is only interested in events that match b[var X, "const"], i.e., where
the second subterm has the constant value "const". However, the deductive rule will also derive
other events (e.g., an event b["1","2"] when there is an input event a["1","2"]) that are not
relevant to the reactive rule. To avoid production of such irrelevant events, the deductive rule
might be rewritten so that the variable var Y is replaced with the constant value "const".

Such source-to-source transformations to make the evaluation of rule programs more efficient
in a forward-chaining manner by making it goal-directed have been investigated in depth in the
context of logic programming and deductive databases. (Note that such rewritings are more
complicated than the two illustrated above as soon as the programs contain recursion cycles.)
The most popular technique is called magic set rewriting (see, e.g., [AHV95]). In principle, such
techniques are also applicable to XChangeEQ (and a forward-chaining evaluation of Xcerpt). The
main issue in transferring them would be to deal with the non-standard unification between query
terms and construct terms. In the Xcerpt context, this issue is currently being investigated (see
[BEFL08] for first results).

18.4.5 Investigation of Backward-Chaining

Rewriting techniques such as magic set essentially aim at simulating the effect of a backward-
chaining (or top-down) evaluation in a forward-chaining evaluation. In particular, they simulate

258 CHAPTER 18. FUTURE WORK ON XCHANGEEQ

the pushing of selections4 that is done naturally in a backward-chaining evaluation and (ideally)
produce only those facts (or events) that are relevant to a goal (or reactive rule) in the program
[AHV95]. We refer to [AHV95] and [Bry90] for more details on the relationship between these
rewriting techniques and backward-chaining.

Naturally, this leads to the question if backward-chaining algorithms could be used for the
incremental evaluation of event query programs with deductive rules as well and how. A simple
SLD-resolution [Llo93, AHV95] can be argued to be not suitable since it will not store intermediate
results as desirable for an incremental evaluation: it is essentially a depth-first search of the proof
tree and intermediate results that are not on the path from the current node to the root are not
stored.

However, more advanced backward-chaining algorithms such as QSQ [Vie86, AHV95], OLDT
resolution [TS86], and related approaches employ memoing (also called tabling) [War92], that
is, they store intermediate results. In principle therefore, these algorithms may be extended to
work incrementally in the sense that new data arrives during query evaluation. Note that while
these algorithms assume that all extensional data is finite and readily available when the query
evaluation starts, they already are in a sense incremental because query evaluation continually
derives new intensional data with deductive rules. The major difference is that query evaluation
has no control over what data may arrive next in an event stream but has some control over which
data is derived next because it also controls the order in which deductive rule are evaluated.

The issues in applying a backward-chaining approach to an incremental event query evaluation
can be summarized as follows. During query evaluation new extensional data arrives in the event
stream in an “uncontrolled” manner. Data structures that explicitly or implicitly represent proof
trees must be kept in memory and this may be a substantial overhead (compared to the query
plans in a forward-chaining evaluation). Garbage collection of events that become irrelevant due
to the progression of time is necessary. In the context of backward-chaining algorithms, garbage
collection may affect not only stored (“memoized”) incoming events and intermediate results but
also involve removing subtrees of the proof tree (or other parts of similar auxiliary data structures).
Finally, a strength of the forward-chaining method presented in this work is that is allows different
materialization strategies, that is, it gives a fine control over which intermediate results are stored
and which must be recomputed across evaluation steps. Ideally, a similarly fine control should
also be given with a backward-chaining algorithm.

18.4.6 Efficient Implementation, Experimental Evaluation

The current XChangeEQ prototype (cf. Chapter 16) focuses on the logical level of query evaluation.
This is in line with the focus of the operational semantics given in this thesis. While the prototype
provides a physical level for the actual query evaluation, it does not pay much attention to using
efficient index structures and algorithms on the physical level. In particular it performs joins as
simple nested loop joins rather than using more advanced algorithms such as merge or hash joins
that would also require appropriate index structures. The prototype also does not consider issues
such as efficient management of memory buffers, operator scheduling, or the use of an abstract
machine for query evaluation.

There has been quite some work on efficient evaluation of event queries (and other streaming
queries) on the physical level, especially in the context of data stream management systems. Since
relational algebra is also the basis of these systems, the ideas and results from there are in principle
applicable for evaluating XChangeEQ. It may in fact also be considered to translate from the logical
XChangeEQ query plans into the physical query plans of some data stream management systems.5

Given this previous work and the amount of work that would have to go into building a really
efficient physical evaluation for XChangeEQ, a conscious decision has been made for the research

4In the second example from Section 18.4.4 above, the “selection” is that variable Y must be bound to value
"const".

5In this case, XML matching and construction would have to be integrated into these systems. Further it may
be advisable to use a data stream management system that supports predicate windows (cf. Chapter 3.3.2), since
the temporal relevance conditions of XChangeEQ are more complicated than simple sliding windows.

18.4. EVENT QUERY EVALUATION 259

of this thesis to focus on the logical level of XChangeEQ. This decision has also been motivated
by the much-discussed lack of formal foundations in querying events. In particular, work on data
stream management systems so far is almost exclusively concerned with the physical level of query
evaluation and the logical level as well as issues such as language design, declarative semantics,
and correctness of operational semantics are not discussed. Rather than adding to the work on
the physical level (e.g., by concentrating on particular classes of queries or types of event data
distributions), this thesis seeks to address the lack of formal foundations.

Since we have not focused on physical level in the current XChangeEQ prototype, experimental
measurements and comparisons of its query evaluation would make little sense and have not been
presented. Arguable, the resulting lack of experimental validation is a shortcoming of the work on
XChangeEQ so far. However, a physical implementation of query evaluation that is competitive
with current data stream management systems would go beyond the scope of this thesis. (Also note
that a comparison of XChangeEQ and data stream management systems is not straightforward
since these systems usually lack certain features such as querying events received as XML messages
or reasoning by deductive rules.)

For the future, an implementation of XChangeEQ that address the physical level (as well as
other related issues such as multi-query optimizations for XML matching, cf. Chapter 19.2.6) is
of course highly desirable. As mentioned earlier, both building a query evaluation from scratch
and building upon the physical level of existing data stream management systems may be valid
options for this.

260 CHAPTER 18. FUTURE WORK ON XCHANGEEQ

Chapter 19

Research Perspectives in Complex
Event Processing

While the previous chapter has focused on future work that directly relates to XChangeEQ, we now
broaden the scope to important research directions and perspectives in Complex Event Processing
(CEP) in general. Where applicable, we try to point out publications for initial work that has
been done on specific topics.

We start with topics that relate to complex event queries (Section 19.1) and their evaluation
(Section 19.2) and that are thus closely related to this thesis. Then we discuss topics that go
beyond querying of complex events (Section 19.3). Finally we look at topics that relate to the use
of CEP in larger contexts (Section 19.4).

19.1 Querying Complex Events

While a number of different query languages for complex events exist (see Chapter 3) and provide
solutions to many practical problems (see Chapter 1.1), querying complex events is still a young
research topic. Querying complex events in general as well as concrete event query languages open
up many new theoretical and practical questions and development directions. In many cases, these
questions have counterparts in querying databases; however the fundamental differences between
event data that is received over time in streams and non-event data that is readily available in
databases or documents require a reconsideration of these questions in the light of complex event
queries.

19.1.1 Complexity and Expressiveness

The expressiveness of query languages and the complexity of answering certain queries are topics
that are deeply studied in the theory of databases. The results that have been obtained there
consider a database query mainly as a mapping from an instance of a database to an answer, i.e.,
as a simple function for transforming data. This model does therefore not readily accommodate
nature of event queries, which in contrast are performed in a step-wise manner over time, taking
streams of data as input and producing a stream of data as output.

By using an “omniscient perspective” (like we have done in this work for the declarative
and parts of the operational semantics), some results from database queries may transfer in a
fairly straightforward manner. However, this omniscient perspective may not be satisfying for
studying expressiveness and complexity. The streaming nature of input data gives certain natural
restrictions on the expressiveness of event queries, for example, that we cannot query for the
absence of events that will be received in the future. Similarly, complexity cannot be studied as
the over-all complexity of evaluating an event query, i.e., the sum of the costs of all evaluation
steps, because this cost is trivially infinite when the event stream is infinite. Rather we must

261

262 CHAPTER 19. RESEARCH PERSPECTIVES IN COMPLEX EVENT PROCESSING

study the average or worst case for any individual step or something similar. Such aspects are
not covered by the current models of database queries and new models for event queries will be
required.

Since event query evaluation involves storing partial histories of events, the space complexity of
event queries (given in terms of how much data must be stored across evaluation steps) is a further
aspect where we can expect significant differences from traditional database queries. The notion of
temporal relevance that his been introduced in Chapter 15 could be considered a first step in this
direction. Space complexity for streaming queries is also considered in [ABB+04]; however in this
work only regular relational algebra expressions are considered without any notions of temporal
windows (as in data stream languages) or temporal conditions (as, e.g., in XChangeEQ).

19.1.2 Relevance of Events

Events have to be stored in event query evaluation for as long as they may be relevant for gener-
ating future answers to a query. In this work, we have introduced a concrete method for statically
determining the temporal relevance of an event, that is, its relevance according to temporal condi-
tions in queries. We have, however, also discussed in Chapter 15.6 that determining the relevance
of events is a deeper reaching problem with many variants.

In particular, in many event-driven applications there are natural constraints that restrict how
events develop over time and these constraints can be helpful to determine the relevance of events.
Because the constraints can be understood as “axioms” (i.e., propositions that we assume to be
true) about the event stream, we have termed this “axiomatic relevance” in Chapter 15.6.5.

Investigation of any form of relevance will raise two important questions: How is the infor-
mation to determine relevance obtained? How is relevance described in a suitable way for query
evaluation?

For the temporal relevance of Chapter 15, information for determining relevance has been
simply part of queries (in the form of temporal conditions). For axiomatic relevance, the axioms
about event streams could be given in different forms: They could be specified explicitly in some
special language, ideally one that has a syntax that is close to some event query language (much like
integrity constraints in databases). They could also be specified implicitly in descriptions or code
for the event sources. Because they provide high-level descriptions, business process specifications
would be particularly suitable here. It may also be possible to dynamically try to recognize axioms
from event streams as done in [BSW04].

To describe temporal relevance in a way that is suitable for query evaluation, we have employed
temporal relevance conditions in Chapter 15. These conditions correspond to simple selection
conditions. Axiomatic relevance may require more involved conditions because the relevance of
an event there depends not just on attributes of the event but also on the presence or absence of
other events. To describe axiomatic relevance in query evaluation it may therefore be necessary
to introduce concepts such as (foreign) key joins1 into the evaluation formalism or extending
the notion of relevance conditions beyond selection conditions (e.g., to include nested queries or
semi-joins as suggested in Chapter 15.6.4).

19.1.3 Causal and Spatial Event Relationships

In current event query languages, time and order are the only relationships between events that
have dedicated constructs for expressing conditions on the events. There is no support for causal
or spatial relationships between events, which may be important in many applications.

Causal relationships, which are discussed mainly in [Luc02], allow to reason and express condi-
tions about cause-and-effect chains in event queries. They are especially relevant for event queries
that aim at detecting failures and tracking down (potential) causes.

1Foreign key join here means a join where we know that each tuple in one of the relations (say the left) will join
with at most one other tuple in the other relation (say the right). Accordingly, when a join partner has been found
for a tuple on the left, no further processing (i.e., searching for further join partners) is necessary and the tuple
need not be stored any longer its event history)

19.1. QUERYING COMPLEX EVENTS 263

An important aspect for dealing with causality in event queries is how causality information
is obtained and represented. It may be represented explicitly in the event data. For example,
an event might have an attribute “cause” with an some identifier for another event. Causality
information may also be represented separately. For example, there might be a database table to
which causality information (e.g., as tuples of event identifiers) is continually added. It may also
be the case that causality information must be deduced from event data, business processes, etc.
In this last case, a rule language for modeling causality information may convenient. To express,
for example that a shipping event is the cause for a delivery event if it happens before and the
two events have the same tracking number t, we might write statements such as

causes(s, d)← s : shipping(id, t), d : delivery(t), s before d

Note that while this strawman syntax here is similar to RelEQ, the difference here is that we have
a predicate “causes” in the rule head, not an event.

Spatial relationships allow to reason and express conditions involving the positions of events in
physical space. They are relevant mainly in applications that processes events from the physical
world, where each event is associated with a point or region in space where it occurs. Variations
on spatial relationships may however also be relevant in some scenarios that do not relate to
the geography of the physical world; for example, when reasoning about events in a distributed
network, there are also concepts such as topology or the distance between two network nodes.

There is a wide spectrum for the representation and modeling of space and spatial relationships
in different applications. There are relationships based on coordinates (e.g., “located at”), on the
topology between regions (e.g., “overlaps” or “includes”), on distance (e.g., “within radius of 10
meters”), on orientation (e.g., “north of”), and much more. Some applications may also require
relationships that are derived from spatial characteristics, e.g., the travel time between two event
locations (which in turn depends on possible paths and their costs in the physical world). Some
first discussions on spatial relationships in event queries can also be found in [Sch08].

While other relationships between events may be conceivable, causal and spatial relationships
seem the most relevant and promising in the context of querying events. (Note that we discuss
type relationships —such as specialization or generalization through type inheritance— separately
in Section 19.3.1, since they are usually not between event instances but between event types or
an instance and a type.)

Both causality information and event locations are usually contained in event data. One might
therefore argue that they could be queried and reasoned about just like regular data and no
dedicated support from the event query languages is required. This may be true, although incon-
venient, for simple queries involving very simple relationships (e.g., the causality between shipping
and delivery from above or simple spatial relationships that can be expressed with regular arith-
metic on coordinates). For more advances queries and relationship, it is not true anymore. Queries
involving causality will often involve transitive relationships (e.g., to connect direct causal rela-
tions into a causality chain). Queries involving space will require more complicated relationships
that also may rely on the topology of the considered space.

Further both causal and spatial relationships may be important for query optimization (much
like temporal relationships are, e.g., for garbage collection). Causal relationships typically imply a
temporal order between the cause and the effect (due to the “cause-time-axiom” [Luc02]). Spatial
relationships can be relevant for a networked query evaluation in a geographically distributed
environment, e.g., to minimize communication ways.

With its separation of concerns, XChangeEQ is particularly suited for investigating such re-
lationships. They can be easily added to the language’s syntax and semantics in a manner that
is consistent with temporal relationships. For example we might then use expressions such as
“i causes j” or “{i, j} within-radius-of 10 meters” in where-clauses (see also Chapter 17.8).

19.1.4 Experimental Studies of Languages

The comparisons of the different event query languages (or language styles) in Chapters 3 and 17
have been conducted in an analytical way, arguing the pros and cons of certain features and

264 CHAPTER 19. RESEARCH PERSPECTIVES IN COMPLEX EVENT PROCESSING

characteristics of the languages. While this is the common way to compare computer languages,
it is also unsatisfying: the importance and effect these characteristics have in practice (i.e., in
development projects with human programmers) is not clear and not measured in a quantifiable
way.

It would therefore be interesting to study and compare different event query languages in an
experimental way with real users. Performing such studies in an unbiased way is, of course, not an
easy task. The target group for such studies is rather limited (e.g., only persons with programming
skills) and has a wide variety in aptitude, skills, and previous knowledge. More generally, computer
science does not have as much experience with studies involving human subjects as other disciplines
such as psychology. However, the relative novelty of event query languages (compared to regular
query languages or programming languages in general) might help for such investigations: at
present it is still relatively easy to find users without prior exposure to the topic of querying
events and to concrete event query languages.

19.2 Event Query Evaluation and Optimization

Event query languages must provide runtime environments where their queries are evaluated. As
for databases and their queries, efficiency of these runtime environments is important and good
algorithms and index structures can improve efficency by orders of magnitude. While there has
been some amount of research on the efficient evaluation of event queries, especially in the context
of data stream systems, still more remains to be investigated.

19.2.1 Benchmarking

An important aspect of research on query optimization are benchmarks, that is, experimental
evaluations that measure and compare performance criteria for different query evaluation methods.
Note that for event queries there are several important performance criteria such as latency,
throughput, memory consumption, and, if approximate query evaluation techniques are used,
precision of results. So far, there are no standardized benchmarks for event queries (comparable
to say the TPC benchmarks for databases [TPC]) and only little work has been done in this
respect so far.

In the context of data stream management systems, the linear road benchmark [ACG+04]
has become somewhat established. However it is very specific to the queries in data stream
management systems and not so much to the more general scope of CEP. The same is true for the
lesser established NEXMark benchmark [NEX]. More recently, a benchmark for CEP engines is
developed in the BiCEP project [MBM08, BiC].

In addition to their role for research on query optimization, benchmarks (and especially stan-
dardized benchmarks) will also important practically as guidelines that enable developers to choose
among different event query engines.

19.2.2 Event Query Planning

Efficient algorithms and data structures to perform the different operations that are involved in
query evaluation are an important aspect of query evaluation, and most of the research that has
been done so far has been focused on this issue. However, an also very important task in query
optimization is to chose the operations that have to be performed (there are typically alternatives)
and their order as well as to choose for each operation an algorithm to implement it. This process
is usually called query planning.

Query planning, as known from databases, involves exploring alternative query plans (i.e.,
combinations of operations and their implementations), predicting their performances (also called
their costs), and choosing the plan with the best predicted performance. Because the search space
of possible query plans can be very large, it is usually explored in a branch-and-bound manner,

19.2. EVENT QUERY EVALUATION AND OPTIMIZATION 265

where query plans with a good performance are modified in the hope of obtaining a query plan
with even better performance.

When trying to transfer the idea of a query planner from databases to event queries, we
face two major issues that have already been discussed in Chapter 14.5.5: (1) event queries
require different cost measures, often involving trade-offs (e.g., between throughput and latency,
or between throughput and precision of results) and (2) these cost measures might rely on statistics
and estimations about data distribution, which is not available as readily for event streams as it
is for data in a database.

It may be in particular due to the lack of statistics about data distributions that query planning
has (to the best of our knowledge) not been explored for event queries so far. On the other hand,
there may be ways to obtain statistics by, for example, using histories of event streams to predict
their future data distributions. Given the importance of query planning in databases, it certainly
should be given more consideration for event queries than it has been so far.

19.2.3 Adaptive Query Evaluation

Adaptive query evaluation (or processing) [DIR07] is closely related to query planning and specif-
ically addresses the lack of statistics about data distributions during query compilation. Adaptive
query planning tries to improve the performance of query plans at runtime based on observa-
tions made as query evaluation progresses. Example improvements include changing the order of
selection operations or (in comparison much harder) changing join order.

Adaptive query evaluation is a fairly recent research topic and so far mainly investigated in a
database context. Even though adaptive query evaluation often operates with data streams (as
provided, e.g., by an iterator-style query evaluation in a database), little work has been done on
applying adaptive query evaluation techniques to complex event queries. Because the evaluation
of event queries involves, for example, maintaining event histories together with a garbage col-
lection based on temporal relevance, research will be required to transfer existing adaptive query
evaluation techniques from databases to event queries and likely new and different techniques will
prove useful.

19.2.4 Specific Main Memory Query Evaluation Techniques

Event query evaluation is usually done in main memory. This is in contrast to classical query
evaluation in databases, where data is read from disc.2 Whereas the primary goal of classical
(disc-based) query optimization is to perform few page reads and perform them sequentially, in
a main-memory-based query evaluation, sequential access is less relevant and the granularity of
data that is read is much smaller (words rather than pages).

There are several optimization techniques for a main-memory-based query evaluation [GS92]
that are relevant or appear promising in the context of event queries. These include query planners
that take into account CPU time in their cost measures [DKO+84], algorithms that are conscious
of processor caches and caching strategies (mainly for performing joins and aggregations) [SKN94,
MBK02], and the use of index structures tailored for main memory access [LC86b, LC86a].

19.2.5 Spill-Over from Main Memory to Disc

Although the amount of available main memory is growing, it is still a scarce resource. Especially
for event queries that must store some events for a long time (i.e., with high temporal relevance
times, cf. Chapter 15), there may still be a need to store some data on disc rather than in main
memory. This raises the obvious question which data to store in main memory (if possible) and
which data to store on disc (or “spill-over” to disc).

2We use the term “classical” here in recognition of the fact that in modern databases query evaluation can also
be done in main memory to a large extent and can employ caching to avoid repeatedly reading frequently used data
from disc.

266 CHAPTER 19. RESEARCH PERSPECTIVES IN COMPLEX EVENT PROCESSING

Obviously, data that is accessed often in query evaluation should be kept in main memory.
Applying this to a relational algebra based evaluation like the one in this thesis, a promising
approach may be to partition event histories vertically. Attributes of event tuples that are used
in, e.g., in joins are then kept in main memory and attributes that are used, e.g., only in the
construction of new results kept on disc. This is particularly interesting in contexts that involve
XML event messages, where it may be common that large portions of data from input events
are just copied (without further processing) into the query result. An approach where such a
technique is applied in the context of streaming evaluation of XQuery (but not an event query
context) is discussed in [Sch07].

19.2.6 Efficient XML Matching

In the work on the event query language XChangeEQ, we have emphasized that events are increas-
ingly communicated as XML messages and that the data in these XML messages must be queried
in event queries. We have called such queries against XML messages simple event queries; recall
that complex event queries are built from such simple event queries. In a setting like XChangeEQ,
we have to conceptually evaluate all simple event queries whenever a new XML message is received
to see which of these match the incoming XML message.

In a typical CEP application, the number of such XML queries that are used as simple event
queries can be high.3 When the simple event queries are just evaluated one after another, this
can easily become a bottleneck for event query evaluation. This is the case even when efficient
methods for evaluating single XML queries are employed.

Because we evaluate a high number of XML queries (in the case of XChangeEQ, Xcerpt query
terms) against a single XML document, an important way to avoid this bottleneck is to employ
multi-query optimization to exploit similarities between different queries. Some approaches have
been developed in research for multi-query optimization of XML queries [AF00, DFFT02, Fur03,
GGM+04]. These current approaches focus on path queries (as written, e.g., in XPath) and process
the incoming XML document in streaming manner (e.g., through a SAX parser) without storing
it in main memory.

These assumptions are somewhat different from the assumptions that can be made about XML
queries that are used as simple event queries in CEP, however. For typical CEP applications and
in particular for uses of the event query language XChangeEQ, incoming XML documents can
easily be assumed to fit into main memory. Accordingly it is not necessary to process them in a
streaming manner and it may even be considered to build index structures for the XML document
while parsing it. Further, XML queries against XML messages in CEP applications are usually
not just path queries, but more generally tree or even graph queries.

A complement to multi-query optimization of XML queries is their parallelization. Since each
simple event query can be evaluated essentially independently from the other queries, matching of
simple event queries against incoming XML documents is conceptually fairly easy to parallelize.4

When multi-query optimizations are involved, parallelization becomes harder because queries are
now not independent anymore. An ideal system should therefore be aware of this issue and be
able to, e.g., partition queries into independent sets so that as much multi-query optimization as
possible is performed in each set but each set is independent of the other sets so that they can be
evaluated in parallel.

19.2.7 Multi-Query Optimization for Complex Event Queries

Multi-query optimization is not just relevant for simple event queries. Complex event queries may
also have similar subexpressions and exploit multi-query optimization to avoid evaluating these

3The use case for Business Activity Monitoring of a very simple order processing application in Chapter 7.1
already uses well over a dozen simple event queries in its rules. In a real application the number can be easily
expected to be in the hundreds or even thousands.

4Note however that there may be hidden issues such as the fact that the queries might all access the same
memory region (that where the XML document is stored) on a multi-processor system.

19.2. EVENT QUERY EVALUATION AND OPTIMIZATION 267

more than once. As an example, all event queries to detect overdue orders in Chapter 7.1.3 involve
an anti-semi-join between order and shipping events when translated into an algebra. It may be
beneficial to evaluate this join only once, instead of several times.

The query plans that have been proposed in this work (Chapter 14) enable to describe the
sharing of results by introducing additional materialization points. In data stream management
systems, a related approach called synopsis sharing is often used [ABB+03]. The more difficult
issue however is in the query rewriter and planner that has to recognize equivalent subexpressions
in complex event queries. This in turn requires the ability to reason about equivalences of simple
event queries (see above).

In general, the equivalence of queries is a problem that has very high complexity or is even
undecidable (depending on the expressiveness of the query language). However, multi-query opti-
mization is still possible even if equivalence is undecidable: being able to find only some (but not
all) equivalences and using result sharing on them is still better than not performing any result
sharing at all.

19.2.8 Distributed Event Query Evaluation

Event queries are often used in the context of distributed computer systems because these naturally
use an event-based (or message-based) communication. When events are received from many
distributed sources and possibly results of event queries communicated further, a distributed
evaluation of event queries may be beneficial. It can minimize communication distances or even
the need for communication by pushing query operations closer to the event sources. Additionally,
a distributed evaluation will perform operations in parallel and thus may add to performance and
scalability of the system.

A reduction of communication and communication distances is not just relevant for saving
network bandwidth. Because intelligent sensors in wireless sensor networks are often battery-
powered, saving energy is important there. Communication consumes much energy in comparison
to other operations (in particular local computations on an embedded processor) and the energy
consumption is proportional to the distance.

19.2.9 Garbage Collection

An important aspect in event query evaluation that is not found in database or other non-event
queries is garbage collection of events that become irrelevant. We have already discussed this
issue in Section 19.1.2 from the perspective where we determine relevance conditions that describe
whether an event is still relevant or not at runtime.

At runtime, relevance conditions such as the temporal relevance conditions that have been
introduced in Chapter 15 must be evaluated as part of the query evaluation. To make their
evaluation efficient appropriate index structures must be investigated. Note that it is not just
sufficient to maintain an index to locate irrelevant events quickly. Garbage collecting an irrelevant
event also entails updating all other indexes and storage structures that include the irrelevant event
(e.g., if there is a hash join involving the irrelevant event then the event must also be removed
from the corresponding hash index by the garbage collector).

A related question is when to perform garbage collection. In general, an event may still be
stored without effect on the query results even if it has become irrelevant. Therefore it is not
necessary to immediately remove an event when it has become irrelevant. Garbage collection
therefore need not be performed as part of each evaluation step (as in the conceptual query
evaluation algorithm of Chapter 15.5). It may be performed in an independent thread at different
times. This allows, for example, to perform garbage collection at regular intervals, to perform it
on demand when memory becomes scarce, or to perform it at convenient times when the processor
load from regular query evaluation is low.

268 CHAPTER 19. RESEARCH PERSPECTIVES IN COMPLEX EVENT PROCESSING

19.3 Beyond Querying of Complex Events

We know leave the realm of event queries and their evaluation and turn to topics where complex
events are processed with means that go beyond querying.

19.3.1 Knowledge Representation for Events

Current event query languages process events as plain data without much knowledge —or meta-
data— about them. Meta-data and knowledge representation for events may contribute to a more
intelligent processing of events, much in the fashion that meta-data and knowledge representation
promise to do for regular, non-event data.

In addition to what deductive rules about events (like those in XChangeEQ) may provide,
other forms of knowledge representation may be relevant. It may be useful to have (event) type
hierarchies to express specializations, generalizations, and other relationships between event types.
For example, one might specify that both fire alarms and flood alarms are alarms. With this
knowledge, reactive or deductive rules about alarms may automatically also apply to the more
special fire alarms or flood alarms. More advanced formalisms such as ontologies may be useful to
represent more advanced knowledge about events and their relationships. For example, one might
express a statement that each alarm must have at least one cause, which in turn must be a sensor
event.

Knowledge representation for events may also go beyond relationships between event types. For
example one might express that the person that is notified upon an alarm must be knowledgeable
about first aid. A statement like this involves not only concepts relating to events and their types
(here: alarm) but also other, non-event concepts such as person or first aid.

The general promise of meta-data and knowledge representation for events is the same as
for regular data: one hopes to create more intelligent systems that are easier to develop and
maintain by using appropriate formalisms to represent knowledge explicitly and in a modifiable
way rather than hiding it in code. (Event) data integration, which may be necessary due to
heterogeneity in event data formats and representation, may become easier when appropriate
knowledge representation formalisms are used. Knowledge about events and their relationships
with other concepts in an event-based system may also be important for validating or verifying
the behavior of the system.

19.3.2 Uncertainty and Probability in Querying Events

Event querying with current languages is done in a precise and crisp fashion: Data in events has
precise values. A simple or complex event either happens or it does not. Temporal conditions on
events are either true or false.

However, when event queries process data from the physical world, e.g., from sensors, the simple
events that provide input data do not satisfy this precision. There may be errors in measurements
and also doubts in whether an event happened at all. The imprecision in the input may carry over
to the output, that is, to complex events.

By combining the values of many sensor, CEP can help reducing the imprecision in output in a
process often termed sensor data cleaning. However, since current event query languages are built
to work with precise and crisp events and data, they are not as suitable for this task as they might
be. For example, one can try to minimize the detection of false fire alarms by detecting outliers in
or averaging over sensor data. One can however not represent uncertainties in the complex events
that are deduced. For example, one cannot express directly that there is a 90% chance of a fire
outbreak.

Representing probabilities and uncertainties is especially important when applying further
reasoning to deduced events. For example from a 90% chance of a fire outbreak and a 10% chance
of the sprinklers not having been activated, we could deduce that there is a 9% chance that we
have an uncontained fire. Probabilities and uncertainties are also important in systems that aim

19.4. COMPLEX EVENT PROCESSING AN A LARGER CONTEXT 269

at predicting the further development of events (much like a weather forecast does) and possibly
take countermeasures.

There have been some recent approaches on dealing with uncertainty and probabilities in
querying events, for example in [WGET08] and [RLBS08]. So far, these works primarily investi-
gate issues related to query evaluation and complexity; design of a language can be said to not
having been a concern so far. Rule-based languages for event processing with model-theoretic
semantics such as XChangeEQ seem particularly well-suited as candidates for processing uncertain
and probabilistic events: there is significant experience with different forms of uncertainty for
traditional non-event rule languages that can be built upon.

19.3.3 Event Mining

Event query languages address the issue of detecting combinations of event occurrences where the
combination is known and described a priori in the query. This works well in applications such
as Business Activity Monitoring or processing of sensor data where we have a clear conception of
what patterns of events we are looking for. It does not however work in applications where we do
not have such a clear conception and cannot specify a query (or pattern) a priori.

Such an application where we want to detect patterns of event occurrences that are unknown,
i.e., not given as a query, is fraud detection for credit cards [WvASW07]. More generally, unknown
patterns are interesting in any application involving the detection of irregular behavior through
monitoring of events, be it intrusion detection in networks, supervision of financial transactions,
or health-related monitoring of body functions such as temperature or heart rate.

The discovery of unknown information or knowledge has been given much consideration for
regular, non-event data with disciplines like data mining and machine learning. However, there
has been little work in applying and evaluating these approaches for event streams, where data
is received over time in a step-wise manner and where a timely detection matters. In allusion to
data mining, we call this discovery of unknown information or knowledge here “event mining.”

The problem of detecting irregular behavior in event streams could be understood as a problem
of outlier detection as known from data mining. However, it is somewhat different because outliers
in outlier detection are defined as single data points; in event processing, we however care mainly
about irregular combinations of events not single irregular events.

There may also be further opportunities for event mining beyond the application of data mining
and machine learning techniques to detect irregular behavior in event streams. For example,
clustering techniques may be useful to detect events that commonly occur jointly (i.e., within
short time of each other). This is turn may help in optimizing business processes that generate
these events or redistributing sensors in a physical environment.

19.4 Complex Event Processing an a Larger Context

In this final section, we turn to research perspectives that are not directly within the realm of
CEP, i.e., that are not concerned with processing of events, but that address the use of CEP in a
larger context.

19.4.1 Detection and Generation of Simple Events

The fairly obvious requirement to preform CEP is to have the ability to detect or receive simple
events. Simple events, however, do not appear from nowhere; they must be generated by the event
sources and communicated to the CEP engine. Not only requires this a cooperation of the event
sources, it also entails that the programmers of components that may become event sources have
a clear idea of which events may be relevant to other components in the systems (the CEP engine
in particular).

The first issue this raises is how to develop software systems so that the events that might
be relevant are generated. Further, we are typically are not be able to anticipate all events that

270 CHAPTER 19. RESEARCH PERSPECTIVES IN COMPLEX EVENT PROCESSING

might become relevant during a system’s lifetime in the initial development phase. It is therefore
also important to architect such systems so that we can easily modify code to add the generation
of new events.

Generation of events in traditional imperative and object-oriented programming languages can
lead to fairly tangled code: the event generation is not part of the basic functionality of the system
but must be mixed into code for basic functionality. For example, in an online shop application
the basic functionality of the system is to move data around between Web forms and different
databases to take and process orders. Generation of events that may be useful, e.g., for Business
Activity Monitoring, will be mixed into this code although it does not directly contribute to taking
and processing orders.

There are currently at least two promising approaches to tackle this issue. Higher-level lan-
guages tailored for the description of workflows and business processes like BPEL [Hav05] may
automatically generate events, e.g., at state transitions. Aspect-Oriented Programming (AOP)
[KLM+97] seeks to separate code concerning basic functionality from cross-cutting code that con-
cerns other aspects such as security, logging, or said generation of events.

The second issue that the need for simple events raises is how to add the generation of events
to legacy systems that have not been architected with event generation in mind and where we
might not have access to or be able to modify the source code. Solutions to this issue often involve
a fair amount of low-level wizardry such as monitoring system output in log files or temporary files
(often using operating system functions to detect file modifications) or using database triggers to
detect and intercept data modifications that indicate relevant events.

19.4.2 Push and Pull Communication of Events

Current CEP systems assume that events are communicated in a push manner. That is, the
system is automatically informed whenever a relevant event occurs. While this works well in
many scenarios, there are also scenarios where events must be retrieved in a pull manner. In
those scenarios, a push communication of events may not be possible or have disadvantages, e.g.,
relating to network connectivity or bandwidth.

An example where push communication usually is not possible is monitoring data sources on
the Web such as HTML documents or RSS feeds. Updates to these data sources can be understood
as events and there may be a need for querying complex events there. However, typical Web data
sources can only be retrieved in a pull manner and do not inform users when they are changed.
To process events from these sources, therefore, users must periodically retrieve them. Retrieval
of e-mails with protocols such as IMAP [Cri03] or POP3 [MR96] is another example where events
(in this case e-mails) can only be retrieved in a pull manner.

Periodically retrieving some data source to detect events immediately leads to the question how
often the data source should be retrieved. Typically this is a trade-off between a need for timeliness
of information and the usage of resources such as network bandwidth. The need for timeliness of
information in turn is influenced by the processing that is applied to events, concretely for example
complex event queries (and possible temporal conditions in them), and the rate in which updates
are performed to the data source. Note that the update rate is in general unknown but one might
attempt to guess it by looking at historical information. Approaches that adaptively set the time
intervals between periodic retrievals of data sources are investigated in [BGR06] and [RGR08].

19.4.3 CEP Design Patterns

Since CEP is still a new technology, developers often lack the experience to successfully engineer
systems that are based on or include CEP. Clearly there is therefore a need to document guidelines
to educate developers about CEP and its uses in software systems. Design patterns [GHJV95] have
been proven successful for documenting common problems and good solutions. Design patterns
are primarily rooted in object-oriented design and programming, but the pattern-based approach
has since then also entered other disciplines such as software architecture in general [BMR+96],
enterprise application architecture [Fow02], or user interface design.

19.4. COMPLEX EVENT PROCESSING AN A LARGER CONTEXT 271

While there has been some work on design patterns in event-driven architectures [HW03], little
work has been done so far on design patterns that relate explicitly to CEP. Given that CEP is still
in its early stages, this in unsurprising since there are still not so many successful CEP projects
to elicit design pattern from. However there are recent efforts to start collecting and categorizing
CEP-related design patterns [Pas08, PvA08] as well as more focused design patterns for event
queries [Cor07].

19.4.4 Development Tools and Visualization

The success of CEP as a technology will not only depend on the availability of expressive and
easy-to-use event query languages, other complex event detection facilities, and experience in
software architecture. Like other technologies, success of CEP will require an ecosystem of tools
for development. This may include support for CEP languages and components in integrated
development environments (IDEs), editors for event queries that support features such as syntax
highlighting or auto completion, graphical editors for event queries, visualization of event types
and type hierarchies, tools for measuring performance, debuggers for event queries and other CEP-
related components, and tools for validating and verifying event queries and CEP systems with
respect to higher-level specifications.

Current prototypes and products in the CEP area focus on event query languages and their run-
time engines, providing little tool support so far as discussed in Chapter 3.5.3. In [BMH99], visu-
alizations of the detection process of complex events are discussed in the context of a composition-
operator-based language. Such visualizations may be useful for example to understand and debug
complex event queries. Formal verification of complex event queries by means of model checking
is discussed in [EB06, EPBS07], again in the context of a composition-operator-based language.

272 CHAPTER 19. RESEARCH PERSPECTIVES IN COMPLEX EVENT PROCESSING

Chapter 20

Summary and Conclusion

In this work we have investigated practical and theoretical issues related to querying complex
events. Guided by the development of the high-level event query language XChangeEQ, we have
covered the spectrum from language design over declarative semantics to operational semantics.

At the heart of the language design of XChangeEQ is the idea that the four querying dimensions
data extraction, event composition, temporal and other relationships between events, and event
accumulation must be separated. This, together with its support for deductive rules and for
querying events represented as XML messages, arguably makes XChangeEQ more expressive and
easier to use than other event query languages.

With its model theory and accompanying fixpoint theory, XChangeEQ provides highly declar-
ative semantics for querying events based on an approach that is well-established for traditional,
non-event queries. Importantly, these semantics work directly on streams and do not require a
concept of state, which makes them also very intuitive. A core idea in applying this traditional
approach from non-event query languages to an event query language is to pretend “omniscience,”
that is, we first assume that we know the full, infinite event stream and specify semantics irrespec-
tive of the evaluation times of event queries. Only then we show that these semantics are actually
designed to work for a streaming evaluation over time, where we only now the history of events
received so far.

Operational semantics of XChangeEQ are based on CERA, a variant of relational algebra that
meets both the expressiveness requirements and the restrictions that are needed for evaluating
event queries incrementally, and on the notion of query plans with materialization points. Again,
a core idea in the translation of XChangeEQ programs into algebra expressions and query plans is
to pretend “omniscience” at first, where we ignore the step-wise nature of evaluation over time.
Only then we attend to the incremental evaluation of query plans by applying finite differencing.

Since evaluation of event queries involves storing and maintaining histories of events received so
far as well as some intermediate results, there is a need for garbage collection. To enable garbage
collection in the evaluation of XChangeEQwe have defined the notion of relevance and developed an
algorithm for determining temporal relevance based on temporal conditions in queries. Temporal
relevance also may play an important role for query planning.

Complex Event Processing is an emerging and exciting research area and event query languages
play an important part in this area. This work on XChangeEQ has contributed to this field by
going new ways in its language design and investigating formal foundations that have strong roots
in the tradition of databases and logic programming. There are, however, still many unsolved
issues in querying and, more generally, processing complex events.

273

274 CHAPTER 20. SUMMARY AND CONCLUSION

Part VI

Appendix

275

Appendix A

EBNF Grammars

The following provides context-free grammars for XChangeEQ and its “little brother” RelEQ in
EBNF notiation

A.1 Conventions on EBNF Notation

The EBNF notation used here follows the conventions of the XML 1.1 Recommendation [B+06b,
Section 6]:

• Grammar rules are written in the form symbol ::= expression.

• Symbols (names of non-terminals) are written as plain text, the first letter is always capi-
talized.1

• Literal strings (sequences of terminals) are written in double quotes "literal", or in single
quotes if a double quote is part of the literal ’with "double" quotes’.

• Classes or ranges of characters are written in square brackets; [a-zA-Z] matches any lower-
case or uppercase letter of the alphabet.

• Parentheses are used as grouping construct (expression).

• Concatenation is simply written with a whitespace A B, and takes higher precedence than
alternation.

• Alternation is expressed with a vertical bar A | B.

• Optionality is expressed with a question mark; A? matches A or nothing.

• Repetition is expressed with a plus sign or an asterisk; A+ matches one or more occurrences
of A, A* matches zero or more occurrences of A.

• Comments are written C-style /* comment */.

A.2 (Core) Xcerpt Term Grammar

The following is a simplified grammar for data, query and construct terms of Xcerpt. It skips
details such as XML namespaces, graph-like references, identity variables, position specification,
optional subterms, order for groupings, regular expression matching, etc. that are not relevant for
the understanding of XChangeEQ.

1This is a slight deviation from the notation of [B+06b] used in order to enhance readability.

277

278 APPENDIX A. EBNF GRAMMARS

DataTerm ::= DTLabel DTChildren
| ’"’ String ’"’

DTChildren ::= "{" (DataTerm ","?)* "}"
| "[" (DataTerm ","?)* "]"

DTLabel ::= String

QueryTerm ::= Label QTChildren
| ’"’ String ’"’
| Variable
| Variable "->" QueryTerm
| "desc" QueryTerm
| "without" QueryTerm

Label ::= Variable
| String

QTChildren ::= "{" (QueryTerm ","?)* "}"
| "{{" (QueryTerm ","?)* "}}"
| "[" (QueryTerm ","?)* "]"
| "[[" (QueryTerm ","?)* "]]"

Variable ::= "var" Identifier

ConstructTerm ::= Label CTChildren
| ’"’ String ’"’
| Variable
| Grouping
| Aggregation "(" Grouping ")"
| Function "(" CounstructTerm ("," ConstructTerm)* ")"

CTChildren ::= "{" (ConstructTerm ","?)* "}"
| "[" (ConstructTerm ","?)* "]"

Grouping ::= "all" ConstructTerm ("group by" "{" Variable+ "}")?
Aggregation ::= "min" | "max" | "sum" | "count" | "avg"
Function ::= "div" | "mult" | "add" | "subtract" | "mod" | "concat"

A.3 XChangeEQGrammar

We now give the grammar for XChangeEQ. The start symbol is Program. Note that the grammar
makes use of QueryTerms and ConstructTerms as defined in the previous section.

Program ::= (DeductiveRule | ReactiveRule)*
DeductiveRule ::= "DETECT" ConstructTerm "ON" BodyEQ "END"
ReactiveRule ::= "RAISE" RaiseSpec "ON" BodyEQ "END"
RaiseSpec ::= "to" "(" "recipient" "=" ’"’ String ’"’ ","

"transport" "=" ’"’ String ’"’ ")"
"{" ConstructTerm "}"

BodyEQ ::= SimpleEQ
| "and" "{" (EQ ","?)+ "}"
| "or" "{" (EQ ","?)+ "}"
| EQ "where" "{" (Condition ","?)+ "}"

EQ ::= BodyEQ
| WhileEQ
| RelTimerEQ

SimpleEQ ::= "event" Identifier ":" QueryTerm

A.4. RELEQ GRAMMAR 279

WhileEQ ::= "while" Identifier ":" ("not"|"collect") QueryTerm
RelTimerEQ ::= RelTimerSpec "[" "event" Identifier, Duration "]"
Condition ::= DataCondition

| TempCondition

RelTimerSpec ::= "extend" | "shorten"
| "extend-begin" | "shorten-begin"
| "shift-forward" | "shift-backward"

DataCondition ::= Expr CompOp Expr
CompOp ::= "<" | "<=" | "=" | ">=" | ">" | "!="
Expr ::= Variable

| ’"’String’"’
| Number
| Expr ArithOp Expr
| "(" Expr ")"

ArithOp ::= "*" | "/" | "+" | "-" | "mod"

TempCondition ::= Identifier AllenOp Identifier
| "{" (Identifier ","?)+ "}" "within" Duration
| "{" Identifier "," Identifier "}" "apart-by" Duration

AllenOp ::= "before" | "contains" | "overlaps"
| "after" | "during" | "overlapped-by"
| "starts" | "finishes" | "meets"
| "started-by" | "finished-by" | "met-by"
| "equals"

Duration ::= (Number ("week"|"weeks"))?
(Number ("day"|"days"))?
(Number ("hour"|"hours"))?
(Number "min")?
(Number "sec")?
(Number "ms")? /* constraint: not empty! */

A.4 RelEQ Grammar

The following is a grammar for RelEQ. The start symbol is again Program.

Program ::= Rule*
Rule ::= Head "<-" EQ ";"

HeadAtom ::= PredName "(" (HeadTerm ("," HeadTerm)*)? ")"
HeadTerm ::= Variable | Grouping | ’"’ String ’"’ | Number
Variable ::= Identifier
Grouping ::= ("min" | "max" | "sum" | "count" | "avg") "(" Variable ")"

EQ ::= SimpleEQ ("," SimpleEQ)*
("," RelTimerEQ)* ("," WhileEQ)* ("," Condition)*

SimpleEQ ::= Identifier ":" BodyAtom
RelTimerEQ ::= RelTimerSpec "(" Identifier, Duration ")"
WhileEQ ::= "while" Identifier ":" ("not"|"collect") BodyAtom
BodyAtom ::= PredName "(" (BodyTerm ("," BodyTerm)*)? ")"
BodyTerm ::= Variable | ’"’ String ’"’ | Number
Condition ::= DataCondition

| TempCondition

280 APPENDIX A. EBNF GRAMMARS

RelTimerSpec ::= "extend" | "shorten"
| "extend-begin" | "shorten-begin"
| "shift-forward" | "shift-backward"

DataCondition ::= Expr CompOp Expr
CompOp ::= "<" | "<=" | "=" | ">=" | ">"
Expr ::= Variable | Number

TempCondition ::= Identifier AllenOp Identifier
| "{" (Identifier ","?)+ "}" "within" Duration
| "{" Identifier "," Identifier "}" "apart-by" Duration

AllenOp ::= "before" | "contains" | "overlaps"
| "after" | "during" | "overlapped-by"
| "starts" | "finishes" | "meets"
| "started-by" | "finished-by" | "met-by"
| "equals"

Duration ::= (Number "w")? (Number "d")? (Number "h")?
(Number "m")? (Number "s")? (Number "ms")?
/* constraint: not empty! */

| Number

Appendix B

Proofs about Operational
Semantics

B.1 Temporal Preservation of CERA

The proof of the temporal preservation property of CERA of Chapter 13.3 is a simple structural
induction on the expression E with a case for each operator. By design of CERA, each operator
is restricted in such a way that it maintains the temporal preservation property; this makes the
proof fairly simple so that we sketch the ideas behind each case only shortly here.

The base case, where E = R1 is just a single relation, is trivial: just expand σ[ME ≤ now](E)
to its definition.

For selection E = σC(F), renaming E = ρR(F), natural join E = F on G, and projection
E = πA(F) (with preservation of time stamp attributes) the claim is also obvious: they do not
change the time stamps of their input at all. Therefore the occurrence times are not affected.
Note that in the case of projection this only because we have restricted it in a way so that time
stamp attributes must not be dropped.

Similarly, in the case of grouping E = γA,a←F (A)(F), the restriction that all time stamp
attributes must be grouping attributes ensures that all time stamps are preserved. Note that it is
not important what the aggregation function F (A) in the grouping is.

In the case of matching E = QX
i:q(F), the time stamps of the result are “inherited” from the

input and thus also preserved.
In the case of merging E = µi←j1t···tjn

(F), time stamps are changed. However, the theorem
only cares about the occurrence time which is the maximum over the time stamps. This is, by
definition of the operator, not changed since the new time stamp that is generates is the maximum
over the input time stamps.

Similarly, in the case of the temporal anti-semi-join E = F niwj G, the temporal condition
i w j ensures that the occurrence time of the right input tuples is lower than the occurrence time
of the left input tuples; thus result tuples have the occurrence time of the left input tuples.

Note that construction CX is not an operator but an aggregation function; therefore it need
not be considered in the induction.

B.2 Correspondence between Relations and Σ, τ

The following completes the proof of the correctness lemma of Chapter 13.4.3.
We first define ΣS′ , τS′ and S′Σ,τ . The function ref is the function used for generating event

references in the definition of the matching operator QX. Since ref is injective, we can use its
inverse, which we denote ref−1. Recall in the following definitions that F is the subexpression of
the rule body that is being translated by the CERA expression S.

281

282 APPENDIX B. PROOFS ABOUT OPERATIONAL SEMANTICS

ΣS′ := {σ | ∃s′ ∈ S′∀X ∈ schdata(S′) σ(X) = s′(X)}

τS′(i) =

ref−1(s′(i.ref))[s

′(i.s),s′(i.e)] if i event identifier of a simple event query in F,

τS′(j)[s
′(i.s),s′(i.e)] if i event identifier of a relative timer event in F

defined relative to j,
⊥ otherwise

where s′ some tuple in S′(choice does not matter)

S′Σ,τ = {s′ | ∃σ ∈ Σ. ∀X ∈ schdata s′(X) = σ(X),
∀i.ref ∈ schref s′(i.ref) = ref(τ(i)),
∀i.s ∈ schstart s′(i.s) = begin(τ(i)),
∀i.e ∈ schstart s′(i.e) = end(τ(i))}

The lemma is shown for B1, . . . , Bn by induction on n. Then it is additionally also shown for C.
We sketch the individual cases shortly, making the first one a bit more detailed and concentrating
more on the underlying idea with the others.

Simple Event Query B1

Soundness: S′ has been produced by the matching operator in B1. Accordingly, there must
be an et ∈ E so that ΣS′(q) � e because of the way the matching function is defined. Further,
τS′(j1) = et because of the way the matching operator generates event references and time stamps.
With that E,ΣS′ , τS′ |= b1.

Completeness: From E,Σ, τ |= F t it follows that there is an et ∈ E such that Σ(q) � e and
τ(j1) = et by the definition of the model theory. Applying the definition of the matching operator
QX

j1:q to et shows us that S′Σ,τ ⊆ S and t = occtime(S′).

Further Simple Event Queries (Bi, 1 < i ≤ k)

The same reasoning as earlier applies to bi. By induction hypothesis, completeness and soundness
hold for Bi−1. It remains to convince ourselves that the natural join in the algebra corresponds
to the conjunction ∧ of the model theory (and in particular that it maintains that Σ is maximal
for the soundness). Because the joins combines exactly those tuples that agree on the shared
attributes (which in turn correspond to shared variables) and because so far there are no negated
variables, this should be clear.

Relative Timer Events (Bi, k < i ≤ l)

Soundness: The bundles in Bi are the same as in Bi−1, only tuples in each bundle are augmented
with the additional time stamps ji. Therefore ΣS′ is the same as the one for the corresponding
bundle of S′ in Bi−1 (and, of course, remains maximal). The rest is just the way τS′ has been
defined above.

Completeness: Similarly, we only have to look at τ and convince ourselves that the time stamps
in S′Σ,τ are correct. They are because of the correspondence between the auxiliary relations and
the definitions of the model theory.

Event Accumulation for Collection (Bi, l < i ≤ m)

This time, τ remains unaffected. This is why it was important that we drop i′.ref with the
projection in Bi. The temporal condition of the join ensures that additional attributes are joined
with the right tuples as prescribed by the while part of bi.

B.2. CORRESPONDENCE BETWEEN RELATIONS AND Σ, τ 283

Event Accumulation for Negation (Bi, m < i ≤ n)

Again τ remains unaffected. Note that the anti-semi-join already drops the event reference i′.ref ,
so that no extra projection was required as in the previous case. The anti-semi-join removes
those tuples from each bundle in Bi−1 that would satisfy the negated query of bi. The temporal
condition ensures that this is done only with the temporal restriction of the while part of bi.

Conditions (C)

The bundles in C remain unaffected compared to Bn and τ remains unaffected. The selection
simply removes all the tuples that would not satisfy the conditions of the where clause, which is
exactly the same as required by the model theory.

284 APPENDIX B. PROOFS ABOUT OPERATIONAL SEMANTICS

Bibliography

[AA07] José Júlio Alferes and Ricardo Amador. r3: A foundational ontology for reactive
rules. In Proc. Int. Conf. on Ontologies, DataBases, and Applications of Semantics,
volume 4803 of LNCS, pages 933–952. Springer, 2007.

[ABB+03] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Rajeev Mot-
wani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas, Rohit Varma, and Jennifer
Widom. STREAM: The Stanford stream data manager. IEEE Data Engineering
Bulletin, 26(1):19–26, 2003.

[ABB+04] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlister, and Jennifer Widom.
Characterizing memory requirements for queries over continuous data streams. ACM
Transactions on Database Systems, 29:162–194, 2004.

[ABB+07] Uwe Aßmann, Sacha Berger, François Bry, Tim Furche, Jakob Henriksson, and Jen-
drik Johannes. Modular Web queries — from rules to stores. In Proc. Int. Workshop
on Scalable Semantic Web Knowledge Base Systems, volume 4806 of LNCS, pages
1165–1175. Springer, 2007.

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. From Relations
to Semistructured Data and XML. Morgan Kaufmann, 2000.

[ABW88] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declar-
ative knowledge. In Foundations of Deductive Databases and Logic Programming,
pages 89–148. Morgan Kaufmann, 1988.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query lan-
guage: Semantic foundations and query execution. The VLDB Journal, 15(2):121–
142, 2006.

[AC05] Raman Adaikkalavan and Sharma Chakravarthy. Formalization and detection of
events using interval-based semantics. In Proc. Int. Conf. on Management of Data
(COMAD), pages 58–69. Computer Society of India, 2005.

[AC06] Raman Adaikkalavan and Sharma Chakravarthy. SnoopIB: Interval-based event
specification and detection for active databases. Data and Knowledge Engineering,
1(59):139–165, 2006.

[ACÇ+03] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Con-
vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik.
Aurora: A new model and architecture for data stream management. The VLDB
Journal, 12(2):120–139, 2003.

[ACG+04] Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier, Anurag Maskey,
Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear road: A stream
data management benchmark. In Proc. Int. Conf. on Very Large Databases, pages
480–491. Morgan Kaufmann, 2004.

285

286 BIBLIOGRAPHY

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services:
Concepts, Architectures and Applications. Springer, 2004.

[AE04] Asaf Adi and Opher Etzion. Amit — the situation manager. The VLDB Journal,
13(2):177–203, 2004.

[AF00] Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML documents for
selective dissemination of information. In Proc. Int. Conf. on Very Large Databases,
pages 53–64. Morgan Kaufmann, 2000.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843, 1983.

[ANTa] ANTLR IDE — An eclipse plugin for ANTLRv3 grammars. http://antlrv3ide.
sourceforge.net/.

[ANTb] ANTLR Parser Generator. http://www.antlr.org.

[ANTc] ANTLR v3 task for Ant. http://antlr.org/share/1169924912745/antlr3-task.
zip; linked also from http://antlr.org/share/list.

[Apa] Apache Software Foundation. Apache Ant. http://ant.apache.org/.

[ASSC02] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wire-
less sensor networks: A survey. Computer Networks, 38(4):393–422, 2002.

[B+06a] Tim Bray et al. Extensible markup language (XML) 1.0 (fourth edition). W3C
recommendation, World Wide Web Consortium, 2006.

[B+06b] Tim Bray et al. Extensible markup language (XML) 1.1 (second edition). W3C
recommendation, World Wide Web Consortium, 2006.

[B+07a] Anders Berglund et al. XML path language (XPath) 2.0. W3C recommendation,
World Wide Web Consortium, 2007.

[B+07b] Scott Boag et al. XQuery 1.0: An XML query language. W3C recommendation,
World Wide Web Consortium, 2007.

[BBB+07] Bruno Berstel, Philippe Bonnard, François Bry, Michael Eckert, and Paula-Lavinia
Pătrânjan. Reactive rules on the Web. In Reasoning Web, Int. Summer School,
volume 4636 of LNCS, pages 183–239. Springer, 2007.

[BBEP05] James Bailey, François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan. Flavours
of XChange, a rule-based reactive language for the (Semantic) Web. In Proc. Int.
Conf. on Rules and Rule Markup Languages for the Semantic Web, volume 3791 of
LNCS, pages 187–192. Springer, 2005.

[BBFS05] James Bailey, François Bry, Tim Furche, and Sebastian Schaffert. Web and Semantic
Web query languages: A survey. In Reasoning Web, Int. Summer School, volume
3564 of LNCS, pages 35–133. Springer, 2005.

[BBS03] Sacha Berger, François Bry, and Sebastian Schaffert. A visual language for Web
querying and reasoning. In Proc. Int. Workshop on Principles and Practice of Se-
mantic Web Reasoning, volume 2901 of LNCS, pages 99–112. Springer, 2003.

BIBLIOGRAPHY 287

[BBSW03] Sacha Berger, François Bry, Sebastian Schaffert, and Christoph Wieser. Xcerpt and
visXcerpt: From pattern-based to visual querying of XML and semistructured data.
In Proc. Int. Conf. on Very Large Databases (Demonstations), pages 1053–1056.
Morgan Kaufmann, 2003.

[BC06] Roger S. Barga and Hillary Caituiro-Monge. Event correlation and pattern detection
in CEDR. In Proc. Int. Workshop Reactivity on the Web, volume 4254 of LNCS,
pages 919–930. Springer, 2006.

[BE05a] François Bry and Michael Eckert. Processing link structures and linkbases in the
Web’s open world linking. In Proc. ACM Conf. on Hypertext and Hypermedia, pages
135–144. ACM, 2005.

[BE05b] François Bry and Michael Eckert. Processing link structures and linkbases on the
Web. In Proc. Int. Conf. on World Wide Web, posters, pages 1030–1031. ACM,
2005.

[BE06a] François Bry and Michael Eckert. A high-level query language for events. In Proc.
Int. Workshop on Event-driven Architecture, Processing and Systems, pages 31–38.
IEEE, 2006.

[BE06b] François Bry and Michael Eckert. Twelve theses on reactive rules for the Web (invited
paper). In Proc. Int. Workshop Reactivity on the Web, volume 4254 of LNCS, pages
842–854. Springer, 2006.

[BE07a] François Bry and Michael Eckert. Rule-Based Composite Event Queries: The Lan-
guage XChangeEQ and its Semantics. In Proc. Int. Conf. on Web Reasoning and
Rule Systems, volume 4524 of LNCS, pages 16–30. Springer, 2007.

[BE07b] François Bry and Michael Eckert. Temporal order optimizations of incremental
joins for composite event detection. In Proc. Int. Conf. on Distributed Event-Based
Systems. ACM, 2007.

[BE07c] François Bry and Michael Eckert. Towards formal foundations of event queries and
rules. In Proc. Int. Workshop on Event-Driven Architecture, Processing and Systems,
2007.

[BE07d] François Bry and Michael Eckert. Twelve theses on reactive rules for the Web.
In Proc. Dagstuhl Seminar Event Processing, number 07191 in Dagstuhl Seminar
Proceedings. IBFI, 2007.

[BE08a] François Bry and Michael Eckert. On static determination of temporal relevance for
incremental evaluation of complex event queries. In Proc. Int. Conf. on Distributed
Event-Based Systems, pages 289–300. ACM, 2008.

[BE08b] François Bry and Michael Eckert. Rules for making sense of events: Design issues
for high-level event query and reasoning languages (position paper). In Proc. AAAI
Spring Symposium AI Meets Business Rules and Process Management, number SS-
08-01 in AAAI Technical Reports, pages 12–16. AAAI Press, 2008.

[Bec04] Dave Beckett. RDF/XML syntax specification (revised). W3C recommendation,
World Wide Web Consortium, 2004.

[BEE+07] François Bry, Norbert Eisinger, Thomas Eiter, Tim Furche, Georg Gottlob, Clemens
Ley, Benedikt Linse, Reinhard Pichler, and Fang Wei. Foundations of rule-based
query answering. In Reasoning Web, Third International Summer School 2007, vol-
ume 4636 of LNCS, pages 1–153. Springer, 2007.

288 BIBLIOGRAPHY

[BEFL08] François Bry, Norbert Eisinger, Tim Furche, and Benedikt Linse. Simulation sub-
sumption or déjà vu on the Web. In Proc. Int. Conf. on Web Reasoning and Rule
Systems, LNCS. Springer, 2008. To appear.

[BEGP06a] François Bry, Michael Eckert, Hendrik Grallert, and Paula-Lavinia Pătrânjan. Evo-
lution of distributed Web data: An application of the reactive language XChange.
In Proc. Int. Conf. on Data Engineering (Demonstrations), 2006.

[BEGP06b] François Bry, Michael Eckert, Hendrik Grallert, and Paula-Lavinia Pătrânjan. Reac-
tive Web rules: A demonstration of XChange. In Proc. Int. Conf. on Rules and Rule
Markup Languages (RuleML) for the Semantic Web, Posters and Demonstrations,
2006.

[BEP06a] François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan. Querying composite
events for reactivity on the Web. In Proc. Int. Workshop on XML Research and
Applications, volume 3842 of LNCS, pages 38–47. Springer, 2006.

[BEP06b] François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan. Reactivity on the Web:
Paradigms and applications of the language XChange. J. of Web Engineering, 5(1):3–
24, 2006.

[BEP06c] François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan. XChange: Rule-based
reactivity for the Web. In Miltiadis Lytras, editor, Semantic Web Fact Book. AIS
SIGSEMIS, 2006.

[BEPR06] François Bry, Michael Eckert, Paula-Lavinia Pătrânjan, and Inna Romanenko. Re-
alizing business processes with ECA rules: Benefits, challenges, limits. In Proc. Int.
Workshop on Principles and Practice of Semantic Web, volume 4187 of LNCS, pages
48–62. Springer, 2006.

[Ber02] Bruno Berstel. Extending the RETE algorithm for event management. In Int. Symp.
on Temporal Representation and Reasoning (TIME), pages 49–51. IEEE, 2002.

[BFB+05] François Bry, Tim Furche, Liviu Badea, Christoph Koch, Sebastian Schaffert, and
Sacha Berger. Querying the Web reconsidered: Design principles for versatile Web
query languages. Int. J. on Semantic Web and Information Systems, 1(2):1–21, 2005.

[BFF+07] Irina Botan, Peter M. Fischer, Daniela Florescu, Donald Kossmann, Tim Kraska,
and Rokas Tamosevicius. Extending XQuery with window functions. In Proc. Int.
Conf. on Very Large Data Bases, pages 75–86. ACM, 2007.

[BFHL07] François Bry, Tim Furche, Alina Hang, and Benedikt Linse. GRDDLing with Xcerpt:
Learn one, get one free! In Proc. European Semantic Web Conf., Demonstrations,
2007.

[BFLP08] François Bry, Tim Furche, Benedikt Linse, and Alexander Pohl. XcerptRDF: A
pattern-based answer to the semantic web challenge. In Proc. Int. Workshop on
(Constraint) Logic Programming, 2008. To appear.

[BFLS06] François Bry, Tim Furche, Benedikt Linse, and Andreas Schroeder. Efficient evalu-
ation of n-ary conjunctive queries over trees and graphs. In ACM Int. Workshop on
Web Information and Data Management, pages 11–18. ACM, 2006.

[BFMS06] Erik Behrends, Oliver Fritzen, Wolfgang May, and Daniel Schubert. An ECA engine
for deploying heterogeneous component languages in the Semantic Web. In Proc.
Int. Workshop Reactivity on the Web, volume 4254 of LNCS, pages 887–898, 2006.

[BG04] Dan Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF
schema. W3C recommendation, World Wide Web Consortium, 2004.

BIBLIOGRAPHY 289

[BGR06] Laura Bright, Avigdor Gal, and Louiqa Raschid. Adaptive pull-based policies for
wide area data delivery. ACM Transactions on Database Systems, 31(2):631–671,
2006.

[BiC] BiCEP. http://bicep.dei.uc.pt/.

[BK08a] Harold Boley and Michael Kifer. RIF basic logic dialect. W3C working draft, World
Wide Web Consortium, 2008.

[BK08b] Harold Boley and Michael Kifer. RIF framework for logic dialects. W3C working
draft, World Wide Web Consortium, 2008.

[BKK04] Martin Bernauer, Gerti Kappel, and Gerhard Kramler. Composite events for XML.
In Proc. Int. Conf. on World Wide Web, pages 175–183. ACM, 2004.

[BKPP07] Harold Boley, Michael Kifer, Paula-Lavinia Patranjan, and Axel Polleres. Rule
interchange on the Web. In Reasoning Web, Int. Summer School, volume 4636 of
LNCS, pages 269–309. Springer, 2007.

[BL99] Tim Berners-Lee. Weaving the Web: The Original Design and Ultimate Destiny of
the World Wide Web. Harper, 1999.

[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform resource identifier
(URI): Generic syntax. RFC 3986, The Internet Society, 2005.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American Magazine, 2001.

[BLMM94] Tim Berners-Lee, Larry Masinter, and Mark McCahill. Uniform resource locators
(URL). RFC 1738, The Internet Society, 1994.

[BLO+08] François Bry, Bernhard Lorenz, Hans Jürgen Ohlbach, Martin Roeder, and Marc
Weinberger. The Facility Control Markup Language FCML. In Proc. Int. Conf. on
the Digital Society, pages 117–122, 2008.

[BMH99] Mikael Berndtsson, Jonas Mellin, and Urban Högberg. Visualization of the composite
event detection process. In Proc. Workshop on User Interfaces to Data Intensive
Systems, pages 118–127. IEEE Computer Society, 1999.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns 1. Wiley &
Sons, 1996.

[Bol05] Oliver Bolzer. Towards data-integration on the semantic web: Querying RDF with
Xcerpt. Master’s thesis (Diplomarbeit), Institute for Informatics, University of Mu-
nich, 2005.

[BRS05] François Bry, Frank-André Rieß, and Stephanie Spranger. CaTTS: Calendar types
and constraints for Web applications. In Proc. Int. World Wide Web Conf., pages
702–711. ACM, 2005.

[Bry90] François Bry. Query evaluation in deductive databases: Bottom-up and top-down
reconciled. Data and Knowledge Engineering, 5:289–312, 1990.

[BS03] François Bry and Sebastian Schaffert. An entailment relation for reasoning on the
Web. In Proc. Int. Conf. on Rules and Rule Markup Languages (RuleML), volume
2876 of LNCS, pages 17–34. Springer, 2003.

290 BIBLIOGRAPHY

[BSW04] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. Exploiting k-constraints to
reduce memory overhead in continuous queries over data streams. ACM Transactions
on Database Systems, 29(3):545–580, 2004.

[BW03] David Bailey and Edwin Wright. Practical SCADA for Industry. Newnes, 2003.

[BZBW95] Alejandro P. Buchmann, Jürgen Zimmermann, José A. Blakeley, and David L. Wells.
Building an integrated active OODBMS: Requirements, architecture, and design
decisions. In Proc. Int. Conf. on Data Engineering, pages 117–128. IEEE, 1995.

[CA08] Sharma Chakravarthy and Raman Adaikkalavan. Events and streams: Harness-
ing and unleashing their synergy! In Proc. Int. Conf. on Distributed Event-Based
Systems, pages 1–12. ACM, 2008.

[CCC07] K. Mani Chandy, Michel Charpentier, and Agostino Capponi. Towards a theory
of events. In Proc. Int. Conf. on Distributed Event-Based Systems, pages 180–187.
ACM, 2007.

[CD99] James Clark and Steve DeRose. XML path language (XPath) version 1.0. W3C
recommendation, World Wide Web Consortium, 1999.

[CDK01] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Con-
cepts and Design. Addison-Wesley, third edition, 2001.

[CER] CERN Colt Scientific Library 1.2.0. http://dsd.lbl.gov/~hoschek/colt/.

[CEvA07] Mani Chandy, Opher Etzion, and Rainer von Ammon, editors. Event Processing,
volume 07191 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. http:
//drops.dagstuhl.de/portals/index.php?semnr=07191.

[CKAK94] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim. Composite
events for active databases: Semantics, contexts and detection. In Proc. Int. Conf.
on Very Large Data Bases, pages 606–617. Morgan Kaufmann, 1994.

[CL04] Jan Carlson and Björn Lisper. An event detection algebra for reactive systems. In
Proc. ACM Int. Conf. On Embedded Software, pages 147–154. ACM, 2004.

[Cla99] James Clark. XSL transformations (XSLT) version 1.0. W3C recommendation,
World Wide Web Consortium, 1999.

[Com] Commons-Collections. http://larvalabs.com/collections.

[Con07] Dan Connolly. Gleaning resource descriptions from dialects of languages (GRDDL).
W3C recommendation, World Wide Web Consortium, 2007.

[Cor07] Coral8, Inc. Complex Event Processing: Ten design patterns. White Paper. http://
www.coral8.com/system/files/assets/pdf/Coral8DesignPatterns.pdf, 2007.

[Coş07] Fatih Coşkun. Pattern-based updates for the Web: Refinement of syntax and seman-
tics in XChange. Master’s thesis (Diplomarbeit), Institute for Informatics, University
of Munich, 2007.

[Cou96] Patrick Cousot. Abstract interpretation. ACM Computing Surveys, 28(2):324–328,
1996.

[Cri03] M. Crispin. Interactive mail access protocol — version 4rev1. RFC 3501, The
Internet Society, 2003.

BIBLIOGRAPHY 291

[CT04] John Cowan and Richard Tobin. XML information set (second edition). W3C
recommendation, World Wide Web Consortium, 2004.

[dB08] Jos de Bruijn. RIF RDF and OWL compatibility. W3C working draft, World Wide
Web Consortium, 2008.

[DFFT02] Yanlei Diao, Peter M. Fischer, Michael J. Franklin, and Raymond To. Yfilter: Ef-
ficient and scalable filtering of xml documents. In Proc. Int. Conf. on Data Engi-
neering, pages 341–344. IEEE Computer Society, 2002.

[DIR07] Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman. Adaptive query pro-
cessing. Foundations and Trends in Databases, 1(1):1–140, 2007.

[DKO+84] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael Stone-
braker, and David A. Wood. Implementation techniques for main memory database
systems. In Proc. Int. ACM Conf. on Management of Data (SIGMOD), pages 1–8.
ACM, 1984.

[DMO01] Steve DeRose, Eve Maler, and David Orchard. XML linking language (XLink)
version 1.0. W3C recommendation, World Wide Web Consortium, 2001.

[DS99a] A. Daneels and W. Salter. What is SCADA? In Proc. Int. Conf. on Accelerator and
Large Experimental Physics Control Systems, pages 339–343. Comitato Conferenze
ELETTRA, 1999.

[DS99b] Martin Duerst and Michel Suignard. Internationalized resource identifiers (IRIs).
RFC 3987, The Internet Society, 1999.

[DW07] Wlodzimierz Drabent and Artur Wilk. Extending xml query language xcerpt by
ontology queries. In Int. Conf. on Web Intelligence, pages 447–451. IEEE Computer
Society, 2007.

[EB06] AnnMarie Ericsson and Mikael Berndtsson. Detecting design errors in composite
events for event triggered real-time systems using timed automata. In Proc. Int.
Workshop on Event-Driven Architecture, Processing and Systems, pages 39–50. IEEE
Computer Society, 2006.

[ebX] Electronic business using eXtensible Markup Language. http://www.ebxml.org.

[Eck05] Michael Eckert. Reactivity on the Web: Event Queries and Composite Event De-
tection in XChange. Master’s thesis (Diplomarbeit), Institute for Informatics, Uni-
versity of Munich, 2005.

[Ecl] Eclipse Foundation. Eclipse — an open development platform. http://www.
eclipse.org.

[EMK+04] Andrew Eisenberg, Jim Melton, Krishna G. Kulkarni, Jan-Eike Michels, and Fred
Zemke. SQL:2003 has been published. SIGMOD Record, 33(1):119–126, 2004.

[EN03] Eiman Elnahrawy and Badri Nath. Cleaning and querying noisy sensors. In Proc.
ACM Conf. on Wireless Sensor Networks and Applications, pages 78–87. ACM, 2003.

[EPBS07] AnnMarie Ericsson, Paul Pettersson, Mikael Berndtsson, and Marco Seiriö. Seamless
formal verification of Complex Event Processing applications. In Proc. Int. Conf. on
Distributed Event-Based Systems, pages 50–61. ACM, 2007.

[Esp] EsperTech Inc. Event stream intelligence: Esper & NEsper. http://esper.
codehaus.org.

292 BIBLIOGRAPHY

[Est08] Olga Estekhina. Well-founded semantics and local stratification for Xcerpt programs.
Project thesis (Projektarbeit), Institute for Informatics, University of Munich, 2008.

[Etz05] Opher Etzion. Towards an event-driven architecture: An infrastructure for event
processing (position paper). In Proc. Int. Conf. on Rules and Rule Markup Languages
for the Semantic Web, volume 3791 of LNCS, pages 1–7. Springer, 2005.

[F+99] R. Fielding et al. Hypertext transfer protocol – HTTP/1.1. RFC 2616, The Internet
Society, 1999.

[FGV05] Michael Fisher, Dov Gabbay, and Lluis Vila, editors. Handbook of Temporal Rea-
soning in Artificial Intelligence. Elsevier, 2005.

[FHH04] Richard Fikes, Patrick J. Hayes, and Ian Horrocks. OWL-QL – a language for
deductive query answering on the Semantic Web. J. Web Semantics, 2(1):19–29,
2004.

[FLB+06] Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis, and Georg Got-
tlob. RDF querying: Language constructs and evaluation methods compared. In
Reasoning Web, Int. Summer School, volume 4126 of LNCS, pages 1–52. Springer,
2006.

[FM77] Charles Forgy and John P. McDermott. OPS, a domain-independent production
system language. In Proc. Int. Joint Conference on Artificial Intelligence, pages
933–939. William Kaufmann, 1977.

[For81] Charles Forgy. OPS5 user’s manual. Technical Report CMU-CS-81-135, Carnegie
Mellon University, 1981.

[For82] Charles L. Forgy. A fast algorithm for the many pattern/many object pattern match
problem. Artif. Intelligence, 19(1):17–37, 1982.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

[Fur03] Tim Furche. Optimizing multiple queries against XML streams. Master’s thesis
(Diplomarbeit), Institute for Informatics, University of Munich, 2003.

[Fur08] Tim Furche. Implementation of Web Query Languages Reconsidered: Beyond Tree
and Single-Language Algebras at (Almost) No Cost. PhD thesis, Institute for Infor-
matics, University of Munich, 2008.

[G+03] Martin Gudgin et al. SOAP 1.2. W3C recommendation, World Wide Web Consor-
tium, 2003.

[GA02] Antony Galton and Juan Carlos Augusto. Two approaches to event definition.
In Proc. Int. Conf. on Database and Expert Systems Applications, volume 2453 of
LNCS, pages 547–556. Springer, 2002.

[GA04] Rodolfo Gómez and Juan Carlos Augusto. Durative events in active databases. In
Proc. Int. Conf. on Enterprise Information Systems, pages 306–311, 2004.

[GAC06] Vihang Garg, Raman Adaikkalavan, and Sharma Chakravarthy. Extensions to
stream processing architecture for supporting event processing. In Proc. Int. Conf.
on Database and Expert Systems Applications, volume 4080 of LNCS, pages 945–955.
Springer, 2006.

[GAE06] Thanaa M. Ghanem, Walid G. Aref, and Ahmed K. Elmagarmid. Exploiting
predicate-window semantics over data streams. SIGMOD Record, 35(1):3–8, 2006.

BIBLIOGRAPHY 293

[GD93] Stella Gatziu and Klaus R. Dittrich. Events in an active object-oriented database
system. In Proc. Int. Workshop on Rules in Database Systems, pages 23–39. Springer,
1993.

[GD94] Stella Gatziu and Klaus R. Dittrich. Detecting composite events in active database
systems using petri nets. In Proc. Int. Workshop on Research Issues in Data Engi-
neering: Active Database Systems, pages 2–9. IEEE, 1994.

[GDP+06] Torsten Greiner, Willy Düster, Francis Pouatcha, Rainer von Ammon, Hans-Martin
Brandl, and David Guschakowski. Business activity monitoring of norisbank taking
the example of the application easyCredit and the future adoption of Complex Event
Processing (CEP). In Proc. Int. Symp. on Principles and Practice of Programming
in Java, pages 237–242. ACM, 2006.

[GGM+04] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka, and Dan Suciu.
Processing XML streams with deterministic automata and stream indexes. ACM
Transactions on Database Systems, 29(4):752–788, 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Pat-
terns. Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GJS92a] Narain H. Gehani, H. V. Jagadish, and Oded Shmueli. Composite event specification
in active databases: Model & implementation. In Proc. Int. Conf. on Very Large
Data Bases, pages 327–338. Morgan Kaufmann, 1992.

[GJS92b] Narain H. Gehani, H.V. Jagadish, and Oded Shmueli. Event specification in an
active object-oriented database. In Proc. Int. ACM Conf. on Management of Data
(SIGMOD), pages 81–90. ACM, 1992.

[GJS93] Narain H. Gehani, H. V. Jagadish, and Oded Shmueli. Compose: A system for
composite specification and detection. In Advanced Database Systems, volume 759
of LNCS, pages 3–15. Springer, 1993.

[GL92] Benoit A. Gennart and David C. Luckham. Validating discrete event simulations
using event pattern mappings. In Proc. Design Automation Conference, pages 414–
419. IEEE Computer Society, 1992.

[GL95] Timothy Griffin and Leonid Libkin. Incremental maintenance of views with dupli-
cates. In Proc. Int. ACM Conf. on Management of Data (SIGMOD), pages 328–339.
ACM, 1995.

[GM93] Goetz Graefe and William J. McKenna. The Volcano optimizer generator: Extensi-
bility and efficient search. In Proc. Int. Conf. on Data Engineering, pages 209–218.
IEEE Computer Society, 1993.

[Gra93] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing
Surveys, 25(2):73–170, 1993.

[Gra95] Goetz Graefe. The Cascades framework for query optimization. IEEE Data Engi-
neering Bulletin, 18(3):19–29, 1995.

[Gra06] Hendrik Grallert. Propagation of updates in distributed web data: A use case for the
language XChange. Project thesis, Institute for Informatics, University of Munich,
2006.

[GS92] Hector Garcia-Molina and Kenneth Salem. Main memory database systems: An
overview. IEEE Transactions on Knowledge and Data Engineering, 4(6):509–516,
1992.

294 BIBLIOGRAPHY

[GS94] David Garlan and Mary Shaw. An introduction to software architecture. Technical
Report CUM-CS-94-166, Carnegie Mellon University, 1994.

[GUW01] Hector Garcia-Molina, Jeffrey Ullman, and Jennifer Widom. Database Systems: The
Complete Book. Prentice Hall, 2001.

[H+08] Arnaud Le Hors et al. Document object model (DOM) level 3 core specification.
W3C recommendation, World Wide Web Consortium, 2008.

[Hav05] Michael Havey. Essential Business Process Modeling. O’Reilly, 2005.

[Hay04] Patrick Hayes. RDF semantics. W3C recommendation, World Wide Web Consor-
tium, 2004.

[HBBM96] Richard Hayton, Jean Bacon, John Bates, and Ken Moody. Using events to build
large scale distributed applications. In Proc. ACM SIGOPS European Workshop on
Systems Support for Worldwide Applications, pages 9–16. ACM, 1996.

[HV02] Annika Hinze and Agnès Voisard. A parameterized algebra for event notification
services. In Proc. Int. Symp. on Temporal Representation and Reasoning, pages
61–65. IEEE, 2002.

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[IBM04] IBM. Common Base Event. http://www.ibm.com/developerworks/webservices/
library/ws-cbe, 2004.

[ILO] ILOG. ILOG JRules. http://www.ilog.com/products/jrules.

[JAF+06] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong, and Jennifer
Widom. Declarative support for sensor data cleaning. In Proc. Int. Conf. on Per-
vasive Computing, volume 3968 of LNCS, pages 83–100. Springer, 2006.

[JBo] JBoss.org. Drools. http://www.jboss.org/drools.

[JCG+92] Christian S. Jensen, James Clifford, Shashi K. Gadia, Arie Segev, and Richard T.
Snodgrass. A glossary of temporal database concepts. SIGMOD Record, 21(3):35–43,
1992.

[JP06] Daniel Jobst and Gerald Preissler. Mapping clouds of SOA- and business-related
events for an enterprise cockpit in a Java-based environment. In Proc. Int. Symp.
on Principles and Practice of Programming in Java, pages 230–236. ACM, 2006.

[JUN] JUNG — Java Universal Network/Graph Framework. http://jung.sourceforge.
net/.

[Kay07] Michael Kay. XSL transformations (XSLT) version 2.0. W3C recommendation,
World Wide Web Consortium, 2007.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):
Concepts and abstract syntax. W3C recommendation, World Wide Web Consortium,
2004.

[KJP77] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching
in strings. SIAM J. on Computing, 6(2):323–350, 1977.

[KLG07] Martin Kersten, Erietta Liarou, and Romulo Goncalves. A query language for a data
refinery cell. In Proc. Int. Workshop on Event-Driven Architecture, Processing and
Systems, 2007.

BIBLIOGRAPHY 295

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
Proc. Europ. Conf. on Object-Oriented Programming, volume 1241 of LNCS, pages
220–242. Springer, 1997.

[Kow92] Robert A. Kowalski. Database updates in the event calculus. Journal of Logic
Programming, 12(1&2):121–146, 1992.

[KS86] Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events. New
Generation Compututing, 4(1):67–95, 1986.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[LC86a] Tobin J. Lehman and Michael J. Carey. Query processing in main memory database
management systems. In Proc. Int. ACM Conf. on Management of Data (SIGMOD),
pages 239–250. ACM, 1986.

[LC86b] Tobin J. Lehman and Michael J. Carey. A study of index structures for main memory
database management systems. In Proc. Int. Conf. on Very Large Databases, pages
294–303. Morgan Kaufmann, 1986.

[Llo93] John Wylie Lloyd. Foundations of Logic Programming. Springer-Verlag, 1993.

[LS08] David Luckham and Roy Schulte. Event processing glossary. http://
complexevents.com/?p=361, May 2008.

[Luc02] David C. Luckham. The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Addison-Wesley, 2002.

[Luc08] David C. Luckham. A short history of Complex Event Processing. part 1: Begin-
nings. http://complexevents.com/?p=321, 2008.

[LVB+93] David C. Luckham, James Vera, Doug Bryan, Larry M. Augustin, and Frank C.
Belz. Partial orderings of event sets and their application to prototyping concurrent,
timed systems. Journal of Systems and Software, 21(3):253–265, 1993.

[MAA05a] Wolfgang May, José Júlio Alferes, and Ricardo Amador. Active rules in the Seman-
tic Web: Dealing with language heterogeneity. In Proc. Int. Conf. on Rules and
Rule Markup Languages for the Semantic Web, volume 3791 of LNCS, pages 30–44.
Springer, 2005.

[MAA05b] Wolfgang May, José Júlio Alferes, and Ricardo Amador. Ontology- and resources-
based approach to evolution and reactivity in the Semantic Web. In Proc. Int. Conf.
on Ontologies, Databases, and Applications of Semantics, volume 3761 of LNCS,
pages 1553–1570. Springer, 2005.

[MBK02] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing main-memory
join on modern hardware. IEEE Transactions on Knowledge and Data Engineering,
14(4):709–730, 2002.

[MBM08] Marcelo R. N. Mendes, Pedro Bizarro, and Paulo Marques. A framework for per-
formance evaluation of Complex Event Processing systems. In Proc. Int. Conf. on
Distributed Event-Based Systems, Demonstrations, pages 313–316. ACM, 2008.

[McC02] David W. McCoy. Business activity monitoring: Calm before the storm. Technical
Report LE-15-9727, Gartner, Inc., 2002. http://www3.gartner.com/resources/
105500/105562/105562.pdf.

296 BIBLIOGRAPHY

[McD86] Drew McDermott. Tarskian semantics, or no notation without denotation! In
Readings in Natural Language Processing, pages 167–169. Morgan Kaufmann, 1986.

[ME01] Douglas Moreto and Markus Endler. Evaluating composite events using shared trees.
IEE Proceedings — Software, 148(1):1–10, 2001.

[MFP06] Gero Mühl, Ludger Fiege, and Peter R. Pietzuch. Distributed Event-Based Systems.
Springer, 2006.

[MH69] John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In D. Michie and B. Meltzer, editors, Machine Intelligence,
volume 4, pages 463–502. Edinburgh University Press, 1969.

[Mir87] Daniel P. Miranker. TREAT: A better match algorithm for AI production system
matching. In Proc. AAAI Natl. Conf. on Artificial Intelligence, pages 42–47. AAAI
Press, 1987.

[MKW+02] Highland Mary Mountain, Jacek Kopecky, Stuart Williams, Glen Daniels, and Noah
Mendelsohn. SOAP version 1.2 email binding. W3C note, World Wide Web Con-
sortium, 2002.

[MM04] Frank Manola and Eric Miller. RDF primer. W3C recommendation, World Wide
Web Consortium, 2004.

[MR96] J. Myers and M. Rose. Post office protocol - version 3. RFC 1939, The Internet
Society, 1996.

[MS] MS Analog Software. ruleCore(R) Complex Event Processing (CEP) Server. http:
//www.rulecore.com.

[MSS97] Masoud Mansouri-Samani and Morris Sloman. GEM: A generalized event monitoring
language for distributed systems. Distributed Systems Engineering, 4(2):96–108,
1997.

[MV07] John Morrell and Stevan D. Vidich. Complex Event Processing with
Coral8. White Paper. http://www.coral8.com/system/files/assets/pdf/
Complex_Event_Processing_with_Coral8.pdf, 2007.

[MWA+03] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,
Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein, and Rohit
Varma. Query processing, approximation, and resource management in a data stream
management system. In Proc. Conf. on Innovative Data Systems Research (CIDR),
2003.

[MZ97] Iakovos Motakis and Carlo Zaniolo. Temporal aggregation in active database rules.
In Proc. Int. ACM Conf. on Management of Data (SIGMOD), pages 440–451. ACM
Press, 1997.

[NEX] NEXMark Benchmark. http://datalab.cs.pdx.edu/niagara/NEXMark/.

[NMMK07] Fred Niederman, Richard G. Mathieu, Roger Morley, and Ik-Whan Kwon. Examin-
ing RFID applications in supply chain management. Communications of the ACM,
50(7):92–101, 2007.

[Ora] Oracle Inc. Complex Event Processing in the real world. White Paper. http://www.
oracle.com/technologies/soa/docs/oracle-complex-event-processing.pdf.

[P+06] Paula-Lavinia Patranjan et al., editors. Proc. Int. Workshop Reactivity on the Web,
volume 4254 of LNCS. Springer, 2006.

BIBLIOGRAPHY 297

[Par07] Terence Parr. The Definitive ANTLR Reference Guide: Building Domain-specific
Languages. Pragmatic Programmers, 2007.

[Pas08] Adrian Paschke. Design patterns for complex event processing. In
Proc. Int. Conf. on Distributed Event-Based Systems, Fast Abstracts, 2008.
http://debs08.dis.uniroma1.it/pdf/fa-paschke.pdf.

[Pat98] Norman W. Paton, editor. Active Rules in Database Systems. Springer, 1998.

[Păt05] Paula-Lavinia Pătrânjan. The Language XChange: A Declarative Approach to Re-
activity on the Web. PhD thesis, Institute for Informatics, University of Munich,
2005.

[Pix08] Tom Pixley. Document object model (DOM) level 2 events specification. W3C
recommendation, World Wide Web Consortium, 2008.

[PKB+07] Adrian Paschke, Alexander Kozlenkov, Harold Boley, Said Tabet, Michael
Kifer, and Mike Dean. Reaction RuleML. http://ibis.in.tum.de/research/
ReactionRuleML/, 2007.

[PS06] Adrian Paschke and Elisabeth Schnappinger-Gerull. A categorization scheme for
SLA metrics. In Proc. Conf. on Service Oriented Electronic Commerce, volume 80
of LNI, pages 25–40. GI, 2006.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF. W3C
recommendation, World Wide Web Consortium, 2008.

[PvA08] Adrian Paschke and Rainer von Ammon. EuroPLoP 2008 focus group
domain-specific complex event and rule patterns. http://www.citt-online.de/
downloads/EuroPLoP_CEP_Focus.pdf; see also http://hillside.net/europlop/,
2008.

[PvdH07] Mike P. Papazoglou and Willem-Jan van den Heuvel. Service oriented architectures:
Approaches, rechnologies and research issues. The VLDB Journal, 16(3), 2007.

[REW] REWERSE Network of Excellence (Funded in the Sixth Framework Programme of
the European Union 2004–2008). Working group I5 — evolution and reactivity.
http://www.rewerse.net/i5.

[RGR08] Haggai Roitman, Avigdor Gal, and Louiqa Raschid. Satisfying complex data needs
using pull-based online monitoring of volatile data sources. In Proc. Int. Conf. on
Data Engineering, pages 1465–1467. IEEE, 2008.

[RHJ99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 specification. W3C
recommendation, World Wide Web Consortium, 1999.

[RIF] RIF WG. Rule interchange format working group charter. http://www.w3.org/
2005/rules/wg/charter.

[RLBS08] Christopher Ré, Julie Letchner, Magdalena Balazinska, and Dan Suciu. Event queries
on correlated probabilistic streams. In Proc. Int. ACM Conf. on Management of Data
(SIGMOD), pages 715–728. ACM, 2008.

[Rom06] Inna Romanenko. Use cases for reactivity on the Web: Using ECA rules for busi-
ness process modeling. Master’s thesis (Diplomarbeit), Institute for Informatics,
University of Munich, 2006.

[Ron97] Claudia Roncancio. Toward duration-based, constrained and dynamic event types. In
Proc. Int. Workshop on Active, Real-Time, and Temporal Database Systems, volume
1553 of LNCS, pages 176–193. Springer, 1997.

298 BIBLIOGRAPHY

[Ros06] Riccardo Rosati. Integrating ontologies and rules: Semantic and computational
issues. In Reasoning Web, Int. Summer School, volume 4126 of LNCS, pages 128–
151. Springer, 2006.

[San] Sandia National Laboratories. Jess, the rule engine for the Java(TM) platform.
http://herzberg.ca.sandia.gov/.

[SB04] Sebastian Schaffert and François Bry. Querying the Web reconsidered: A practical
introduction to Xcerpt. In Proc. Extreme Markup Languages, 2004.

[SB05] Marco Seiriö and Mikael Berndtsson. Design and implementation of an eca rule
markup language. In Proc. Int. Conf. on Rules and Rule Markup Languages for the
Semantic Web, volume 3791 of LNCS, pages 98–112. Springer, 2005.

[Sch03] Roy W. Schulte. The growing role of events in enterprise applications. Technical
Report AV-20-3900, Gartner, Inc., 2003. http://www.gartner.com/resources/
116100/116129/116129.pdf.

[Sch04] Sebastian Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for
the Web. PhD thesis, Institute for Informatics, University of Munich, 2004.

[Sch07] Stefanie Scherzinger. Bulk data in main memory-based xquery evaluation. In Proc.
Int. Workshop on XQuery Implementation, Experience and Perspectives, 2007.

[Sch08] Scarlet Schwiderski-Grosche. Spatio-temporal reasoning with composite events in
mobile systems. In Proc. Int. Conf. on Distributed Event-Based Systems, Fast Ab-
stracts, 2008. http://debs08.dis.uniroma1.it/pdf/fa-grosche.pdf.

[Sed90] Robert Sedgewick. Algorithms in C. Addison-Wesley, 1990.

[SKN94] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. Cache conscious algorithms
for relational query processing. In Proc. Int. Conf. on Very Large Databases, pages
510–521. Morgan Kaufmann, 1994.

[SM06] Kelly Sims and Tineke Mertens. Heineken, IBM, Safmarine and University of Ams-
terdam launch wireless ”beer living lab”. IBM Press Release, http://www-03.ibm.
com/press/us/en/pressrelease/20514.wss, 2006.

[SR90] Young-Chul Shim and C. V. Ramamoorthy. Monitoring and control of distributed
systems. In Proc. Int. Conf. on Systems Integration, pages 672–681. IEEE Computer
Society, 1990.

[SSS+03] César Sánchez, Sriram Sankaranarayanan, Henny Sipma, Ting Zhang, David L. Dill,
and Zohar Manna. Event correlation: Language and semantics. In Proc. Int. Conf.
on Embedded Software, volume 2855 of LNCS, pages 323–339. Springer, 2003.

[SSSM05] César Sánchez, Matteo Slanina, Henny B. Sipma, and Zohar Manna. Expressive
completeness of an event-pattern reactive programming language. In Int. Conf. on
Formal Techniques for Networked and Distributed Systems, volume 3731 of LNCS,
pages 529–532. Springer, 2005.

[Sub] Subversion. http://subversion.tigris.org/.

[Sun] Sun Microsystems, Inc. Java(TM) platform, standard edition 6. http://java.sun.
com/javase/6/.

[Sun06] Sun Microsystems, Inc. Java(TM) platform, standard edition 6 API specification.
http://java.sun.com/javase/6/docs/api/, 2006.

BIBLIOGRAPHY 299

[SWM04] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL Web Ontology
Language guide. W3C recommendation, World Wide Web Consortium, 2004.

[SZZA01] Reza Sadri, Carlo Zaniolo, Amir M. Zarkesh, and Jafar Adibi. Optimization of
sequence queries in database systems. In Proc. ACM Symp. on Principles of Database
Systems, pages 71–81. ACM, 2001.

[SZZA04] Reza Sadri, Carlo Zaniolo, Amir M. Zarkesh, and Jafar Adibi. Expressing and
optimizing sequence queries in database systems. ACM Transactions on Database
Systems, 29(2):282–318, 2004.

[Tho99] Simon Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,
second edition, 1999.

[TPC] TPC. Transaction Processing Performance Council. http://www.tpc.org/.

[TS86] Hisao Tamaki and Taisuke Sato. OLD resolution with tabulation. In Proc. Int. Conf.
on Logic Programming, volume 225 of LNCS, pages 84–98. Springer, 1986.

[VH07] Gottfried Vossen and Stephan Hagemann. Unleashing Web 2.0: From Concepts to
Creativity. Morgan Kaufmann, 2007.

[Vie86] Laurent Vieille. Recursive axioms in deductive databases: The query/subquery
approach. In Proc. Int. Conf. on Expert Database Systems, pages 253–267. Benjamin
Cummings, 1986.

[War92] David S. Warren. Memoing for logic programs. Communications of the ACM,
35(3):93–111, 1992.

[WBG08] Karen Walzer, Tino Breddin, and Matthias Groch. Relative temporal constraints in
the Rete algorithm for complex event detection. In Proc. Int. Conf. on Distributed
Event-Based Systems, pages 147–155. ACM, 2008.

[WC96] Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Triggers and
Rules for Advanced Database Processing. Morgan Kaufmann, 1996.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance Complex Event Pro-
cessing over streams. In Proc. Int. ACM Conf. on Management of Data (SIGMOD),
pages 407–418. ACM, 2006.

[WGET08] Segev Wasserkrug, Avigdor Gal, Opher Etzion, and Yulia Turchin. Complex event
processing over uncertain data. In Proc. Int. Conf. on Distributed Event-Based
Systems, pages 253–264. ACM, 2008.

[WRGD07] Walker M. White, Mirek Riedewald, Johannes Gehrke, and Alan J. Demers. What
is “next” in event processing? In Proc. ACM Symp. on Principles of Database
Systems, pages 263–272. ACM, 2007.

[WTV+07] Georg Wittenburg, Kirsten Terfloth, Freddy López Villafuerte, Tomasz Naumowicz,
Hartmut Ritter, and Jochen H. Schiller. Fence monitoring - experimental evaluation
of a use case for wireless sensor networks. In Proc. Europ. Conf. on Wireless Sensor
Networks, volume 4373 of LNCS, pages 163–178. Springer, 2007.

[WvASW07] Alexander Widder, Rainer von Ammon, Philippe Schaeffer, and Christian Wolff.
Identification of suspicious, unknown event patterns in an event cloud. In Proc. Int.
Conf. on Distributed Event-Based Systems, pages 164–170. ACM, 2007.

[Xce] Xcerpt. http://xcerpt.org.

300 BIBLIOGRAPHY

[ZS01] Dong Zhu and Adarshpal S. Sethi. SEL, a new event pattern specification language
for event correlation. In Proc. Int. Conf. on Computer Communications and Net-
works, pages 586–589. IEEE, 2001.

[ZU96] Robert J. Zhang and Elizabeth A. Unger. Event specification and detection. Tech-
nical Report TR CS-96-8, Kansas State University, 1996. http://citeseer.ist.
psu.edu/zhang96event.html.

[ZU99] Detlef Zimmer and Rainer Unland. On the semantics of complex events in active
database management systems. In Proc. Int. Conf. on Data Engineering, pages
392–399. IEEE, 1999.

ABOUT THE AUTHOR 301

About the Author

Michael Eckert studied computer science with a minor in mathematics at University of Munich
(LMU, 1999-2005) and at University of Washington (2002-2003). He received his M.Sc. equivalent
with distinction (“Diplom-Informatiker mit Auszeichnung”) from LMU in May 2005. Since July
2005, he is working as a research and teaching assistant at the Institute for Informatics of LMU
in the programming and modeling languages group of Prof. François Bry. His research interests
include Complex Event Processing, reactive Web systems and reactive rule languages, update
languages for Web data, and Web and database technology in general.

