
K E Y W O R D - B A S E D Q U E RY I N G F O R T H E S O C I A L
S E M A N T I C W E B – T H E K W Q L L A N G U A G E : C O N C E P T,

A L G O R I T H M A N D S Y S T E M

klara weiand

Dissertation an der Fakultät für Mathematik, Informatik und Statistik der
Ludwig–Maximilians–Universität, München

15. Dezember 2010

K E Y W O R D - B A S E D Q U E RY I N G F O R T H E S O C I A L
S E M A N T I C W E B – T H E K W Q L L A N G U A G E : C O N C E P T,

A L G O R I T H M A N D S Y S T E M

klara weiand

Dissertation an der Fakultät für Mathematik, Informatik und Statistik der
Ludwig–Maximilians–Universität, München

15. Dezember 2010

Erster Berichterstatter: Prof. Dr. François Bry
Ludwig–Maximilians–Universität München

Zweiter Berichterstatter: Prof. Dr. Letizia Tanca
Politecnico di Milano

Datum des Rigorosums: 8. Februar 2011

Breathe deeply and no one can put you in a cage.

— Daniel Odier

A B S T R A C T

Enabling non-experts to publish data on the web is an important
achievement of the social web and one of the primary goals of
the social semantic web. Making the data easily accessible in turn
has received only little attention, which is problematic from the
point of view of incentives: users are likely to be less motivated
to participate in the creation of content if the use of this content
is mostly reserved to experts.

Querying in semantic wikis, for example, is typically realized
in terms of full text search over the textual content and a web
query language such as SPARQL for the annotations. This ap-
proach has two shortcomings that limit the extent to which data
can be leveraged by users: combined queries over content and
annotations are not possible, and users either are restricted to
expressing their query intent using simple but vague keyword
queries or have to learn a complex web query language.

The work presented in this dissertation investigates a more
suitable form of querying for semantic wikis that consolidates two
seemingly conflicting characteristics of query languages, ease of
use and expressiveness. This work was carried out in the context
of the semantic wiki KiWi, but the underlying ideas apply more
generally to the social semantic and social web.

We begin by defining a simple modular conceptual model
for the KiWi wiki that enables rich and expressive knowledge
representation. A component of this model are structured tags, an
annotation formalism that is simple yet flexible and expressive,
and aims at bridging the gap between atomic tags and RDF. The
viability of the approach is confirmed by a user study, which finds
that structured tags are suitable for quickly annotating evolving
knowledge and are perceived well by the users.

The main contribution of this dissertation is the design and
implementation of KWQL, a query language for semantic wikis.
KWQL combines keyword search and web querying to enable
querying that scales with user experience and information need:
basic queries are easy to express; as the search criteria become
more complex, more expertise is needed to formulate the corre-
sponding query. A novel aspect of KWQL is that it combines both
paradigms in a bottom-up fashion. It treats neither of the two
as an extension to the other, but instead integrates both in one
framework. The language allows for rich combined queries of full
text, metadata, document structure, and informal to formal se-
mantic annotations. KWilt, the KWQL query engine, provides the

vii

full expressive power of first-order queries, but at the same time
can evaluate basic queries at almost the speed of the underlying
search engine. KWQL is accompanied by the visual query lan-
guage visKWQL, and an editor that displays both the textual and
visual form of the current query and reflects changes to either
representation in the other. A user study shows that participants
quickly learn to construct KWQL and visKWQL queries, even
when given only a short introduction.

KWQL allows users to sift the wealth of structure and annota-
tions in an information system for relevant data. If relevant data
constitutes a substantial fraction of all data, ranking becomes
important. To this end, we propose pest, a novel ranking method
that propagates relevance among structurally related or similarly
annotated data. Extensive experiments, including a user study
on a real life wiki, show that pest improves the quality of the
ranking over a range of existing ranking approaches.

viii

Z U S A M M E N FA S S U N G

Eine wichtige Errungenschaft des Social Web und gleichzeitig
eines der Hauptziele des Social Semantic Webs ist es, Laien die
Veröffentlichung von Daten im Web zu ermöglichen. Der Frage,
wie wiederum ein einfacher Zugang zu diesen Daten ermöglicht
werden kann, wurde hingegen bisher nur wenig Aufmerksamkeit
gewidmet. Dies ist problematisch, da mit einer geringeren Moti-
vation der Benutzer bei der Erstellung von Inhalten zu rechnen
ist, wenn die Verwendung dieser Inhalte Experten vorbehalten
ist.

Anfragen in semantischen Wikis sind etwa in der Regel durch
Volltext-Suche über die textuellen Inhalte und eine Webanfrage-
sprache wie SPARQL für Annotationen realisiert. Dieser Ansatz
hat zwei Nachteile, die Benutzer in der Fähigkeit einschränken,
Daten zu ihrem Vorteil zu nutzen: kombinierte Anfragen über
Volltext und Annotationen sind nicht möglich, und Benutzer
müssen ihre Anfrage entweder durch einfache und damit vage
Stichworte ausdrücken, oder aber eine komplexe Webanfrage-
sprache lernen.

Die in dieser Dissertation vorgestellte Forschung untersucht
eine geeignetere Form der Anfrage von Daten in semantischen
Wikis, die zwei scheinbar gegensätzliche Eigenschaften von An-
fragesprachen zusammenführt: Benutzerfreundlichkeit und Aus-
druckskraft. Diese Forschung wurde im Rahmen des semantis-
chen Wikis KiWi durchgeführt, die zugrundeliegenden Ideen sind
jedoch auf das Social Semantic und Social Web im Allgemeinen
anwendbar.

Wir beginnen mit der Definition eines einfachen und modu-
laren konzeptuellen Modells für das KiWi Wiki, das eine mächtige
und ausdrucksstarke Repräsentation von Wissen ermöglicht. Ein
Bestandteil dieses Modells sind strukturierte Tags, ein einfacher
und dennoch flexibler und ausdrucksstarker Annotationsformal-
ismus, der darauf abzielt, die Kluft zwischen atomaren Tags und
RDF zu überbrücken. Die Tragfähigkeit dieses Ansatzes wird
durch eine Nutzerstudie bestätigt, die zeigt, dass strukturierte
Tags von den Benutzern positiv aufgenommen werden und zur
schnellen Annotierung sich kontinuierlich entwickelnden Wis-
sens geeignet sind.

Der Hauptbeitrag dieser Dissertation sind der Entwurf und die
Implementierung von KWQL, einer Anfragesprache für semantis-
che Wikis. KWQL kombiniert Stichwortsuche und Web-Anfragen
und kann sich so der Erfahrung und dem Informationsbedarf

ix

des Nutzers anpassen: Elementare Anfragen können einfach aus-
gedrückt werden. Mit der Komplexität der Suchkriterien wächst
auch das Fachwissen, das benötigt wird, um die entsprechende
Anfrage zu formulieren. Neu ist dabei, dass KWQL die beiden
Paradigmen von Grund auf verbindet. Es behandelt keines der
beiden als Erweiterung des anderen, sondern integriert beide in
einem gemeinsamen System. Die Sprache ermöglicht mächtige
kombinierte Anfragen über Volltext, Metadaten, Dokumentstruk-
tur, und informale und formale semantische Annotationen. KWilt,
die Anfrage-Engine von KWQL, bietet die volle Ausdruckskraft
von Logik erster Stufe, gleichzeitig können einfache Anfragen
nahezu mit der Geschwindigkeit der zugrundeliegenden Such-
maschine ausgewertet werden. KWQL wird ergänzt durch die
visuelle Anfragesprache visKWQL sowie durch einen Editor, der
sowohl die textuelle als auch die visuelle Form der aktuellen
Anfrage anzeigt und Änderungen in einer Darstellung in der
jeweils anderen wiedergibt. Eine Nutzerstudie zeigt, dass die
Teilnehmer schnell lernen, Anfragen in KWQL und visKWQL zu
erstellen, selbst wenn nur eine kurze Einführung gegeben wurde.

KWQL ermöglicht es, die reichhaltige Struktur und Anno-
tationen eines Informationssystems nach relevanten Daten zu
durchsuchen. Wenn die relevanten Daten einen erheblichen An-
teil aller Daten ausmachen, gewinnt deren Ranking an Bedeutung.
Zu diesem Zweck stellen wir pest vor, eine neue Methode zur
Berechnung von Rankings, die Relevanz zwischen strukturell
verwandten oder ähnlich annotierten Daten propagiert. Umfan-
greiche Experimente, darunter eine Nutzerstudie in einem realen
Wiki, zeigen, dass pest die Qualität des Rankings verglichen mit
eine Reihe bestehender Ansätze verbessert.

x

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

A. Hartl, K. Weiand, and F. Bry. visKWQL, Visual Keyword
Queries for Semantic Data. In Third Future Internet Symposium
(FIS), 2010.

K. Weiand, S. Hausmann, T. Furche, and F. Bry. KWilt: A Semantic
Patchwork for Flexible Access to Heterogeneous Knowledge. In
Fourth International Conference on Web Reasoning and Rule Systems
(RR), 2010.

K. Weiand, F. Kneißl, T. Furche, and F. Bry. PEST: Term-Propaga-
tion over Wiki Structures as Eigenvector Computation. In Fifth
Workshop on Semantic Wikis (SemWiki), 2010.

A. Hartl, K. Weiand, and F. Bry. visKQWL, a Visual Renderer
for a Semantic Web Query Language. In International World Wide
Web Conference (WWW), 2010.

F. Bry and K. Weiand. Flavors of KWQL, a Keyword Query Lan-
guage for a Semantic Wiki. In Theory and Practice of Computer
Science (SOFSEM), 2010.

F. Bry, T. Furche, and K. Weiand. Web Queries: From a Web of
Data to a Semantic Web. In Web Information Systems Engineering
(WISE), 2009.

F. Bry and K. Weiand. KWQL, Querying for Social Semantic Soft-
ware. In Reasoning Web, Fifth International Summer School, 2009.

F. Bry, M. Eckert, J. Kotowski, and K. Weiand. What the User
Interacts with: Reflections on Conceptual Models for Semantic
Wikis. In Fourth Workshop on Semantic Wikis (SemWiki), 2009.

F. Bry, J. Kotowski, and K. Weiand. Querying and Reasoning for
Social Semantic Software. In European Semantic Web Conference
(ESWC), 2009.

K. Weiand, T. Furche, and F. Bry. Quo Vadis, Web Queries?
In International Workshop on Semantic Web Technology (Web4Web),
2008.

xi

A C K N O W L E D G M E N T S

I am grateful for all the support I have received during my time
at LMU Munich. First and foremost, I would like to thank my
advisor Prof. Dr. François Bry. He was always there to provide
encouragement, support, and advice, and taught me a great
deal about research and work in academia in general. I am also
indebted to Letizia Tanca for agreeing to act as external reviewer
for this thesis.

Working with the faculty, staff, and students at the Program-
ming and Modeling Languages group has been a great plea-
sure, and I thank all of you: My fellow researchers Simon Brodt,
Michael Eckert, Norbert Eisinger, Tim Furche, Steffen Hausmann,
Fabian Kneißl, Alex Kohn, Jakub Kotowski, Stephan Leuten-
mayr, Benedikt Linse, Hans Jürgen Ohlbach, Alexander Pohl,
Olga Poppe, Edgar-Philipp Stoffel, Christoph Wieser, and Harald
Zauner for creating an inspirational and supportive work envi-
ronment. Martin Josko and Ingeborg von Troschke for always
being there to make things run smoothly. My co-authors for their
expertise, insights, and many interesting and stimulating discus-
sions. The students whose diploma theses I supervised for their
devotion, hard work, and endurance. The participants in the user
studies on KWQL and visKWQL, structured tags and RDF, and
pest for making this research possible.

I would also like to thank the members of the KiWi project
at Aalborg University, Brno University of Technology, Logica,
Oracle (formerly Sun Microsystems), Salzburg Research, and the
Semantic Web Company for their collaboration, their interest in
my work, and the many discussions we had.

The research described in this work was partly funded by the
European Commission within the 7th Framework Programme
project “KiWi - Knowledge in a Wiki.” This funding allowed me
to pursue my research, travel to conferences, and get in touch
with many fellow researchers.

Finally, I would like to thank my family for their love and
support.

xiii

C O N T E N T S

1 introduction 1
1.1 Contributions . 6
1.2 Structure of this Thesis 8

i preliminaries 11
2 the semantic web 13

2.1 Vision, Achievements, and Challenges 13
2.2 New Directions in Semantic Web Research 17

2.2.1 Linked Data 18
2.2.2 The Social Semantic Web 18

3 semantic wikis 23
3.1 Wikis: Collaborative Content Creation 23
3.2 Semantic Wikis: Concepts and Systems 25
3.3 Semantic Wikis: Two Examples 27

3.3.1 Semantic MediaWiki 27
3.3.2 IkeWiki . 28

3.4 Searching and Querying in Semantic Wikis 29
4 web querying 33

4.1 Data on the Semantic Web 37
4.1.1 Extensible Markup Language (XML) . . . 37
4.1.2 Resource Description Framework (RDF) . 39

4.2 Database-Style Query Languages 41
4.2.1 Trees and Documents—XML 41
4.2.2 Graphs and Resources—RDF 52
4.2.3 Outlook—Versatile Languages 60

4.3 Keyword-based Query Languages 63
4.3.1 Classifying Keyword Query Languages . . 65
4.3.2 Querying XML 67
4.3.3 Querying RDF 79
4.3.4 Discussion 84

ii the kiwi wiki 93
5 a conceptual model for the kiwi wiki 95

5.1 Content . 96
5.1.1 Content Items 96
5.1.2 Fragments 97
5.1.3 Links . 99

5.2 Annotations . 99
5.2.1 Formal Knowledge Representation—RDF 99
5.2.2 Informal to Semi-Formal Annotations—

Tags and Structured Tags 100
5.3 Social Content Management 106

xv

xvi contents

6 experimental evaluation : structured tags and
rdf 109
6.1 Experimental Setup and Execution 110
6.2 Results . 112

6.2.1 User Judgments 112
6.2.2 Time Requirements for annotations 120
6.2.3 Analysis of the Annotations 121

6.3 Discussion . 123

iii kwql 127
7 kwql: design and model 129

7.1 A High Level Look at KWQL 131
7.2 KWQL Syntax . 134

7.2.1 Data Model 134
7.2.2 KWQL Terms 137
7.2.3 KWQL Bodies 138
7.2.4 KWQL Heads 147
7.2.5 KWQL Rules 152

7.3 A Formal Semantics for KWQL 152
8 viskwql 155

8.1 Visual Query Languages 156
8.1.1 Form-Based Approaches 157
8.1.2 Diagram-Based Approaches 161

8.2 Design Goals . 167
8.3 Language and Editor Features 169
8.4 visKWQL Queries in Practice 178
8.5 Implementation . 179

9 experimental evaluation : the kwql user ex-
perience 181
9.1 Experimental Setup and Execution 183
9.2 Results . 187

9.2.1 Task 1: Query creation 188
9.2.2 Task 2: Query understanding 196
9.2.3 User Judgments 197

9.3 Discussion . 201
10 architecture and implementation 207

10.1 Related Work . 210
10.2 A Few Words on Injectivity 213
10.3 Query Preprocessing 214
10.4 KWilt: Architecture and Evaluation Phases 215

10.4.1 Keyword Queries 216
10.4.2 Structural Constraints 219
10.4.3 First-Order Constraints 222

10.5 KWQL Sublanguages 226
10.5.1 Keyword KWQL 226
10.5.2 Tree-shaped KWQL 226

10.6 Evaluating a KWQL Query in KWilt 227

contents xvii

10.7 Performance Evaluation 229
10.8 Outlook . 234

iv extensions 237
11 pest : approximate querying of graph-struc-

tured data 239
11.1 Related Work . 244
11.2 A Formal Model for Structured Data 251
11.3 Computing the pest Matrix 252

11.3.1 Weighted Propagation Graph 253
11.3.2 Informed Leap 254
11.3.3 Properties of the pest Matrix 255

11.4 Term Propagation with pest: An Example 256
11.5 Validating pest: The Simpsons Wiki 258

11.5.1 Experiment: Setup and Parameters 258
11.5.2 Comparison with other Ranking Methods 260
11.5.3 User Study 261
11.5.4 Performance Evaluation 264

11.6 Discussion . 267
12 implementation of structured tags 271
13 querying rdf with kwql 275

13.1 SPARQL Queries in KWQL 275
13.2 Adding a resource for RDF to KWQL 277
13.3 RPL Queries in KWQL 279
13.4 Discussion . 281

14 conclusion 283
14.1 Summary . 283
14.2 Perspectives for Further Research 284

14.2.1 Querying Versions of Content Items 285
14.2.2 Social Factors in KWQL 286
14.2.3 More Expressiveness for KWQL Queries . 287
14.2.4 KWQL and the Social (Semantic) Web . . . 288

Supplementary Material 289
a structured tags and rdf 291

a.1 Introductory Text on Structured Tags 291
a.2 Introductory Text on RDF 293
a.3 Text A . 294
a.4 Text B . 296

b kwql and viskwql 299
b.1 Introductory Text on the KiWi Wiki 299
b.2 Introductory Text on KWQL 303
b.3 Introductory Text on visKWQL 308

bibliography 321

L I S T O F F I G U R E S

Figure 1 Snapshot of the Linked Data cloud 19
Figure 2 A graphical representation of an XML doc-

ument . 39
Figure 3 A sample RDF graph 41
Figure 4 XPath axes . 43
Figure 5 The Amazon advanced search interface . . . 65
Figure 6 Document-centric XML representing an ex-

cerpt of an article 68
Figure 7 False positives in interconnection semantics 70
Figure 8 Sample XML data 72
Figure 9 Schema-Free XQuery 75
Figure 10 Query tree and query evaluation 77
Figure 11 An RDF graph 83
Figure 12 The data of Figure 11 represented as an

RDF sentence graph 84
Figure 13 Alternative formalization of the data in Fig-

ure 2, articles grouped by authors 89
Figure 14 Alternative formalization of the data in Fig-

ure 2, different node labels 89
Figure 15 Percentages of participants’ levels of agree-

ment with statement 1 113
Figure 16 Percentages of participants’ levels of agree-

ment with statement 2 113
Figure 17 Percentages of participants’ levels of agree-

ment with statement 3 114
Figure 18 Percentages of participants’ levels of agree-

ment with statement 4 115
Figure 19 Percentages of participants’ levels of agree-

ment with statement 5 116
Figure 20 Percentages of participants’ levels of agree-

ment with statement 6 116
Figure 21 Percentages of participants’ levels of agree-

ment with statement 7 117
Figure 22 Percentages of participants’ levels of agree-

ment with statement 8 117
Figure 23 Percentages of participants’ levels of agree-

ment with statement 9 118
Figure 24 Percentages of participants’ levels of agree-

ment with statement 10 119
Figure 25 Average time taken to annotate the different

revisions of the text 120

xix

xx List of Figures

Figure 26 Average number of annotations per text re-
vision . 121

Figure 27 Average number of elements in annotations
added per text revision 122

Figure 28 Relationship between tag complexity and
time spent annotating and number of total
elements in the added structured tags 122

Figure 29 Average percentage of annotations not based
on previous annotations 123

Figure 30 Resources and allowed sub-resources 134
Figure 31 KWQL Syntax 143
Figure 32 A simple QBE query 158
Figure 33 An EquiX query form 159
Figure 34 Xing examples 160
Figure 35 Queries in G 161
Figure 36 An XML-GL query 164
Figure 37 An Xcerpt program and its rendering in

visXcerpt . 165
Figure 38 Triple pattern in SPARQL and NITELIGHT . 166
Figure 39 An RDF-GL query 167
Figure 40 A visKWQL query 169
Figure 41 visKWQL box types 170
Figure 42 Expandable box containing a child box . . . 170
Figure 43 Information hiding in visKWQL 172
Figure 44 The KQB tooltip pane 173
Figure 45 A KQB tooltip 173
Figure 46 Dragging over a box 174
Figure 47 Dragging over a box label 175
Figure 48 Box containing an error 176
Figure 49 Child box containing an error 177
Figure 50 Problem correction in visKWQL 177
Figure 51 The KiWi Query Builder 178
Figure 52 Previous knowledge of relevant concepts . . 186
Figure 53 Average response percentages per question . 190
Figure 54 Average response percentages per question

by group . 191
Figure 55 Deviation from average difference of the

percentage correct between two groups . . . 193
Figure 56 Frequency of different types of mistakes per

group . 194
Figure 57 Average response percentages per question . 197
Figure 58 Average response percentages per question

by group . 198
Figure 59 AST representation of a KWQL query 214
Figure 60 The KWilt evaluation pipeline 216
Figure 61 Link and containment graph for a sample

wiki . 240

List of Figures xxi

Figure 62 Edge weights and virtual nodes and edges
for the graph in Figure 61 242

Figure 63 Percentage of participants who preferred a
pest-enhanced ranking 263

Figure 64 Percentage of participants who preferred
the pest-enhanced ranking, by fraction of
queries . 264

Figure 65 Indexing a single term 265
Figure 66 Indexing time over dataset size 265
Figure 67 Indexing time over number of terms 265
Figure 68 Number of unique terms over dataset size . 266
Figure 69 Nesting-based representation of a struc-

tured tag . 272

L I S T O F TA B L E S

Table 1 Syntax of composition-free XQuery 48
Table 2 Syntax of SPARQL 54
Table 3 KWQL qualifier types 136
Table 4 Example variable bindings 149
Table 5 Aggregation functions 151
Table 6 Semantics for KWQL 154
Table 7 Questions and solutions for task 1 185
Table 8 Questions and solutions for task 2 186
Table 9 Number of participants per group 187
Table 10 Average number of questions (out of 10)

answered . 188
Table 11 Average number of questions (out of 10)

answered correctly 188
Table 12 Average percentage of given answers that

are correct . 189
Table 13 Types of mistakes made by participants . . . 195
Table 14 Number of participants per group in task 2 . 196
Table 15 Average number of questions answered in

task 2 . 196
Table 16 Average number of questions answered cor-

rectly in task 2 196
Table 17 Truth tables for operators and, or, and not . 221
Table 18 Evaluation times in the KiWi dataset 230
Table 19 Evaluation times in the RSS dataset 232
Table 20 Excerpt of the pest matrix for “java” with

α = 0.3 and ρ = 0.25 256
Table 21 Document-term matrix after term-weight

computation 257
Table 22 Top-20 ranking for query “Bart” for pest,

Wik, and Goo 259
Table 23 Top-20 ranking for query “Bart” for pest

and Luc . 261
Table 24 Top-20 ranking for query “Moe beer” 262
Table 25 (Ir-)relevant pages added by pest compared

to Wik and Luc 263

xxiii

1
I N T R O D U C T I O N

Most queries submitted to web search engines consist of a small
number of simple keywords that approximate the user’s query
intent and serve as filtering criteria for the retrieval of documents.
Often, no operators or other syntactic constructs are provided,
and conjunction between the individual terms is assumed, mean-
ing that a matching document must contain all terms. Conse-
quently, queries are simple bags of terms, and selection criteria
that make reference to the structure of the data cannot be ex-
pressed.

An important reason why no search engine offers this capa-
bility, apart from (substantial) concerns about increased storage
and computation costs, is that the utility of augmenting content-
based queries with structural selection criteria is limited in light
of the heterogeneity of HTML documents: HTML is a lightweight
markup language that is used by a large number of authors with
varying expertise and intentions to create a vast number of web
pages. There often exist many different, equally valid ways to
express a given piece of information. Inversely, the structure of
a piece of HTML code is not necessarily related to the meaning
of the underlying text. Often, HTML is used not to structure
information in a meaningful way, but simply to format it to the
author’s liking.

While structure as a selection criterion may often not be nec-
essary or useful in general web search, the case is different for
the web 2.0 or social web, a category of web applications that has
gained much popularity over the past five years. Here, the struc-
ture of individual pages is to some extent standardized, either
by design or due to social conventions. Consequently, structural
selection criteria can have a meaningful and consistent interpre-
tation with respect to the semantics of the data.

Social web applications enable users to easily publish content,
collaborate and interact. Up until the middle of the previous
decade, the creation of web content required at least basic knowl-
edge of web technologies. A small number of content creators
therefore faced many consumers, for whom the web was a read-
only medium. The Web 2.0 is more democratic in the sense that
publishing content does not require technological expertise and
that content creation is often an inclusive, iterative, and interactive
process. Examples of social web applications include blogs, social
networking sites, as well as many specialized applications, for

1

2 introduction

example for saving and sharing bookmarks,1 publishing photos2,
and aggregating users’ listening habits.3

Wikis are social web applications for collecting and sharing
knowledge. They allow users to easily create and edit documents,
so-called wiki pages, using a web browser. The pages in a wiki
are often heavily interlinked, which makes it easy to find related
information and browse the content. A common characteristic of
all wikis is that the content is version-controlled, meaning that
older versions of a wiki page can be restored at any time.

In many respects, wikis are a prototypical social web applica-
tion, and their success is tightly connected to the proliferation of
the social web. In particular, wikis are conceptually simple, easy
to use, and support users in the content creation process.

In many social web applications, individual pages are all for-
matted in the same manner. The fixed layout can be seen as a
template which is filled with users’ contributions. This has several
advantages: users do not need to know HTML, CSS, and related
technologies, they can easily publish content without having to
specify the layout of a page, and the usability of the website
is improved by a consistent look and structure. In wikis, the
formatting and structure of the wiki content itself often follows
additional conventions that have developed over time through a
collaborative social process. Since it is relatively consistent, the
structure of these web pages could be leveraged for the targeted
selection of data items, for example to retrieve all wiki pages
with “Munich” in their title or all pages of users who mention
programming as one of their interests.

While HTML offers the possibility to provide metadata, this
possibility is often not used at all, or to give incorrect information
in an attempt to influence search engine rankings. On the social
web, data items are typically augmented with metadata regarding
the author and time of creation. This information could be used,
for example, to search a snapshot of a wiki at a certain point in
the past, or to retrieve those items a specific user has commented
on. So far, however, most social websites provide only simple
keyword search, usually augmented with methods for result
navigation, such as snippets, relevance rankings, and facets. They
do not offer query languages that would allow users to exploit
the structure of the data.

Social semantic web applications are social websites in which
knowledge is expressed not only in the form of text and multime-
dia, content structure, and metadata, but also through informal to
formal annotations that describe, reflect, and enhance the content.

1 See, e.g., http://www.delicious.com/.
2 See, e.g., http://www.flickr.com/.
3 See, e.g., http://www.last.fm/.

http://www.delicious.com/
http://www.flickr.com/
http://www.last.fm/

introduction 3

In traditional wikis, knowledge is given in the form of text
in natural language, and is not directly amenable to automated
semantic processing. It can therefore only be located through
full text keyword search or via simple, mostly user-generated,
structures like tables of content and links between pages. More
sophisticated functionalities such as querying, reasoning, and se-
mantic browsing are not available. The goal underlying semantic
wikis is to provide at least some of these enhancements by rely-
ing on semantic technologies, that is, knowledge representation
formalisms and automated reasoning methods. Semantic wikis
extend conventional wikis by—more or less sophisticated—for-
mal languages for expressing knowledge as machine processable
annotations to wiki pages containing text or multimedia. These
annotations typically take the shape of RDF graphs backed by
ontologies, though less formal annotations for expressing knowl-
edge such as free-form tags or tags from a controlled vocabulary
may also be available. Semantic wikis have their foundation in
semantic web research and aim at combining semantic web tech-
nologies with the collaborative nature and user-friendliness of
the social web.

Data retrieval in semantic wikis is typically realized through
keyword search and web query languages. Keyword search is
the prevalent paradigm for search on the web. Its strength, and
presumably the main reason for its success, is that it is very acces-
sible: there is no syntax that has to be learned before queries can
be issued, and relevant information can be found without any
knowledge of the structure of the underlying data. On the down-
side, keyword search is inherently imprecise and inexpressive. It
does not allow for the specification of structure-based selection
criteria, and often not even for logical operations. As a matter
of fact, queries remain vague. Even when users know precisely
which data they are interested in, they may not be able to express
the corresponding selection criteria. Finally, web search does not
allow for the automation of tasks.

While structure as a selection criterion may be of arguable
utility in general web search, the rich structure of social and
social semantic web data could be utilized to enable the precise
and targeted selection of data, thereby allowing users to fully
leverage the data that they contribute to social semantic web
applications.

Web query languages are in many respects the exact opposite
of keyword search: similar to queries on relational databases, web
queries are highly specific and select individual data items which
can then be processed further to re-format the data or deduce
and display new knowledge. Once defined, these tasks can be
performed automatically and without human intervention. Web
query languages are powerful tools that enable the selection and

4 introduction

construction of data items. They are comparable to programming
languages both in their expressive power and their complexity.

While keyword search does not allow the structure of the data
to be used as a selection criterion, web querying does not easily
accommodate queries that do not use it. Web query languages
only support vague queries in a very weak sense, for example
in the form of wildcards and regular expressions over structure
and values. Therefore, users must be aware of the respective data
schema to be able to formulate queries. This is just one example
for the high cognitive investment that is required before a web
query language can be used to retrieve data from a given dataset:
in addition to the schema, the user has to know and understand
the data type, such as XML or RDF, and its characteristics and
properties, and finally the query language itself. Especially for
casual or beginning web users, acquiring this knowledge can
be a hard and laborious process, and many may lack the time,
dedication, motivation, or confidence to tackle it.

Web query languages usually do not support the gradual re-
finement of basic exploratory queries, fuzzy matching, or the
ranking and clustering of results. This means that that the user is
not supported in developing and concretizing her information
need and in navigating the results. Unlike keyword search, web
querying typically lacks a notion of gradual relevance of a result
to a query: either a data item is a suitable answer to a query, or it
is not.

Despite recent research into versatile query languages, many
web query languages can only be used to query data of one
specific type, such as XML or RDF. In social semantic web ap-
plications containing data of various different types, this means
that any given web query language can only be used to query
part of the data. Querying all of the data requires the integration
of several differing query languages or the conversion of data to
other data types.

In summary, web query languages are well suited for querying
structured data, while keyword search is generally more appro-
priate for search over weakly structured or unstructured text. In
a social semantic web application one typically finds both types
of data. It is not enough, however, to simply provide both key-
word search and a web query language, because the two could
only be used to query different parts of the data separately, for
example textual content with keyword search and annotations
with SPARQL.

To be able to leverage the knowledge contained in these rich
data repositories, a query language for social semantic web ap-
plications should be expressive enough to allow for precise selec-
tions using complex criteria and to enable the aggregation and
combination of data, and thus the derivation of new data through

introduction 5

a simple form of reasoning. Automation in the form of embed-
ded queries—queries that are contained in a piece of content and
are evaluated when this content is retrieved—and continuous
queries—queries that are evaluated repeatedly at set intervals
or when the data changes—further requires query evaluation to
operate without the need for human intervention.

At the same time, a query language for social semantic web ap-
plications should be accessible even to casual users and without
much training: the success of a social semantic web applica-
tion crucially depends on the active participation and the con-
tributions of users, most of which cannot and should not be
expected to have much experience with query languages. Making
it easy for non-experts to publish data on the web is an important
achievement of the social web and a primary goal of the social
semantic web. The goal of making the data thus produced easily
accessible in turn has received relatively little attention. This is
problematic because users are likely to be less motivated to par-
ticipate in the creation of content if they cannot leverage the data
that they and others have contributed and the exploitation of the
data is reserved to expert users.

The methods currently available, keyword search and web
querying, fail to provide the desirable characteristics outlined
above. Keyword search has a very basic syntax, which is an ad-
vantage in terms of usability but means that it cannot express
complex queries. Web query languages, on the other hand, are
powerful but do not support vague queries. They further require
knowledge of the data type and schema and of the query lan-
guage itself, thereby excluding many users from exploiting the
collaboratively created data.

This dissertation describes the design and implementation of
KWQL, a query language for the semantic wiki KiWi. KWQL
combines keyword search and web querying to enable a form of
querying that adapts to the user’s information need and knowl-
edge and accommodates simple search and complex selections
alike. A novel aspect of KWQL is that it combines both para-
digms, keyword search and web queries, in a bottom-up fashion.
It treats neither of the two as an extension to the other, but instead
integrates both in one framework and bridges the gap between
them. Depending on the user’s knowledge and query intent, the
language can behave more like keyword search or more like web
querying. KWQL allows for rich combined queries over textual
content, metadata, document structure, and informal to formal
semantic annotations.

While querying the semantic wiki KiWi is the main focus of
this dissertation, the underlying ideas apply more generally to
querying and search on the social and social semantic web.

6 introduction

1.1 contributions

The contributions of this dissertation are as follows:
• A survey of keyword query languages for semi-structured

data: Web search and web queries have mostly been treated
separately in the past, but this has begun to change over the
past few years. A particular effort towards combining the two
are keyword-based web query languages for XML and RDF
documents. We give an overview, to the best of our knowledge
the first of its kind, over the most important issues, aspects, and
approaches in this area of research, and discuss achievements,
limitations, and open problems.

• A conceptual model for the KiWi wiki: Several semantic
wikis have been put to practical use, but so far there has been
little explicit theoretical exploration on the possible choices for
conceptual models and their consequences. We show that the
design of a concept model for a semantic wiki is a non-trivial
task and discuss possible design choices and their advantages
and disadvantages. Based on this, we suggest a conceptual model
for the KiWi wiki.

• Structured tags, a mechanism for semi-formal annotation:

To help overcome the limitations of simple, free-form tags and to
enable a transition between informal and formal annotation, we
introduce an annotation formalism that is easy to use but more
expressive than common tags. We then report on the findings
of an extensive user study we performed. The results indicate
that structured tags are well-suited as a user-friendly, flexible
alternative in situations where casual users annotate evolving
knowledge. We also describe how structured tags could be im-
plemented in the KiWi wiki in a simple, intuitive way that does
not require an extension to the wiki’s conceptual model.

• Accessible and flexible querying: The central topic of this
work is the development of the semantic wiki query language
KWQL. We argue that a query language for social semantic
data should be accessible and flexible and describe how current
approaches fall short of these criteria. We then describe how the
two characteristics could be realized in a query language.

• KWQL, a semantic wiki query language: Based on the de-
veloped requirements, and on the underlying idea of querying
that adapts its expressivity—and thereby its simplicity—to the
user’s information need and knowledge, we describe the syntax
of KWQL in an example-driven manner and provide a relational
semantics for the language.

• visKWQL, a visual rendering of KWQL: Editors for visual
languages support the creation of valid queries by providing user
guidance and preventing editing operations that would result in
incorrect queries. We introduce visKWQL, a visual interface for

1.1 contributions 7

KWQL, and describe its functionality and features for supporting
users in the query creation process.

• An evaluation algorithm for KWQL queries: We describe
KWilt, an evaluation procedure for KWQL bodies that combines
information retrieval, structure matching, and constraint evalua-
tion tools in a patchwork fashion. We show that it is possible to
efficiently recognize KWQL queries that can be evaluated using
only information retrieval or information retrieval and structure
matching. This makes it possible to evaluate basic queries at
almost the speed of the underlying search engine, but provides
the power of full first-order queries where needed. Using a pro-
totypical implementation, we compare the evaluation times for
various types of queries and, based on the findings, describe how
the evaluation algorithm could be improved.

• An experimental evaluation of KWQL and visKWQL: We
describe the setup and results of a study performed to determine
how KWQL and visKWQL are perceived by users and how easy it
is for them to learn to write and understand KWQL and visKWQL
queries. We compare the findings between participants that have
some experience with other query languages and those who do
not, as well as between participants who used KWQL and those
who used visKWQL. We found that KWQL and visKWQL were
well perceived by the participants, who specifically thought that
the languages are expressive and easy to use, at least given some
time and practice. Even after a very short introduction and a
small amount of time to solve the assignments, participants could
on average write correct queries for more than half of the tasks
they were assigned and understand more than eighty percent of
the queries they were presented with.

• PEST, fuzzy matching and ranking over structured data:

We present pest, an approach to approximate querying of graph-
structured data that exploits the structure to propagate term
weights among related data items. We focus on data where mean-
ingful answers are given through the application semantics. This
includes pages in wikis, but also persons in social networks or
papers in a research network. The pest matrix generalizes the
PageRank matrix with a term-weight dependent leap and allows
different levels of (semantic) closeness for different relations in
the data. The eigenvectors for all terms together form a (vector
space) index that takes the structure of the data into account
and can be used with standard document retrieval techniques.
In extensive experiments including a user study on a real-world
wiki we show how pest improves the quality of the ranking over
a range of existing ranking approaches.

In addition, two practical contributions are available in the form
of software:

8 introduction

• A prototype implementation of KWilt, the KWQL query
evaluation engine described in Chapter 10, and a lightweight
implementation of the visKWQL editor that runs on the client
side and is based on standard technologies are part of the lat-
est release of the KiWi wiki. Queries can be posed via a textual
query interface, as embedded inline queries, or from the com-
bined visual and textual query editor. A showcase installation
of the KiWi wiki is available at http://pms.ifi.lmu.de/kwql/
and the KiWi wiki software can be downloaded at http://www.
kiwi-community.eu/display/SRCE/Get+KiWi/.

• A prototype implementation of pest, together with the
dataset used for the evaluation described in Section 11.5, is avail-
able for download at http://www.pms.ifi.lmu.de/pest/.

1.2 structure of this thesis

The body of this dissertation is structured into four chapters.
The first part lays the foundation for the rest of the text by

giving an overview of relevant technologies and developments in
the areas of the semantic web, semantic wikis, and web query-
ing. Chapter 2 discusses the idea, formalisms, and technologies
underlying the semantic web, as well as two recent directions
that semantic web research has taken: Linked Data and the social
semantic web. Chapter 3 reviews existing semantic wikis and the
facilities they provide for searching and querying. Chapter 4 pro-
vides a brief introduction into XML and RDF and an overview of
web query languages. The second part of the chapter is devoted
to a survey of keyword query languages for semi-structured
data and a discussion of the advantages and limitations of the
approach.

The second part is concerned with the KiWi wiki and its con-
ceptual model. In Chapter 5, we propose a conceptual model for
the KiWi wiki and discuss the design choices involved. We also
suggest structured tags, a formalism for semi-formal annotations.
Chapter 6 reports on a user study that compares how RDF and
structured tags are used and perceived in a text annotation task.

Part three introduces the KiWi query language KWQL. Chap-
ter 7 provides an overview of KWQL, discusses the underlying
principles and ideas, and presents its syntax and semantics. Chap-
ter 8 briefly summarizes previous work in the area of visual query
languages and then describes visKWQL, a visual rendering of
KWQL, and an editor for visual and textual queries. Chapter 9
then describes the setup and results of a user study performed to
evaluate the suitability of KWQL and visKWQL for querying in
the KiWi wiki. Chapter 10 describes an evaluation procedure for
KWQL bodies using a patchwork approach and reports on the

http://pms.ifi.lmu.de/kwql/
http://www.kiwi-community.eu/display/SRCE/Get+KiWi/
http://www.kiwi-community.eu/display/SRCE/Get+KiWi/
http://www.pms.ifi.lmu.de/pest/

1.2 structure of this thesis 9

findings of an performance evaluation of a prototype implemen-
tation of the system.

The fourth and final part describes several extensions to KWQL.
pest, discussed in Chapter 11, is a scheme for exploiting con-
nections between data items to extend the set of query answers
by results that do not strictly match the query but that are still
relevant, and for re-ranking results based on their structural re-
lationships. Chapter 12 describes how structured tags could be
implemented in the KiWi wiki and how KWilt could be mod-
ified to support the evaluation of queries over structured tags.
Chapter 13 discusses how KWQL could be extended to RDF
querying.

Chapter 14 finally provides an outlook and a conclusion.

Part I

P R E L I M I N A R I E S

2
T H E S E M A N T I C W E B

In this chapter, we aim at giving an overview over the idea,
formalisms, and technologies of the semantic web. We then sum-
marize criticism that has been directed at the semantic web and
introduce two recent directions that semantic web research has
taken: Linked Data and the social semantic web.

2.1 vision, achievements, and challenges

The Semantic Web is not a separate Web but an
extension of the current one, in which information is
given well-defined meaning, better enabling comput-
ers and people to work in cooperation.

(Berners-Lee, Hendler, and Lassila [55])

The world wide web, as it has been used by an increasing num-
ber of users over the past twenty years, consists of interlinked
documents containing text and multimedia. Despite advances
in the fields of natural language processing and artificial intelli-
gence, the meaning of the content of these documents can only
be processed and understood by humans. The idea behind the
semantic web, first prominently presented by Berners-Lee et al.
[55] in 2001, is to change this, by shifting the focus from docu-
ments to data and making the meaning of data on the world wide
web accessible to computers and thereby amenable to automatic
semantic processing.

Giving information on the web a well-defined meaning could
enable the development of computer agents that behave intelli-
gently without the help of large-scale artificial intelligence sys-
tems. These agents could then autonomously perform complex
tasks like scheduling on behalf of humans by querying, reasoning,
and the exchange and combination of data from trusted sources.

This functionality is to be realized through a semantic web
that is an extension of the human-readable web, and in which
information is represented as structured data via the Resource
Description Framework (RDF, see Section 4.1.2). The entities used in
these descriptions are represented as and semantically grounded
in Uniform Resource Identifiers (URIs) serving as unique identifiers.
The underlying vocabulary or schema of a set of RDF data is
defined by an ontology, a description of the concepts that can exist
and the relations between them.

When RDF data is exchanged or combined, ontologies enable
the detection of differences between the conceptualizations of

13

14 the semantic web

the data. Ontology mapping or ontology alignment, the combination
of different ontologies into one, are used to integrate the data,
thereby ensuring the interoperability between different systems
and data sources. Using RDF data, ontologies, and mechanisms
for querying, reasoning, and data integration, computer agents
are then envisioned to solve sophisticated tasks by aggregating
and exchanging information, and deducing new information as
needed.

Artificial intelligence never succeeded in creating intelligent
agents that display human-like “common sense” [183], despite
much initial confidence within the research community and the
success of AI systems that are domain-specific and narrow in
scope. By contrast, the semantic web is seen as a simpler and more
generic approach which, once realized, could enable computer
agents to perform a wide range of tasks that require intelligent
behavior.

In terms of the technologies involved, the semantic web is
based on formalisms for expressing information, ontologies and
mechanisms for ontology mapping and information exchange,
as well as methods for querying, reasoning and determining the
provenance and trustworthiness of information.

In the nine years since the original article about the semantic
web vision was published, a large body of research has been
dedicated to realizing the semantic web vision. Available seman-
tic web technologies include RDF Schema (RDFS) [70] and the
Web Ontology Language (OWL) [171], various XML serializa-
tion formats for RDF [42, 34], the query language SPARQL (see
Section 4.2.2.1), Rule Interchange Format (RIF) [64], Resource
Description Framework in attributes (RDFa) [11], RDF triple
stores [366, 72] and tools for ontology development [284, 129].

Semantic web research is of course not just limited to the de-
velopment of languages and tools; other topics that have been in-
vestigated include ontology evolution [283] and alignment [139],
scalability and performance [6], trust and provenance [26], rea-
soning [82], and the role of logic and logic languages on the
semantic web [83, 141].

Despite all the efforts aimed at realizing the semantic web
vision, however, and despite the fact that RDFa, a simpler version
of RDF, is employed by a number of large websites including
Facebook and Google, the semantic web vision has not yet become
a reality, and semantic web technologies so far have not been
adopted by a significant, non-technical user base. Possible reasons
for this have been widely discussed [263, 192, 183, 159, 336, 9, 47].
They can be grouped into three interdependent categories, which
will be summarized in the following.

2.1 vision, achievements , and challenges 15

the semantic web vision has been misunderstood

Considering that the very word “semantic” is all
about meaning, it’s ironic that the term “Semantic
Web” is so ill defined. (Nova Spivack [271])

According to Berners-Lee et al. [55], the ultimate goal of the
semantic web is a scenario where automated computer agents
assist humans in everyday tasks. However, this view is not shared
by all advocates of the semantic web. The understanding of what
constitutes the semantic web and what can actually be achieved
has evolved during a decade of semantic web research, and the se-
mantic web vision can also be taken as an aspirational motivating
scenario for what currently is a more humble realization of the
semantic web. For these reasons, there are a number of different
views on the nature and goals of the semantic web, which give
rise to different expectations.

Marshall and Shipman [263] discuss different views of the se-
mantic web. According to them, the semantic web is portrayed in
three ways—as a way to bring order to the web and enable tar-
geted search, access and data collection (“taming the web”), and
as a distributed knowledge base that automated agents can use
to solve a wide variety of tasks and in which the knowledge base
itself, technology, and application scenarios are either generic
(“knowledge navigator”) or targeted at a specific, limited domain
(“federated data/knowledge base”).

This categorization likely still holds today, although the num-
ber of proponents of each view may well have changed over
time. A view similar to the “taming the web” scenario is widely
accepted [191, 311, 271] (see also Section 2.2.1), but may be seen
only as an intermediate step on the way to a more powerful
semantic web.

many semantic web technologies are based on unre-
alistic assumptions

[A]ll sufficiently broad-based reasoning about the
natural world must eventually reach conclusions that
are incorrect, independent of the reasoning process
used and independent of the representation employed.
Sound reasoning cannot save us: If the world model is
somehow wrong (and it must be), some conclusions
will be incorrect, no matter how carefully drawn. A
better representation cannot save us: All representa-
tions are imperfect, and any imperfection can be a
source of error.

(Davis, Shrobe, and Szolovits [127])

The semantic web approach has been met with some skepticism
regarding its feasibility and practicality in real-life knowledge

16 the semantic web

management scenarios, especially when it is applied in a broad
domain as intended in the original semantic web vision [263, 192,
183, 159, 336, 9]. In particular, it has been criticized for failing to
solve problems that have been encountered before in the context
of philosophy, artificial intelligence, and knowledge management
such as the symbol grounding problem [186, 159, 118] and the
frame problem [268, 183].

A large part of this criticism concerns ontologies, which repre-
sent the world view behind a dataset and therefore form the basis
for system interoperability and reasoning. Ontologies constitute a
priori agreements on the concepts in a domain and their relations.
They are finite and static, represent only one point in time, and
do not easily support inconsistency, vagueness, disagreements,
changes, context-sensitivity, and evolving understanding of a
situation. As such, an ontology can only be a limited, simplified
model of the real world, which in turn has repercussions on the
accuracy and the validity of reasoning and the applicability of the
model to the world, meaning that computer agents can generally
not be trusted to solve tasks correctly.

Even disregarding more sophisticated semantic web function-
alities and general purpose scenarios, the fact that ontologies do
not represent crucial characteristics inherent to human cognition,
knowledge management, and interaction makes them less practi-
cal and relevant to real-life knowledge management scenarios.

A practical point concerning the development of ontologies
was raised by Hepp [192]: depending on the domain and the
level of abstraction, maintaining an ontology and updating it
to always reflect the current state of knowledge could be hard
or even impossible, or it might be so resource-intensive that the
initial cost is ultimately not offset by the benefits.

Since all the information in an ontology is expressed via sym-
bolic structures that are not grounded in the real world, and since
ontologies by their very nature can only offer a biased view on the
world, it is difficult to exactly match meaning when combining
two ontologies, let alone to do so automatically [159, 336, 118].

semantic web technologies focus on rich function-
ality, not on usability

Semantic Web is one of the enabling technologies, a
means to an end, and not the end itself. Every time I
look critically at the current use of (information) tech-
nology, I cannot help but wonder how it is possible
to actually get away with the approach taken today
(where substantial burden is placed on the users).

(Lassila [237])

Semantic web research for the longest time was concerned with
creating technology and tools that are complex, powerful, and ex-

2.2 new directions in semantic web research 17

pressive, but neglected the issue of usability and did not provide
users with an incentive to use semantic web technologies. This
focus on rich functionality over simplicity and user-friendliness
likely is another reason why semantic web technologies do not
yet enjoy a wide user base. RDF and OWL may not be overly
complex as far as formal languages go, but they are far beyond
the experience of most web users, who would have to exert
considerable effort to learn them.

At the same time, there is little incentive for users to provide
RDF annotations. This is problematic insofar as the semantic web
ultimately cannot rely on expert content creators and automatic
extraction alone to generate semantic annotations. Users, on the
other hand, are rarely willing to adapt their behavior to the needs
of technology without an immediate benefit.

Not only can RDF be hard to learn for the layman, expressing
knowledge via rigid formal structures is also very different from
human cognition and thus not accommodating to users. Specif-
ically, tacit and evolving knowledge, premature structure, and
situation-specific knowledge are known to cause problems when
users attempt to express their knowledge in formal representa-
tions [335].

Even if users could be assumed to spend some time learning
RDF and were willing to provide annotations, several problems
would remain:

• Semantic web tools in general are not very forgiving with
respect to errors, inconsistencies, or disagreements that can easily
arise when several users with imperfect knowledge collaborate.

• The original semantic web vision and semantic web research
are concerned only with the trustability of individual sources.
Such a coarse-grained concept of trust may be insufficient since a
person might be very trustworthy with respect to one area, but
not with respect to another one [263].

• When users annotate data with RDF vocabulary from a spe-
cific ontology, they commit to the expressed world view [192]
even though they might not agree with it. However, understand-
ing an ontology in full detail is hard and requires considerable
effort.

2.2 new directions in semantic web research

Over the past few years, two emerging areas in semantic web
research have received considerable attention: linked data and
the social semantic web. They share a practice-driven, bottom-
up approach to the semantic web and give up on the goal of
“ontological purity.” We give an overview over the two areas in
this section.

18 the semantic web

2.2.1 Linked Data

The term “Linked Data” refers to structured data, typically using
RDF, that is published on the web and obeys the following four
principles:

1. Use URIs as names for things.
2. Use HTTP URIs so that people can look up those

names.
3. When someone looks up a URI, provide useful in-

formation, using the standards (RDF, SPARQL).
4. Include links to other URIs, so that they can

discover more things.

(Berners-Lee [53])

Linked Data that is freely accessible is referred to as Linked Open
Data. The idea behind Linked Data is to create a “web of data,”
a global database that is structured and interlinked. Both ontol-
ogy and instance data can be queried, combined, and used, for
example in the form of mash-ups or domain-specific applica-
tions [60, 27].

While the realization of the semantic web vision remains one
of the goals, Linked Data puts the focus on structured datasets,
creating additional semantics and value by interlinking them,
and using the data for practical applications. In other words,
Linked Data is concerned with exploiting current possibilities
using comparatively simple and established tools, but it is also
considered a means to realize the semantic web vision [60].

Linked Data still faces some of the same problems discussed
in the previous section, for example concerning schema mapping
and trust and privacy [60]. On the other hand, its pragmatic,
bottom-up approach and the fact that it does not currently strive
for or rely on the automatization of sophisticated knowledge
tasks allows it to avoid many of the problems mentioned.

Over the past three years, Linked Data has received much
attention and the Linked Open Data cloud has constantly grown.
As of October 2010, it consists of more than 25 billion triples from
203 datasets. A snapshot is shown in Figure 1. Most of the data
was extracted from other data sources concerning a broad range
of different areas such as music, geography, law, genetics, and
scientific publications.1

2.2.2 The Social Semantic Web

Up to the middle of the previous decade, the world wide web
was mostly used to retrieve information, while the means for

1 Details can be found at http://www4.wiwiss.fu-berlin.de/lodcloud/.

http://www4.wiwiss.fu-berlin.de/lodcloud/

2.2 new directions in semantic web research 19

Figure 1: Snapshot of the Linked Data cloud, maintained by Richard
Cyganiak and Anja Jentzsch at http://lod-cloud.net/

publishing data on the web and interacting with other users
were limited. Thanks to the availability of free webspace and
WYSIWYG editors, even laypeople could create and publish their
own website, but the possibilities for publishing small amounts
of data or for contributing to the content of another website were
limited. Websites or even the web in general were “read-only.”

This changed with the emergence of the social web, also re-
ferred to as the “web 2.0” or “read-write web.” Social websites
are based on user interaction, user-created content, collaboration,
and information sharing. A multitude of different types of social
websites have become popular over the past few years, for exam-
ple blogging and microblogging platforms, wikis, and websites
for bookmarking, cataloging, and networking.

While individual social websites differ greatly in their goals,
application domains, and the nature and extent of the data con-
tributed by their users, they share a low barrier for participation,
and the fact that they derive their value from user-generated
content and facilitate interaction and in some cases collaboration
among users.

In addition to textual and multimedia content, many social
websites support tags, simple semantic annotations in the form
of freely chosen keywords that can be assigned to data items like
books, songs, blog posts, photographs, or bookmarks. Unlike RDF
data, which may or may not be attached to a specific document,
tags by themselves express little information, but only become
useful through the association with a data item and, since tag
assignments are often subjective, a user. Tagging systems are
thus commonly viewed as tripartite graphs [370, 184, 274]. Tags
are used to categorize, describe, and group data items, thereby

http://lod-cloud.net/

20 the semantic web

facilitating search, navigation, or visualization in the form of a
tag cloud.

The fact that tagging enables the ordering and retrieval of
content provides an incentive for assigning tags. In many appli-
cations, tags are also pooled across users, meaning that a user
can see which tags other users have assigned to a given resource
and which items have been assigned a given tag. The aggre-
gated collection of tags used in a system is called a folksonomy,
a portmanteau of “folk” and “taxonomy.” Unlike a taxonomy, a
folksonomy does not natively possess a hierarchical structure or,
for that matter, any structure at all.

In a tagging system, no meaning is assigned to strings a priori,
and no specific string is designated to express a concept. Instead,
the meaning of a tag emerges as individual users assign it to
different data items. Users thus do not have to commit to a pre-
defined view on categorization. Conversely, the meaning of a
data item is given by the tags assigned to it.

In a study of tags used on the social bookmarking web site
delicious2, Golder and Huberman [161] found that the frequency
distribution over the different tags assigned to a bookmark sta-
bilizes after about 100 tag assignments. Possible reasons for this
convergence are imitation and shared knowledge. In a followup
study which again used data from delicious, Halpin et al. [184]
showed that tagging distributions over time converge to power
law distributions where a small number of tags are used consis-
tently and a large number of tags are assigned rarely.

A consequence of the large degree of flexibility that accommo-
dates different points of view is that the same concepts are often
expressed via different tags, e.g., synonyms, tags in different
languages, or inflections or different spellings of the same term.
Similarly, tags of the same form may have different intended
meanings due to polysemy and homography [162]. Yet another
problem is basic level variation, i.e., varying degrees of specificity in
tagging depending on the level of expertise in a given area [162].
Since in a folksonomy no explicit relations exist between tags,
the relationship between tags referring to similar or identical
concepts at different degrees of specificity is not recognized.

All these factors have a negative influence on the consistency
of the emergent semantics and on users’ understanding of the
tagging conventions. The practical and social aspects of this are
interrelated and mutually reinforce each other, since users who
are unsure about tagging conventions are more likely to break
them.

The success of tagging has prompted extensive research in
the area, investigating the properties of tag sets and tagging

2 http://www.delicious.com

http://www.delicious.com

2.2 new directions in semantic web research 21

behavior [190, 161, 48, 261], the suitability of tags for improving
search results [59], and motivations for tagging [382, 21].

Unlike the semantic web, the social web was not driven so
much by research or technological innovation (although some
technological innovations such as Ajax facilitated the realization
of interactive websites), but rather by practical applications and
changes in how the web is seen and used. As such, the social
web is concerned with social factors and practicality rather than
technological or scientific innovation.

The semantic web and social web have emerged mostly inde-
pendently of each other, but they share some of their goals and
characteristics: they both aim at collecting and organizing infor-
mation that is, at least in part, generated by the users. However,
while the semantic web is based on the formal representation of
palpable facts, user-generated data in social web applications con-
sists mainly of text or multimedia and often expresses differing
points of view, uncertainty, and, especially in the case of wikis,
work in progress.

In recent years, scientific efforts have been made to extend
social web applications with semantic web technologies, in order
to create systems that are user-friendly, error-tolerant, and take
a bottom-up approach to knowledge management, but that also
allow for the formalization of concepts and use semantic web
technologies where appropriate. In the following, social web
applications that employ user-provided semantic annotations
will be called “social semantic web applications.” Together they
form the social semantic web.

It is worth noting that this definition includes not only applica-
tions which make use of RDF or other semantic web technologies,
but also those that only use informal annotations in the form of
tags: while tags alone are less powerful than formal annotations
backed by ontologies, they do describe the meaning of data items
and can form the basis for a (manual or automatic) transition to
more formal annotations and the addition of advanced function-
alities. Consequently, what makes a web application semantic
in our view is not the use of specific technologies or expressive
formalisms, but rather the presence of some form of semantic
annotation that, if required, can serve as a starting point for a
further formalization of knowledge.

A number of recent articles have pointed out the benefits of
combining the social and the semantic web to achieve collective
intelligence [172]. Mikroyannidis [276] points out that “[w]ith
their tendency to form stable structures, folksonomies can po-
tentially bridge the gap between the Social and the Semantic
Web” [276, p. 114] and that “[i]n addition, ontologies derived
from folksonomies would represent online communities’ collec-
tive intelligence rather than the perception of a limited group of

22 the semantic web

experts.” Ankolekar et al. [25] emphasize that the two fields need
to draw from each other’s strengths.

Several approaches for combining the social and the seman-
tic web and enhancing social web applications with semantic
web technologies have been investigated over the past few years.
Topics in this area include the development of ontologies for
tagging [173], the extraction of ontologies from social network
graphs [274] and folksonomies [124], the inference of global se-
mantic models or tag hierarchies from folksonomies [370, 193,
90], collaborative ontology evolution [251], tag similarity mea-
sures [89], reasoning over tags [81], and the effect of tag sugges-
tions on folksonomy size [229].

3
S E M A N T I C W I K I S

In this chapter we introduce wikis and semantic wikis and give
an overview the search and querying functionalities provided by
current semantic wiki engines.

3.1 wikis: collaborative content creation

Wikis1 are web applications for collecting and sharing knowledge.
They allow users to easily create and edit documents, so-called
wiki pages, using a web browser. The pages in a wiki are often
heavily interlinked, which makes it easy to find related infor-
mation and browse the content. While a wiki may or may not
use access control to decide who may view and edit the con-
tent, a characteristic common to all wikis is that the content is
version-controlled, meaning that older versions of a wiki page
can be restored at any time. This feature does not only counteract
“vandalism,” i.e., intentional acts aiming to destroy or falsify the
content of a wiki page, but can also be used to correct uninten-
tional mistakes and to display the progress or state of knowledge
at a certain point in time.

The first wiki software, WikiWikiWeb, was developed by Ward
Cunningham and released in 1995.2 Since then, wikis have been
widely adopted for a large number of applications, and their
usage ranges from personal to collaborative knowledge manage-
ment and from hobby purposes to corporate intranets. The best-
known wiki, Wikipedia, is an online encyclopedia launched in
2001.3 It now consists of 16 million articles in 272 languages and
is one of the most-visited sites on the web. While for some people
Wikipedia is synonymous with the concept of wikis in general, it
is by no means the only widely known and publicly accessible
wiki; other examples include wikiHow,4 a collection of how-to
guides, Wikiquote,5 covering notable quotations, LyricWiki,6 a
database of song lyrics, and The TV IV,7 a wiki covering TV
shows.

Apart from the original WikiWikiWeb wiki engine, there ex-
ists a large number of wiki engines differing in their features,

1 “Wiki” is the Hawaiian word for “fast.”
2 http://c2.com/cgi/wiki/
3 http://www.wikipedia.org/
4 www.wikihow.com/
5 http://www.wikiquote.org/
6 http://lyrics.wikia.com/
7 http://tviv.org/

23

http://c2.com/cgi/wiki/
http://www.wikipedia.org/
www.wikihow.com/
http://www.wikiquote.org/
http://lyrics.wikia.com/
http://tviv.org/

24 semantic wikis

implementation, and application area, for example MediaWiki,8

Atlassian Confluence,9 and PhpWiki.10

In many respects, wikis are a prototypical social web applica-
tion, and their success is tightly connected to the proliferation of
the social web. In particular, wikis are conceptually simple, easy
to use, and support users in the content creation process.

The basic elements of the conceptual model of a wiki are wiki
pages and links between them. Creating or editing a wiki page is
no harder than using a word-processing application, and content
can be formatted using WYSIWYG editors or wiki markup. While
not all features of a markup language like that of MediaWiki
are easy to use, their use is optional and users can edit wiki
pages without knowing anything about the syntax of the markup
language. Wikis are particularly well-suited for the collaborative,
gradual creation of content, and they live from user participation:
a wiki page may start out as a short outline and grow and
evolve as more people participate or more details become known.
Discussion pages allow wiki users to exchange and, if necessary,
align their views on how a wiki page should cover a given topic.
A typical wiki pages is edited and enhanced repeatedly, meaning
that a final, definite version does not necessarily exist, but that
each wiki page is a perpetual work in progress.

At the same, wikis as knowledge management applications
could profit from improved methods for structuring knowledge,
making it more accessible and amenable to automatic processing.
As mentioned above, wiki pages are often heavily interlinked,
meaning that related concepts are often connected. In terms of
structuring knowledge, this is a valuable contribution and, after
all, one of the core principles of Linked Data (see Section 2.2.1).
Individual wiki pages, on the other hand, are often weakly struc-
tured and only express knowledge as free text or multimedia.

Wikipedia allows wiki pages to be assigned one or more cate-
gories. In addition, many articles contain so-called infoboxes, fixed
format tables that summarize an article by listing the values of
certain attributes that depend on the category of the concept de-
scribed. The English language Wikipedia article about Munich,11

for example, has been assigned the categories “Cities in Bavaria,”
“1158 establishments” and “Host cities of the Summer Olympic
Games,” among others. Its infobox provides values for some
attributes of a city, for example the country and state the city is
located in, its population size, and the time zone.

To exploit these structuring mechanisms, a scheme for extract-
ing taxonomies from Wikipedia category assignments has been

8 http://www.mediawiki.org/
9 http://www.atlassian.com/software/confluence/

10 http://phpwiki.sourceforge.net/
11 http://en.wikipedia.org/wiki/Munich

http://www.mediawiki.org/
http://www.atlassian.com/software/confluence/
http://phpwiki.sourceforge.net/
http://en.wikipedia.org/wiki/Munich

3.2 semantic wikis : concepts and systems 25

suggested [341]. Relatedly, DBpedia Knowledge Base [27] is a
large set of Linked Data that consists of RDF triples extracted
from Wikipedia’s infoboxes, categories, internal links, etc.

While extracted RDF data can be queried using SPARQL or
other RDF query languages, the structure of the data cannot
be used for querying Wikipedia directly. Search in Wikipedia
is limited to full text search, with links, categories and table of
contents supporting the location, browsing, and navigation of
information. Even though Wikipedia provides more mechanisms
for the structuring of data than many other wikis, their use is
limited, since only a small part and very specific aspect of the
content of a page is expressed and since users cannot assign
arbitrary annotations.

In summary, the content of traditional wikis consists of natural
language text and possibly multimedia files and is not directly ac-
cessible to automated semantic processing. Therefore, knowledge
in wikis can be located only through basic user-generated struc-
tures, like tables of content and inter-page links, and through
simple full text keyword search. More advanced functionalities
that would be highly desirable in knowledge-intensive contexts,
such as querying, reasoning, and semantic browsing, are not
available.

3.2 semantic wikis: concepts and systems

Semantic wikis extend conventional wikis by combining the wiki
philosophy with semantic web technologies and introducing
capabilities for specifying knowledge not just in natural language
but also in more formal, machine-processable ways.

The term “semantic wiki” is used to refer to two different types
of systems [236, 321]: Semantic wikis of the first type (“wikitol-
ogy” [221] or “wikis for semantics”) use wiki technology as a
means for the collaborative authoring of ontologies. The main
focus here is on creating semantic web data, and human-readable
wiki content is only needed to support the editing process. When
used in the second sense, “semantic wiki” refers to a wiki that
uses (social) semantic web technologies to enhance the function-
ality of the wiki and support the process of collaborative content
creation (“semantics for wikis”). Here, the focus is not (only) on
metadata, but text and multimedia content.

Some semantic wiki engines fall clearly into one of these two
categories, while others can be used for both purposes [321]. In
the following, we use “semantic wiki” in the second meaning.

Semantic wikis extend conventional wikis by providing func-
tionalities for expressing knowledge in a structured form. This is
realized mainly by adding support for annotations to data items,
most frequently wiki pages and tags, but also smaller portions of

26 semantic wikis

text [218]. The annotations may be freely chosen tags [142], but
sometimes more formal mechanisms such as RDF backed by (im-
ported) RDFS or OWL ontologies are offered as well. In particular,
several semantic wikis support limited RDF annotations where
the subject is always the URI of the annotated resource, and
predicate and object are provided by the user [344, 31, 32]. Some
semantic wikis also enable the editing of ontologies, meaning
that not only the metadata annotations, but also their schemata
evolve over time.

The annotations, whether they have been assigned manually
or extracted (semi-)automatically, can be used for realizing func-
tionalities like consistency checking, improved navigation, search,
querying, personalization, context-dependent presentation, and
reasoning. Annotations are often represented as RDF. They can
thus be exported and integrated with data from other sources and
are compatible with standard RDF technologies such as SPARQL.

The annotation of wiki content is optional, and semantic wikis
do not require users to add annotations. While in particular
only some of the users may actually annotate content, this can
still enable all users of the semantic wiki to benefit from the
functionalities that semantic wikis offer over conventional wikis,
for example an automatically generated table of contents [321].
Furthermore, the semantic wiki data may be formalized in a
collaborative fashion over time, with different users providing the
textual content and informal and formal annotations. This holds
especially when different modes of annotations are available, for
example free-form tags and RDF. Semantic wikis thus maintain,
at least to some extent, the ease of use of conventional wikis.

Semantic wikis are sometimes referred to as the “semantic web
in the small:” they consist of pages, links, and annotations, all
of which are typically created by a number of different people.
However, unlike the world wide web, semantic wikis to some
extent are subject to central control in the form of administrators,
and the number of users and topics and the amount of data are
much smaller and often more homogeneous than those of the
web. This makes semantic wikis ideal testbeds for novel semantic
web technologies.

Currently, most semantic wiki engines provide few advanced
functionalities beyond RDF querying and, in some cases, basic
reasoning [319, 132]. To better leverage the potential of the combi-
nation of the social and the semantic web, and to provide more so-
phisticated and user-friendly functionalities, additional research
in several areas is required. Relevant directions include querying
and search (see Section 3.4), personalization, user-assisted extrac-
tion of annotations, visualization, reasoning maintenance, and
inconsistency-tolerant reasoning [227, 322, 297].

3.3 semantic wikis: two examples 27

3.3 semantic wikis: two examples

Now that we have given an overview over semantic wikis and
their characteristics, we will discuss two semantic wikis in more
detail, Semantic MediaWiki and IkeWiki. Semantic MediaWiki is
one of the oldest and most popular semantic wikis, and its data
model has been thoroughly described in the scientific literature.
IkeWiki is a feature-rich semantic wiki that is the predecessor
of the KiWi wiki, the wiki that is one of the focal points of this
dissertation.

3.3.1 Semantic MediaWiki

Semantic MediaWiki (SMW) [231] is realized as an extension to
MediaWiki. In SMW, annotations can be added inline with the
textual content in the wiki editor using a markup language that
is based on MediaWiki’s syntax for creating links. Aiming for the
realization of a semantic Wikipedia [232], annotations are seen
to describe the concept represented by the wiki page rather than
the wiki page itself.

Annotations conceptually resemble simple RDF triples and
take the shape of property statements that characterize a binary
relationship between a wiki page and some (typed) value. These
statements can be used to assign types to links and to augment
wiki pages with class and attribute information. Like in Me-
diaWiki, class information is expressed through the property
“Category.” For example, the annotation [[Category:City]] ex-
presses that a wiki page represents a city. Semantic MediaWiki
extends this to arbitrary properties of individual concepts. By
default, a newly introduced property is assumed to take a wiki
page as a value, i.e., the annotation is interpreted as a typed link
between two wiki pages. However, SWM also provides several
other data types that can be assigned to properties, for example
“string,” “date,” and “geographic coordinate.”

In addition to individual concepts, all categories, properties,
and types are represented by wiki pages, and namespaces are
used to distinguish between the different types of wiki pages. A
property can be assigned a type through an annotation on its wiki
page, and it can be designated as the subtype of another property.
Similarly, just like in MediaWiki, wiki pages of categories can be
annotated with category information, thus creating a category
hierarchy. The wiki pages of categories, properties, and types can
further be used to describe their meaning in a textual form.

While the category hierarchies of SMW constitute shallow
ontologies that are not defined a-priori, the wiki also allows for
the use of external ontologies, either via wiki pages representing

28 semantic wikis

the elements and relations of the ontology or by mapping wiki
pages to elements of existing ontologies [232].

SMW annotations are formally grounded through a mapping
of annotations to OWL-DL statements, which can be exported as
RDF data. The generated annotations can be used for semantic
browsing and querying (see Section 3.4).

In one of the few scientific articles on the formal foundation
of semantic wikis, Bao et al. [38] point out that a semantics
based on description logic or RDF is not ideally suited for SMW
annotations. In particular, a semantics based on description logic
constrains the expressivity of SMW annotations, since categories,
properties, and instances must be disjoint sets. This means, for
example, that a property may not be used as a category instance
and that a category cannot serve as a property value, although
both of these cases have useful applications. Bao et al. [38] instead
provide a model-theoretic semantics as well as an entailment
system. They further describe the use of entailment rules in SMW,
which can be triggered selectively in wiki pages and natively
introduce a form of reasoning to SWM.

3.3.2 IkeWiki

IkeWiki12 [319, 230] was envisioned as a system that supports
users in the gradual formalization of knowledge in a collaborative
fashion. It aims for user-friendliness and offers an interactive
WYSIWYG editor for text and annotations as well as an editor
supporting Wikipedia syntax, thus making it easy to copy and
paste content from Wikipedia.

IkeWiki relies on semantic web standards for expressing and
formalizing knowledge and is aimed at supporting a process in
which the knowledge base and its degree of formalization evolve
over time. To this end, it supports RDF and OWL annotations to
links, as well as wiki pages containing text and multimedia.

Imported ontologies are used to determine which annotations
can be assigned to a given link or wiki page; it is not possible to
assign annotations that are not backed by the ontology. IkeWiki
not only allows for the use of ontologies, but to some extent also
for their editing, and specifically for the addition of sub- and
superclasses, ranges, and inverse relations.

In contrast to Semantic MediaWiki, IkeWiki stores annotations
separately from the content of the wiki pages, meaning that they
are not versioned. Annotations can be leveraged immediately for
presentation, navigation, and search. Unlike many other semantic
wikis, IkeWiki also supports OWL-RDFS and OWL-DL reasoning.
For example, class relationships and relationships between pages

12 “Ike” is the Hawaiian word for “knowledge.”

3.4 searching and querying in semantic wikis 29

are used to infer additional annotations and to make sure users
only choose applicable concepts when annotating a data item.

3.4 searching and querying in semantic wikis

Better search and querying is one of the main ways in which
semantic wikis intend to improve upon conventional wikis. The
need for simple yet powerful data retrieval [297, 30] and for
combined queries over content and annotations [31] have been
pointed out in particular.

So far, however, all semantic wikis that we are aware of treat
the querying of content and annotations separately [297, 321],
while other sources of data such as content structure and system
metadata cannot be queried at all.

In many cases, semantic wikis provide simple full text search
for the querying of textual content or RDF literals [218, 344, 295].
In addition, a standard RDF query language such as SPARQL or
RDQL can often be used for querying the annotations [319, 142,
30, 28]. The embedding of queries in wiki pages [319, 150] allows
those queries to be evaluated every time a page is loaded, and
always shows an up-to-date list of results.

A number of semantic wikis also come with their own language
for querying annotations that can be used in addition to or instead
of a conventional RDF query language.

KAON, the query language of COW [150], can make use of
simple reasoning to find query answers. The following retrieves
physicists born in Europe, regardless of whether or not the data
explicitly represents that their place of birth is located in Europe:

[#Physicist] AND

(SOME(<#is-born-in>.<#located-in>=!#Europe!)

OR SOME(<#is-born-in>=!#Europe!))

Rhizome [339] and its query language RxPath aim at mak-
ing RDF querying easy for users who are already familiar with
XML. To this end, RDF triples are mapped to a virtual, possibly
infinitely recursive tree which can then be queried with XPath
expressions. The query /foaf:Document/dc:creator/* for example
selects all authors of document resources.

WikSAR [33] uses queries consisting of a series of predicate-
object pairs. The answer to such a query then consists of all wiki
pages whose annotations match all predicate-object conditions.
Predicate and object can be connected by operators for equality,
ranges, and regular expressions. The following query for example

30 semantic wikis

returns the set of pages describing authors that were born in 19th
century England:

InstanceOf=LiteraryAuthor BornIn=~England

DateOfBirth between 1800 and 1900

Two different query languages have been suggested for Se-
mantic MediaWiki. The first, referred to as “SMW-QL” by Bao
et al. [38], has a syntax similar to that used to express annota-
tions in SMW. The simple query [[Category:City]], for example,
retrieves all wiki pages that have this annotation. Subqueries, de-
noted by <q>...</q>, ranges of values, or wildcards can also be
used in place of fixed property values. SWM-QL further supports
(implicit) conjunction, disjunction, negation and comparison oper-
ators, but no variables. The following query for example returns
the wiki pages of cities that are located in the EU or have more
than 500,000 inhabitants:

[[Category:City]]

<q>[[located in::<q>[[Category:Country]]

[[member of::EU]]</q>]] ||

[[population:: >500,000]] </q>

By default queries return wiki pages, but so-called print requests
can be used to display specific property values in the query
answers. Krötzsch and Vrandecic [231] provide a semantics for
SWM-QL through a translation to DL queries.

Bao et al. [38] present a variation of the language that uses
a slightly different syntax. They point out that the open world
assumption underlying the DL semantics are not well-suited for
a wiki and is at odds with the implementation of SML-QL in
SMW. Instead, the authors provide a semantics that is based on
the translation of SMW-QL queries into logic programs.

The second query language of Semantic MediaWiki [181] em-
ploys keyword search over RDF data (also discussed in Sec-
tion 4.3.3). Users express their query intent using a number of
keywords. These keywords are matched in the data using a fuzzy
scheme that considers semantic and syntactic similarity and as-
signs a score to each match. An augmented schema graph that
combines the keyword matches and schema information is then
constructed. Query graphs, connected subgraphs containing at
least one match for each keyword, are then extracted from the
augmented schema graph using a top-k procedure. The query
graphs are translated into SPARQL queries and are displayed to
the user in a visual, table-based form. The user can then select
the query that corresponds to her query intent and the matching
entity tuples are displayed together with a facets menu which
can be used to further refine the results.

3.4 searching and querying in semantic wikis 31

As mentioned above, the languages currently employed in se-
mantic wikis do not allow for combined queries over content,
annotation, and structure. Such queries would be useful and desir-
able because the textual content is often not expressed completely
in the annotations, and vice versa [59]. Furthermore, semantic
wikis are a social medium, so users should for example be able to
use the metadata to retrieve all pages edited by a specific person,
without having to rely on potentially incomplete or incorrect
authorship information expressed manually via an annotation.

Usability and expressiveness of the above query languages
vary widely. The RDF keyword query language of Semantic
MediaWiki is the only annotation query language that allows
users to formulate a query right away, without having to learn the
language first. On the other hand, the keyword queries are not
very expressive, and for example do not allow for the expression
of disjunction and negation. To select the correct query, users
further need to be able to understand the visualized SPARQL
queries.

AceWiki [234] differs from all the approaches presented above
in that it employs a controlled natural language, Attempto Con-
trolled English or ACE [155], to represent information in the wiki.
The language is a subset of English but can be translated into a
variant of first-order logic, meaning that it can be understood by
humans and machines alike. Consequently, there is no distinc-
tion between content and annotations in AceWiki. The authors
suggest that using ACE, queries can simply be represented as
questions.

4
W E B Q U E RY I N G

When we talk about web queries, we subsume two distinct areas
of research and technology: Web search as provided for example
by Google or Yahoo!, and database-style queries on web data
(mostly in the form of XML or RDF) as provided through lan-
guages such as XQuery or SPARQL.

Web search acts as a filter to the discovery of documents on the
web that are relevant to a specified query. Given the vast amount
of available data, web search has become an indispensable tool
for navigating the web for casual and proficient web users alike.
Web search is easy and convenient to use; query intents are ap-
proximated through queries consisting of a number of keywords,
which in practice is usually small [43, 35].

While many web search engines provide additional syntax for
specifying for example disjunction, classical negation and phrase
searches, research has shown that these advanced features are
only employed by a small number of users [202, 43].

Given a particular query, a search engine sifts through an
index of (a substantial portion of) all web data and retrieves the
matching documents. The assessed relevance of a document to the
query is not strict or boolean, but nuanced and often approximate.
For example, returned documents might not contain a query term
itself, but its plural or a synonym. The answer to a query is a
ranked list of documents [71, 222].

In contrast to traditional information retrieval techniques for
finding and ranking relevant documents, web search exploits
not only the content of each individual document, but also their
relationships as expressed through hypertext links. This infor-
mation must be usable without sacrificing scalability to millions
or billions of documents. Web Search engines harvest structural
information as well as non-local search terms (e.g., anchor text
used to link to a document) at indexing time only. This allows for
the independent evaluation of a search request on each document
(and its associated results of the harvesting process) and enables
a highly parallel—and thus scalable—evaluation of web searches.

Thus, web search allows us to filter down the huge amount
of web data to what is likely related to our search request. The
downside of web search is that the results to a search request
are often only vaguely related to the user’s search intent and,
in terms of their presentation, that only a document ranking is
provided. In practice, the user has to look at the individual results
to gauge their true relevance to his information need.

33

34 web querying

Database-style Web queries, formulated in languages such as
XQuery or SPARQL, are in many respects the exact dual of web
search: we peek inside a small set of homogeneous documents to
find precise data items such as the price of a book or the capital of
a country. These data items can then be processed automatically,
for example to place an order for a book as soon as its price is
below a certain threshold. We can also deduce new knowledge
such as the number of books by a specific author, or the fact that
some author has published in all of the top five conferences in a
given research area and year. Such queries cannot be answered
by a web search engine, unless the corresponding knowledge is
available in document a priori. In contrast to traditional databases,
database-style web queries operate on web data formats such
as XML and RDF, the presumptive foundation for the semantic
web. Both XML and RDF differ from the relational data model in
that they allow for more flexible schemata where repetition and
recursion are common. This pushes issues that have only been
treated cursorily for relational data, such as the influence of tree
queries or tree data on query evaluation or efficient reachability
queries in trees and graphs to the front.

The price we pay for the ability to precisely select individual
data items of a certain characteristic and process them automati-
cally is twofold: First, web query languages are significantly more
complex than web search interfaces. Writing correct, let alone
efficient, web queries requires significant training and is compa-
rable to a programming task. Second, most web query languages
scale no better than traditional SQL database technology, and are
clearly unable to process a significant portion of all web data.

In summary, where web search allows us to operate on (nearly)
all the web, database-style web queries operate only on a small
fraction. Where web search is limited to filtering relevant docu-
ments for human consumption, web queries allow for the precise
selection of data items in web documents as well as their for-
matting, reorganization, aggregation, and the deduction of new
data. Where web search can operate on all kinds of web docu-
ments, web queries are usually restricted to a more homogeneous
collection of documents (e.g., XHTML documents or DocBook
documents). Where web search requires a human in the loop to
ultimately judge the relevance of a search result, web queries
allow automated processing, aggregation, and deduction of data.
Where web search can be used by untrained users, web queries
usually require significant training to be employed effectively.

In the context of social semantic software, both aspects of web
queries play an essential role: We want to be able to precisely
specify selection criteria for data items and automatically derive
new information, operations that squarely fall into the domain
of database-style web queries. On the other hand, the essential

web querying 35

premise of the social semantic web is accessibility to untrained
users. In this sense a mechanism closer to web search is needed.

Web search and web queries have mostly been treated sepa-
rately in the past, but recently this has started to change in more
than one way:

1. Web search engines are beginning to “peek” into web docu-
ments to provide more useful answers to queries. For instance,
Google integrates querying of structured data about videos, im-
ages, and items from Google Base1 into the search result listing.
Yahoo provides similar features that allow content providers to
use structured data to customize their search result listings.2

More ambitiously, Google Squared, an experimental search tool,
returns tables containing facts extracted from web pages as query
answers.3

2. Considerable effort has been put into adding information
retrieval functionality and primitives to XQuery and similar XML
query languages. This line of research has culminated in a candi-
date recommendation by the W3C that is inspired by traditional
information retrieval and proposes selection and ranking op-
erators for XQuery [15]. An overview of relevant articles and
proceedings can be found in one of the more recent tutorials on
XQuery and XML retrieval [116, 20].

3. The most significant effort towards combining some of the
virtues of web search, viz. being accessible to untrained users
and being able to cope with vastly heterogeneous data, with
those of database-style web queries are keyword-based web query
languages for XML and RDF documents. Theses languages op-
erate in the same setting as XQuery or SPARQL, but with an
interface suitable for untrained or barely trained users instead of
a complex query language. The interface is often (in label-keyword
query languages) enhanced to allow not only bag-of-word queries
but some annotations to each word, most notably a context (e.g.,
that a term must occur as the author or title of an article). Results
are excerpts of the queried documents, though the precise extent
is often determined automatically rather than by the user. Thus,
keyword-based query languages trade some of the precision of
languages like XQuery for a more accessible interface. The yard-
stick for these languages becomes an easily accessible interface
(or query language) that does not sacrifice the essential premise
of database-style web queries, namely that selection and con-
struction are precise enough to allow for automated processing
of data.

In the following, we focus on keyword-based web query lan-
guages as the most promising direction for combining the ease of

1 http://www.google.com/base/
2 http://developer.yahoo.com/searchmonkey/
3 http://www.google.com/squared

http://www.google.com/base/
http://developer.yahoo.com/searchmonkey/
http://www.google.com/squared

36 web querying

use of web search engines with the powerful features of database-
style web query languages.

To ground the discussion of keyword-based query languages,
we first give a summary of what we perceive as the main contribu-
tions of research and development on web query languages in the
past decade (Section 4.2). This summary is focused specifically on
what sets web query languages apart from their predecessors for
traditional (mostly relational) databases. It comes in two parts,
one on XML (Section 4.2.1), one on RDF (Section 4.2.2). For XML,
we consider three contributions: reachability (as expressed, e.g.,
in XPaths descendant axis) in trees, how the restriction to tree
queries and tree data enables highly efficient query evaluation,
and the effect of order as a first class concept of the data model.
For RDF we consider again three contributions: reachability in
graphs, dealing with RDF’s multi-valued, optional properties, and
how existential information (or blank nodes) affects querying and
construction.

In both discussions we also briefly introduce the preeminent
exemplars of XML, resp. RDF query languages: XQuery and
SPARQL. Where illuminating or necessary for the context we also
reference other query languages. However, for more extensive
introductions to and an extensive comparison of the mentioned
query languages (and many more) we refer to previous surveys
of XML and RDF query languages [36, 157].

The main part (Section 4.3) of this chapter is dedicated to
keyword-query languages: We start with a brief overview of the
principles and motivation of keyword-based query languages as
well as their relation to web search. The main focus of research
in the area of keyword query languages for semi-structured data
has been on XML. Section 4.3.2 gives an overview over the most
important issues, aspects and approaches in this field, namely
determining semantic entities, determining return values, the
expressive power of keyword languages and ranking.

Section 4.3.3 then individually presents various keyword query
languages for RDF.

We conclude this survey with a summary of how keyword-
based query languages for XML and RDF aim to bring the ease
of use of web search together with the capabilities of traditional
web queries. Further, we discuss where the existing approaches
succeed in this aim, what, in our opinion, the most glaring open
issues are, and where, beyond keyword-based query languages,
we see the need, the challenges, and the opportunities for com-
bining the ease of use of web search with the virtues of web
queries.

4.1 data on the semantic web 37

4.1 data on the semantic web

This section introduces XML and RDF, two of the most prevalent
and well-studied semi-structured web and semantic web data
formats.

4.1.1 Extensible Markup Language (XML)

XML [69] is the foremost data representation format for the web
and for semi-structured data in general. It has been adopted in
a large number of application domains from document markup
(XHTML, DocBook [354]) over video annotation (MPEG 7 [264])
and music libraries (iTunes4) to preference files (Apple’s property
lists [2]), build scripts (Apache Ant5), and XSLT stylesheets [215].

XML is a generic markup language for describing the structure
of data. In contrast to HTML, the predominant markup language
on the web, neither the tag set nor the semantics of XML are fixed.
XML can thus be used to derive markup languages by specifying
tags and structural relationships.

Our overview of XML is based on the XML Infoset [117], which
describes the information content of an XML document. The
XQuery data model [148] is, for the most part, closely aligned
with this view of XML documents. We deviate from the Infoset,
and instead follow the XPath and XQuery data model, by viewing
XML data as tree-shaped.6 This is in line with most XML query
languages, notable exceptions include Xcerpt [84] and Lorel [10].

XML in 500 Words

The core provision of XML is a syntax for representing hierarchi-
cal data. Data items in XML are called elements and are enclosed
in start and end tags, both carrying the same tag name or label.

The following listing shows a small XML fragment that illus-
trates elements and element nesting.

In this example, <author>...</author> is an element that con-
tains other elements or character data as children between the
start and end tag.

<bib xmlns:dc="http://purl.org/dc/elements/1.1/">
2 <article journal="Computer Journal" id="12">

<dc:title>...Semantic Web...</dc:title>
4 <year>2005</year>

<authors>
6 <author>

4 http://www.apple.com/itunes/
5 http://ant.apache.org/
6 In the Infoset, valid id/idref links are resolved, resulting in a data model that

is a graph rather than a tree.

http://www.apple.com/itunes/
http://ant.apache.org/

38 web querying

<first>John</first> <last>Doe</last>
</author>

8 <author>
<first>Mary</first> <last>Smith</last>

</author>
10 </authors>

</article>
12 <article journal="Web Journal">

<dc:title>...Web...</dc:title>
14 <year>2003</year>

<authors>
16 <author>

<first>Peter</first> <last>Jones</last>
</author>

18 <author>
<first>Sue</first> <last>Robinson</last>

</author>
20 </authors>

</article>
22 </bib>

In addition, we can observe attributes, i.e., name-value pairs asso-
ciated with start tags. Attributes are like elements but may only
contain character data and no other nested attributes or elements.
Also, by definition, element order is significant while attribute
order is not. For instance

<author><last>Doe</last><first>John</first></author>

represents different information than the author element in lines
6–9, but

<article id="12" journal="Computer
Journal">...</article>

represents the same element information item as lines 2–15.
Figure 2 shows a graphical representation of the above XML

document. When represented as a graph, an XML document
without links is a labeled tree where each node in the tree cor-
responds to an element and its type. Edges connect elements to
their children (i.e., elements nested within them), their content,
and their attributes. Since the parent-child relationship can be
recognized without edge labels, and since attributes are not ad-
dressed or receive no special treatment in the research presented
here, edges will not be labeled in the following.

Elements, attributes, and character data are the most common
information types in XML. In addition, XML documents may
also contain comments, processing instructions (name-value pairs
with specific semantics that can be placed anywhere an element
can be placed), document level information (such as the XML or

4.1 data on the semantic web 39

(1)
bib

(2)
article

(13)
article

(3)
title

(4)
year

(5)
authors

(12)
journal

...Semantic Web... 2005 (6)
author

(9)
author

(7)
first

(8)
last

John Doe

(10)
first

(11)
last

Mary Smith

Computer Journal

(14)
title

(15)
year

(16)
authors

(23)
journal

...XML... 2003 (17)
author

(20)
author Web Journal

(18)
first

(19)
last

(21)
first

(22)
last

Peter Jones Sue Robinson

Figure 2: A graphical representation of an XML document

the document type declarations), entities, and notations, which are
essentially just other kinds of information containers.

On top of these information types, two additional facilities
relevant to the information content of XML documents have been
introduced by subsequent specifications: Namespaces [68] and
Base URIs [262]. Namespaces allow the partitioning of element
labels used in a document into different containers, identified
by a URI. Thus, an element is no longer labeled with a single
label but with a triple consisting of the local name, the namespace
prefix, and the namespace URI. For example, the dc:title element
in line 3 has the local name title, the namespace prefix dc, and
the namespace URI (called “name” in Cowan and Tobin [117])
http://purl.org/dc/elements/1.1/. The latter can be derived
by looking for a namespace declaration for the prefix dc. Such a
declaration is shown in line 1: xmlns:dc="http://. . . It associates
the prefix dc with the given URI in the scope of the current
element, i.e., for that element and all elements contained within,
unless there is another nested declaration for dc, which would
take precedence. Thus, we can associate with each element a set
of in-scope namespaces, i.e., of pairs of a namespace prefix and a
URI, that are valid in the scope of that element. Base URIs [262]
are used to resolve relative URIs in an XML document. They are
associated with elements using xml:base="http://. . . and, like
namespaces, are inherited to contained elements unless a nested
xml:base declaration takes precedence.

4.1.2 Resource Description Framework (RDF)

The Resource Description Format (RDF) [259, 223, 189] is emerging
as the preeminent data format on the semantic web. While much
less common than XML, RDF enjoys widespread use for inter-
changing (meta-)data together with descriptions of the schema

40 web querying

and, in contrast to XML, a basic description of the semantics of
the data.

Not to distract from the salient points of the discussion, we omit
typed literals and named graphs from the following discussion.

RDF in 500 Words

RDF graphs contain simple statements about resources, i.e., about
elements of the domain that may partake in relations (in other
contexts, these are called “entities,” “objects,” etc.). Statements
are triples consisting of subject, predicate, and object, all of which
are resources. If we want to refer to a specific resource, we use
(supposedly globally unique) URIs; to refer to a resource for
which we know that it exists and maybe to some of its properties,
we use blank nodes which play the role of existential quantifiers
in logic. Blank nodes may not occur as predicates. Finally, for
convenience, we can directly use literal values as objects.

RDF may be serialized in many formats (for a recent survey
see Bolzer [65]), such as RDF/XML [42], an XML dialect for
representing RDF, or Turtle [34], which is also used in SPARQL.
The following Turtle data represents roughly the same data as
the XML document discussed in the previous section:

@prefix dc: <http : / / pur l . org /dc / elements /1 .1 /> .
2 @prefix dct: <http : / / pur l . org /dc / terms /> .

@prefix vcard: <http : / /www.w3. org/2001/vcard−rd f /3.0#> .
4 @prefix bib: <http : / /www. edutel la . org / bibtex#> .

@prefix ex: <http : / / example . org / l i b ra r i es /#> .
6 ex:smith2005 a bib:Article ; dc:title "...Semantic

Web..." ;
dc:year "2005" ;

8 ex:isPartOf [a bib:Journal ;
bib:number "11"; bib:name "Computer Journal"

] ;
10 bib:author [a rdf:Bag ;

rdf:_1 [a bib:Person ;
12 bib:last "Smith" ; bib:first "Mary"] ;

rdf:_2 [a bib:Person ;
14 bib:first "John" ; bib:last "Doe"]] .

Following the definition of namespace prefixes used in the
remainder of the Turtle document , each line contains one or more
statements separated by semicolons, meaning that the subject of
the previous statement is carried over. For example, line 6 reads as
ex:smith2005 is a (has rdf:type) bib:Article and has dc:title
“. . . Semantic Web. . . .” Lines 8–9 show a blank node. The article is
part of some entity which we cannot (or do not care to) identify
by a unique URI, but for which we give some properties: it is

4.2 database-style query languages 41

smith2005 Article

Computer
Journal11

Doe

authorisPartOf
2005

_1

_2

John

Mary

Smith

first

last

first

last

Bag

type
namenumber

...Semantic
Web...

title

Person

Person

year

Journal

type

type

type

type

Class Literal Other
Resource

Legend

Figure 3: A sample RDF graph

a bib:Journal, has bib:number “11,” and bib:name “Computer
Journal.”

Figure 3 shows a visual representation of the above RDF data.
We denote classes (i.e., resources that can be used for classifying
other resources) by square boxes with rounded edges, literals by
square boxes, and all other resources by plain ellipses.

4.2 queries as programs : database-style query lan-
guages

Having introduced XML and RDF, the following two sections
present web query languages for the two formats together with
the most important research issues.

4.2.1 Trees and Documents—XML

As discussed in Section 4.1.1, XML differs from both the relational
and previous semi-structured data models (as in Abiteboul et al.
[10]) in its focus on ordered tree data. Both orderedness and tree-
shape are direct consequences of XML’s heritage as a simplified
variant of SGML, which is primarily used for document markup.
Documents in formats such DocBook [354] or (X)HTML exhibit
an intrinsic hierarchical organization of the data and are strictly
ordered, just like they would be in printed form. It is clearly not
acceptable to reorder paragraphs even within the same section,
or sections within the same chapter. While previous data models
do allow the modeling of tree data and sometimes even ordered

42 web querying

tree data, XML is the first data format that limits itself to tree
data while placing a premium on the maintenance of sibling and
document order.

These novelties are reflected well in the contributions of XML
query languages and will guide the following discussion. In
Section 4.2.1.3 we illustrate how XML’s focus on tree data pushes
the issue of reachability (or descendant and ancestor) queries to
the center stage and how different XML query languages address
this issue. In Section 4.2.1.5 we then summarize the effect order as
a first class citizen in XML has on XML query languages. Finally,
we briefly recall how the limitation to tree data and consequently
tree queries has lead to a number of novel evaluation strategies
that are tailored to this setting and significantly outperform
traditional, less focused approaches.

We start off the discussion of XML query languages with a
closer look at two of the more prominent exemplars: XPath and
XQuery. We focus on the essentials of these languages, and refer
the reader to Bailey et al. [36] for a more in-depth comparison of
more than two dozen XML query languages.

4.2.1.1 XPath

XPath provides an elegant and compact way of describing paths
in an XML document viewed as an ordered tree. Paths are made
up of “steps,” each specifying a direction, or axis, for navigating
through the document, e.g., child, following, or ancestor. An
illustration of the different axes is shown in Figure 4. Along with
the axis, a step contains a restriction on the type or label of the
data items to be selected, called a node test. Node tests may be
labels of element or attribute nodes, node kind wildcards such
as * (any node with some label), element(), node(), text(), or
comment(). Any step may be adorned by one or more qualifiers,
each of which is denoted with square brackets and expresses
additional restrictions on the selected nodes. The most distinctive
feature of XPath, as compared to other query languages such as
XQuery, SQL, or SPARQL, is the lack of explicit variables. This
makes it impossible to express n-ary queries and limits XPath,
for the most part, to two-variable logic (see Marx [267], Bojanczyk
et al. [63] for details).

xpath examples. The XPath expression

/descendant::article/child::author

consists of two steps. The first step selects article elements that
are descendants of the root (indicated by the leading slash), the
second one selects author children of such article elements.
More interesting queries can be expressed by exploiting XPath’s

4.2 database-style query languages 43

self

an
ces
tor

descendant

p
re
ce
d
in
g

fo
llo
w
in
g

following-sibling

preceding-sibling

child

parent

Figure 4: XPath axes, adopted from Genevès and Vion-Dury [160]

qualifiers; the following XPath expression for example selects all
authors that are also PC members of a conference :

/child::conference/descendant::article/child::author[. =
/child::conference/child::member]

In addition to the strict axis plus node test notation, XPath
provides an abbreviated syntax where child may be omitted,
descendant is (roughly) abbreviated by //, and the current node
is referenced by .. In the following, we only use the full syntax
and limit ourselves to the core feature of XPath as discussed here,
thus presenting a view of XPath similar to Navigational XPath
of Gottlob et al. [167] and Benedikt and Koch [46].

syntax of navigational xpath. The syntax of naviga-
tional XPath is defined as follows (again following Gottlob et al.
[167] and Benedikt and Koch [46]):

For details on the semantics as well as differences to full XPath
see Benedikt and Koch [46].

The theoretical properties of XPath have also been investigated
in detail. Formal semantics for (more or less complete) fragments
of XPath have been proposed in Wadler [353], Olteanu et al.
[291], Gottlob and Koch [164]. Surprisingly, most popular im-
plementations of XPath embedded within XSLT processors ex-
hibit exponential behavior, even for fairly small data and large
queries, while the combined complexity of XPath query evalua-
tion has been shown to be P-complete [165, 166]. Various sub-
languages of XPath (e.g., forward XPath [291], Core or Naviga-

44 web querying

�path� ::= �step� | �step� ‘/’ �path� | �path� ‘∪’ �path� |
‘/’ �path�

�step� ::= �axis� ‘::’ �node-test� | �step�‘[’�qualifier�‘]’

�axis� ::= ‘child’ | ‘descendant’ | ‘descendant-or-self’
| ‘next-sibling’ | ‘following-sibling’ |
‘following’

�node-test� ::= �label� | ‘node()’

�qualifier� ::= �path� | �path� ‘∧’�path� | �path� ‘∨’�path� |
‘¬’�path� | ‘lab()’ ‘=’ ‘λ’| �path� ‘=’ �path�

tional XPath [165, 44]) and extensions (e.g., CXPath [265]) have
been investigated, mostly with regard to expressiveness and the
complexity of query evaluation. Satisfiability of positive XPath ex-
pressions is known to be in NP and, even for expressions without
boolean operators, NP-hard [194]. Containment of XPath queries
(with or without additional constraints, e.g., by means of a docu-
ment schema) has been investigated as well [369, 136, 275, 329]).
For a recent summary of fundamental results on XPath com-
plexity, containment, etc. see Benedikt and Koch [46]. Several
methods which provide efficient implementations of XPath that
rely on standard relational database systems have been pub-
lished [174, 177, 292].

As part of its activity on the specification of XQuery, the W3C
has recently developed a revision of XPath, XPath 2.0 [51]. An
introduction to XPath 2.0 can be found in Kay [214]. The most
striking additions in XPath 2.0 are a facility for defining variables
(using for expressions), sequences instead of sets as answers, the
move from the value typed XPath 1.0 to extensive support for
XML schema types in a strongly typed language, a considerably
expanded library of functions and operators [258], and a complete
formal semantics [138].

4.2.1.2 XQuery

XQuery has achieved the status of the predominant XML query
language, at least as far as database products and research are
concerned (in total, XSLT [105] is probably still more widely
supported and used). XQuery is essentially an extension of XPath
(though some of the axes of XPath are only optional in XQuery),
but most of XPath becomes syntactic sugar in XQuery. This is
particularly true for XPath qualifiers, which in XPath can be
reduced to where or if clauses. Indeed, the XQuery standard is
accompanied by a normalization of XQuery to a core dialect of
the language [138].

4.2 database-style query languages 45

xquery principles. At its core, XQuery is an extension of
XPath 2.0, adding features needed to capture all the use cases
of Chamberlin et al. [93] in order to turn it into a “full query
language” and not just a language for (mostly tree-shaped) node
selection. The most notable of these features are the following:

1. Sequences. While in XPath 1.0 the results of path expressions
are node sets, XQuery and XPath 2.0 use sequences. Sequences
can be constructed or result from the evaluation of an XQuery
expression. In contrast to XPath 1.0, sequences cannot only be
composed of nodes but also of atomic values. For example, (1,
2, 3) is a proper XQuery sequence.

2. Strong typing. Like XPath 2.0, XQuery is a strongly typed
language. In particular, most of the (simple and complex) data
types of XML Schema are supported. The details of the type
system are described in Draper et al. [138]. Furthermore, many
XQuery implementations provide static type checking.

3. Construction, Grouping, and Ordering. While XPath is limited
to selecting parts of the input data, XQuery provides ample
support for constructing new data. Constructors for all node
types as well as the simple data types from XML Schema are
provided. New elements can be created either by so-called direct
element constructors (that look just like XML elements) or by
what is referred to as computed element constructors. The latter
for example allows the name of a newly constructed element to
be the result of a part of the query.

4. Variables. Like XPath 2.0, XQuery has variables which are
defined in so-called FLWOR expressions. A FLWOR expression
usually consists of one or more for clauses, an optional where
clause, an optional order by clause, and a return clause. The
for clause iterates over the items in the sequence returned by the
path expression in its in part; for \$book in //book for example
iterates over all books selected by the path expression //book.
The where clause specifies conditions on the selected data items,
the order by clause allows the items to be processed in a certain
order, and the return clause specifies the result of the entire
FLWOR expression (often using constructors as shown above).
Additionally, FLWOR expressions may contain, after the for
clauses, let clauses that also bind variables but without iterating
over the individual data items in the sequence bound to the
variable.

5. User-defined functions. XQuery allows the user to define new
functions specified in XQuery . Functions may use recursion.

6. Universal and existential quantification. Both XPath 2.0 and
XQuery 1.0 provide some and all for expressing conditions using
existential or universal quantification.

46 web querying

7. Schema validation. XQuery implementations may (optionally)
provide support for schema validation, both of input and of
constructed data, using the validate expression.

8. Full host language. XQuery completes XPath with capabilities
for setting up the context of path expressions (e.g., for declaring
namespace prefixes and default namespace), importing function
libraries and modules, and providing flexible means for serializa-
tion that are in fact shared with XSLT 2.0 [216].

9. Unordered sequences. To assist query optimization, XQuery
provides the unordered keyword, indicating that the order of
elements in sequences that are constructed or returned as result of
XQuery expressions is not relevant. For example, unordered\{for
\$book in //book return \$book/name\} indicates that the nodes
selected by //book may be processed in any order in the for
clause, and that the order of the resulting name nodes can also
be arbitrary. Note that inside unordered query parts, the result
of any expressions querying the order of elements in sequences,
such as fn:position or fn:last, is non-deterministic.

There is at least one respect in which XQuery is more restric-
tive than XPath, namely that not all of XPath’s axes are manda-
tory. An XQuery implementation may not support ancestor,
ancestor-or-self, following, following-sibling, preceding,
and preceding-sibling. This does not restrict XQuery’s expres-
siveness, as expressions using reverse axes (such as ancestor) can
be rewritten [291], and the “horizontal axes” such as following
or following-sibling, can be replaced by FLWOR expressions
using the and operators that compare two nodes with respect to
their position in a sequence.

For a comprehensive yet easy to follow introduction to XQuery
see, e.g., Katz et al. [211].

composition-free xquery in 1000 words . In the follow-
ing, we focus on a fragment of XQuery, called non-compositional
XQuery [224, 45], that has a well-defined, fairly easy to under-
stand semantics and illustrates all issues salient for this thesis.
However, many of the restrictions to the syntax can be dropped
without affecting expressiveness and complexity, e.g., we could in-
tegrate full navigational XPath as discussed in Section 4.2.1.1. The
only real restriction of composition-free XQuery in comparison
to full XQuery is that it disallows any querying of constructed nodes,
i.e., the domain of all relations is limited to the input nodes. This
limitation clearly does not hold for full XQuery (even if we do
not consider user-defined functions). Its effect on expressiveness
and complexity is discussed in detail in Koch [224].

(Composition-free) XQuery is built around controlled itera-
tions over nodes of the input tree, expressed using for clauses.
Controlled iteration is important for XQuery as it is founded on

4.2 database-style query languages 47

sequences of nodes rather than sets of nodes (as XPath 1.0). In
this respect it is more similar to languages such as DAPLEX [334]
or OQL [88] than to XPath 1.0. For loops use XPath expressions
for navigation and XML-look-a-likes for element construction, all
of which can be, essentially, freely nested. The following query
creates a list of articles containing one author element for each
author in the input XML tree (bound here and in the following
to the canonical input variable $inp).

<paperlist>
for $a in $inp/descendant::author return
<author> for $p in $inp/descendant::article return
if some $x in $p/descendant::author satisfies

deep-equal($x, $a)
then $p

</author>
</paperlist>

For each author element, the nested for loop creates a list of all
its articles. The latter expression can be more elegantly expressed
in full XQuery using XPath qualifiers or where clauses, but here it
is shown in the “normalized” syntax of composition-free XQuery
following Koch [224].

We use deep-equal, XQuery’s structural equality that tests
whether the sub-trees at $x and $a are isomorphic, as authors
can be represented using last and first name elements in our
context and both have to be equal for it to be the same author.

A complete definition of the syntax of composition-free XQuery
is given in Table 1. In addition to the specification, the usual
semantic restrictions apply, e.g., the label of the start and end
tags must be the same, variables must be defined (using for)
before use, etc. As mentioned, there is one exception to the rule
for variables: the canonical input variable $inp is always bound
to the input XML tree.

The semantics of a composition-free XQuery expression is
defined in Benedikt and Koch [45].

xquery in industry and research . From the very start,
the development of XQuery has been followed by industry and
research with equal amounts of interest.Even before the devel-
opment was finished, initial practical introductions to XQuery
had been published, e.g., Katz et al. [211], Brundage [73]. In-
dustry interest is also visible in the simultaneous development
of standardized XQuery APIs, e.g., for Java [140], and numer-
ous implementations, both open source (e.g., Galax [149]) and
commercial (BEA [151], IPSI-XQ [146]). First results concerning
the implementation of XQuery on top of standard relational
databases [131, 176] indicate that this approach leads to very

48 web querying

�query� ::= �query� �query� | �element� | �variable�
| �step� | �iteration� | �conditional�

�element� ::= ‘<’ �label� ‘>’ �query� ‘<’ �/label� ‘>’
| ‘<’ ‘lab(’ �variable� ’)>’ �query� ‘</’ ‘lab(’

�variable� ‘)>’

�step� ::= �variable� ‘/’ �axis� ‘::’ �node-test�

�iteration� ::= ‘for’ �variable� ‘in’ �step� ‘return’ �query�

�conditional� ::= ‘if’ �condition� ‘then’ �query�

�condition� ::= �variable� ‘=’ �variable� | �variable� ‘=’ ‘<’ �label�
‘/>’ | ‘true’

| ‘some’ �variable� ‘in’ �step� ‘satisfies’
�condition�

| �condition� ‘and’ �condition� | �condition� ‘or’
�condition� | ‘not’ �condition�

�axis� ::= ‘child’ | ‘descendant’ | ‘descendant-or-self’
| ‘next-sibling’ | ‘following-sibling’ |

‘following’

�node-test� ::= �label� | ‘node()’

�variable� ::= ‘$’�identifier�

Table 1: Syntax of composition-free XQuery

efficient query evaluation if a suitable relational encoding of the
XML data is used.

It is intuitively clear that XQuery is Turing complete since it
provides recursion and conditional expressions. A formal proof of
the Turing-completeness of XQuery is given in Kepser [217]. Effi-
cient processing and (algebraic) optimization of XQuery, although
acknowledged as crucial topics, have not yet been sufficiently
investigated. Moreover, techniques for efficient XPath evaluation,
as discussed above, can form the basis for XQuery optimization.

Beyond querying XML data, it has also been suggested to
use XQuery for data mining [355], for web service implementa-
tion [293], for querying heterogeneous relational databases [365],
for access control and policy descriptions [280], for synopsis
generation [114], and as the foundation of a visual XML query
language (XQBE) [29], of a XML query language with full text
search capabilities [16, 15], and of an update [313, 74, 95] and
reactive [67] language for XML.

Recently, the W3C has proposed a revision [96] to XQuery 1.0,
termed XQuery 1.1, which among minor changes adds explicit
grouping (using a new group-by clause) and iteration windows
(or blockwise iteration, using a new window clause with several
flavors).

4.2 database-style query languages 49

4.2.1.3 Reachability in Trees

Like XPath, most XML query languages provide some form of
path expression or axis for expressing different forms of reacha-
bility in a graph, most notably direct reachability or child axis
vs. descendant axis. Path expressions have been introduced al-
ready for relational databases, e.g., in GEM [375], an extension
of QUEL, and for object-oriented databases, e.g., in OQL [88].
OQL expresses paths with the extended dot notation introduced in
GEM: SELECT b.translator.name FROM Books b selects the names,
or components, of the translators of books. Note that there must
be at most one translator per book for this expression to be legal.

Generalized (or regular) path expressions [154, 104] extend this idea
with operators similar to regular expressions, e.g., the Kleene
closure (and thus indirect reachability) operator on (sub-)paths
under the additional requirement that each component is a node
label. As a consequence, and in contrast to the extended dot
notation, generalized path expressions do not require explicit
naming of all nodes along a path. Lorel [10] is an early exemplar
of a semi-structured query language, though being based on a
(graph-shaped) data model. Lorel’s syntax resembles that of SQL
and OQL, extending OQL’s extended dot notation to generalized
path expressions. To illustrate this aspect of Lorel, assume that
one is interested in books having “Peter Jones” either as author
or translator. Assume also that the literal giving the name of
the author is either wrapped inside a name child of the author
element, or directly included in the author element. The selection
of such books can be expressed in Lorel by the following where
clause filter on all books B: where B.(author|translator).name?

= "Peter Jones".
Given that these efforts predate XPath significantly, it might

seem surprising that XPath chose not to offer general path ex-
pressions, but only the weaker concept of axes. Remember, XPath
allows navigation in all directions (vertical using descendant and
ancestor, horizontal using following and preceding and their
respective -siblings variants), while generalized path expres-
sions only allow vertical navigation. However, XPath only pro-
vides closure axes (i.e., a path with any number of arbitrarily
labeled nodes), but no closure of actual expressions. Thus it is not
possible to express, for example, that two elements are connected
by nodes carrying a certain label.

The difference with respect to the possible directions of nav-
igation is clearly motivated by the particular emphasis placed
on order in XML. The choice to provide only closure axes, how-
ever, is less obvious. Without closure of arbitrary path expres-
sions, XPath cannot express regular path expressions such as
a.(b.c)*.d (meaning “select d’s that are reached via one a and
then arbitrary many repetitions of one b followed by one c”).

50 web querying

Moreover, it turns out that such a feature (sometimes called
conditional axes) is exactly what is missing from XPath to turn it
into a first-order complete language on ordered trees [266, 265].

The inclusion of reverse axes in XPath has been shown not
to increase the expressive power of XPath [291]. Consequently,
they are used infrequently and, with the exception of the trivial
parent axis, are considered optional features in XQuery that do
not have to be provided by a conforming implementation.

Nevertheless, the efficient realization of closure axes has proved
to be one of the more fruitful issues on the road to a scalable XML
query language. In the following section, we classify approaches
for implementing tree queries expressed in XPath or XQuery. All
of these approaches have to deal in some form or the other with
the presence of closure axes.

4.2.1.4 Tree Queries on Tree Data

While XQuery (and even full XPath 1.0) can also express more
powerful graph queries, the most significant results have been
achieved on the implementation of tree queries. For tree queries,
the restriction of XML to tree data can be exploited to provide
highly efficient (i.e., linear time and space) evaluation of XML
queries even in the absence of sophisticated indices. To keep the
discussion focused we ignore index-based evaluation of XML,
and refer the interested reader to the survey of Weigel [361].

Most of the remaining approaches to the evaluation of XML
tree queries fall into one of the following four classes:

1. Structural joins, proposed by Al-Khalifa et al. [14], are most
reminiscent of query evaluation for relational queries and ar-
guably inspired by earlier research on acyclic conjunctive queries
on relational databases [168]. Tree queries are decomposed into
a series of (structural) joins. Each structural join enforces one
of the structural properties of the given query, e.g., a child or
descendant relation between nodes or a certain label. Due to
its similarity with relational query evaluation it has proved to
be an ideal foundation for implementing XPath and XQuery on
top of relational databases [174]. It turns out, however, that the
use of standard joins is often not ideal, and that structure- or
tree-aware joins [66] can significantly improve XPath and XQuery
evaluation.

2. Twig (or stack) joins [75, 101], by contrast, employ a single
operator to solve an entire tree query rather than decomposing
it into structural joins. Twig joins operate by keeping one stack
for each step in a query, which represents partial answers for the
corresponding node set. These stacks are organized hierarchically
with (where possible, implicit) parent pointers connecting partial
answers for upper stack entries to those of lower ones. Different
approaches from this class mostly vary in how the stacks are

4.2 database-style query languages 51

populated. In contrast to the other approaches, twig joins are
limited to vertical, i.e., child and descendant, axes and have not
been adapted for the full range of XPath axes.

3. PDA-based approaches, based on pushdown automata, aim
to evaluate XPath queries on a single input stream similar to a
SAX event stream. This is in contrast to twig joins, which assume
one stream of nodes from the input document for each stack
(and thus XPath step). SPEX [290, 289, 288], for example, also
maintains a record of partial answers for each XPath step, but
minimizes memory usage and exploits the existential nature of
most XPath steps by maintaining only generic conditions rather
than actual pointers to elements from the XML stream (except
for candidates of the actual results set, of course). Furthermore,
in contrast to the twig join approaches, it supports all XPath axes.
This comes at the cost of a slightly more complex algorithm.

4. Interval-based approaches finally combine the tree-awareness
of twig joins and SPEX with the structural join approach: The
query is decomposed into a series of structural relations, but each
relation is organized in such a way that all elements related to
one element of its parent step lie in a single continuous interval.
This allows for both efficient storage and join of intermediate
answers. The first interval-based approach are the Complete
Answer Aggregates (CAA) [273, 272]. Furche [156] proposed the
ciqcag algebra, which improves on the complexity of CAA and in
contrast to CAA covers arbitrary tree-shaped relations. It is also
shown that interval-based approaches can be extended even to a
large, efficiently detectable class of graphs (so called continuous-
image graphs) that is not covered by any of the other linear-time
approaches discussed above.

4.2.1.5 Supporting Order

In the previous sections, we have focused on the tree aspect of
XML and its effect on query languages and their evaluation. An-
other characteristic that sets XML apart from many other data
formats is its emphasis of ordered data. While very appropriate
in a document setting such as XHTML or DocBook [354], this
presents a challenge for query languages, which traditionally
prefer a set-oriented perspective under the assumption that it
enables more diverse evaluation strategies and thus better auto-
matic optimization. XML query languages have addressed this
challenge in various different ways.

Most of the early proposals ignore order in XML documents
entirely or support it only superficially. While XPath 1.0 allows
querying the order, its results are either in document or in reverse
document order, depending on the axis of the final step. For
query languages like XQuery that also support construction of
new XML trees, however, this would be utterly insufficient. For

52 web querying

example, selecting authors together with their articles from the
sample data in Section 4.1.1 and then constructing one XHTML
section for each author containing a list of her articles requires
control over the order in which section elements (e.g., h1) and list
elements (ul or ol) are intertwined.

This need is recognized in XQuery, and in fact there are many
ways in which XQuery is designed around proper support for
ordered XML. Where results of path expressions are node sets in
XPath 1.0, XQuery and XPath 2.0 use sequences.

The disadvantage of XQuery’s choice to make order so preva-
lent in the language is that implementations have to maintain this
order to conform to the specification.XQuery partially acknowl-
edges this problem by providing the unordered keyword, which
allows a sub-query to be evaluated indifferent to order, as if it
had a set-based semantics. Grust et al. [175] discuss how order
indifference in XQuery can be exploited. Similarly, some query
languages, most notably Xcerpt [320], provide both ordered and
unordered queries without preference for either.

This concludes our brief overview of XML query languages.
For a comparison of a larger set of XML query languages the
reader is referred to the survey of Bailey et al. [36]. In all three
areas discussed, XML has triggered the development of novel
approaches to query evaluation that have considerably extended
our understanding of hierarchical queries in general.

In the next section, we turn to RDF and try to illustrate where
related questions arise for RDF querying. We will see that knowl-
edge about RDF query evaluation is significantly less advanced,
due to the fact that RDF it is less established as a data format
and topic of research.

4.2.2 Graphs and Resources—RDF

Compared to XML query languages, the field of RDF query lan-
guages is less mature and has not received as much attention from
research, just as RDF itself. Whereas XML query languages focus
on trees and order, RDF query languages have to deal with the
simple, but also highly flexible RDF: RDF data (see Section 4.1.2)
comes in the shape of arbitrary (usually node- and edge-labeled)
graphs. Surprisingly, and in sharp contrast to the XML case, many
RDF query languages only provide access to direct properties but
not to reachability information (see Section 4.2.2.2). In contrast
to relational or object-oriented data, all properties (i.e., outgoing
edges) are optional and multi-valued. For instance, an author may
or may not have a last name, or even many of them. How query
languages deal with this inherent optionality is discussed in Sec-
tion 4.2.2.3. Resources (i.e., nodes) are in general labeled with
globally unique identifiers that allow us to talk about the same

4.2 database-style query languages 53

resource in different datasets. However, RDF also allows blank
nodes which play the role of purely local identifiers. Blank nodes
are like existential data and pose particular challenges for RDF
query evaluation (see Section 4.2.2.4).

Again, we start off the discussion of RDF query languages
with a closer look at one of the more prominent exemplars:
SPARQL. We focus on the essentials of SPARQL, for a more in-
depth comparison of more than a dozen RDF query languages
see Furche et al. [157].

4.2.2.1 SPARQL in 1000 Words

Fundamentally, SPARQL is a fairly simple query language in the
spirit of basic subsets of SQL or OQL. However, the specifics of
RDF have lead to a number of unusual features that arguably
make SPARQL more suited to RDF querying than previous ap-
proaches such as RDQL [278]. This comes at the price of a more
involved semantics complemented by a tendency to redefine
or ignore established notions from relational and XML query
languages rather than build upon them [308].

Nevertheless, SPARQL is expected to become the “lingua franca”
of RDF querying, and it is well worth further investigation.

Let us look at an example. The following SPARQL query se-
lects from the graph in Section 4.1.2 all articles in the journal
named “Computer Journal” and returns a new graph where
the bib:isPartOf relation of the original graph is inverted to
bib:hasPart.7

CONSTRUCT { ?j bib:hasPart ?a }
WHERE { ?a rdf:type bib:Article AND ?a bib:isPartOf ?j

AND ?j bib:name ‘Computer Journal’ }

This query illustrates SPARQLs fundamental query construct: a
pattern (subject, predicate, object) for RDF triples. Any RDF triple
is also a triple pattern, but a triple pattern differs from a triple
in that it allows variables for each of the components. To make
it easier to define the syntax of the language, we use the variant
syntax for SPARQL discussed in Pérez et al. [303] We consider
two forms of SPARQL queries, SELECT queries that return lists
of variable bindings and CONSTRUCT queries that return new RDF
graphs. Triple patterns contained in a CONSTRUCT clause (or “tem-
plate”) are instantiated with the variable bindings provided by
the evaluation of the triple pattern in the WHERE clause. We omit
named graphs and assume that all queries are on the single input
graph.

7 Here and in the following we use namespace prefixes to abbreviate URIs. The
usual URIs are assumed for rdf, rdfs, textttdc (dublin core), foaf (friend-of-a-
friend), vcard vocabularies. bib is a prefix bound to an arbitrary URI.

54 web querying

�query� ::= ‘CONSTRUCT’ �template� ‘WHERE’ �pattern�
| ‘SELECT’ �variable�+ ‘WHERE’ �pattern�

�template� ::= �triple� | �template� ‘AND’ �template� | ‘{’ tem-
plate ‘}’

�triple� ::= �resource�‘,’ �predicate�‘,’ �resource�

�resource� ::= �uri� | �variable� | �literal� | �blank�

�predicate� ::= �uri� | �variable�

�variable� ::= ‘?’ �identifier�

�pattern� ::= �triple� | ‘{’ �pattern� ‘}’
| �pattern� ‘FILTER’ ‘(’ �condition� ‘)’ |
| �pattern� ‘AND’ �pattern� | �pattern� ‘UNION’

�pattern�
| �pattern� ‘MINUS’ �pattern� | �pattern� ‘OPT’

�pattern�

�condition� ::= �variable� ‘=’ �variable� | �variable� ‘=’
(�literal�|�uri�)

| ‘BOUND(’ �variable� ‘)’ | ‘isBLANK(’ �variable� ‘)’
| ‘isLITERAL(’ �variable� ‘)’ | ‘isIRI(’ �variable�

‘)’
| �negation� | �conjunction� | �disjunction�

�negation� ::= ‘¬’�condition�

�conjunction� ::= �condition� ‘∧’ �condition�

�disjunction� ::= �condition� ‘∨’ �condition�

Table 2: Syntax of SPARQL

The full grammar of SPARQL queries considered here, which
extends that of Pérez et al. [303] by CONSTRUCT queries, is given
in Table 2.

We impose a number of additional syntactic restrictions: range-
restrictedness requires that all variables in the head (CONSTRUCT
or SELECT clause) must also occur in the body (WHERE clause)
of the query; error-freeness requires that all variables occurring
in the (right-hand) condition of a FILTER expression must also
occur in the (left-hand) pattern. Finally, we allow only valid RDF
constructions in CONSTRUCT clauses, i.e., no literal may occur as a
subject, variables occurring in subject position are never bound
to literals, and variables occurring in predicate position are only
ever bound to URIs (but not to literals or blank nodes). The
first condition can be enforced statically, the others by adding
appropriate isURI or negated isLITERAL filters to the query body.

Formal semantics for SPARQL were given by Pérez et al. [303]
and Polleres [307].

4.2 database-style query languages 55

Recently, SPARQL has been subject to a number of studies and
extensions. Its complexity and formal semantics have been stud-
ied by Pérez et al. [303], who showed that full SPARQL patterns
are just as expressive as relational algebra and thus PSPACE-
complete with respect to their query complexity. This is some-
what disappointing, especially since many graph queries that
are highly desirable for RDF query languages (including simple
reachability queries) cannot even be expressed in SPARQL [23].
Extensions of SPARQL with rules have received some attention,
in part because they address some of these weaknesses and can
be seen as the natural next step towards a semantic web query
engine [307].

Finally, embeddings of SPARQL in XQuery, or vice versa, have
been studied (see, e.g., Akhtar et al. [13]).

4.2.2.2 Reachability

In sharp contrast to the XML case, many RDF query languages do
not provide a means to access reachability information, or in fact
any form of navigation in the RDF graph beyond the traversal of
a fixed number of edges. Angles and Gutiérrez [23] describe a set
of graph queries that are desirable for an RDF query language,
but cannot be expressed by SPARQL or RQL.

If we look beyond SPARQL and RQL, however, we find that
RDF query languages actually support a wide variety of path
expressions:

1. Basic path expressions are abbreviations for triple patterns as
found in SPARQL and RQL. They allow only the specification of
fixed length traversals, i.e., the traversed path in the data has the
same length as the path expression. Basic path expressions are no
more expressive than triple patterns, but are nevertheless encoun-
tered in several query languages as syntactic sugar. Examples of
query languages which only provide basic path expressions are
GEM [375], OQL [88], SPARQL [308], and RQL [210].

2. Unrestricted closure path expressions augment basic path ex-
pressions by the ability to traverse arbitrary-length paths. XPath
path expressions (disregarding XPath predicates for the moment)
fall into this category, with closure axes such as descendant. They
are strictly more expressive than basic triple patterns, and can
be realized in languages that provide (at least linear) recursive
views in addition to triple patterns. SQL-99 is an example of a
language that provides no closure path expressions but linear re-
cursion and can emulate (unrestricted) closure path expressions.
Unrestricted closure path expressions can be found in many XML
query languages, e.g., in XML-QL [135], Quilt [97] and XPath.
In RDF query languages they are much less common, iTQL [3]
being a notable exception. The reason for this is that RDF, in
contrast to XML, has no dominant hierarchical relation but many

56 web querying

relations of equal importance. This makes unrestricted closure
often too unrestrictive for interesting queries.

3. To address this issue, several RDF query languages provide
generalized or regular path expressions. Here, full regular expression
syntax is provided on top of path expressions. For example, the
expression a*.((b|c).e)+ traverses all paths of arbitrary many
a properties followed by at least one repetition of either b or c
followed by e. Regular path expressions are provided, e.g., by
Versa’s traverse operator, Xcerpt’s qualified descendant, or the
extension of XPath with conditional axes [266]. Marx [266] also
showed that regular path expressions are even more expressive
than unrestricted closure path expressions, and that a path lan-
guage like XPath becomes first-order complete with the addition
of regular path expressions.

To summarize, path expressions provide a convenient way to
specify structural constraints in RDF queries and are therefore
supported by a large number of RDF query languages. However,
surprisingly many RDF query languages ignore (unrestricted or
regular) closure path expressions. This is surprising insofar as
these path expressions make writing queries easier and can be
implemented efficiently. In particular, unrestricted closure path
expressions can be implemented nearly as efficiently as basic
path expressions.

evaluation of reachability queries on graphs . For
tree data, membership in closure relations can be tested in con-
stant or almost constant time (e.g., using interval encodings [137]
or other labeling schemes such as that of Weigel et al. [363]). For
graph data this is far less obvious. Fortunately, recent years have
seen a considerable amount of research on reachability or closure
relations and their indexing in arbitrary graph data. Obviously,
we could carry out the membership test in constant time if we
store the full transitive closure matrix. However, for large graphs
this is infeasible. Therefore, two classes of approaches have been
developed that allow membership tests in sub-linear time and
significantly less space.

The first class is based on the idea of a 2-hop cover [106]. In-
stead of storing the full transitive closure, we allow reachable
nodes to be reached via at most one other node (i.e., in two
“hops”). More precisely, each node n is labeled with two connec-
tion sets, in(n) and out(n). The former contains a set of nodes
that can reach n, the latter a set of nodes that are reachable from
n. Both sets are assigned in such a way that a node m is reachable
from n if and only of out(n)∪ in(m) � ∅. Unfortunately, comput-
ing a smallest 2-hop cover is NP-hard, and even approximating it
might be too hard in practice [324].

4.2 database-style query languages 57

A different approach is to use interval encoding for label-
ing a tree core and treating the remaining non-tree edges sepa-
rately [12, 101, 356, 350]. This allows for a membership test in
sublinear or even constant time (though the latter would still
incur a considerable indexing cost), e.g., in Dual Labeling [356],
where a full transitive closure over the non-tree edges is com-
puted. GRIPP [350] and SSPI [101] obtain a different trade-off by
attaching additional interval labels to non-tree edges. This leads
to linear index size and time at the cost of increased query time.

These considerations show that reachability, at least in its basic
form, does not need to have a significant negative effect on the
performance of RDF query evaluation. It clearly does not affect
its theoretical complexity, given that the evaluation of SPARQL
SELECT queries is already PSPACE-complete.

4.2.2.3 Optionality

So far, we have focused on purely conjunctive queries. Disjunc-
tion or equivalent union constructs allow the query author to
collect data items with different characteristics in one query. For
example, to find colleagues of a researcher from an RDF graph
containing bibliography and conference information, one might
choose to select co-authors, as well as co-editors and members of
the same program committees. On RDF data, disjunctive queries
are far more common than on relational data, since all RDF
properties are by default optional. Many queries have a core of
properties that have to be defined for the data items in question,
but also include additional properties (often labeling properties
or properties relating the data items to further information such
as web sites) that should be reported if they are defined but may
also be absent. The following SPARQL query for example returns
pairs of articles and editors for articles that have editors, and just
articles otherwise. If one considers the results of a query as a
table with nil values, the editor column is nil when an article
has no bib:editor property.

SELECT ?article, ?editor
WHERE { ?article a bib:Article AND

OPTIONAL { ?article bib:editor ?editor } }

This kind of optional selection makes life simpler for both the
query author and the query processor, as compared to a dis-
junctive or union query which has to duplicate the non-optional
part:

58 web querying

SELECT ?article, ?editor
WHERE { ?article a bib:Article AND

?article bib:editor ?editor }
UNION
{ ?article a bib:Article }

In fact, the latter query is not even equivalent as it returns
an additional result tuple (X,nil) for articles X that do have an
editor. This raises the question of the precise semantics of an
optional selection operator. The answer to this question is not
the same for different RDF (or XML) query languages. The main
difference between the offered semantics in languages such as
SPARQL, Xcerpt, or XQuery lies in the treatment of multiple
optional query parts with dependencies. For example, in the
expression A ∧ optional(B) ∧ optional(C) the same variable
V may occur in both B and C. In this case, if we just go ahead and
use the B part to determine bindings for V, these bindings may
be incompatible with C, i.e., prevent the matching of C.

The different ways to handle this case of multiple interdepen-
dent optionals yields the following four semantics for optional
selection constructs:

1. Independent optionals disregard interdependencies between
optional clauses by imposing an order on the evaluation of op-
tional clauses. SPARQL for example uses the order of optional
clauses in the query. The following query selects articles together
with their respective editor and, if that editor is also an author,
also with the author name:

SELECT ?article, ?person, ?name
WHERE { ?article a bib:Article AND

OPTIONAL { ?article bib:editor ?person }
OPTIONAL { ?article bib:author ?person AND

?person bib:name ?name } }

If we changed the order of the two optional parts, the semantics
of the query would also change: select all articles together with
their authors and author names, if any. The second optional
becomes redundant, as it only checks whether the binding of
?person is also an editor of the same article. Whether or not the
check fails does not affect the outcome of the query.
It should be obvious that this semantics for interdependent op-
tionals is equivalent to allowing only a single optional clause per
conjunction that may in turn contain other optional clauses. The
above query could also be written as follows:

SELECT ?article, ?person, ?name
WHERE { ?article a bib:Article .

OPTIONAL { ?article bib:editor ?person

4.2 database-style query languages 59

OPTIONAL { ?article bib:author ?person AND
?person bib:name ?name }

} }

This observation, however, only applies if the optional clauses are
interdependent. If they are not interdependent, multiple optional
clauses in the same conjunction differ from the case where they
are nested.

2. Maximized optionals consider any order of optionals. In the
example they would return the union of the orders, i.e., either
first binding editors and then checking whether they are also
authors, or first binding authors and author names and then
checking whether they are also editors. This semantics, which
was first used in Xcerpt [320], is more involved than the above
and assigns different meanings to consecutive vs. nested option-
als. The advantage of this is that it is equivalent to a rewriting of
optional to disjunctions with negated clauses: A ∧ optional(B)
∧ optional(C) is equivalent to (A ∧ not(B) ∧ not(C)) ∨ (A
∧ not(B) ∧ C) ∨ (A ∧ B ∧ not(C) ∨ (A ∧ B ∧ C). This en-
sures that the maximal number of optionals for a certain (partial)
variable assignment is used.

3. All-or-nothing optionals are a rare case of optional semantics
where either all optional clauses are consistent with a certain
variable assignment or all optional variables are left unbound.
This semantics can be obtained in SPARQL and Xcerpt by using
a single optional clause instead of multiple independent ones.

4.2.2.4 Existential Information

Recall that RDF data may contain specifically marked resources,
called blank nodes, whose identity is limited to the RDF graph
and that express only existential information. If we see an RDF
graph as a logical conjunction of triples, they act as existential
quantifiers over the resulting formula. Blank nodes pose a number
of challenges for RDF query evaluation.

First, when blank nodes are selected by a query, should a query
language return them like any other resource? Blank nodes are
essentially local identifiers and thus may not carry much infor-
mation outside the scope of their original graph. Furthermore,
blank nodes express existential information, which may already
be implied by the other data and therefore redundant. Consider
for example the data of Figure 3 on page 41, and assume that this
data additionally contained a statement that the article smith2005
is part of issue 11 of some journal. That information is obviously
already implied by the existing data (that smith2005 is part of
issue 11 of the journal “Computer Journal”) and can thus safely
be omitted. An RDF graph without such redundant information
is called lean [189]. Ideally, we might expect an RDF query lan-

60 web querying

guage to return only those blank nodes that are not redundant
(perhaps together with enough additional information to retrieve
them again, e.g., a concise bounded description [340]). However,
simply computing the lean graph for any given RDF graph is
co-NP-complete [180]. Therefore, many RDF query languages
choose to ignore this issue and return blank nodes just like any
other resource.

Second, when constructing new RDF graphs (e.g., through
SPARQL’s CONSTRUCT clause), we need to be able to construct also
new blank nodes to obtain an adequate RDF query language. Say
we want to construct a new blank node with edges to all articles
selected by this query. Then a single blank node for all articles
is needed. However, we might also want to construct, for each
article, a new blank node with edges to each of its authors. Now
we need one “fresh” blank node for each article (otherwise all
articles share all authors) but only one for each group of authors
of the same article. SPARQL only allows the construction of blank
nodes that are in the scope of all query variables and thus can
express neither of the above queries. In RDFLog [78, 77] the
effect of blank nodes on RDF querying is studied in detail. It is
shown, in particular, that the combination of blank node support
(even as in SPARQL) with (recursive) rules (as, e.g., in Schenk
and Staab [323]) immediately leads to an undecidable, Turing-
complete language that can be reduced, using Skolemization and
a so-called un-Skolemization, to standard logic programming.
It is also shown that arbitrary scoping of blank nodes is not
more expensive as SPARQL-style ∀∃ scopes and that, at least in
presence of rules, the two are actually equivalent.

This concludes our brief summary of core issues on RDF query-
ing and RDF query languages. The above discussion shows that
RDF querying is a less mature field of research than XML query-
ing, but that there are a number of open questions that need to
be addressed for efficient and convenient access to RDF, and thus
arguably the entire semantic web vision, to move forward.

4.2.3 Outlook—Versatile Languages

In the previous sections we have discussed XML and RDF query-
ing separately. However, in recent years, GRDDL [115] and similar
initiatives have invested effort into defining a means to conve-
niently access both XML and RDF data within the same appli-
cation or even the same query language. This is reflected in an
increasing number of approaches to integrate XML and RDF
querying. Existing approaches for integrating XML and RDF
access roughly fall into one of two categories: transformational
and multi-language approaches. In the former, a pure XML or
a pure RDF query language is used, and some encoding in the

4.2 database-style query languages 61

corresponding format is used to access data in the respective
other format. In the latter, a query language for one of the data
formats is combined with, most often embedded into, one for the
other format. Examples include XSPARQL and GRDDL. Trans-
formational approaches have the advantage that users only need
to learn a single language. However, this is offset by the need to
understand the encoding of RDF in XML or vice versa and very
limited support for specifics of the encoded data format that are
not present in the native format.

A unique position among these approaches is held by Xcerpt
and its extension XcerptRDF: through a slight extensions to the
pattern- and rule-based XML query language Xcerpt, convenient
querying of RDF is enabled that, in contrast to languages like
SPARQL, addresses also the graph nature of RDF. The vast ma-
jority of language features is shared by both the XML and the
RDF version of Xcerpt, thus alleviating the problems of the above-
mentioned integration approaches.

We proceed by briefly outlining the basic ideas of Xcerpt to
give an impression of how a versatile semi-structured query
language compares with XQuery or SPARQL as discussed in
the previous sections. A more detailed description of Xcerpt is
given by Schaffert and Bry [320], its RDF extension XcerptRDF is
discussed by Bry et al. [79].

Xcerpt

Xcerpt [320] is a query language designed after principles given
by Bry et al. [80] for querying both data on the “standard web”
(e.g., XML and HTML data) and data on the semantic web (e.g.,
RDF and Topic Maps data, etc.). Xcerpt is data versatile, i.e., the
same Xcerpt query can access and generate as answers data in
different web formats. Xcerpt is strongly answer-closed, i.e., it not
only allows for the construction of answers in the same data
formats as the queries like, e.g., XQuery [94], but also for further
processing of the data generated by this same query program.
Xcerpt queries are pattern-based and allow for an incomplete
specification of the data to be retrieved, by (1) not explicitly
specifying all children of an element, (2) specifying descendant
elements at indefinite depths (restrictions in the form of regular
path expressions being possible), and (3) specifying optional
query parts. The evaluation of incomplete queries is based on
a novel unification algorithm called simulation unification. The
processing of XML documents is graph-oriented, i.e., Xcerpt is
aware of the reference mechanisms of XML (e.g., of ID/IDREF
attributes and links).

An Xcerpt program consists of a finite set of Xcerpt rules. The
rules of a program are used to derive new, or transform existing,

62 web querying

data from existing data (i.e., the data being queried). Construct
rules are used to produce intermediate results while goal rules
form the output of a program.

While Xcerpt works directly on XML or RDF data, it has its own
data format for modeling XML documents or RDF graphs: Xcerpt
data terms. For example, the XML snippet <book><title>White
Mughals</title></book> corresponds to the data term book [

title ["White Mughals"]]. The data term syntax makes it easy
to reference XML document structures in queries and extends
XML slightly, most notably by allowing unordered data and
making references first class citizens (thus moving from a tree to
a proper graph data model).

The construct rule in the following query for example defines
data about books and their authors, which is then queried by the
goal rule. Intuitively, the rules can be read as deductive rules (like
in, say, Datalog): if the body (after FROM) holds, then the head
(following CONSTRUCT or GOAL) also holds. A rule with an empty
body is interpreted as a fact, i.e., the head always holds.

GOAL
authors [var X]

FROM
book [[author [var X]]]

END

CONSTRUCT book [title ["White Mughals"],
author ["William Dalrymple"]] END

Xcerpt query terms are used for querying data terms, and in-
tuitively describe patterns of data terms. Query terms are used
with a pattern matching technique, called simulation unification,
to match data terms [318]. They can be configured to take incom-
pleteness or ordering of the underlying data terms into account
during matching (indicated by different types of brackets). Query
terms may also contain (logic) variables. When they do, suc-
cessful matching with data terms results in variable bindings,
which are then used by Xcerpt rules to derive new data terms.
Matching the query term book [title [var X]] against the
XML snippet above for example results in the variable binding
{X/"White Mughals"}. In addition to the query term types dis-
cussed by Schaffert and Bry [320], we also consider non-injective
ordered and unordered query terms indicated by three braces or
brackets, respectively.

Construct terms are essentially data terms with variables. The
variable binding produced via query terms in the body of a rule
can be applied to the construct term in the head of the rule in
order to derive new data terms. For the above example we obtain
the data term authors ["William Dalrymple"] as a result.

4.3 keyword-based query languages 63

4.3 queries as keywords : keyword-based query lan-
guages

Two important characteristics generally desirable for social seman-
tic web applications, accessibility and flexibility, make web query-
ing as described in the last section a less than ideal choice as a
means for data retrieval:

accessibility To make structured data accessible for a broad
user base, a query language is needed that is easy to use, a
criterion which web query languages do not fulfill. Like most
programming languages [298], they are designed for usage by
experienced programmers, and usability is of far lesser concern
than for example scalability and expressiveness. Accordingly,
the small number of usability studies carried out for web query
languages focus on comparing users’ performance in different
query formalisms but do not assess overall usability [328, 169].
A notable exception is a study by O’Keefe and Trotman [287],
which found that even researchers in the area of XML have
considerable problems creating valid XPath queries, indicating
that the usability of web query languages is low.

Usability studies performed on database query languages, the
paradigm after which web query languages are modeled, indicate
that participants generally find it hard to use these languages.
Ogden and Brooks [286] give reasons for this, which are likely
to apply also to web query languages: The languages require
the user to have extensive knowledge of the data schema and
they are highly constrained. This leads to frequent mistakes,
which in turn increase the learning time and discourage the
users. In addition, the languages are seen as “overly verbose and
complicated” ([286], page 161).

flexibility When many people contribute to data creation,
or when data from different sources is aggregated in one data
repository, strict enforcement of homogeneity of data in terms
of a certain data schema is not feasible without discouraging
potential users from contributing. Additionally, data of various
different types, for example XML and RDF, may be present in the
system, and it should be possible to query over the different data
types using only one query formalism.

The heterogeneity of data necessitates a flexible query interface
which does not require knowledge of the schema and offers
integrated access to data in various formats. While versatile web
query languages (see Section 4.2.3) are designed to address this
issue, most current web query languages fail to do so.

In the domain of textual queries, keyword querying and natural
language querying are the paradigms most commonly used to

64 web querying

facilitate easy-to-use querying. While some approaches exist for
using natural language querying of XML data [248, 249], we
will not consider this paradigm in the following for two reasons.
First, and notwithstanding the fact that there is no unequivocal
experimental evidence for the superiority of either of the two
paradigms in terms of usability [360, 212, 346], keyword search
has become the de facto standard for information access on the
web, and practically all web users have practice creating keyword
queries. Second, natural language query processors can only
understand a limited subset of natural language. The limits of
this understanding are hard to convey to human users and can
lead to a “spiral of failure” ([360], page 114).

Keyword search is used in a wide variety of applications and
domains, in web search engines such as Google,8 Yahoo!,9 and
Bing10 as well as in more specialized contexts and domains.
Entering the query XML Web into Google for example yields a
lists of web pages in which these terms occur; on the shopping
site Amazon11 and the auction site Ebay12 it results in a list
of products available on the site, and on the social networking
site Facebook,13 the search results for the same query contain
relevant user groups, events, user profile add-ons, and users who
are interested in the web and XML.

In web search, most queries are keyword-only queries. Google
for instance supports a limited set of label-keyword-like con-
structs like allintitle:XML, which retrieves web sites that have
the word “XML” in their title element. However, these are rarely
used in practice [202, 43].

In general, the structure of web documents can only be queried
to a very limited degree using web search. For example, it is
not possible to specify an arbitrary HTML tag as a surrounding
context for a keyword. In the case of web search engines, which
process vast amounts of data, this can be attributed to the fact that
indexing and retrieving structural information would increase the
data and processing load, thereby decreasing search efficiency.

Amazon, on the other hand, which operates on much less, and
much more homogenous, data, offers advanced search function-
ality for various categories of products like books and magazines
(see Figure 5). The user can provide values for a number of at-
tributes, for instance author and language. While the advanced
search is realized in terms of a form, it is essentially equivalent
to a limited label-keyword query language.

8 http://www.google.com/
9 http://www.yahoo.com/

10 http://www.bing.com/
11 http://www.amazon.com/
12 http://www.ebay.com/
13 http://www.facebook.com/

http://www.google.com/
http://www.yahoo.com/
http://www.bing.com/
http://www.amazon.com/
http://www.ebay.com/
http://www.facebook.com/

4.3 keyword-based query languages 65

Hello. Sign in to get personalized recommendations. New customer? Start here. Get FREE 2-Day Shipping for Father's Day
Sponsored by Black & Decker

Your Amazon.com | Today's Deals | Gifts & Wish Lists | Gift Cards Your Account | Help

Search Books

Books Advanced Search Browse Subjects New Releases Bestsellers The New York Times® Bestsellers Libros En Español Bargain Books Textbooks

Advanced Search

Books

Magazines

Music

Classical Music

DVD

Toys & Games

Books Search

Keywords

Author

Title

ISBN(s)

Publisher

Subject

All Subjects

Condition

All Conditions

Format

All Formats

Binding

All Bindings

Reader Age

All Ages

Language

All Languages

Pub. Date Month Year

All Dates

Sort Results by:

Relevance

Real-world Examples
Trying to find books written by Malcolm X but not an autobiography? Try this search:
Put 'Malcolm X' in the 'Author' field and '-autobiography' in the 'Keywords' field. See the results

Looking for the exact books from your 20th Century American Literature syllabus? Enter all the ISBNs in
the 'ISBN' field, with a '|' (pipe) between each one.
E.g. 9780140285000 | 9780743273565 | 9780061120060. See the results

Search Tips
How can I get fewer results?
If you use more than one keyword,
our search engine will restrict the
results to products that match all
the keywords you enter.

How can I get more results?
Too many keywords can constrain
your search. Use fewer keywords to
find more results, e.g. conduct a
search for "O'Reilly" to find all titles
by O'Reilly and Associates.

How do I search by ISBN?
If you choose to search by ISBN,
search only by that field and make
sure you type the number correctly,
without any dashes.

How do I sort my results?
When searching our bookstore, you
can sort your search results in the
way that is most useful to you by
selecting the sort option. Once your
search has produced a list of
relevant items, select a way to sort
by clicking the "Sort results by" box
at the top of the list.

Read More Search Tips

Your Recent History (What's this?)

Recently Viewed Items

The Psychology of Computer Programming: Si... by Gerald M. Wein...

A Guinea Pig's History of Biology by Dr. Jim Endersby

Seven Types of Ambiguity by Elliot Perlman

Recent Searches

advanced search, w (All Departments), the influence of the psychology of, seven types of ambiguity

› View and edit your browsing history

Get to Know Us

Careers

Investor Relations

Press Releases

Amazon and Our Planet

Make Money with Us

Sell on Amazon

Join Associates

Self-publish with Us

› See all

Let Us Help You

Shipping Rates & Policies

Amazon Prime

Returns

Help

Canada China France Germany Japan United Kingdom

AmazonWireless
Cellphones &
Wireless Plans

Askville
Community
Answers

Audible
Download
Audio Books

DPReview
Digital
Photography

Endless
Shoes &
Handbags

Fabric
Sewing, Quilting
& Knitting

IMDb
Movies, Films
& Actors

Shopbop
Designer
Fashion Brands

Small Parts
Tools, Parts
& Materials

Warehouse Deals
Open-Box
Discounts

Zappos
Shoes &
Clothing

Conditions of Use Privacy Notice © 1996-2010, Amazon.com, Inc. or its affiliates

Shop All Departments Cart Wish List

Continue Shopping: Customers Who Bought Items in Your Recent History Also Bought Page 1 of 17

Becoming a Technical
Leade... (Paperback) by
Gerald M. Weinberg

 (12) $26.69
Fix this recommendation

Seven Types of Ambiguity
(Paperback) by William
Empson

 (7) $10.85
Fix this recommendation

The Mythical Man-Month: E...
(Paperback) by Frederick P.
Brooks

 (145) $34.37
Fix this recommendation

Back Next

Figure 5: The Amazon advanced search interface, which can be
accessed at http://www.amazon.com/gp/browse.html?node=
241582011

Keyword-based querying is an established technique and has
shown great effectiveness in querying the web in a variety of
domains. It is increasingly applied to facilitate non-expert query-
ing of the ever growing amount of (semi-)structured data on the
web. The majority of research in the area of keyword querying
for semi-structured data is concerned with XML data. The most
likely reasons for this are that XML is older and more established
than RDF, and that keyword querying for RDF data is harder to
realize because of its graph structure, labeled edges, and blank
nodes.

In the remainder of this section we will give an introduction
to the topic of keyword querying on semi-structured data. Sec-
tion 4.3.2 identifies the most important research issues in the
area of XML keyword querying and provides an overview of the
different approaches. The less numerous schemes for keyword
querying of RDF are presented individually in Section 4.3.3. We
assume familiarity with XML, RDF, and their respective data
models (see Section 4.1). The related topic of keyword querying
in relational databases (see, e.g., Bhalotia et al. [57]) will not be
treated here.

4.3.1 Classifying Keyword Query Languages

Web search and web querying can be seen as two extremes with
respect to the degree to which explicit querying of the structure
of the data is supported. The former typically does not allow

http://www.amazon.com/gp/browse.html?node=241582011
http://www.amazon.com/gp/browse.html?node=241582011

66 web querying

querying of the structure, while in the latter the structure of the
data is usually fully specified. Based on this observation, we can
distinguish three types of keyword-based query languages for
structured data according to the extent to which structure can be
used as a selection criterion.

1. In keyword-only query languages, queries consist of a number
of terms which are matched to the textual content of nodes in
an XML or RDF document, and in some cases to node or (in
the case of RDF) edge labels. Queries make no reference to the
structure of the data. This category includes most keyword query
languages, like XKeyword [37, 198], XRank [179], Spark [378],
and XKSearch [372].

2. In label-keyword query languages such as XSearch [109] and
XBridge [245], a query term is a label-keyword pair of the form
l:k. The term matches data where a node with the label l contains,
either directly or through a descendant node, text matching the
associated keyword k. It is thus possible to indicate the context
in which the keyword should occur.
Depending on the particular query language, either the label or
the keyword may be optional, meaning that query terms can have
the form :k, l:, or l:k. Applied to the example data of Figure 2, the
query title:Web matches node 3. The query :Web, on the other
hand, does not impose any constraints on the node label and
matches nodes 3 and 23.

3. Keyword-enhanced query languages [250, 152, 327] extend tra-
ditional web query languages with simple keyword querying.
They allow for the specification of structure to the extent to which
it is known, but also include constructs for the use of keyword
querying where it is not. Keyword-enhanced query languages
constitute an extension of traditional query languages and there-
fore provide their full expressive power.
Given that (some) web query languages also offer ways to spec-
ify queries when the user lacks knowledge about the schema,
for example through regular path expressions in XPath, one
might wonder what distinguishes traditional query languages
and keyword-enhanced query languages. As pointed out by Flo-
rescu et al. [152] and Schmidt et al. [327], regular path expressions
are useful when the schema is not completely known to the user,
but not when the user has no knowledge of the schema at all. The
reason for this is that query evaluation in web query languages is
not optimized for evaluating vague queries. Furthermore, while
the schema of the data may not have to be known, knowledge
of the query language itself is still necessary, making web query
languages unsuitable for casual users.

A second, orthogonal characteristic of keyword query lan-
guages is the way they are implemented.

4.3 keyword-based query languages 67

1. Most keyword query languages are implemented as stand-
alone systems that handle all steps of the query evaluation.

2. Another group of keyword query languages translate the
keyword queries into another query language and thus outsource
the query evaluation. This category includes many RDF keyword
query languages [349, 378, 359], but to the best of our knowledge
only one XML language, XBridge [245], which translates keyword
queries into XQuery. The approach of Ladwig and Tran [235]
takes an exceptional position in that it tightly integrates query
translation and query evaluation, and generates queries and
candidate answers at the same time.

3. Keyword-enhanced query languages finally build on exist-
ing systems by combining conventional query languages like
XPath or XML-QL with keyword-querying techniques.

4.3.2 Querying XML

This section gives an overview over the most important issues in
the area of keyword queries for XML data.

4.3.2.1 Determining Semantic Entities

In keyword querying on the web, some structural information
may be taken into account when ranking the results, for example
by assigning different scores depending on whether a keyword
occurs in the title or is printed in big or bold text [71]. The type
of the return value, however, is fixed, and the structure of a
document does not play a role when determining it. Apart from
efficiency, there are two reasons for this. First, web or wiki pages
typically have a comparably small size, and it is reasonable to
return results at the granularity of whole pages. Secondly, in
the case of domain-specific querying on a limited, homogeneous
dataset like that of a shopping website, querying only serves one
task, namely finding matching products. There are only few types
of objects, e.g., books and DVDs, and the return types can easily
be predefined. For example, keywords matching a book might
yield a return entity of type book which by default displays the
title, author, and price, while the return entity for DVDs might
show the title, price and region code.

When applying the concept of keyword-search to RDF or XML
documents, on the other hand, we may be dealing with a single
big document that represents a bibliography or an address book
and contains thousands of entries. In this case, returning the
whole document would not be meaningful. To determine a useful
return value, the data must first be partitioned into semantic
entities.

68 web querying

Figure 6: Document-centric XML representing an excerpt of an article

XML documents may be data-centric like in the case of a
bibliography, see Figure 2 on Page 39, or also document-centric,
representing a text and its structure or formatting, as shown in
Figure 6. A truly versatile keyword-based query language for
XML should yield useful results for both kinds of documents,
and any type that might exist in between.

As an illustration of the return value problem, again consider
the XML document of Figure 2, which represents a bibliography.
A query K = {w1, ...,wk} matched on an XML dataset T yields the
result lists L = {L1, ...,Lk}, where each list Li = {v1, v2, ...} consists
of all the nodes v that contain wi. For the data of Figure 2, the
first term in the query K = {Smith, Web} (conjunction is assumed
here and in the following) has one match: the content of node
11, which is the last name of one of the authors of an article
(L1 = {11}). The second term matches the titles of both articles,
and thus L2 = {3, 23}.

Returning only the matched nodes would not provide much
useful information for the user. Neither would returning the
whole document, which might contain many more entries. Given
the nature of the data and the query, we can assume that the
user is interested in obtaining information about articles that
contain the two search terms. This means that the meaningful
semantic entities which should be returned (as a whole or in
part) in response to the query, are subtrees governed by article
nodes. In general, these semantic entities are determined either
at the schema level or, more frequently, by connecting keyword
matches in the data.

4.3 keyword-based query languages 69

One approach to the grouping of matches is to find the most
specific element that is an ancestor to at least one match instance
of each keyword, and to consider it the root of their common se-
mantic entity. The underlying idea is that the ancestor-descendant
relationship indicates a strong semantic connection, particularly
when the distance between ancestor and descendant is small.
Correspondingly, a node which is the closest common ancestor
of instances of all keywords is likely to encode the most specific
concept that the keyword matches have in common. This concept
is called the Lowest Common Ancestor (LCA) [185], and was used
in an early approach to XML keyword querying by Schmidt et al.
[327].

Depending on the application and the specific algorithm, an
answer set S = {S1,S2, ...} may contain either one (�Si� = �K�) or
more than one (�Si� � �K�) matched node for each keyword. In
the above example, and assuming the latter case, the three answer
sets are S1 = {11, 3}, S2 = {11, 23}, and S3 = {11, 3, 23} with LCA
nodes LCA(S1) = 2, LCA(S2) = 1, and LCA(S3) = 1, respectively.
The latter two answer sets contain nodes that belong to two
different publications and thus not to a meaningful semantic
entity given the context. They are considered to be false positives.

Several refinements of LCA have been proposed to remedy
the problem of false positives, that is, the grouping of matches
which do not belong to a common relevant or meaningful seman-
tic entity. The alternative grouping semantics presented in the
following reduce the set of LCA answers by eliminating matches
that are considered false positives. However, this often introduces
false negatives, meaning that not all relevant answers are returned.
An extensive review of some of the connection heuristics pre-
sented here is given by Vagena et al. [351].

interconnection semantics The assumption underlying
Interconnection Semantics [109] is that two different nodes with
the same label correspond to different entities of the same type,
while nodes with differing labels represent concepts belonging
to different types.

Accordingly, two nodes v1 and v2 are interconnected if the path
from them to their LCA does not contain distinct nodes with
the same labels except for v1 and v2 themselves. An answer set
contains only one match for each keyword in the query and is
interconnected if either it contains a node, the star center, that is
interconnected with all other nodes in the set (star relatedness) or
if all nodes are pairwise connected (all-pairs relatedness).

Again consider the query on the example data which yields the
result lists L1 = {11} and L2 = {3, 23} and answer sets S1 = {11, 23}
and S2 = {11, 3}. The shortest path between nodes 11 and 3

contains every node label only once, which means that the two

70 web querying

(1)
bib

(2)
article

(13)
book

(3)
title

(4)
year

(5)
authors

(12)
journal

...Semantic Web... 2005 (6)
author

(9)
author

(7)
first

(8)
last

John Doe

(10)
first

(11)
last

Mary Smith

Computer Journal

(14)
title

(15)
year

(16)
authors

(23)
journal

...XML... 2003 (17)
author

(20)
author Web Journal

(18)
first

(19)
last

(21)
first

(22)
last

Peter Jones Sue Robinson

Figure 7: False positives in interconnection semantics

are interconnected. Nodes 11 and 23, on the other hand, are not
interconnected since nodes 2 and 13, which both lie on the path
between the respective nodes and the LCA node bib, have the
same label, namely article. The only answer to the query is
thus S1 = {11, 3}. The interconnection relation in this case avoids
grouping matches together that belong to different articles as
simple LCA-based grouping would.

Since each set Si in the previous example contains only two
elements, the interconnected nodes are both star-related and
all-pairs related. However, this is not always the case, since star-
relatedness is a relaxation of all-pair relatedness in the sense
that for a set of nodes to be all-pairs related, every node has to
be a star center. For example, the query K = {Smith, Doe, 2005}
yields the answer set S1 = {11, 8, 4}. Nodes 11 and 8 are not
interconnected, since the path between them passes two nodes
with label author. Node 4, however, is interconnected with both
nodes 11 and 8. Consequently, S1 = {11, 8, 4} is not a query
answer if all-pairs interconnection is used, but it is according to
star related interconnection.

This example illustrates that all-pairs interconnection can lead
to false negatives, since S1 is a valid answer to the query. Both
types of interconnection semantics are also sensitive to false
positives when node labels differ but refer to similar concepts.
Applying the query K = {Smith, 2003} to the data of Figure 7
would wrongly return the root node as a result, because article
and book are different labels but signify conceptually related
entities.

exclusive lca XRank [179] introduces the concept of the Ex-
clusive LCA (ELCA) [379], which is targeted at keyword querying
on document-centric XML. The idea behind the ELCA is that
more specific LCAs should be preferred, but only if this does not
cause the loss of additional matches.

4.3 keyword-based query languages 71

The ELCA is computed by first finding R0, the set of nodes that
contain at least one instance of each keyword in the query via an
ancestor-descendant relationship. A query result node then is a
node in R0 which, for each keyword, contains at least one match
instance that is not contained in any of its descendant nodes that
are also in R0. Formulated in terms of the LCA, the procedure
yields those LCA nodes which either are not ancestors to any
further LCA nodes or, if they are, are also LCA nodes when
ignoring the keyword matches in the contained LCA subtree.

As an example, consider the query K = {XML, Web} evaluated
on the data in Figure 6 on page 68. The keyword match lists
are L1 = {14, 15, 21}, and L2 = {2, 15, 18, 21}. Based on this, some
exemplary answer sets are S1 = {13}, S2 = {14, 18}, and S3 =
{15, 18}. S1 consists of a single node containing all keywords,
meaning that the LCA of S1 is identical with its element, node 13.
Since this node is the LCA node and does not have any children,
it also is query result node. Similarly, node 11, the LCA of S2,
is also a result node. Node 11 also is the LCA of S3, and it
is an ancestor of node 13, itself an LCA node. It contains an
occurrence of k2 = Web which is not part of an LCA, namely in
node 18. However, S3 does not contain a match of k1 = XML in
a descendant of node 11 which is not also contained in an LCA.
Therefore, S3 is not a valid grouping.

ELCA does not remove all false positives since unrelated enti-
ties are still grouped together if no better matching is possible.
Additionally, false negatives may be introduced under certain
conditions [351].

smallest lca The Smallest Lowest Common Ancestor [372],
also used in XBridge [245], enhances the concept of LCA by a
minimality constraint. Only LCA nodes that do not have further
LCA nodes among their descendants are SLCA nodes. It should
be noted that this definition is stricter than that of ELCA in that
it generally forbids LCA nodes that have LCA nodes among their
descendants, while ELCA only constrains the context in which an
LCA node may contain another LCA node. Furthermore, SLCA
only allows one match instance for each keyword in an answer
set.

SLCA addresses the problem of false positives as described
in Section 4.3. Evaluation of the query K = {Smith, Web} on the
data in Figure 2 leads to the LCA nodes 2 and 1. Node 2 is a
node of type article and constitutes a meaningful result, while
node 1 is the root node of the document and the keyword matches
are distributed over two different articles. According to SLCA
semantics, only node 2 is a suitable result node since it does not
contain LCA nodes. Node 1 is an LCA node but not a return
node since it is an ancestor of another LCA node, node 2.

72 web querying

(1)
article

(2)
title

(3)
year

(4)
authors

(11)
journal

(12)
references

...Semantic Web... 2005 (5)
author

(8)
author

(6)
first

(7)
last

(9)
first

(10)
last

John Doe Mary Smith

Computer Journal (13)
article

(14)
title

(15)
authors

Web Querying... (16)
author

(17)
first

(18)
last

Mary Smith

Figure 8: Sample XML data

However, as in ELCA, false positives can still occur. The query
K = {Smith, 2003} has S1 = {11, 15} and LCA(S1) = 1 as a result
according to SLCA. This answer is not meaningful since the
keyword matches are distributed over two different articles, but
is not filtered out since there are no further keyword matches
and thus no further LCA in the data.

Additionally, disallowing nested LCAs can also lead to false
negatives, for example when the same query, K = {Smith, Web}, is
applied to the data in Figure 8. Among others, this produces the
answer sets S1 = {18, 14} and S2 = {10, 2} and the corresponding
groupings LCA(S1) = 13 and LCA(S2) = 1. Both LCA nodes
represent articles which contain both of the query terms and thus
constitute relevant results. However, since the second LCA is an
ancestor of the first, SLCA filters out the latter. Consequently,
only the referenced article is retrieved as a result.

meaningful lca The Meaningful Lowest Common Ancestor
(MLCA) [250] of a set of nodes is its LCA given that for each
pair of nodes, there are no other combinations of nodes with the
same label. that have an LCA node which is a descendant of their
LCA node. Intuitively, this means that for all keywords, the node
with the keyword label that is most closely related to the other
matched nodes is found. This is based on the assumption that a
lower LCA means a stronger connection. The concept of MLCA
combines SLCA with Interconnection Semantics and suffers from
similar problems with respect to false positives and negatives.

4.3 keyword-based query languages 73

amoeba join Amoeba Join [7] is another method used for
grouping matched nodes. An Amoeba is an answer set which
contains its LCA node, meaning that one of the nodes in the
answer set is in an ancestor-descendant relationship with all
other nodes in the set.

Applying the query K1 = {Smith, Web, article} to the data in
Figure 2 yields the answer sets S1 = {11, 23, 2} and S2 = {11, 3, 2},
among others. The former is not an Amoeba since LCA(S1) � S1,
and is not considered a valid grouping of matches according to
Amoeba join. On the other hand, S2 is a valid grouping because
it contains its LCA, node 2.

Amoeba join can be too restrictive, leading to false negatives
and unintuitive results: the query K2 = {Smith, Web} does not
yield any results in the data of Figure 2 even though it is a
relaxation of K1, and it can be expected that all query answers of
K1 are also answers to K2. On the other hand, recursive elements
can lead to false positives as discussed by [351].

valuable, compact, and compact valuable lca
A Valuable LCA (VLCA) [243] is an LCA in which the keyword-
matching nodes are homogeneous. A set of matched nodes is said
to be homogeneous if no node label on the paths between them
and their LCA (excluding matched nodes themselves) occurs
more than once. In other words, each element in the set of the
labels encountered when traversing from each matched node to
the common LCA should be unique. In Figure 2, for example,
nodes 7 and 22 are not homogeneous since there are two nodes
with label article on the path between them, nodes 2 and 13.
Nodes 3 and 5, on the other hand, are homogeneous. VLCA is
conceptually identical to all-pairs related interconnection seman-
tics in XSearch and has the same problems with false positives
and false negatives.

Compact VLCAs (CVLCAs) were introduced to achieve faster
computation of VLCA nodes. CVLCAs are compact in that they
enforce maximally specific results. More precisely, a Compact
LCA node is the LCA node of an answer set that dominates all
nodes in the set. A node vi is said to dominate another node vj if
there is no answer set involving vj that has an LCA which is a
descendant of vi. Intuitively, an LCA is only a Compact LCA if
it holds for all contained matched keywords that they could not
be part of a grouping of matches that has a more specific LCA.
This concept is similar to that of SLCA and suffers from the same
drawbacks. A Compact Valuable LCA (CVLCA) finally is a CLCA
that is also a VLCA.

relaxed tightest fragment Kong et al. [226] introduce
the idea of Relaxed Tightest Fragments (RTF), which allows for

74 web querying

multiple matches of a keyword in one answer set. RTF requires
that, for a given answer set Si, no subset which is also an answer
set may have an LCA that is different from the LCA of Si. Ad-
ditionally, the set of keyword matches has to be the maximum
set of matches for the given LCA, i.e., it should not be possible
to add further keyword matches to the set without the addition
resulting in a different LCA. Finally, no keyword match node in
the set can be part of a keyword answer set whose LCA node is a
descendant of the LCA of Si.

RTF is a variation of CVLCA where the way of generating the
answer set and the first two constraints ensure that the result
subtrees are complete with respect to the keyword matches while
still being as small as needed to cover at least one instance of
each keyword match.

For example, the query K = {XML, RDF} executed on the data
in Figure 6 yields keyword match lists L1 = {14, 15, 21} and L2 =
{17, 21} and, among others, answer sets S1 = {14, 17} and S2 =
{14, 15, 17} with LCA(S1,S2) = 11. S1 satisfies the first constraint
since it does not contain an answer set as a subset. Still, S1 is
not a valid query answer, because keyword matches could be
added to it without changing the LCA. S2 has another answer
set as a subset, namely S1, but the LCA nodes of S1 and S2 are
identical. The only keyword match that could be added to S2 is
node 21, which would change the LCA node to node 10. There
are no possible LCA nodes below the LCA node of S2. Thus, S2
satisfies all constraints and is considered a query answer.

It should be noted that RTF can lead to false positives when
keyword matches are distributed over several unrelated semantic
entities (see above).

xkeyword Xkeyword [198] is one of the few approaches to
determine semantic entities at the schema level. Here, the XML
schema graph is manually grouped into possible return types,
so-called target objects, which are then annotated with their re-
lationships to other target objects. For example, a target object
of type article could consist of article, author and title nodes
and stand in a contained in relation to a target object of type
proceedings. Queries are then processed by retrieving the objects
relevant for the keywords and generating minimal cycle-free sub-
graphs that contain all keywords. These in turn can be mapped
to subtrees of the target object graph, yielding the query results.

schema-level slca Schema-level SLCA [238] is a connection
heuristic that is similar to SLCA, but further limits the number
of groupings by requiring that a valid grouping may not contain
any other groupings not at the instance level but at the schema
level. This means that the path to a Schema-level SLCA root node

4.3 keyword-based query languages 75

for $a in mlcas doc("bib.xml")//author
$b in mlcas doc("bib.xml")//title,
$c in mlcas doc("bib.xml")//year

where $a/text() = "Mary"
return <result> {$b, $c} </result>

Figure 9: Schema-Free XQuery

may not be a prefix of the path to any other Schema-level SLCA
root nodes. For example, the query K = {web, journal} evaluated
on the data of Figure 6 yields the answer sets S1 = {12, 3} and
S2 = {23} with LCA(S1) = 2 and LCA(S2) = 23.

The path to LCA(S1), however, i.e., the path bib/article, is
a prefix of the path to LCA(S2), /bib/article/journal. Thus,
S1 is not a valid grouping according to Schema-level SLCA se-
mantics. As the example demonstrates, Schema-level SLCA intro-
duces additional false negatives compared to SLCA. Furthermore,
Schema-level SLCA does not solve the false positive problem that
occurs when keyword matches span several articles and their
LCA does not contain further keyword matches.

4.3.2.2 Determining Return Values

Once the relevant semantic entities have been identified and the
domain of the answer is established, the return values can be com-
puted. Ideally, the query answer should contain all the informa-
tion that is relevant to the query without being too verbose or in-
cluding irrelevant information. In many systems, the return value
is either the whole semantic entity, i.e., a subtree [372, 243, 179],
or a summary of it, such as the paths from the keyword matching
nodes to the root node [243, 226, 197]. However, several other
approaches exist as well.

xsearch XSearch [109] returns the matched nodes together
with their content. As long as the query only consists of keywords
or label-keyword pairs, this leads to relatively uninformative an-
swers. However, XSearch also allows for query terms of the form
l :, thereby enabling the targeted selection of entity properties.
For example, executing the query K = {last:Doe, title:} on the data
of Figure 2 returns nodes 3 and 8, thereby providing the title of
the publication authored by John Doe.

schema-free xquery Schema-Free XQuery [250] is an ex-
tension of XQuery by the MLCAS (Meaningful Lowest Common
Ancestor Structure) operator for keyword querying.

76 web querying

An example of a query in Schema-Free XQuery is shown in
Figure 9. The result of this query are the years and titles of
works by author “Mary.” Since the MLCAS keyword is present,
the variables $a, $b and $c are respectively bound to nodes with
labels author, title and year upon evaluation. The MLCAS then
is the structure consisting of those nodes among which the MLCA
relationship holds.

Having determined the MLCAS, the variables are bound to the
content of the children of the respective nodes in the MLCAS.
The keyword aspect of Schema Free XQuery thus pertains to
node labels and not, as in many other keyword query languages,
to content.

xseek XSeek [255, 254, 253] infers return structures, automati-
cally grouping the terms in a query into those that express search
predicates and those that specify return information. If a key-
word wi matches a node label, and no other keyword in the
query matches the node content of a descendant of wi, then wi

is considered to be a return node. All nodes that are not found to
be return nodes are predicates.

If no return nodes can be inferred, the entities in the paths
from the matched nodes to the VLCA node as well as the lowest
ancestor entity of the VLCA node are considered to be the return
nodes. A node is considered an entity if it is in a many-to-one
relationship with its parent. For example, a bibliography often
has several article nodes among its children, making article nodes
entities. These relationships can be inferred from the relations in
the data or, if present, from the schema.

The result of a query then consists of two parts, the return
nodes and their associated information and the paths from the
VLCA to the matched nodes.

4.3.2.3 Expressive Power

In their most basic and also their most common form, keyword
queries consist of unordered lists of terms connected by implicit
conjunction. Using such a simple syntax, most query intents can
only be approximated vaguely and a targeted selection of data
according to precisely specified criteria is not possible. Keyword-
enhanced web query languages provide greater expressive power,
but also carry a significant overhead and are less easy to use.

Apart from label:keyword syntax and user-defined return val-
ues (see Section 4.3.2.2), some languages allow for slightly in-
creased expressive power in the form of disjunctions [342], op-
tional terms [109], or operators for numerical comparisons [371].

Abbaci et al. [7] present a keyword-only query language that of-
fers an advanced syntax using the operators AND (conjunction), OR
(inclusive disjunction), INC (inclusion, meaning that one operand

4.3 keyword-based query languages 77

AND

web NOT

semantic

AND

web NOT

semantic

23

4 ... 23

3

2

1

23

13

3

2

1

Figure 10: Query tree (left) and query evaluation (right)

must occur in a node that is a descendant of the node containing
the other operand), SIB (sibling), and NOT (negation), as well as
parentheses to indicate precedence.

Query evaluation is realized by transforming the query into a
binary tree with leaf nodes containing the keywords and internal
nodes containing the operators. Then, sets of matching elements
are constructed for each leaf node, i.e., for each keyword. If
a node vi contains a keyword wi, all ancestors of vi are also
represented in the list of matches for wi since they contain it
indirectly. The data structure recording the matches stores the
ID of the node in which the keyword term occurs, the type of
occurrence, and the distance from the keyword match to the
respective node (where a distance of zero means that the node
contains the keyword directly). The answer sets for each leaf node
are then further processed by applying the operator specified
in a node to the answer sets of its children. The operator AND
corresponds to the intersection of two sets, OR to their union, and
NOT to their difference. Operators INC and SIB are realized via
constraints on the distance from the keyword match. The query
tree is processed in a bottom-up fashion, and once the root node
of the query tree has been processed only the nodes matching
the full query remain. Since indirect matches via ancestors are
included in the answer sets, in the case of conjunctive queries,
the LCA node is among the query results.

As an illustration, consider the query Web AND NOT semantic
evaluated on the data in Figure 2. The query tree of this query is
displayed on the left in Figure 10. The query is evaluated by first
adding information about matching nodes to the leaf nodes, as
shown on the right in Figure 10. The keyword “Web” is contained
directly in nodes 23 and 3 and indirectly (i.e., via a descendant), in
nodes 2, 1, and 13. The keyword “semantic” is contained directly
in node 3 and indirectly in all its ancestors, i.e., in nodes 2 and
1. The operator NOT is applied by taking the difference between

78 web querying

the set of all nodes in the XML data and the nodes containing
“semantic,” resulting in the set of all nodes that do not contain
“semantic,” either directly or via an ancestor. Finally, to find the
nodes that satisfy both conditions, the intersection of the sets of
nodes containing “Web” and those not containing “semantic” is
taken. The node list after application of the AND operator is the
final result since the root node has been reached.

XQSuggest [247] is a system that supports the user in creating
more expressive queries by suggesting for each keyword a num-
ber of semantic strings, path-like expressions that disambiguate
between the possible elements the keyword can refer to. The user
can then replace the keyword by one of the semantic strings in
order to state his query in more precise terms.

4.3.2.4 Ranking

Several metrics for ranking query answers that operate not at the
document level but at the granularity of the returned structures
have been suggested.

XSketch [246] and the work by Bao et al. [39] use a ranking
scheme based on tf-idf [205] and structural properties that does
not rank individual results but rather types of nodes (LCA nodes
in the case of Li et al. [246]), thereby indicating which types of
subtrees are suitable query answers. As such, the approach lies
between determining return entities and result ranking.

The schemes employed for ranking query answers are typi-
cally based on the size of the answer subtree [226], the distance
between the matched nodes [327], or a variant [109, 39] of the
vector space model [316] and tf-idf measure. The ranking mecha-
nism of XRank [179] employs a combination of several of these
criteria with a variant of PageRank [71] adapted to XML data.
We exemplarily describe it in detail in the following.

XRank uses three criteria to rank results: specificity, keyword
proximity, and the connections between elements. Specificity refers
to the distance between the matched leaf nodes and the return
node, while keyword proximity means the distance between the
keyword matches themselves. Specificity, describing vertical dis-
tance, and keyword proximity, describing horizontal distance,
combine into a two-dimensional proximity metric. A variant of
Google’s PageRank, ElemRank, is finally used to let the links
between elements factor into the ranking value of the result node.

ElemRank is an adaptation of PageRank that takes specific char-
acteristics of XML data into account, namely the bi-directional
propagation of ElemRanks through links, the aggregation seman-
tics for reverse containment relationships, and the distinction
between containment links and hyperlinks. While hyperlinks
are ignored when matching the keywords, they are considered
when calculating ElemRanks. Containment links, which describe

4.3 keyword-based query languages 79

the parent-child relationship between XML elements, represent a
stronger relation than hyperlinking, e.g., through IDREFs. The
two are thus handled separately, with the propagation of Elem-
Rank value between elements connected by containment edges
taking place in both directions. Additionally, the ElemRank of
a node is defined as the sum of the ElemRanks of its children,
which means that the ranking values of the subparts of an entity
in turn combine into that entity’s ranking value.

The ranking value of each instance of a keyword match is then
calculated as its ElemRank value, scaled by a decay factor that
is inversely proportional to the distance between the result node
and the keyword match. The ranking value of the result tree
finally is the sum of the ranking values of the contained keyword
occurrences multiplied by a measure of keyword proximity which
is based on the size of the smallest text window containing all
matches. If a keyword has several occurrences in the subtree
governed by the result node, the value of the node with the
highest ElemRank value is used.

In summary, the criterion of specificity is realized as the decay
scaling factor, where decay increases as the distance between a
keyword occurrence and the result node grows, meaning that
the ElemRank calculated from the link connections between the
elements becomes smaller. The keyword proximity criterion, on
the other hand, is represented by the scaling factor of the overall
ranking value of the result, with a bigger distance between the
keyword occurrences corresponding to a smaller scaling factor.

4.3.3 Querying RDF

This section presents various approaches to keyword querying
on RDF data.

4.3.3.1 SemSearch

SemSearch [239] is a search engine for web documents aug-
mented with RDF annotations. As output it returns a ranked
list of matching HTML documents. Only the RDF data but not
the documents themselves are processed during query evalua-
tion.

A SemSearch query consists of pairs of a subject and a keyword
connected by a colon, and the operators and and or to indicate
conjunction and disjunction. During query evaluation, the key-
words are matched only to semantic entities, that is, to classes,
properties, and instances, but not to relations. It is assumed that
query subjects refer to RDF classes and specify the return type. If
no class matches the subject, the type of the subject is determined
and rules are used to infer the return type from the types of

80 web querying

entities of the keyword and subject. For example, in the query
Mary:John, Mary and John are both instances, and the rule for
this case says that the return type should also be an instance, e.g.,
an article co-authored by Mary and John.

Using the list of matching entities and their types, the user
query is then translated into SeRQL via templates. Multiple
queries are constructed if a keyword matches several semantic
entities. Since the number of such queries can be very large when
keywords in the original query have multiple matches, rules are
employed to reduce this number. If there are several matches of
type class, for example, only the most specific class is considered.
The application of the rules can be expected to decrease the recall
of the search.

Finally, the retrieved documents are ranked, and the individ-
ual results are augmented with information about the matched
entities. For ranking, two factors are considered, namely the dis-
tance between each keyword and its matches and the number of
keywords satisfied by a search result.

4.3.3.2 SPARK

SPARK [378] is a search system for RDF data that translates
keyword-only queries into SPARQL and ranks the resulting
queries. Keywords are mapped to resources in the knowledge
base, that is, to classes, instances, properties, and literals. This
is achieved by using both the form and the semantics of the
keywords. The form-based mapping uses string comparison tech-
niques like the edit distance [241] and in addition applies stem-
ming [256]. The semantics-based mapping retrieves semantically
related words like synonyms using a thesaurus. In the process, a
single query term can be mapped to several resources of different
types. The different translations are augmented with confidence
scores based on the similarity between the keyword and the
concept.

Next, the query sets are constructed. If each keyword is mapped
to exactly one resource, there is only one query set, otherwise
all combinations of query sets, each containing one resource for
each keyword, are generated. For each query set, a query graph
is constructed using the minimum spanning tree algorithm of
Kruskal [233], and missing relations and concepts are introduced
to obtain a connected graph, which is then translated into a
SPARQL query.

Finally, ranking scores for the generated queries are computed
from the similarity of the keywords and the concepts they are
mapped to, the proportion of overlap in resources between the
keyword query and the corresponding SPARQL query and the
information content of the query.

4.3 keyword-based query languages 81

4.3.3.3 Q2Semantic

Q2Semantic [359] provides a system for querying RDF data
using keyword-only queries. The latter are translated into for-
mal queries, which can in turn be mapped directly to SPARQL
queries. The system aims at a higher efficiency than comparable
approaches. It operates on summarized RDF graphs, so-called
RACK graphs, instead of the original data.

Q2Semantic ranks the query results and uses Wikipedia to find
concepts related to the query terms. These concepts are also used
to assist the user in entering his keyword query, as the interface
offers auto-completion for RDF literals and Wikipedia terms.

When displaying the query results, Q2Semantic also shows
the portion of the RDF data used in the query, as well as the
translated formal query and a natural language explanation.

An RDF graph is converted into a RACK graph by mapping
relations, attributes, instances, and attribute values to R- and
A-edges and C- and K-nodes, respectively. R- and A-edges and
C-nodes are then clustered together if they have the same labels
and, in the case of edges, the same connections. K-nodes are
merged when they are incident to the same A-edges, and the
newly merged node inherits the labels of all the original K-Nodes.
Costs are calculated for edges and nodes based on the number of
elements merged to obtain them.

A keyword query is first matched against an inverted index
which stores the K-Node labels. To allow for a broader vocabu-
lary in the queries, the index is augmented with related terms
extracted from Wikipedia, e.g. the anchor text of articles linking
to an article whose title is a K-node label. Keywords are thus only
matched to RDF attribute values. If there are several matches for
one term, all of them are returned and used in the next step.

Starting from the matched K-Nodes for all query terms and
using the cost functions of the edges as a heuristic for guiding
the search, a tree is then gradually built up in the graph in a
round robin fashion. To avoid recursion, repeated exploration of
the same node within one path is penalized by adding a large
number to the cost. A formal query is obtained when a root that
is common to at least one instance for each keyword is reached.

Since several formal queries for the same keyword query may
exist, a ranking function is employed that uses the lengths of the
paths in the formal query, the scores of the matched K-nodes in
the formal query, and a tf-idf-like measure to calculate ranking
scores.

4.3.3.4 QuizRDF

QuizRDF [126] is a browse-and-query system for web pages that
combines full text search with querying of RDF annotations,

82 web querying

where present. The idea behind this approach is that not all web
data is annotated, and that it is not possible to capture every
detail of the content of a text in its annotations. Combining full
text search with RDF querying can thus potentially improve
recall.

QuizRDF is described as an “information-seeking system” in
which information is found by an interactive, gradual process
rather than a targeted one-shot search. This approach is similar
to the one proposed by Schmidt et al. [327], and allows users
to explore the data, refining their queries as they gain more
information about the nature of the data.

Initially, a so-called ontological index is created from both the
textual content of a web site and its RDF annotations, which are
linked to the RDF Schema ontology [70]. This index can then be
queried using keyword search to obtain a list of matching web
sites, which are ranked using the tf-idf measure [205]. For web
sites with RDF annotations, the search results can be refined by
restricting matches to a certain RDF resource class and entering
literal values for RDF properties. QuizRDF also provides infor-
mation about the ontological structure by displaying superclasses
of the currently selected class as well as relationships to other
classes.

4.3.3.5 Q2RDF

Q2RDF [309] is a system for querying RDF data using keyword-
only queries. Results are ranked in a way that is similar to
Q2Semantic. Q2RDF operates on an RDF sentence graph [377],
an undirected graph consisting of RDF sentences and the connec-
tions between them. An RDF sentence is the set of all RDF triples
that are b-connected, that is, that contain the same blank node.
B-connectedness is transitive, and RDF statements which do not
contain blank nodes are separate sentences. The label of a node
in an RDF sentence graph consists of the words contained in the
subjects, predicates and objects it summarizes. Any RDF graph
can be collapsed into an RDF sentence graph. Figure 11 shows an
example of an RDF graph and its grouping into sentences. Due
to the transitivity of the b-connectedness relation, RDF sentences
are not stable and may change when a blank node is introduced
in a different part of the RDF graph, see Figures 11 and 12.

In the preprocessing step, an inverted index and a path index
are created. The inverted index indicates which word appears in
which sentences. The path index indicates for each node which
other nodes it can reach, and allows for the construction of all
shortest paths between nodes. Shortest paths are calculated using
Dijkstra’s single source shortest path algorithm.

When a user poses a query, the keywords are first mapped to
the RDF sentences in which they appear. The goal then is to find

4.3 keyword-based query languages 83

smith2005 Article

Computer
Journal11

Doe

authorisPartOf
2005

_1

_2

John

Mary

Smith

first

last

first

last

Bag

type
namenumber

title

Person

Person

year

Journal

type

type

type

type

...Semantic
Web...

Figure 11: An RDF graph

answer trees, that is, trees that contain all keywords and in which
every leaf node contains at least one keyword. This is achieved
by starting from the matched nodes and gradually visiting nodes
until a path connecting all matched nodes is found. The next
node to visit is determined by first computing the set of keyword
match nodes with the smallest cardinality and expanding the
nodes contained in it first. Then, the node that is closest to the
node currently being expanded is visited and added to the set of
nodes to expand.

If only tree size is considered as a measure of goodness, then
this method allows for the generation of the top-k answer trees
without having to generate all the answer trees first, since the
length of the paths and thus the size of the result trees grows
as the number of visited nodes increases (the same is true for
finding the top-k lowest cost answer trees in Q2Semantic, since
all cost values are positive).

The algorithm can result in isomorphic answer trees, such
duplicate answers are discarded. The generated answer trees are
then ranked using a variant of the term frequency measure.

Q2Semantic and Q2RDF are similar in that they both summa-
rize the initial RDF graph and then construct minimal answer
trees containing all matched nodes to find the top-k results, which
are then ranked using a tf-idf-like measure. The two approaches
differ in the way in which they evaluate results (Q2Semantic
translates queries into complex queries while Q2RDF retrieves
the results directly) and reduce the RDF graph, in the element
types against which keywords are matched, and in the cost func-
tion that guides the search for answer trees. Additionally, the
answer trees of Q2Semantic show a lower granularity, because
Q2Semantic merges edges and attributes only when they have

84 web querying

smith2005 Article

Computer
Journal11

Doe

authorisPartOf
2005

_1

_2

John

Mary

Smith

first

last

first

last

Bag

type
namenumber

title

Person

Person

year

Journal

type

type

type

s1

type

...Semantic
Web...

s2

s3

s4

Figure 12: The data of Figure 11 represented as an RDF sentence graph

the same label, while Q2RDF collapses all elements that belong
to the same sentence into a single node.

4.3.4 Discussion

The majority of keyword query languages for semi-structured
data in the literature are concerned with keyword-only querying
of XML data. Fewer proposals exist for querying RDF data, and a
majority of them translate keyword queries into traditional query
languages. Most XML keyword query languages, on the other
hand, evaluate queries without mapping them to another query
language.

At the same time, keyword query languages for XML usually
limit themselves to the processing of tree-shaped data, that is,
to XML without hyperlinks. Those languages that do work on
graph-shaped XML, like XRank, ignore hyperlinks during the
matching and grouping process and only use them for ranking.
A notable exception is SAILER [242], which models XML and
HTML documents as graphs. There also exists work on extending
interconnection semantics to deal with XML data containing
IDREF links [107], which due to its purely theoretical nature has
not been discussed here. As Schmidt et al. [327] point out, one
reason for the relative lack of keyword querying for graph-shaped
XML is the expected increase in complexity and thus processing
time, which would be very problematic in an application area
dealing with large amounts of data.

4.3 keyword-based query languages 85

Correspondingly, the lack of RDF keyword query languages
that evaluate queries directly can be attributed to the fact that
RDF is graph-shaped and cannot be converted into tree-shaped
data as easily as XML. In addition, querying RDF poses additional
challenges in the form of labeled edges and blank nodes. A
possible solution to this problem is to summarize the RDF graph
into a different structure [309, 359], but this comes at the cost of
partially ignoring the structure of the data and thus reducing the
granularity of the query result.

For XML querying, on the other hand, the grouping of matches
is of great importance, and it is a central aspect of many of
the approaches discussed in this chapter. Various heuristics for
grouping have been proposed, a large majority of which are re-
finements of the established concept of LCA, e.g., SLCA [372],
MLCA [250], CVLCA [243], and interconnection semantics [109].
All of these approaches add constraints to LCA in order to rem-
edy the problem of false positives in LCA and improve the group-
ing of matched nodes according to their semantic entities. The
approaches differ in the filter that they apply to remove undesir-
able results from the set of LCA nodes; each of them produces a
set of results that is a subset of the results obtained by applying
LCA.

The reason why determining semantic entities in structured
data is so important to keyword querying is that, in contrast to
traditional query languages, queries are never fully specified, and
in fact often cannot be fully specified by the user. The inferred se-
mantics are what is used to determine what constitutes a relevant
result.

While most of the approaches determine the LCA or a vari-
ant thereof automatically based on keyword match instances, an
alternative approach that was used in XKeyword [37, 198] but
also mentioned in connection with XRank [179] and employed
in keyword querying databases [57, 125] is to manually group
the data into concepts and thus pre-define the possible query an-
swer components. This method uses an extra level of processing
where parts of query answers are defined a priori and therefore
independent of a specific query. While this has the disadvantage
of requiring manual annotation, it alleviates two fundamental
problems of LCA-based methods for automatic grouping.

The first problem stems from the underlying assumption that
only elements in the subtree governed by the concept root node
are relevant to the query answer. As mentioned in the beginning
of Section 4.3, this means that relevant information about an entity
is not returned when the keywords in a query are contained in
a subtree of the tree representing an entity. Given the example
data of Figure 2, for example, the queries K = {Doe, Smith} and
K = {Semantic, 2005} will produce only trivial results without any

86 web querying

additional information about the respective articles, like the title
and year of co-authored articles in the first case and the names
of the authors in the second.

There are two ways to overcome this problem: displaying the
query result in conjunction with the data and enable search-
and-browse behavior, or allowing matching on label nodes and
enabling a more targeted specification of a return value. For
example, the first keyword query above could be extended to
K = {Doe, Smith, title, journal}, meaning that the concept node,
i.e., the root node of the semantic entity is of type article and
not authors, and that the entity subtree contains the desired
information. This is possible in the query language of Cohen et al.
[109] and in XSeek [255, 252] and will be discussed further below.

The second problem is closely related to the first: the different
heuristics for grouping aim at being universal or at least versa-
tile; on the other hand, they are data-driven and make assump-
tions about the relations between structure and semantics that
may not be universal. The difference between data-centric and
document-centric XML, for example, suggests different require-
ments concerning grouping and return values. When querying
document-centric XML, multiple occurrences of the same key-
words within an XML subtree indicate particular relevance. The
same is not necessarily the case for data-centric XML.

Consequently, all LCA-based grouping strategies presented
in this chapter are not universally applicable and under certain
circumstances may lead to both false positives and false negatives.
This raises the question to what extent it is possible to reliably
deduce semantics from structural characteristics of data alone.

A small number of very recent approaches group keyword
matches not just based on structure, but also take the distribution
of keyword matches and node types in the data into account [246,
39]. Whether these methods will solve the problems associated
with LCA-based grouping remains to be seen.

To summarize, manual grouping at the schema level works
well and has the advantage that data containing hyperlinks does
not pose a problem. An obvious disadvantage is that it requires
users or administrators to invest time and effort to define the
groupings. LCA and its variations, on the other hand, are com-
puted automatically, but all algorithms require the presence of
certain characteristics in the data to perform well. One way to
achieve good grouping performance could thus be to simply
consider the manual grouping as an additional, possibly optional,
step of semantic annotation and to encourage users to actually
perform the grouping.

A more promising approach is the use of modes to determine
which grouping mechanism is appropriate for a given dataset or
a given combination of a dataset and a query. Since the various

4.3 keyword-based query languages 87

grouping algorithms make different assumptions about the rela-
tion between syntax and semantics in the data, the best algorithm
could then be selected automatically, which hopefully would
leading to an improved overall performance.

To evaluate the feasibility of this approach, several questions
have to be addressed. A priori, it is not clear how many, and
which, grouping algorithms should be used, whether there is
a universally optimal combination of grouping mechanisms,
or whether the selection should be application- and domain-
dependent. A more basic question concerns the characteristics
according to which the grouping mechanisms should be selected:
a small number of maximally complementary algorithms could
simplify mode selection, whereas a larger number of algorithms
might prove more versatile and thus improve the result.

Finally, one would have to decide which features or charac-
teristics of the data or query should trigger a change of mode,
and how the optimal mode should be selected. Examples for
relevant features include the amount of content relative to the
amount of structural information, term frequency distributions,
and structural characteristics derived either from the schema or
the data itself.

Learning, either through implicit or explicit feedback, might
prove useful for the automatic selection of the appropriate mode.
An example for implicit feedback in this context are results that
are favored and disfavored by the users, based on results that
are clicked or skipped given a page of results [310]. Explicit
feedback could be provided in the form of a manually annotated
training set or Query-By-Example type queries [381] by which the
user indicates the intended form of the result. Querying of semi-
structured data using the Query-By-Example paradigm has been
studied previously, resulting in the query language visXcerpt for
XML data [49].

Even if automatic mode selection proves feasible, the issue
of cyclic data remains problematic, since none of the existing
automatic grouping mechanisms can operate on data containing
hyperlinks. It is thus desirable to find a generalized universal
grouping mechanism which can be applied both to XML and
RDF data.

Many of the keyword languages discussed is this chapter focus
on connecting keyword matches, whereas the form of the query
answers has been addressed in less detail. Possible strategies are
for example to return the subtree governed by the concept node,
the paths from the keyword matches to the concept nodes, or just
the concept node. These different return structures offer different
tradeoffs between conciseness and information value.

An important characteristic of traditional query languages,
namely the targeted and flexible retrieval of elements, can be

88 web querying

found only in two of the presented stand-alone keyword query
languages, in that of Cohen et al. [109] and in XSeek [255, 252].
Both of these languages return the content of a node whose label
is matched.

However, neither of them allows for the binding of specific
values to variables. Query results thus cannot be used further
in construction terms, which is a desirable feature in various
applications, for example when embedding queries in Wiki pages.
Furthermore, it is not possible in XSeek to specify explicitly that
the content of a node with a specific label should be retrieved.
Rather, the necessary information is inferred from the keyword
query and is therefore relatively hard to control by the user,
even if she knows exactly which nodes she would like to have
returned.

Keyword-enhanced query languages, on the other hand, allow
for a more targeted selection and enable construction to varying
degrees. Schmidt et al. [327] only retrieve the label of the LCA
node, the approach of Florescu et al. [152] makes the granularity
of the return value dependent on the specificity of the query,
and Schema-Free XQuery allows for the binding of variables to
specific nodes in an entity subtree.

Another important aspect of keyword querying concerns the
ranking of the results. Here, the underlying principle is that a
smaller distance between matched nodes and between matched
nodes and concept nodes generally means more specific and thus
better results. Ranking is usually realized in terms of the vector
space model and a variant of the tf-idf measure. It makes sense
to rank the results before fully generating them, since this allows
for retrieving only the top-k results, such that the results can be
displayed faster and that processing time can be saved when the
user is not interested in all results.

A different, but equally important, question is how to convey
the vocabulary for queries. Keyword query languages are flexible
with respect to the structure of the data being queried, and the
ability to query over heterogeneous data is often highlighted as
one of their advantages. In this context, heterogeneity can refer
either to differences in the structural organization of the data or
to differences in the vocabulary used.

Figure 13 shows the data of Figure 2 in a different structural
organization, with articles grouped by their authors.14 Due to the
automatic grouping, one keyword query can be used to query
both documents. However, the query results may differ since the
grouping uses structural characteristics to find query answers.

Yet another reformulation of the data in Figure 2, with iden-
tical structure but different node labels, is shown in Figure 14.
A query involving node labels can never successfully retrieve

14 The repetitions of the article subtrees have been omitted to increase readability.

4.3 keyword-based query languages 89

(1)
authors

(2)
author

(10)
author

(18)
author

(26)
author

(3)
first

(4)
last

(5)
bib

John Doe (6)
article

(7)
title

(8)
year

(9)
journal

...Semantic Web... 2005 Computer Journal

(11)
first

(12)
last

(13)
bib

Mary Smith (14)
article

...

(19)
first

(20)
last

(21)
bib

Peter Jones (22)
article

(23)
title

(24)
year

(25)
journal

...Web... 2003 Web Journal

(27)
first

(28)
last

(29)
bib

Sue Robinson ...

Figure 13: Alternative formalization of the data in Figure 2, articles
grouped by authors

(1)
bibliography

(2)
paper

(13)
paper

(3)
name

(4)
published

(5)
creators

(12)
publication

...Semantic Web... 2005 (6)
first

(9)
second

(7)
forename

(8)
surname

John Doe

(10)
forename

(11)
surname

Mary Smith

Computer Journal

(14)
name

(15)
published

(16)
creators

(23)
publication

...Web... 2003 (17)
first

(20)
second

(18)
forename

(19)
surname

Peter Jones

(21)
forename

(22)
surname

Sue Robinson

Web Journal

Figure 14: Alternative formalization of the data in Figure 2, different
node labels

results from both the document in Figure 2 and that in Fig-
ure 14, because they use different vocabularies. For example, the
label-keyword queries K1 = {published:2005, surname:Smith} and
K2 = {year:2005, last:Smith} express the same informational need,
but use different words. Consequently, K1 does not produce any
matches in the data of Figure 2, and the same is true for K2 and
the data of Figure 14. In general, a query term may have many
synonyms, and a user may not know which words to use in her
query. This problem also applies to homogeneous data, since a
user may not know a priori which terms are used. It is however
of particular concern when querying heterogeneous data using
different vocabularies, in which case there is no standardized
vocabulary that the user could learn.

In a seminal study of the vocabulary problem, Furnas et al. [158]
found that participants used a large number of different terms
to refer to the same concepts. The probability of two people

90 web querying

choosing the same word for a given object was found to be below
20%. At most 36% of the participants chose the “best,” that is,
most frequent term for an object. The proposed solution to this
problem is to establish a list of synonyms or aliases for each term.
For example, a system could map the term “published” to “year,”
thus enabling the use of both terms in queries.

More generally, query expansion can be used to improve the
recall in information retrieval applications by finding synonyms,
morphological variations, and misspellings. A variety of tech-
niques for automatic query expansion have been proposed [123,
206, 130, 120], some of which are employed in the keyword query
languages presented in this chapter. Q2Semantic uses Wikipedia
to find terms similar to the keywords. Li et al. [250] identify
different ways to obtain a domain-specific thesaurus to be used
with the expand function of Schema-Free XQuery: deriving a
list of synonyms for each term from the corpus of XML data,
creating it manually, or through information retrieval techniques
like bootstrapping. For cases where no domain-specific thesaurus
is available, the authors suggest the use of a universal thesaurus
like WordNet [277]. This is also how semantic mapping works in
SPARK. In addition, morphological mapping is employed, which
functions on the form (rather than the semantics) of the keywords
and uses stemming and other methods and measures from natu-
ral language processing. Each term mapping is augmented with
a confidence score, meaning that the list of synonyms can also
serve as a controlled way to semantically relax the query.

Overall, current keyword-query languages for XML and RDF
satisfy one of the two criteria laid out in the beginning of Sec-
tion 4.3, simplicity. While keyword-enhanced query languages
are likely not simple enough to be used by all users, a majority
of keyword-query languages have a very basic syntax that is no
more complex than that of regular web search. The syntactic
extensions offered by some of the languages are optional and
comparatively simple.

The case is less clear for the second criterion, flexibility. All
languages are schema-agnostic in the sense that they can query
data independent of the underlying schema, or even independent
of the fact whether there is a single schema that all data adheres to.
However, as grouping mechanisms are data-driven and therefore
depend not only on the structure but also on naming conventions,
results can vary significantly depending on the schema being
used.

Flexibility with respect to the data type, i.e., the ability to query
data in different formats, has received relatively little attention.
XRank and Sailer can be used to query both XML and HTML
documents, but do so mainly by treating HTML documents as
unstructured text.

4.3 keyword-based query languages 91

The combined querying of XML and RDF is particularly desir-
able in the context on the semantic web, where not all content of
the (XML) data is necessarily represented in (e.g., RDF) metadata,
or vice versa [59]. If both could be queried using a single query
language, recall would be increased, and users would only have
to familiarize themselves with one query language.

SemSearch and QuizRDF can query web documents augmented
with RDF annotations. The former only evaluates the query on
the RDF annotations, meaning that it is not possible to impose
conditions on both the document itself and its annotations in
one query. QuizRDF, on the other hand, allows for the restriction
of web documents matching a given query through their RDF
annotations. However, it is not possible to query the structure of
web documents or to combine XML and RDF search in a single
query. Moreover, QuizRDF is a search-and-browse system and
returns web documents, i.e., it does not allow for the grouping
of entities and consequently provides no flexible return values.
Because of this, it is much more suited for interactive exploration
of data than for expressive querying at a high granularity.

While to the best of our knowledge there are currently no
systems for the combined keyword querying of XML and RDF
data, a number of approaches to keyword querying are explicitly
concerned with queries over HTML and XML data and relational
databases [208, 244], thereby realizing data type flexibility to a
certain extent.

Part II

T H E K I W I W I K I

5
A C O N C E P T U A L M O D E L F O R T H E K I W I W I K I

Traditional wikis excel at enabling collaborative work on emerg-
ing content and structure. Semantic wikis go further by allowing
users to expose knowledge in ways suitable for machine pro-
cessing using semantic web technologies. The combination of
ease of use, support for work in progress, and semantic web
technologies makes semantic wikis particularly interesting for
knowledge-intensive areas of work such as project management
and software development.

Most of the advanced technologies that semantic wikis employ
were developed for use in a static environment with annotations
and rules being crafted by knowledge representation experts.
This is in contraposition to the ever-changing, dynamic character
of wikis where content and annotations are, for the most part,
created by regular users. In such an environment, inconsistencies,
disagreements and ambiguities can easily arise and the system
should therefore be able to cope with them to support users in
their work.

While several semantic wikis have been put to practical use
(see Chapter 3), each using its own conceptual model, there has
been little explicit theoretical exploration on the possible choices
for conceptual models and their consequences [348].

By conceptual model, we here understand the basic concepts or
buildings blocks that a user interacts with when using the seman-
tic wiki as well as the relations between them. In a traditional
wiki, there are only few such building blocks, typically pages
and links. Semantic wikis extend this model by new concepts
such as typed links, tags and RDF or OWL annotations. The basic
building blocks of a semantic wiki and how they relate to each
other have rarely been discussed in the literature, and one can
assume that many decisions in this regard have been without full
consideration of the design space.

In this chapter, we seek to draw attention to this issue, suggest-
ing a conceptual model for KiWi and showing that the design
of a conceptual model for a semantic wiki is a non-trivial issue
and design choices greatly influence which functionalities the
system can offer and how the user sees the system. We will show
that there are several possibilities for approaching various issues
in a semantic wiki which have advantages and disadvantages,
as well as important consequences on how other issues can be
approached.

95

96 a conceptual model for the kiwi wiki

Note that the conceptual model described here is similar but
not identical to the conceptual model behind the current im-
plementation of the KiWi wiki. Specifically, KiWi does not yet
support annotated links, negative and structured tags, the assign-
ment of multiple labels to a single tag concept and the calculation
of the social weight of tags.

5.1 content

This section outlines the representation of content in the KiWi
wiki. “Content” here refers to text and multimedia which is used
for sharing information, most frequently through the use of natu-
ral language, between the users of the wiki, and whose meaning
is not directly accessible for automatic processing. Information
Extraction techniques enable the computerized processing of
structured data extracted from text or speech, but this introduces
another level of representation which we do not consider content
in this sense.

While the data in many conventional wikis is restricted to con-
tent and link structure, semantic wikis add further layers, namely
annotations that can be used for human as well as automatic
processing and annotations that are intended mostly for comput-
ers and not easily understandable for humans. These two other
types of data, informal and formal annotations, are discussed in
Section 5.2.

5.1.1 Content Items

Content items, the primary unit of information in the KiWi wiki,
are composable, non-overlapping documents. Every content item
has a unique URI and can be addressed and accessed individually.
There is no inherent distinction between wiki pages and content
items or rather, all content items are wiki pages.

A content item can directly contain only one type of content,
for example text or video. An atomic textual content item can
be thought of as being similar to a paragraph or section in a
formatted text in that it contains some relatively self-contained
text and can be combined with other such data items to form
a content structure: Content items can be nested through tran-
sclusion [282] to enable the representation of complex composite
content structure. Consequently, a content item may contain
(textual or multimedia) content and any number of inclusion
declarations.

Having an explicit concept of content structure in a wiki is
desirable both with respect to the semantic as well as the social
nature of a semantic wiki; the structural semantics of the content
can be immediately used for querying and reasoning, for example

5.1 content 97

for automatically generating tables of contents through queries,
as well as for facilitating collaboration and planning of content.
In addition, content items constitute a natural unit for assigning
annotations to content (see Section 5.2).

Allowing one content item to have several parents, that is, to
be directly contained in multiple other content items, is a design
decision that adds functionality but also has side-effects, some of
which may be undesirable.

The multiple embedding of content items means that content
items can be easily reused and shared, which is useful for exam-
ple for schedules or contact data. If only a copy of the content
item’s content was embedded, multiple occurrences of the con-
tent item in the wiki could not be traced as naturally or easily.
For example, changes to a schedule or email address would have
to be made manually in all content items where the information
appears. On the other hand, updating a content item that is a
child of several other content items or reverting it to an earlier
version can have unintuitive and unwanted side effects when the
content item changes in all contexts it is embedded in without the
editing user being aware of all these contexts. Therefore, upon
modifying a content item that appears in several different loca-
tions, the user should be presented with a list of the embedding
locations and the choice to edit the content item itself or a copy
of its content.

Loops arise when a content item contains itself as a descendant
through content item nesting. The resulting infinite recursion is
problematic with respect to the rendering of the content item1 as
well as reasoning and querying. Since loops additionally arguably
have no straightforward meaningful interpretation in the wiki
context, transclusions which would cause loops are generally
forbidden. However, it is possible to embed a content item several
times into another content item or one of its descendant content
items as long as the embedding does not lead to a loop.

Assuming that all content item nestings are resolved, the wiki
content can be seen as a set of finite trees. Root nodes, that is,
content items that are not contained in another content item, then
have a special status in that they encompass all content that forms
a cohesive unit. In this, they can be seen as being alike to a wiki
page in a conventional wiki.

5.1.2 Fragments

Fragments are small continuous portions of text (or, potentially,
multimedia) that can be annotated. While content items allow
authors to create and organize their documents in a modular
and structured way, the motivation behind fragments is to enable

1 At least if we assume that all of the content item is to be rendered at once.

98 a conceptual model for the kiwi wiki

the annotation of user-defined pieces of content independently
of the canonical structure. If content items are like chapters and
sections in a book, then fragments can be seen as passages that
readers mark and annotate; they are linear and in that transcend
the structure of the document, spanning across paragraphs or
sections. Different parts of the book might be marked depending
on which aspect or topics a reader is interested in, and the same
is true for defining and tagging fragments.

Fragments should be maximally flexible in their placement,
size and behavior to allow for different groupings of text. To-
wards this goal, it is generally desirable that —unlike content
items— fragments can overlap. The intersection between two
overlapping fragments can either be processed further or can be
ignored. When two overlapping fragments f1 and f2 are tagged
with a and b respectively, a third fragment that spans over the
overlapped region and is tagged a,b could be derived automat-
ically. Similarly, automatically taking the union of identically
tagged overlapping or bordering fragments might be intuitive
and expected by the user. However, this automatic treatment of
fragments might not always be appropriate or wanted.

Therefore, fragments in KiWi are seen as co-existing but not
interacting, meaning that the relationships between fragments
are not automatically computed and no tags are added. This view
has the advantage of being simple and leaving the control of the
fragments and their tags to the user. It is also in tune with the
philosophy that, unlike content items that always only realize one
structuring, fragments are individual in that different users can
group a text in many different ways and under many different
aspects which are not necessarily related.

Fragments can either be restricted to be directly contained
in one content item, or they can span across content items. In
the latter case, a rearrangement of content items can lead to
fragments that are part of multiple content items which no longer
occur in successive order in the wiki and, similarly, content item
nesting means that content items may contain only part of a
fragment with the other part being absent (but present in some
other content in which the content item is used). Fragments could
be automatically deleted when the structure of content items no
longer supports them, but this means that a user might find
a fragment she created destroyed as a consequence of another
user’s rearrangement of content items.

To avoid these problems, in the KiWi wiki, fragments start and
end in the same content item and cannot span over contained
content items. One single content item’s text then contains the
whole fragment.

Two possibilities for realizing fragments are the insertion of
markers in the text to flag the beginning and end of a fragment

5.2 annotations 99

(intrusive), or external referencing of certain parts of a content
item, using for example XQuery (see Section 4.2.1.2), XPath (see
Section 4.2.1.1), or XPointer [133] (non-intrusive). As the former
means that fragments are less volatile and updates to the text do
not affect fragments as easily, for example when text is added to
the fragment, fragments in the KiWi wiki are intrusive.

5.1.3 Links

Links, that is simple hypertext links as in HTML, can be used
for relating content items to each other and to external resources.
Links have a single origin, which is a content item, an anchor in
this origin, and a single target, which is a content item or external
URI. Links can be annotated. Taking into account the internal
links in a wiki, the content items present in the KiWi wiki form
an unconnected directed graph which may contain loops.

5.2 annotations

Annotations are metadata that can be attached to content items,
fragments and links. They convey information about the data
item’s meaning or properties. Annotations can be assigned man-
ually by the users or derived automatically via rules.

Content items, fragments, links, and annotations carry system
metadata such as the creation date and time and the author of a
content item or tagging. These metadata are realized in the form
of automatically generated annotations which cannot be modified
by the user. The KiWi wiki comes with a pre-defined, application
independent RDFS vocabulary expressing authorship, versions,
and the like. This is not further developed in the following and
the text focuses on user-generated annotations.

Two kinds of annotations are currently available in the KiWi
wiki: tags and RDF triples. Tags allow to express knowledge
informally without having to use a pre-defined vocabulary, while
RDF triples are used for formal knowledge representation, pos-
sibly using an ontology or some other application-dependent
pre-defined vocabulary. Users are by default not confronted with
RDF, which is considered an advanced feature for experienced
users, but the KiWi wiki aims to allow for a smooth transition
between informal and formal annotation as will be described in
the following.

5.2.1 Formal Knowledge Representation—RDF

The Resource Description Framework (RDF, see Section 4.2.2) is
currently the most common format for semantic web data. RDF

100 a conceptual model for the kiwi wiki

data is suited for processing by machines but is often not easily
human-interpretable. In practice, support for RDF is important
to enable interoperability with current semantic web and linked
data [53, 54] applications and a semantic wiki should therefore
support at least the import and export of RDF data.

Ontologies can be specified using for example RDF Schema [70]
or OWL [171]. The KiWi system uses the RDFS language to
specify its ontologies because it is in many ways simpler than
OWL but is sufficient for most purposes in KiWi. However, KiWi
is not limited to RDFS but can also handle OWL ontologies, albeit
to a limited extent and without full support for reasoning.

5.2.2 Informal to Semi-Formal Annotations—Tags and Structured
Tags

One problem that frequently arises in the context of semantic web
applications is that it is hard to motivate users to annotate content
since they find the process complicated and laborious. Further,
first having to learn RDF before being able to make an annotation
is discouraging to users. One solution is to provide means for
creating less formal annotations which are easier to use. As work
progresses and users gain more knowledge, these annotations
can be made increasingly more precise and can eventually be
transformed into formal knowledge. Tagging (also discussed in
Section 2.2.2) is one such kind of informal annotation. A tag
assignment consists of the association of a term of phrase with a
resource. Despite their simplicity, there are many possibilities as
to how exactly tags are realized [338].

The conceptual model of the KiWi wiki employs tagging with
advanced features to help overcome the downsides of uncon-
trolled, ad-hoc categorization and to enable a transition between
informal and formal annotation, that is, tags and RDF.

Tag assignments can be explicit, that is, performed manually by
a user, or implicit, inferred by a reasoner based on user-defined
rules.

A tagging in KiWi is a tuple consisting of a user, a content item
of the type tag, a tag label, a tagged resource, and maintenance in-
formation needed for processing. The latter includes for example
information about the date when the tagging was created and a
marker which allows to distinguish between explicit and derived
taggings. The process of assigning a tag can then be seen as the
user creating an association between a resource and a tag using a
specific label.

tags as concepts A hindrance in the transition from tags to
more formal knowledge (e.g., RDF triples) is that tags are simple
keywords that do not unequivocally map onto concepts. Often

5.2 annotations 101

different keywords can be used to express the same abstract
concept (e.g., keywords in different languages or synonyms). Sim-
ilarly, the same term might be used to express different concepts
(e.g., homonyms like “bank”). A possibility that fits well in the
wiki context, is to separate keywords and abstract concepts by
using content items representing the abstract concepts instead of
keywords for tagging.

The KiWi wiki distinguishes between tags as mere strings or
labels and the abstract concepts they stand for by representing
the tag concepts as content items, tags in our terminology. Each
tag is associated with one or more labels which may overlap
between tags, thus mirroring the non-unique mapping between
names and concepts. Each tag concept content item may, but does
not have to, contain a textual description of its meaning and a
list of resources it has been assigned to, thus making it easier for
users to negotiate the meaning and use of the concept.

Keywords still play an important role, as they are what is en-
tered by the user, but the system automatically converts them
to the corresponding underlying tag, possibly interactively by
asking for clarifications in the case of ambiguities. When a user
enters a tag label to be assigned to a resource, the system automat-
ically resolves it to the corresponding tag concept, allowing the
user to intervene if she disagrees with the result of the concept
disambiguation.

Various approaches for semantic disambiguation, for example
based on the co-occurrence of concepts and distances between
words in WordNet [277], exist and may be employed. The URI of
each tag concept’s content item can be used as a tag label, mean-
ing that each concept can be unambiguously addressed during
tagging, even when all of its associated labels are ambiguous.
This is especially relevant for the automatic assignment of tags
where no user-intervention is possible or desired. When no re-
solving of ambiguous tag labels is available or desired, the system
can be adjusted for this by requiring tag labels to be unique.

Using content items as tags also solves some further issues be-
yond synonyms and homonyms: Unlike keywords, content items
have a URI and are addressable when transforming information
of semi-formal tags into formal RDF models (e.g., by the use
of rules). More importantly, content items also offer a place for
further describing tags. This encompasses both natural-language
explanations for humans on the meaning and intended use of the
tag as well as machine-readable descriptions, e.g., by means of
tagging a tag’s content item.

Apart from the solution for resolving ambiguous mappings
between concepts and labels discussed above, tags can also be
matched to formal concepts in an ontology, allowing for the
ontological grounding of tags.

102 a conceptual model for the kiwi wiki

tag label normalization Tag normalization defines an
equivalency on the set of tag labels. Tag label normalization can
mean for example that the tag labels “Wifi,” “WiFi,” and “WIFI”
are all converted to the tag label “wifi,” the canonical form of
this tag label equivalency class. Trailing whitespace and multiple
whitespace within a tag are always removed upon saving the
tag. Further, tag label normalization in KiWi is performed by
converting all letters to lowercase and removing punctuation.

negative tags In a collaborative context, we may be inter-
ested in tracking disagreements which requires a way to express
negative information. Just as a user can tag a resource with the
tag label “t,” he or she may want to tag it with “not t” as a way
to express disagreement or to simply state that the resource is
not “t” or does not have the property “t.” An example may be a
medical doctor tagging a patient’s card as “not lupus” to state
that the patient definitely does not have “lupus.” Negative tags
thus explicitly express that something is not the case.

Although a tag “not t” could be seen as introducing classical
negation into the system, it may in fact be only a very weak
form of negation because we can allow the negation of pure tags
only, not general formulae or sets of tags, and the only way to
interpret this kind of negation would be by introducing a rule
which says that from tag t and tag nott a contradiction should
be derived. Negative tags can be represented by extending the
tuple representing the tagging with polarity information.

structured tags Ordinary flat tags are limited in their ex-
pressiveness. To overcome this limitation, different extensions of
tagging have been proposed, for example machine tags2 and sub-
tags [40] as used in the website RawSugar3. Most of the proposals
employ a variation of annotations in the form of keyword-value
pairs, sometimes extended to full RDF triples [373]. Note that
keyword-value pairs can be seen as triples, too — the resource
being annotated is the subject, the keyword is the predicate and
the value is the object of the triple.

More complex schemes which involve nesting of elements
might be practical in some cases, e.g. hotel(stars(3)) could
express that the tagged resource is a three-star hotel. These ex-
tensions develop the structure of the tag itself and a set of tags is
interpreted as a conjunction. It is conceivable to allow users to
tag resources with a disjunction of tags or even with arbitrary for-
mulae. This may be practical for some applications but it has two
drawbacks: Reasoning with disjunctive information is difficult
and simplicity and intuitiveness would suffer.

2 http://tech.groups.yahoo.com/group/yws-flickr/message/2736
3 http://www.rawsugar.com/

http://tech.groups.yahoo.com/group/yws-flickr/message/2736
http://www.rawsugar.com/

5.2 annotations 103

Structured tags are used in KiWi’s conceptual model to enhance
the expressive power of tags and achieve an intermediate step
between informal (atomic tags) and formal (RDF triples) annota-
tion.

Two basic operations lie at the core of structured tagging:
grouping and characterization.

The grouping operator, (), allows to relate several (complex or
atomic) tags. For example, a wiki page might describe a meeting
that took place in Warwick, UK on May 26, 2008, began at 8 am
and involved a New York customer. Using atomic tags, this page
can be tagged as Warwick, New York, UK, May 26, 2008, 8am
leaving an observer in doubts whether “Warwick” refers to the
city in Great Britain or to a town near New York. Grouping can
be used in this case to make the tagging more precise: (Warwick,
UK), New York, (May 26, 2008, 8am). A group of tags can also
be used to describe the properties of something whose name is
not yet known or for which no name exists.

Characterization enables the classification or naming of a tag.
The characterization operator, denoted :, can be used to make
the tagging more precise. For example, if we wanted to tag a
wiki page representing a meeting with the geo-location of the
city Warwick, we could tag it as (52.272135, -1.595764) using
the grouping operator. This, however, would not be sufficient
as the group is unordered. Therefore we could use the charac-
terization operator to specify which number refers to latitude
and which to longitude, (lat:52.272135, lon:-1.595764), and
extend the structured tag to specify that the whole group refers to
a geo-location: geo:(lat:52.272135, lon:-1.595764). Similarly,
Warwick in our example could be written as location:(warwick)
to differentiate it from Warwick fabric or person with the last
name Warwick.

Together, grouping and characterization provide a powerful
tool for structuring and clarifying the meaning of tags. Structured
tags are a step between informal simple tags and formal RDF
annotations that allows users to assign freely chosen tags and
vague annotations to content, but also gives them the opportunity
to structure the annotations.

The meaning of a structured tagging is not pre-defined but
rests, for the most part, on the user who specified it. Structured
tags do not impose strict rules on their use or purpose, but merely
provide the means to introduce structure into tag assignments.
Structured tags can be seen as a wiki-like approach to annotation
which enables a gradual, bottom-up refinement process during
which meaning emerges as users’ work and understanding de-
velop.

104 a conceptual model for the kiwi wiki

Structured tags are governed by simple, minimal rules:

• Tag groupings

– can consist of atomic and complex tags or a combina-
tion thereof,

– are unordered,

– cannot contain duplicate members, e.g. (Bob, Bob,
Anna) and ((Bob, Anna), (Anna, Bob)) are not valid,

– can contain arbitrarily but finitely many elements,

– can be arbitrarily but finitely nested,

– are identical in meaning to the constituent tag when
they only contain one element, i.e. (Anna) is equivalent
to Anna

• Tag Characterizations

– can be used on atomic and complex tags,

– are not commutative, i.e. geo:x is not the same as
x:geo.

– can use atomic and complex tags as a label

Using structured tags, the same information can be expressed
in several different ways. The above described way of structuring
tags describing a location is only one of many. Others include
for example geo:(x:y):(1,23:2,34), geo:(y:x):(2,34:1,23),
geo:(1,23:2,34), and geo:1,23:2,34.

Different users and different communities might agree on dif-
ferent ways of structuring the same information and users are
free to assign structured tags in a way that suits their needs and
purpose the best. Of course, for structured tags to be useful in a
community, users should agree on a common way of structuring
information in tag assignments. We expect that such conven-
tions for the usage of structured tags evolve over time as users
collaboratively create and annotate content.

the semiotic triangle One question to consider when
designing a system that includes annotations is whether the
annotations are seen to describe the data item or the concept
described by it. A tag or other annotations added to a content item
about a city could state a fact about the content item describing
the city or about the city itself. Depending on which philosophy
is adopted, different annotations can be appropriate, for example,
a text but not a city can be well-written and, inversely, a city
but not a text can have a certain number of inhabitants. The
distinction is important because it may have consequences on
how annotations are interpreted and treated. If the distinction is

5.2 annotations 105

not made, annotations can be ambiguous when they can apply
either to the concept or to its representation in the wiki.

This problem is well known and has been addressed before in
linguistics in the context of the semiotic triangle [285], Peirce’s
triad [302], and de Saussure’s distinction between the signifier
and the signified [317]. Oren [294] describes a system that lets
users specify explicitly whether an annotation refers to a signifier,
that is, the text, or its signified, the concept described by the text,
through a syntax that supports the distinction of those two cases.

The KiWi system addresses the problem of multiple meanings
of a tag label as described above. It, however, purposefully does
not address the problem of what a tagging refers to —to a con-
cept or the page that describes it. The reasons for this are that
such a distinction may not be needed in practice, and might be
irrelevant to most users. Above all, requiring users to be aware
of the distinction and employ it during tagging reduces the user-
friendliness of tagging and thus deters users from annotating
content. Introducing such a distinction would therefore likely
lead to an increase of the complexity of the tagging process.
Where needed, structured tags can be used to specify the sense
in which the annotation is intended.

tags vs links When tag concepts are represented as content
items, tag assignments to content items can be seen as links
between the tagged resource and the content item representing
the tag concept. Similarly, structured tags, such as keyword-
value pairs, can be seen as expressing a relation (or a link), with
its type given by the keyword, between the tagged resource
and another resource, given by the value. In a wiki supporting
semantic browsing over such tags, the question may then arise
what differentiates a link from a (structured or atomic) tag. From
a technical point of view, there may not be a strict differentiation
and simple unstructured tags can be seen as specialized links
between a taggable resource and the content item describing
the tag concept, as a link is then simply a way of expressing a
relation. The difference usually lies in the way links and tags are
presented and used. Tags are usually represented separately from
a content item, e.g. in a special area of the page, while links are
represented with anchors inside the content item. Further, tags
make a statement about a single content item, e.g. give it a type,
whereas the purpose of links is to express an association between
two content items. Finally, while links can be tagged, and tag
concepts can be linked, it is not possible to link to or from a link.

tag hierarchies. Tag hierarchies constitute a step in the
transition from informal to formal annotation. They are useful
for example for reasoning and querying since they enable the

106 a conceptual model for the kiwi wiki

processing of tag relationships. Tag hierarchies could be created
through assigning tags to tags, that is, tagging a tag’s content
item to indicate an “is-a” relationship.

Semi-formal annotations described in this section provide a
means to transform knowledge from human-only content de-
scribed in Section 5.1 to machine-processable information. Semi-
formal annotations are an valuable feature of social software be-
cause they provide a low-barrier entry point for user participation
in enrichment of content with machine processable annotations.
Users can make use of gradually more expressive and formal
methods of annotation as they become familiar with the system.
First, they may only create and edit content and assign flat tags
to content. When users become more familiar with the system
and its content and want to make more expressive annotations,
they may begin to use structured tags. Advanced users or system
administrators can further enhance the annotations by specifying
reasoning rules for semi-formal annotations [79] or translating
structured tags into RDF.

5.3 social content management

To facilitate social collaboration and leverage the social aspects of
a semantic wiki, several options and aspects may be considered.

user groups User groups can be leveraged, among other
things, for the personalization of wiki content, for querying and
reasoning and to attribute wiki data to a group of wiki users.
Tags are a simple way to group things, making it an obvious idea
to form user groups by tagging users’ content items. Generally,
every set of users that have been assigned the same tag could be
considered a group. However, when there are many tags used in
the system and special mechanisms are to be implemented for
groups such as discussion boards, it may be more efficient and
practical to use a mechanism to distinguish between user groups
and all collections of users and documents tagged with the same
tag. To distinguish between regular tag assignments and those
that assign a user a group, groups could be created by assigning
at structured tag with the label group to a content item, fragment
or link, e.g. group:(java).

access rights Users, user groups and rules for reasoning
could be used to handle access rights in the wiki. Questions
that arise include who owns the rules, what the access rights on
rules are, and who can assign the tags that restrict the access.
Static rules would not be suited for rights managements in all
environments. For them to function well, the organization and

5.3 social content management 107

roles in the wiki have to be relatively stable, which may be the
case in professional applications. In other areas, such as the
development of open source software, such rules may not be
desired or the social organization might not be static enough for
such rules to be adequate.

the social weight of tags When several users tag one
item with the same tag, it may be useful to aggregate these tag
assignments to give a clearer view of all the tags assigned and
derive information about the popularity of the tag assignment.
Tag assignments then can be seen to have weights depending on
how often they were assigned. On the other hand, other users
might not agree with the assignment of a certain tag to a content
item, and add a negative component to the tags’ weight to express
this. The overall social weight of a tag could be calculated by
assigning a value to both a tag assignment and disagreement
with it and calculating the total score.

The social weight of a tag then summarizes the users’ views
on the appropriateness of a specific tag assignment and thus
provides a valuable measure that can be used in reasoning and
querying. Note that agreeing with a tag assignment is identical to
assigning it but disagreement is not identical to adding the nega-
tive tag since not being content with the assignment of tag does
not necessarily imply that one thinks its negation should be as-
signed. Negative tagging and disapproving with a tag assignment
are not to be confused, the former explicitly expresses negative
information, while the latter is merely a negative assessment of a
tag assignment.

Further, the tag weight gives an overview over users’ opinions
and could help form a consensus on tag usage. Thom-Santelli
et al. [347] show evidence that users have a desire for consistency
with other users’ tag assignments and are often willing to adopt a
tag that they know has been used on the same resource by other
users. Weighting tags could further foster this process.

Reinforcing a tag assignment or disagreeing with it further con-
stitutes a low-barrier activity in the wiki, which might encourage
beginning users to participate and express their opinion.

6
E X P E R I M E N TA L E VA L U AT I O N : S T R U C T U R E D
TA G S A N D R D F

This chapter describes the design, execution, and evaluation of
a user study that we performed to compare structured tags and
RDF in practice.

Structured tags, as described in the previous chapter, are sim-
ple free-form tags extended by two mechanisms, grouping and
characterization. Grouping is used to divide a set of tags into
smaller units to indicate which tags belong together, while char-
acterization is used to assign descriptive labels to a tag or a group
of tags.

Structured tags are intended to serve as an annotation formal-
ism that is more expressive than simple tags, but that at the same
time is also more flexible and easier to use than RDF. As such,
structured tags constitute a bottom-up approach to expressing
structured annotations that supports and accommodates the evo-
lution of knowledge: Structured tags make it easy for beginning
users to introduce some structure into their annotations, thereby
making them more expressive. At the same time, structured tags
are well-suited to express information that is vague and still
evolving.

The annotations created in these scenarios can then serve as
the basis for further formalization, for example in the form of
more complex structured tags, or RDF. This might happen for
example when more information becomes available or when a
user revises her annotations made previously.

Structured tags are flexible in their use, allowing users to apply
grouping and characterization to simple and structured tags. The
resulting annotation do not have a strict, pre-defined semantics,
but, like simple free-form tags, their meaning arises from use.
Additionally, structured tags can vary wildly in their complexity:
In the most basic case, every single atomic tag can be seen as a
structured tag consisting of a grouping with one element, but
when grouping and characterizing are repeatedly applied, an
intricate structure can arise.

Since the characteristics of structured tags are strongly deter-
mined by their usage, an experimental evaluation is warranted
to provide insight into the respective roles of structured tags
and RDF. As user-friendliness and user acceptance are crucial
to social semantic web applications, the present study focuses
on the user experience and aggregates participants’ opinions on
structured tags and their usability.

109

110 experimental evaluation : structured tags and rdf

In addition, we present first findings on how structured tags
are used in practice, how complex the structured tags are that
users create and how suitable the formalism is for expressing
evolving knowledge.

We consider structured tags to be not an alternative to RDF,
but rather as a complement that helps bridge the gap between
simple tags and RDF. For this reason, we evaluate RDF in the
same manner as structured tags and compare the results.

The evolution of annotations from structured tags to RDF
and the conversion between the two is another interesting topic
worthy of investigation that is not treated in this first study of
structured tags.

6.1 experimental setup and execution

Nineteen participants were recruited through announcements
in several computer science lectures at LMU. They each were
rewarded with 100 Euros for their participation in the study.

Participants’ ages ranged from 21 to 26 with the average age
being 23 years. All of the participants were students. Most studied
computer science or media computer science at LMU, but some
were students of related disciplines like mathematics, physics
and computational linguistics. On average, participants had been
students for 5.2 semesters with the individual durations ranging
from two to ten semesters.

The study was performed in a single session that lasted about 8
hours and included a half-hour break at noon. Participants were
split up into two groups that were balanced in terms of the fields
of study and study progress of the group members. All materials
that the participants were given were written in English, but
comments could be given in English or German. At the start of
the session, participants were asked to rate their experience with
RDF and of tags on a scale from 1 (“never used/no knowledge”)
to 3 (“frequent use”).

The participants were provided with a short introduction into
the experiment scenario, reproduced here:

You work in a software development company that
runs several projects. When a project starts, informa-
tion about it is added in the company wiki. The text
there describes the project, its goals and projects and
the people involved in it. Since several people collab-
orate to write the text and since more information
becomes available as the project progresses, the text is
changing and is also becoming more detailed. How-
ever, the company’s wiki does not only contain text
but also annotations that describe the content of the

6.1 experimental setup and execution 111

text, that is, it is a semantic wiki. These annotations
are useful for example for retrieving wiki content and
for automated reasoning, the deduction of new facts.

The first part of the experiment consisted of participants anno-
tating different revisions of a text on project management in a
software development scenario using RDF. Since structured tags
are not yet implemented and available in practice, participants
wrote down their annotations to the text on paper. The texts
were written specifically for use in the study and represented
the content of a wiki page describing a fictional software project.
Two different texts of equal length with six revisions each were
written, we will refer to them as “text A” and “text B” in the
following. All revisions of both texts as they were presented to
the participants are respectively given in Sections A.3 and A.4.

To provide participants with an introduction into the annota-
tion formalisms, two texts of similar length describing structured
tags and RDF were prepared. They are respectively given in Sec-
tions A.1 and A.2. To ensure that the texts were comparable in
quality and intelligibility, they were examined by two computer
science researchers at LMU who knew both formalisms and were
not involved with the study. The description of RDF was simpli-
fied in that URIs and namespaces were omitted and capitalization
and quotation marks were used to distinguish between classes,
instances and literals. The introduction to structured tags did not
mention negative tag assignments as described in Section 5.2.2.

Participants were provided with the introductory text on RDF
and instructions for the experiment. Participants could refer to
the introduction at any point, and were asked not to modify their
annotations once they had received the following revision of the
text. Changes in the text between revisions were highlighted.
Participants were told to add as many annotations as they felt
appropriate.The instructions further encouraged participants to
refer to annotations made to previous revisions and to describe
new annotations in terms of modifications to these annotations.

The annotation process was self-paced and the next revision
of the text was only handed out once a participant had finished
annotating the previous revision.

In this first part of the experiment, one group annotated text A,
while the other group was given text B to annotate. Participants
were asked to write down the times when they started and
stopped annotating each of the revisions.

After they had completed annotating the final revision, par-
ticipants were provided with questionnaires where they had to
indicate their agreement with ten statements about the annotation
formalism and their impressions of the annotation process. For
each statement, participants were asked to tick one of five boxes
corresponding to a Likert scale representing different extents of

112 experimental evaluation : structured tags and rdf

agreement. The categories were “strongly disagree,” “disagree,”
“undecided,” “agree,” “strongly agree.”

In addition, participants could optionally provide written com-
ments.

The second part of the experiment was executed in the same
manner using structured tags instead of RDF as an annotation
formalism. Additionally, the group that annotated text A with
RDF was now given text B and vice versa.

When participants had completed both parts of the study, they
were asked to fill out a final questionnaire describing which
formalism they preferred and for which reasons.

6.2 results

The analysis of participants’ previous experience with RDF and
tagging shows that out of the nineteen participants, only five had
any knowledge of RDF before the experiment. All five rated their
amount of experience with RDF as “a little” and no participants
indicated that they used RDF frequently or knew it well.

The situation is similar for tags; all but six participants stated
that they had never used tags. Out of these six participants, five
indicated that they occasionally assigned tags to web content,
and one participant declared that he often uses tags.

6.2.1 User Judgments

This section describes participants’ level of agreement with ten
statements about the annotation formalisms. For each statement,
two figures are given, one showing the distribution of participants’
answers ranging from 1 (“strongly disagree”) to 5 (“strongly
agree”) grouped by the text type, and the second showing the
same data grouped by the annotation formalism used. The for-
mer allows to determine for each statement whether there is a
connection between the text, A or B, and the answer given. The
latter shows how answers differ with the annotation formalism
used. In addition, we performed Wilcoxon-Mann-Whitney tests
to determine whether the differences are significant.

statement 1 : “After reading the introductory text, I felt I had under-
stood how to use the annotation formalism” This statement refers
only to the introductory text and is independent of the anno-
tated text. Figure 15a confirms that the answers are similarly
distributed in both texts. The difference across texts was not sig-
nificant (W=178, p=0.40), but a significant difference in reactions
depending on the annotation formalism used was found (W=275,
p=0.001).

6.2 results 113

0

10

20

30

40

50

1 2 3 4 5

Text A Text B

(a)

0

10

20

30

40

50

60

1 2 3 4 5

RDF Structured Tags

(b)

Figure 15: Percentages of participants’ levels of agreement (1 to 5) with
statement 1, grouped by (a) text and (b) annotation formalism

0

10

20

30

40

50

1 2 3 4 5

Text A Text B

(a)

0

10

20

30

40

50

60

70

80

1 2 3 4 5

RDF Structured Tags

(b)

Figure 16: Percentages of participants’ levels of agreement (1 to 5) with
statement 2, grouped by (a) text and (b) annotation formalism

Participants perceived the introduction on structured tags as
being more helpful than that on RDF. Over seventy percent of
participants agreed or agreed strongly with the statement with
respect to structured tags, but about 65 percent of participants
disagreed or disagreed strongly with the statement after they
had read the introduction to RDF. In both cases, only about ten
percent of participants were unsure whether they agreed with
the statement.

Regardless of the annotation formalism, most participants’
written comments state that more examples should have been
included.

statement 2: “The annotation formalism allowed to annotate the
text in an intuitive way” As before, the answers are similarly
distributed across the texts (see Figure 16a), indicating that partic-
ipants’ opinions were independent of the text they had annotated.
Indeed, the difference in answers between annotation formalisms
(W=317.5, p<0.001) but not that between texts (W=188, p=0.59)
was found to be significant.

114 experimental evaluation : structured tags and rdf

0

10

20

30

40

50

1 2 3 4 5

Text A Text B

(a)

0

10

20

30

40

50

60

1 2 3 4 5

RDF Structured Tags

(b)

Figure 17: Percentages of participants’ levels of agreement (1 to 5) with
statement 3, grouped by (a) text and (b) annotation formalism

More than eighty percent of the participants found structured
tags to be intuitive (“agree” or “strong agree,” see Figure 16b),
and a small number was undecided. No participant found struc-
tured tags to be unintuitive. The situation is reversed for RDF
which almost three quarters of participants found unintuitive.
Only about ten percent of participants agreed with the statement
with respect to RDF.

Many participants in their comments criticized what they con-
sidered to be limitations of RDF, for example that annotations
always take the shape of triples, that a clear idea of the domain
is needed to formalize the concepts and relations, and that the
content of long and complex sentences is hard to express as RDF.

Comments about the intuitiveness of structured tags were
mostly positive, although here, too, one participant found it hard
to express long sentences as structured tags.

statement 3: “The annotation formalism allowed to annotate the
text in a convenient way” The reactions to the third statement
differ slightly more between texts than those to the two state-
ments before, but overall are comparable (see Figure 17a). Again,
the difference between the answers given by participants using
different annotation formalisms (W=43.5, p<0.001) but not that
between participants annotating different texts (W=158.5, p=0.39)
is significant.

Again, with respect to structured tags, most participants agree
with the statement, while the majority of participants using RDF
disagrees with it (see Figure 17b). While the difference between
the two formalisms is considerable, the reactions are less divided
across formalisms than those to the previous statement.

Only few participants added further comments about this
statement. One participant found writing RDF triples repetitive,
while another remarked that structured tags often need to be
rearranged when new information is provided.

6.2 results 115

0

10

20

30

40

50

1 2 3 4 5

Text A Text B

(a)

0

10

20

30

40

50

1 2 3 4 5

RDF Structured Tags

(b)

Figure 18: Percentages of participants’ levels of agreement (1 to 5) with
statement 4, grouped by (a) text and (b) annotation formalism

statement 4 : “I feel that way to represent negative facts is missing
from the formalism” The reactions to this statements are similar
across texts, although participants annotating text B slightly more
frequently agreed with the statement than those annotating text
A (see Figure 18a). However, the difference between texts is
not significant (W=136.5, p=1), while that between annotation
formalisms is (W=85, p=0.05).

There is little difference in the reactions across formalisms (see
Figure 18b). Overall, more participants feel that RDF is missing
a way to represent negative facts, but only by a small margin.
For both formalisms, more than 75% of participants agree or
agree strongly with the statement and no participants disagrees
strongly with it.

In the comments, one participant remarked that he considered
a way to express conditions and consequences to be of greater
importance than support for negation.

statement 5: “The annotation formalism was expressive enough
to let me annotate the text the way I wanted” Here, reactions
differ across texts, but less strongly than the reactions across
formalisms (see Figures 19a and 19b) and, again, the difference
between annotation formalisms (W=99.5, p=0.26) but not that
between texts (W=48.5, p=0.001) is significant.

When using structured tags, over eighty percent of participants
found structured tags expressive and agreed or strongly agreed
with the statement. The levels of agreement are more varied when
participants use RDF with roughly equal proportions answering
“disagree,” “undecided” and “agree.”

statement 6: “I feel confident about the formal correctness of the
annotations I made” Participants’ answers are very similar across
texts (see Figure 20a). As before, the difference in answers be-

116 experimental evaluation : structured tags and rdf

0

10

20

30

40

50

60

70

1 2 3 4 5

Text A Text B

(a)

0

10

20

30

40

50

60

70

80

1 2 3 4 5

RDF Structured Tags

(b)

Figure 19: Percentages of participants’ levels of agreement (1 to 5) with
statement 5, grouped by (a) text and (b) annotation formalism

0

10

20

30

40

1 2 3 4 5

Text A Text B

(a)

0

10

20

30

40

50

1 2 3 4 5

RDF Structured Tags

(b)

Figure 20: Percentages of participants’ levels of agreement (1 to 5) with
statement 6, grouped by (a) text and (b) annotation formalism

tween texts is not significant (W=130.5, p=0.85) but that between
annotation formalisms is (W=69, p=0.014).

More than sixty percent of participants are not confident about
the correctness of their RDF annotations (“disagree” or “strongly
disagree,” see Figure 20b), only few are undecided and about 25
percent agree with the statement. The situation is different for
structured tags where more than forty percent of participants are
undecided, that is, are not sure whether their annotations were
formally correct. Another forty percent of participants agrees
or strongly agrees with the statement and only about a fifth
disagrees with it.

statement 7 : “I feel confident about the appropriateness of the anno-
tations I made” Again, the distributions of reactions across texts,
while not identical, are highly similar and the difference between
texts is smaller than that between formalisms (see Figures 21a
and 21b). Neither the difference between texts (W=117.5, p=0.70)
nor annotation formalisms (W=97.5, p=0.24) is significant.

6.2 results 117

0

10

20

30

40

50

1 2 3 4 5

Text A Text B

(a)

0

10

20

30

40

50

60

1 2 3 4 5

RDF Structured Tags

(b)

Figure 21: Percentages of participants’ levels of agreement (1 to 5) with
statement 7, grouped by (a) text and (b) annotation formalism

0

10

20

30

40

50

60

70

80

1 2 3 4 5

Text A Text B

(a)

0

10

20

30

40

50

60

70

1 2 3 4 5

RDF Structured Tags

(b)

Figure 22: Percentages of participants’ levels of agreement (1 to 5) with
statement 8, grouped by (a) text and (b) annotation formalism

The reactions of participants using RDF are distributed in com-
parable proportions over “disagree,” “undecided,” and “agree.”
A smaller number of participants strongly disagreed with the
statement. With respect to structured tags, the reactions are very
different with more than half being undecided, a small number
disagreeing and about a third agreeing or agreeing strongly.

statement 8: “I feel that the annotations I made convey the impor-
tant aspects of the text” For this statement, again, the distribu-
tions of the different levels of agreement do not greatly differ
across texts or annotation formalisms (see Figures 22a and 22b),
and the answer distributions do not differ significantly between
texts (W=200, p=0.30) or annotation formalisms (W=128, p=0.13).

The majority of participants agrees or agrees strongly, while a
minority of about twenty percent is uncertain. In the case of RDF,
about ten percent of participants disagree with the statement.

Several participants in both groups wrote in their comments
that they felt they might have annotated too much and expressed
too many unimportant details in their annotations.

118 experimental evaluation : structured tags and rdf

0

10

20

30

40

50

1 2 3 4 5

Text A Text B

(a)

0

10

20

30

40

50

60

1 2 3 4 5

RDF Structured Tags

(b)

Figure 23: Percentages of participants’ levels of agreement (1 to 5) with
statement 9, grouped by (a) text and (b) annotation formalism

statement 9: “I enjoyed using the formalism” Here, a small
difference in reactions between the texts can be observed (see
Figure 23a). The difference in reactions between texts is not sig-
nificant (W=148, p=0.48), but that between annotation formalisms
is highly significant (W=28.5, p<0.001).

About 24 percent of participants annotating text A and 37
percent of the participants annotating text B disagree with the
statement. Inversely, 16 percent of the participants annotating text
A and 42 percent of participants annotating text B agree with the
statement. However, ten percent of the participants annotating
text A but no participants annotating text B agree strongly and the
difference between texts is smaller than that between formalisms.

The difference in the distributions of levels of agreement be-
tween formalisms is very high for this statement (see Figure 23b).
Over eighty percent of participants do not enjoy using RDF (“dis-
agree” and “disagree strongly”), and the rest are undecided.
No participant indicated that he enjoyed using RDF. The case
is reversed for structured tags with over two thirds stating that
they enjoyed using structured tags. About twenty percent are
undecided and ten percent disagree with the statement.

Several participants commented that they did not enjoy using
RDF since they found it too difficult, did not feel that they fully
understood the formalism or because they found the process too
laborious.

statement 10: “Given more time, I would have liked to add more
annotations” Grouped by text, the levels of agreement show a
difference in that the reactions of participants annotating text A
overall are more negative than those of participants annotating
text B (see Figure 24a).

A similar difference can be found for the reactions grouped by
formalism where more participants using RDF would have liked
to add more annotations (see Figure 24b). Overall, the differences

6.2 results 119

0

10

20

30

40

50

60

70

1 2 3 4 5

Text A Text B

(a)

0

10

20

30

40

50

60

1 2 3 4 5

RDF Structured Tags

(b)

Figure 24: Percentages of participants’ levels of agreement (1 to 5) with
statement 10, grouped by (a) text and (b) annotation formal-
ism

found for this statement are minor compared to the differences
in reactions to the other statements and neither difference is
significant (text:W=173.5, p=0.95; annotation formalism: W=107,
p=0.61).

In the final questionnaire, eighteen of the nineteen participants
stated that they preferred structured tags to RDF. Frequently
given reasons given for this choice are that structured tags are
more flexible and intuitive, easier to understand and use and
quicker to write.

Several participants stated that they thought that structured
tags were expressive and could be updated easily, making it
possible to start annotating without having a clear idea of all
concepts in the domain. The latter point was a major point of
criticism with respect to RDF where many participants expressed
opinions similar to the following: “[W]ithout prior knowledge of
the subjects to be annotated, it is quite hard to define a structure
that is compact, yet flexible enough to be used in future edits.”

One participant suspected that users would be more willing to
write annotations in the form of structured tags than RDF, while
another remarked that, when the people annotating the content
are paid, RDF is better because of it can be used for reasoning,
but that structured tags are better for encouraging casual users
to add annotations.

While most participants were more in favor of structured tags,
several participants commented on the advantages of RDF. A
number of participants found that when the domain and its
concepts are known, RDF should be used since it allows for
a cleaner formalization that is better suited for, for example,
reasoning.

One participant remarked that when several people work on
one annotation, RDF is preferable to structured tags due to its

120 experimental evaluation : structured tags and rdf

0

5

10

15

20

25

30

R1 R2 R3 R4 R5 R6

Text A Text B

(a)

0

5

10

15

20

25

30

35

40

45

50

R1 R2 R3 R4 R5 R6

RDF Tags

(b)

Figure 25: Average time taken to annotate the different revisions of
the text (in minutes), grouped by (a) text and (b) annotation
formalism

more rigid, pre-defined semantics. Another participant wrote
that “RDF” delivers a more “clean” feeling, whereas [structured
tags] feel somewhat “quick & dirty.”

Some participants criticized both formalisms because they felt
that uncertainty, negation, temporal information and complex
relationships could not easily be expressed.

6.2.2 Time Requirements for annotations

The average times needed to annotate each revision, grouped by
text and formalism, are shown in Figures 25a and 25b.

On average, participants spent 22.5 minutes annotating each
revision of text A and 23.4 minutes each revision of text B. The
differences in the time spent annotating per revision between
texts are minor and the distributions of time spent over the
revisions of each text resemble each other.

Annotating one revision of a text with RDF on average took
participants 30.7 minutes, almost double the average time needed
to annotate a revision with structured tags, 15.7 minutes.

Not only the average amount of time, but also the differences
in time spent annotating across revisions differ.

Participants assigning RDF annotations spent 40.6 minutes on
the first revision, more than on any other revision. At 28 minutes,
the second revision was annotated comparatively quickly. The
time spent annotating revisions three and four is higher and
almost identical at 32.7 and 32 minutes respectively, and declines
for the next and final two revisions (26.9 and 24 minutes).

When structured tags were used, the first revision took the
shortest amount of time to annotate, 9 minutes. From there,
the time taken gradually increases; revision 4 on average was
annotated within 20.8 minutes, the highest amount of time across

6.2 results 121

0

5

10

15

20

25

30

R1 R2 R3 R4 R5 R6

RDF Structured Tags

Figure 26: Average number of annotations per text revision (1 to 6),
grouped by annotation formalism

a revisions. The average time then declines to 19.1 minutes for
the final revision.

6.2.3 Analysis of the Annotations

On average, each participant wrote 178.53 annotations, 14.88 for
each individual revision. 27.36 percent of those annotation are
structured tags and 72.64 percent are RDF triples. 34.05 percent
of the structured tags and 10.19 percent of the RDF triples were
marked by participants as changes to earlier annotations.

Figure 26 shows the average number of annotations added
per revision for both formalisms. In both cases, the number of
annotations increases from the first to the fourth revision and
then decreases for the last two revisions.

The initial increase in the number of annotations added is pro-
portionally lower for the RDF annotations. Overall, considerably
more RDF triples than structured tags were assigned; the number
of RDF triples assigned is between two and four times higher
than that of structured tags.

While RDF triples have a fixed number of elements, structured
tags can be made up of an arbitrary number of simple tags. This
means that comparing the overall number of annotations is not a
sufficient metric to compare how much information is expressed
through the annotations in each formalism. Figure 27 displays
the average number of elements, that is, subjects, predicates, and
objects, and simple tags, that were added to each revision of the
text. For the first three revisions, the number of RDF elements is
higher by a factor of 2 to 1.5, but for revisions 4 to 6, the number
of RDF elements assigned is only about 10 percent higher than
that of structured tags elements.

Note that this statistic does not fully capture the differences in
the amount of information contained in the annotations either:

122 experimental evaluation : structured tags and rdf

0

10

20

30

40

50

60

70

80

R1 R2 R3 R4 R5 R6

RDF Structured Tags

Figure 27: Average number of elements in annotations added per text
revision (1 to 6), grouped by annotation formalism

0

20

40

60

80

100

R1 R2 R3 R4 R5 R6

Time Complex
Grouping Labeling

(a)

0

20

40

60

80

100

R1 R2 R3 R4 R5 R6

Elements Complex
Grouping Labeling

(b)

Figure 28: Relationship between tag complexity and time spent an-
notating ((a)) and number of total elements in the added
structured tags ((b)), per revision

While an RDF triple describes the relationship between a subject
and a predicate, structured tags use labels and the grouping oper-
ator to describe the relationships between tags. Since structured
tags can be characterized and grouping can be applied to an
arbitrary number of simple or structured tags, the number of ele-
ments alone is not sufficient to determine how much information
is expressed in a structured text in terms of the relations between
elements. However, since the nature of relations in RDF and struc-
tured tags differ greatly, this factor cannot be easily quantified
and we use the number of elements as an approximation of the
information content of an annotation.

The average number of constituent simple tags in each struc-
tured tag is 8.35 across all revisions.

Grouping and characterization are used to comparable extents
and often in combination; structured tags use grouping at least
once in 85.39%, and characterization in 83.20% of all annotations.

6.3 discussion 123

0

20

40

60

80

100

1 2 3 4 5 6

RDF Structured Tags

Figure 29: Average percentage of annotations not based on previous
annotations, per revision

The number of complex structured tags, that is, structured tags
that contain at least one occurrence of labeling or characterizing
a tag that itself uses one the operations, is high, 79.62%. In most
cases, it is the elements of a grouping or the tag being charac-
terized that are complex, and 96.13 percent of labels are simple
tags.

As figure 28 shows, the percentages of structured tags that use
grouping, characterization or that are complex are not clearly re-
lated to the average time spent annotating or the average number
of elements per structured tag.

When using structured tags, participants more frequently indi-
cated that a newly added annotation was based on an existing
annotation that it replaces (see Figure 29). Since participants
wrote their annotations on paper, they had to manually specify
that a new annotation was to be understood as a change to a
previous annotation. It is likely that participants did not remem-
ber to add this note in all cases and consequently, the numbers
shown in Figure 29 should be understood as a low estimate.

6.3 discussion

The evaluation of the results shows that participants find struc-
tured tags convenient and comfortable to use but at the same
time expressive.

The short introduction given was enough for most participants
to understand how to use structured tags and a majority of partic-
ipants considers structured tags to be intuitive, convenient, and
flexible. Participants were also more confident in the correctness
of their annotations when using structured tags and found using
structured tags more enjoyable than using RDF. Further, partici-
pants represented similar amounts of information in structured

124 experimental evaluation : structured tags and rdf

tags and RDF, but needed substantially less time when using
structured tags.

Due to the experimental setup, we can not fully exclude the
possibility that the order in which the formalisms where used
had an effect on the outcome of the experiment. For example, it
is possible that the smaller amount of time needed for annotating
the texts with structured tags is partially due to participants’ ex-
periences in creating the RDF annotations. If this practice would
significantly decrease the time needed to write annotations, it
could be expected that the later revisions of the text annotated
with RDF are annotated quicker than the earlier ones. However,
this is not what we observed and with the exception of the very
first text that was annotated, the relative amounts of time spent
on each revisions are proportional between formalisms. This
might indicate that either some learning took place at the very
beginning of the experiment, or that RDF is initially harder to
understand or use than structured tags.

More structured tags than RDF triples were identified as being
based on annotations to prior revisions. Additionally, several
participants remarked that, unlike structured tags, RDF requires
to have a clear idea of the conceptual domain before beginning
to annotate. Together, these findings indicate that structured tags
are seen as more suited for expressing evolving knowledge than
RDF is.

At the same time, several users find that, when it is used in an
appropriate environment where the domain concepts are known
and where the annotations are assigned by experienced users,
RDF has advantages over structured tags.

Overall, the experimental evaluation thus indicates that struc-
tured tags succeed at realizing a way to assign semi-formal an-
notations that are more expressive than simple tags but easier to
use, especially for expressing evolving knowledge, than RDF.

A high number of the structured tags that participants created
are complex and across revisions, no evolution from basic to
more strongly structured tags could be observed. Similarly, the
proportions to which the two operations, grouping and character-
ization, were used were roughly equal and did not change across
revisions.

One reason for this could be that the conditions of the exper-
iment were not realistic in that the experiment lasted several
hours which were explicitly dedicated to creating annotations.
Another way in which the annotations assigned likely differ from
those used in practice is that they merely describe but do not
enhance the content given in the text, for example with additional
information, or with subjective opinions and assessments.

While this experimental evaluation is concerned mainly with
the participants’ impressions and acceptance of structured tags,

6.3 discussion 125

a study that focuses on the evolution of annotations, both from
simple to structured tags and from structured tags to RDF, should
consider this aspect in its experimental design.

Part III

K W Q L

7
K W Q L : D E S I G N A N D M O D E L

KWQL, pronounced “quickel,” is a rule-based query language
that combines the characteristics of keyword search with those of
web querying in order to enable versatile querying in the KiWi
wiki. The language allows for rich combined queries of textual
content, metadata, document structure, and informal to formal
semantic annotations.

KWQL queries range from elementary and relatively unspecific
to complex and fully specified (meta-)data selections. In keeping
with the wiki way [240], KWQL has a low entry barrier, allowing
casual users to easily locate and retrieve relevant data, while
letting advanced users take advantage of its full power.

KWQL is flexible with respect to the amount of experience
of the user and the specificity of the queries: semantic wikis,
like social semantic software in general, live from user participa-
tion. However, the assumption that users are familiar with web
query languages severely limits the potential user base of such
an application. Therefore, a query mode that is accessible and
immediately useful for beginning users should be provided.

Despite efforts to automatically infer users’ intents from key-
word queries (see Section 4.3), such queries alone do not suffice
to convey complex selection criteria. Consequently, and at the
inevitable cost of a less accessible query formalism, experienced
users should be able to formulate their queries in a language that
allows for highly specific and expressive queries.

The two requirements, simple and accessible querying for
beginning users and complex selections for experts who value
expressiveness over simplicity, could be realized by providing
two different query languages, for example full text keyword
search and XQuery. No current semantic wiki provides a web
query language that can query over content, annotation as well as
structure or a keyword query language that is not purely matched
either on content or annotations (see Section 3.4). However, even
if we ignore this limitation and assume that we integrate data-
versatile keyword and web query languages in our wiki, this
approach has one major disadvantage: it leaves no room for a
middle ground, meaning that beginning users either have to learn
XQuery or be confined to keyword search. Intermediate users
may want to formulate queries that are slightly more advanced
than bag-of-words keyword queries. When two languages are
provided that differ greatly in the knowledge required to use
them, these users cannot formulate their query without first

129

130 kwql : design and model

learning a good portion of the more expressive language, even
though their query intent may only slightly exceed the expressive
power of the simple one. Providing keyword search and a web
query language may accommodate both novices and expert users,
but not the group of users in between, which, as the system is
used over time, is likely to constitute a significant portion of the
user base.

One of the key principles of KWQL is that the complexity of
queries increases with their expressiveness, enabling a gradual
learning of the language where required. Beginning users can
immediately profit from using KWQL by posing basic keyword
queries. As users learn more about the system and the data
contained in it, their information needs might begin to become
more complex. KWQL allows users to learn the advanced features
of the language bit by bit as required to realize their query intents.

KWQL does not require a specific amount of learning from the
user—it is likely that some users will never venture past basic
keyword queries, while others may only learn to use some slightly
advanced constructs but not the full language. A third group
may invest more time, study the full syntax, and use it to write
complex rules. The goal for KWQL is to equally accommodate
all of these users, letting them use as much or as little of the
language as suits their needs.

KWQL queries may be vague and amount to simple full text
search, or take the shape of selections of individual data items
using precise constraints. The language is designed to support
both types of queries, one similar in functionality to web search,
the other similar to web querying, as well as the range of queries
in between.

Since queries imposing more complex selection constraints
also require more knowledge of the language, the issue of the
precision of a query is related to that of the user’s knowledge of
the language. Beginning users who are not yet familiar with the
KiWi wiki and the data contained in it will likely have relatively
unspecific information needs, such as finding all content items
related to a specific topic. Queries of this type can be realized
easily without knowledge of KWQL’s syntax. As the users learn
more about the types of data that exist in the wiki and how these
are arranged, they might want to use targeted queries to satisfy
their more specific information needs. For this, they are required
to learn some of KWQL’s syntax and semantics, an investment
which pays off immediately since they can now formulate a query
which yields the desired results. Learning to use KWQL therefore
is a gradual process driven by users’ information needs. For-
mulating vaguer queries which impose less specific constraints
generally requires less effort and knowledge of the language than
composing more specific queries.

7.1 a high level look at kwql 131

To put it shortly and succinctly, KWQL provides a means to
formulate queries that range from easy and vague to complex
and expressive, allowing users to employ the language according
to their knowledge and information needs.

7.1 a high level look at kwql

In this section we give an overview over KWQL and its features.
Our goal is to convey the design and characteristics of KWQL at
an abstract level, without distracting the reader by delving into
the syntax and giving concrete examples or tying the principles
of the language too closely to their realization in KWQL.

While KWQL was developed and implemented in the context
of the semantic wiki KiWi, the ideas and goals behind its design
address issues that are universal in querying social semantic web
applications. As such, the concepts of KWQL could be transferred
to derive similar languages targeting other social semantic ap-
plications, and we consider KWQL to be exemplary of a novel
family of query languages.

Full KWQL rules consist of a query body which specifies the
data to be selected, and an optional head indicating how this data
should be processed further. This strict separation between data
selection and the construction of new data, not commonly found
in web query languages [318], aims at providing conceptual
clarity and reflects the fact that selecting data and then processing
the selected data are two separate, consecutive tasks.

Query bodies can express selections of varying levels of com-
plexity using any combination of data sources in the wiki. For
example, a content item selection can refer not only to the tex-
tual content of the content item to be selected, but also to the
structuring of its contained content items, to the links from or to
the content item, and to its annotations. In short, KWQL is fully
aware of the underlying conceptual model.

To improve the user experience, and simplify the mental trans-
fer of the query intent into a query, query bodies take the shape
of abstracted descriptions of the data to be matched. This query-
by-example-like syntactic style is further substantiated by the fact
that KWQL query terms are injective, meaning that no two query
terms may match the same data item. For example, when a query
body describes a content item with two tags, one with name
“wiki” and one created by the user Mary, the query will retrieve
only content items where the two conditions hold for two distinct
tags, but not those where a single tag satisfies both criteria but no
other tag meets either of them. Apart from enhancing the expres-
sive power of KWQL, injectivity also more tightly couples the
user experience—what the user sees and perceives when he uses
the wiki—to the way in which queries are expressed in KWQL.

132 kwql : design and model

Each query body evaluates to a set of content items, namely
those that are compatible with the given description. Compatibility
here means that the content item has all the properties specified in
the query body, for example that it contains the term “KiWi” but
not the term “search” in its text, has a tag whose name contains
“wiki” and in addition links to a content item with “KWQL” in the
title. Query bodies are taken to be partial specifications, meaning
that a content item that satisfies the selection criteria may in
addition have any number of other properties that are not in
contradiction with the selection criteria.

The key property of KWQL, scaling with user experience and
the specificity of the query intent, is realized through far-reaching
and comprehensive support for the under-specification of queries.
The simplest—and at the same time most vague—description of
content items to be matched consists of one or several keywords
that the content items must contain. When the context in which
the keywords may occur is not restricted further, all content items
that contain the given keywords in their text, title, fragments,
links, tags, or associated metadata—but not in linked or nested
content items—are compatible with the query and returned as
results. Basic keyword queries in KWQL therefore constitute a
true full text search over all parts of the individual content items.

To make queries more selective and precise, the structural con-
text in which the keywords should occur can be specified fully or
in part. In addition to conjunction, which is implicitly assumed
when no operator is given, operators for disjunction and negation
may be used. KWQL bodies thus amount to descriptions of the
data to be retrieved that, depending on the users’ knowledge and
information need, can be more or less specific.

This approach lends itself particularly well to stepwise query-
ing, the gradual refinement of queries: starting with explorative
queries using a small set of keywords, users can go through sev-
eral iterations of evaluating a query, examining the results, and
then further substantiating the query until the desired informa-
tion is found.

KWQL queries are monotonic, that is, they become more selec-
tive as conjunctive selection conditions are added. In the above
example, the answers returned by a query for content items with
“KiWi” in the text are a superset of the answers returned by a
query for content items that contain “KiWi” but not “search.” The
same is not true for the addition of disjunctions and negations:
the negation of a query returns the complement of the original set
of answers, while the addition of a disjunctive selection criterion
means that the union of the matches of each operand query term
is returned.

Query bodies may also contain variables. In the query evalua-
tion process, these are bound to specific values of the matching

7.1 a high level look at kwql 133

content items, for example their authors or the titles of the content
items that they link to.

KWQL is not restricted to data selection but also offers construc-
tion, the reshaping of the selected data into new data, database-
like views. Such views constitute a simple yet remarkably power-
ful form of reasoning. KWQL does not aim to be a full reasoning
language, but instead limits itself to this simple form of content-
based reasoning. New content items are created in the rule head
from the variable bindings obtained by evaluating the body. Con-
struction enables users to create new data through regrouping,
reformatting, or aggregation of the selected data, or through the
inclusion of data in a different context. The syntax used to specify
the content items to be constructed resembles that used to de-
scribe which content items should be selected, with the difference
that query heads must always specify the full context of a value.

Construction can for example be used to create a table of
contents of the wiki, by first binding the titles and authors to
variables and then specifying a new content item which lists all
titles together with their authors, or vice versa. Using aggregation,
the table of contents could then be extended to show the number
of authors per content item, or the number of content items each
author has edited.

The data queried and the constructed query results adhere
to the same data model [320], meaning that query answers are
amenable to further queries. This is desirable for two reasons.
First, no additional concepts are required to represent query an-
swers, which maintains the consistency and simplicity of the con-
ceptual model. Second, answer-closedness means that rule chaining
can be realized naturally without transformations between differ-
ent data formats.

Unlike the body, the head of a KWQL rule is optional. When no
query head is given, the set of content items matching the body
is returned and presented to the user as is. By default, content
items created through construction are automatically persisted
in the KiWi database, while the lists of matching content items
returned when no head is specified are not saved. However, the
KWQL interface allows for the easy deletion of the newly created
content items or the storage of a result list.

KWQL supports two types of queries: regular queries, evalu-
ated only once, and embedded queries. Embedded queries are
part of a content item and are evaluated every time the content is
loaded. They enable pre-defined views that always display the
latest information without need for manual updating.

Content items created through construction in regular queries
can be further edited by the user, while the content items dis-
played as the result of the evaluation of an embedded query are
virtual and thus cannot be changed manually.

134 kwql : design and model

content item
fragment

link
tag

Figure 30: Resources and allowed sub-resources

7.2 kwql syntax

Having reviewed the general principles behind KWQL, we now
introduce the syntax used to express KWQL selections and con-
structions and give various examples of KWQL queries.

7.2.1 Data Model

KWQL queries take an object-oriented view and describe the
data to be selected or constructed in terms of the four elements
of the conceptual model (see Chapter 5), their properties, and the
relations between them. The elements of the conceptual model—
content items, fragments, links, and annotations—will in the
following be referred to as resources.

When we speak of resources of type “tag,” we mean not tag
labels or concepts, but instead individual tag assignments. KWQL
as described here supports only the querying of (structured and
unstructured) tags, but not of RDF or annotations of other types.
Three different approaches to extending KWQL to the querying
of RDF annotations are described and discussed in Chapter 13.

Resources are complex data items. They have a number of
pre-defined properties depending on their type and can stand
in a containment relationship to resources of other types. For
example, a content item has a title and at least one author and
may contain a fragment, which in turn contains (that is, has been
assigned) a tag.

7.2 kwql syntax 135

Resources contained in resources of other types will in the fol-
lowing be called sub-resources. The allowed containment relation-
ships in the KiWi wiki are illustrated in Figure 30. Wherever two
rectangles in the figure share a border, the resource represented
by the darker rectangle may contain the resource represented by
the lighter rectangle. The containment relationship is transitive.
Content items can be assigned tags or contain links or fragments
in their text. Fragments can contain links and tags, links can con-
tain tags, and tags cannot contain any sub-resources. A resource
may contain several sub-resources of the same type: a content
item, fragment or link can be assigned several tags, several frag-
ments can be defined in one and the same content item, and the
text of a content item or fragment can contain several links.

The different types of properties of a resource are called qual-
ifiers. Each qualifier is associated with a qualifier value, together
they form a qualifier term. Similar in form to label-keyword terms,
qualifier terms represent the content and metadata of a resource,
but also express linking and nesting relationships. Depending on
the type of the qualifier, qualifier terms have different arities indi-
cating how often a qualifier term of this type may occur within a
particular resource. For example, every content item has exactly
one title and one URI, at least one author, and any number of
nested content items.

Qualifier values, that is, the content associated with qualifiers,
are of different types depending on the type of the qualifier.
Qualifiers referring to data and metadata are associated with data
in the form of dates, integers, URIs or text. Structural qualifiers
on the other hand describe nesting and linking relationships
among pairs of content items or fragments. When used in a
query, they take as a value a subquery describing the linked or
nested resource.

Some qualifiers can occur within resources of several different
types. This for example is the case for the author qualifier, since
both content items and tags have authors. Qualifier terms of a spe-
cific type typically maintain their arity and the data type of their
value regardless of the type of resource they appear in. The only
exception to this rule are the qualifiers child and descendant,
which refer to a fragment when used within a fragment and a
content item when used within a content item. Table 3 lists all
qualifier types together with the resources in which they can
appear, the data type of their value, and the arity of the qualifier
term. * and + here are used as in regular expressions, indicat-
ing that the qualifier can appear any number of times (*), or
arbitrarily often but at least once (+).

Values, qualifiers, and resources specify the content items to
be selected or created.

136 kwql : design and model

Qualifier Resource Type(s) Value Type Arity

data

title content item string 1
text content item string 1

fragment
anchorText link string 1
name tag string 1

metadata

URI content item URI 1
fragment
tag

author content item string +
fragment
tag

created content item date 1
fragment
tag

lastEdited content item date 1
numberEdits content item integer 1

structure

child content item content item *
child fragment fragment *
descendant content item content item *
descendant fragment fragment *
target link content item 1

Table 3: KWQL qualifier types

7.2 kwql syntax 137

Non-structural qualifiers and sub-resources describe the intra-
content item structure. Structural qualifiers impose constraints on
the inter-content item structure, and the inter-fragment structure in
the case of child and descendant.

7.2.2 KWQL Terms

With the data model firmly in place, we can now direct our
attention to the building blocks of KWQL queries.

operators The Boolean operators NOT, AND, and OR are used
to represent classical negation, conjunction, and inclusive dis-
junction. When query terms are concatenated but no operator
is given, as a default, conjunction is assumed. The precedence
of negation is higher than that of conjunction and disjunction,
which are evaluated from left to right. Moreover, bracketing may
be used to indicate precedence.

value terms An atomic value term consists of a single key-
word or several terms enclosed in quotation marks. Atomic and
non-atomic value terms can be combined using the Boolean op-
erators. KWQL does not currently support wildcards or regular
expressions as values, however, support for both could easily be
added. The following are examples of value terms:

KiWi

NOT(KiWi AND KWQL)

NOT(KiWi) AND KWQL

NOT(KiWi) KWQL

NOT(KiWi) AND (KWQL OR search)

qualifier terms An atomic qualifier term consists of a quali-
fier and a value term. Atomic and non-atomic qualifier terms can
again be combined using the Boolean operators. The following
are examples of qualifier terms:

text:KiWi

138 kwql : design and model

created:2010

text:NOT(KiWi AND KWQL) OR title:search

resource terms A resource term consists of a resource of
type r1 together with its value. The value of a resource term
must in turn consist of at least one qualifier term, or of another
resource term where the resource type r2 of the inner resource is
a valid sub-resource of r1. The value can also be a combination
of qualifier or sub-resource terms using the Boolean operators.
Resource terms of type content item can be negated and be
used as operands in disjunctions, but not in conjunctions. The
following are examples of resource terms. The resource type
content item is abbreviated as “ci” in KWQL.

tag(name:KiWi)

fragment(tag(name:KiWi))

ci(text:NOT(KiWi AND KWQL) OR title:search)

context By the context of a value term we understand its
enclosing resource(s) and associated qualifier, that is, its location
in the described content item.

7.2.3 KWQL Bodies

fully specified query bodies A fully specified KWQL
body consists of a content item term, that is, a resource term
with a resource of type content item, together with its contained
qualifier and sub-resource terms. In such a query body, all value
terms occur in the context of a qualifier term which in turn is
associated with a resource term. Furthermore, all resource terms
whose resource is not of type content item are contained, directly
or indirectly through an ancestor-descendant relationship, within
a content item resource term.

Consider for example the query described in natural language
in Section 7.1, which selects content items that contain the term
“KiWi” but not the term “search” in their text, have a tag whose
name contains “wiki,” and link to a content item containing
“KWQL” in the title. In KWQL this query is represented as fol-
lows:

7.2 kwql syntax 139

ci(text:(KiWi AND NOT search) AND tag(name:wiki) AND
link(target:ci(title:KWQL)))

Note that fully specified here does not mean that the query ex-
haustively describes all properties of the content items, but rather
that the context in which each keyword occurs is unambiguously
specified.

underspecified query bodies In an underspecified query
body, the context of at least one value term is not fully described.
This means that there is at least one keyword that occurs outside
of a qualifier or resource term, a qualifier term that occurs outside
of a resource term, or a resource term that is not a content item
term and is not contained directly or indirectly within a content
item resource term. Underspecified KWQL bodies allow users
to easily specify selection criteria that are vaguer than a fully
specified query by not (fully) specifying the context in which the
values must occur. When a qualifier or resource is not given, the
query is extended to cover all possible qualifier or resource types
that can occur in the context.

Consider for example the underspecified query tag(name:KiWi).
Since content items, fragments, and links can all be tagged, it can
be extended to the following fully specified queries:

ci(tag(name:KiWi))

ci(link(tag(name:KiWi)))

ci(fragment(tag(name:KiWi)))

ci(fragment(link(tag(name:KiWi))))

The underspecified query thus returns content items which either
have been tagged with “KiWi” themselves or contain fragments
or links that have been assigned such a tag.

Another example is the underspecified query ci(KWQL). Since
“KWQL” is a string, only queries where the qualifier takes a
string or URI are valid, and we obtain the fully specified queries
ci(title:KWQL), ci(text:KWQL), ci(author:KWQL), and ci(URI:KWQL).

The only part of KWQL bodies that is not optional are value
terms, so the most simple query consists of a single keyword.
Since in that case the internal structure of the content item is not
specified at all, such queries return content items where the term
occurs anywhere within the content item or its sub-resources, but

140 kwql : design and model

not in its linked or contained content items. Similarly, when a
query consists of several keywords, the content items that contain
all keywords are returned, regardless of the keyword contexts.
Thus, all of the examples given above for value, qualifier, and
resource terms also constitute valid KWQL queries.

Since underspecified queries do not consider linked or con-
tained content items for matching, the qualifiers labels of value
terms that are queries have to be specified explicitly.

Depending on the query intent and knowledge of the user, the
selection criteria may be more or less underspecified. For example,
a user might not want to restrict the occurrence of “KWQL” to the
title of the linked content item, but instead extended the query to
the other qualifiers of the content item (but not its sub-resources).
This can be achieved by changing the above query as follows:

ci(text:(KiWi AND NOT search) AND tag(name:wiki) AND
link(target:ci(KWQL)))

The fact that the term “KWQL” should occur anywhere in the
content item or its contained resources can be expressed by the
following query:

ci(text:(KiWi AND NOT search) AND tag(name:wiki) AND
link(target:KWQL))

On the other hand, the user might simply want the given terms
to occur anywhere in the respective (linking and linked) content
items. This is achieved by the following query:

KiWi AND NOT search AND wiki AND link(target:KWQL))

The optional conjunctive operators can also be left out:

KiWi NOT search wiki link(target:KWQL))

query containment A KWQL query Q1 is said to be con-
tained in another query Q2, here denoted Q1 � Q2, if for any
KiWi dataset D, Q1(D) ⊆ Q2(D), where Qi(D) is the set of query
answers obtained from evaluating Qi on D.

query qualification We say that a KWQL query Q1 qual-
ifies an underspecified KWQL query Q2, or is a qualification of
Q2, if Q2 can be transformed into Q1 by adding qualifiers or
resource types—but not operators or resource, qualifier or value
terms—to Q2.

7.2 kwql syntax 141

query refinement We call a KWQL query Q1 a refinement
of another query Q2 if Q1 is a qualification of Q2 or if Q2 can
be transformed into Q1 by adding qualifiers or resource types or
arbitrary resource, qualifier, or value terms, as long as none of
the new terms are added as disjuncts.

When a query Q1 refines another query Q2, and in particular
when Q1 qualifies Q2, then Q2 is contained in Q1: the addition of
qualifiers or resource types to an underspecified query constrains
the context in which the respective value term may occur to a
subset of the contexts which are allowed without the additional
qualification. More generally, adding a new selection criterion to
a query by means of conjunction means that the answers to the
resulting query will be the intersection of the content items that
match the query before refinement and those that match the new
selection criterion.

query equivalence A KWQL query Q1 is called equivalent
to another query Q2 if they mutually contain each other.

Among the last four example queries we have considered, the
first one is a qualification of the second one. The latter qualifies
the third and fourth, which in turn are equivalent. Denoting by
Ri the set of content items returned by the ith example, it holds
that R1 � R2 � R3 = R4.

As we have already seen, KWQL distinguishes between queries
that give a resource but no qualifier or sub-resource terms, like
ci(KWQL), and queries that do not define any structural context,
like KWQL. In the former case, only those content items are returned
in which KWQL occurs within the content item itself. The latter
query returns all content items that contain the term directly or
within a contained sub-resource. More generally, when a resource
is given in the query term, the description is assumed to be
complete, that is, sub-resources not stated in the query are not
considered for matching. For example, the query ci(author:Mary)

returns content items with the given author, but not content items
where the given author is only the author of a tag assignment (the
latter could be obtained with the query ci(tag(author:Mary))).

In the first and second of the four example queries above, the
value term KiWi AND NOT search inside the text qualifier term is
given in brackets. This is necessary to express that both condi-
tions apply only to that qualifier term, because the colon, the
operator binding a value term to a qualifier, takes precedence
over disjunction and conjunction (it does, however, not take prece-
dence over negation). The query term text:KiWi AND NOT search

would thus be interpreted to mean that “KiWi” must occur in
the text, while no qualifier term (including text) may contain
“search.”

142 kwql : design and model

There are two reasons underlying this design choice. First, it
is consistent with the principle used in what is likely the most
widely used form of label-keyword queries, Google’s extended
syntax.1 Secondly, a user who is not aware of the higher prece-
dence of qualifier-value association will pose a query that is more
general than intended, and will obtain a superset of the answers
to intended query. The mistake will thus be visible in the form
of results that are not answers to the intended query, and can be
traced back to the query. On the other hand, if qualifier-value
term association had lower precedence than conjunction and dis-
junction, a mistake on the part of the user would produce a set
of results that are a subset of the results of the intended query,
making it harder for the user to discover the mistake.

It should be noted that these observations only apply when the
second value (or, more generally, the kth value for k � 2) in the
value term is not negated. Again consider the query text:(KiWi

AND NOT search). Removing the brackets actually makes the query
more selective: text:KiWi AND NOT search expresses that search
may not occur anywhere in the enclosing resource, while the
bracketed version of the query only specifies that “search” may
not occur in the text qualifier.

Underspecification in KWQL queries serves to express vague-
ness. As we have already explained above, underspecified queries
can be transformed into one or more fully specified queries that
together cover all possible valid qualifications of the underspec-
ified query. When these are combined through disjunction, the
set of query answers of the resulting query are identical to those
of the original, underspecified query. We thus have the following
result:

Proposition 1. For every underspecified KWQL query, there is at least
one equivalent fully specified KWQL query.

For example, consider once more the underspecified query
ci(KWQL). A fully specified query equivalent to this query is the
following:

ci(title:KWQL) OR ci(text:KWQL) OR ci(author:KWQL) OR
ci(URI:KWQL)

This concludes our discussion of the basic elements and prop-
erties of KWQL bodies. The rest of this section illustrates the
range of possible KWQL bodies and introduces some advanced
features. A (somewhat simplified) grammar for KWQL query
bodies is given in Figure 31.

1 An exception to this are labels that explicitly indicate that they apply to all
following terms and that cannot occur in a query with keywords to which the
query does not apply, namely “allinanchor,” “allintext,” “allintitle,” “allinurl.”

7.2 kwql syntax 143

�kwql-query� ::= �resource-term�

�resource-term� ::= �value-term� | �qualifier-term�
| �structure-term�
| �resource-term� (‘OR’ | ‘AND’)? �resource-term�
| ‘(’ �resource-term� ‘)’
| ‘NOT’ �resource-term�
| �resource� ‘(’ �resource-term� ‘)’

�resource� ::= ‘link’ | ‘ci’ | ‘fragment’ | ‘tag’

�structure-term� ::= (‘child’ | ‘descendant’ | ‘target’) ‘:’
�resource-term�

�value-term� ::= �STRING�

�qualifier-term� ::= �qualifier� ‘:’ (�value-term� | �variable�)

�qualifier� ::= ‘text’ | ‘title’ | ‘name’ | ‘URI’ | ‘agree’
| ‘disagree’ | ‘lastEdited’ | ‘numberEd’
| ‘author’ | ‘created’ | ‘anchorText’

�variable� ::= ‘$’�IDENTIFIER�

Figure 31: KWQL Syntax

variables In a qualifier term with specified qualifier, a vari-
able may be used instead of a value term. Variables can occur
in underspecified queries, as long as the qualifier of the variable
itself is given. Variable names consist of a dollar sign followed
by an alphanumeric string. Upon query evaluation, all answer
substitutions are generated, that is, all valid tuples of values that
the variables in the query body may take, and each variable is
bound to its possible values. In KWQL bodies, variables can serve
three purposes:

• To bind values for further use in the construction part of a
rule. Consider the following query:

ci(tag(name:KiWi) author:$a title:$t)

This query retrieves all content items tagged with “KiWi,” and
for each of them binds the names of its authors to the variable
$a and the title to $t. Only qualifier values, but not qualifiers or
resources themselves, can be bound to variables. The main reason
for this, apart from conceptual simplicity, is the strict separation of
selection and construction—binding complex entities to variables
would necessitate a way to selectively access individual values,
and thereby introduce a form of selection into the process of
construction.

• As a wildcard or existential quantifier. The following query
retrieves all content items that have been assigned at least one

144 kwql : design and model

tag, regardless of the name, author or other properties of said tag
assignment:

ci(tag(name:$t))

Together with negation and injectivity (see below), variables can
be used to realize counting constraints, for example to retrieve
all content items that have exactly one tagging:

ci(tag(name:$t) NOT(tag(name:$t) tag(name:$u)))

This query selects content items that have at least one tagging
but at the same time excludes content items that have two or
more taggings. As a result, only content items with exactly one
assigned tag are returned.
By adding an asterisk operator (*) to express wildcards, as is
common in many applications, this functionality could be made
more accessible in a way that is more convenient and does not
require users to understand how variables are used in KWQL.
This could easily be implemented in terms of a pre-processing
phase that replaces each occurrence of a wildcard with a new
variable, i.e., one that is not used elsewhere in a query. The two
previous examples could then be expressed in the following way:

ci(tag(name:*))

ci(tag(name:*) NOT(tag(name:*) tag(name:*)))

• To enforce that two qualifiers have identical values or—in the
case of text, title, and anchorText—share at least one token. In
KWQL, all occurrences of a variable in a query body must have
the same value; using the same variable several times therefore
amounts to imposing equality constraints on the values of the
respective qualifiers. The following query retrieves content items
that contain a link to another content item. Both content items
must have been assigned at least one tag and contain a fragment
which in turn has also been tagged at least once. The name of the
tags of the content items and the name of the fragment taggings
must respectively be identical.

ci(tag(name:$c) fragment(tag(name:$f))
link(target:ci(tag(name:$c) fragment(tag(name:$f)))))

Similarly, the following query returns content items which have
also been tagged by at least two of their authors:

ci(author:$a author:$b tag(author:$a) tag(author:$b))

7.2 kwql syntax 145

The values of the qualifiers text, title and anchorText are
treated as lists of tokens. The following query thus retrieves
content items that have at least one token in common with the
text of one of the content items that they link to, and the variable
$a is bound to the terms that occur in both texts:

ci(text:$a link(target:ci(text:$a)))

In the first usage described above, variables serve the function of
SELECT statements, while regular value-based KWQL terms can
be likened to WHERE clauses in, for example, SQL.

The two can be combined using the operator ->, which allows
the user to both specify a selection constraint and bind the value
of the qualifier to a variable. This functionality is particularly
useful in the context of partial matchings, for example to retrieve
the full text of all content items that contain the term “KWQL”:

ci(text:KWQL -> $a)

Another operator, OPTIONAL (optionality in the context of RDF
web query languages is discussed in Section 4.2.2.3), can be
used in connection with qualifier terms or sub-resources that
contain variables. It is similar to conjunction but matches content
items regardless of whether the corresponding selection criteria
or variable bindings can be met or not. Consider the following
query:

ci(text:Java author:$a OPTIONAL tag(name:$t))

When this query is executed, the authors of content items that
have “Java” in their text are bound to the variable $a. Moreover, if
the content item has been assigned at least one tag, the tag names
are bound to the variable $t. The same functionality could be
achieved by executing two queries, with and without the optional
query terms, and fusing the results. However, this would be less
convenient for the user and more costly to evaluate.

keywords for structure KWQL allows for the selection
of data based on the structure of content items and fragments
through the child and descendant qualifiers. To keep the lan-
guage simple, navigational queries are avoided and no qualifiers
are offered for parents and ancestors. Olteanu et al. [291] have
shown that adding these backward axes does not increase the
expressiveness of a query language.

KWQL’s structural qualifiers give rise to recursive data retrieval
through a wiki page structure. These qualifiers take subqueries
as a value, that is, arbitrary KWQL queries specifying selection

146 kwql : design and model

constraints on a linked or nested content item or fragment. For
example, the following query selects content items that are tagged
with “Java” and have a child content item tagged with “XML.”

ci(tag(name:Java) child:ci(tag(name:XML)))

Structure qualifiers can thus be seen as edges to other content
items or fragments, and recursive querying as traversal of the
resulting graph.

Link traversal can be expressed similarly. The following query
for example matches content with a tag “Java” and a link that
points to a content item with “XML” in the title:

ci(tag(name:Java) link(target:ci(title:XML)))

It should be noted that, despite the fact that structural queries
and link traversals can be nested, no infinite loops can occur. This
is due to the fact that queries are always finite and KWQL does
not support Kleene closure.

injectivity The same type of resource can occur several times
within another resource. For example, a content items can contain
several links, can be tagged with multiple tags, or link to several
other content items. Similarly, a qualifier term of the same type
may occur several times, for example in a content item with more
than one author.

In such cases, the selection constraints given in the qualifier or
resource terms have to match on different qualifier or resource
term instances. When constraints on two or more terms are to be
expressed, this is realized by repeating the respective term.

ci(author:Mary)

This query could match twice on a content item which has Mary
Smith and Mary Miller among its authors. To explicitly match
only content items which have two authors with the first name
Mary, the query is expressed as

ci(author:Mary author:Mary)

To specify criteria that should be satisfied by two or more
distinct instances of a resource, the resource and its respective
selection criteria have to be given the appropriate number of
times. For example, to match a content item tagged with two
distinct tags, “Java” and “XML,” the following query can be used:

ci(tag(name:Java) tag(name:XML))

7.2 kwql syntax 147

querying structured tags So far, we have only consid-
ered the querying of simple tag assignments using the resource
tag and the qualifier name to select content items, fragments, or
links whose tag label contains a certain value.

Underspecification, the mechanism underlying KWQL queries,
can be applied to structured tags by specifying either the full tag
or only part of it. Consider the following two queries:

ci(tag(name:’(Warwick, UK), New York, (May 26, 2008,
8am)’))

ci(tag(name:New York))

The first query selects content items that have been tagged with
the structured tag (Warwick, UK), New York, (May 26, 2008, 8am),
while the second one selects content items that have a tag, atomic
or structured, in which “New” and “York” occur.

In addition, however, it should be possible to specify selections
that neither express the structured tag fully nor merely list tokens
that must occur in the tag label. In order to allow for more
expressive querying of structured tags without requiring the user
to learn a full tree query language (or, rather, a language for
extended trees since structured tags do not strictly have to be
tree-shaped), KWQL uses subsumption to match structured tags.
This means that a structured tag assignment is matched when
it satisfies all criteria specified in the tag selection, regardless
of whether the tag also contains elements not mentioned in the
query.

For example, the query

ci(tag(name:’Warwick, UK’))

matches all content items that have been assigned a tag with
a label where “Warwick” and “UK” occur at the same nesting
level, independently of whether there are further elements in the
structured tag. The query

ci(tag(name:’geo:’))

selects all resources that have been tagged with a structured tag
which contains “geo” as a categorization.

7.2.4 KWQL Heads

While a KWQL body describes content items to be selected,
the optional head specifies the content items that should be
created. Construction in KWQL combines ideas borrowed from

148 kwql : design and model

Xcerpt [320] (also discussed in Section 4.2.3) construct terms
with a syntax that is largely identical to that of KWQL selections.
However, the distinction between selection and construction gives
rise to a number of syntactic differences.

• The head of a KWQL rule can specify content, annotations,
and linking and nesting structure of the content items to be cre-
ated. URIs and metadata like authoring information are added au-
tomatically upon creation of the content item and cannot be spec-
ified explicitly. The qualifiers author, created, URI, lastEdited
and numberEdits may therefore not be used in KWQL heads.

• In KiWi, each content item must have a title, each fragment
must have a text, each link must have an anchor text and a target,
and each tag must have at least one label. When the construction
does not assign a value to a mandatory qualifier upon creation
of a resource, a randomly generated value is assigned.

• Unlike selection, construction fully describes the content
item or content items to return. Apart from the automatically
generated metadata and, where necessary, values for mandatory
qualifiers, a content item does not have any content or properties
except those defined in the rule head.

• The description of the content item to be created must be un-
ambiguous. Therefore, all heads must be fully specified, qualifiers
and resources may not be omitted, and negation or disjunction
may not be used. The descendant qualifier is not available in rule
heads because it is ambiguous with respect to the content item
or fragment nesting structure.

• Links, fragments, and children have to be specified directly
in the text of the content item or fragment to define their position.

• Additional constructs for grouping and aggregation can be
used to process and reformat the selected data.

grouping constructs Assume that the query below is eval-
uated on a dataset about the KiWi project and yields the variable
bindings given in Table 4.

ci((title:KiWi->$t OR (tag(name:KiWi) title:$t))
author:$a)

Each row of this table represents an answer substitution, that
is, a tuple satisfying the condition given in the query. The first
element of each tuple is the title, and the second element the
name of an author of a content item that contains KiWi in the
title.

To access, collect, and arrange variable bindings in content
items to be constructed, KWQL provides the grouping constructs
ALL and SOME. ALL collects all possible bindings for a variable,
while SOME collects a given number of variable bindings to be
chosen at random. In both cases, at least one binding must exist.

7.2 kwql syntax 149

$t $a

KiWi Partners Mary
KiWi Partners John
KiWi Partners Lisa
KiWi System John
KiWi System Michael

Table 4: Example variable bindings

Given the variable bindings in Table 4, the following head
creates a content item with title “Contributors” that lists, for each
author, the titles of the content items the author has contributed
to:

ci(title:Contributors text:ALL($a - ALL($t,", "),\n))

The text of the resulting content item then looks as follows:

Mary - KiWi Partners
John - KiWi Partners, KiWi System
Lisa - KiWi Partners
Michael - KiWi System

A grouping term consists of a grouping construct together with
a template and optional separator. The grouping construct SOME
additionally requires an integer as an argument that specifies the
number of bindings to be retrieved.

A template consists of at least one variable and possibly further
grouping terms, strings, and KWQL construction terms. The
above rule head uses two grouping terms: $a - ALL($t,","),\n

and $t,", ". The former consists of the variable $a, the string
“-” and the grouping term $t, which in turn only consists of the
variable $t. The outer grouping term uses the newline character
as the separator, while the nested grouping term uses a comma.

When a grouping term is evaluated, all variables contained
directly in the template but not in one of the nested grouping
terms are replaced with all (or some) of their possible bindings.
The template is repeated for every binding or valid combination
of bindings, delimited by the string given as the separator. A
combination of variable bindings is valid when the bindings occur
together in an answer substitution. The strings in the template
are reproduced unchanged in every repetition, while contained
grouping terms are evaluated in the same manner.

To instead list each content item together with all its authors,
one could simply swap the variables names to obtain the follow-
ing construction term:

150 kwql : design and model

ci(text:ALL($t - ALL($a,", "),\n))

In this query and the ones that follow, no title is specified for the
return content item. Since all content items are required to have a
title, they are automatically assigned a randomly generated title
upon execution.

The content of Table 4 can be recreated with the following rule
head:

ci(text:ALL($t - $a,\n))

If instead the following construction term was used, only one,
randomly chosen, title-author pair would be included in the text:

ci(text:SOME(1,$t - $a,\n))

Assuming that the URIs of the content items are bound to
a variable $u, a linked table of contents of all content items
matching the query body can be created as follows:

ci(text:ALL(link(anchorText:$t target:$u),\n))

KWQL heads can also be used to create several independent
content items. Given the query body above, the following con-
struction term creates a project member page for every wiki user
who has contributed to an article about KiWi, i.e., an article that
contains KiWi in the title or the label of an assigned tag:

ALL(ci(title:$a tag(name:KiWi project member)))

aggregation functions In addition to grouping, existing
data can also be aggregated to form new data. Table 5 lists the
aggregation functions available in KWQL. As arguments, these
functions take either a grouping term or a comma-separated list
of values. Whether a specific aggregation functions can be applied
depends on the type of the arguments—numeric or textual.

Using these aggregation functions, the list of authors who have
written about KiWi could be modified such that authors are listed
alphabetically, and only the number of content items is given
for each author rather than the titles of all content items. This is
achieved by the following rule head:

ci(title:Contributors text:SORT(ALL($a - COUNT($t),\n)))

For the example data in Table 4, the text of the resulting content
item would looks as follows:

7.2 kwql syntax 151

name type return value

COUNT any number of arguments
SORT any arguments sorted in ascending order
SUM numeric sum of all arguments
AVG numeric average of all arguments
MIN numeric minimum of all arguments
MAX numeric maximum of all arguments

Table 5: Aggregation functions

John - 2
Lisa - 1
Mary - 1
Michael - 1

the render function KWQL also provides way to embed
existing content items as children in return content items. This is
achieved by a function RENDER that takes a URI as an argument.
Consider for example the following query body, which binds the
variable $u to the URIs of content items that are linked to from
content items containing “KiWi” and share at least one tag name
with them:

ci(KiWi tag(name:$t) link(target:ci(URI:$u tag(name:$t)))

The following head can then be used to aggregate all content
items satisfying this condition in a single content item:

ci(text:ALL(child:RENDER($u)))

optional As described in the Section 7.2.3, OPTIONAL can
be used in query bodies to indicate that a content item should
match regardless of whether or not the variables contained in
the operand term can be bound. Assume for example that the
wiki user John wants to create a summary of all content items
linking to his user page. To get an idea of the nature of these
content items, he would like to list not just the titles, but also
the names of the tags assigned to each such content item. Since
some of the content items may not have been assigned any tags, it
makes sense to make the term that binds a variable to tag names
optional. We thus obtain the following query:

ci(link(target:ci(title:John tag(name:user))) title:$t
OPTIONAL tag(name:$n))

152 kwql : design and model

The tuples of variable bindings produced by this selection may
not all have the same number of elements, depending on whether
or not the matching content items have a been assigned a tag. The
variable $n can still be used with grouping terms when setting a
default in the construction term that is inserted when the variable
has no binding. The following rule head uses the text “none” for
content items that have not been assigned a tag:

ci(text:ALL(Title: $t - Tags: OPTIONAL ALL($n,",")
DEFAULT none,\n))

7.2.5 KWQL Rules

A KWQL rules consists of a head and a body, separated by the
character “@”:

ci(text:ALL(Title: $t - Tags: OPTIONAL ALL($n,",")
DEFAULT No Tags,\n))@ci(link(target:ci(title:John
tag(name:user))) title:$t OPTIONAL tag(name:$n))

ci(title:Contributors text:ALL($a - ALL($t,",
"),\n))@ci((title:KiWi->$t OR (tag(name:KiWi)
title:$t)) author:$a)

A rule can be read as an if-then statement where the query body
specifies a set of conditions, and query evaluation identifies the
objects—content items or variables—that satisfy the conditions.
The query head describes which action should be taken, or more
specifically how the return content items should look; it is exe-
cuted if the evaluation of the rule body yields at least one result.
In their functionality, KWQL rules also resemble views in query
languages for relational databases.

7.3 a formal semantics for kwql

For defining a formal semantics of KWQL, we introduce an
abstraction of the data model of KWQL, called KWQL graphs:

Definition 1 (KWQL Graph). Let Q = {text, title, . . .} be the set of
all n KWQL qualifiers and V the set of all qualifier values. Then, a
KWQL graph is a (n+ 6)-tuple G = (C,F,L,T,S,C,Qλ1

, . . . ,Qλn)
such that 1. C is the set of all content items (wiki pages), 2. F is
the set of all fragments, 3. L is the set of all links, 4. T is the set
of all tags, 5. R := C � L � T � F is the set of all resources, 6. S ⊂
(C× C<) ∪ (F ∪ F<) ∪ (L ∪L<) is the association relation between
resources where C< = F ∪ L ∪ T,F< = L ∪ T,L< = T ∪ C ∪ F.

7.3 a formal semantics for kwql 153

7. C ⊂ C× (C∪F) is the containment relation between wiki pages and
fragments and C+ =

�
n�1 C

n is the transitive closure of C. 8. for each
qualifier λ ∈ Q, Qλ ⊂ R× V associates the values for λ to a KWQL
resource.

The KWQL semantics is defined based on KWQL graphs and
given in Table 6 in terms of three functions, ��ci, ��, and ��dir.
A KWQL query is constrained by ��ci to return only content
items (i.e., elements of C). Most expressions can occur in two
contexts, represented by the semantic functions �� and ��dir: In
the first context a query such as Java returns all resources that
contain “Java” directly in any of their qualifiers or indirectly in
the qualifiers of any of their fragments, tags, and links. In the
second context only resources that contain “Java” directly are
returned. The exception to this rule are keyword queries which
are always interpreted in the first manner.

The semantics in Table 6 handles variables, but omits the in-
jectivity constraints for readability reasons. To handle variables,
we introduce the set I of KWQL variables and the set B = 2I×V

of possible variable assignments (pairs of variables and value).
We further extend the set operators ∪ and ∩ to pairs of resources
and variable assignments as follows: Let A,B ∈ 2R×B. Then
A � B = {(r,β) ∈ R × B : (r,β �) ∈ A ∧ (r,β ��) ∈ B ∧ β =
β � ∩ β �� ∧ β � ∅}, A � B = {(r,β � ∪ β ��) ∈ R × B : (r,β �) ∈
A∧ (r,β ��) ∈ B} ∪ {(r,β �) ∈ R×B : (r,β �) ∈ A∧ �β �� : (r,β ��) ∈
B}∪ {(r,β �) ∈ R×B : (r,β �) ∈ B∧ �β �� : (r,β ��) ∈ A}.

154 kwql : design and model

��kwql-query��ci = π1(��kwql-query��(∅))∩ C

��STR��dir(β) = ��STR��(β) =
�
(r,β) ∈ R×B : ∃λ, v : Qλ(r, v)∧ contains(v, �STR�)

�
∪�

(r,β) : ∃r � ∈ R : S(r, r �)∧ (r �,β) ∈ ��STR��)(β)
�

��qualifier�‘:’�STRING��dir(β) =
�
(r,β) ∈ R×B : Q�qualifier�(r, v)∧ contains(v, �STRING�)

�

��qualifier�‘:’�STRING��(β) = ��qualifier�‘:’�STRING��dir(β)∪�
(r,β) : ∃r � ∈ R : S(r, r �)∧ (r �,β) ∈ ��qualifier�‘:’�STRING��(β)

�

��qualifier�‘:’‘$’�IDENT��dir(β) =
�
(r,β∪ {(�IDENT�, v)}) ∈ R×B : Q�qualifier�(r, v)∧

(�v � : (�IDENT�, v �) ∈ β∨ (�IDENT�, v) ∈ β)
�

��qualifier�‘:’‘$’�IDENT��(β) = ��qualifier�‘:’�STRING��dir(β)∪�
(r,β) : ∃r � ∈ R : S(r, r �)∧ (r �,β) ∈ ��qualifier�‘:’‘$’�IDENT��(β)

�

��resource�‘:’�res-term��dir(β) =
�
(r,β �) ∈ R×B : type(r, �resource�)∧ (r,β �) ∈ ��res-term��dir

�

��resource�‘:’�res-term��(β) = ��resource�‘:’�res-term��dir(β)∪�
(r,β) : ∃r � ∈ R : S(r, r �)∧ (r �,β) ∈ ��resource�‘:’�res-term��(β)

�

�‘child’‘:’�kwql-query��(β) =
�
(r,β �) ∈ (C∪ F)×B : ∃r � ∈ R : C(r, r �)∧ (r �,β �) ∈ ��kwql-query��

�

�‘descendant’‘:’�kwql-query��(β) =
�
(r,β �) ∈ (C∪ F)×B : ∃r � ∈ R : C+(r, r �)∧ (r �,β �) ∈ ��kwql-query��

�

�‘target’‘:’�kwql-query��(β) =
�
(r,β �) ∈ L×B : ∃r � ∈ R : S(r, r �)∧ (r �,β �) ∈ ��kaw-query��

�

��res-term�1 �res-term�2�(β) = ��res-term�1�(β)� ��res-term�2�(β)

��res-term�1‘AND’�res-term�2�(β) = ��res-term�1�(β)� ��res-term�2�(β)

��res-term�1‘OR’�res-term�2�(β) = ��res-term�1�(β)� ��res-term�2�(β)

�‘(’�res-term�‘)’�(β) = ��res-term��(β)

�‘NOT’‘(’�res-term�‘)’�(β) = R \ π1(��res-term��(β))× {β}

��res-term�1 �res-term�2�dir(β) = ��res-term�1�dir(β)� ��res-term�2�dir(β)

��res-term�1‘AND’�res-term�2�dir(β) = ��res-term�1�dir(β)� ��res-term�2�dir(β)

��res-term�1‘OR’�res-term�2�dir(β) = ��res-term�1�dir(β)� ��res-term�2�dir(β)

�‘(’�res-term�‘)’�dir(β) = ��res-term��dir(β)

�‘NOT’‘(’�res-term�‘)’�dir(β) = R \ π1(��res-term��dir(β))× {β}

Table 6: Semantics for KWQL

8
V I S K W Q L

Visual languages, employing elements like shapes and colors
instead of a strictly textual syntax, have two advantages over tex-
tual languages that specifically benefit beginning users [86]: first,
their visual nature can make them easier to learn and understand
than textual languages; second, editors for visual languages can
support the creation of valid queries by providing guidance to
the user and preventing editing operations that would result in
incorrect queries.

In this chapter we present visKWQL, which is a visual render-
ing of KWQL rather than a separate query language. visKWQL
extends the textual query language KWQL to provide two co-
hesive and tightly integrated querying modi for user-friendly
and powerful querying in the KiWi wiki. visKWQL is the first
visual interface to a keyword-based query language. Unlike many
other visual query languages which add a user-friendly compo-
nent to conventional web or database query languages, visKWQL
faces the unique challenge of complementing and further improv-
ing the usability of a textual language that itself puts a heavy
emphasis on user-friendliness.

visKWQL fully supports KWQL in the sense that every KWQL
rule can be expressed as an equivalent visKWQL rule. In order
to avoid introducing additional constructs and thus additional
complexity, visKWQL stays as close as possible to the textual
language in its visual representation.

An accompanying editor, the KWQL Query Builder (KQB), al-
lows for the easy and straightforward construction of queries
using drag-and-drop, and in addition supports the user during
query construction by displaying tooltips, preventing syntactic
errors where possible, and pointing the user to the problematic
parts of a query. The goal of visKWQL is to allow even beginning
users to quickly create useful queries.

The KQB further provides features like information hiding to
only display parts of larger queries, or the highlighting of all
occurrences of a variable when the mouse pointer is positioned
over a variable in a query. A particularly important feature of
KQB is round-tripping, which enables the user to edit both the
textual or the visual form of a query, and see any changes made
to one representation reflected in the other.

The remainder of this chapter is structured as follows: Sec-
tion 8.1 provides an overview of the area of visual querying and
briefly introduces a number of visual query languages together

155

156 viskwql

with examples. Section 8.2 then outlines the requirements for a
visual query language based on KWQL, and Section 8.3 describes
how these requirements are met by visKWQL and its editor KQB.
A practical guide to the usage of KQB is given in Section 8.4.
Section 8.5 finally provides an overview over the implementation
of visKWQL and the KQB.

8.1 visual query languages

A wide variety of visual languages have been created over the
years, including programming, modeling, and query languages.
Those languages differ as much in their visual formalisms as
in their purpose and underlying textual languages. A 1997 sur-
vey alone mentions more than 50 visual database query lan-
guages [86]. Visual languages range from table-based database
query languages like QBE [381], the very first visual language,
to UML [170], the modeling language that has become an in-
tegral part of software engineering, to the comic-strip based
ComiKit [220], which allows children to program simple games.

Research into visual languages was mainly triggered by two
things: the availability of the technological means to move from
text to graphics, and a trend towards improved usability.

The first modern computers were restricted to textual input
via keyboard and textual output via terminal or printer, so nat-
urally programming and query languages were text-based. In
the early 1980s, however, important advances were made in the
area of computer hardware. Video cards enabled the use of both
dimensions of a monitor since individual pixels could now be
addressed. Further, the computer mouse now allowed pointing
anywhere on the screen. Where text used to be white on black,
there now was support for multiple colors, and meaning could
be expressed through the spatial placement of program elements
on the screen, shapes, textures, and sizes of program elements,
and the nesting of elements.

A second factor that started research into visual languages was
the increased trend towards usability that emerged roughly at
the same time. In the early years, computers were expensive and
difficult to use, and were used only by few, many of them scien-
tists. But as hardware prices went down and the new technology
was adopted more widely, the spectrum of people working with
computers became broader and now also included casual users
who had little or no prior knowledge of computer languages or
the internal structure of a database.

Ziegler and Fahnrich [380] list several advantages of visual
query formulation, or direct manipulation techniques:

• The distance between the user’s mental model of reality and
the representation displayed by the computer is decreased,

8.1 visual query languages 157

i.e., the query representation becomes less abstract and
more intuitive.

• A visual formalism is usually less language-dependent.

• Basic functionalities of the language can be learned easier.

• A high efficiency rate can also be obtained by expert users,
partly because of the possibility of defining new functions
and features.

• The error rate in formulating queries is reduced signifi-
cantly.

Of course, the validity of these arguments varies between dif-
ferent visual query languages, and in the worst case, a visual
language may fail to reach any of these goals and may instead
only introduce an additional layer of complexity on top of a
textual language.

Measuring and comparing abstract concepts like ease of use is
not an easy endeavor, and many visual programming languages
are so different from textual languages in their expressiveness
and their intended use that no valid comparison can be made.
However, many visual query languages are based on textual ones
and share their expressive power. In this case the corresponding
queries can be compared, and a study by Catarci and Santucci
[87] provides evidence that visual languages can indeed be easier
to use than textual ones. In the study, users with different skill
levels were taught both the textual query language SQL and
the visual query language QBD* [22]. They were then asked to
construct queries in both languages, and Catarci and Santucci
measured the accuracy of the resulting queries and the time taken
to formulate the query. Users reached 100% accuracy with QBD*
but only about 90% with SQL, and query formulation in QBD*
in some cases took only about 50 percent of the time required to
formulate the same query in SQL, even for expert users.

In the following we discuss various examples of form-based and
diagram-based visual query languages.

8.1.1 Form-Based Approaches

Form-based visual query languages employ a visualization tech-
nique inspired by paper forms or spreadsheets. They consist of
basic elements, so-called cells, which cannot be nested. Users
formulate queries by filling in cell values.

visKWQL can be considered form-based, but also employs fea-
tures typical for diagram-based systems such as element nesting
and the usage of colors to distinguish between element types.

158 viskwql

TYPE ITEM COLOR SIZE

P.ROD GREEN

Figure 32: A simple QBE query

qbe QBE [381], short for Query-by-Example, was the very first
visual query language. It was developed in the mid-1970s as an
alternative to textual SQL. Its design goals were to provide a
convenient, unified, high-level language to query, update, refine
and control a relational database. The language should require
only little prior knowledge from the user and consist of only a
small number of concepts, making it easier to learn than a textual
language.

The approach chosen to achieve these design goals is to provide
the user with two-dimensional skeleton tables, which can be filled
with an example of the intended solution. The user can provide
constant elements, attribute values, and example elements, which
act as variables. He can also use a number of special instructions,
for example to sort the results, print them, or count the number
of results.

Figure 32 shows a simple QBE query. When the user starts the
query formulation, only the empty outline of a table is displayed.
The user can enter a table name into the field in the upper left
corner, in this example “Type.” The system will then fill in the
remaining column headings with the attributes of that table, or
allow the user to enter them manually. When the table skeleton
is complete, the user can proceed to fill in example values. P. in
the “item” column stands for “print” and indicates the desired
output. The underlined “rod” indicates an example value for a
possible output and is used like a variable. The entry “green”
finally is a constant value, a restriction or required condition on
the output. Upon evaluation, the query will thus print all items
that have green color.

Qualified retrieval can be accomplished in QBE by adding in-
equality operators to constant elements (for example, “>100” in
the “Size” field of Figure 32) or by partially underlining elements
to express partial string matching (for example, P.X visual Y
returns all items that contain the word “visual”). Negation can be
expressed through a special marking of cells or elements. Arith-
metic expressions can be used on all attributes with numerical
types. QBE also provides a condition box, which allows the user
to enter various conditional expressions involving the variables
defined in the query. Insertion, deletion, and update of database
entries are possible by replacing the print instruction P. with I.,
D., or U. The insert and delete instructions can also be used to
create, expand, or drop entire tables.

8.1 visual query languages 159

Figure 33: An EquiX query form, adopted from Cohen et al. [108]

QBE is a seminal work that has inspired many visual languages.
However, apart from some software packages like Microsoft Ac-
cess, it is no longer used today, most likely due to its limited
expressiveness.

equix EquiX [108] is a search and query language for XML
data aimed at users without any previous knowledge of (tex-
tual) query languages. For that reason, Equix favors simplicity
over expressiveness, and for example offers no data construction
capabilities.

EquiX applies the Query-By-Example philosophy to XML data
by letting users construct template-like query forms that contain
an example of the desired query result. After the user has selected
an XML catalog to query, the system displays the root node in the
query form. Elements can be explored by clicking on them, which
opens a view of their attributes and child elements. The user
can then iteratively select attributes and child elements, fill text
fields to impose constraints, specify quantifications, and choose
which elements should appear in the output. The system then
takes this example document, matches it against the documents
in the selected catalog, and returns all matching documents,
automatically generating a new DTD from the query form.

Figure 33 shows an EquiX query form. XML elements are
indicated by folder symbols, attributes by file symbols, with

160 viskwql

(a) XML visualization (b) A simple query

(c) A rule

Figure 34: Xing examples, adopted from Erwig [145]

those selected for output having a pen symbol. The bottom of the
window contains boxes into which aggregation or quantification
expressions can be entered for a selected attribute or element.

xing Xing [145], short for “XML in Graphics”, takes an ap-
proach to form-based XML querying and transformation that is
radically different from that of EquiX, and visually has more in
common with the visual XML transformation language VXT [305]
and with visKWQL in that it also employs nesting of elements.

Xing lets users draw examples of the documents they are
interested in. XML elements are represented as nested boxes,
with the element label printed above the box, and the element’s
children nested within the box together with their attributes.
An example is given in Figure 34(a). Queries in Xing are based
on document patterns that describe properties of the requested
information and, optionally, how this information should be
restructured. Patterns consist of constants, which must appear in
the search result to match the pattern, and variables, which can
be used to bind data for further processing.

Figure 34(b) shows a simple query that returns all book ele-
ments that are children of bib elements. When a DTD is present,
the system provides the user with a list of possible child elements
and attribute names. Xing allows the use of regular expressions

8.1 visual query languages 161

(a)

(b)

Figure 35: Queries in G, adopted from Cruz et al. [122]

to specify elements and attribute values. Asterisks can be used
as wildcards, for example, all direct children of the bib element
would be returned if “book” in Figure 34(b) was replaced by “*.”

Xing also allows for the restructuring of documents with rules.
Rules consists of a query and a construction part. The construc-
tion part may restructure the elements of the query part and
introduce new elements.

Figure 34(c) shows a rule that retrieves all publications in a
bibliography and creates a list of authors and their titles. For
each author, a new element is automatically created, along with
a new titles element containing all the titles that author has
contributed to.

8.1.2 Diagram-Based Approaches

Diagram-based visual query languages express queries as graphs
or diagrams and typically rely more on visual elements and less
on text than form-based visual query languages. In diagram-
based systems, information is expressed through shape, position,
color, and other properties of graphical objects.

g G [122] was among the first diagram-based visual query lan-
guages, and probably the first to receive widespread recognition.
Unlike other query languages at the time, including textual ones,
it has complete support for recursive queries on cyclic data. What
motivated G is the observation that most data consists of objects
that stand in some relationship with one another, and that the
graph structure formed by these relations lends itself well to
visual querying.

G expresses queries as labeled, directed multigraphs, that is,
graphs that can have multiple connections in both directions
between each pair of nodes. G supports recursion through con-
nection labels, which can be regular expressions over tuples of
variables and constants. This can for example be used to express
a connection of arbitrary length in a query.

162 viskwql

Figure 35 shows two simple G queries to an airline database.
Nodes represent cities with airports, edges represent flights be-
tween the cities, and edge labels indicate airlines. The query in
Figure 35(a) gives Toronto as starting city and any city as end
point, indicated by the variable x. The constraints on the con-
nection between the two cities are described through a regular
expression. The first and third flight may be with any airline,
as long as it is the same airline in both cases, as indicated by
the variable y. The second flight can be with an arbitrary airline,
indicated by an underscore. The query thus searches for all cities
x and all airlines y, such that x is reachable from Toronto with
exactly three flights, and where the first and last flight are with
the same airline.

The second example, shown in Figure 35(b), illustrates the use
of connections of arbitrary length, indicated by dotted arrows
and labeled with a regular expression that contain the operator
+, typically used to represents an arbitrary non-zero number of
repetitions. The query will return all cities x and airlines y, such
that x is reachable from Toronto via New York, with an arbitrary
number of Air Canada flights between Toronto and New York,
and an arbitrary number of flights with airline y between New
York and the destination x.

good Good [299] is used to query object databases with graph
patterns, which lend themselves well to diagrammatic represen-
tation. Apart from database querying and displaying database
instances, Good also supports schema visualization.

A database schema is represented as a labeled, directed graph,
with nodes representing classes of objects and edges representing
relationships between these classes, or properties that can exist
between objects of these classes. The types of classes are repre-
sented as different shapes: rectangles for abstract classes, which
typically are usually user-defined, and ovals for system-defined
basic classes like “String” or “Number.” Database instances are
visualized in the same manner.

Another novel feature of Good is user support during query
construction. Good queries are graphs that conform to the scheme
graph of the database. The system enforces this by allowing query
construction only through identification, copying and duplication
of nodes in the scheme graph, thus making it impossible for a
user to construct an illegal pattern.

Finally, Good can act as a complete database manipulation
language, supporting database browsing, querying, restructur-
ing, updating, and meta-modeling. Good takes an approach in
which a distinguished edge is added to the search pattern, to be
created when the pattern is found. A query pattern can contain
additional elements to represent actions, which allow the creation

8.1 visual query languages 163

and deletion of nodes and labels, abstraction, and method calls.
A query pattern together with the action defined in it is referred
to as an “operation”, since it results not only in a query, but a
graph transformation. A number of subsequent Good operations
can thus be thought of as a program that gradually transforms
the database.

xml-gl The object database query language G-Log [300] adopts
ideas from Good, but combines them with first-order logic and
introduces the notion of rules. The Language WG-Log [113] is
formally based on G-Log, and applies its graph-based visual-
ization schema and its notion of rules to query the web, more
precisely HTML documents and link structures [111]. Its suc-
cessor, XML-GL [91, 112], applies the principles of G-Log and
WG-Log to second generation web data, i.e., XML. It was the first
visual language to cover full XML.

XML-GL is motivated by the observation that the hierarchical
structure of an XML document corresponds to a tree, or to a
graph when references between elements are included. Querying
can thus be interpreted as locating a sub-graph in a larger graph,
which lends itself to an easy construction of queries by copying
and pasting nodes and arcs from a schema graph. Document
transformations can then easily be rendered as the construction
of a new graph.

XML-GL supports a wide range of visual queries, like selecting
portions of input elements based on existential conditions and
comparison predicates, expressing joins, creating arbitrary new
documents from selections and new elements and relationships,
applying arithmetic, aggregate, and grouping functions both in
the selection and the construction of elements, and computing
set operations like union, difference, and Cartesian product.

The graphical data model of XML-GL consists of three building
blocks, similar to those of its predecessors: objects, represented as
rectangles, indicate abstract items, or aggregations of properties.
Properties are represented as circles connected to the objects they
refer to, which are representable values, like strings or numbers,
and possess a name and a type, both represented as labels of the
circle. Directed relationships, represented as arcs between objects,
indicate semantic connections like containment or referencing.

Each XML-GL query consists of two graphs, each of which
can in turn consist of two parts. A full query is similar to SQL’s
from-where-select-create view.

• The extract part, matching SQL’s from, allows for the specifi-
cation of target documents and document elements.

• The optional match part, corresponding to SQL’s where, spec-
ifies logical conditions the target elements must satisfy.

164 viskwql

Figure 36: An XML-GL query, adopted from Comai et al. [112]

• The clip part, similar to select in SQL, specifies those ele-
ments from the extract part and satisfying the match part
that should appear in the query result.

• The optional construction part, corresponding to create
view in SQL, allows the creation of new elements or links
and the restructuring of information local to a given ele-
ment.

Figure 36 shows a query that uses all four parts. The graph
on the left side consists of the extract and match parts. It speci-
fies two XML files, the XML elements manufacturer, model, and
vehicle, as well as a number of properties like year and price.
The conditions of the match part in the example are the shared
values for year and model name. The graph on the right repre-
sents the clip and construction parts. The clip part preserves the
properties price, rank, model, and vendor from the extract-match
part, while the construction part introduces a new element, car,
to which the properties are assigned. The query thus retrieves
all vehicles built in the same year in which a manufacturer built
a car, and that have the same model name as some model the
manufacturer built. If such a pattern is found, a new car element
with the appropriate properties is created and returned as the
query result.

visxcerpt visXCerpt [50] is a visual language that is based on
Xcerpt [320] and that served as an inspiration for the development
of visKWQL. It is discussed here because of its query capabilities,
however, like most XML transformation languages, it transcends
the line between query and programming languages since it is
Turing-complete.

One feature that visXcerpt shares with the KWQL Query
Builder is its realization in DHTML, meaning that users can
edit and run visXcerpt programs from within their web-browser
and without a special editor or run-time environment.

Like visKWQL, but unlike the other visual languages presented
here, visXcerpt does not translate between the visual and textual

8.1 visual query languages 165

Figure 37: An Xcerpt program and its rendering in visXcerpt, adopted
from Berger et al. [50]

representations of a program, but merely renders textual Xcerpt
queries.

A program is edited by selecting building blocks within a tem-
plate and copying them to the program. This has the advantage
that the system can prevent the insertion of the templates at the
position specified by the user if the operation would lead to a
syntactically incorrect program.

Figure 37 shows a simple program written in Xcerpt (in its
abbreviated syntax) and its rendering in visXcerpt.

The program itself consists of a rule with a selection and a
construction part. In the query body, the FROM part in the tex-
tual and the right part in the visual program, a file named
“proceedings04.xml” is read and then queried for an element
proceedings04 that contains an element papers which itself con-
sists of paper elements. If such elements are found, the program
adds the values of their author and title attributes to the vari-
ables Author and Title, both defined as lists. In the construction
part of the program, a new XML element results is created. The
all operator then creates child elements for it by taking each pair
of a title and an author from the list variables, and constructing a
new result element that holds the respective values.

nitelight NITELIGHT [315] is a visual query system consist-
ing of the vSPARQL language and an interactive editing environ-
ment for ontology navigation. Unlike other visual query systems,
NITELIGHT emphasizes expressiveness over ease of use, and it
is intended for users with some prior SPARQL experience.

vSPARQL represents SPARQL triple patterns as graphs, with
nodes representing the object and subject elements. Shape and
color of a node are used to express element type, URIs, literal
value, or variable. Object and subject nodes are connected by a
labeled edge, representing either a predicate or a query variable.

166 viskwql

Figure 38: A triple pattern in SPARQL (left) and NITELIGHT (right),
adopted from Russell and Smart [315]

Figure 38 shows the NITELIGHT representation of a SPARQL
triple pattern. Multiple triple patters are represented by graphs
with additional nodes and connections, connected by nodes repre-
senting shared variables or values. The ordering of variables and
triples can be represented by numbers next to the node labels.

SPARQL graph patterns, collections of triple patterns matched
against the entire RDF graph, are represented graphically by
grouping triples within boxes. Variables are not shared, but are
local to a graph pattern and could be bound to different values.
Different colorings of the boxes, and connections between them,
allow for the representation of optionality and unions.

The NITELIGHT prototype consists of four parts:

• the Query Design Canvas, a graphical query editor that al-
lows the user to move elements freely, edit them through
context menus, and zoom in and out;

• the SPARQL Syntax Viewer, a dynamically updated display
of the textual SPARQL query corresponding to the graphical
query, similar to the output view of the KWQL Query
Builder;

• the Ontology Browser, a text-column based display of the
source ontologies and their classes; and

• the Query Results Viewer, a table-based display of query
results.

rdf-gl RDF-GL [195] is another visual query language for
RDF data based on SPARQL. It employs a visualization that is,
although graph-based, very different from that of NITELIGHT.

8.2 design goals 167

Figure 39: An RDF-GL query adopted from Hogenboom et al. [195]

Queries in RDF-GL are represented using boxes, circles, and
arrows. Orange boxes, called result boxes, contain information
about the execution of a query, like query type and result or-
der. Pink boxes represent the subject and object elements of a
SPARQL triple. Green boxes represent filtered subjects or objects.
Blue circles can be connected to elements to represent union,
while purple circle represent optionality. Black arrows represent
SPARQL predicates, while gray arrows represent optional state-
ments. Yellow and red arrows are used to indicate the first and
second part of a union.

Figure 39 shows a simple query in RDF-GL using the different
elements. The lines under “oil” and “name” indicate that these
variables are to be included in the output. The example query
returns the name and, if present, the oil supply, of every country
whose gross domestic product per capita is smaller than 1500$ or
greater than 2500$.

8.2 design goals

The goal of visKWQL is to provide a visual rendering of KWQL
that serves as an alternative to the textual language, and is partic-
ularly suited for users who are unfamiliar with query languages.

A goal shared by all visual query languages is to make query-
ing easier, both for users without prior experience with query
languages and for intermediate or even advanced users. KWQL,
however, was itself designed to combine ease of use with high
expressivity. visKWQL therefore stays close to the structure of
KWQL queries, to preserve the characteristics of KWQL and to
make it easier for users to switch between KWQL and visKWQL.
This is in contrast to many other visual query languages, espe-

168 viskwql

cially graph-based ones, which often differ radically from their
textual counterparts.

The following are desirable characteristics of a visual equiva-
lent of KWQL:

Full expressiveness visKWQL must be able to express all syn-
tactically valid KWQL queries and the visual rendering
should not sacrifice expressive power.

Browser compatibility A visual KWQL query editor should be
realized as a web application, and should not require the
installation of special software or browser plug-ins. This
can be achieved using DHTML, with HTML and CSS for
the presentation and Java Script for the program logic and
user interaction.

Round-tripping Users should not have to decide in advance
which formalism, textual or visual, they use to create a
query, but should be able to switch between both at any
time. Round-tripping means that users are not restricted to
visually create and edit a query and then execute it, but that
they can edit both the visual and the textual representation
of a query and see changes in one representation reflected
in the other. For example, the user should be able to start
with a simple textual query, add an element to it in the
visual representation, and finally edit a value in the textual
representation before evaluating the query.

User support Users should be supported at all times during the
query construction process. This includes both the language
representation and editing features, as well as context-
sensitive support to create syntactically correct queries and
guidance that enables even inexperienced to create useful
queries right from the start.

Easy editing The mechanism for creating queries should be con-
ceptually simple and easy to understand. The majority of
computer users are familiar with drag-and-drop techniques
universally employed by modern operating systems. Drag-
and-drop is therefore well suited as a mechanism for query
editing and should be supported by the editor.

Information hiding More complex visual queries can often be-
come large and occupy a big portion of the screen. The
editor should therefore support some form of information
hiding, to temporarily hide parts of a query.

Self-explanatory system Users should not be required to learn
the syntax of visKWQL in order to be able to use the query
editor. The editor should therefore provide tooltips for all

8.3 language and editor features 169

Figure 40: A visKWQL query

elements, especially the KWQL structures that make up a
query, to help users build valid and useful queries.

Error prevention The system should prevent or correct syntactic
errors where possible, for example by preventing the user
from dropping a KWQL qualifier on a resource that does
not possess this qualifier. It should also inform the users
about errors, like a string containing invalid characters, or
problems, like an AND operator with only one argument,
and correct them automatically whenever possible. When
the system corrects a problem, for example by removing
the AND node, it should inform the user of this to support
her in learning to use visKWQL.

8.3 language and editor features

We will now give an overview of how the design goals described
in the previous section are realized in the visKWQL system.

visual formalism visKWQL uses a form-based approach.
All KWQL elements, including resources, qualifiers, and opera-
tors, are represented as boxes. Resource-value or qualifier-value
associations are represented as nestings. Boxes consist of a label,
in which the name of the represented KWQL element is included,
and a body, which can hold one or more child boxes. This ap-
proach has several advantages: it stays close to KWQL’s textual
structure, keeping visKWQL simple and making it easy to trans-
late between the two representations; it also lends itself well to
rendering in HTML.

Figure 40 shows an example of a visKWQL query correspond-
ing to the textual KWQL query tag(author:Mary AND name:wiki),
which retrieves content item that Mary has tagged with “wiki”
or that contain a fragment or link with such a tag.

The following types of boxes, also shown in Figure 41, are used
in visKWQL to represent KWQL elements:

Input boxes represent keywords and variables. Their body con-
tains a text field where the user can enter a value.

170 viskwql

(a) Input box (b) (Standard) box

(c) Fixed-width box (d) Expandable box

Figure 41: visKWQL box types

(a) Unexpanded (b) Expanded

Figure 42: Expandable box containing a child box

(Standard) boxes consist of a label with the name of the box,
and an empty body that can hold a child element. They are
used to represent qualifiers and the unary operator NOT.1

Fixed-width boxes are used for elements that have a fixed num-
ber of children that is greater than one, like a rule or the
operators ALL and SOME. For example, a rule must have two
children, a head and a body.

Expandable boxes are used to represent KWQL items that can
have a variable number of children. To save screen estate,
such boxes normally only show their child boxes and no
free space like fixed-width boxes do. They contain a resize
button within their label, indicated by a two-headed arrow.
When clicked, this button expands the box by a free space
onto which another child box can be dropped. Figure 42
shows an expandable box before and after the resize button
has been clicked.

Resources, qualifiers and operators are all represented as boxes.
For resources, the nesting of a child box corresponds to the addi-
tion of an expression within the parentheses in a KWQL query,

1 The orange labels in Figure 41(b) and the following figures are not particular
to the box types, but constitute a warning that a box is empty. Warnings are
explained in detail below.

8.3 language and editor features 171

following the pattern resource (child1 child2 ...). For quali-
fiers, the child box corresponds to the expression after the colon
in a query, that is, a value term. For operators like AND and OR, the
children include both the expressions preceding and following
the operator in the textual query (as in (child1 AND child2), for
example), similar to a pure graph-based visualization.

interaction strategy The mode of interaction with the
query builder to construct or edit a query should based on prin-
ciples that are consistent and easy to learn and understand. This
is realized by employing the familiar drag-and-drop mechanism.
All actions in the editor apart from entering text into text fields
consist of drag-and-drop or left-click operations. There are no
context menus or other interaction modes that might confuse the
user.

The available user actions based on drag-and-drop or left
mouse clicks are as follows:

Element creation To create a new element, the user selects the
appropriate element type from a simple drop-down menu.
The element then appears on a free position within the
work area.

Element deletion An element is deleted by dragging it outside
the work area and dropping it.

Child addition When a box is dropped on the body of another
box, it will be added as a child element of this box if the
box nesting is valid.

Child removal To remove it as a child, a box can be dragged out
of its parent box and dropped on the work area or the body
of another box.

Type switching When a box is dropped on the label of another
box, and the two boxes represent syntactically equivalent
elements (for example AND and OR, or two qualifiers with
the same underlying data type such as text and title), the
two boxes switch their types. This functionality makes it
easy to change the type of a box without having to remove
and re-insert all its children in the process.

Text switching When a value box is dropped on the label of
another value box, their text values are switched. When a
variable box is dropped on the label of another variable box,
the variable names are switched.

Information hiding Clicking the label of a box collapses the box
and hides its body. Clicking again expands the body. Boxes
can be thus be reduced to show only their label, making

172 viskwql

(a) No hiding (b) Fragment collapsed

Figure 43: Information hiding in visKWQL

complex queries more comprehensible and preventing them
from becoming too large to be displayed on the screen. The
system also saves the state of all child boxes, so when a
child box is collapsed and the user clicks twice on the label
of the parent to hide and restore its body, the child box will
still be collapsed. Figure 43 shows a simple query before
and after a click on the label of the fragment box.

round-tripping Round-tripping allows users to edit a query
in both representations, visual and textual, at the same time. The
side-by-side display of both representations offers the additional
advantage of helping users to learn KWQL by creating queries in
visKWQL.

The first part of round-tripping is the mapping from visKWQL
to KWQL. For this, the system translates a visual query to a
textual one after each action by the user, or shows an error
message if the query is currently not syntactically correct. For
the inverse direction, the mapping from KWQL to visKWQL, the
system includes a KWQL parser. The user can edit the current
textual query or enter a new one at any time. On the click of
a button, the system will parse the textual query and update
the visual query accordingly, or generate an error message if the
textual query is invalid.

user guidance Support throughout the query construction
process is one of the key aspects of visKWQL and the query
builder. For users who are new to the system in particular, the
query builder provides a hint pane. This text area below the editor
workspace displays additional information and provides hints if
there is a problem with a query.

Another step towards the goal of making the system self-
explanatory are tooltips that provide information about different
elements on the screen. These tooltips come in two variants: The
first variant gives explanations of the elements of a query. Tooltips
of this kind are displayed in the tooltip pane at the bottom of the

8.3 language and editor features 173

Figure 44: The KQB tooltip pane

Figure 45: A KQB tooltip

editor workspace whenever the user moves the mouse over a box,
as illustrated in Figure 44 for an author box.

The second kind of tooltip provides information about the
current state of a box, like the validity of dropping actions while
a box is being dragged, or warnings or error messages concerning
the box the mouse currently hovers over. Tooltips of this kind are
displayed next to the box in question. Figure 45 shows a box that
is being dragged outside the green work area. Dropping the box
there would cause it to be deleted, as indicated by the tooltip.

Tooltips are further displayed when a user is about to select a
box to be added to the workspace from a drop-down menu. In
this case, the tooltip is displayed next to the mouse pointer when
it hovers over a menu entry, and provides an explanation of the
element corresponding to this entry.

error prevention Another way in which users are sup-
ported during query construction concerns the prevention of
syntactic errors. To this end, the KQB uses two devices to in-
form the user about the validity of actions and the state of query
elements: colors and tooltips.

Colors are used to indicate different states: green signals a
valid action, orange a warning, and red an error.

To prevent syntactic errors, for example, the Query Builder
only allows the creation of valid box nestings, and prevents the

174 viskwql

(a) Valid drop location

(b) Invalid drop location within a valid parent box

(c) Invalid drop location

Figure 46: Dragging over a box

addition of child boxes where they are not allowed, as well as
type switching between nodes of different types. When adding a
child to a box, there are three possible outcomes, all of which are
conveyed to the user through color and tooltip.

Figure 46(a) shows a valid operation: an author box is dragged
over free space within a content item. author is a valid qualifier
and thus valid child of a content item, and may be dropped. This
is indicated by a green border around the content item, and a
green tooltip.

Figure 46(b) shows a warning: the author box is dragged over
the content item box, which is a valid parent. However, the author
box is currently in an invalid position within the content item,
which is displayed to the user through an orange border around
the parent box and an orange tooltip. The position in question
is occupied by a title child, and it would be unclear if author
should become the second or third child of the content item. With
the chosen approach, the user sees that the author box cannot
be dropped in the current position, and can either drop it to the
right of the title child, or first move the title child to the right
and then drop author between text and title.

Figure 46(c) finally shows a situation in which a drop would
lead to an invalid nesting. In this situation, the user has dragged

8.3 language and editor features 175

(a) Dropping not allowed

(b) Dropping allowed

Figure 47: Dragging over a box label

an AnchorText qualifier over a content item, where this qualifier
is not allowed. This is indicated to the user by a red border
around the parent box and a red tooltip. If the user drops the
AnchorText box in this position, the system will not allow it to
be added as a child of the content item box and instead return it
to the position where it was picked up.

Unchecked type switches could also lead to syntactic errors
in the form of invalid nestings, and their validity is therefore
checked when the user drags a box over the label of another
box. Similar to the case where a box is dragged over the body
of another box, the system informs the user through a colored
border and tooltip whether a drop action is allowed in the current
situation. In this case, however, the colored border is put only
around the label and not the whole box.

In the situation shown in Figure 47(a), for example, dropping
is not allowed since title and ContentItem are a qualifier and
a resource and cannot switch. In the situation of Figure 47(b),
on the other hand, dropping is allowed, because text and title
both are string-valued qualifiers.

error reporting and correction Not all syntactic er-
rors in a query can be prevented by the editor. For example,
it constitutes an error if the construction part of a rule uses a
variable that was not defined in the query part. To prevent the
user from making such an error, however, one would have to

176 viskwql

Figure 48: Box containing an error

require that the head of a rule is always specified after the body.
This would limit the flexibility of the query creation process, and
would stand against the design goal of high user-friendliness.

The KWQL Query Builder therefore allows the user to take
actions that lead to errors of this kind. However, it detects them,
and informs the user about the problem. The types of errors
detected by the query builder include the following:

• Variable names or keywords containing invalid characters
like white spaces

• Empty strings

• Invalid value formats

• Misplaced operators (for example, operators ALL and SOME
may only occur in the head of a rule, OR only in the body)

• Undefined variables in the head

When a query contains an error, this problem is indicated to
the user through a variety of means:

• Instead of the textual KWQL query, the text field shows the
error message of the first error in the query.

• The labels of all boxes containing an error are colored in
red.

• When the mouse is moved over a box containing an error,
the error message associated with that box is displayed in a
red tooltip, as shown in Figure 48.

• The hint box below the workspace displays a more detailed
explanation of the first error in the query, and let the user
know how to correct it. In the example of Figure 48, the hint
pane would display a message that variable names may not
contain white spaces.

To help the user in locating an error, especially when parts of the
query are hidden, the query editor also colors the labels of all
parents of a box containing an error in red, and displays a tooltip
when the mouse is moved over one of the parents. This behavior
is illustrated in Figure 49.

Some errors that are less severe are corrected automatically by
the query builder. This category includes empty boxes, that is,

8.3 language and editor features 177

Figure 49: Child box containing an error

(a) Query containing a problem

(b) Corrected query

Figure 50: Problem correction in visKWQL

boxes which contain neither a child nor a value or variable, and
AND and OR boxes with only one child. Empty boxes are removed
completely. In the case of AND and OR boxes with only one child,
the box itself is removed, but its child is appended to the parent
box. Figure 50 shows an example of a query containing an AND
box with only one child, as well as the corrected version of the
query.

Just like for errors and warnings during drag-and-drop, errors
are reported by red labels and tooltips, while orange is used for
less severe problems which do not require the user to change the
visual query to get a correct textual query. When a problem of the
latter kind is detected, the hint pane will display an explanation
of the problem and how to correct it, and also inform the user
that the offending box is being ignored for the generation of the
textual KWQL query.

178 viskwql

Figure 51: The KiWi Query Builder

8.4 viskwql queries in practice

When the query editor initially loads, the workspace (➂ in Fig-
ure 51) is empty. The user can start either by writing or pasting
a textual KWQL query into the text box (indicated by ➄), by
selecting an element from the menu bar (indicated by ➀), or by
loading a query saved earlier (using the menu indicated by ➁).

To create a query that retrieves all content items where Mary is
an author, the user simply clicks on “Resources” in the menu bar
and selects “content item.” A new content item box will appear in
the workspace. As only content items authored by Mary should
be matched, the qualifier “author” must next be selected from
the menu and dragged into the content item element. Finally,
the value “Mary” is entered using the keyboard. The text box
displays the textual version of the current query, ci(author:Mary).

Further children can be added to the content item element
by clicking the blue double arrow in the upper right corner of
the box. This will increase the size of the box to make room for
another child, for example a text qualifier box with the value
“XML” to limit the query answers to content items authored by
Mary and containing “XML” in the text.

If the text is altered—for example to reformulate the query to
ci(title:Mary) and find content items where “Mary” appears in
the title—and “Parse query” is clicked afterwards, the visKWQL
query is adjusted to reflect the change. The same result could be
achieved by dragging the qualifier box out of the content item
box and replacing it with a title qualifier. Type switching, by

8.5 implementation 179

dropping a title qualifier box onto the label of the text qualifier
box, offers a way in which this can be achieved without the need
to re-enter the value “Mary.”

The query can be saved for future use by clicking on the button
labeled “Save current query.” A name for the query can be entered
and will consequently appear as one of the choices in the drop-
down menu listing the saved queries. Currently, queries are saved
on a per user basis.

The query can be deleted simply by dragging it out of the
workspace area colored in light green. Any change to the query,
including the addition and deletion of elements, can be reverted
using the “undo” button in the upper left corner of the editor.

Evaluation of a query is finally triggered by pressing the button
“execute query” next to the KWQL text box.

8.5 implementation

visKWQL and the KWQL Query Builder are implemented in
DHTML (Dynamic Hyper Text Markup Language), using HTML
for the KQB page structure, JavaScript for the dynamic and
interactive parts, and CSS for the graphical presentation. As
a consequence, the system runs almost completely on the client
side, within the user’s web browser.

Apart from query evaluation, the only parts of the KQB that
need to interact with the KiWi server is the code that loads
and saves visKWQL queries on the server. It is implemented in
Java, as an action in the Seam Framework2 upon which KiWi is
built. The KQB interacts with this server-side Java code via AJAX
(Asynchronous Java Script and XML), which enables client-server
communication between Java and Java Script. The Seam action
includes functions that provide the KQB with a list of all saved
queries, load or delete one of the queries, or save a new query
to the list. Since the KQB supports full round-tripping, only the
textual KWQL query needs to be saved on the server, and a
KWQL query is converted to visKWQL only when it is loaded.
The fact that no visual information needs to be saved reduces the
amount of space required on the server.

For query execution, the KQB simply uses the KWQL query
evaluation engine (see Chapter 10) and renders the returned
results below the editor work space.

Thanks to the closeness of the visual and textual representa-
tions, the translation from visKWQL to KWQL can be seen as a
serialization of the visual query. In most cases, each box nesting
corresponds to a value, qualifier or resource term, making the
translation straightforward.

2 http://seamframework.org/

http://seamframework.org/

180 viskwql

The inverse direction, however, the translation from KWQL
to visKWQL, is more complex and requires a KWQL parser.
To this end, visKWQL uses the KWQL grammar specified in
ANTLR that is also employed by the query evaluation module
(see Section 10.3).

The design of the visKWQL editor makes it easy to change its
appearance and localization. All graphical data is contained in
a single CSS file, all text displayed to the user in a single text
file. None of the values are hard-coded and changing the color
scheme or language of the visKWQL editor is as easy as editing
one of the files.

9
E X P E R I M E N TA L E VA L U AT I O N : T H E K W Q L
U S E R E X P E R I E N C E

This chapter describes the setup and results of a user study
performed to evaluate the suitability of KWQL and visKWQL for
querying tasks in the KiWi wiki. The goal of this experimental
evaluation is to gain a first insight on how the query languages
are perceived by users and how easy it is for them to learn
to write and understand KWQL and visKWQL queries. With
respect to both of these aspects, a question of particular interest is
whether the results differ between (1) users with varying amounts
of previous experience in the area of query languages and social
semantic software and (2) between participants using textual
KWQL and those using its visual rendering.

The present study does not aim to be a comprehensive eval-
uation of KWQL and all features and design choices involved;
rather, it should be considered a first exploration into evaluating
the query language which sheds light on the questions raised
above, but which also raises further questions to be explored
in follow-up studies. While the goal of this study is to provide
answers and insights on the usability of KWQL and visKWQL,
it also serves the purpose to identify particular aspects of the
languages and their usage that warrant more detailed evaluation.

The evaluation discussed here was performed as a single-
session experiment where participants were given a short in-
troduction into the KiWi wiki and, depending on the group they
had been assigned to, KWQL or visKWQL, and were then asked
to formulate queries ranging from simple and vague to precise
and expressive. In a second task, participants were confronted
with KWQL or visKWQL queries which they then translated
into natural language descriptions of the data selected by the
queries. Throughout the process, participants were encouraged
to write down their thoughts and opinions on KiWi, the query
language and individual tasks. This controlled setting is well-
suited for gathering impressions and comments and assessing
to which extent participants can quickly learn how to write and
understand simple to advanced queries. Further, it allows to ex-
amine the types of mistakes that users make and therefore to
conclude which elements of the query language are particularly
hard to master. The results can also easily be compared between
participants with different amounts of previous knowledge and
between participants using KWQL and visKWQL.

181

182 experimental evaluation : the kwql user experience

However, to limit the scope of the experiment and focus on
the aspects outlined above, several factors are intentionally not
treated in this first evaluation:

• Participants were only given a short amount of time to
familiarize themselves with the KiWi wiki and KWQL or
visKWQL. Their learning was thus not gradual and self-
paced, but the speed at which they were introduced to the
subject matter was pre-determined. In particular, partici-
pants learned about all of the query languages’ features at
once using the same amount of instruction, meaning that
they were not given the choice to only learn as much about
KWQL or visKWQL as suited their needs or to read further
material when something was unclear to them.

• The queries that the participants had to write and under-
stand were pre-defined. As such, they do not reflect an
individual participants’ information needs or degree of
knowledge about the wiki. This means that the experiment
can only determine how well a participant performs in
translating a query intent into a query or vice versa, but not
which queries he would pose when using KiWi. Addition-
ally, when a participant fails to correctly formulate a query,
the reason may not be his lack of knowledge of the query
language, but may rather indicate a lack of understanding
the data itself. On the other hand, in a realistic scenario, a
user would likely just formulate a less specific query if he
was unsure about the exact structure of the data that he
wants to select.

• Since the experiment consisted only of a single session, no
development and progression over time could be recorded.

• Participants could not freely decide whether they wanted to
use KWQL or visKWQL, but were assigned one of the query
languages. As such, participants that would have preferred
to use KWQL may have been forced to use visKWQL and
vice versa. Additionally, it is not possible to conclude what
the number of participants in each group would have been
if participants had been allowed to decide whether they
wanted to use the textual or visual version of KWQL, that
is, whether there is a preference for one over the other.

• Finally, to not overstrain participants with a big amount of
material and to ensure that all participants spent the same
amount of time learning, round-tripping was not part of
the evaluation.

The following sections describe the experimental setup, and
outline and discuss the results of the study.

9.1 experimental setup and execution 183

9.1 experimental setup and execution

Twenty-one participants were recruited via an internet forum
aimed at LMU Munich’s computer science students and via an-
nouncements in several computer science lectures at the univer-
sity. Participants were between the ages of twenty and thirty-three
with the average age being 23.95 years. Sixteen of the participants
were students of computer science or media computer science,
one was a researcher in a non-related area of computer science,
and four participants were students of subjects other than com-
puter science. Participants took part in the study in individual
sessions which lasted about 90 minutes; each participant was
rewarded with thirty-five Euros.

Participants were asked to fill out a questionnaire about their
previous experience in areas relevant to semantic wikis and
KWQL. Nine different topics such as the semantic web, tagging
and XML were given and users rated their experience with each
on a scale ranging from 1 (no knowledge at all) to 5 (expert-level
knowledge). Participants were also asked which programming
and query languages they knew.

Each participant was randomly assigned to either the KWQL or
the visKWQL group. The first assessment was then followed by
an introductory phase were participants familiarized themselves
with the KiWi wiki and KWQL or visKWQL. They were supplied
with written, example-driven introductions describing both the
wiki and all features of the query language. Access to an instal-
lation of KiWi pre-loaded with sample data on the KiWi project
was provided so that participants could try out the system while
reading the introductions. Like all information material and ques-
tionnaires in the study, these texts were written in German; they
can be found in Chapter B in the appendix. Participants in the
KWQL-group were not made aware of the existence of a visual
version of the language, while the text on visKWQL mentioned
KWQL and visKWQL’s round-tripping capabilities, but did not
explain them in detail.

Participants were instructed to take approximately thirty min-
utes to work through both introductory texts at their own pace.
After each of the two introductions, they answered a question-
naire with a number of open questions about their impressions
and thoughts on what they had read.

The remaining hour of the session was dedicated to the actual
study and its two tasks —query creation and query understand-
ing.

The KiWi wiki used for the experiment contained data im-
ported from a wiki on the TV-Show “The Simpsons”1. The mo-
tivation for using this data for the study is that it is not only

1 The wiki can be found at http://simpsons.wikia.com/

http://simpsons.wikia.com/

184 experimental evaluation : the kwql user experience

readily available, but that it also deals with an entertaining topic
that many participants are likely familiar with.

To reflect the collaborative process of content creation and
annotation, several user accounts were created in the KiWi wiki.
Each account was used to compose a number of content items
containing text from the Simpsons wiki. These content items were
then annotated with tags. The final dataset, used in this study,
consisted of 653 content items.

Participants were provided with instructions on the experi-
ments and information about the dataset used. The instructions
contained a text which introduced the application scenario and
the semantics behind the organization of the wiki data; it is
reproduced here in its English translation:

Seven friends, Estelle, David, Milton, Ian, Doris, Ash-
ley, and Betsy, have decided to create a KiWi Wiki
about their favorite TV show, The Simpsons. After
some time has passed, they have gathered a lot of
knowledge in the wiki, and several conventions for
organizing the data have developed.

Most content items in the wiki describe characters
or locations in the Simpsons universe or episodes of
the TV show. In order to be able to distinguish these
different types of content items, they are tagged with
“character,” “location” or “episode” respectively.

Content items about characters have the full name of
the character as a title, content items about episodes
the name of the episode.

The friends have set the goal to create an additional
trivia content item for each character described in
the wiki. These trivia content items are nested in the
content item describing the character and should be
tagged with “trivia.”

Every user also indicates which episodes and char-
acters he likes best by tagging the respective content
items with “favorite.” Additionally, all quotes from
the show are represented as fragments that are tagged
with “quote.”

In the query creation task, users were given 45 minutes to
use KWQL or visKWQL to find answers to questions (given in
natural language) about the data in the wiki. In total, there were
ten assignments of increasing difficulty. To solve an assignment,
participants were asked to write down the number or titles of
matching content items as well as the query used.

The reason for this is that while a query may have been under-
specified and therefore only have returned a superset of the con-
tent items that answer the questions, participants could browse

9.1 experimental setup and execution 185

Select content items that... Correct answer

1 contain “Abraham” or “Abe” Abe OR Abraham

2 contain “Homer” and “Bart”
but not “Lisa”

Homer AND Bart NOT Lisa

3 describe a location ci(tag(name:location))

4 describe Betsy’s favorite char-
acters

ci(tag(name:favorite

author:Betsy)tag(name:character))

5 link to the content item that
describes Carl

ci(link(target:ci(title:Carl

tag(name:character))))

6 contain fragments tagged
with “quote”

ci(fragment(tag(name:quote)))

7 describe episodes with “Lisa”
in the title

ci(tag(name:episode)title:Lisa)

8 do not contain a nested con-
tent item tagged “trivia”

ci(NOT(child:ci(tag(name:trivia)))

9 describe an episode which
is among both Estelle’s and
Ian’s favorites

ci(tag(name:episode)tag(name:favorite

author:Ian)tag(name:favorite

author:Estelle))

10 contain a link to a content
item which has at least one
tag with the same name

ci(tag(name:$t)link(target:ci(tag(

name:$t))))

Table 7: Questions and solutions for task 1

the list of query answers to determine the true answers to the
query. For example, instead of using the solution for assignment 7
given in Table 7, ci(tag(name:episode)title:Lisa), a participant
could also have posed the query ci(title:Lisa) and consequently
used the answers to that query to count how many of them were
tagged with “episode.” In the following, unless indicated other-
wise, when we speak of the answer to an assignment, we mean
the query written by the participant.

Participants were instructed to tackle the assignments sequen-
tially, and to only skip an assignment if they were convinced they
were not going to find an answer. They were also told not to be
concerned if they did not succeed in solving all ten assignments
within the given amount of time. Table 7 gives a shortened En-
glish version of each of the ten assignments together with their
answers.

The second task was the inverse of the first — given six KWQL
or visKWQL queries of intermediate to advanced complexity,
participants were asked to describe the underlying query intent,
that is, the common characteristics of the content items selected by
each query, in natural language. Participants were given fifteen

186 experimental evaluation : the kwql user experience

Query given Correct answer

1 ci(tag(name:episode)France) Episodes whose description contains
the term “France”

2 ci(tag(name:character)NOT(tag(name:

favorite)))

Descriptions of characters who are not
anyone’s favorite

3 ci(tag(name:$a)tag(name:$b)tag(name:$c)) Content items that have at least three
tags

4 ci(link(target:ci(title:Carl))) Content items that link to content
items which contain “Carl” in their ti-
tle

5 ci(Carl link(target:ci(title:Lenny))) Content items that contain “Carl” and
that link to content items which con-
tain “Lenny” in their title

6 ci(URI:$a tag(name:character)link(

target:ci(link(target:ci(URI:$a))tag(

name:location))))

Character content items that link to a
location content item that links back to
them

Table 8: Questions and solutions for task 2

minutes to complete the task. Table 8 shows the queries and
correct descriptions for all of the questions.

All assignments, as in task 1, were accompanied by a question-
naire that assessed, among other factors, how hard participants
found it to answer the question and whether there were partic-
ular aspects that they found difficult. In order not to distract
participants from the tasks, answering these additional questions
was optional.

Finally, after participants had spent one hour on the two tasks,
they were asked to fill out one final questionnaire that asked
about their opinions on the query language and assessed how

1

2

3

4

5

wikis semantic wikis semantic web XML RDF tags SPARQL XPath XQuery

KWQL visKWQL

Figure 52: Previous knowledge of relevant concepts and technologies
among participants in both groups

9.2 results 187

KWQL visKWQL overall

novice 5 6 11

advanced 5 4 9

overall 10 10 20

Table 9: Number of participants per group

they had changed now that participants had used the query
language for an hour.

9.2 results

A total of twenty-one participants completed the first task of
the user study, eighteen of them also completed the second task;
three participants could not take part in the query comprehension
task for technical or organizational reasons.

One participant was found to perform far below the other par-
ticipants in the study, an examination of this participants’ written
answers indicated problems with understanding the introductory
texts —likely due to a language barrier. Consequently, this partic-
ipant’s data was excluded from further processing. Overall, the
evaluation of the results is thus based on twenty sets of answers
for the first task and seventeen sets of answers for the second
task.

Figure 52 shows participants’ self-assessed average knowledge
of various areas relevant to KWQL per group. As can be seen,
results overall are very similar for the two different groups with
wikis, XML and tags being the only concepts that participants
are somewhat familiar with. The concepts pertaining to semantic
web technologies are unknown to most users with an average
value of 2 or below.

Seven members of the KWQL group and four of the partici-
pants in the visKWQL group knew at least one query language,
while all participants except for two members of the visKWQL
group knew one or more programming languages. Across both
groups, SQL and Java were the most frequently mentioned query
and programming language respectively.

The findings described in the previous paragraph were used to
further divide participants into two groups based on their previ-
ous knowledge of query languages, social software and semantic
web technologies. All participants who indicated that they did
not know any query languages or who had never heard of at least
four of the nine concepts (that is, who rated their knowledge of
those areas as 1 out of 5) were considered to be novice users with
little relevant experience, while the other participants were con-
sidered to be advanced users. In the following, participants will

188 experimental evaluation : the kwql user experience

KWQL visKWQL overall

novice 7.8 8.2 8.02

advanced 8.6 8.0 8.34

overall 8.20 8.12 8.16

Table 10: Average number of questions (out of 10) answered

KWQL visKWQL overall

novice 4.2 3.4 3.76

advanced 6.8 7.5 7.11

overall 5.5 5.04 5.27

Table 11: Average number of questions (out of 10) answered correctly

frequently be referred to as “novice participants” and “advanced
participants” based on the group they were assigned during this
analysis. Note that the terms refer only to the participants’ rele-
vant previous knowledge as assessed during the experiment, but
not to their amount of experience with KWQL and visKWQL; no
participant had used either query language before taking part in
the study.

Participants can thus be classified along two dimensions, their
amount of relevant previous knowledge and the query language
they were assigned in the study. The number of participants in
each group is given in Table 9.

9.2.1 Task 1: Query creation

Table 10 shows the average number of questions (out of a total
of ten) answered by the participants in each group, ignoring
whether the solution was correct or not. The number is higher for
advanced participants (8.34) than for novice participants (8.02)
and slightly higher for KWQL users (8.20) than for visKWQL
users (8.12). Further, KWQL and visKWQL show reversed effects
with respect to how the amount of questions answered differs
with proficiency: While advanced KWQL participants on average
answered 0.8 questions more than their less experienced coun-
terparts, advanced visKWQL users answered 0.2 questions less
than visKWQL novices.

While the number of assignments completed overall did not
vary greatly between groups, bigger differences can be observed
with respect to the number of questions answered correctly (see
Table 11). The answer to an assignment is considered to be correct
if either the query formulated retrieves the intended set of content
items as an answer or if the query yields a superset of the correct

9.2 results 189

KWQL visKWQL overall

novice 53.33 35.66 43.70

advanced 78.17 93.33 84.91

overall 65.75 58.73 62.24

Table 12: Average percentage of given answers that are correct

content items and the number or list of content item titles is
correct.

With an average of 7.5, visKWQL users in the advanced group
were the most successful in finding correct answers to the assign-
ments. However, novice participants in the visKWQL group per-
formed worse than all other groups with only 3.5 correct answers.
The results for the KWQL groups are less divided with novice
users performing better than visKWQL novice users, but worse
than advanced KWQL users. Overall, KWQL users on average
answered 0.46 more questions correctly than those participants
using visKWQL. As expected, novice users overall answered con-
siderably fewer questions correctly (3.76) than the participants in
the advanced group (7.11).

Table 12 combines the information in the previous two ta-
bles to show the average percentage of the given answers that
were correct. Among all participants, almost two thirds of all
answers given, 62.24%, are correct. Again, the visKWQL group
is responsible both for the best and worst results with 35.66% of
all answers given by novice visKWQL users but 93.33% of the
answers by advanced visKWQL users being correct. This result is
particularly noteworthy since, as shown in table 10, both groups
answered a very similar amount of questions. However, while
novice visKWQL users on average answered more questions than
the participants in the novice KWQL group, fewer of those an-
swers are correct, leading to the result that the absolute number
of correct answers is higher for the KWQL group.

Among the advanced groups, the case is reversed: visKWQL
users answer fewer questions but do so at a very high rate of
correctness, meaning that the average absolute number of cor-
rect answers is higher for advanced visKWQL users than for the
KWQL counterparts. Having explored the response data aggre-
gated over all ten assignments, we can now move on to examine
the results for individual assignments. Figure 53 displays for
each assignment (the assignment numbers correspond to those
given in Table 7) the percentage of participants who did not
give an answer, gave a correct answer and gave an incorrect an-
swer. As can be observed, all participants answered the first two
questions which, unlike the consequent assignments, require the
composition of queries that consist only of values and operators.

190 experimental evaluation : the kwql user experience

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

not answered answered correctly
answered incorrectly

Figure 53: Average response percentages per question

The percentage of participants who did not provide an answer
consequently increases gradually with only little more than a
quarter of all participants answering the tenth and final question.
The only outlier is question four which was answered by fewer
participants than question five.

The percentage of correct answers develops less straightfor-
wardly over the assignments. At about 85%, questions 2 and
3 were most frequently answered correctly, considerably more
often than the first question. A comparatively big proportion of
participants gave incorrect answers to question 5; apart from this,
the percentage of correct answers is stable across queries four to
seven at 45% to 60%, but drops off considerably to about 30%
starting with question 8.

Figure 54 shows the data from Figure 53 broken down ac-
cording to group memberships along the two dimensions, prior
experience and the query language used. In the following, results
will be compared for each pair of groups that differ among one
dimension but share the other.

Comparing the performance of users with little previous expe-
rience with the social semantic web and querying (Figure 54a) to
that of the advanced group (Figure 54b), one obvious difference
is that the advanced users made fewer mistakes, even in the first
two assignments that only require the formulation of relatively
simple queries. The percentage of advanced participants who
answered correctly decreases across the assignments: Questions 1
to 3 were answered correctly by almost all participants, questions
4 to 6 by about three fourths of the participants and the final four
questions by only between half and a third of participants.

Such a pattern cannot be observed in the novice participants’
data; the questions most frequently answered correctly are the
second and third (73%), seventh (54%) and sixth (45.5%). The first
assignment was answered correctly by about one in three partici-

9.2 results 191

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

(a) all novice participants

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

(b) all advanced participants

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

(c) novice participants using KWQL

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

(d) novice participants using
visKWQL

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

(e) advanced participants using
KWQL

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

(f) advanced participants using
visKWQL

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

(g) all participants using KWQL

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

(h) all participants using visKWQL

Figure 54: Average response percentages per question by group

192 experimental evaluation : the kwql user experience

pants, while the answers provided for questions 4 and 5 and 8 to
10 are only correct in a small minority of cases. Comparing the
results of the two user groups, questions 1, 4, 5 and 8 to 10 appear
to have been particularly hard to solve for participants in the
novice group, while identical correctness scores were obtained
for question 7, indicating that this assignment was relatively easy
to solve for novice participants.

Figures 54c and 54d show the performance data for participants
in the novice group broken down by the query language used.
Overall, those participants using KWQL had a higher proportion
of correct answers than those using visKWQL. In particular ques-
tions 1, 4 and 6 were solved correctly by the KWQL group at a
rate two times of that of the visKWQL group. On the other hand,
assignments 3 and 7 were answered correctly considerably more
often when visKWQL was used. Question 5 posed a considerable
problem for both groups, while 8 and 9 were solved correctly in
comparable proportions. The visKWQL novice group is the only
group where no participant provided an answer to assignment
10.

The results for advanced participants using KWQL (Figure 54e)
and visKWQL (Figure 54f) show that these participants overall
made only few mistakes. In particular the answers given by the
visKWQL users are almost all correct; the only assignments that
received any incorrect answers were questions 7 and 9. In this
group, question 10 was not answered by most participants, but
those who did all gave a correct answer.

The results of the advanced KWQL group show more incor-
rect answers; here, the only assignments that all participants
answered correctly are questions 2 and 3. However, only assign-
ments 8 and 10 were not answered correctly by a majority of
participants. Comparing the results for the KWQL and visKWQL
advanced groups, it appears that questions 4 and especially 8
were especially hard to solve for participants in the advanced
KWQL group.

Finally, Figures 54g and 54h show the results for all participants
using KWQL and visKWQL respectively. In both cases, question
2 and 3 have the highest number of correct answers. Question 1
was solved correctly less frequently, especially by participants
using visKWQL where, as discussed, only few novice users were
able to find the right answer. Questions 4 to 7 were answered at
a correctness rate between 50 and 70 percent in the KWQL group
and 40 to 60 percent in the visKWQL group. While for KWQL,
the question answered correctly most frequently among these is
question 6; for the visKWQL groups, it is question 7. Question 8
was not answered correctly by most participants in the KWQL
group, but fared better in the visKWQL group.

9.2 results 193

-0,500

-0,375

-0,250

-0,125

0

0,125

0,250

0,375

1 2 3 4 5 6 7 8 9 10

(a) novice and advanced participants

-3,00

-2,25

-1,50

-0,75

0

0,75

1 2 3 4 5 6 7 8 9 10

(b) novice participants using KWQL
and novice participants using
visKWQL

-0,700

-0,525

-0,350

-0,175

0

0,175

0,350

0,525

0,700

1 2 3 4 5 6 7 8 9 10

(c) advanced participants using
KWQL and advanced participants
using visKWQL

-2,0

-1,5

-1,0

-0,5

0

0,5

1,0

1 2 3 4 5 6 7 8 9 10

(d) participants using KWQL and
participants using visKWQL

Figure 55: Deviation from average difference of the percentage correct
between two groups

To further investigate the effect of prior knowledge and query
language on the task performance and to confirm the observa-
tions made with respect to which queries were particularly hard
to solve for each group, for each pair of results discussed above,
the deviation from the average difference in the percentage of
correct answers was calculated for each question. This method
is used to identify those questions whose percentage of correct
answers differed from the expected value, that is, the average dif-
ference in correctness scores between the two groups. For a given
question i and two groups j and k, the deviation is calculated as

devj,ki =
pcji
pcki

−
n�

l=1

1

n

pcjl
pckl

where n is the total number of questions, here 10. A positive
deviation score means that participants in group k answered ques-
tion i correctly more often than expected, while a negative score
indicates that group j showed a better than average performance.

Figure 55 visualizes the deviation scores for the four pairs of
groups, which confirm the observations made above.

Finally, let us take a closer look at the queries given as answers
that were not correct. Out of the total of 171 queries given as

194 experimental evaluation : the kwql user experience

0!%

25!%

50!%

75!%

100!%

KWQL visKWQL

underspecified overspecified
operator structure
wrong qualifier type missing negation
injectivity

Figure 56: Frequency of different types of mistakes per group

answers to questions in this task, only 7, four KWQL queries
and 3 visKWQL queries, were invalid, meaning that they either
could not be parsed or violated one of the validity constraints
(see Section 10.3)2. Consequently, 95% of all KWQL queries and
97% of all visKWQL queries given as answers were valid. The
majority of incorrect answers therefore consists of queries that
are generally valid, but that do not correspond to the assignment.
The different reasons for this will be analyzed in the following.

Figure 56 shows the different types of mistakes that occur in
valid queries given as answers by participants in the KWQL and
visKWQL groups. Table 13 describes the types of mistakes made
and for each shows one exemplary incorrect answer of this type
that was given during the experiment. The frequency of each
type of mistake was determined by examining all queries that
are valid but return the wrong set of answers. Note that one such
query may contain several distinct mistakes of different types
and thus may add to the frequency count in several categories.

The two most frequent types of errors in both query languages
are queries that are not selective enough and retrieve a superset
of the intended result, and mistakes pertaining to the structural
selection conditions expressed in the queries. KWQL users tended
to underspecify their queries more than visKWQL users, which
in turn have a slightly higher proportion of queries that are
incorrect due to overspecification. Further, participants in the
visKWQL group made a proportionally higher amount of mis-
takes with respect to the structure of the query, while KWQL
users experienced problems accounting for injectivity.

2 In addition, six queries were bracketed incorrectly, but since participants had
to write down their answers by hand, this is likely due to clerical errors and
was ignored

9.2 results 195

Type Description Example

underspecified correct query is contained in
the query given

ci(title:Lisa) (question 7)

overspecified query given is contained in
the correct query

ci(text:Abraham OR text:Abe)

(question 1)
operator wrong operator used or no

operator used where disjunc-
tion was intended

Abe Abraham (question 1)

structure structure is left out or qual-
ifier term is placed in the
wrong resource

ci(character NOT trivia)

(question 8)

ci(tag(name:character)

author:Betsy)(question 4)

wrong quali-
fier type

the wrong type of qualifier is
used

ci(link(anchorText:Carl))

missing nega-
tion

a part of the query should be
negated

ci(tag(name:character

descendant:ci(tag(name:

trivia))) (question 9)
injectivity mistake related to injectivity ci(tag(favorite)tag(name:

character)tag(author:Betsy))

(question 4)

Table 13: Types of mistakes made by participants

While the frequency of each type of mistake gives some insight
into which parts of KWQL may be particularly hard to learn for
users, they are also biased by various factors and should not be
taken at face value. The statistics do not reflect the fact that dif-
ferent questions prompt different kinds of mistakes, for example,
most of the questions required the formulation of queries that
made use of various structural constraints, either in the form of
nestings, links or intra-content item structure, but fewer ques-
tions involved injectivity. As such, it can be expected that more
mistakes involving structure are made, even if in reality fewer
participants can make adequate use of KWQL’s injectivity feature.
Further, not all questions are answered by the same amount of
participants which can intensify the effect. Additionally, not all
types of mistakes are independent of each other: When a query
is underspecified, all structural constraints might have been left
out, making it impossible to decide whether the query contains
any structural mistakes.

196 experimental evaluation : the kwql user experience

KWQL visKWQL overall

novice 4 5 9

advanced 4 4 8

overall 8 9 17

Table 14: Number of participants per group in task 2

KWQL visKWQL overall

novice 5.5 5.5 5.5

advanced 6 6 6

overall 5.75 5.7 5.72

Table 15: Average number of questions (out of 6) answered in task 2

9.2.2 Task 2: Query understanding

The results of the second task are based on a total of 17 partic-
ipants, their distribution over the different groups is shown in
Table 14. All advanced participants provided answers to all six
questions, while the novice participants on average answered 5.5
questions (see Table 15).

The correctness of each answer was judged based on whether
the description was correct and all selection constraints were
mentioned. Overall, participants answered 4.89 of the questions
correctly. There was no difference in the number of correct an-
swers between advanced participants who used KWQL and those
who used visKWQL, both on average gave 5.5 correct answers.
The case is different for the novice users, here, those who used
KWQL on average had 4.75 correct answers, while participants
in the novice visKWQL group on average only answered 4.0
questions correctly. Overall, this means that KWQL users gave
more correct answers than visKWQL users by 0.53 questions
while advanced users on average answered 1.16 more questions
correctly than novice users did.

The overall distributions of correct, incorrect and missing an-
swers across for each question are displayed in Figure 57. The
second question was answered correctly by all participants. Ques-
tion four has the second highest number of correct answers, fol-

KWQL visKWQL overall

novice 4.75 4.0 4.34

advanced 5.5 5.5 5.5

overall 5.13 4.6 4.89

Table 16: Average number of questions (out of 6) answered correctly

9.2 results 197

0

25

50

75

100

1 2 3 4 5 6

not answered answered correctly
answered incorrectly

Figure 57: Average response percentages per question

lowed by questions 3, 1 and 5. The final question was answered
correctly least often, but the percentage of correct answers still is
over 55 percent. Questions 1,2, and 4 were answered by all users,
while only a low percentage of users did not answer questions 3,
5 and 6.

Figure 58 shows the data from Figure 57 broken down by
group. Novice participants (Figure 58a) gave more wrong an-
swers than the advanced participants (Figure 58b), especially to
questions 1 and 6. While novice KWQL users (Figure 58c) had
bigger problems answering question 1 correctly than did novice
visKWQL users (Figure 58d), the latter overall made more mis-
takes, particularly when answering questions 5 and 6. Advanced
users (Figures 58e and 58f), regardless of the query languages
used, gave only few incorrect answers. Only two questions had
any wrong answers at all, 3 and 6 in the KWQL group and 1 and
5 in the visKWQL group. Overall, both participants using KWQL
(Figure 58g) and those using visKWQL (Figure 58h) had some
problems answering questions 1 and 6. About a third of visKWQL
participants additionally answered question 5 incorrectly.

9.2.3 User Judgments

Complementing the quantitative analysis of the answers given
by participants, this section gives an account of the participants’
comments on the questions asked as part of the study.

The KiWi wiki was perceived very positively by almost all
users, several participants said they found it well-structured and
clear; KiWi’s layout and choice of colors were also complimented.
The annotation and structuring features that set KiWi apart from
conventional, non-semantic wikis were frequently mentioned
as being helpful and easy to understand, even for beginning
users. In particular, fragments were named numerous times as

198 experimental evaluation : the kwql user experience

0

25

50

75

100

1 2 3 4 5 6

(a) all novice participants

0

25

50

75

100

1 2 3 4 5 6

(b) all advanced participants

0

25

50

75

100

1 2 3 4 5 6

(c) novice participants using KWQL

0

25

50

75

100

1 2 3 4 5 6

(d) novice participants using
visKWQL

0

25

50

75

100

1 2 3 4 5 6

(e) advanced participants using
KWQL

0

25

50

75

100

1 2 3 4 5 6

(f) advanced participants using
visKWQL

0

25

50

75

100

1 2 3 4 5 6

(g) all participants using KWQL

0

25

50

75

100

1 2 3 4 5 6

(h) all participants using visKWQL

Figure 58: Average response percentages per question by group

9.2 results 199

a welcome novel feature. While the perception of KiWi and its
conceptual model largely was very positive, a small minority
of participants either did not think that KiWi differed signifi-
cantly from conventional wikis (in particular Wikipedia, that is,
MediaWiki) or found it too complicated and confusing.

When asked about properties that a query language for KiWi
should have, participants universally agreed that such a language
should be easy to use and intuitive so as to accommodate begin-
ning users. Several participants additionally stated that at the
same time, the query language should also be powerful in order
to allow for complex queries. These answers are interesting in
that, although participants answered the question before having
received any information about KWQL, they reflect the main
underlying premise of KWQL and thereby also visKWQL.

Other features that were named by a number of participants
were that the query language should be self-explanatory and
that the user should be guided in constructing her queries. Other
requirements named were that the query language should be
“fast,” similar to “related” query languages, should be able to
query metadata and full text, should use a syntax that is in close
relation to the structure of the content and should also display
results that are not strict matches but that are relevant to the
query.

After having read the introductory texts on, depending on the
group, KWQL or visKWQL, participants were asked about their
impression of the language and its expressiveness and ease of
use. Again, the feedback was mostly positive with participants
remarking that the language seemed well-structured and clear,
though several also thought that it required practice and time to
learn and was not ideally suited for laymen. Two participants in
the KWQL group found the language too complicated and stated
that they would prefer a form-based or visual method. Inversely,
one participant in the visKWQL group suspected that visual
querying was unnecessary and that a purely textual language
would be easier to use. Generally, visKWQL participants, aware
of the existence of both querying modi, liked the availability of
visual as well as textual querying. visKWQL’s context help was
also perceived positively.

When asked about KWQL/visKWQL’s expressive power, nearly
all participants agreed that the language was expressive with one
participant even suspecting that KWQL was too expressive. Fur-
ther, one participant missed the feature of relational queries.
Opinions on whether KWQL is easy to use were more divided,
while some participants thought that it was, others were not sure,
thought that the language required at least some practice to be
easily usable or stated that the language was only easy to use for
users with previous querying experience.

200 experimental evaluation : the kwql user experience

Only few participants remarked on the individual assignments
in task 1 and 2. Two participants stated that they needed some
time to understand how to solve the first question of task 1, but
that, having solved it, question 2 was easy to answer.

A number of participants were unsure about the difference
between a value being contained in a tag and being contained in
text and about the difference between qualifiers and resources.
Further, several participants recognized that the name qualifier
could be left out in many queries. A number of comments were
concerned with aspects of KWQL or visKWQL that the partic-
ipants found hard to understand, these were variables, URIs,
injectivity, content item nestings and links. In several cases, par-
ticipants did not understand the question or were unsure about
how to translate it into a query. One participant said that over
the course of task 1 he had realized that he had not understood
how visKWQL works.

After completing the two tasks, participants were again asked
about their opinion on KWQL or visKWQL. Now, most partici-
pants, 13 out of 20, said that they felt they had understood how
to use the query language. Six participants stated that they had
understood the language to some extent, but had trouble with
specific concepts or needed more time to understand it fully. Only
one participant claimed to not have understood visKWQL at all.
As before, many participants commented positively on KWQL
and visKWQL, saying that they found it powerful and easy to
understand. One participant said he hoped it would be used in
practice, while another one particularly like that KWQL allows
for underspecified queries. Another group of users overall was
generally in favor of the query language, but said that it required
some knowledge, practice and time to learn. Two participants
stated that they initially found visKWQL confusing but after
using it for a while thought it was intuitive and convenient to use.
Only three participants commented negatively, saying that they
found the language they used too complicated and confusing.
All three were in the novice group, two of them used visKWQL
and one KWQL. All participants thought that KWQL/visKWQL
had high expressive power, although one said that the queries
making use of the expressive power were considerably harder to
understand than simple queries.

With respect to the question whether KWQL/visKWQL was
easy to use, a majority of participants answered that it was, how-
ever, many qualified their response and listed particular things
that they found hard or that could be done to improve KWQL’s
and visKWQL’s usability. Specifically, participants experienced
problems with variables and links. Some found the bracketing
required to be confusing, while others wished for syntax high-
lighting and autocompletion in KWQL.

9.3 discussion 201

The overall hardness of the questions in the study was judged
to be easy or intermediate by most participants, although some
added that some questions were much harder than others, that
they would have needed more time to answer all questions and
that they needed many tries to find the correct answers. One
participant, a novice visKWQL user, found the questions very
hard.

Most participants thought that the introductory texts provided
were of good quality and helped them answer the questions.
Participants also remarked that the instructions should contain
more examples, should make the difference between resources
and qualifiers clearer and should explain variables in more detail.
One participant found the introduction to be too verbose, and
others wished for an index to make it easier to find specific pieces
of information in the text. Several participants also commented
that there was little time to read the instructions and they would
have preferred for the study to consist of several sessions and
allow for more practice.

Finally, participants were asked what they considered to be
KWQL’s and visKWQL’s advantages and disadvantages. All par-
ticipants were of the opinion that KWQL/visKWQL is powerful
and allows for precise queries, but some also remarked that it
was harder to use than web search and takes some time to learn.

9.3 discussion

All in all, the results of the experimental evaluation are very
positive: KWQL and visKWQL were well perceived by the partic-
ipants who also thought that the languages are expressive and
easy to use, at least given some time and practice. Even given only
a very short introduction and a small amount of time to solve the
assignments, participants overall could provide correct answers
to more than half the questions in the query writing task and
over eighty percent of the questions in the query understanding
task.

One remarkable result of the study is that nearly all queries
given as answers in the first task were valid KWQL queries.
The reasons for this are likely that visKWQL prevents many
editing operations that would lead to invalid queries, and that
both KWQL and visKWQL return meaningful and detailed error
messages when a query is found to be invalid upon evaluation.
However, at least in the case of KWQL where users receive no
guidance during query creation, these factors alone are unlikely
to be the only reason for the high percentage of valid queries,
indicating that participants learned enough of KWQL to be able
to, given feedback, write valid queries.

202 experimental evaluation : the kwql user experience

The percentage of queries that were not only valid but that also
constituted a correct answer to the question was considerably
lower at 52.7% overall. While participants with previous experi-
ence in querying and the social semantic web performed well,
beginning users only could answer about 37.6% of the questions
correctly. The analysis of the mistakes made as well as the user
comments indicate that participants encountered problems with
using variables, URIs, injectivity and data structure in general.
Some participants commented that there were questions that
they did not understand. This remark is revealing in that it helps
understand the reason for the problems that particularly novice
participants encountered: To compose a query that is not only
valid but also selects the correct set of content items, participants
need to understand not only KWQL, but also KiWi’s conceptual
model, the semantics behind the data organization in the dataset
and what the given question means in the context of the concep-
tual model and the dataset. As such, there is a big amount of
knowledge that participants have to acquire before being able
to compose appropriate KWQL queries, but that is not directly
related to KWQL. Given that participants spent only about half
an hour to acquaint themselves with KiWi and KWQL, it is likely
that novice participants could not acquire all the knowledge
needed to understand how to compose correct KWQL queries.

Apart from questions 2 and 3, the questions of task 1 answered
correctly most frequently by novice participants are questions
6 and 7, both of which require the formulation of queries that
use structural constraints but that, unlike the answer to other ad-
vanced queries, do not make use of URIs, variables or injectivity,
all features that were named as being hard to understand.

This result is not unexpected since, as described in the intro-
duction, this study was intentionally set up to tests participants’
performance after only a short learning phase, but it can help
to understand the reasons behind participants’ performances. It
also shows that a further study where participants can acquire
KWQL under more realistic conditions, that is, slowly, gradually,
and based on their own information needs, would likely yield
insightful results as to how KWQL is learned and used.

The learning required could also explain why visKWQL novices
performed worse than the participants in the novice KWQL
group: Aside from having to learn all the new concepts, they
also had to acquaint themselves with visual querying, which
likely was unfamiliar to them. The novice KWQL users, on the
other hand, had to write textual queries, which, given that all
participants can be assumed to have used web search engines
before, was more familiar to them.

Another contributing factor to visKWQL novices’ compar-
atively bad performance could be that visKWQL is not ide-

9.3 discussion 203

ally suited for creating vastly underspecified queries. visKWQL
makes it easy to understand the structure of queries and to create
structured queries, but offers no advantage when then queries
involved are very simple. For example, to compose the query that
is the correct answer to the first solution, Abraham OR Abe, the user
must create three boxes, nest them, and enter two values, which
arguably is more complicated than typing two keywords and an
operator. The resulting visKWQL query is weakly structured and
thus likely not easier to understand than its textual version. In-
deed, novice visKWQL participants performed particularly badly
on question 1 of task 1 compared to novice KWQL participants,
and the difference in the percentage of correct answers is smaller
for all consequent questions, which are all answered by queries
that contain more structure.

This result indicates that it might be better to introduce be-
ginning users whose queries exclusively consist of keywords
to textual KWQL, and to only add visKWQL once the queries
become more complex. On the other hand, given visKWQL’s
round-tripping capabilities, it is possible that users could achieve
equivalent or better results when textual and visual query editing
are introduced simultaneously; a follow-up study could investi-
gate which of the three methods yields the best results.

Not only novice visKWQL participants, but also novice KWQL
participants had considerable problems answering the first ques-
tion of task 1 correctly, meaning that visKWQL’s characteristics
alone could not have caused this result. One possible explanation
for the finding is that participants, after reading the introduc-
tion which presents all the query language’s features, were not
expecting the correct solution to be so simple. Another possi-
bility is that the effect is simply due to participants not having
any practice writing KWQL or visKWQL queries. This second
assumption is supported by participants commenting that, hav-
ing found an answer to question 1, question 2 became easy to
solve, as well as several participants who stated that their under-
standing of KWQL/visKWQL improved as they were solving the
assignments.

Advanced participants achieved good results regardless of
the query language used, on average, they could answer 71%
of the questions in task 1 and over 90% of the questions in
task 2 correctly. Their results also showed that visKWQL can
help improve the performance; advanced visKWQL participants
answered fewer questions overall than advanced KWQL partic-
ipants but nearly all answers given were correct, meaning that
overall, the advanced visKWQL group had the highest average
number of questions answered correctly. In particular questions
4 and 8 which required answers using structure combined with
injectivity and negation were answered correctly more frequently

204 experimental evaluation : the kwql user experience

when participants used visKWQL. These findings indicate that
participants who are familiar with querying and structured data
and to whom the information in the introductions was less novel,
can make effective use of visKWQL and the advantages it of-
fers over textual KWQL. This result gives further weight to the
explanation that the comparatively bad performance of novice
visKWQL participants is due to them being confronted with an
overwhelming amount of new information that makes it hard for
them to additionally absorb the concepts of visual querying and
visKWQL.

One interesting finding in the study is that novice visKWQL
participants in task 1 answered more questions than the KWQL
novice group, while the situation is reversed for advanced users
where participants in the KWQL group answer more questions. A
possible explanation for this effect is that it is easier to construct
valid queries using visKWQL than using KWQL due to the guid-
ance that visKWQL provides. visKWQL novices can thus quickly
create queries that, while they may not correctly answer the ques-
tion, are valid and return a number of answers. Participants in the
KWQL group on the other hand, if they do not want to restrict
themselves to keyword queries, have to use the introductory text
to learn how to use KWQL and thus have to invest more work to
create valid queries. This difference could also be the reason why
KWQL novices did better in task 1 than visKWQL novice users:
visKWQL makes it easy to create valid queries without much
knowledge about the query language, while KWQL requires
more learning and a deeper understanding of the language.

Advanced KWQL participants then simply might answer more
questions than participants in the visKWQL group since, when
the syntax is known, writing a textual query is faster than creating
and nesting boxes and inserting values.

Across all groups, participants had more success understand-
ing queries than writing them themselves. In the query under-
standing task, like in task 1, novice KWQL users outperformed
novice visKWQL users, both of which had a lower percentage
of correct answers than either advanced group. Both advanced
groups on average answered more than 90 percent of the ques-
tions correctly, indicating that this task overall was very easy for
them. The fact that participants perform better at understanding
queries than at writing them indicates that users could bene-
fit from the addition of query templates that users can modify
according to their needs.

In conclusion, the results of this experimental evaluation over-
all are positive: Even given minimal introduction, participants
succeeded, to different degrees, in writing and understanding
KWQL and visKWQL queries. The principles behind the lan-
guages conform to participants’ expectations to a query language

9.3 discussion 205

for KiWi and the languages overall received positive comments
both with respect to expressive power and ease of use. Many
participants remarked that, the advanced features of KWQL and
visKWQL require time and practice to learn, which is in accor-
dance with how we intend the languages to be learned and used
in practice.

10
A R C H I T E C T U R E A N D I M P L E M E N TAT I O N

To accommodate all users, modern knowledge management sys-
tems such as the KiWi wiki and other social semantic web applica-
tions must deal with both unstructured (textual or multi-modal)
information as well as structured data carrying varying degrees
of semantics: hierarchical data for document and simple classifi-
cation structures, social classifications in form of tag networks,
formal ontologies in RDF or OWL. Expert users in such systems
can define semantically rich, automated analysis or derivation
tasks. However, the vast number of users has little understanding
of formal knowledge representation, produces unstructured infor-
mation with lightweight semantic annotations such as free-form
tags, and interacts with the system through simple but imprecise
(keyword) queries.

In consequence, modern knowledge management needs to
combine aspects from classical information retrieval, databases,
social media and semantic technologies.

From these observations, we derive two properties that charac-
terize successful modern knowledge management systems:

(1) “Interfaces must be adaptable and flexible”: Interfaces
should scale with user experience: For novice users, simple, but
imprecise queries are useful for satisfying their information needs;
for expert users precise, but necessarily fairly complex queries
that enable automated action and derivation are required. Inter-
faces should also be able to adapt to different types of knowledge
in a system, providing a consistent interface. This property of
course is the driving force behind KWQL and discussed in more
detail in, among others, Chapter 1 and Section 7.1.

(2) “Patchwork knowledge management”: Due to the increase
in data size and formats, knowledge management systems face a
dual challenge: Users expect high performance for (at least basic)
queries regardless of the data scale, as in Web search engines.
On the other hand, knowledge management systems must be
able to adapt quickly to additional knowledge sources, providing
scalable yet sufficiently expressive interfaces to query and process
such data.

This chapter presents an implementation of KWQL, KWilt, that
is based on a patchwork approach. This approach to knowledge
management is illustrated using KWQL, KWilt and the KiWi
wiki, a setting which exemplifies the challenges outlined.

207

208 architecture and implementation

KWQL: Scaling with User Experience

To illustrate how KWQL provides a consistent interface that
easily adapts to different levels of user experience, consider the
following scenario: “In a KiWi wiki describing the KiWi project, we
would like to find all wiki pages that describe (knowledge management)
systems that have influenced the development of KiWi.”

In a conventional knowledge management system, we would
expect a formal relation (e.g., wk:influences) that represents the
very intent of our query. Indeed, assuming wk:KiWi represents
the KiWi system, we can query such relations using an RDF-
enhanced version of KWQL (adopting the syntax described in
Section 13.2):

ci(rdf(predicate:’wk:influences’ object:’wk:KiWi’))

However, usually this relation is not present explicitly. Even
if it is, users are often unable to express their intent in such a
formal manner.

Accustomed to Web search interfaces, novice users might start
with a query that returns all content items containing “KiWi”:

KiWi

Obviously, such a query is likely too unspecific to capture the
above query intent and, may omit a number of systems that are
described without reference to KiWi, but that are referenced from
the description of KiWi.

Thus, we might refine the query to return such referenced re-
sources, i.e., content items that are the target of a link originating
from a content item containing “KiWi”1:

$u @ ci(KiWi link(target:ci(URI:$u))

However, that query is not specific enough, as it returns also,
for example, content items about technologies used in KiWi. We
know that KiWi is a semantic wiki and might be tempted to
amend that query to return only resources that are also semantic
wikis:

$u @ ci(KiWi link(target:ci(URI:$u tag(name:"semantic
wiki")))

1 Here and in the following, $u is used as syntactic sugar for
ci(text:ALL(child:RENDER($u))), that is, we assume that if the head con-
sists only of a variable bound to one or several URIs, a content item containing
the respective referenced content items will be returned.

architecture and implementation 209

But there might well be systems that are not semantic wikis
but have a significant influence on KiWi. To capture them, we
choose the query:

$u @ ci(KiWi tag(name:$t) link(target:ci(URI:$u
tag(name:$t)))

It returns all content items that are tagged with a tag that has
the same name as a tag of a content item containing “KiWi” that
also links to the returned resource. This way, we likely capture
resources with similar characteristics as KiWi that are also men-
tioned in its description.

To summarize, KWQL’s main contributions over existing query
languages and similar interfaces for knowledge management
systems are:

1. KWQL provides a consistent interface for access to the
wide range of knowledge present in the semantic wiki KiWi:
unstructured wiki pages, the link (and containment) graph over
wiki pages and tags.

2. KWQL is designed to scale with the user experience: Queries
can take the form of “just a bag of keywords,” but also be ex-
tended with increasingly more precise constraints on the content,
structure and annotations of wiki pages.

KWilt: Patchwork Knowledge Management

KWilt is KWQL’s implementation in KiWi. It provides an easily
extensible, yet performant implementation of KWQL’s features
over the wide range of data available in the KiWi wiki.

Previous approaches have tried to engineer a knowledge infor-
mation system for such diverse information and user needs from
the start. In contrast, KWilt uses a patchwork approach, combin-
ing performant and mature technologies where available. For
example, KWilt uses a scalable and well established information
retrieval engine (Solr [337]) to evaluate keyword queries. In fact,
KWilt tries to evaluate as large a fragment of any KWQL query
in the information retrieval engine as possible.

If necessary, the results are further refined by (1) checking
any structural constraints of the query and (2) finally enforcing
all remaining first-order constraints, e.g., from multiple variable
occurrences.

KWilt’s patchwork approach has three main advantages:
1. Many queries can be evaluated at the speed of search en-

gines, yet all the power of first-order logic is available if needed,
as detailed in Section 10.6: The three steps use increasingly more
expressive, but also less scalable technologies. Thus even for
queries that involve full first-order constraints, we can, usually,

210 architecture and implementation

substantially reduce the number of candidates in the informa-
tion retrieval engine by enforcing structural constraints before
evaluating the first-order constraints.
This property is particularly relevant in the context of KWQL, as
(novice) users that use KWQL like a search engine also expect
the speed of a search engine, likely unaware of the additional
expressiveness provided by KWQL.

2. Each part is implemented using proven technologies and
algorithms with minimal “glue” between the employed tools (see
Section 10.4).

3. The separation makes it easy to adapt each of the parts,
for example to include additional data sources. If KiWi were to
introduce data with different structural properties, e.g., strictly
hierarchical taxonomies, only the part of KWilt that evaluates
structural constraints needs to be modified. Similarly, if KWQL
would introduce other content primitives other than keywords
(e.g., for image retrieval), only the first (retrieval) part of KWilt
would be affected. This separation also ensures that the planned
extension of KWQL to include querying of structured tags (see
Chapter 12) and RDF (Chapter 13) can easily be realized without
fundamentally changing the query evaluation scheme.

10.1 related work

As discussed in Chapter 4, there are two very different approaches
to querying data on the web: On the one hand, keyword queries
and search engines can be used to search the content of the web,
often at a large scale. On the other hand, query languages like
XPath and XQuery enable precise selections over the structure
of individual web pages. Both approaches have been applied for
querying structured data like XML and RDF at the scale of wikis
(rather than a significant portion of the whole web). The main
difference remains that languages like XPath and XQuery enable
experts to write precise queries, whereas keyword queries are
suitable also for novice users, at the price of lower precision.

In the context of XML, a number of recent approaches have
been proposed that combine keyword queries on the content of
documents or XML elements with XPath-style constraints on the
structure of those documents. There are two different strategies
for this combination: The first approach interleaves structure and
content in a single data structure, whereas the second one uses
different indices for content and structure.

KWilt falls into the second category, but is unique in three
main aspects:

1. Through KWQL, a single, integrated interface that scales
with the experience of the user is provided whereas other ap-

10.1 related work 211

proaches either lean towards full query languages like XQuery
or provide only slightly enhanced keyword query interfaces.

2. KWilt uses a lightweight patchwork integration approach
that reuses existing technologies where possible and makes it
easy to add or exchange parts of the implementation components.
Furthermore, this allows KWilt to execute basic (keyword) queries
at the speed of the underlying search engine with only little
overhead.

3. KWQL and KWilt are carefully adapted to the needs of a
semantic wiki, namely KiWi. Particularly, they allow querying of
graph-structured data in the form of links between web pages
and, in the future, RDF graphs. In contrast, most of the prior
approaches are limited to XML tree data.

hybrid interleaving approaches Interleaving structure
and content for query evaluation has the big advantage that
unselective keywords or structural elements of a query do not
cause the index to retrieve large parts of the database which are
then filtered out by the subsequent join. Instead, the content can
be used during the structural matching to prune irrelevant parts
of the search space. The price is that entirely new index structures
and evaluation algorithms have to be developed.

Content-Aware DataGuides [362] (CADGs) are an extension of
DataGuides [163] that interleave structural and textual elements
in a single index. In contrast to solutions that match structure
and content separately and combine the results by a join, the
content-aware DataGuide can use keyword information during
path matching. This is realized by enhancing the DataGuide with
a materialized (conservative) approximation of the content/struc-
ture join (which keywords may occur in the sub-tree of the cur-
rent node) and adequate algorithms that use this information for
pruning irrelevant paths during the matching of the structure.

Unfortunately, path indices such as DataGuides cannot easily
be extended to graph data as used in KiWi. Furthermore, the
performance of CADGs relies on a novel matching algorithm that
cannot be easily implemented at the scale of a wiki.

ViST [358] unifies structure and content in a single index
by transforming XML into structure-encoded sequences. These se-
quences are a pre-order representation of the XML document
with additional information which preserves the structure of the
tree. Thus, querying the document is equivalent to searching for
sub-sequences in the structure-encoded sequence of the XML
document which eliminates any need for a join, even for branch-
ing path queries. To be able to carry out sub-sequence matching
efficiently, the authors propose a virtual suffix tree (ViST) which is
can be stored in a B+-tree and supports dynamic insertion and

212 architecture and implementation

deletion of nodes. Like CADGs, ViST cannot easily be extended
to graph data and does not support phrase queries.

hybrid join approaches So-called join approaches are the
more common approach to combining content and structure
queries: These approaches employ two different indices, one for
the content and one for the structure. Both indices are queried
independently and the intermediate results are combined through
a join.

As an example, Kaushik et al. [213] propose a framework that,
similar to the 1-index [279], uses an index based on equivalence
classes to answer the structural part of a query. An inverted list is
adapted for XML and augmented with the node identifiers from
the structural index to cover the keyword parts of the query. Since
both indices refer to nodes in the XML tree by their identifiers in
the structural index, the gathered answers can be easily joined
to retrieve the answers to the complete query. The benefit of this
framework is that it does not propose its own data structures,
but instead relies on structural indices, inverted lists and join
algorithms which need only slight adjustments to be used in the
framework. In this respect it is similar to KWilt. However, KWilt
extends this approach to graph data and provides a consistent
interface in the form of KWQL.

Apart from this framework, several other systems were pro-
posed that focus on specific implementations of index struc-
tures [269, 102, 333, 383]. Also, a number of query algebras have
been proposed for such systems [270, 18] to enable the logical
optimization of queries. The XFT algebra [18] is only suitable
for querying content of XML, but the authors state that it can
be easily combined with algebras for structural queries which
would enable the optimization of a complete query for structure
and content.

For RDF, Wang et al. [357] suggests to store the structure and
content of an RDF graph in a single inverted list, which is also
capable of storing the position of the occurrence of a keyword.
For each triple, an entry for the subject is generated in the index
structure, and a field corresponding to the predicate is created.
The object is then stored as the position of the corresponding
predicate field. During evaluation, a query is split into several
subqueries which consist only of single triple queries (called triple
patterns in SPARQL). These triple patterns are then processed
stepwise, joining the intermediate results, before the next sub-
query is evaluated. Since this technique does not need to modify
standard implementations of inverted lists, highly efficient im-
plementations can be used to carry out combined structure and
content queries.

10.2 a few words on injectivity 213

Though the use of a single inverted list leads to an elegant
approach, the evaluation of basic keyword queries is significantly
affected by the ability of the system to also evaluate more complex
structural queries.

10.2 a few words on injectivity

One of KWQL’s most challenging properties for evaluation is
injectivity, which ensures that if a resource or qualifier is stated
twice in a query, it is matched at least twice in an answer as well.
The evaluation on injectivity constraints on unordered tree data,
which the data model of KiWi is an extension of, has been shown
to be NP-complete [219]. To see why the validation of injectivity
constraints is so demanding, consider the following example:

A content item has been tagged three times with tags with the
tag name “quicksort.” While the tag names are identical, each tag
has a different URI and not all taggings have the same author:

tag(name:quicksort author:admin URI:kiwi#tag1)
tag(name:quicksort author:admin URI:kiwi#tag2)
tag(name:quicksort author:anonymous URI:kiwi#tag3)

Consider the following query which is evaluated on the content
item:

ci(tag(name:quicksort)
tag(author:admin)
tag(URI:kiwi#tag2))

A naive algorithm that takes the ordering of the tags into
account, matches the first tag of the query with the first tag of
the content item and the second tag of the query with the second
tag of the content item. But then, no matching partner remains
for the last tag of the query, since the URI of the third tag of the
content item has a different value.

However, if the first tag of the query is matched with the
third tag of the content item and the second with the first, then
the third tag of the query can be successfully matched with the
second tag of the content item. And therefore the content item is
a valid answer to the query.

As this example indicates, the order of resources stated in
the query not necessarily needs to match the order in which
the resources actually appear during evaluation. Therefore, a
proper algorithm must regard any permutation of the resources to
decide reliably whether a query containing injectivity constraints
matches a content item or not.

Consequently, during the validation of the sub-resources the
algorithm has to keep track of the permutations already inves-
tigated. Otherwise, it cannot be guaranteed that all possible

214 architecture and implementation

Figure 59: AST representation of the query ci(KiWi
tag(name:$t)link(target:ci(tag(name:$t))))

permutations are taken into account and query answers might be
dropped.

10.3 query preprocessing

Before a KWQL query can be evaluated in KWilt, the query is
syntactically analyzed, that is parsed, and verified.

First, the query is parsed using an ANTLR-generated parser.
ANTLR (ANother Tool for Language Recognition) [301] is a soft-
ware tool that converts ENBF-like [368] language descriptions
into LL(*) parsers. ANTLR can produce source code in a num-
ber of different programming languages, making it possible for
visKWQL, written in JavaScript, and KWilt, written in Java, to
employ equivalent grammars generated from the same language
description.

The parser does not only create a parse tree for the query,
but also generates an Abstract Syntax Tree (AST), a normalized
representation of the query’s syntactic structure. Figure 59 shows
the AST for the last query mentioned in the introduction of this
chapter.

Each query AST is a binary tree consisting of a HEAD and a BODY
subtree which together form a RULE tree. Each value node in the
tree is the descendant of at least one QUALIFIER and one RESOURCE
node. Even when the context of a keyword is not fully specified,
all qualifiers and resources in the context are represented as
nodes in the AST, but their type or label may be empty. For
example, the AST in Figure 59 shows that the qualifier label for
the keyword “KiWi” is not given in the query. The figure also
illustrates that conjunctions, that is, AND nodes, are introduced
where no operator is given in the query.

10.4 kwilt: architecture and evaluation phases 215

Once the query has been converted into an AST, a number of
criteria are used to ensure the validity of the query. Specifically,
the following must hold:

• Regardless of the dataset used, all variables used in the rule
head are bound in the rule body

• All sub-resource nestings are valid according to the princi-
ples described in Section 7.2 and shown in Figure 30

• All resources only occur with the qualifiers allowed accord-
ing to table 3 in section 7.2

• In accordance with the same table, no qualifiers occur more
often than allowed

10.4 kwilt: architecture and evaluation phases

Evaluating KWQL queries is a challenging task that cannot be
accomplished by existing query engines for (semantic) wikis. For
instance, the aforementioned query

ci(KiWi tag(name:$t) link(target:ci(tag(name:$t))))

combines content and structural elements with variables to re-
trieve content items that contain “KiWi” and that link to content
items with which they have at least one tag name in common.

Despite the unique combination of features found in KWQL,
KWilt does not try to “reinvent the wheel.” In particular, we
chose not to build a new index structure capable of combining
all these aspects in a single index access, as this approach has
several drawbacks. First and foremost, the rich data model would
require a fairly complex index structure that can support content
and structure queries, fast access to hierarchical data and link
graphs as well as navigation over containment and link relations.
Moreover, it is likely that the data model evolves over time with
new kinds of data or different representation formats introduced,
in particular in the field of social semantic media and RDF data.
Using a complex index structure which is adapted for a certain
data model makes it hard or even infeasible to react to these
potential changes.

Instead, we use a patchwork, or integration, approach to com-
bine off-the-shelf state-of-the-art tools in a single framework. To
this end, the evaluation is split into three consecutive evaluation
phases, each dedicated to a particular aspect of the query (see
Figure 60). Throughout these phases, we keep a candidate set of
those content items that potentially match the query, that is, for
which no evidence to the contrary has been found so far. Initially,
the candidate set consists of all content items in the wiki.

216 architecture and implementation

Figure 60: The KWilt evaluation pipeline

Each step then makes use of a tool which is particularly suitable
for evaluating the query constraints covered by that aspect of the
evaluation, e.g., for keyword queries we use a traditional search
engine. Every evaluation step may remove content items from
the candidate set by determining either that they fully match the
query (true hit) or that they do not fulfill the selection criteria that
the step evaluates and therefore do not match the query (true
drop). If the candidate set is not empty after the evaluation step,
that is, when there are content items in the candidate set which
cannot be determined to be either a true hit or a true drop, the
consequent evaluation step is called with the candidate set as an
input.

Thus, efficient and mature algorithms form the basis of our
framework while the framework itself remains flexible with
lightweight “glue” to combine the evaluation phases.

10.4.1 Keyword Queries

Many KWQL queries, in particular those formulated by novice
users, mostly or exclusively address the content of the pages.
Therefore, the first evaluation phase treats the keywords in the
query. Since this step uses technology that can operate quickly
on big amounts of data, it is well-suited as a first evaluation
phase. Not only can the two subsequent phases be skipped if all
constraints of the query can be validated in this phase, but the
candidate set can also be efficiently reduced using constraints on
the content as a filter. This means that fewer potential matches
will have to be considered in the consequent, less performant
evaluation steps.

During this first phase, the content and metadata of each
content item, the values of its non-structural qualifiers, and to
some extent also their tags, links and fragments, are searched
using the information retrieval engine Solr [337], an extension of
Lucene [187].

Solr provides a highly optimized inverted list index structure to
carry out keyword queries on a set of documents. Each document
consists of an arbitrary number of named fields which are used
to store the document text and metadata. In order to benefit from

10.4 kwilt: architecture and evaluation phases 217

Solr, the content of the wiki needs to be stored in this index, i.e.,
all resources including their dependencies must be translated
into Solr documents.

The main principle of our translation is to materialize joins be-
tween content items and their directly associated resources, that
is, their contained tags, fragments and links. These materialized
joins are then stored in the fields of the document representing
the content item. Thus, not only queries over the content and
metadata of a content item can be answered directly by Solr, but
also queries regarding the data and metadata of tags, fragments
and links which belong to the content item. However, the trans-
formation of the resources connected to a content item to fields
in the Solr index is lossy since the values of multiple qualifier
instances are stored in a single field. Thus, if multiple properties
of a resource are queried, it cannot be guaranteed that hits in the
index belong to the same resource. Therefore, for certain kinds of
queries, it is necessary to validate the result set returned by Solr.

To keep the index small, only dependencies within content
items are materialized, omitting in particular nested and linked
content items. Under certain circumstances (see Section 10.5.1),
queries that only access content items with their content, meta-
data and directly contained resources can be evaluated entirely
in Solr. As soon as nesting and linking of content items comes
into play however, we use Solr only to narrow down the set of
candidates to those which match those parts of the query for
which all necessary information is stored in the Solr index, that
is, all content items for which it cannot be determined that they
violate a selection condition.

With respect to underspecified queries, there are two different
approaches to storing KiWi data in the index and translating
the query: Either the query is translated into its corresponding
fully specified form (see Section 7.2), or the data are indexed
redundantly to cover situations where the context of a keyword
is underspecified.

The first case means that the space occupied by the index is
smaller since every piece of data is only stored once. However,
particularly for vastly underspecified queries, the fully specified
form of the query may be very long since all possible combina-
tions of contexts must be covered. This means that more pro-
cessing time is needed, both for constructing the query and for
evaluating it.

In the second case, the translation process does not treat under-
specification and the resulting Solr query is as vague as its corre-
sponding KWQL query (or portion of a KWQL query). Instead,
the index reduplicates the data in different fields depending on
the extent to which the context is specified. Consequently, this
second approach is less costly in terms of computation time since

218 architecture and implementation

the query translation is simpler and the resulting Solr queries
are shorter. However, space requirements here are higher because
every piece of data is saved multiple times. For example, a term
t that occurs in the title of a content item is stored in the index
three times: Once in a field for titles of content items (correspond-
ing to the query ci(title:t)), once in a field for all content item
qualifiers (ci(t)) and once in a catch-all field for the case that no
context is given at all (t).

Choosing between the two approaches means to either optimize
for space or processing time, either of which might be more
appropriate in a specific scenario.

Note that this situation is specific to Solr and its current feature
list, and the addition of support for wildcards for field names2

would allow for an implementation of KWQL keyword search
that alleviates the need for both calculating the fully specified
form of queries and redundant indexing.

As mentioned, not all parts of KWQL can be covered by ma-
terialized joins. For instance, the query ci(title:$t text:$t) re-
trieves content items whose title also occurs in their text. It is
possible to precompute whether this circumstance is fulfilled
and store it in the index, but in combination with partial match-
ing and arbitrary deep nesting of content items, a vast number
combinations would have to be saved.

Nevertheless, it is possible to transform the parts of a query
which contain variables to an existentially quantified Solr ex-
pression to find as many true drops as possible. In the case of
mandatory qualifiers such as metadata, such a transformation is
useless since this data is present for every resource. But in the
case of queries for sub-resources, the transformation can filter
out invalid answers. Consider the following two KWQL queries
together with their translations in the Solr query language:

ci(title:$t text:$t)

is translated to

type:’kiwi:ContentItem’

and

ci(tag(name:$t))

is translated to

type:’kiwi:ContentItem’ AND tag_names:[* TO *]

2 http://wiki.apache.org/solr/FieldAliasesAndGlobsInParams

10.4 kwilt: architecture and evaluation phases 219

In the first case, for the reasons explained in the last paragraph,
the two variables cannot be utilized in the query translation
and are therefore disregarded. Here, Solr cannot filter out any
content items and therefore returns every content item in its
index, meaning that the candidate set remains unchanged. The
second query, on the other hand, uses a range query to retrieve
all content items that have a tag. In this case, the answers of
Solr are exactly the answers to the KWQL query and no further
processing is needed, since there are no further constraints on
the value of the variable that are not captured by the Solr query.

10.4.2 Structural Constraints

The second phase evaluates the parts of a query that impose
constraints on the data structure. In this step, all resources are
represented as common objects in the KiWi system and their
dependencies are modeled by references between the interrelated
objects. The objects are persisted using a relational database in
combination with an object-relational mapping.

In the current prototype, we validate the structural properties
of a query individually for each candidate content item. That
means, constraints on related resources (contained tags, frag-
ments and links, and linked and nested content items) which
are specified in the query are evaluated by traversing the object
currently being investigated.

The structure of the Wiki is represented in the database through
pointers between objects. For instance, each content item has a
list containing pointers to nested content items, and to tags that
have been assigned to the content item. To verify the structure
of a candidate, these pointers are traversed recursively and the
properties of each visited object are examined.

We chose this approach since structural constraints are often
validated fairly quickly and far less selective than the keyword
portions of KWQL queries. However, for future work we envision
an extension of KWilt that improves the current implementation
in two aspects: (a) It estimates whether the structural part is
selective enough to warrant its execution without considering
the candidates from the previous phase, followed by a join be-
tween the candidate sets from the two phases. (b) If structural
constraints become more complex, specialized evaluation engines
for hierarchical (XML-style) data, e.g, a high-performance XPath
engine, for link data and various graph reachability indices for
RDF data might be advantageous. We are also considering the use
of a multi-format, multi-language database such as MonetDB [66]
that supports efficient hierarchical data access through XPath and
XQuery engines as well as efficient RDF navigation.

In the second evaluation phase of our example query

220 architecture and implementation

ci(KiWi tag(name:$t) link(target:ci(tag(name:$t))))

every content item still in the candidate set is loaded into memory.
The qualifiers of the candidate are then examined until one of
them matches the keyword “KiWi.” In this specific example, this
step is not strictly necessary since “KiWi” may occur in any
qualifier and Solr queries can fully capture this condition, but
other queries do require it. For example, if we change the query
to

ci(tag(name:KiWi author:Mary) tag(name:$t)
link(target:ci(tag(name:$t))))

every match returned by Solr must be verified to ensure that one
and the same tagging has both “KiWi” in its name and “Mary”
as its author, since Solr cannot distinguish between different
instances of the same sub-resource.

Consequently, the links of the content item are successively ex-
amined by traversing the references of type “link” of the content
item. This yields one content item, the target of the link, for each
traversed reference, which is in turn examined by traversing the
references pointing to tags.

Finally, content and structural selection conditions on the
linked content item are verified, here by merely checking whether
the content item in question has been tagged at least once.

using ternary logic to treat variables The second
evaluation phase treats constraints pertaining to the structure of
resources, but does not consider injectivity. But to decide whether
a possible answer generated by Solr should be further regarded
or can be safely dropped, the concept of a ternary logic is needed.

In order to illustrate the necessity of this logic, consider the
following two examples:

ci(title:$t tag(name:$t))

ci(title:$t NOT(tag(name:$t)))

In a first approach, any occurrence of a variable can be inter-
preted as a valid match. This seems reasonable, as variables can
only be stated before qualifiers and each qualifier of every re-
source always has a (possibly empty) value. This strategy works
well for queries of the first kind. Given that the currently ana-
lyzed content item has a tag, the recursive traversal of the content
item will evaluate to “true.”

10.4 kwilt: architecture and evaluation phases 221

However, considering the second query, this naive approach
does not show the desired behavior. Again, if the analyzed con-
tent item has a tag, tag(name:$t) will be regarded as a match,
but as this part of the query is negated, the recursive traversal
will always evaluate to “false.” Therefore, every content item in
the candidate set that has a tag will be filtered out regardless of
whether the tag label matches its title or not.

As this example indicates, it depends on the examined resource
and the query, if a variable needs to be evaluated to “true” or
“false.” To deal with this problem, ternary logic, first introduced
by Łukasiewicz [257], is used. Ternary logic is an extension of
the classical boolean logic by a third value which can be used
to indicate uncertainty. Table 17 shows the truth tables for the
operators and, or and not in ternary logic.

❍❍❍❍❍❍a

b
false unknown true

false false false false
unknown false unknown unknown
true false unknown true

(a) a∧ b

❍❍❍❍❍❍a

b
false unknown true

false false unknown true
unknown unknown unknown true
true true true true

(b) a∨ b

a false unknown true

¬a true unknown false
(c) ¬a

Table 17: Truth tables for the operators and (17a), or (17b), and not (17c)

Ternary logic is employed to adjust the recursive traversal used
to refine the result set. In addition to the boolean values “true”
and “false” which indicate whether a resource matches a query
or not, the value “unknown” can be used to represent variable
bindings. This is needed, since variables can, depending on their
binding, either match a query or not. But as this part of the
KWQL evaluation does not treat variable bindings, it cannot
know whether a certain variable should be regarded a match
or not. Moreover, having this third value avoids the problem of
needing to determine whether a variable matches the value of a
qualifier or not, which was shown to depend on the individual
query.

222 architecture and implementation

Given that the recursive traversal evaluates to “false,” the an-
alyzed result can be safely dropped from the result set as it,
independently of the variable bindings, cannot fulfill the con-
straints specified by the query. However, if it evaluates to “true,”
it would be premature to conclude that the content item is a valid
match since there are additional constraints stemming from the
injectivity property of KWQL which are not checked in this step
either.

But if we can discern between matches that also need to satisfy
additional injectivity constraints and those that can be completely
verified in the given step, it becomes possible to distinguish
between true hits and content items that must remain in the
candidate set. The three way distinction in ternary logic then
corresponds to the distinction between true hits (“true”), true
drops (“false”) and elements of the candidate set (“unknown”)
and we can say that the KWilt evaluation scheme in general is
based on ternary logic.

10.4.3 First-Order Constraints

In the final evaluation phase, first-order constraints over wiki
resources, induced by the KWQL variables and injectivity, are
evaluated using choco [207, 228], a state-of-the-art open source
constraint solver. It offers efficient implementations of popular
constraint types and supports the use of arbitrary relations. These
characteristics make choco a good fit for the evaluation of vari-
ables and the evaluation of injectivity constraints.

Following constraint programming notation, we consider a
first-order constraint a formula over logical relations on several
variables. In order to use these constraints to express a KWQL
query, every expression of a query that is involved in constraints
not yet fully validated is represented by some variables. These
variables are then connected using relations which reflect the
structural constraints between the expressions from the query.

These relations are collected during a recursive traversal of
the elements in the candidate set. Here, values of qualifiers and
the structural dependencies of their resources are stored in a
relation structure. More precisely, for each required qualifier, a
tuple containing an identifier for the respective resource and the
value of the qualifier is inserted into the appropriate relation.
When processing our example query, the names of the tags and
the information which tag is contained in which content item is
stored in a relation.

For instance, to express that a content item has a certain title,
the relation Rtitle is used: (C, KiWi) ∈ Rtitle. This constraint causes
the variable C to be bound only to identifiers of content items

10.4 kwilt: architecture and evaluation phases 223

with the title “KiWi”. Likewise, the relation Rtag is used to specify
that a content item has a tag: (C, T) ∈ Rtag.

For each KWQL variable in the query, a new first-order variable
is generated that can be used in the structural constraints. For
instance, the query

ci(title:$t tag(name:$t))

can be represented as: (C, $t) ∈ Rtitle ∧ (C, T) ∈ Rtag ∧ (T , $t) ∈
Rname.

The formalization of this query uses the relation Rtitle to gather
content item ids and titles and stores them in the variables C and
$t: ((C, $t) ∈ Rtitle). These variables are then used to express that
the corresponding content item should be tagged ((C, T) ∈ Rtag)
and that the tag should share the content item’s title ((T , $t) ∈
Rname).

ci(tag(name:wiki) tag(name:wiki))

Consider the preceding query, which matches content items
that have been tagged with “wiki” at least twice. In addition to
the constraints which are generated as described, a global “all
distinct” constraint ensures that all tags of the answer have a
different id, hence that there are two different “wiki” tags:

alldistinct($tag1, $tag2) ∧�
($ci, $tag1) ∈ Rtag ∧ ($tag1, wiki) ∈ Rname

∧ ($ci, $tag2) ∈ Rtag ∧ ($tag2, wiki) ∈ Rname

�

Note that the injectivity property is only local to a resource and
sub-resources have their own injectivity properties. Therefore
each resource of a query needs its own “all distinct” constraint
as well, since different sub-resources of a query may reference
the same resource without violating the injectivity.

However, there are cases which cannot be handled that easily
and require further adoptions of the presented approach.

a disjunctive normal form for injectivity Consider
the following query:

ci(tag(name:"knowledge management") OR (tag(name:wiki)
tag(name:wiki)))

The third step of the evaluation of this query may lead to a
problematic situation where the variables of the second disjunct
of the query remain unbound. More precisely, in such a situation
the variables $tag2 and $tag3 are set to -1 and the constraint

224 architecture and implementation

alldistinct($tag1, $tag2, $tag3) will always fail, as the values of
$tag2 and $tag3 are both -1 and therefore equal.

One simple solution to this problem is to use different (nega-
tive) ids to mark the variables as unbound, but this is unnatural
since different values suggest different resources bound to them
whereas in reality they are completely unbound. Additionally,
this would make it necessary to keep track of the values which
have so far been used during the conversion of the query.

For a more natural solution, the disjunction of the query must
be handled differently. While the current approach assumes that
all tags which occur in the same resource of a query must be
distinct, this is no longer valid if disjunctions are taken into con-
sideration. Through disjunction, constraints which would have
applied for the whole resource in the conjunctive case, are bro-
ken into two parts which are independent of each other. In the
example at hand, this means that instead of one “all distinct” con-
straint two constraints are necessary, namely alldistinct($tag1)
and alldistinct($tag2, $tag3). The first constraint is trivially al-
ways satisfied and therefore can be disregarded.

Since conjunctions and disjunctions can be arbitrarily nested,
it may be hard to determine which parts of the query belong
together. Consider the following abstracted version of a KWQL
query, where tags are only represented by a short form, without
any of their qualifiers.

ci(tag1 AND (tag2 OR (tag3 AND tag4)))

As demonstrated by the previous example, the all distinct con-
straint cannot be used in combination with disjunctions which
therefore need to be eliminated. This can be achieved by trans-
forming the expression into disjunctive normal form and process-
ing all obtained disjuncts independently. This procedure is ad-
missible because disjunctions represent alternatives in the query
and during the evaluation all these alternatives are tested one
after another. Thus only the particular injectivity constraint which
is responsible for the currently evaluated alternative needs to
be regarded. This can easily be achieved by testing whether all
variables used by the constraint are bound.

($tag1 � −1∧ $tag2 � −1) ⇒
alldistinct($tag1, $tag2)

($tag1 � −1∧ $tag3 � −1∧ $tag4 � −1) ⇒
alldistinct($tag1, $tag3, $tag4)

10.4 kwilt: architecture and evaluation phases 225

In order to generate the disjunctive normal form of a query, the
operators ∪ and × with the following semantic are used. Suppose
A and B are families of sets, then

A∪B := {X | X ∈ A∨X ∈ B}

A×B := {a∪ b | a ∈ A∧ b ∈ B}

By substituting AND by × and OR by ∪ in the preceding query,
these two operators can be used to generate a family of sets
over KWQL variables. This family has the property that each
contained set contains exactly those variables which occur in one
of the disjuncts of the disjunctive normal form.

{{tag1}}×
�
{{tag2}}∪

�
{{tag3}}× {{tag4}}

��

= {{tag1}}×
�
{{tag2}}∪ {{tag3, tag4}}

�

= {{tag1}}× {{tag2}, {tag3, tag4}}

= {{tag1, tag2}, {tag1, tag3, tag4}}

Using this formalism, constraints establishing injectivity can be
generated which are only applied to the necessary variables
and therefore can be used together with disjunctions without
dropping valid responses.

Generating the disjunctive normal form of a query is not only
useful in the context of injectivity constraints and variables, but
can be used as a simple way to implement true drops, which are
not yet realized in the current KWilt prototype. As an illustration,
consider the query

ci(java OR link(target:java))

This query returns all content items that contain “java” or that
link to a content item containing “java.” When this query is
evaluated, the first step does not remove any content items from
the candidate set, since the second disjunct cannot be converted
to a Solr query. As a consequence, the second query step must
sift through all content items in the wiki to retrieve the results.

However, when the query is converted into its disjunctive nor-
mal form, ci(java)OR ci(link(target:java)), the two disjuncts
can be evaluated separately. All content items that match the
first disjunct, i.e. that contain “java” are then true hits that can
be removed from the candidate set and need not be considered
when evaluating the second disjunct query. As a consequence,
fewer content items have to be treated in this step.

One limitation of this approach is that treating multiple query
disjuncts is unnecessary when both disjuncts require the same
amount of evaluation steps, and that the disjunct queries should
be ordered in increasing complexity. Before beginning the query
evaluation, the number of steps necessary to evaluate each dis-
junct query must therefore be determined.

226 architecture and implementation

10.5 kwql sublanguages

As described in the previous section, KWQL queries in KWilt
are evaluated in three phases. However, not all evaluation phases
are required for every KWQL query. In the following, we give a
characterization of KWQL queries that can be evaluated using
only the first phase (and skipping the remaining ones), or only
the first and second phases.

10.5.1 Keyword KWQL

Keyword KWQL or KWQLK is the restriction of KWQL to flat
queries.

Since tags and fragments can not be nested more than one
level, we can materialize all sub-resources for each content item.
However, in contrast to (string-valued) qualifiers, a content item
can have multiple tags or fragments. To allow evaluation with an
information retrieval engine such as Solr, we have to ensure that
multiple tag or fragment expressions always match with different
tags or fragments of the surrounding content item. This avoids
that we have to enforce the injectivity in a later evaluation phase.

To ensure this, we allow fragment, link, and tag queries but
disallow

• Two keywords or qualifier terms as siblings expressions in
a sub-resource term.

• Two sub-resources terms as sibling expressions.

• Variables not used in the function of wildcards (see Sec-
tion 7.2.3). That means that the query head, if given, may
not contain any variables and no variable may occur more
than once in the query body.

• Structure qualifiers, that is, child, descendant, and target.

KWQLK expressions can be evaluated entirely by the infor-
mation retrieval engine, here Solr. This is obvious for keywords.
String-valued properties are materialized in Solr together with
their resources (as specific fields) and thus can be queried through
Solr as well.

KWilt determines whether a query can be fully expressed in
KWQLK during the pre-processing step of the query. If this is the
case, only the first step of the evaluation is performed.

10.5.2 Tree-shaped KWQL

Tree-shaped KWQL or KWQLT allows only queries corresponding
to tree-shaped constraints. Thus, no multiple occurrences of the

10.6 evaluating a kwql query in kwilt 227

same variable, and no potentially overlapping expression siblings
are allowed.

Intuitively, two expressions are called overlapping if there is a
KWQL node in any document that is matched (i.e., returned by
their semantics according to Chapter 7.3) by both expressions. For
example, ci(tag(name:Java)) and Java are overlapping. Unfortu-
nately, this definition of overlapping does not lead to an efficient
syntactic condition, as it is easy to see that containment of KWQL
queries (see Section 7.2.3) is a special case of overlapping. Further,
containment of KWQL queries is NP-hard by reduction from
containment of conjunctive queries.

Therefore, we define an equivalence relation on expressions,
called potential overlap, as a conservative approximation of over-
lapping. It holds between two expressions if they have the same
return type in the KWQL semantics or if the return type of one is
a subset of that of the other one. E.g., descendant:ci(Lucene) and
child:ci(Java) potentially overlap, but target:ci(Java) does not
overlap with either. This is only an approximation. For instance,
child:ci(URI:a) and child:ci(URI:b) potentially overlap, though
each content-item has a unique URI and thus the two expressions
never actually overlap.

KWQLT expressions can be evaluated by using only Solr and
checking the remaining structural conditions in the second evalu-
ation phase. Full first-order constraints are not needed and the
third (choco) phase can be skipped.

Given an arbitrary KWQL query, we can decide in linear time
and space in the size of the query if that query is a KWQLK query
and in quadratic time if it is a KWQLT query.

Proof. From the definitions of KWQLK and KWQLT it is easy to see
that testing membership of a general KWQL expression can be done
by a single traversal of the expression tree. In the case of KWQLT we
also have to test each (of the potentially quadratic) pairs of siblings for
overlap and storing already visited variables. �

The test whether a query is a KWQLT query can actually
be achieved as a side effect of transforming the KWQL query
into first-order constraints in the third evaluation phase: Only if
certain first-order constraints are generated during this transfor-
mation we need to execute the constraint solver at all. In practice,
this is often cheaper than a separate test, as the generation of
first-order constraints is fairly cheap and polynomial, except for
queries with many potentially overlapping expression siblings.

10.6 evaluating a kwql query in kwilt

In order to illustrate the different evaluation phases of our frame-
work, the evaluation of the final query from the introduction is

228 architecture and implementation

described here in detail, showing for each phase which of the
KWQL constraints are solved.

$u @ ci(KiWi tag(name:$t) link(target:ci(URI:$u
tag(name:$t)))

First, the query is partially translated to the Solr query lan-
guage. In the Solr index, the metadata of a content item is stored
together with the metadata of the fragments, links, and tags
which are directly connected to the content item. Thus, not only
the keyword “KiWi” is included in the query but also the query
for the tag, but since Solr does not support variables, the query
for the tag is just an existence constraint (indicated by [* TO *]
as the value of the tags qualifier). Nevertheless, its inclusion is
reasonable as there might be content items without any tags.

type:ci AND (title:KiWi OR text:KiWi OR ...)
AND tags:[* TO *]

The result of evaluating this query using Solr is the set of
content items which have “KiWi” among their qualifier values
and that have at least one tag. Any other constraints of the KWQL
query have to be validated in the subsequent phases.

In the second evaluation phase, the structural properties of
the content items are validated against the query constraints. In
order to gain full access to all properties of the content item, not
just the simplified version that is stored in the Solr index, the
full representation of the resources is retrieved from the KiWi
database.

For instance, consider a content item with the identifier C1

that describes the KiWi project and is titled “KiWi — Knowledge
in a Wiki.” In the text of the content item is a link to another
content item (C2) on IkeWiki, the predecessor of the KiWi wiki.
Furthermore, both content items are tagged with “wiki” and the
content item describing KiWi is additionally tagged “knowledge
management.” Only C1 is contained in the candidate set of the
Solr query, since it both contains “KiWi” and has been assigned
a tag. Therefore it is loaded into the main memory for further
investigation of the actual structure of the content item.

A candidate content item is dropped from the candidate set if
it does not have a link, or has a link to a content item that has no
tags.

In the third evaluation phase, the necessary relations are gener-
ated.

In the case of the example query, all tags of the candidate
content item C1 are considered and the corresponding tuples
(T1, wiki) and (T2, knowledge management) are stored in the re-
lation Rname where Ti is the identifier for the i-th tag. In addition

10.7 performance evaluation 229

to that, the structural information about the tags is stored in the
relation Rtag by adding (C1, T1) and (C1, T2). Finally, the link
reference is resolved to C2, the content item describing IkeWiki,
and the name of the tag of this content item is stored in the
appropriate relation as well. Overall, the following relations are
generated:

Rname = {(T2, wiki), (T1, wiki),
(T1, knowledge management)}

Rtag = {(C1, T1), (C1, T2), (C2, T3)}

Rlink = {(C1, L1)}

Rtarget = {(L1, C2)}

RURI = {(C1, C2)}

Next, the valid variable bindings are determined. Therefore,
the query, or rather the still unverified parts of the query, are
expressed in a way suitable for the constraint solver choco. To this
end, the relations containing the information about the resources
are connected by variables.

(C1, T1) ∈ Rtag ∧ (T1, $t) ∈ Rname ∧ (C1,L) ∈ Rlink

∧ (L,C2) ∈ Rtarget ∧ (C2, $u) ∈ RURI ∧ (C2, T2) ∈ Rtag

∧ (T2, $t) ∈ Rname

Note that the title does not occur in this formal representation
of the query, since the last evaluation phase guarantees that all
content items of the candidate set have KiWi occurring in one
of their qualifiers. The constraint solver then tries to determine
bindings for all variables which satisfy the given constraint. The
variable $t ensures that both tags of the query have the same
name, whereas $u is used to obtain the URI of the content item
that is pointed at, which will be returned as an answer to the
query.

If the constraint solver does not succeed in finding a valid
binding for the variables, the content item is dropped from the
candidate set, since it does not fulfill the constraints and therefore
does not match the query.

10.7 performance evaluation

To analyze the performance of the KWilt prototype, the evaluation
times of various queries of all three types were measured. For the
experiment, the KiWi system was executed on a virtual server
with a dual core 2.5 GHz processor and 4 GB of RAM running
Ubuntu Linux.

Since KWilt is part of the KiWi system and the two cannot be
run separately, other tasks running in KiWi such as reasoning,

230 architecture and implementation

query
phase 1 phase 2 phase 3 total time

time [ms] results time [ms] results time [ms] results [ms]

KiWi

31 14 – – – – 31
ci(title:"KWQL Examples")

5 1 – – – – 5
ci(text:KWQL title:KiWi)

6 1 – – – – 6
KiWi tag(name:$t)

42 9 – – – – 42
NOT(tag(name:$r))

463 330 – – – – 463

ci(tag(name:KWQL)child:ci(tag(Example)))

10 5 44 1 – – 54
ci(Munich link(target:ci(KiWi)))

33 4 52 4 – – 85
ci(KiWi link(target:ci(KiWi)))

60 10 206 4 – – 266
ci(link(target:ci(KiWi)))

520 339 9963 4 – – 10483

ci(tag(name:$r)text:$r)

149 9 53 9 103 9 305
ci(title:$r text:$r)

570 254 5 254 81 59 656
ci(tag(author:admin)tag(name:KWQL))

9 5 55 5 67 4 131
ci(KiWi tag(name:KiWi) link(target:ci(URI:$u tag(name:KiWi))))

11 4 164 2 188 2 363
ci(KiWi tag(name:$t)link(target:ci(URI:$u tag(name:$t))))

44 9 181 4 194 3 419
ci(tag(name:$t)link(target:ci(URI:$u tag(name:$t))))

165 9 268 4 178 3 611
ci(tag(name:$a)tag(name:$b)tag(name:$t))

163 9 225 9 177 7 565

Table 18: Evaluation times in the KiWi dataset

10.7 performance evaluation 231

the calculation of recommendations and the automatic importing
of data and other maintenance tasks influence and distort the
measurements taken. To minimize the amount of background
activity in the system, the reasoning and information retrieval
modules of KiWi were deactivated. Further, every query was
evaluated fifty times and the average was taken. While these
measures may alleviate the influence of varying background
activities in the system on query evaluation times, the results
presented in the following still should be taken as approximate
measurements. In particular, small differences of few milliseconds
should not be considered meaningful or significant.

In a first experiment, a number of queries, among them our ex-
ample query from the introduction, were evaluated on a dataset
consisting of 339 content items on the KiWi project. For all
queries, preprocessing, that is, parsing, verification and deter-
mining whether the query can be fully processed using only
phase 1, was found to take between 27 and 42 milliseconds. Table
18 further shows the processing times and number of results per
query and processing phase. The first part of the table gives the
numbers for queries that are covered by KWQLK. As the results
show, these queries can overall be evaluated fairly quickly and
the evaluation time is roughly proportional to the number of
results. The last KWQLK query, NOT(tag(name:$r)), has an eval-
uation time of nearly half a second, which, apart from the fact
that many documents match the criterion, is likely caused by the
combination of negation and a wildcard, both of which require
an evaluation that is more computationally intensive than simple
term matching.

The second group of queries displayed in the table are those
that can be evaluated using KWQLT . As the table illustrates, those
queries can be evaluated quickly, but only if the first evaluation
step has sufficiently reduced the candidate set. One underlying
assumption behind KWilt is that most queries exclusively or pre-
dominantly use value-based selection criteria, that is, selection
criteria that can be covered by the information retrieval engine in
the first phase of the evaluation. When this assumption does not
hold, the candidate set still contains a considerable amount of
content items after the first evaluation phase. As the second evalu-
ation phase is considerably slower than the first, evaluation times
in such a situation can become very high. For example, the fourth
KWQLT query in table 18 consists of a single structural selection
criterion. This means that the first evaluation phase retrieves all
content items in the system, each of which is then traversed in the
second evaluation phase. This effect is further amplified by the
fact that, as observed, Solr queries are evaluated the quicker the
fewer results they yield. Correspondingly, the evaluation times

232 architecture and implementation

query
phase 1 phase 2 phase 3 total time

time [ms] results time [ms] results time [ms] results [ms]

tag(author:Mary)

48 35 – – – – 48
semantic web

51 22 – – – – 51

tag(name:web author:Peter)

99 34 1769 34 – – 1868
ci(link(target:ci(semantic)))

644 2049 43123 0 – – 43767

ci(example title:$r text:$r)

105 38 21 38 15 1 141
ci(title:$r text:$r)

679 505 15 505 75 58 769
ci(tag(name:web)tag(author:Peter))

92 34 863 34 3246 34 4201

Table 19: Evaluation times in the RSS dataset

for all four KWQLT queries is roughly inversely proportional to
the size of the candidate set after the first evaluation phase.

Finally, the lower seven queries in the table make use of the full
power of KWQL and require all three evaluation phases. The time
taken for the third evaluation phase here is not directly related to
the size of the candidate set and ci(title:$r text:$r), the query
with the biggest candidate set after the second evaluation phase
takes the shortest amount of time for evaluation phase three.

Overall, the results of this first experiment show that KWQLT

queries can be evaluated using Solr with only little overhead
for preprocessing the query. However, Solr queries involving
wildcards are evaluated comparatively slowly. More critically, the
second evaluation phase constitutes a bottleneck in the query
evaluation process, particularly when the first phase does not
sufficiently decrease the size of the candidate set.

To investigate the effect of data size on query evaluation times,
another experiment was conducted using a dataset consisting
of 2049 content items. The dataset was created by importing a
number of RSS feeds of technology blogs into the KiWi wiki. The
resulting content items were tagged but contained no fragments,
nestings or links to other content items.

10.7 performance evaluation 233

As in the previous experiment, every query was evaluated
fifty times and the average was taken. Query preprocessing took
between 36 and 53 milliseconds, slightly more than it did using
the smaller KiWi dataset. While the difference is small and thus
potentially insignificant, it may indicate that the KiWi wiki, itself
a research prototype, overall shows slower performance as the
size of the dataset increases.

The results of this second experimental evaluation are shown in
Table 19. As in the experiment using the smaller dataset, KWQLK

queries are evaluated very quickly, and the nearly sevenfold
increase in the size of the dataset has little effect on the evaluation
times.

Processing times for KWQLT queries, the second group of
queries, on the other hand show that this processing phase be-
comes very slow as the amount of data increases. Given that in
this evaluation phase all candidate content items are traversed
one by one, the time taken increases linearly with the amount of
candidate content items. The second phase already performed
slowly when using a smaller dataset, and the increase in dataset
size only increases this problem, bringing the evaluation time
of the query ci(link(target:ci(semantic))) to prohibitively long
43.8 seconds.

The processing times in phase three change in a way that is less
easy to interpret: Some full KWQL queries such as ci(title:$r

text:$r) stay roughly constant in their per-content-item process-
ing time, while the same measure increases more than sevenfold
when the phase three processing time of the following two queries
is compared:

ci(tag(name:KWQL) tag(author:admin))

ci(tag(name:web) tag(author:Peter))

In summary, the evaluation of KWilt shows that the approach
overall is viable and delivers good results as long as the under-
lying assumption holds true, namely that most selection criteria
used in queries are value-based. As long as this is true, KWilt can
employ Solr which quickly evaluates the query, either in total or
by reducing the candidate set to a size that is manageable for the
following evaluation phases.

These, in particular the second evaluation phase, constitute
the weak point of KWilt as it is currently implemented: The
simple traversal of all candidate content items that constitutes
the second phase in the current implementation performs very
slowly. When a query does not use mainly value-based selection
criteria or when the dataset is big, the size of the candidate set is

234 architecture and implementation

not sufficiently decreased in the first evaluation phase and the
second evaluation phase can take several seconds or longer.

The third evaluation phase using choco fares better with respect
to performance and scaling and overall delivers good results
with processing times generally not exceeding 100 milliseconds.
In one case, discussed above, the third evaluation phase scales
comparatively bad at an execution time of about 3.2 seconds.

Overall, the system delivers good results, but changes to the
system are required to improve the performance of the second
evaluation phase. The following section discusses possible steps
that could be taken.

10.8 outlook

KWilt as described in this chapter is integrated in the KiWi system
and part of the current release. However, there is still room for
further improvements:

Not all features for KWQL have been fully implemented and
some constructs that are described in the language definition
(see Chapter 7.2) are missing from the current implementation.
Specifically, the features that have not been implemented so far
are:

• the OPTIONAL operator

• the binding of partially matched values to a variable using
the -> operator

• the construction of new content items

• the querying of structured tags (discussed in Chapter 12)

Fortunately, all these features are either syntactic sugar for
already supported constructs, or can be easily integrated into the
current implementation. For instance, a OPTIONAL b is equivalent
to (a ∧ b) ∨ (a ∧ ¬b), which can already be expressed in the
current implementation. However, using this equivalence to solve
the problem is inefficient, since a is evaluated twice and a more
efficient evaluation is desirable.

Since variables are already supported, the implementation of
the -> operator requires only minor adaptions to validate if a
value matches the given criteria before actually binding it to the
variable.

The implementation of content item construction contains is
straightforward, especially since the API of the KiWi system
provides various functions for the generation of new content
items.

The implementation and querying of structured tags, still miss-
ing from KiWi and KWQL, are described in Chapter 12.

10.8 outlook 235

Additionally to these features not yet implemented, due to the
way that links are currently represented in the KiWi wiki, it is
not yet possible to query the anchor text and tags of links.

Apart from features not yet implemented, several improve-
ments could be made to the current implementation:

As the performance evaluation has shown, the integration of
a more efficient evaluation approach for structural constraints
as discussed in Section 10.4.2 would be a major improvement to
KWilt.

Despite the two possibilities discussed there, namely an evalu-
ation strategy more closely tailored to the individual queries and
their keyword and structure constraints and a reimplementation
of the second evaluation phase using web querying technology,
two further changes could be employed to improve query perfor-
mance:

• Some structural properties could be represented in the in-
dex, thereby making it possible for Solr to partially take
structural constraints into account. While saving all infor-
mation about structurally connected content items in the
index representation of a content item is clearly not practica-
ble, some basic structural information could be represented.
For example, the index could indicate whether a content
item has any children or links to any other content items.
Depending on how frequently nesting and linking relations
are used in the wiki, this information could then help nar-
row down the candidate set, meaning that fewer content
items have to be processed in the second evaluation phase.

• In a more comprehensive realization of the second sugges-
tion in Section 10.4.2, queries that cannot be fully evaluated
using Solr could be handled through a translation into SQL
that treats both the second and third evaluation phases. The
relational semantics given in Section 7.3 can serve as a basis
for such a translation of KWQL into SQL. The resulting
alternative implementation of KWQL would not be based
on the principle of gradually refining the query results like
KWilt, but rather on choosing the best-suited tool before
query evaluation begins. An evaluation of the resulting sys-
tem could also show whether the use of Solr is justified,
or whether translating fully translating KWQL into SQL is
preferable.

Finally, the current prototype still evaluates some constraints in
more than one phase and it may be possible to avoid re-evaluating
certain structural constraints again in the constraint solver, for
example by providing only a summary view to the constraint
solver, rather than the detailed structural constraints.

Part IV

E X T E N S I O N S

11
P E S T: A P P R O X I M AT E Q U E RY I N G O F
G R A P H - S T R U C T U R E D D ATA

Mary wants to get an overview of software projects in her com-
pany that are written in Java and that make use of the Lucene li-
brary for full text search. According to the conventions of her com-
pany’s KiWi wiki, a brief introduction to each software project is
provided by a content item tagged with “introduction”.

Thus, Mary enters a KWQL query that retrieves content items
containing “java” and “lucene” that are also tagged with “intro-
duction”: ci(java lucene tag(introduction)) .

However, the results fall short of Mary’s expectations for two
reasons that are also apparent in the sample wiki of Figure 61:

(1) Some projects may not follow the wiki’s conventions (or
the convention might have changed over time) to use the tag
“introduction” for identifying project briefs. This may be the case
for Document 5 in Figure 61. Mary could loosen her query to
retrieve all pages containing “introduction” regardless of whether
the term appears as a tag or not. However, in this case pages
that follow the convention are not necessarily ranked higher than
other matching pages.

(2) Some projects use the rich annotation and structuring mech-
anisms of the KiWi wiki to split a wiki page into sub-sections,
as in the case of the description of KiWi in Documents 1 and 2
from Figure 61, and to link to related projects or technologies
(rather than discuss them inline), as in the case of Document 4
and 5 in Figure 61. Such projects are not included in the results
of the original query at all. Again, Mary could try to change her
query to allow keywords to occur in nested or in linked content
items, but such queries quickly become rather complex (even in
a flexible query language such as KWQL) or impossible with
the limited search facilities most wikis provide. Furthermore,
this solution suffers from the same problem mentioned above:
Documents following the wiki’s conventions are not necessarily
ranked higher than those only matched due to the relaxation of
the query.

Though we introduce these challenges in the context of the
KiWi wiki and KWQL, they appear in a wide range of applica-
tions involving (keyword) search on structured data, for example
in social networks, in ontologies, or in richly structured publica-
tion repositories. The common characteristic of these applications
is that relevant answers (e.g., a wiki page or a person in a social
network) are not fully self-contained documents as in the case

239

240 pest : approximate querying of graph-structured data

!"#$%&'%!"#$%&'()*)+

!"#$#% ,-.
!&'(% ,-/

!"#$%('%012&)$3'$3'
!014526')3'()*)+

!)*+,-,% 7-,

!"#$%)'%!8%2131'9+

!)*+,-,% 7-,

!"#$%*'%!:;8'
<5$21==)3>'?-'@4A4+

!"#$#% ,-B
!./0% ,-C

C-7D
+,-."/0#-+",

9-7D
123.#4

/-7D
123.#4

7-/D
3.#4+-2#-0.2

7-7D'
+,-."/0#-+",

!"#$%5'%
!8%2131E@4A4'*)F)+

!)*+,-,% ,-G
!"#$#% ,-C
!1-2345*+214-% ,-7

!"#$%6'%H%)I1I'J$%5'

9-/D
3.#4+-2#-0.2

!"#072,-
2,36 ?1)>6&

!"#072,-1'?)&6'2$3&4)31I'
&15K='43I'&61)5'?1)>6&=

8+,9''L'M)3F='
&$'N

L

N

:",-3+,72,-'%L'
2$3&4)3='N'O1->-'4'
=12&)$3P

-3;
<3;'Q$5'4'
I$2%K13&

L

N

Figure 61: Link and containment graph for a sample wiki

of standard web search, but obtain a big part of their relevance
by virtue of their structural relations to other pages, persons, etc.
At the same time, they are sufficiently self-contained to serve as
reasonable answers to a search query, in contrast to, e.g., elements
of an XML document.

Since data items such as wiki pages are often less self-contained
than common web documents, PageRank and similar approaches
that use the structure of the data merely for ranking of a set of
answers do not suffice: As Figure 61 illustrates, also pages that do
not contain the relevant keyword can be highly relevant answers
due to their relations with, e.g., tags that prominently feature the
keyword.

To address this challenge, not only the ranking, but also the
selection of answers needs to be influenced by the structure of
the data.

In this chapter, we generalize the idea of term propagation over
structured data: pest, short for short for term-propagation using
eigenvector computation over structural data, is a novel approach
to approximate matching over structured data. pest is based on
a unique technique for propagating term weights (as obtained
from a standard vector-space representation of the documents)
over the structure of the data using eigenvector computation.
It generalizes the principles of Google’s PageRank [71] to data
where the content of a data item is not sufficient to establish the
relevant terms for that item, but where rich structural relations
are present that allow us to use the content of related data items
to improve the set of keywords describing a data item.

In contrast to many other fuzzy matching approaches (see
Section 11.1), pest relies solely on modifying term weights in
the document index and requires no runtime query expansion,

pest: approximate querying of graph-structured data 241

but can use existing document retrieval technologies such as
Lucene. Furthermore, the modified term weights represent how
well a data item is connected to others in the structured data
and therefore one can omit a separate adjustment of the answer
ranking as in PageRank.

pest’s computation can be performed entirely at index time.
Yet, pest is able to address all the above described problems in
the context of structured data with meaningful answers such as a
wiki, a social network, etc. To illustrate how pest propagates term
weights, consider again Figure 61. As in PageRank, the “magic”
of pest lies in its matrix, called the pest propagation matrix, or
pest matrix for short. The pest matrix is computed in two steps:

(1) Weighted propagation graph: First, we extend and weight
the graph of data items (here, wiki pages and tags).

(a) For each wiki page without tags, a dummy tag without
term weights is created. (b) For each link (containment relation)
between two wiki pages A and B, a link (containment relation)
between each pair of tags from A and B is added.

These insertions are used to enable direct propagation between
tags. Therefore, we can configure how terms propagate between
tags of related pages independently from term propagation be-
tween the pages.

(c) Each edge in the resulting graph is assigned a pair of weights,
one for traversing it from source to sink and one from sink to
source.

In general, if we have multiple types of relations and data items,
this extension allows us to have strong connections between
related properties of related items, e.g., between the classes of
two highly related instances in an ontology.

The resulting graph for the sample wiki is shown in Figure 62.
We have added the tags 5.1 and 6.1 and containment edges from
tag 1.1 and 1.2 to tag 2.1, as well as link edges, e.g., from the tag
6.1 to tag 1.1, 2.1, 3.1 and 3.2. In the following, we assign edge
weights based solely on the type of the edge (link, containment,
tagging), though pest could also allow edge-specific weights.

(2) “Informed Leap”: The weighted propagation graph does
not encode any information about the differences in term dis-
tribution in the original nodes, but only information about the
structure of the wiki graph. To encode that information in the pest
matrix, we use an informed leap: First, we transpose the weighted
adjacency matrix of the weighted propagation graph and normal-
ize it. To preserve differences in absolute edge weights between
data items, we choose a normalization that is independent of the
actual edge weights and the result is a sub-stochastic rather than
stochastic matrix. Second, these remaining probabilities together
with a fixed leap parameter α (e.g., 0.3) is used for an informed
leap to an arbitrary node. The probability to leap to a node A in

242 pest : approximate querying of graph-structured data

!"#$%&'%!"#$%&'()*)+

!"#$#% ,-.
!&'(% ,-/

!"#$%('%012&)$3'$3'
!014526')3'()*)+

!)*+,-,% 7-,

!"#$%)'%!8%2131'9+

!)*+,-,% 7-,

!"#$%*'%!:;8'
<5$21==)3>'?-'@4A4+

!"#$#% ,-B
!./0% ,-C

C-7D
+,-."/0#-+",

9-7D
123.#4

/-7D
123.#4

7-/D
3.#4+-2#-0.2

7-7D'
+,-."/0#-+",

!"#$%5'%
!8%2131E@4A4'*)F)+

!)*+,-,% ,-G
!"#$#% ,-C
!1-2345*+214-% ,-7

!"#$%6'%H%)I1I'J$%5'

9-/D
3.#4+-2#-0.2

B-
7

G-7

7$(8%7$&

7$58%7$*

7$(8%7$&

7$
(8
%7
$&

7$98%7$5

7$98%7$5

7$98%7$5

7$98%7$5

7$98%7$5

7$98%7$5

7$(8%7$&

7$(8%7$&

7$(8%7$&
7$(8%7$&

7$
58
%7
$*

7$
58
%7
$*

7$
(8
%7
$&

7$
(8
%7
$&

Figure 62: Edge weights and virtual nodes and edges for the graph in
Figure 61

such an informed leap is not equal for all nodes (as in the case of
PageRank), but depends on the original term weight distribution:
A page with high term weight for term τ is more likely to be the
target of a leap than one with low term weight for τ.

The resulting matrix is called the pest matrix Pτ for term
τ. It must be computed individually for each term, but does
not depend on the query. Finally, the eigenvectors of the pest
matrix for each term τ are combined to form the vector space
representation (i.e., the document-term matrix) for the data items
(here, content items and their tags). Keyword queries can be
evaluated on this representation with any of the existing IR
engines using a vector space model (e.g., Lucene). Queries mixing
keywords and structure require an engine capable of combining
keyword matches with structural constraints such as the KWQL
engine KWilt (see Chapter 10).

It is worth emphasizing that only the second step is term-
dependent and, as shown in the experimental evaluation in
Section 11.5, the time needed for the calculation of the term-
dependent part of the evaluation is in the low seconds on a single
core for each term, even without sophisticated optimizations, and
can be computed independently for each term. Thus, pest’s index
computation scales well even for document collections containing
hundreds of thousands of relevant terms (a significant portion of
the English vocabulary).

Contributions

To summarize, pest improves on approximate search approaches
for structured data (summarized in Section 11.1) in the following
aspects:

(1) It is based on a simple, but flexible model for structured
content that captures a wide range of knowledge management
systems and (tree- or graph-shaped) structured data applications.

pest: approximate querying of graph-structured data 243

We introduce the model in Section 11.2 and discuss how it can
represent the core concepts of the KiWi wiki.

(2) The main contribution of pest is the pest matrix for prop-
agating term weights over structured data. The computation of
that matrix for a given graph of structured content is formalized
in Section 11.3.
The pest matrix allows the propagation of term weights at index
time and yields a modified vector space representation that can
be used by any IR engine based on the vector space model (e.g.,
Lucene).

(3) We prove in Section 11.3.3 that any pest matrix has 1 as
dominant eigenvalue and that the power method converges with
the corresponding eigenvector if applied to a pest matrix.

(4) Though the pest matrix is inspired by the Google Matrix
used in PageRank, pest deviates from and generalizes PageRank
significantly:

• pest uses the structure of the data not only for ranking but for
answer selection as well: pest also finds relevant answers that
do not directly contain the considered keyword at all. Thus, it
generalizes the limited form of term propagation in PageRank
(from anchor texts to linked pages) and allows flexible propa-
gation of terms between data items, based, e.g., on their type,
the type of their relation etc.

• To achieve this term propagation, pest uses an informed leap
based on term weight distribution rather than a random leap.
The employed technique is similar to that of personalized
PageRank, where the leap probability is based, e.g., on a user’s
preferences, however, with different goal and outcome. Where
personalized PageRank only computes a ranking, pest com-
putes a new vector-space representation of the data items that
integrates propagated term weights with relevance based on
the relations of a data item.

• Since the term weight distribution and thus pest’s informed
leap is in general different for each term, pest needs to consider
term propagation for each term separately. Though this in-
creases index time compared to PageRank, the term-dependent
computation is only a small part of the overall indexing time
and can be computed independently for each term .

(5) In an extensive experimental evaluation of pest on an
entire real-life wiki (Section 11.5), we compare pest with three
existing keyword search approaches: a simple tf-based ranking,
the ranking used by Wikipedia, and the ranking returned by
Google.
The experimental evaluation demonstrates

• that pest significantly improves the ranking for each of the
compared approaches over a range of keyword queries.

244 pest : approximate querying of graph-structured data

• that users generally prefer the ranking returned by pest,

• that pest achieves that improvement at the cost of an increase
in index time that is notable, but also easily offset, as it is
linear in the number of relevant terms with constants in the
low seconds and can be well parallelized.

Though Section 11.5 clearly shows that pest as discussed here
can significantly improve existing keyword search in wikis, there
are a number of open issues and further challenges to pest sum-
marized in Section 11.6.

11.1 related work

pest differs from the majority of approximate matching ap-
proaches including those reviewed in the following in several
important aspects:

(1) pest does not realize fuzzy matching by defining a struc-
tural distance function and ranking results according to how close
they are to a strict match. Instead, it uses the structure of the data
to determine which terms are relevant to a document, regardless
of whether or not they explicitly occur in it. As a consequence,
not only are new matches introduced, but strict matches may also
be re-ranked depending on the structural connections.

(2) pest is designed for graph-shaped data rather than purely
hierarchical data like the XML-based approaches discussed in the
following.

(3) pest can be used with any information retrieval engine
based on the vector space model. The only modification to the
evaluation process is the computation of the actual term weights.
Otherwise existing technology (such as Lucene or similar search
engines) can be utilized. In particular, the pest matrix is query
independent and can be computed at index time. No additional
computations such as query transformations are needed during
query evaluation.

Before we consider specific approaches, it is worth recalling
that approximate matching and ranking are closely related. Though
they do not have to be used in conjunction, this is often the case,
in particular to allow an approximate matching engine to differ-
entiate looser results from results that adhere more strictly to the
query. The full power of ranking and approximate matching is
unleashed only when they are combined—approximate matching
extends the set of results, ranking brings the results into an order
for easier consumption by the user.

While approximate matching is widely used in web search and
other IR applications, conventional query languages for (semi-
)structured data such as XQuery, SQL or SPARQL do not usually
employ approximate matching or rank results. These languages

11.1 related work 245

have been applied to probabilistic data, but this area is distinct
from approximate querying: In probabilistic data management,
the data itself introduces uncertainty, in approximate matching
uncertainty is introduced under the assumption that the user is
also interested in matches that do not quite match her query.

As the amount of structured web data increases and the seman-
tic web continues to emerge, the need for solutions that allow
for layman querying of structured data arises. As described in
this dissertation, research has been dedicated to combining web
querying and web search and introducing IR methods to query-
ing. KWQL is one such research effort, other approaches include
extensions to conventional query languages, visual tools for ex-
ploratory search, extension of web keyword search to include
(some) structure and keyword search over structured data. With
the arrival of these techniques, the need for approximate query-
ing that does not apply solely to individual terms or phrases but
that takes the data structure into account arises.

Approximate matching on data structure has been researched
mainly in the context of XML [345]. The majority of work in this
area can be divided into two main classes of approaches:

Tree edit distance: Tree edit distance [343, 100, 58] is a popular
and well-researched approach for assessing the similarity of tree-
shaped data. It is based on the concept of the edit distance for
strings [241]. Given a pair of XML trees, a set of edit operations
(typically at least node deletion and insertion) and a cost function,
the tree edit distance is the cost of the cheapest sequence of oper-
ations that transforms one tree into the other. For a given XML
tree, its best-matching XML trees are those that have the lowest
tree edit distance. Tree edit distance thus quantifies the similarity
between the documents through the number of steps and types
of operations needed to eliminate the differences between them.
XML search can be straightforwardly formulated as finding XML
documents that have a sufficiently low tree edit distance to a
query represented as a labeled tree [325].

As finding the best-matching trees through the exhaustive
computation of tree distances, itself costly, is computationally
expensive, research has been focused on developing efficient
distance algorithms [178, 374].

Amer-Yahia et al. [17, 19] present a conceptually related ap-
proach where queries in the form of tree patterns are gradually
generalized by applying different types of pattern relaxation
operations such as turning a parent-child node into an ancestor-
descendant node. To limit the amount of necessary calculations,
a procedure for the efficient generation of queries whose answers
lie above a certain threshold is introduced.

Shasha et al. [331] present an approach where the distance
between a query, represented as an unordered labeled tree, and

246 pest : approximate querying of graph-structured data

an XML document is quantified by counting the number of root-
to-leaf paths in the query that do not occur in the document.

In contrast to pest, the described approaches are hard to gener-
alize to graph data. Both pattern relaxation and tree edit distance
require expensive calculations at query time, either a loop to
relax the query and the evaluation of a (often quite considerable)
number of relaxed queries, or, a high number of distance calcula-
tions. pest’s computation on the other hand can be performed
entirely at index time. Further, it is not obvious how different
edge types, as easily treated by pest, affect tree edit distance
and pattern relaxation. Additionally, both procedures make the
assumption that the query can be represented as a single tree. It
is unclear how vagueness and advanced query language features
like disjunction and negation can be efficiently integrated into
the approaches. This is in contrast to pest which is independent
of the query formalism being used.

Adapting the vector space model: Another class of approaches
aims, like pest, to adapt the vector space model, a well-established
IR technique, to the application on XML data. In the vector space
model, documents and queries are represented as vectors consist-
ing of a weight for each term. Their similarity is then computed
using for example the cosine angle between the two vectors. Dif-
ferent schemes can be used for calculating the term weights, the
most popular one being tf-idf.

Pokorný [306] represent individual XML documents in a matrix
instead of a vector, indicating the term weight for each combina-
tion of term and path. A query, also expressed as an XML tree,
is transformed into a matrix of the same form. The score of a
query with respect to a possible result is then calculated as the
correlation between the two matrices. In an extension, the matrix
is adapted to also reflect the relationship between paths.

In Carmel et al.’s work [85], document vectors are modified
such that their elements are not weights for terms but rather
weights for term and context pairs—the contexts of a term are the
paths within which it occurs. The vector then consists of a weight
for each combination of term and context. Queries, represented as
XML fragments, are transformed into query vectors of the same
form. Further, the similarity measure is modified by computing
context similarities between term occurrences in the query and
data. These are then integrated in the vector similarity measure.

Schlieder and Meuss [326] calculate adapted term frequency
and inverse document frequency scores replacing textual terms
by so-called structured terms, that is, all possible XML subtrees in
a dataset. Each structured term can then be described by a vector
of tf-idf scores. In contrast, query vector weights are defined by
the user. The vector space model is applied to compare subtree
and query vectors.

11.1 related work 247

Activation propagation is used in Anh and Moffat [24] for
approximate matching over XML structure. Here, a modified
version of the vector space model is used to calculate similarity
scores between query terms and textual nodes in the data. The
calculation of term weights takes into account the structural
context of a term as well as its frequency. In a second step, these
scores are propagated up in the tree. Finally, the nodes with the
highest activation are selected, filtering out some results which
are considered to be unsuitable such as the descendants of results
that have already been selected. This approach resembles ours
in that activation propagation and the vector space are used
to realize approximate matching over structure. However, here,
propagation happens upon query evaluation and is unidirectional.
Like the other approaches in this class, it is also limited to tree-
shaped data.

pest and PageRank: Where the above approaches for approxi-
mate (keyword) search and querying on XML data are similar in
aim, PageRank is closely related to pest in technique, but differs
considerably in aim and scope. The original PageRank article [71]
suggests to exploit anchor-tags for web search. The anchor text
of a link to a web page is treated as if it is part of the text of
that web page. This suggestion can be seen as a special case of
the approach suggested in this paper where the only kind of
propagation is that from anchor tags to linked pages and where
link weights are ignored. The application of this approach is
limited to anchor tags and does not apply to general graphs or
generalize to different link types. However, there are a number of
extensions [52] of the original PageRank that share more of the
characteristics of pest.

PageRank is based on the intuition that a link from one web-
page to another can be seen as an endorsement of the linked page.
A page then is important if many important pages link to it, even
more so if the number of pages linked to by these important pages
is low. This idea is implemented by transforming the link graph
into a transition matrix which is augmented by a random leap
component that ensures that the probability to transition from
any state to any other state is nonzero. The contribution of the
random leap factor relative to the transition values is determined
by the factor α. As a consequence of introducing the random
leap and setting α to a non-zero value, the normalized matrix
is stochastic and strictly positive and the principal eigenvector
(called PageRank vector) for eigenvalue 1 exists and is unique.
In standard PageRank, the random leap factor operates using a
uniform distribution, that is, the likelihood to transition to a state
is identical for all states. For a set of N pages, the corresponding
leap or teleportation vector can be seen to consist of N entries
with value 1

N . Brin and Page [71] point out the possibility to real-

248 pest : approximate querying of graph-structured data

ize a personalized version of PageRank by using a non-uniform
leap vector.

Several schemes for improving the scalability of personalized
PageRank have been presented in recent years [203, 209, 188, 312].
They are discussed in this section as well as in Section 11.5.4.

Topic-sensitive PageRank [188] builds on the idea of a per-
sonalized teleportation vector by introducing a number of topic-
specific leap vectors, each assigning a uniform value to all pages
relevant to the respective topic and 0 otherwise. The topic-depen-
dent importance scores for each page are calculated offline. At
query time, a weighted classification of the query into topics is
computed. A query-specific PageRank can then be calculated as
a mixture of topic-specific scores. The motivation behind topic-
sensitive PageRank is to avoid generally important pages getting
highly ranked despite not containing information relevant to the
query.

Query-dependent PageRank [312] is another extension of Page-
Rank which is based on the idea that webpages matching a query
that are connected to other matching webpages should be ranked
higher. The PageRank algorithm is adapted in such a way that
the probability of a transition from one webpage to another is
determined by how relevant the target webpage is to the query.
Towards this end, both the distribution underlying the leap vector
as well as the mode of calculating transition probabilities are
adjusted. In both cases, the probability to transition to a webpage
is given as the proportion between that webpage’s relevance
score and the sum of all matching pages’ relevance scores. When
a webpage has no non-zero out-links, the leap vector is used to
jump to another webpage. The transition matrix is not strictly
positive and nodes which do not contain the relevant term are
ignored. The PageRank vector is calculated for each term at index
time, the scores for each term in the query are combined upon
query evaluation.

pest differs from the approaches described in various ways. In
contrast to PageRank (but similar to topic-sensitive and query-
dependent PageRank), several matrices and eigenvectors are cal-
culated, namely one per term, each using a term-dependent leap
vector. In contrast to topic-sensitive PageRank as well as Page-
Rank, the leap vectors do not use a uniform distribution.

Most importantly, pest differs from all three approaches de-
scribed in the following ways:

• None of the approaches implement approximate matching
over structured data or generally add additional relevant
results; they are purely approaches to ranking sets of web-
pages.

11.1 related work 249

• The assignment of edge weights in pest is more flexible in
that they can be set explicitly and individually or different
weights can be chosen depending on the type of the edge.
In contrast, in PageRank and topic-sensitive PageRank edge
weights are uniform and in query-dependent PageRank,
edge weights are derived from keyword matches.

• While pest can be used on webpages with linking as the
only relation between pages, its versatile and extensible
data model allows for the application to many other types
of graph-shaped data such as a fine-grained modeling of
structured web data.

• In pest, the probability of a leap is variable depending
on the number and weight of outgoing edges of a node,
thus encoding the intuition that a user jumps to a new
page when he cannot find what he is looking for by fol-
lowing links. The leap distribution is the combination of a
uniform distribution (as in PageRank and topic-sensitive
PageRank) but takes term distributions into account (as in
query-dependent PageRank).

pest can be seen as a generalization of PageRank and topic-
sensitive PageRank: The results of classic PageRank can be re-
produced by choosing edge weights in such a way that they are
all identical after normalization and using only the random leap
component of the leap vector.

The behavior of topic-sensitive PageRank can be achieved by
clustering all words belonging to a topic together, setting the
edge weights as described above, and using only the informed
leap component of the leap vector.

Query-dependent PageRank cannot directly be emulated by
pest as pest relies on a strictly positive matrix and does not
ignore nodes that do not (yet) contain the respective term. Further,
different edge types corresponding to the different possible edge
weights would have to be introduced.

ObjectRank [200] is a system for authority-based ranking for key-
word search in databases that, like pest, uses PageRank to exploit
the connections between data items for propagating authority
with respect to a keyword across a data graph. Given a database
modeled as a labeled graph and a schema graph that assigns bidi-
rectional authority transfer rates to the different types of edges,
an Authority Transfer Data Graph is derived. The weight of a node
with respect to a given keyword is then established by a modified
version of PageRank where a random surfer walks across the
graph either traversing edges or jumping to any of the nodes that
literally contain the keyword. The probability for following any
outgoing edge or jumping to one of the keyword nodes is steered
by the damping factor d: The probability to follow an edge is

250 pest : approximate querying of graph-structured data

given as the product of d and the authority transfer rate of the
edge, while the probability to randomly jump to one of the nodes
containing the keyword is (1− d).

While ObjectRank shares some characteristics with pest, it
differs in several significant ways and has a number of drawbacks:

• ObjectRank uses a binary measure to represent literal key-
word containment and randomly decides which of the
nodes containing the keyword to jump to. Differences in
the frequency of the keyword between documents are ig-
nored and do not factor into the ranking. However, term
frequencies are an important factor for ranking, particularly
in text-heavy areas of application where it is of high rel-
evance whether a term only occurs once or is frequently
used.

• There are no jumps to nodes that do not contain the key-
word and those nodes can only be reached through an
edge traversal. Therefore, ObjectRank cannot be applied
to graphs that are not strongly connected. While this may
be of less concern in the area of databases, this constraint
severely limits the possibility of applying ObjectRank to
other types of graph-shaped data such as web or wiki pages
which are frequently not strongly connected.

• Unlike pest, ObjectRank is not a simple modification of
term frequency distributions. As such, it cannot be directly
used with standard information retrieval engines and easily
used in conjunction with the vector space model.

• Queries are limited to simple keywords combined using
disjunction and conjunction and it remains unclear whether
ObjectRank could be combined with more powerful query
languages.

• The probability to make a leap is steered only by the
damping factor d and thus remains constant regardless
of whether there is a promising edge that could be followed
or not. Moreover, due to the way that authority transfer
weights are assigned and normalized, the probability of all
possible events may not add up to 1, which is unintuitive in
terms of the random surfer model and the idea of spreading
authority.

There is a significant body of research [103, 92, 314] on ranking
entities in, e.g., entity-relationship graphs. These approaches
share with pest the aim to rank connected items by considering
not only local, but also global properties, viz. what other items
they are related to. However, they differ from pest in two main
aspects: (1) They require a new query engine with sophisticated,

11.2 a formal model for structured data 251

multi-part ranking functions, where pest computes a modified
vector space model that can be used with any existing vector-
space IR system. (2) They are tailored to ranking of entities such
as dates, prices etc. where pest is tailored to domains such as
semantic wikis or concept search in ontologies where the items
of interest are self-contained and clearly identified.

pest can be applied to any type of structured data, including
RDF ontologies. Ranking of RDF query results is discussed, e.g.,
in Elbassuoni et al. [143] and Elbassuoni et al. [144]. However,
these works differ from pest by focusing on general RDF data and
by using statistical language models with limited propagation.

11.2 a formal model for structured data

In this section we formally define a generic graph-based model of
structured content that is capable of capturing the rich knowledge
representation features of a wide range of knowledge manage-
ment applications such as wikis and social networks. We distin-
guish data items into primary (e.g., wiki pages or people in a
social network) and annotation items (e.g., tags or categories). A
content graph is defined based on a type structure T = (D,A,E)
where D is the set of types for primary data items, A the set of
types for annotation data items, and E the set of edge types.

For KiWi, D contains a single type, “content item,” A contains
the annotation types “tag,” “RDF class,” “RDF literal,” and “RDF
other.” The latter three annotation types are used to represent
RDF class, literals and all other resources. It is straightforward
to add further annotation types, but in our experiments the
above annotation types suffice. E contains two types, link (l) and
containment edges (c). This suffices to represent the primary
representation mechanisms of KiWi. E.g., a link edge from a
content item to a tag represents a tagging, a link edge between
two documents a (hypertext) link, a link edge between a content
item and an RDF class a type relation etc. We choose to omit the
RDF edge labels in this representation as distinguishing between
edges with different labels in the propagation did not show a
marked improvement and introduces considerable complexity.

Definition 2 (Content graph). For a given type structure T, a con-
tent graph is a tuple G = (V ,E, type, T ,wT) where V is the set of
vertices (or data items) in G and E ⊆ V × V × E its set of typed
edges. type : V → D ∪A assigns a type to each node. The textual
content of data items is represented by a set T of terms and a function
wt : V × T → R that assigns a weight to each node-term pair. We
assume that the term weights for each node v form a stochastic vector
(i.e.,

�
τ∈T wt(v, τ) = 1).

252 pest : approximate querying of graph-structured data

For the sample wiki from Figure 61, the six documents 1 to
6 (with type content item from D) and the tags 1.1, 1.2, 2.1, 3.1,
3.2, 4.1 (with type tag from A) form V , (1, 2, l), (6, 1, l), (6, 3, l),
(4, 3, l), (1, 1.1, l), (1, 1.2, l), . . . , (4, 4.1, l) and (1, 2, c) form the
set of all edges E, the set of all terms in the wiki form T , and
wt = {(1, “java”, 0.8), . . . , (2.1, “search”, 1), . . .}.

11.3 computing the pest matrix

Based on the above model for a knowledge management system,
we now formally define the propagation of term-weights over
structural relations represented in a content graph by means of
an eigenvector computation.

A content item’s tags are descriptive of the content of its text—
they have a close association. Similarly, the tags of a nested con-
tent item to some extent describe the parent content item since
the content item to which the tag applies is, after all, a constituent
part of the parent content item. More generally, containment and
linking in a wiki or another set of documents indicate relation-
ships between resources. We suggest to exploit these relationships
for approximate matching over data structure by using them to
propagate resource content. A resource thereby is extended by
the terms contained in other resources it is structurally related to.
Then, standard information retrieval engines based on the vector
space model can be applied to find and rank results oblivious to
the underlying structure or term-weight propagation.

To propagate term weights along structural relations, we use a
novel form of transition matrix, the pest propagation matrix. In
analogy to the random surfer of PageRank, the term-weight prop-
agation can be explained in terms of a semi-informed reader who
is navigating through the content graph looking for documents
relevant to his information need expressed by a specific term τ

(or a bag of such terms). He has been given some—incomplete—
information about which nodes in the graph are relevant to τ. He
starts from one of the nodes and reads on, following connections
to find other documents that are also relevant for his information
need (even if they do not literally contain τ). When he becomes
bored or loses confidence in finding more matches by traversing
the structure of the wiki (or knowledge management system, in
general), he jumps to another node that seems promising and
continues the process.

To encode this intuition in the pest matrix, we first consider
which connections are likely to lead to further matches by weight-
ing the edges occurring in a content graph. Let H be the trans-
posed, normalized adjacency matrix of the resulting graph. Sec-
ond, we discuss how to encode, in the leap matrix Lτ, the jump

11.3 computing the pest matrix 253

to a promising node for the given term τ (rather than to a random
node as in PageRank).

The overall pest matrix Pτ is computed as (where α is the leap
factor)

Pτ = (1−α)H + Lτ.

Each entry mi,j ∈ Pτ, that is, the probability of transitioning
from node j to node i, is thus determined primarily by two factors,
the normalized edge weights of any edge from j to i and the term
weight of τ in i.

11.3.1 Weighted Propagation Graph

To be able to control the choices the semi-informed reader makes
when following edges in the content graph, we first extend the
content graph with a number of additional edges and vertices
and, second, assign weights to all edges in that graph.

Definition 3 (Weighted propagation graph). A weighted propaga-
tion graph is a content graph extended with a function we : E → R2

for assigning weights to edges that fulfills the following conditions:

• Each primary data item carries at least one annotation from each
annotation type: For each node vd ∈ V with type(vd) ∈ D

and each annotation type ta ∈ A, there is a node va ∈ V with
type(va) ∈ A and (vd, va, t) ∈ E for some edge type e.

• For each edge between two primary data items there is a cor-
responding edge between each two annotations of the two pri-
mary data items, if they have the same type: For each vd,wd ∈
D, va,wa ∈ A with (vd,wd, t), (vd, va, ta), (wd,wa, ta) ∈ E

and type(va) = type(wa), there is an edge (va,wa, t) ∈ E.

Edge weights are given as pairs of numbers, one for traversing
the edge in its direction, one for traversing it against its direction.

In the context of KiWi, the first condition requires that each
document must be tagged by at least one tag. The second condi-
tion ensures that tags of related documents are not only related
indirectly through the connection between the documents, but
also stand in a direct structural relation.

Proposition 2. For every content graph, a weighted propagation graph
can be constructed by (1) adding an empty annotation node of type a
to each primary data item that does not carry an annotation of type
a and (2) copying any relation between two primary data items to its
same-type annotation vertices.

Consider again the sample wiki from Figure 61, the resulting
weighted propagation graph is shown in Figure 62. It contains

254 pest : approximate querying of graph-structured data

two “dummy” tags (5.1 and 6.1) as well as a number of added
edges between tags of related documents.

We call a weighted propagation graph type-weighted, if for any
two edges e1 = (v1,w1, t), e2 = (v2,w2, t) ∈ E it holds that,
if type(v1) = type(v2) and type(w1) = type(w2), then we(e1) =
we(e2). In other words, the weights of edges with the same type
and with start and end vertices of the same type respectively
must be the same in a type-weighted propagation graph. In the
following, we only consider such graphs.

Let Aw be the weighted adjacency matrix of a weighted propa-
gation graph G. Then we normalize and transpose Aw to obtain
the transition matrix H for G as follows (where outdegree(v) de-
notes the number of outgoing edges of v):

H =

�
1

outdegree(vi)
�
A

T
w

�
i,j

�

i,j

By normalizing with the number of outgoing links rather than the
total weight of the outgoing edges, edge weights are preserved
to some extent. At the same time, nodes with many outgoing
edges are still penalized. Normalization with the out-degree
proved the most effective in our experiments compared to, e.g.,
normalizing with the maximum sum of outgoing term weights
(over all nodes) or with the sum of outgoing term weights for
each node. Different choices for normalization preserve different
properties of the original matrix and, for other applications, a
different choice of normalization may be advisable.

11.3.2 Informed Leap

Given a leap factor α ∈ (0, 1], a leap from node j occurs with a
probability

P(leap|j) = α+ (1−α)(1−
�

i

Hi,j)

A leap may be random or informed. In a random leap, the prob-
ability of jumping to some other node is uniformly distributed
and calculated as lrnd(i, j) = 1

|Vd∪Vt|
for each pair of vertices (i, j).

An informed leap by contrast takes the term weights, that is,
the prior distribution of terms in the content graph, into account.
It is therefore term-dependent and given as linf

τ (i, j) = wt(i,τ)�
k wt(k,τ)

for a τ ∈ T. Thus, when the probability of following any of the
outgoing edges of a node decreases, in turn a leap becomes more
likely.

In our experiments, a combination of random and informed
leap, with heavy bias towards an informed leap, proved to give

11.3 computing the pest matrix 255

the most desirable propagation behavior. The overall leap prob-
ability is therefore distributed between that of a random leap
and that of an informed leap occurring according to the factor
ρ ∈ (0, 1], which indicates which fraction of leaps are random
leaps.

Higher values of ρ mean that, after the propagation, the term
occurrences are more evenly distributed between the nodes in
the graph, while a low value of ρ, means that a higher propor-
tion of leaps are informed and therefore leads to term weights
after propagation being focused around the nodes which already
contain the term before propagation.

Therefore, we obtain the leap matrix Lτ for term τ as

Lτ =

�
P(leap|j) ·

�
(1− ρ) · linf

τ (i, j) + ρ · lrnd(i, j)
��

i,j

11.3.3 Properties of the pest Matrix

Definition 4 (pest matrix). Let α ∈ (0, 1] be a leap factor, H be the
normalized transition matrix of a given content graph (as defined in
Section 11.3.1) and Lτ the leap matrix (as defined in Section 11.3.2) for
H and term τ with random leap factor ρ ∈ (0, 1]. Then the pest matrix
Pτ is the matrix

Pτ = (1−α)H + Lτ.

Theorem 1. The pest matrix Pτ for any content graph and term τ is
column-stochastic and strictly positive (all entries > 0).

Proof. It is easy to see that Pτ is strictly positive as both α and
ρ are > 0 and thus there is a non-zero random leap probability
from each node to each other node.

Pτ is column stochastic, as for each column j
�

i

(Pτ)i,j =
�

i

�
(1−α)Hi,j + (Lτ)i,j

�

= (1−α)
�

i

Hi,j +

��
α+ (1−α)(1−

�

l

Hl,j)
�
·

�
(1− ρ) ·

�

i

linf
τ (i, j)

��������������������������
=1

+ρ
�

i

lrnd(i, j)

����������������������������
=1

��

= (1−α)
�

i

Hi,j + (1−α)(1−
�

l

Hl,j) +α

= 1−α+α = 1

�

Corollary 1. The pest matrix Pτ has eigenvalue 1 with unique eigen-
vector pτ for each term τ.

256 pest : approximate querying of graph-structured data

1 2 1.1 1.2 2.1 4 3 4.1 3.1 3.2

1 0.1463 0.4091 0.4848 0.4848 0.1054 0.2556 0.1873 0.1873 0.2146 0.2146
2 0.1630 0.0109 0.0088 0.0088 0.3165 0.0130 0.0095 0.0095 0.0109 0.0109

1.1 0.2019 0.0109 0.0088 0.0088 0.1998 0.0130 0.0095 0.0095 0.0109 0.0109
1.2 0.2019 0.0109 0.0088 0.0088 0.1998 0.0130 0.0095 0.0095 0.0109 0.0109
2.1 0.0074 0.2054 0.1644 0.1644 0.0054 0.0130 0.0095 0.0095 0.0109 0.0109
4 0.1116 0.1637 0.1324 0.1324 0.0804 0.1949 0.1817 0.4540 0.1637 0.1637
3 0.0074 0.0109 0.0088 0.0088 0.0054 0.0908 0.0095 0.0095 0.3220 0.3220

4.1 0.0074 0.0109 0.0088 0.0088 0.0054 0.2074 0.0095 0.0095 0.0498 0.0498
3.1 0.0074 0.0109 0.0088 0.0088 0.0054 0.0130 0.2040 0.0873 0.0109 0.0109
3.2 0.0074 0.0109 0.0088 0.0088 0.0054 0.0130 0.2040 0.0873 0.0109 0.0109

Table 20: Excerpt of the pest matrix for “java” with α = 0.3 and ρ = 0.25

The resulting eigenvector pτ gives the new term-weights for τ
in the vertices of the content graph after term-weight propagation.
It can be computed, e.g., using the power method (which is
guaranteed to converge due to Theorem 1).

The vector space representation of the content graph after
term-weight propagation is the document-term matrix using the
propagation vectors pτ for each term τ as columns.

11.4 term propagation with pest: an example

Here, we present the results for the sample wiki from Figure 61.
We use a leap factor of α = 0.3 and a random leap factor of
ρ = 0.25. Using these factors, the pest matrix is computed for
each term τ ∈ {“java, �� “lucene, �� . . .}. The edge weights as shown
in Figure 62 are derived by intuition of the authors.

The resulting matrix for the term “java” is shown in Table 20,
omitting Documents 5 and 6 and their tags for space reasons.

Note that the matrix contains high probabilities for propagation
to 1 and 4 throughout thanks to the informed leap. This preserves
their higher term-weight for “java” compared to other nodes that
do not contain “java”.

Using the pest matrix, we compute for each term the resulting
pest vector pτ. Together these vectors form a new document-term
matrix representing the documents and tags in our wiki, but now
with propagated term weights, as shown in Table 21.

To verify the veracity of our approach, let us consider a number
of desirable properties an approach to approximate matching
on a structured knowledge management systems such as KiWi
should exhibit:

11.4 term propagation with pest: an example 257

RDF XML architecture introduction java lucene search

1 0.46 0.03 0.11 0.11 0.26 0.08 0.07
1.1 0.11 0.02 0.05 0.23 0.07 0.04 0.07
1.2 0.11 0.02 0.24 0.04 0.07 0.04 0.07

2 0.10 0.02 0.05 0.05 0.06 0.21 0.09
2.1 0.06 0.02 0.06 0.06 0.04 0.06 0.24

3 0.02 0.08 0.09 0.04 0.04 0.22 0.09
3.1 0.02 0.04 0.03 0.04 0.02 0.06 0.22
3.2 0.02 0.04 0.23 0.04 0.02 0.06 0.03

4 0.01 0.53 0.02 0.08 0.17 0.02 0.02
4.1 0.01 0.12 0.02 0.22 0.04 0.02 0.02

5 0.01 0.02 0.01 0.03 0.11 0.11 0.01
5.1 0.01 0.01 0.01 0.02 0.03 0.03 0.01

6 0.03 0.02 0.03 0.02 0.03 0.03 0.02
6.1 0.03 0.02 0.04 0.03 0.02 0.02 0.03

Table 21: Document-term matrix after term-weight computation

1. Documents containing a term directly (e.g., “java”) with
a significant term weight should still be ranked highly af-
ter propagation. This should hold to guarantee that direct
search results (that would have been returned without ap-
proximate matching) are retained.

Indeed Documents 1, 4, and 5, all containing “java” are
highest ranked for that term, though the tags of Document
1 come fairly close. This is desired, as Document 1 contains

“java” with high term weight and tag-document associations
are among the closest relations.

2. A search for a term τ should also yield documents not con-
taining τ but directly connected to ones containing it. Their
rank should depend on the weight of τ in the connected
document and the type (and thus propagation strength) of
the connection.

Again, just looking at the results for “java” the two tags of
Document 1 as well as the contained Document 2 receive
considerable weight for term “java.”

3. The results of a KWQL query such as ci(architecture

introduction) should also rank documents highly that do
not include these terms, but that are tagged with “architec-
ture” and “introduction.”

258 pest : approximate querying of graph-structured data

Document 1 is such a case and is indeed the next highest
ranked document for such a query after the three docu-
ments directly containing “architecture” or “introduction”
(using either boolean or cosine similarity).

This evaluation can, by design, only illustrate the effectiveness
of the proposed term-weight propagation approach for approx-
imate matching. The following section therefore describes the
results of a comprehensive evaluation of pest on a large, real-life
dataset.

11.5 validating pest: the simpsons wiki

In order to confirm that the described propagation approach per-
forms as expected, experiments computing the resulting vector
space representation after term-weight propagation were con-
ducted using a prototype implementation of pest. The source
code of the implementation and the data used are available at
http://www.pms.ifi.lmu.de/pest.

11.5.1 Experiment: Setup and Parameters

As an example we choose a real world wiki, the Simpsons Wiki
at http://simpsons.wikia.com (also used for the KWQL and
visKWQL user study described in Chapter 9), which is self-
contained, focused on a specific topic and at the same time small
enough to make it easy to judge which pages are relevant for
a certain query and to perform a large number of experiments.
At the time of this writing, it includes 10,955 pages (without
redirects, talk and special pages).

Wiki pages are first stripped of all markup. The resulting text
is normalized, stopword filtered1 and stemmed2. The resulting
wiki page collection contains 22,407 terms.

To keep the example simple and to allow for reliable human
relevance judgments, we use only one type of edge, namely
linking between pages. For computing the adjacency matrix H,
the weight of a link in outgoing direction is set to 0.2, its reverse
weight to 0.1. As parameters for computing the pest matrix, we
use a leap factor of α = 0.15 and a random leap factor of ρ = 0.25.

To judge the relative effectiveness of pest, we compare with
three ranking schemes:

• Luc: The first ranking is a basic tf-idf ranking with cosine sim-
ilarity. It is similar to the default scoring used by Lucene.3

1 http://www.ranks.nl/resources/stopwords.html
2 Using the English snowball filter http://snowball.tartarus.org/algorithms/
english/stemmer.html

3 http://lucene.apache.org/java/3_0_1/api/all/org/apache/lucene/
search/Similarity.html

http://www.pms.ifi.lmu.de/pest
http://simpsons.wikia.com
http://www.ranks.nl/resources/stopwords.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://lucene.apache.org/java/3_0_1/api/all/org/apache/lucene/search/Similarity.html
http://lucene.apache.org/java/3_0_1/api/all/org/apache/lucene/search/Similarity.html

11.5 validating pest: the simpsons wiki 259

pest Score Page title Wik Goo

1 0.1348 Bart Simpson 4 +3 1 0
2 0.0340 Homer Simpson 980 +978 36 +34
3 0.0245 Lisa Simpson 281 +278 181 +178
4 0.0183 Bart the Genius 2 -2 4 0
5 0.0180 Marge Simpson 1321 +1316 548 +543
6 0.0148 Bart Gets an F 19 +13 3 -3
7 0.0115 Bart’s Bike 1 -6 - new
8 0.0112 Maggie Simpson 497 +489 678 +670
9 0.0105 Bart the General 11 +2 20 +11

10 0.0089 List of Bart Episodes in The Simpsons 3 -7 216 +206
11 0.0084 Bart Simpson (comic book series) 25 +14 18 +7
12 0.0081 Springfield 1669 +1657 - new
13 0.0077 Chirpy Boy and Bart Junior 5 -8 - new
14 0.0078 Bart vs. Australia 31 +17 12 -2
15 0.0074 The Bart Wants What It Wants 7 -8 30 +15
16 0.0073 Bart’s Haircut 6 -10 84 +68
17 0.0070 Milhouse Van Houten 248 +231 67 +50
18 0.0069 Charlie 8 -10 - new
19 0.0069 Bart Gets Famous 12 -7 6 -13
20 0.0069 Bart Junior 9 -11 - new

Table 22: Top-20 ranking for query “Bart” for pest, Wik, and Goo. The
first column for Wik and Goo gives the respective rank, the
second column the pest change, where “–” denotes that the
page in question is not returned as an answer at all.

Note that the idf value before propagation is used, since
after propagation every term is contained in every wiki
page (though mostly with a very low weight).

• Wik: The second ranking is based on the ranking algorithm
used in MediaWiki (and thereby on Wikipedia)4: It extends
the Luc ranking mechanism by compensating for the dif-
fering length of wiki pages by gradually decreasing the
document score with increasing document length. Further,
each page is boosted on the basis of its number of incoming
links. Finally, if the title of the wiki page contains a query
keyword, this page is boosted by a certain factor, in our
case by 3.

4 http://www.mediawiki.org/wiki/Extension:Lucene-search

http://www.mediawiki.org/wiki/Extension:Lucene-search

260 pest : approximate querying of graph-structured data

• Goo: Where possible, we also compare with the ranking
returned by a Google query restricted to the Simpsons wiki.

11.5.2 Comparison with other Ranking Methods

In the following, we use two queries for comparing the ranking
produced by pest with those discussed above: First, we look at
single word queries, viz. “Bart”. Second the query “Moe beer”
is used to illustrate the effect of pest in the presence of queries
consisting of multiple keywords.

Table 22 shows the top 20 answers for the single keyword
query “Bart” using pest with MediaWiki-style term weights (Wik
ranking). In the last two columns, we compare that ranking with
the ranking returned by MediaWiki without pest and with the
ranking returned by Google (Goo ranking, with search restricted
to the domain simpsons.wikia.com).

Both the unmodified Wik and Goo ranking do not return any of
Bart’s family members (Homer, Lisa, Marge), Bart’s hometown,
or Bart’s best friend as highly relevant for the query “Bart.” This
is clearly due to the fact that these pages contain the term “Bart”
infrequently. In contrast, pest returns all of these pages for highly
related characters or locations among the top 20 matches for the
query “Bart”. The significant difference also to the Goo ranking
shows that PageRank alone cannot account for the improvements
demonstrated by pest.

This effect is particularly noticeable for “Marge” and “Spring-
field,” which occur at a rank below 1000 for Wik and either do
not occur at all in the Goo ranking or at a rank below 500.

Applying pest to a basic tf-idf ranking such as Luc yields even
greater improvements as shown in Table 23, where we com-
pare the ranking of the top 20 pages using pest with Luc term
weights to Luc ranking without pest. The “Bart Simpson” page
gets pushed from position 325 to pole position and Bart’s direct
relatives to the positions following shortly behind. This demon-
strates that the pest algorithm is capable of achieving significant
improvements if applied to a range of existing ranking schemes.

For the multi-term query “Moe beer”, the application of pest
also significantly improves the ranking as shown in Table 24.
Here, we start with the Wik ranking. For example, Homer Simpson,
a frequent visitor of Moe’s Tavern (rank 4) and big consumer
of duff beer (rank 3), is ranked second compared to rank 122

without pest.
In addition to the top 20 ranking, we also considered the top

100 answers for each of the above rankings for “Bart”. The results
of this comparison are summarized in Table 25:

The number of relevant pages (manually evaluated) that are
introduced by pest into the top 100 answers is significant. At the

11.5 validating pest: the simpsons wiki 261

pest rank Page title Luc rank pest change

1 Bart Simpson 325 +324
2 Homer Simpson 1667 +1665
3 List of Bart Episodes ... 1 -2
4 Lisa Simpson 1085 +1081
5 Bart’s Bike 2 -3
6 Marge Simpson 1773 +1767
7 Bart Junior 3 -4
8 Bart the Mother/Quotes 4 -4
9 Ticket Bouncer 5 -4
10 Chirpy Boy and Bart Junior 6 -4
11 Spree for All 7 -4
12 Charlie 8 -4
13 Congressman 3 9 -4
14 Bart the Genius 84 +70
15 Bart Goes to the Movies 10 -5
16 Bike Track 12 -4
17 Maggie Simpson 1237 +1220
18 Bart Cops Out 11 -7
19 Bart Junior (frog) 17 -2
20 Bart Jumps/Credits 14 -6

Table 23: Top-20 ranking for query “Bart” for pest and Luc

same time, most of the pages that are dropped from the top 100

are irrelevant and at worst a relevant page is dropped by about
50 ranks. Nearly no irrelevant pages are introduced.

All previous top 100 pages are still included in the first 140
results in the pest ranking and the highest position not included
in the new top 100 is the former position 65. Thus, only few
relevant pages are discarded.

11.5.3 User Study

To determine whether users consider the application of pest to
improve search results, a user study involving a forced decision
task was carried out. We chose to compare search results obtained
using the Wik ranking with pest to those of a simple Wik ranking
without the application of pest to specifically evaluate the effect of
pest when used together with a state-of-the-art ranking technique.

262 pest : approximate querying of graph-structured data

pest rank Page title Wik rank & pest change

1 Moe Szyslak 1 0
2 Homer Simpson 122 +120
3 Duff Beer 4 +1
4 Moe’s Tavern 2 -2
5 Flaming Moe’s 3 -2
6 Fudd Beer 5 -1
7 Duff Beer Advertiser 9 +2
8 Bart Simpson 365 +357
9 Homer vs. the Eighteenth Amendment 15 +6
10 It Was a Very Good Beer 14 +4
11 Marge Simpson - new
12 Lisa Simpson - new
13 Billy beer 18 +5
14 The Seven-Beer Snitch 36 +22
15 Barney Gumble 29 +14
16 Eeny Teeny Maya Moe 6 -10
17 Springfield 382 +365
18 Moe Baby Blues 7 -11
19 Homer the Moe 8 -11
20 Duff Beer Krusty Burger Buzz . . . 25 +5

Table 24: Top-20 ranking for query “Moe beer”

experimental setup Both types of result rankings, Wik with
and without pest, were generated for twenty single-keyword
queries consisting of names of Simpsons characters (for example
“Bart,” pictured in table 23 and “Milhouse”), locations in the
Simpsons universe (such as “tavern” and “brewery”) and other
concepts relevant to the TV-show (for example “skateboarding”).
The titles of the top 20 matching wiki pages for each query were
then placed in individual files which did not contain the name of
the ranking used, but only randomized ranking identifiers. These
files were then presented to eleven participants, all of which
had at least basic knowledge of the Simpsons, together with the
corresponding queries. The participants were asked to indicate
for each query which list of search results they preferred. Though
the result rankings only gave the titles of the matching wiki pages,
participants were encouraged to look up more information about
the individual results if they felt they could not make a clear
decision based on the titles alone.

11.5 validating pest: the simpsons wiki 263

“Bart”
Wik rank Luc rank

Relevant 17 17
Irrelevant 4 2

Table 25: (Ir-)relevant pages added by pest compared to Wik and Luc

0!%

25!%

50!%

75!%

100!%

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19

Figure 63: Percentage of participants who preferred a pest-enhanced
Wik ranking over a simple Wik ranking, per query

results and discussion Across all queries and users, the
pest-enhanced ranking was preferred 67.23 percent of the time. A
chart showing for each query what percentage of users preferred
the pest-enhanced results is given in Figure 63. Overall, partici-
pants liked the regular Wik ranking better for four of the queries,
but only by a slight margin of about 5%. Two other queries
prompted an equally divided reaction, their pest-enhanced re-
sults were preferred by about 5%. The pest-enhanced results of
fourteen queries were more clearly preferred with scores between
63 and 100 percent.

While the results computed using pest were not considered
to be more relevant for all of the twenty queries by the majority,
participants showed a palpable preference for the pest-enhanced
rankings for fourteen queries. Further, the regular Wik ranking
results were not unequivocally judged to be better for any of the
queries, while on the other hand six of the results using pest
were preferred by more than 75% of participants with the result
for one query even reaching a perfect score of 100 percent.

Figure 64 shows the results broken down into groups of partic-
ipants formed based on how often they indicated a preference
for the pest-enhanced query results. 82% of users overall prefer
the results generated using pest, more than half of them do so
for 75% or more of the queries.

The finding that the percentage of users who overall strongly
prefer the pest-enhanced ranking is higher than that of the
queries that received similarly high scores suggests that pest

264 pest : approximate querying of graph-structured data

45!%

36!%

18!%

Wik Ranking preferred PEST preferred
PEST strongly preffered

Figure 64: Percentage of participants who preferred the pest-enhanced
ranking for less than half of the queries (“Wik Ranking pre-
ferred”), 50-70% of the queries (“pest preferred”), and 75%
and more of the queries (“pest strongly preferred”)

is to some extent divisive in that its effects are perceived as very
positive by a large amount of users, while a small group of users
mostly prefers the unchanged Wik ranking.

Overall, the results of this study indicate that users considers
pest to substantially improve the quality of result rankings.

11.5.4 Performance Evaluation

The comparative evaluation of the quality of the rankings with
and without pest shows the significant improvements pest can
contribute to keyword search. But what about the cost?

To quantify the performance of pest, we run a large number
of keyword queries on a Intel Core 2 Duo E8400 with 8GB Ram
running Sun Java 6 on a 32-bit installation of Ubuntu 9.10. The
structure of the data as well as the terms are stored in a MySQL
database. The algorithm is not parallelized and runs entirely on
a single core. As a dataset, the Simpsons wiki with 10,955 pages
and 22,407 terms is used, as discussed above. We do not use any
partitioning or segmentation techniques, but hold all matrices in
memory at once, using about 2 GB of main memory.

Once the modified vector space index computed by pest is cre-
ated, the query evaluation time depends only on the information
retrieval engine used. Therefore, we focus here on the time pest
spends for indexing a given structured dataset.

Unsurprisingly, the indexing time for pest scales like that of
PageRank in the number of pages, i.e., linearly, as shown in
Figure 66.

Figure 65 shows the percentages of each of the steps needed
for indexing a single term with pest: The term independent
part, i.e., the initialization and normalization of the transposed,
normalized adjacency matrix H for the underlying weighted

11.5 validating pest: the simpsons wiki 265

6!%

9!%

7!%

12!%
2!%

64!%

Initialize adjacency matrix
Normalize adjacency matrix
Clone adjacency matrix
Compute term weights
Compute PEST matrix
Compute eigenvector

Figure 65: Indexing a single term

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000

To
ta

l C
om

pu
ta

tio
n

tim
e

[s
]

Number of pages

Figure 66: Indexing time over dataset size

propagation graph, takes on average 16 s, about two thirds of the
processing time of a single term. When several terms are indexed
at once, this part needs to be executed once only. For each term,
we need to create a copy of H, compute the term weights (here
using Wikipedia-style term weights), combine the copied matrix
H with the resulting leap matrix and compute the eigenvector of
the resulting pest matrix. Overall, this part takes on average 8 s

and thus about one third of the processing time of a single term.
It is worth emphasizing this result: Only about 8 s are needed

to process each term. Furthermore, we can compute the pest
matrix for each term independently, even on different cores or

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

To
ta

l C
om

pu
ta

tio
n

tim
e

[s
]

Number of query terms

Figure 67: Indexing time over number of terms

266 pest : approximate querying of graph-structured data

 0

 5000

 10000

 15000

 20000

 25000

 0 2000 4000 6000 8000 10000

N
um

be
r o

f t
er

m
s

Number of pages

Figure 68: Number of unique terms over dataset size

computers. Figure 67 further emphasizes this result: If we increase
the number of index terms, the total computation time on a single
core increases, but only linearly with small constants. Figure 68
shows that the number of unique terms in a document collection
such as the Simpsons wiki increases only fairly slowly with an
increasing number of pages once a threshold of 5000 to 10000

terms is reached. Thus even for large document collections, we
can expect a number of index terms in the range of tens of
thousands for which the pest matrix and index can be quickly
computed by a small number of CPUs, even with the fairly
unoptimized version of pest discussed here.

Initially, this calculation has to be performed only once per
term. When documents are edited, deleted or added, only the
pest vectors of the involved terms need to be re-calculated.

The scalability challenge that pest faces is also less severe
than that of personalized PageRank discussed in Section 11.1 as
an individual PageRank has to be computed not per user but
per term: The number of terms in a document collection is not
directly proportional to the number of documents; instead, as the
number of documents grows, most newly added documents only
add few new words to the overall set of terms. This applies even
more for a set of thematically homogeneous set of documents.

Many approaches to implementing personalized PageRank in
a less computationally expensive way have been suggested [188].
They reduce the number of PageRank calculations necessary
by limiting the granularity of personalization and thereby the
number of PageRank computations needed.

Topic-sensitive PageRank, introduced in Section 11.1, offers
query-dependent personalization on the basis of manipulating
the prior probabilities of classes, that is, different topics, accord-
ing to a user’s interests. The personalization is restricted in that
it operates at the level of topics, not individual web pages, cal-
culating the score of a query as the sum of all pre-computed
topic-dependent document scores multiplied by the likelihood of
class membership.

11.6 discussion 267

Jeh and Widom [203] present an approach where personalized
PageRank vectors are approximated as a linear combination of
a number of partial vectors, so-called basis vectors representing
certain highly-ranked web pages, pre-computed using a scalable
dynamic programming approach. This method limits personal-
ization through the choice of basis vectors—the surfer can only
teleport to pages represented in the basis vectors.

BlockRank [209] combines individual web pages by their host
or block, computing local PageRank vectors on a per host basis
and weighting them by the overall importance of the host. Per-
sonalization here is realized at the granularity of blocks meaning
that a user can only express his preference for a host, encoded
in the weighting of local PageRank vectors, not for an individual
web page.

While none of these approaches is directly applicable to pest, it
is likely that along similar lines approximate, but faster versions
of pest can be designed. One obvious way to achieve this is a
limit on the number of terms index by pest, e.g., to only the most
prominent terms, by merging synonymous or semantically close
terms, or by merging terms with similar frequency distributions.

11.6 discussion

pest is a unique approach to approximate matching that combines
the principles of structural relevance from approaches such as
PageRank with the standard vector space model. Its particular
strength is that it runs entirely at index time and results in a
modified index representation.

In this article, we have analyzed pest’s performance on a wiki
and shown that it improves search results not only by including
new matches, but also by changing the result rankings of strict
matches.

There is a wide body of further work to refine and extend pest.
We are currently using rough estimates for α and ρ as well

as for the edge weights rather than empirically validated obser-
vations. A guide to choosing these values might be possible to
derive from studying the behavior of pest on data with varying
characteristics.

Edge values, in particular, could also be amenable to various
machine learning approaches, using, for example, average seman-
tic relatedness as a criterion, or to semi-automatic approaches
through user-feedback.

We have also considered a number of different algorithmic
approaches to term-weight propagation, e.g., where propagation
is not based on convergence but on a fixed number of propagation
steps. Techniques for spreading activation [110, 119] might be
applicable and a comparison study is called for. Furthermore, the

268 pest : approximate querying of graph-structured data

computation of the pest matrix is just one of several alternatives
for finding a stochastic propagation matrix.

There are also a number of specific areas for improving pest:
1. The model for structured data described in this paper as-

sumes that edge weights are uniform for all terms. If edge weights
are to be determined based, e.g., on the semantic similarity of a
typed edge and a term (as determined through their Google dis-
tance or distance in an ontology), also the transposed, normalized
adjacency matrix H becomes term dependent.

2. Links to external resources such as Linked Open Data or
ontologies are currently not considered in pest. Their inclusion
would allow to enrich the content graph and thereby enhance the
results of term propagation. This extension seems particularly
promising in combination with the aforementioned typed links.

3. At the moment, pest makes no distinction between terms
based on their role in the document. One simple and obvious
extension would be for example to represent the anchor text for
each link and strongly propagating the respective terms to the
linked document. This particular scheme mirrors a feature of
classic PageRank, but a wide range of further possibilities for
modifying edge or term weight based on the position of the text
in the document exists.

4. Another, wiki-specific, extension is observing how the term
scores of a document change over several revisions and taking
this into account as a factor when ranking query answers.

5. Any approximate matching approach suffers from non-
obvious explanations for returned answers: In the case of a
boolean query semantics, the answer is obvious, but when term
propagation is used, a document might be a highly-ranked query
result without as much as containing any query terms directly.
In this case, providing an explanation, for example that the docu-
ment in question is closely connected to many documents contain-
ing query terms, makes the matching process more transparent
to users. However, automatically computing good, minimal ex-
planations is far from a solved issue.

6. In pest, the term weights propagated along an edge are
normalized by the number of edges incident to the same node.
Thus, e.g., a document with many tags propagates only a rela-
tively smaller amount to its children than a document with few
tags. A model where the propagation along each type can not
drop below a given minimum might prove superior to the basic
version of pest described here.

With the increasing size of the linked open data cloud, data
providers require convenient means to sift through that data
to discover relevant concepts and published instances for link-
ing with their data. To find such concepts and instances, the
structure of the involved RDF data is crucial, and thus existing

11.6 discussion 269

search engines are insufficient. At the same time, formal (e.g.,
SPARQL) queries over ontologies require extensive training and
knowledge of the structure of the involved ontologies. Here, a
semantic version of pest would provide publishers with an easy
and familiar means to discover relevant concepts and individuals
in large-scale ontologies by taking the structure of the data into
consideration to return the most relevant matches to keyword
searches.

12
I M P L E M E N TAT I O N O F S T R U C T U R E D TA G S

Structured tags were introduced in Section 5.2.2, evaluated in a
user study described in Chapter 6, and the syntax for querying
them was presented in Chapter 7.2. This chapter describes how
structured tags could be represented in the KiWi wiki and how
queries over structured tags could be evaluated using KWilt.

Since structured tags are very flexible in their form and use, we
consider strictly matching structured tags without considering
documents that have been assigned similar structured tags to be
too rigid to yield good results (see Chapter 7.2).

For example, when a user searches for documents tagged
“munich,” documents tagged location:munich as well as those
tagged location:(munich, germany) are also likely to be rele-
vant to the query intent. Furthermore, a query for documents
tagged location:munich should also match documents with
the structured tag location:(munich, germany). Similarly, since,
the grouping operator is commutative, a query for (munich,
germany) should also return documents tagged with (germany,
munich).

This functionality cannot be easily achieved when structured
tags are represented as flat strings. Therefore, we suggest to
implement structured tags as nestings of the content items repre-
senting the constituent atomic tags. Content items can be almost
arbitrarily nested, only cycles must not occur. This approach not
only means that querying structured tags can be treated as a
special case of querying content item structure, but also that it
can be realized without changing the KiWi wiki’s conceptual
model (see Chapter 5).

However, one problem remains: While the nesting of content
items only expresses one type of relationship, child-parent, there
are two possible relationships between tags, characterization and
grouping.

This problem can be solved by augmenting nesting relation-
ships with a type, for example through RDF triples where the
URI of the parent is the subject, the URI of the child is the object
and the predicate specifies the relationship between them. This
predicate can then be used to distinguish between the two types
of structuring.

Figure 69 shows a nesting-based representation of the struc-
tured tag location:(city:munich, country:germany).

271

272 implementation of structured tags

location stcharacterization
citygrouping

country

grouping

munichcharacterization

germanycharacterization

Figure 69: Nesting-based representation of the structured tag
location:(city:munich, country:germany)

Note that “st” is an additionally introduced complex tag that
corresponds to the grouping of the two tags city:munich and
country:germany.

This solution has the additional advantage that it can be used to
type all nesting relationships in the wiki, thereby making nesting
more expressive and aligning the functionalities of linking and
nesting.

Using this representation, the constituent atomic tags remain
separate and can be efficiently queried. For instance, a query for
tags named “munich” will return all documents that have been
assigned the tag from Figure 69 since the atomic tag “munich” is
part of it. Likewise, the query tag(name:’city:munich’) will also
return documents tagged with the tag from Figure 69 since “city”
matches on one part of the tag and there is a relationship between
the tags “city” and “munich” with the type “characterization.”

In order to enable an efficient evaluation of structured tags with
Solr, one possibility is to save a linearization of the structured
tag in the Solr index: Each atomic tag which contributes to the
structured tag is added to a designated field. Thereby, it can be
guaranteed that all atomic tags occurring in a structured tags are
present. Similar to the structure of content items, the structure of
atomic tags then needs to be validated in the second step of the
evaluation.

By using the proposed representation for structured tags and
adding support for querying RDF to KWQL (see Chapter 13)
the querying of structured tags can be realized in KWQL. In
the interest of user-friendliness, queries over structured tags as
written here and described in Chapter 7.2 could then be treated
merely as syntactic sugar and translated into queries over content
item nestings upon evaluation.

However, the query tag(name:(location:munich)) would not
yield the desired results. Though “location” would match the tag,
there is no direct edge with type “naming” to the tag “munich.”
Assuming an RDF representation, this query cannot be expressed
by means of a SPARQL query either, since SPARQL does not
support a descendant axis which is needed to express queries of
incompletely specified structured tags in RDF.

implementation of structured tags 273

Instead, an RDF query language that can express navigational
constraints on RDF graphs, like RPL [376] (see also Chapter 13) or
nSPARQL [304] could be employed. Since the KWQL evaluation
engine (see Chapter 10) is designed for an easy integration of
different tools, adding support of one of these languages to the
current implementation could be easily realized.

The subsumption approach described here and in Chapter 7.2 is
a first step towards approximate matching of structured tags that,
as shown by the example, also has its limitations. A a more user-
friendly alternative to integrating an RDF path language would
be to devise an approximate matching scheme for structured
tags.

The operations for grouping and characterization and conse-
quently the tag structure do not have a pre-defined semantics.
The principle of structured tags is to introduce some structure
into combinations of atomic tags which remain the focus of the
approach and whose meaning is less freely interpretable. This is
in contrast to logic-based knowledge representation formalisms
where the structure carries the semantics while the signifiers do
not and may be arbitrarily chosen. Consequently, a unification-
based approach is unlikely to match all relevant tags, and the
use of a similarity measure or similarity matching scheme for
structured tags that takes the constituent atomic tags as well as
tag structure into account appears more promising.

The problem of establishing the similarity of structured tags
is related to that of approximate matching over structured data.
While pest (Chapter 11) or the other approaches to approximate
matching over structure presented in Section 11.1 may not be
directly applicable to this problem, these approaches could likely
form the basis of a scheme for similarity-based matching for
structured tags.

13
Q U E RY I N G R D F W I T H K W Q L

One issue that has not been addressed so far is that of querying
RDF with KWQL. While RDF is an important component of the
semantic web and sometimes is even seen as being synonymous
to it, it is less easy to use than informal annotation and structuring
mechanisms and may therefore dissuade beginning users from
using the wiki. So, while the KiWi wiki supports RDF annotations
and can import ontologies, these features are not immediately
visible in the interface and it is part of KiWi’s philosophy not to
expose beginning users to RDF. As such, one could argue that
being able to query RDF is not of crucial importance to KWQL,
especially since SPARQL has emerged as the de facto standard
RDF query language and can be assumed to be known by most
KiWi users who want to query RDF data.

However, there are two reasons why the integration of RDF
querying in KWQL is desirable and warrants attention: First,
while dealing with complex RDF graphs may indeed overburden
many users, simple RDF triples are intuitive and easy to under-
stand. In particular, the KiWi interface provides a mechanism for
adding basic RDF annotations in the form of triples where the
URI of the content item being annotated is the subject of the triple
and predicate and object are provided by the user. This form of
RDF annotation makes it possible to use RDF without knowing
much about the formalism and especially without knowing any
dedicated RDF query languages. KWQL should therefore allow
users to query at least these simple RDF annotations that they
and others have created.

Secondly, even users who have experience with RDF and who
know SPARQL can profit from RDF querying capabilities in
KWQL since RDF query languages cannot be used for combined
queries over content, metadata, structure, and annotations and as
such do not offer the same functionality as KWQL.

The following sections present and discuss three ways in which
KWQL could be extended to querying RDF data, namely the
integration of SPARQL, the introduction of a rdf resource and
the integration of RPL (RDF Path Language).

13.1 sparql queries in kwql

One obvious way to enhance KWQL with support for querying
RDF data is to allow the embedding of SPARQL queries into
KWQL queries. This has the advantage that SPARQL is the most

275

276 querying rdf with kwql

prevalent RDF query language, meaning that it is well-supported,
that a mature implementation exists and that many KWQL users
who are familiar with RDF likely already know SPARQL.

Two aspects have to be treated when SPARQL queries are
embedded in KWQL queries, namely what is returned by the
SPARQL query and how the results of the SPARQL and the
KWQL query are related. KWQL queries can return either vari-
able bindings or content items, while SPARQL queries return
variable bindings, RDF graphs or boolean values. The most ba-
sic mode of integration here is to treat all SPARQL queries like
SPARQL ASK queries, meaning that they return “true” when there
is at least one answer to the query and “false” otherwise. SPARQL
queries then act as global boolean selection conditions that con-
strain the evaluation of the KWQL query they are contained in.
For example, the following query can be interpreted as “Select
all content items that represent a user, but only if there is at least
one person who knows another person.”

ci(tag(name:user) SPARQL:(SELECT ?name WHERE { ?person
foaf:knows ?name .})

As this example shows, while there certainly are cases where
queries of this type are needed, the expressive power and use of
such a weak integration is limited: SPARQL results can only be
used to determine whether or not the KWQL query should be
evaluated and there is no connection between the content items
returned and the data selected by the SPARQL query.

When we allow variable bindings to be shared between the
KWQL and SPARQL queries, we can achieve a stronger inte-
gration between the languages that alleviates those problems.
Assuming that a person’s name functions as a unique identifier,
the following query selects the content items representing the
users that Mary knows. The variable $name (or ?name) here is
shared between the KWQL and SPARQL queries by virtue of the
SPARQL query returning the variable and the KWQL part of the
query using a variable with the same name1.

ci(title:$name tag(name:user) SPARQL:(SELECT ?name WHERE
{ ?x foaf:name "Mary" . ?x foaf:knows/foaf:name
?name .})

Analogously, the query below selects the user pages of every
KiWi user that Mary does not know.

1 For reasons of readability, this and the following query use SPARQL Property
Paths [330] which are not yet an official part of SPARQL. Equivalent queries
can be expressed using the current official version of SPARQL.

13.2 adding a resource for rdf to kwql 277

ci(title:$name tag(name:user) NOT SPARQL:(SELECT ?name
WHERE { ?x foaf:name "Mary" . ?x
foaf:knows/foaf:name ?name .})

Using variable sharing, the simple triple annotations described
above can be queried. For example, the following query selects
all content items of type “image.”

ci(URI:$uri) SPARQL:(SELECT ?uri WHERE { ?uri <kiwi:type>
<kiwi:image> .})

Both types of embedded SPARQL queries, boolean queries
and queries that share variables with the KWQL query can be
easily evaluated: For a boolean SPARQL query, that is, one where
no returned variables also occur in the outer KWQL query, it is
sufficient to evaluate the SPARQL query and, if it has at least
one answer, to consequently return the answers to the KWQL
query. When the queries share variables, both queries are evalu-
ated using their respective engines and the results of the KWQL
query are then filtered by removing the content items whose
variable bindings are not contained in the intersection, or, when
the SPARQL query is negated, the complement of the two sets
of variable bindings. This evaluation strategy can also be used
when there are several shared variables, when a shared variable
is used several times in the KWQL part of the query or when
variable bindings are used in the head of a KWQL rule.

Note it is assumed here that there is only one embedded
SPARQL query per KWQL query, or rather, per disjunct in the
disjunctive normal form of the query (see Section 10.4.3) and that
embedded SPARQL queries are always connected to the KWQL
query via conjunction; it is not clear how embeddings that do not
satisfy these constraints should be interpreted.

While embedded SPARQL queries as discussed here add to
KWQL’s functionality and are easy to interpret and evaluate,
they likely would only be usable by advanced users of KiWi and
KWQL, especially when queries become more complex than the
comparatively simple examples given here. Further, the integra-
tion of the two languages is based purely on sharing variables
and thus is relatively weak, and SPARQL’s design and syntax
are very different from that of KWQL. The following section
therefore presents a more KWQL-like way of querying RDF data.

13.2 adding a resource for rdf to kwql

To obtain a mode of querying RDF that is consistent with the
existing syntax of KWQL, an rdf resource with the qualifiers
predicate and object could be introduced. In terms of the ad-
missible resource nestings (see Section 7.2.1), this resource is

278 querying rdf with kwql

equivalent to the tag resource, meaning that it can serve as a
sub-resource of content items, fragments and links but that it can
neither contain a tag resource nor be contained in one.

Using this resource and its qualifiers, simple RDF annotations
where the resource is the subject and the predicate and object, or,
in the case of typed links, only the predicate, are given by the
users, can be queried. For example, the final query given in the
previous section can be expressed as the following query:

ci(rdf(predicate:’kiwi:type’ object:’kiwi:image’))

When the rdf sub-resource is used within a resource of type
link, the link’s target qualifier and the object of the rdf resource
refer to the same content item, the link target, which may be
confusing for users.

The query below selects all content items describing projects
that contain a link of type “influenced” to the content item de-
scribing KiWi, that is, all content items representing projects that
have influenced the KiWi project.

ci(tag(name:project)
link(rdf(predicate:<kiwi:influenced>)
target:ci(title:KiWi tag(name:project))))

Resource terms of type rdf can be used like any other resource
terms in KWQL, meaning for example that they can be under-
specified, can contain variables, and can be used with disjunction,
conjunction, negation and the OPTIONAL operator.

KWilt (see Chapter 10) can easily be extended to cover the
addition of the querying of RDF data and the rdf resource by
indexing the RDF triples in Lucene and retrieving content items
together with their RDF annotations in the second and third
phases of the evaluation. Since the RDF triples are indexed in
Lucene, RDF data is not only queried when the rdf resource is
used explicitly, but is also used for keyword-only queries. Then,
for example, the query image returns not only content items where
the term occurs, but also content items that contain images. This
means that the quality of search results is improved even for
participants who are not aware of the RDF annotations.

Further advantages of the integration of RDF querying through
the addition of the rdf resource are that it is easy to use, fits in
well with the rest of KWQL in syntax and in spirit, and can make
use of KWQL’s features. Further, since the subject in the triples
is always a KWQL resource, the RDF annotations queried are
tightly coupled with the retrieved content items.

On the down side, this method is not suitable for querying
arbitrary triples and so only a subset of the RDF data in the KiWi

13.3 rpl queries in kwql 279

wiki can be queried using this method, meaning that the addition
is not sufficient for users who want to pose complex RDF queries.

Note also that global queries over the RDF graph as discussed
in the last section cannot easily be realized: While the syntax
presented here could be extended to cover the specification of
complete triples, KWQL’s support for underspecified queries
makes it impossible to distinguish between an rdf sub-resource
that specifies a content item annotation triple and one that is
global but omits the subject. Further, global RDF queries cannot
be evaluated with KWilt, meaning that a dedicated engine for
evaluating global RDF queries that handles underspecification in
the same manner as KWilt would be needed.

13.3 rpl queries in kwql

RPL (RDF Path Language) [376] is a path language for RDF
graphs that can traverse paths of unknown length and that
aims at being expressive but user-friendly. As such, RPL is an-
other promising candidate for realizing RDF querying in KWQL
through embedded queries.

RPL queries consist of descriptions of paths and as answers re-
turn all pairs of start and end nodes between which a path exists
that meets the given criteria. RPL queries can impose constraints
on the nodes and edges in the path, can traverse paths in either
direction or be direction-independent. They can also make use of
wildcards, negation, Kleene star and plus and optionality opera-
tors, and regular expressions over labels. There are no variables
in RPL, but RPL queries can be embedded in SPARQL queries
and share their variables. The language additionally comes with
a visual version, visRPL, that was inspired by visKWQL.

RPL’s focus on paths allows for an intuitive integration into
KWQL and its syntax: In a given query, KWQL is used to describe
a content item, which is seen as the start node of an embedded
RPL query. The embedded query then describes the path from
the content item to a node in the RDF graph. When the end node
is the URI of another KiWi content item, further selection criteria
for this content item can be specified using KWQL. The RPL
sub-query then returns the pairs of start and end nodes that do
not only satisfy the RPL selection criteria, but where the content
item designated by the URI of the end node is also in compliance
with the given KWQL expression.

Any other RDF nodes representing content items that are on
the path between the start and end nodes cannot easily be treated
in this manner since RPL queries only return start and end nodes
as answers.

The answers returned by KWQL queries with embedded RPL
queries are content items whose URIs correspond to the start

280 querying rdf with kwql

nodes returned by the embedded RPL query and that satisfy any
additional criteria specified using KWQL.

The described mechanism allows for querying simple annota-
tion triples but also enables complex path queries on RDF graphs.
The following query retrieves all content items that are of type
“image.” For an introduction to RPL’s syntax, see Zauner et al.
[376].

ci(RPL:(PATH _ >kiwi:type kiwi:image))

Note that here, the only selection criterion is expressed in RPL,
while the KWQL+SPARQL representation of the same query (see
Section 13.1) must use variable sharing to express the same query.

The query given below returns the user pages of all KiWi users
that Mary knows.

ci(tag(name:user) RPL:(PATH _ <foaf:knows [PATH _

>foaf:name "Mary"]))

Assuming that the RDF graph and the data in the KiWi wiki
contain the same data, the query is equivalent to the following
query which uses RPL to determine who knows whom, and
KWQL to impose further selection constraints on the resulting
start and end nodes. The KWQL selection criteria that the content
item corresponding to the end nodes must satisfy is separated
from the RPL query by a comma.

ci(tag(name:user) RPL:(PATH _ <foaf:knows _,
ci(tag(name:user), title:Mary)))

KWQL and RPL can also impose constraints on an entity repre-
sented both as RDF data and as a content item; the query below
returns user pages that mention “Lucene” and that represent
programmers who Mary knows either directly or via one other
person.

ci(tag(name:user) Lucene RPL:(PATH [PATH _ >rdf:type
:programmer][PATH _ (<foaf:knows _)? <foaf:knows
[PATH _ >foaf:name "Mary"]]))

Combined KWQL and RPL queries as described here could
be evaluated by retrieving the answers for the RPL query, the
KWQL query and, if given, the KWQL query applying to the end
nodes using the respective evaluation engines, and using those
results to find the content items that satisfy all given constraints,
that is, that match the KWQL selection criteria as well as the RPL
query.

If required, a RPL integration could also enable global queries
as described in Section 13.1, but a separate syntax would be

13.4 discussion 281

required to be able to distinguish these global queries from RPL
queries over content item relations.

13.4 discussion

Three solutions for adding support for RDF queries to KWQL
have been discussed in this chapter, one native and two based on
the integration of existing RDF query languages.

All three proposed methods are generally viable and each has
its strong and weak points: SPARQL is powerful, established and
widely known, but its integration into KWQL might not be very
intuitive or extensive. The addition of the rdf sub-resource in
KWQL is in line with the rest of KWQL’s syntax and behavior,
but only supports a small subset of queries. RPL supports very
expressive path queries, has a straightforward interpretation in
the context of KWQL, offers a visual editor that helps users
edit and understand queries but would have to be learned by
all KWQL users wanting to query RDF and by itself does not
support variables.

Depending on the context and the RDF queries that users want
to express, each language is a suitable candidate for extending
KWQL to support querying RDF data. However, RPL offers a
good compromise between usability and expressive power and
thus, for most applications, appears to be the most promising
candidate.

14
C O N C L U S I O N

In this final chapter we briefly review the work described in
the dissertation and point out several issues that are not yet
addressed by KWQL but deserve further attention.

14.1 summary

The work presented in this dissertation addresses the question
how ease of use and rich functionality, two seemingly conflicting
characteristics, can be consolidated in the context of the social se-
mantic web, and more specifically in the semantic wiki KiWi. We
feel that this issue is crucial to the success of the social semantic
web: social semantic web applications live from user participation
and the adoption by a broad user base, but often fail to provide
annotation and querying formalisms that allow casual and ex-
pert users alike to formalize knowledge and compose expressive
queries to fully leverage the functionality of the application at
hand.

With this goal in mind, and to lay the foundation for the rest
of our work, we defined a conceptual model for the KiWi wiki.
This model is based on a small number of “building blocks”
that can be combined to obtain a rich and expressive form of
knowledge representation. Together with this conceptual model,
we introduced structured tags, an annotation formalism that is
simpler and more flexible than RDF, but at the same time more
expressive than atomic tags. We described how structured tags
can be represented and queried in a simple manner that requires
only minor changes to KiWi’s conceptual model and the query
syntax and evaluation process. We further performed a user study
to compare structured tags and RDF. Structured tags were found
suitable for the quick annotation of evolving knowledge and
were received well by participants. RDF, on the other hand, was
considered more complicated and better suited for more static
settings in which annotations are provided by experienced users.

The main contribution of this dissertation is KWQL, a rule-
based query language for the KiWi wiki based on the label-
keyword query paradigm. KWQL allows for rich combined
queries of textual content, metadata, document structure, and
annotations. It is not restricted to data selection, but also offers
construction, the reshaping of the selected data into new data,
database-like views. Such views constitute a simple yet remark-
ably powerful form of reasoning. KWQL queries range from

283

284 conclusion

simple lists of keywords or label-keyword pairs to conjunctions,
disjunctions, or negations of queries. They thus cover the whole
spectrum from elementary and relatively unspecific queries to
complex and fully specified (meta-)data selections. The language
has a low entry barrier and allows casual users to easily locate
and retrieve relevant data, while more advanced users can exploit
the full expressive power. The textual language KWQL is com-
plemented by visKWQL, a visual interface that supports users in
the query construction process. The visKWQL editor provides
guidance throughout the query construction process through
hints, warnings, and error highlighting and prevention. It also
enables round-tripping between KWQL and visKWQL, meaning
that users can switch freely between the textual and visual form
when constructing or editing a query.

We described the underlying principles and the syntax of
KWQL, provided a formal semantics for the language, and dis-
cussed KWilt, an implementation of KWQL query evaluation
based on a patchwork approach. We then distinguished three
sublanguages of increasing complexity and showed that it is
possible to efficiently recognize the sublanguage a given KWQL
query belongs to and to adapt the evaluation process accordingly.
The power of full first-order queries can be leveraged where
needed, but at the same time KWilt can evaluate basic queries at
almost the speed of the underlying search engine, as we showed
in a performance evaluation. Participants in a user study reacted
positively to KWQL and visKWQL. They found the languages
useful, expressive, and easy to use, at least given some time and
practice. Even after a short introduction and a minimal amount
of time to solve the assignments, participants overall were able to
provide correct answers to more than half of the questions in a
query writing task and over eighty percent of the questions in a
query understanding task.

We finally presented pest, a PageRank-like approach to the
ranking and approximate querying of graph-structured data that
propagates term weights between data items. Extensive experi-
ments including a user study on a real-world wiki showed that
pest improves the quality of the ranking compared to a number
of existing approaches.

14.2 perspectives for further research

In Chapters 6 and 9, we discussed aspects that were not consid-
ered during the experimental evaluation of structured tags and
KWQL and visKWQL, respectively, and described new questions
that arise from the results of the experiments. In Section 10.8,
we explained how the current implementation of KWQL query
evaluation could be improved. In Part iv we presented three

14.2 perspectives for further research 285

extensions to KWQL that are not yet implemented in the KiWi
wiki. In Chapter 11, concerned with pest, and Chapter 12 on
the implementation of structured tags, we specifically discussed
open issues and ideas for improvements.

The remainder of this section is devoted to ideas for further
research directions regarding KWQL.

14.2.1 Querying Versions of Content Items

An important characteristic of wikis is their support for version-
ing. Versioning allows to trace changes to a wiki page and to
restore earlier revisions, both of which are particularly important
when a group of users collaborates on content that is gradually
evolving.

So far, versioning is taken into account in KWQL only to the
extent that the author qualifier is matched on the names of all
contributors to a content item, not only on that of the person
responsible for the last edit. KWQL does not currently support
queries over specific versions of a content item, but always queries
the latest revision.

Since many edits may consist only of minor changes and the
data are consequently highly redundant, versions are typically
not stored in full. Instead, the difference between two consecu-
tive versions is recorded in so-called deltas which can be used
to restore all prior versions of a content item. Delta encoding is
an efficient and established method for storing versioned data.
Enabling querying over different versions in KWQL, however, is
less straightforward: A simple way to add support for versioning
to KWQL would be to materialize all versions of a content item,
index them separately together with their version number in Solr,
and to introduce a qualifier version. As a value, this qualifier
could take an integer or a range of integers indicating the revi-
sions of a content item to be retrieved. Ranges as qualifier values
are not supported in the current version of KWQL and KWilt, but
could easily be realized through a small addition to the syntax
and Solr range queries. Support for ranges as qualifier values
would not only be useful for versions, but for example also for
creation dates.

However, the addition of such a version qualifier also gives rise
to at least two problems. First, it is not immediately clear which
version should be queried when no version qualifier is given.
Normally, when no constraint is given for a certain qualifier, this
qualifier is not used as a criterion for matching. In the case of
versioning, a query would therefore be evaluated over all versions
of all content items. This would mean, however, that queries
might return a large number of content items that do not reflect
the current state of the wiki content, which is unintuitive and

286 conclusion

confusing especially for beginning users. Alternatively, only the
current version of each content item could be considered unless
versions are given explicitly, but this would put the interpretation
of the version qualifier at odds with that of all other qualifiers.
A second problem is that the indexing of all full versions of a
content item would greatly increase storage requirements and
the computational cost of query evaluation. However, it is an
open question how KWQL query evaluation could be adapted to
function on delta-encoded versioned content and a more efficient
data storage of and query evaluation over highly redundant data
is likely not possible using the current query evaluation approach
as described in Chapter 10.

14.2.2 Social Factors in KWQL

KWQL can query wiki data, and embedded queries can be cre-
ated collaboratively just like any other wiki content, but apart
from this, KWQL does not reflect the social aspect of wikis. An-
other research question is therefore how users could benefit from
a version of KWQL that incorporates social factors. Two possible
approaches involve leveraging the social nature of wikis to im-
prove the ranking of results, and enabling the sharing of queries
among users.

Towards the first goal, we have developed a variant of pest,
called pestp, that personalizes the ranking of search results by
taking users’ social relationships and actions in the wiki into
account [76]. When applied to a dataset representing movies
and their user-generated annotations, pestp outperformed pest
as well as the Wik and Luc ranking schemes discussed in Sec-
tion 11.5.1 in terms of both precision and recall. However, the
modified term frequencies in pestp are both term- and user-
dependent, and research into a more efficient calculation of the
pestp matrix is required to make the approach viable at a larger
scale.

The KiWi Query Editor, discussed in Chapter 8, allows users
to save and restore queries, but only on a per-user basis. The
experimental evaluation of KWQL and visKWQL described in
Chapter 9, on the other hand, has shown that understanding
queries is easier than writing them. This means that access to a
query corpus consisting of queries that other users have written
could help users in their query formulation. For example, users
could search for a query that expresses a similar query intent and
adapt it to their needs. Open questions in this context concern
ways to locate relevant queries in the query corpus and, since
queries may contain personal information, the preservation of
privacy.

14.2 perspectives for further research 287

14.2.3 More Expressiveness for KWQL Queries

KWQL currently does not allow conjunctions at the level of
content item resource terms, meaning that queries involving
two or more structurally unrelated sets of content items are not
possible.

Depending on whether a KWQL rule specifies a head, and on
whether the head uses variables bound in the body, the set of
all possible KWQL query bodies can be partitioned into three
classes: content item queries, variable queries and boolean queries.
Content item queries are those queries that return a set of content
items, that is, those in which no rule head is specified. Variable
queries bind variables and use the bindings for the construction
of new content items. Boolean queries are queries where a rule
head is given but does not use any variables that may have been
bound in the rule body. The query can thus be seen to return
either “true,” in which case the content item specified in the rule
head will be created, or “false,” meaning that the rule head is not
evaluated.

The restriction of KWQL to disjunction at the level of content
item terms is justified in the case of content item queries: due
to injectivity, a conjunction over content item resource terms
has no straightforward interpretation. Such queries, for example
ci(author:Mary)AND ci(author:John), could be taken to mean that
the content items that contain or link to content items satisfying
all content item resource terms should be returned. Adopting
such an interpretation has not be investigated in detail but would
likely lead to massively ambiguous queries, and we therefore
maintained the exclusion of conjunction at content item level.

For variable queries, however, this restriction is likely not nec-
essary. The following rule, which is not valid according to the
current syntax and semantics of KWQL, could for example be
used to create a list of all pairs of authors who mention each
other:

ci(text:ALL($a1 - ALL($a2,", "),\n))@ci(text:$a2
author:$a1) AND ci(text:$a1 author:$a2))

The expressiveness of KWQL queries could be increased even
further by allowing individual KWQL resource terms, or possibly
even value terms, to be augmented with boolean queries that are
explicitly marked as such. Upon query evaluation, only those
terms for which the boolean query evaluates to “true” could be
considered. In that sense, the boolean queries attached to other
query terms would specify conditions on the evaluation of the
latter. The following query, which is again not valid according to
the current syntax and semantics of KWQL, could then be used

288 conclusion

to retrieve the text of all content items that mention the name of
a KiWi project member:

ci(text:$n) boolean(ci(title:$n tag(name:"KiWi member"))

The changes to KWQL sketched above could likely serve to
increase the expressive power of KWQL by simple means that
require only minor changes to the query evaluation process, but
the details of such an extension remain to be worked out.

14.2.4 KWQL and the Social (Semantic) Web

KWQL was developed for use in the KiWi wiki, but the problem it
addresses also exists in many other social and social semantic web
applications in which no simple but expressive query language is
provided that allows users to leverage the data. Another aspect
that warrants attention therefore concerns the application of
KWQL or a KWQL-like language to other social and especially
social semantic media like social networks and blogs. A first goal
in this context would be to determine to what extent KWQL
needs to be adapted to be useful in such applications, or whether
it is possible to derive a generalization of KWQL that is suitable
for a wider range of social semantic web applications.

S U P P L E M E N TA RY M AT E R I A L

289

Introduction to Structured Tags

Structured tags are almost like normal simple tags you know from the internet, only
enhanced with structure. Two basic operations lie at the core: grouping and
characterization. Grouping, denoted “()”, allows to relate several (complex or simple) tags
using the grouping operator. The group can then be used for annotation. Example: a Wiki
page describes a meeting that took place in Warwick, UK on May 26, 2008, began at 8 am
and involved a New York customer. Using simple tags, this page can be tagged as
“Warwick”, “New York”, “UK”,“May 26”, “2008”, “8am” leaving an observer in doubts
whether “Warwick” refers to the city in UK or to a town near New York. Grouping can be
used in this case to make the tagging more precise: “(Warwick, UK), New York, (May 26,
2008, 8am)”.

Characterization enables the classification or, in a sense, naming of a tag. For example, if
we wanted to tag the meeting Wiki page with the time and date we could tag it as “(5, 26,
2008, 8)” using the grouping operator. The characterization operator can be used to make
the tagging more precise: “(month:5, day:26, year:2008, hour:8)” and later perhaps specify
that the whole group refers to a time: “time:(month:5, day:26, year:2008, hour:8)”. The user
is free to use the operators in whichever way as long as the resulting structured tag is
formed correctly.

Some rules apply to the use of operators (they express what is a correct structured tag
and how to recognize equivalent structured tags):
! •! Groups
! ◦! are unordered: (apple, pear) is the same as (pear, apple)
! ◦! cannot contain two equal members, e.g. (Bob, Bob, Anna) and ((Bob, Anna),

(Anna,Bob)) are not allowed,
! ◦! can contain arbitrarily many elements and can be arbitrarily nested, e.g.

((cat, dog, cow), ((mushroom),(daisy,dandelion,Sunflower))),
! ◦! are identical in meaning to the simple tag when they only contain one

element, i.e. (Anna) is the same as Anna
! •! Characterization
! ◦! is not commutative, i.e. geo:x is not the same as x:geo.
! ◦! can be used on both simple and stuctured tags: (animal:plant):((fox,

squirrel,horse,panda):(pine,birch,chamomile))

Structured tags have to be syntactically correct. That means that for example “Bob:190cm,
90kg” is not a valid structured tag because "190cm,90kg" is not enclosed in parenthesis.

The same information can of course be encoded in many different ways using structured
tag, the user is free to choose the way that suits her the best.

A
S T R U C T U R E D TA G S A N D R D F

a.1 introductory text on structured tags

291

The structure of structured tags has two purposes:
! •! it enables users to group related things and to classify them
! •! it facilitates automated processing
! ◦! For example if a group of users tags pages describing products consistently

as "stars:3", "stars:0", "stars:5", etc. to express how content they are with the
product then these tags can be automatically processed to compute for
example average product ratings. And because the characterization operator
is not commutative it would know that it should ignore tags such as "3:stars"
because they can mean something else. (In case of grouping (3, stars) and
(stars, 3) would be considered equal.)

292 structured tags and rdf

Introduction to RDF/S
RDF graphs contain simple statements (“sentences”) about resources (which, in other con-
texts, are be called “entities”, “objects”, etc., i.e., elements of the domain that may take
part in relations). Statements are triples consisting of subject, predicate, and object, all of
which are resources:

If we want to refer to a specific resource, we use (supposedly globally unique) URIs. If we
want to refer something about which we know that it exists but we don't know or don't care
what exactly it is, we use blank nodes. For example we know that each country has a capi-
tal city but perhaps we don't know what the capital of Mali is but we want to say that there
is some. In this case we would use a blank node for the capital (instead of a URI):

where geo:mali and geo:hasCapital are URIs and _:maliCapital indicates a blank node
(the identifier _:maliCapital is used only for simplification and better readability in this ex-
periment, otherwise it could well be _:x05fg85t and the meaning would be the same).
Blank nodes play the role of existential quantifiers in logic. However, blank nodes may not
occur in predicate position. In the object position of a triple there can also be literal values.
Literal values are used to represent dates, character strings, numbers, etc.
RDF may be serialized in many formats. The following example is written in the Turtle se-
rialization:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix vcard: <http://www.w3.org/2001/vcard!rdf/3.0#> .
@prefix bib: <http://www.edutella.org/bibtex#> .
@prefix ex: <http://example.org/libraries/#> .

ex:smith2005 a bib:Article ; dc:title "...Semantic Web..." ;
dc:year "2005" ;
ex:isPartOf [a bib:Journal ; bib:number "11"; bib:name "Computer
Journal"] ;

The document begins with a definition of namespace prefixes used in the remainder of the
document (omitting common RDF namespaces), each line contains one or more state-
ments separated by colon or semi-colon. If separated by semi-colon, the subject of the
previous statement is carried over. E.g., line 1 reads as ex:smith2005 is a (has rdf:type)
bib:Article and has dc:title “...Semantic Web...”. Line 2 shows a blank node: the article is
part of some entity which we can not (or donʼt care to) identify by a unique URI but for
which we give some properties: it is a bib:Journal, has bib:number “11”, and bib:name
“Computer Journal”.

Subject Predicate Object

geo:mali geo:hasCapital _:maliCapital

A.2 introductory text on rdf 293

a.2 introductory text on rdf

294 structured tags and rdf

a.3 text a

Text - Revision 1

The Ant project started on 1st of April 2008. Thematically, it is situated in the area of social

software. Anna is the project coordinator. The other people working the project include Al, a

programmer, Andy, an analyst and Allen, a student of Software Engineering.

The project will end on 31st of March 2011.

Annotations

1-1

1-2

1-3

1-4

1-5

1-6

1-7

1-8

1-9

1-10

1-11

1-12

1-13

1-14

1-15

1-16

1-17

1-18

1-19

1-20

1-21

1-22

1-23

Text - Revision 2

The Ant project, a cooperation with Anchor Inc., started on 1st of April 2008. Thematically, it is

situated in the area of social software and deals with the development of a new social network.

Anna is the project coordinator. She is responsible for supervising the project members' work.

Before taking this position, she worked in the Deer project which ended in late 2007. Anna has

been working for the company since 2003. The other people from the company working for the

project include Al and Andy, both programmers, and Allen, who studies computer science with a

focus on software engineering and who works for the project part-time. The project will end on

31st of March 2011.

Annotations

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

2-15

2-16

2-17

2-18

2-19

2-20

2-21

ID:____________________

Formalism: RDF Structured Tags

Text - Revision 3

The Ant project, a cooperation with the Madison branch of Anchor Industries, started on 1st of

April 2008. Thematically, it is situated in the area of social software and deals with the

development of a new social network for simplifying collaboration in Biomedical research. Anna

is the project coordinator. She is responsible for supervising the project members' work. Before

taking this position, she worked in the Deer project which ended in late 2007. Anna has been

working for the company since 2003. The other people from our company working for the

project include Al and Andy, both programmers, and Allen, who studies computer science with a

focus on software engineering and who works for the project part-time. Al holds a degree in

Physics with a minor in computer science, he has eight years of experience with programming in

Java and used to teach Java. Allen has some experience in Java, but has not used it as much as

Python, his favourite programming language which he has been using for five years. Our contact

person at Anchor Industries is Ali, a medical engineer who serves as an advisor. The project will

end on 31st of March 2011. Upon successful review, its duration may be extended to four years.

Annotations

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

ID:____________________

Formalism: RDF Structured Tags

Text - Revision 4

Currently, there are two projects in our company: The Ant project and the Bee project.

The Ant project, a cooperation with the Madison, Wisconsin (Latitude = 43.0553, Longitude =

-89.3992) branch of Anchor Industries, started on 1st of April 2008. It deals with the

development of a new social network for simplifying collaboration in Biomedical research.

Specifically, it aims at making it easy for researchers to find related projects and to cooperate.

Anna is the project coordinator. She is responsible for supervising the project members' work.

Before taking this position, she worked as an architect in the Deer project which ended in late

2007. Anna has been working for the company since 2003, starting as an intern in usability

testing. The other people from our company working for the project include Al and Andy, both

programmers, and Allen, who studies computer science with a focus on software engineering and

who works for the project part-time, 15 hours a week. Al holds a Master's degree in Physics with

a minor in computer science, he has eight years of experience with programming in Java and

used to teach Java to undergraduate students for three semesters. He has expert knowledge of

Java EE and JavaServer Faces. Allen has some experience in Java, but has not used it as much as

Python, his favourite programming language which he has been using for five years. Our contact

person at Anchor Industries is Ali, a medical engineer who serves as an advisor. She has worked

on a similar project, the Eagle project which ran from 2003 to 2006, before. Ali can be reached

between Wednesday and Friday every week. The Ant project will end on 31st of March 2011.

Upon successful review, its duration may be extended by up to two years.

Annotations

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

ID:____________________

Formalism: RDF Structured Tags

A.3 text a 295

Text - Revision 5

Currently, there are two projects in our company: The Ant project and the Bee project.

The Ant project, a cooperation with the Madison, Wisconsin (Latitude = 43.0553, Longitude =

-89.3992) branch of Anchor IndustriesAnchor Industries, started on 1st of April 2008. It deals

with the development of a new social network for simplifying collaboration in Biomedical

research. Specifically, it aims at making it easy for researchers to find projects that are similar in

their topic, participating researchers and institutions or location and to cooperate by sharing

access to expensive experimental equipment that not all research facilities own and by sharing

the contact data of participants which might be interested in participating in further experiments.

Anna is the project coordinator. She is responsible for supervising the project members' work.

Before taking this position, she worked as an architect in the Deer project which ended in late

2007. Anna has been working for the company since 2003, starting as an intern in usability

testing. The other people from our company working for the project include Al and Andy, both

programmers, and Allen, who studies computer science with a focus on software engineering and

who works for the project part-time, 15 hours a week. Al holds a Master's degree in Physics with

a minor in computer science. He has eight years of experience with programming in Java and

used to teach Java to undergraduate students for three semesters. He has expert knowledge of

Java EE and JavaServer Faces. Andy is a self-taught programmer who holds a Bachelor's degree

in Biology. He has five years of experience in Programming in Java, and seven years of

experience with web programming overall. Allen has taken three classes in Java at university, but

has not used it as much as Python, his favourite programming language which he has been using

for five years. Our contact person at Anchor Industries is Ali, a medical engineer who serves as

an advisor in questions concerning biomedical practice. She has worked on a similar project, the

Eagle project which ran from 2003 to 2006, before. Ali can be reached by phone between

Wednesday and Friday every week but can reply to emails from Monday to Friday. The Ant

project will end on 31st of March 2011. Upon successful review, its duration may be extended by

up to two years.

Annotations

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

ID:____________________

Formalism: RDF Structured Tags

Text - Revision 6

The Ant project, a cooperation with the Madison, Wisconsin (Latitude = 43.0553, Longitude =

-89.3992) branch of Anchor Industries, started on 1st of April 2008. It deals with the

development of a new social network for simplifying collaboration in Biomedical research.

Specifically, it aims at making it easy for researchers to find projects that are similar in their

topic, participating researchers and institutions or location and to cooperate by sharing access to

expensive experimental equipment that not all research facilities own and by sharing the contact

data of participants which might be interested in participating in further experiments. The

software will be written in Java using the JBoss Seam framework. Anna is the project

coordinator. She is responsible for supervising the project members' work and overseeing the

evaluation of the final product. Before taking this position, she worked as an architect in the Deer

project which ended in late 2007. Anna has been working for the company since 2003, starting as

an intern programmer. The other people from our company working for the project include Al

and Andy, both programmers, and Allen, who studies computer science with a focus on software

engineering and who works for the project part-time, 15 hours a week. Al holds a Master's degree

in Physics with a minor in computer science. He has eight years of experience with programming

in Java and used to teach Java to undergraduate students for three semesters. He has expert

knowledge of Java EE and JavaServer Faces. Before joining our company, he worked as a Perl

programmer for three years. Andy is a self-taught programmer who holds a Bachelor's degree in

Biology. He has five years of experience in Programming in Java, and seven years of experience

with web programming overall. Allen has taken three classes in Java at university, but has not

used it as much as Python, his favourite programming language which he has been using for five

years. Our contact person at Anchor Industries is Ali, a medical engineer who serves as an

advisor in questions concerning biomedical practice. She has worked on a similar project, the

Eagle project which ran from 2003 to 2006, before. Ali can be reached by phone between

Wednesday and Friday every week but can reply to emails from Monday to Friday. The Ant

project will end on 31st of March 2011. Upon successful review, its duration may be extended by

up to two years.

Annotations

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

ID:____________________

Formalism: RDF Structured Tags

296 structured tags and rdf

a.4 text b
ID:____________________

Text - Revision 1

Bob is in charge of the Bee project which started on November 15th 2007 and will run for five
years. Benjamin is employed as the head programmer in the project. He supervises the work of
Bill, Barbara and Bud.

Annotations

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

ID:____________________

Text - Revision 2

Bob is in charge of the Bee project which started on November 15th 2006 and will run for six
years and five months. Benjamin is employed as the team lead in the project. He supervises the
work of Bill, Barbara and Bud. Bill and Barbara are programmers, Bud is technical document
writer, he is American who speaks Spanish fluently and is learning French. Barbara knows C++
and Java, Bill knows Java and Python. The Bee project is a small long-term project for a big tele-
comunication company. The Bee project team is located in London.

Annotations

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

ID:____________________

Text - Revision 3

Bob is in charge of the Bee project which started in autumn 2006 and will run for six years and a
half. Benjamin is employed as the team lead in the project. He supervises the work of Bill, Bar-
bara and Bud. Bill is a novice programmer, Barbara is an experienced programmer, Bud is tech-
nical document writer, he is an American from New York who speaks Portugese fluently and his
French is on an intermediate level. Bud is now working on a component design document. Bar-
bara knows C++ (she was teaching C++ for a while) and Java (she was programming in it for 3
years), Bill knows Java (for 8 years, he is an expert) and Python (3 years, it is his hobby). The
Bee project is a large long-term project for a big mobile operator company. The Bee project team
is located in London - West Kensington and cooperates very well with a team based in Bangalore,
India.

Annotations

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

ID:____________________
Formalism: RDF Structured Tags

Text - Revision 4

Bob is in charge of the Bee project which started in autumn 2006 and will run for six years and a
half. Benjamin is employed as the team lead in the project. He supervises the work of Bill, Bar-
bara and Bud. Bill is an expert programmer, Barbara is a former consultant and an experienced
programmer with extensive theoretical knowledge, Bud is technical document writer, he is an
American from New York (geo-location 40.76 (latitude), -73.98(longitude)) who speaks Por-
tugese fluently (he is a native speaker) and his French is on an intermediate level (he has been
learning French for 3 years). Bud is now working on a design document for the SingleSignOn
component. Barbara knows C++ (she was teaching C++ for 2 years) and Java (she was program-
ming in it for 3 years) and she has a project manager experience, Bill knows Java (for 8 years, he
is an expert who worked on the JVM too) and Python (3 years, it is his hobby, he loves Python).
Barbara worked as a tester for a year in the past. The Bee project is a large long-term project for a
big mobile operator company called PhoneCorp. The Bee project team is located in London -
West Kensington, geo-location 51.49 (latitude), -0.220 (longitude), previously it was located in
the New York headquarters, and cooperates very well with a testing team based in Bangalore, In-
dia.

Annotations

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

ID:____________________

Text - Revision 5

Bob is in charge of the Bee project which started in autumn 2006 and will run for six years and a
half. Benjamin is employed as the team lead in the project. He supervises the work of Bill, Bar-
bara and Bud. Bill is an expert programmer, Barbara is a former junior consultant and an experi-
enced programmer with extensive theoretical knowledge (she has a background in theoretical
computer science, esp. the theory of complexity), Bud is technical document writer, he is an Afri-
can-American from New York (geo-location 40.76 (latitude), -73.98(longitude)) who speaks Por-
tugese fluently (he is a native speaker) and his French is on an intermediate level (he has been
learning French for 3 years), he understands Spanish and Italian pretty well but cannot speak. Bud
is now working on a design specification document for the SingleSignOn subcomponent of the
security component. Barbara knows C++ (she was teaching C++ for 2 years) and Java (she was
programming in it for 3 years, her focus is on frontend programming, especially in the JSF tech-
nology) and she has a project manager experience, Bill knows Java (for 8 years, he is an expert
who worked on the JVM of some company too) and Python (3 years, it is his hobby, he loves Py-
thon, Java not so much). Barbara worked as a tester for a year in the past. Barbara knows a col-
league very well. The Bee project is a large long-term project for a big mobile operator company
called PhoneCorp. The Bee project team is located in London - West Kensington, geo-location
51.49 (latitude), -0.220 (longitude), previously it was located in the New York headquarters, and
cooperates very well with and manages a testing team based in Bangalore, India. The other people
working for the project include Bao and Bert. Bob maybe knows Bert.

Annotations

5-1

5-2

5-3

5-4

A.4 text b 297

ID:____________________

Text - Revision 6

Bob is in charge of the Bee project which started in autumn 2006 and will run for six years and a
half. The project can be extended by up to two years upon a successful review. Bob is not in
charge of any other project. Benjamin is employed as the team lead in the project. He supervises
the work of Bill, Barbara and Bud. Before joining our company he worked as a consultant for an
international company. Bill is an expert programmer, Barbara is a former junior consultant and
an experienced programmer with extensive theoretical knowledge (she has a background in theo-
retical computer science, esp. the theory of complexity), Bud is technical document writer, not a
programmer, he is an African-American from New York (geo-location 40.76 (latitude), -
73.98(longitude)) who speaks Portugese fluently (he is a native speaker) and his French is on an
intermediate level (he has been learning French for 3 years), he understands Spanish and Italian
pretty well but cannot speak. Bud is now working on a design specification document for the Sin-
gleSignOn subcomponent of the security component. Barbara knows C++ (she was teaching C++
for 2 years) and Java (she was programming in it for 3 years, her focus is on frontend program-
ming, especially in the JSF technology), she has a project manager experience and she does not
speak French and does not like Bud because he's a chauvinist, Bill knows Java (for 8 years, he is
an expert who worked on the JVM of Sun Microsystems too) and Python (3 years, it is his hobby,
he loves Python, Java not so much). Barbara worked as a tester for a year in the past. Barbara
knows a colleague very well, the colleague is Bob. The Bee project is a large long-term project
for a big mobile operator company called PhoneCorp. The Bee project team is located in London
- West Kensington, geo-location 51.49 (latitude), -0.220 (longitude), previously it was located in
the New York headquarters, and cooperates very well with and manages a testing team based in
Bangalore, India. Project management is not the responsibility of Bill. Bill is reachable on Mon-
day, Tuesday, and Wednesday by phone but he can reply to e-mails from Monday to Friday. The
other people from the company working for the project include Bao and Bert. Bob maybe knows
Bert.

Annotations

6-1

Das KiWi Wiki

Dieser Text gibt einen Überblick über das KiWi Wiki, welches im Rahmen des Projekts
“KiWi - Knowledge in a Wiki” entwickelt wurde.

Wikis sind Werkzeuge zum Wissensmanagement, die es Benutzern ermöglichen, einfach
gemeinsam Inhalte zu erstellen, zum Beispiel zu einem bestimmten Thema oder Projekt.
Wikiseiten können dabei direkt im Browser editiert und durch Hyperlinks miteinander
verbunden werden. Ein Merkmal von Wikis ist, dass der Inhalt sich graduell entwickelt und
oft von vielen verschiedenen Benutzern editiert, erweitert und verbessert wird, also das
kollektive Wissen von vielen widerspiegelt.
Die gleichen Informationen können in einem Wiki auf verschiedene Arten dargestellt
werden. Häufig bilden sich jedoch mit der Zeit Konventionen zur Formatierung und
Darstellung von Inhalten.
Das KiWi Wiki ist ein semantisches Wiki. Das heißt, dass Informationen nicht nur durch
Text dargestellt werden, sondern auch durch Annotationen, die den Inhalt eines Texts oder
Textabschnitts wiedergeben oder ergänzen. Im Folgenden geht es um Annotationen in
Form von Tags, das heißt von den Benutzern frei gewählte Schlagworte.

In diesem Text werden die wichtigsten Elemente des KiWi Wikis vorgestellt.

Obiges Bild zeigt die Startseite eines KiWi Wikis, das Informationen über das KiWi Projekt
enthält. Der grüne Balken enthält Links zu anderen Teilen des Wikis und kann für den
Zweck dieses Experiments ignoriert werden.
Der schmale schwarze Balken darunter zeigt links die “History” an, eine Liste der zuletzt
besuchten Seiten im Wiki. In diesem Fall wurden zum Beispiel vor der aktuellen Seite die
Seiten “KWQL”, “KWQL Examples” und “The KiWi Project” besucht. Rechts in der
schwarzen Leiste können Benutzer sich ein- und ausloggen und registrieren.

Das KiWi Wiki! 1/4

B
K W Q L A N D V I S K W Q L

b.1 introductory text on the kiwi wiki

299

Links unter der schwarzen Leiste befindet sich ein grau hinterlegter “Home” Link. Dieser ist
auf jeder Wikiseite zu sehen und führt zur Startseite des Wikis zurück.
Den Rest des Platzes füllt die eigentliche Wikiseite. Wikiseiten heißen im KiWi Wiki
Content Items.
Ein Content Item besteht aus einem Titel (hier “StartPage”), einem Text (“Welcome to the
KiWi wiki!...”), Tags (“EU”,”KiWi”, usw.), Metadaten, d.h., Informationen darüber, wann und
von wem die Seite bearbeitet wurde, sowie einer Bewertung und Kommentaren. In der
Spalte rechts finden sich außerdem Informationen über ein- und ausgehende Links, die
letzten Änderungen an diesem Content Item sowie Hinweise auf verwandte Content Items.
Die zuletztgenannten Informationen können für das Experiment benutzt werden, sind

jedoch nicht erforderlich, um die Aufgaben zu lösen. Das obige Bild zeigt das Content Item
und seine wichtigsten Eigenschaften.
Nicht im Bild zu sehen ist, dass auch Tags Metadaten besitzen, nämlich den Zeitpunkt, zu
dem sie vergeben wurden, sowie den Benutzer, der sie vergeben hat. Zwei Benutzer
können dabei das gleiche Content Item mit dem gleichen Tag versehen.

Content Items können außerdem strukturell mit anderen Content Items verbunden sein.
Dies ist auf zwei Arten möglich:

• Content Items können aufeinander verlinken. Diese Links verhalten sich in etwa wie
Links auf Webseiten. Im obigen Bild sind die Anchor-Texte, also die Texte, auf die man
klicken muss, um dem Link zu folgen (“KiWi”, “KWQL”, “visKWQL” und “here”) blau
hinterlegt.
• Content Items können in andere Content Items eingebettet sein, wie es beim Content
Item im Screenshot oben auf der nächsten Seite der Fall ist. Hier sind die Content Items
“KWQL Examples” und “KWQL Publications” in dem Content Item “KWQL” enthalten.
Erstere sind eigene Content Items im Wiki, werden hier aber im Kontext eines anderen
Das KiWi Wiki! 2/4

300 kwql and viskwql

Das KiWi Wiki! 3/4

B.1 introductory text on the kiwi wiki 301

Content Items zusammen mit ihren Tags und ihrem Inhalt angezeigt. Die grüne Linie am
linken Rand zeigt an, wo das eingebettete Content Item beginnt und endet. Wenn man auf
den Titel eines eingebetteten Content Items klickt, wird man zu ihm weitergeleitet (siehe
das untere Bild auf der vorigen Seite).

Tags können im KiWi Wiki nicht nur für ganze Content Items vergeben werden, sondern
auch für Fragmente. Fragmente sind Textteile, die mit Tags versehen sind. Benutzer
können beliebige zusammenhängende Textabschnitte innerhalb eines Content Items
auswählen und taggen. Während Content Items dazu benutzt werden, um den Text
ähnlich wie Kapitel oder Abschnitte in einem Buch aufzuteilen und zu formatieren, kann
man sich Fragmente wie Markierungen und Randnotizen in diesem Buch vorstellen, die

jeder Benutzer individuell anbringen kann. Das Bild oben links zeigt die Standardansicht
eines Fragments - ein grünes Rechteck im Text (vor dem ersten Wort des Texts).

Wenn man den Mauszeiger über das Fragment bewegt, wird der ganze im Fragment
enthaltene Text grün hinterlegt (siehe rechtes Bild). Beim Klick auf das Rechteck öffnet
sich ein Fenster, in dem die Tags des Fragments angezeigt werden (ohne Abbildung).

Zusammenfassend gesagt besteht das KiWi Wiki also aus Content Items, Fragments und
Tags, deren Eigenschaften, und den Beziehungen zwischen ihnen.

Das KiWi Wiki! 4/4

302 kwql and viskwql

2. KWQL - Eine Einleitung

Dieser Text gibt eine Übersicht über KWQL, die Anfragesprache von KiWi. KWQL kann
sowohl für einfache als auch für komplexe Anfragen über die verschiedenen Elemente des
Wikis benutzt werden. Jede Anfrage wählt eine (eventuell leere) Menge an Content Items
aus, wobei Anfragen als (unvollständige) textuelle Beschreibungen der auszuwählenden
Content Items gesehen werden können.
Das Bild zeigt die KWQL Suchseite im KiWi Wiki. In das Textfeld wird die Anfrage (hier
“KWQL”) eingegeben. Durch einen Klick auf den grauen Button rechts wird die
Auswertung der Anfrage gestartet. Das Ergebnis der Anfrage, eine Liste von Content
Items, wird darunter angezeigt.

Die einfachste KWQL Anfragen bestehen aus einem oder mehreren Keywords:
KWQL
Diese Anfrage gibt alle Content Items zurück, die “KWQL” enthalten.

KWQL KiWi
Diese Anfrage gibt alle Content Items zurück, die sowohl “KWQL” als auch “KiWi”
enthalten. Wenn kein anderer Operator angeben wird, wird Konjunktion, also Und-
Verknüpfung angenommen. Die folgende Anfrage ist deswegen äquivalent zu der zweiten
Anfrage:
KWQL AND KiWi

Um präzisere Anfragen zu ermögliche, kann der Kontext, in dem die Keywörter
vorkommen sollen, angegeben werden. Die Anfrage
ci(title:KWQL)
wählt alle Content Items (in KWQL abgekürzt als “ci”) aus, in deren Titel “KWQL”
vorkommt.
KWQL - Eine Einleitung 1 /5

B.2 introductory text on kwql 303

b.2 introductory text on kwql

ci(title:KWQL AND text:KiWi)
Diese Anfrage wiederum gibt eine Untermenge der Ergebnisse der vorigen Anfrage
zurück, nämlich alle Content Items, in deren Titel “KWQL” und in deren Text “KiWi”
vorkommt.
Da die explizite Angabe der Konjunktion, “AND”, optional ist, ist die folgende Anfrage
äquivalent zur letzten Anfrage:
ci(title:KWQL text:KiWi)

Anfragen in visKWQL sind also textuelle Abstraktionen der Wikiseiten, die zurückgegeben
werden sollen.

Die Elemente des konzeptionellen Modells von KiWi, Content Items, Fragmente, Links und
Tags, wie in der Einleitung über KiWi beschrieben, werden in KWQL Ressourcen
genannt. Die verschiedenen Typen von Eigenschaften heißen eines Content Items heißen
Qualifier. Qualifier können zum Beispiel Text, Metadaten oder strukturelle Eigenschaften
sein. Zum Beispiel haben Content Items, nicht aber Tags textuellen Inhalt, während
Fragmente im Gegensatz zu Content Items keinen Titel haben. In den Begrifflichkeiten von
KWQL ausgedrückt bedeutet das, dass der Qualifier text für Content Items, nicht aber für
Tags definiert ist, und title für Content Items aber nicht für Fragmente. Eine
vollständige Liste von Ressourcen und ihren Qualifiern findet sich auf der nächsten Seite.
Qualifierwerte oder “Keywords” schließlich geben an, welchen Wert der entsprechende
Qualifier in den auszuwählenden Content Items haben soll oder, genauer gesagt, welcher
Wert darin vorkommen soll. So wählt die vierte Anfrage auf der letzten Seite zum Beispiel
nicht nur Content Items aus, deren Titel genau “KWQL” ist, sondern auch solche, in denen
“KWQL” eines von mehreren Wörtern ist. Qualifier-Keywortpaare wie z.B. text:KiWi
werden Qualifierterme genannt.
Qualifier und Ressourcen sind also dazu da, um den Kontext, in dem ein Keyword
vorkommen soll, festzulegen.
Ein Term der Form Ressource(Qualifierterm) wird Ressourceterm genannt. Er
besagt, dass Content Items, die eine Ressource vom Typ Ressource enthalten, die im
Qualifier Qualifier den Wert Keyword enthalten, zurückgegeben werden sollen. Ein
Ressourceterm kann mehrere Qualifierterme enthalten, zum Beispiel ist das beim zweiten
Beispiel auf dieser Seite der Fall.
Ressourceterme können ineinander verschachtelt werden, um auszudrücken, dass eine
bestimmte Ressource in einer anderen enthalten ist, zum Beispiel ein Fragment in einem
Content Item oder ein Link in einem Fragment.
ci(text:KiWi tag(name:KWQL))
zum Beispiel beschreibt Content Items, die im Text “KiWi” enthalten und die außerdem
getaggt sind mit einem Tag, dessen Name “KWQL” ist. Die unterschiedlichen Arten von
Ressourcen können jeweils verschiedene Subresourcen enthalten, der untere Teil der
folgenden Tabelle gibt eine Übersicht darüber.

KWQL - Eine Einleitung 2 /5

304 kwql and viskwql

Ressource Content Item Fragment Link Tag

Qualifier URI URI target URI

author author anchorText author

created created created

lastEdited descendant name

title child

text

numberEdits

descendant

child

Subresourcen fragment link tag

link tag

tag

Qualifier
In der obigen Tabelle sind die verschiedenen Ressourcen mit ihren jeweiligen Qualifiern
aufgeführt.
URIs sind eindeutige Bezeichner für Ressourcen. So haben alle Content Items, Fragments
und Tags unterschiedliche URIs und sind so eindeutig unterscheidbar und ansprechbar.
author bezeichnet die Personen, die ein Content Item angelegt oder editiert haben, ein
Fragment angelegt oder eine Ressource mit einem Tag versehen haben.
created und lastEdited beziehen sich auf die Zeitpunkte, zu dem die entsprechende
Ressource angelegt oder zuletzt editiert wurde.
title bezeichnet den Titel eines Content Items, text seinen textuellen Inhalt.
numberEdits ist die Anzahl der Editiervorgänge an einem Content Item.
name bezieht sich auf den Namen eines Tags.
Der anchorText eines Links ist der Text, auf den man klicken muss, um dem Link zu
folgen.

child, descendant und target haben eine besondere Rolle, sie beziehen sich auf die
Wikistruktur und nehmen als Wert kein Keyword oder ein Konstrukt aus Keywords und
Operatoren, sondern eine Unteranfrage, die das verbundene Content Item oder Fragment
beschreibt.
child und descendant beziehen sich auf die Verschachtelungen von Content Items und
Fragmenten, und werden benutzt, um anzugeben, welche anderen Content Items oder
Fragments direkt (child) oder über mehrere Schritte (descendant) im beschriebenen
Content Item enthalten sein sollen.
ci(tag(name:KWQL) child:ci(tag(Example)))
Diese Anfrage gibt Content Items zurück, die ein Tag “KWQL” haben und außerdem ein
eingebettetes Content Item enthalten, das im Tag das Wort “Example” enthält. Der Wert
von child ist hier ci(tag(Example)). Wenn der Term “Example” an beliebiger Stelle
im enthaltenen Content Item vorkommen darf, lautet die Anfrage:
KWQL - Eine Einleitung 3 /5

B.2 introductory text on kwql 305

ci(tag(name:KWQL) child:Example)

target bezeichnet das Ziel eines Links, also ein verlinktes Content Item.
ci(link(target:ci(KiWi)))
Der Wert von target ist hier ci(KiWi), die Anfrage wählt also Content Items aus, die
auf andere Content Items verlinkt sind, die wiederum “KiWi” enthalten.

Unterspezifizierte Anfragen
Wie am Anfang beschrieben, kann der Kontext, in dem ein Keyword vorkommen soll, nur
teilweise oder gar nicht spezifiziert werden. Das bedeutet, dass in KWQL Anfragen alles
außer den Keywords optional ist. Wenn die Ressource oder der Qualifier weggelassen
werden, werden automatisch alle mit der unvollständigen Anfrage kompatiblen
vollständigen Anfragen ausgewertet und die Vereinigung der Ergebnisse zurückgegeben.
KWQL
In KWQL Begrifflichkeiten ausgedrückt, bedeutet diese Anfrage vom Anfang dieses Texts
also, dass das Keyword “KWQL” in einer beliebigen Ressource (innerhalb eines Content
Items, jedoch nicht in seinen verlinkten oder eingebetteten Content Items) und in einem
beliebigen Qualifier vorkommen muss.
ci(KWQL)
Diese Anfrage besagt, dass “KWQL” innerhalb eines Content Items (aber nicht in einer
Subressource) im Wert von einem beliebigen Qualifier vorkommen muss.
tag(KWQL)
Diese Anfrage ist doppelt unterspezifiziert: Zum einen ist kein Qualifier angegeben,
“KWQL” kann also an beliebiger Stelle innerhalb eines Tags vorkommen. Zum anderen ist
keine enthaltende Ressource für das Tag angegeben. Die Anfrage gibt also sowohl
Content Items zurück, die ein Tag haben, in dessen Eigenschaften “KWQL” vorkommt, als
auch Content Items, die ein Fragment oder einen Link enthalten, der diese Bedingung
erfüllt.

author:Mary
Hier ist ebenfalls die Ressource nicht angegeben. Da sowohl Content Items, als auch Tags
und Fragmente Autoren haben, ist die Anfrage ambig. Zurückgegeben werden hier
Content Items, bei denen Mary Autor ist oder die eine Subresource enthalten, von denen
Mary Autor ist.

Operatoren
Die Operatoren NOT, OR und AND (jeweils großgeschrieben) können benutzt werden, um
Verneinung, (nicht ausschliessende bzw. logische) Disjunktion (Oder-Verknüpfung) und
Konjunktion (Und-Verknüpfung) auszudrücken. Konjunktion wird, wie bereits erwähnt,
automatisch angenommen, während Disjunktion explizit angegeben werden muss.

ci(text:KiWi OR tag(name:KWQL))
besagt, dass Content Items, die im Text “KiWi” enthalten oder mit einem Tag “KWQL”
getaggt sind, zurückgegeben werden sollen.
ci(text:KiWi OR NOT(tag(name:KWQL)))
Diese Anfrage wiederum wählt Content Items aus, die “KiWi” im Text enthalten oder nicht
mit “KWQL” getaggt sind.
Operatoren können auf der Ebene von Ressourcetermen, Qualifiertermen, Werten benutzt
werden. Präzedenz wird dabei durch Klammerung ausgedrückt.
Einige Beispiele für die Benutzung von Operatoren:

KWQL - Eine Einleitung 4 /5

306 kwql and viskwql

ci(KiWi AND (KWQL OR NOT(XML)))
Hier werden Content Items ausgewählt, die “KiWi” enthalten und außerdem “KWQL”
enthalten oder “XML” nicht enthalten.
ci(tag(name:KiWi) OR tag(name:KWQL))
Diese Anfrage gibt Content Items zurück, die mit “KiWi” oder mit “KWQL” getaggt sind.
Letztere Anfrage ist äquivalent zu
ci(tag(name:(KiWi OR KWQL))

Variablen
Wenn ein Qualifier angegeben ist, können anstelle von Keywords auch Variablen der Form
$name angegeben werden. Variablen in KWQL dienen verschiedenen Zwecken:
1. Als Wildcard, das heißt, um anzugeben, dass etwas vorhanden sein muss, sein Wert an

sich aber nicht von Belang ist.
ci(fragment(URI:$u))

zum Beispiel gibt Content Items zurück, die mindestens ein Fragment enthalten, ohne
dabei weitere Selektionskriterien auf das Fragment anzuwenden.

ci(child(ci(URI:$u)))
gibt Content Items zurück, in denen mindestens ein weiteres Content Item eingebettet
ist, unabhängig davon, was das enthaltene Content Item für Eigenschaften hat.

2. Um die Gleichheit von mindestens einem Element von zwei Qualifierwerten zu
erzwingen.

ci(tag(name:$t) text:$t)
Zum Beispiel erfordert, dass mindestens ein Wort im Text des Content Items auch ein
Tag des Content Items sein muss.

Injektivität

Wie bereits erwähnt, funktioniert KWQL als Anfragesprache, die aufgrund einer
unvollständigen Beschreibung von Content Items alle Content Items, die mit den
Informationen in der gegebenen Anfrage kompatibel sind, auswählt.
Injektivität bedeutet dabei, dass jeder Qualifier und jede Subresource, für die in der
Anfrage mehrfach Selektionskriterien gegeben werden, sich auf unterschiedliche Elemente
in den Daten beziehen. So bedeutet zum Beispiel
ci(tag(name:KiWi) tag(name:KWQL))
dass die auszuwählenden Content Items jeweils mindestens zwei Tags haben müssen,
eines mit Namen “KiWi” und eine mit Namen “KWQL”. Die Anfrage ist nicht äquivalent zu
ci(tag(name:(KiWi AND KWQL))
welche Content Items auswählt, die Tags haben, die beide Kriterien erfüllen.
Prinzipiell können alle Subresourcen mehrfach in einer Anfrage vorkommen, zum Beispiel
kann ein Fragment mehrere Tags haben oder ein Content Item mehrere Links enthalten.
Bei Qualifiern sieht dies anders aus, viele Qualifier bezeichnen Eigenschaften, die jede
Ressource nur einmal hat, zum Beispiel title oder text, und dürfen auch nur einmal
vorkommen. ci(title:KiWi title:KWQL) zum Beispiel ist keine gültige Anfrage.
Einige Qualifier können aber auch mehrfach vorkommen:
ci(author:Mary author:John)
Diese Anfrage wählt Content Items aus, die sowohl von Mary als auch von John editiert
worden sind.
Die Qualifier author, descendant, child und name können in einer Anfrage mehrfach
angegeben werden.

KWQL - Eine Einleitung 5 /5

B.2 introductory text on kwql 307

2. visKWQL - Eine Einleitung

Dieser Text gibt eine Übersicht über visKWQL, die visuelle Anfragesprache von KiWi.
visKWQL kann sowohl für einfache als auch für komplexe Anfragen über die
verschiedenen Elemente des Wikis benutzt werden. Jede Anfrage wählt eine (eventuell
leere) Menge an Content Items aus, wobei Anfragen als (unvollständigen) Darstellungen
der auszuwählenden Content Items gesehen werden können.
Das Bild zeigt den visKWQL Editor. In der grünen Leiste (!) kann man die Elemente der

Anfrage auswählen, diese können dann per Drag und Drop zu einer Anfrage zusamm
engesetzt werden. Mithilfe des mit " markierten Menüs können Anfragen gespeichert und
später wieder geladen werden. # ist die Arbeitsfläche des Editors, in dem die
Anfragenelemente und Anfragen angezeigt werden. Um eine Anfrage oder ein Element
daraus zu löschen, müssen die entsprechenden Boxen einfach aus dem Arbeitsbereich
hinausgezogen und in der grauen Fläche links oder rechts davon fallengelassen werden.
Hinweise zur Erstellung von Anfragen geben die Tipps in der hellblauen Leiste ($). Das
Textfeld (%) schließlich zeigt eine Übersetzung der aktuellen Anfrage in KWQL, die
textuelle Version von visKWQL, an. Anfragen können jederzeit in sowohl ihrer visuellen als
auch textuellen Form editiert werden. Nach einer Änderung in der textuellen Version muss
jedoch der “Parse Query” Button gedrückt werden, damit die visuelle Darstellung der
Anfrage aktualisiert wird. Bei einer Änderung an der visuellen Anfrage hingegen wird die
textuelle Form automatisch angepasst.
Im Folgenden wird es nur um die Erstellung von visuellen Anfragen gehen.
Durch einen Klick auf “Execute Query” wird die Anfrage ausgewertet. Die Content Items,
die von der Anfrage ausgewählt wurden, erscheinen dann auf direkt unter dem Textfeld.
Auf dem Bild auf der nächsten Seite ist eine einfache Anfrage zusammen mit einigen
Ergebnissen zu sehen.

visKWQL - Eine Einleitung 1/12

308 kwql and viskwql

b.3 introductory text on viskwql

Die einfachsten KWQL Anfragen bestehen aus einem oder mehreren Keywords. So eine
Anfrage ist in obigem Bild zu sehen. Diese Anfrage gibt alle Content Items zurück, die
“KWQL” enthalten, egal an welcher Stelle.
Sie wird erstellt, indem man zuerst im Menü “Other” und dann “Value” auswählt. Dies ist
auf dem Bild unten zu sehen. Auch hier werden kurze Hilfetexte angezeigt, um die
Erstellung der Anfrage zu erleichtern.

visKWQL - Eine Einleitung 2/12

B.3 introductory text on viskwql 309

Nachdem “Value” ausgewählt wurde, erscheint eine “Value” Box auf der Arbeitsfläche
(siehe obiges Bild). Der obere, grün hinterlegte Bereich der Box (im Folgenden “Label”
genannt) zeigt dabei den Typ des Elements an, das weiße Textfeld darunter den Wert. Für
eine einfache Keywordsuche nach “KWQL” in allen Teilen eines Content Items muss der
Wert von “Value” in “KWQL” geändert werden. Das Ergebnis ist die auf dem oberen Bild
auf der letzten Seite gezeigte Anfrage.

Diese Anfrage gibt alle Content Items zurück, die sowohl “KWQL” als auch “KiWi”
enthalten. Sie kann erstellt werden, indem zuerst in der Menüzeile der Operator “AND”
ausgewählt wird.

Das Ergebnis ist eine leere Box vom Typ “AND”. Das Label ist orange hinterlegt, um
anzuzeigen, dass die Box alleine keine gültige Anfrage darstellt. Die Erklärung dafür wird
in der hellblauen Leiste gegeben:

Nachdem eine “Value” Box erstellt und in die “AND” Box gezogen wurde, sieht die Anfrage
so aus:

visKWQL - Eine Einleitung 3/12

310 kwql and viskwql

Das Label ist immer noch orange hinterlegt. Eine Erklärung dafür ist wieder in der
hellblauen Leiste zu finden:

Das Problem ist hier also, dass die Und-Verknüpfung “AND” mindestens zwei
Kindelemente, das heißt, in ihr enthaltene Boxen braucht, um sinnvoll angewandt werden
zu können. In der aktuellen Form wird die Anfrage deswegen zwar ausgewertet, das
“AND” wird dabei aber ignoriert, das heißt, die Anfrage ist äquivalent zu dem ersten
Beispiel auf Seite 2.
Um Raum für ein weiteres Kindelement zu schaffen, klicken wir auf den blauen Pfeil rechts
oben im “AND” Element. Dadurch vergrößert sich die Box und es ist genug Platz, um eine
weitere Box in das “AND” Element zu ziehen.

Nachdem das Kindelement hinzugefügt wurde, ist die Anfrage komplett. Da “AND” nun
zwei Kinder hat und die Anfrage somit syntaktisch korrekt ist, ist das Label nicht mehr
orange gefärbt

Um präzisere Anfragen zu ermögliche, kann der Kontext, in dem die Keywörter/Werte
vorkommen sollen, angegeben werden. Die Anfrage

wählt alle Content Items aus, in deren Titel “KWQL” vorkommt.

Diese Anfrage wiederum gibt eine Untermenge der Ergebnisse der vorigen Anfrage
zurück, nämlich alle Content Items, in deren Titel “KWQL” und in deren Text “KiWi”
vorkommt.

Anfragen in visKWQL sind also visuelle Abstraktionen der Wikiseiten, die zurückgegeben
werden sollen.

Die Elemente des konzeptionellen Modells von KiWi, Content Items, Fragmente, Links und
Tags, wie in der Einleitung über KiWi beschrieben, werden in visKWQL Ressourcen

visKWQL - Eine Einleitung 4/12

B.3 introductory text on viskwql 311

genannt. Die verschiedenen Typen von Eigenschaften heißen eines Content Items heißen
Qualifier. Qualifier können zum Beispiel Text, Metadaten oder strukturelle Eigenschaften
sein. Zum Beispiel haben Content Items, nicht aber Tags textuellen Inhalt, während
Fragmente im Gegensatz zu Content Items keinen Titel haben. In den Begrifflichkeiten von
visKWQL ausgedrückt bedeutet das, dass der Qualifier text für Content Items, nicht aber
für Tags definiert ist, und title für Content Items aber nicht für Fragmente. Eine
vollständige Liste von Ressourcen und ihren Qualifiern findet sich auf der nächsten Seite.
Der Typ einer Ressource oder eines Qualifiers ist in seinem Label angegeben.
In visKWQL findet sich unter “Resources” eine Liste aller Resourcen. Unter “Qualifiers”
werden für jeden Typ von Ressource alle erlaubten Qualifier (und Subressourcen, s.
unten) aufgelistet. Auf diese Art ist einfach zu sehen, welche Resourcen mit welchen
Qualifiern kombiniert werden dürfen.
Zusätzlich verhindert visKWQL es aktiv, dass unerlaubte Ressource-Qualifier
Kombinationen entstehen. Im folgenden Bild ist zu sehen, dass die Kombination von
Content Item und Text erlaubt ist, der Versuch, einen Text Qualifier in einer “Tag”
Ressource abzulegen aber mit einer Warnung verhindert wird.

Qualifierwerte oder “Keywords” schließlich geben an, welchen Wert der entsprechende
Qualifier in den auszuwählenden Content Items haben soll oder, genauer gesagt, welcher
Wert darin vorkommen soll. So wählt die folgende Anfrage auf dieser Seite zum Beispiel
nicht nur Content Items aus, deren Text genau “KiWi” ist, sondern auch solche, in denen
“KiWi” eines von mehreren Wörtern ist. Qualifier-Keywortschachtelungen wie z.B.

werden Qualifierterme genannt.
Qualifier und Ressourcen sind also dazu da, um den Kontext, in dem ein Keyword
vorkommen soll, festzulegen.

Eine Schachtelung von einem Qualifierterm in einer Ressource (zu sehen zum Beispiel
links auf dem oberen Bild auf dieser Seite) wird Ressourceterm genannt. Er besagt, dass
Content Items, die eine Ressource vom Typ Ressource-Label enthalten (oder, im Fall
von Content Items, die eine Ressource dieses Typs sind), die im Qualifier Qualifier-
Label den Wert Keyword enthalten, zurückgegeben werden sollen. Obiges Beispiel
bedeutet also, dass Content Items, die im Text “Value” enthalten, gesucht werden.

Ein Ressourceterm kann mehrere Qualifierterme enthalten wie auf dem unteren Beispiel
auf der vorigen Seite zu sehen ist.
Ressourceterme können ineinander verschachtelt werden, um auszudrücken, dass eine
bestimmte Ressource in einer anderen enthalten ist, zum Beispiel ein Fragment in einem
Content Item oder ein Link in einem Fragment.

visKWQL - Eine Einleitung 5/12

312 kwql and viskwql

zum Beispiel beschreibt Content Items, die im Text “KiWi” enthalten und die außerdem
getaggt sind mit einem Tag, dessen Name “KWQL” ist. Die unterschiedlichen Arten von
Ressourcen können jeweils verschiedene Subressourcen enthalten, der untere Teil der
folgenden Tabelle gibt eine Übersicht darüber.

Ressource Content Item Fragment Link Tag

Qualifier URI URI target URI

author author anchorText author

created created created

lastEdited descendant name

title child

text

numberEdits

descendant

child

Subresourcen fragment link tag

link tag

tag

Wie auch bei den Qualifier-Keywortschachtelungen verhindert visKWQL syntaktisch
inkorrekte Schachtelungen von Subressourcen, wie im unteren Bild zu sehen ist.

Da Content Items mit einem Tag versehen sein (“das Tag enthalten”) können, andersrum
Tags aber keine Content Items enthalten, ist diese Operation nicht erlaubt.

Qualifier
In der obigen Tabelle sind die verschiedenen Ressourcen mit ihren jeweiligen Qualifiern
aufgeführt.
URIs sind eindeutige Bezeichner für Ressourcen. So haben alle Content Items, Fragments
und Tags unterschiedliche URIs und sind so eindeutig unterscheidbar und ansprechbar.

visKWQL - Eine Einleitung 6/12

B.3 introductory text on viskwql 313

author bezeichnet die Personen, die ein Content Item angelegt oder editiert haben, ein
Fragment angelegt oder eine Ressource mit einem Tag versehen haben.
created und lastEdited beziehen sich auf die Zeitpunkte, zu dem die entsprechende
Ressource angelegt oder zuletzt editiert wurde.
title bezeichnet den Titel eines Content Items, text seinen textuellen Inhalt.
numberEdits ist die Anzahl der Editiervorgänge an einem Content Item.
name bezieht sich auf den Namen eines Tags.
Der anchorText eines Links ist der Text, auf den man klicken muss, um dem Link zu
folgen.

child, descendant und target haben eine besondere Rolle, sie beziehen sich auf die
Wikistruktur und nehmen als Wert kein Keyword oder ein Konstrukt aus Keywords und
Operatoren, sondern eine Unteranfrage, die das verbundene Content Item oder Fragment
beschreibt.
child und descendant beziehen sich auf die Verschachtelungen von Content Items und
Fragmenten, und werden benutzt, um anzugeben, welche anderen Content Items oder
Fragmente direkt (child) oder über mehrere Schritte (descendant) im beschriebenen
Content Item enthalten sein sollen.

Diese Anfrage gibt Content Items zurück, die ein Tag “KWQL” haben und außerdem ein
eingebettetes Content Item enthalten, das im Tag das Wort “Example” enthält. Der Wert
der Child Box ist hier

Wenn der Term “Example” an beliebiger Stelle im enthaltenen Content Item vorkommen
darf, lautet die Anfrage:

target bezeichnet das Ziel eines Links, also ein verlinktes Content Item.

visKWQL - Eine Einleitung 7/12

314 kwql and viskwql

Der Wert der Target Box ist hier

die Anfrage wählt also Content Items aus, die auf andere Content Items verlinkt sind, die
wiederum in einem beliebigen Qualifier “KiWi” enthalten.

Unterspezifizierte Anfragen
Wie am Anfang beschrieben, kann der Kontext, in dem ein Keyword vorkommen soll, nur
teilweise oder gar nicht spezifiziert werden. Das bedeutet, dass in visKWQL Anfragen alles
außer den Keywords optional ist. Wenn die Ressource oder der Qualifier weggelassen
werden, werden automatisch alle mit der unvollständigen Anfrage kompatiblen
vollständigen Anfragen ausgewertet und die Vereinigung der Ergebnisse zurückgegeben.

In visKWQL Begrifflichkeiten ausgedrückt, bedeutet diese Anfrage vom Anfang des Texts
also, dass das Keyword “KWQL” in einer beliebigen Ressource (innerhalb eines Content
Items, jedoch nicht in seinen verlinkten oder eingebetteten Content Items) und in einem
beliebigen Qualifier vorkommen muss.

Diese Anfrage besagt, dass “KWQL” innerhalb eines Content Items (aber nicht in einer
Subressource) im Wert von einem beliebigen Qualifier vorkommen muss.

Diese Anfrage ist doppelt unterspezifiziert: Zum einen ist kein Qualifier angegeben,
“KWQL” kann also an beliebiger Stelle innerhalb eines Tags vorkommen. Zum anderen ist
keine enthaltende Ressource für das Tag angegeben. Die Anfrage gibt also sowohl
Content Items zurück, die ein Tag haben, in dem in einem beliebigen Qualifier “KWQL”
vorkommt, als auch Content Items, die ein Fragment oder einen Link enthalten, der diese
Bedingung erfüllt.

Hier ist ebenfalls die enthaltende Ressource nicht angegeben. Da sowohl Content Items,
als auch Tags und Fragmente Autoren haben, ist die Anfrage ambig. Zurückgegeben
werden hier Content Items, bei denen Mary Autor ist oder die eine Subresource enthalten,
von denen Mary Autor ist.

visKWQL - Eine Einleitung 8/12

B.3 introductory text on viskwql 315

Operatoren
Die Operatoren

können benutzt werden, um Konjunktion (Und-Verknüpfung), (nicht ausschliessende bzw.
logische) Disjunktion (Oder-Verknüpfung) und Verneinung auszudrücken.

besagt, dass Content Items, die im Text “KiWi” enthalten oder mit einem Tag namens
“KWQL” getaggt sind, zurückgegeben werden sollen.
Wenn man die “OR” Box durch eine “AND” Box ersetzt, erhält man die Anfrage.

Diese wählt nur Content Items aus, die beide Bedingungen erfüllen, die also im Text “KiWi”
enthalten und ausserdem mit einem Tag mit Namen “KWQL” getaggt sind.
Die “Und”-Verknüpfung, also die “AND” Box muss nicht unbedingt hinzugefügt werden, da
visKWQL sie automatisch annimmt, wenn kein anderer Operator (d.h. “OR”) angegeben
ist. Obige Anfrage ist also äquivalent zu

visKWQL - Eine Einleitung 9/12

316 kwql and viskwql

Diese Anfrage wiederum wählt Content Items aus, die “KiWi” im Text enthalten oder nicht
mit “KWQL” getaggt sind.
Operatoren können auf der Ebene von Ressourcetermen, Qualifiertermen und Werten
benutzt werden.

Einige Beispiele für die Benutzung von Operatoren:

Hier werden Content Items ausgewählt, die “KiWi” enthalten und außerdem “KWQL”
enthalten oder “XML” nicht enthalten.

Diese Anfrage gibt Content Items zurück, die mit “KiWi” oder mit “KWQL” getaggt sind.
Letztere Anfrage ist äquivalent zu

Variablen
Wenn ein Qualifier angegeben ist, können anstelle von Keywords auch Variablen (zu
finden unter dem Menüpunkt “Other”) angegeben werden. Variablen in KWQL dienen
verschiedenen Zwecken:
1. Als Wildcard, das heißt, um anzugeben, dass etwas vorhanden sein muss, sein Wert an

sich aber nicht von Belang ist.

visKWQL - Eine Einleitung 10/12

B.3 introductory text on viskwql 317

zum Beispiel gibt Content Items zurück, die mindestens ein Fragment enthalten, ohne
dabei weitere Selektionskriterien auf das Fragment anzuwenden.

gibt Content Items zurück, in denen mindestens ein weiteres Content Item eingebettet
ist, unabhängig davon, was das enthaltene Content Item für Eigenschaften hat.

2. Um die Gleichheit von mindestens einem Element von zwei Qualifierwerten zu
erzwingen.

zum Beispiel erfordert, dass mindestens ein Wort im Text des Content Items auch ein
Tag dieses Content Items sein muss.

Injektivität

Wie bereits erwähnt, funktioniert KWQL als Anfragesprache, die aufgrund einer
unvollständigen Beschreibung von Content Items alle Content Items, die mit den
Informationen in der gegebenen Anfrage kompatibel sind, auswählt.
Injektivität bedeutet dabei, dass jeder Qualifier und jede Subresource, für die in der
Anfrage mehrfach Selektionskriterien gegeben werden, sich auf unterschiedliche Elemente
in den Daten beziehen. So bedeutet zum Beispiel

dass die auszuwählenden Content Items jeweils mindestens zwei Tags haben müssen,
eines mit Namen “KiWi” und eine mit Namen “KWQL”. Die Anfrage ist nicht äquivalent zu

visKWQL - Eine Einleitung 11/12

318 kwql and viskwql

welche Content Items auswählt, die Tags haben, die beide Kriterien erfüllen.
Prinzipiell können alle Subresourcen mehrfach in einer Anfrage vorkommen, zum Beispiel
kann ein Fragment mehrere Tags haben oder ein Content Item mehrere Links enthalten.
Bei Qualifiern sieht dies anders aus, viele Qualifier bezeichnen Eigenschaften, die jede
Ressource nur einmal hat, zum Beispiel title oder text, und dürfen auch nur einmal
vorkommen.

zum Beispiel ist keine gültige Anfrage (wie auch an den roten Labeln sowie an dem
Hinweis zu sehen ist).
Einige Qualifier können aber auch mehrfach vorkommen:

Diese Anfrage wählt Content Items aus, die sowohl von Mary als auch von John editiert
worden sind.
Die Qualifier author, descendant, child und name können in einer Anfrage mehrfach
angegeben werden.

visKWQL - Eine Einleitung 12/12

B.3 introductory text on viskwql 319

B I B L I O G R A P H Y

[1] Proceedings of the 18th International Conference on Data En-
gineering, 26 February - 1 March 2002, San Jose, CA. IEEE
Computer Society, 2002.

[2] plist — Property List Format. Apple Inc., 2003.

[3] iTQL commands. Online only, 2004. http://www.kowari.
org/271.htm.

[4] Proceedings of the Extreme Markup Languages 2004 Conference,
2-6 August 2004, Montréal, Quebec, Canada. 2004.

[5] Proceedings of the 25th International Conference on Data Engi-
neering, ICDE 2009, March 29 2009 - April 2 2009, Shanghai,
China. IEEE, 2009.

[6] D. J. Abadi, A. M. 0002, S. Madden, and K. J. Hollenbach.
Scalable semantic web data management using vertical
partitioning. In [225], pages 411–422.

[7] F. Abbaci, J.-B. Valsamis, and P. Francq. Index and search
XML documents by combining content and structure. In
H. R. Arabnia, editor, International Conference on Internet
Computing, pages 107–112. CSREA Press, 2006.

[8] K. Aberer, K.-S. Choi, N. F. Noy, D. Allemang, K.-I. Lee,
L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mi-
zoguchi, G. Schreiber, and P. Cudré-Mauroux, editors. The
Semantic Web, 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 + ASWC 2007,
Busan, Korea, November 11-15, 2007, volume 4825 of Lecture
Notes in Computer Science. Springer, 2007.

[9] K. Aberer, P. Cudré-Mauroux, A. M. Ouksel, T. Catarci,
M.-S. Hacid, A. Illarramendi, V. Kashyap, M. Mecella,
E. Mena, E. J. Neuhold, O. D. Troyer, T. Risse, M. Scan-
napieco, F. Saltor, L. D. Santis, S. Spaccapietra, S. Staab, and
R. Studer. Emergent semantics principles and issues. In
Y.-J. Lee, J. Li, K.-Y. Whang, and D. Lee, editors, DASFAA,
volume 2973 of Lecture Notes in Computer Science, pages
25–38. Springer, 2004.

[10] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.
Wiener. The Lorel query language for semistructured data.
Int. J. on Digital Libraries, 1(1):68–88, 1997.

321

http://www.kowari.org/271.htm
http://www.kowari.org/271.htm

322 bibliography

[11] B. Adida, M. Birbeck, and S. Pemberton. HTML+RDFa 1.1.
Working draft, W3C, 2010.

[12] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient man-
agement of transitive relationships in large data and knowl-
edge bases. In J. Clifford, B. G. Lindsay, and D. Maier,
editors, SIGMOD Conference, pages 253–262. ACM Press,
1989.

[13] W. Akhtar, J. Kopecký, T. Krennwallner, and A. Polleres.
XSPARQL: Traveling between the XML and RDF worlds -
and avoiding the XSLT pilgrimage. In [41], pages 432–447.

[14] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas,
and D. Srivastava. Structural joins: A primitive for efficient
XML query pattern matching. In [1], pages 141–.

[15] S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre,
M. Holstege, J. Melton, M. Rys, and J. Shanmugasundaram.
XQuery and XPath Full Text 1.0. Candidate recommenda-
tion, W3C, 2008.

[16] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. Tex-
query: a full-text search extension to XQuery. In [147],
pages 583–594.

[17] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern
relaxation. In [204], pages 496–513.

[18] S. Amer-Yahia, E. Curtmola, and A. Deutsch. Flexible and
efficient XML search with complex full-text predicates. In
[99], pages 575–586.

[19] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleX-
Path: Flexible structure and full-text querying for XML. In
[364], pages 83–94.

[20] S. Amer-Yahia and J. Shanmugasundaram. XML full-text
search: Challenges and opportunities. In [62], page 1368.

[21] M. Ames and M. Naaman. Why we tag: motivations for
annotation in mobile and online media. In M. B. Rosson
and D. J. Gilmore, editors, CHI, pages 971–980. ACM, 2007.

[22] M. Angelaccio, T. Catarci, and G. Santucci. QBD*: A graph-
ical query language with recursion. IEEE Trans. Software
Eng., 16(10):1150–1163, 1990.

[23] R. Angles and C. Gutiérrez. Querying RDF data from
a graph database perspective. In A. Gómez-Pérez and
J. Euzenat, editors, ESWC, volume 3532 of Lecture Notes in
Computer Science, pages 346–360. Springer, 2005.

bibliography 323

[24] V. N. Anh and A. Moffat. Compression and an IR approach
to XML retrieval. In N. Fuhr, N. Gövert, G. Kazai, and
M. Lalmas, editors, INEX Workshop, pages 99–104. 2002.

[25] A. Ankolekar, M. Krötzsch, T. Tran, and D. Vrandecic. The
two cultures: mashing up web 2.0 and the semantic web.
In [367], pages 825–834.

[26] D. Artz and Y. Gil. A survey of trust in computer science
and the semantic web. J. Web Sem., 5(2):58–71, 2007.

[27] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. G. Ives. DBpedia: A nucleus for a web of open data.
In [8], pages 722–735.

[28] S. Auer, S. Dietzold, J. Lehmann, and T. Riechert. OntoWiki:
A tool for social, semantic collaboration. In N. F. Noy,
H. Alani, G. Stumme, P. Mika, Y. Sure, and D. Vrandecic,
editors, CKC, volume 273 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007.

[29] E. Augurusa, D. Braga, A. Campi, and S. Ceri. Design and
implementation of a graphical interface to XQuery. In SAC,
pages 1163–1167. ACM, 2003.

[30] D. Aumueller. Semantic authoring and retrieval within
a wiki. 2nd European Semantic Web Conference 2005
(ESWC2005), 2005.

[31] D. Aumueller. SHAWN: Structure helps a wiki navigate.
In Proceedings of the BTW-Workshop WebDB Meets IR. 2005.

[32] D. Aumueller. Towards a semantic wiki experience - desk-
top integration and interactivity in WikSAR. In Proceedings
of the ISWC 2005 Workshop on The Semantic Desktop. 2005.

[33] D. Aumueller and S. Auer. Towards a semantic wiki expe-
rience – desktop integration and interactivity in WikSAR.
In 1st Workshop on The Semantic Desktop. 2005.

[34] D. Backett. Turtle—terse RDF triple language. Technical
Report, Institute for Learning and Research Technology,
University of Bristol, 2007.

[35] R. A. Baeza-Yates and C. Castillo. Relating web structure,
user search behavior. In WWW Posters. 2001.

[36] J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and se-
mantic web query languages: A survey. In N. Eisinger
and J. Maluszynski, editors, Reasoning Web, volume 3564 of
Lecture Notes in Computer Science, pages 35–133. Springer,
2005.

324 bibliography

[37] A. Balmin, V. Hristidis, N. Koudas, Y. Papakonstantinou,
D. Srivastava, and T. Wang. A system for keyword proxim-
ity search on XML databases. In VLDB, pages 1069–1072.
2003.

[38] J. Bao, L. Ding., and J. Hendler. Knowledge representa-
tion and query in semantic MediaWiki: A formal study.
Technical Report, RPI, 2008.

[39] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective XML
keyword search with relevance oriented ranking. In [5],
pages 517–528.

[40] J. Bar-Ilan, S. Shoham, A. Idan, Y. Miller, and A. Shachak.
Structured versus unstructured tagging: a case study. On-
line Information Review, 32(5):635–647, 2008.

[41] S. Bechhofer, M. Hauswirth, J. Hoffmann, and
M. Koubarakis, editors. The Semantic Web: Research
and Applications, 5th European Semantic Web Conference,
ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008,
Proceedings, volume 5021 of Lecture Notes in Computer
Science. Springer, 2008.

[42] D. Beckett and B. McBride. RDF/XML Syntax Specification
(Revised). W3C, 2004.

[43] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. A. Grossman,
and O. Frieder. Hourly analysis of a very large topically
categorized web query log. In M. Sanderson, K. Järvelin,
J. Allan, and P. Bruza, editors, SIGIR, pages 321–328. ACM,
2004.

[44] M. Benedikt, W. Fan, and G. M. Kuper. Structural properties
of XPath fragments. In D. Calvanese, M. Lenzerini, and
R. Motwani, editors, ICDT, volume 2572 of Lecture Notes in
Computer Science, pages 79–95. Springer, 2003.

[45] M. Benedikt and C. Koch. Interpreting tree-to-tree queries.
In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, edi-
tors, ICALP (2), volume 4052 of Lecture Notes in Computer
Science, pages 552–564. Springer, 2006.

[46] M. Benedikt and C. Koch. XPath leashed. ACM Comput.
Surv., 41(1), 2008.

[47] V. Benjamins, J. Contreras, O. Corcho, and A. Gomez-Perez.
Six challenges for the semantic web. AIS SIGSEMIS Bulletin,
1(1):24–25, 2004.

[48] D. Benz, M. Grobelnik, A. Hotho, R. Jaschke, D. Mladenic,
V. D. P. Servedio, S. Sizov, and M. Szomszor. Analyzing tag

bibliography 325

semantics across collaborative tagging systems. Dagstuhl
Seminar 08391 ? Working Group Summary, 2008.

[49] S. Berger, F. Bry, O. Bolzer, T. Furche, S. Schaffert, and
C. Wieser. Querying the standard and semantic web using
Xcerpt and visXcerpt. In Proceedings of European Semantic
Web Conference, Heraklion, Crete, Greece (29th May–1st June
2005). 2005.

[50] S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and
visXcerpt: From pattern-based to visual querying of XML
and semistructured data. In VLDB, pages 1053–1056. 2003.

[51] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay,
J. Robie, and J. Simeon. XML Path Language (XPath) 2.0.
W3C, 2005.

[52] P. Berkhin. Survey: A survey on PageRank computing.
Internet Mathematics, 2(1), 2005.

[53] T. Berners-Lee. Linked Data. http://www.w3.org/
DesignIssues/LinkedData, 2006.

[54] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dha-
naraj, J. Hollenbach, A. Lerer, and D. Sheets. Tabulator:
Exploring and analyzing linked data on the semantic web.
In Proceedings of the 3rd International Semantic Web User In-
teraction Workshop, volume 2006. 2006.

[55] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific american, 284(5):28–37, 2001.

[56] E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Böhm, and E. Ferrari,
editors. Advances in Database Technology - EDBT 2004, 9th
International Conference on Extending Database Technology,
Heraklion, Crete, Greece, March 14-18, 2004, Proceedings,
volume 2992 of Lecture Notes in Computer Science. Springer,
2004.

[57] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Su-
darshan. Keyword searching and browsing in databases
using BANKS. In [1], pages 431–440.

[58] P. Bille. A survey on tree edit distance and related problems.
Theor. Comput. Sci., 337(1-3):217–239, 2005.

[59] K. Bischoff, C. S. Firan, W. Nejdl, and R. Paiu. Can all
tags be used for search? In J. G. Shanahan, S. Amer-Yahia,
I. Manolescu, Y. Zhang, D. A. Evans, A. Kolcz, K.-S. Choi,
and A. Chowdhury, editors, CIKM, pages 193–202. ACM,
2008.

http://www.w3.org/DesignIssues/LinkedData
http://www.w3.org/DesignIssues/LinkedData

326 bibliography

[60] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data – the
story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[61] A. Blumauer and T. Pellegrini, editors. Social Semantic Web:
Web 2.0 - Was nun? X.media.press. Springer, 2009.

[62] K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P.-Å.
Larson, and B. C. Ooi, editors. Proceedings of the 31st In-
ternational Conference on Very Large Data Bases, Trondheim,
Norway, August 30 - September 2, 2005. ACM, 2005.

[63] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and
L. Segoufin. Two-variable logic on data trees and XML
reasoning. In S. Vansummeren, editor, PODS, pages 10–19.
ACM, 2006.

[64] H. Boley, G. Hallmark, M. Kifer, A. Paschke, A. Polleres,
and D. Reynolds. RIF core dialect. Recommendation, W3C,
2010.

[65] O. Bolzer. Towards Data-Integration on the Semantic Web:
Querying RDF with Xcerpt. Diplomarbeit/master thesis,
University of Munich, 2005.

[66] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rit-
tinger, and J. Teubner. MonetDB/XQuery: a fast XQuery
processor powered by a relational engine. In [99], pages
479–490.

[67] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery.
In ICDE, pages 403–. 2002.

[68] T. Bray, D. Hollander, A. Layman, and R. Tobin. Names-
paces in XML (2nd edition). Recommendation, W3C, 2006.

[69] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau. Extensible Markup Language (XML) 1.0 (third
edition). Recommendation, W3C, 2004.

[70] D. Brickley and R. Guha. RDF vocabulary description
language 1.0: RDF Schema. Recommendation, W3C, 2004.

[71] S. Brin and L. Page. The anatomy of a large-scale hypertex-
tual web search engine. Computer Networks, 30(1-7):107–117,
1998.

[72] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame:
A generic architecture for storing and querying RDF and
RDF Schema. In [196], pages 54–68.

[73] M. Brundage. XQuery: The XML Query Language. Addison-
Wesley, 2004.

bibliography 327

[74] E. Bruno, J. L. Maitre, and E. Murisasco. Extending XQuery
with transformation operators. In ACM Symposium on Doc-
ument Engineering, pages 1–8. ACM, 2003.

[75] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
optimal XML pattern matching. In [153], pages 310–321.

[76] F. Bry, P. Dolog, F. A. Durão, and K. Weiand. PESTP: Fast ap-
proximate personalized keyword search in structured data
using eigenvector-based term propagation. Manuscript,
2010.

[77] F. Bry, T. Furche, C. Ley, B. Linse, and B. Marnette. RDFLog:
It’s like Datalog for RDF. In Proc. Workshop on (Constraint)
Logic Programming (WLP). 2008.

[78] F. Bry, T. Furche, C. Ley, B. Linse, and B. Marnette. Taming
existence in RDF querying. In D. Calvanese and G. Lausen,
editors, RR, volume 5341 of Lecture Notes in Computer Sci-
ence, pages 236–237. Springer, 2008.

[79] F. Bry, T. Furche, B. Linse, and A. Pohl. XcerptRDF: A
pattern-based answer to the versatile web challenge. In Pro-
ceedings of 22nd Workshop on (Constraint) Logic Programming,
Dresden, Germany (30th September–1st October 2008), pages
27–36. 2008.

[80] F. Bry, C. Koch, T. Furche, S. Schaffert, L. Badea, and
S. Berger. Querying the web reconsidered: Design prin-
ciples for versatile web query languages. Int. J. Semantic
Web Inf. Syst., 1(2):1–21, 2005.

[81] F. Bry and J. Kotowski. Towards reasoning and explanations
for social tagging. In T. Roth-Berghofer, S. Schulz, D. B.
Leake, and D. Bahls, editors, ExaCt, pages 118–128. 2008.

[82] F. Bry and M. Marchiori. Reasoning on the semantic web:
Beyond ontology languages and reasoners. In 2nd European
Workshop on the Integration of Knowledge, Semantic and Digital
Media Technologies. 2005.

[83] F. Bry and M. Marchiori. Ten theses on logic languages
for the semantic web. In Rule Languages for Interoperability.
W3C, 2005.

[84] F. Bry and S. Schaffert. A gentle introduction into Xcerpt,
a rule-based query and transformation language for XML.
In Proc. Int. Workshop on Rule Markup Languages for Business
Rules on the Semantic Web. 2002.

[85] D. Carmel, Y. Maarek, Y. Mass, N. Efraty, and G. Landau.
An extension of the vector space model for querying XML

328 bibliography

documents via XML fragments. In Proceedings SIGIR 2002
Workshop on XML and Information Retrieval, pages 14–25.
2002.

[86] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual
query systems for databases: A survey. J. Vis. Lang. Comput.,
8(2):215–260, 1997.

[87] T. Catarci and G. Santucci. Are visual query languages
easier to use than traditional ones? an experimental proof.
In M. A. R. Kirby, A. J. Dix, and J. Finlay, editors, BCS HCI,
pages 323–338. Cambridge University Press, 1995.

[88] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan,
C. Russell, O. Schadow, T. Stanienda, and F. Velez, editors.
Object Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[89] C. Cattuto, D. Benz, A. Hotho, and G. Stumme. Semantic
analysis of tag similarity measures in collaborative tagging
systems. In J. Baumeister and M. Atzmüller, editors, LWA,
volume 448 of Technical Report, pages 18–26. Department
of Computer Science, University of Würzburg, Germany,
2008.

[90] C. Cattuto, D. Benz, A. Hotho, and G. Stumme. Seman-
tic grounding of tag relatedness in social bookmarking
systems. In [332], pages 615–631.

[91] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi,
and L. Tanca. XML-GL: A graphical language for querying
and restructuring XML documents. Computer Networks,
31(11-16):1171–1187, 1999.

[92] S. Chakrabarti. Dynamic personalized PageRank in entity-
relation graphs. In WWW ’07: Proceedings of the 16th interna-
tional conference on World Wide Web, pages 571–580. ACM,
New York, NY, USA, 2007.

[93] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori,
and J. Robie. XML Query Use Cases. W3C, 2005.

[94] D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie.
XML Query (XQuery) Requirements. W3C, 2003.

[95] D. Chamberlin and J. Robie. XQuery update facility re-
quirements. Working draft, W3C, 2005.

[96] D. Chamberlin and J. Robie. XQuery 1.1. Working draft,
W3C, 2008.

[97] D. D. Chamberlin, J. Robie, and D. Florescu. Quilt: An
XML query language for heterogeneous data sources. In

bibliography 329

D. Suciu and G. Vossen, editors, WebDB (Selected Papers),
volume 1997 of Lecture Notes in Computer Science, pages
1–25. Springer, 2000.

[98] C. Y. Chan, B. C. Ooi, and A. Zhou, editors. Proceedings of
the ACM SIGMOD International Conference on Management
of Data, Beijing, China, June 12-14, 2007. ACM, 2007.

[99] S. Chaudhuri, V. Hristidis, and N. Polyzotis, editors. Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, Chicago, Illinois, USA, June 27-29, 2006.
ACM, 2006.

[100] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured
information. In [201], pages 493–504.

[101] T. Chen, J. Lu, and T. W. Ling. On boosting holism in XML
twig pattern matching using structural indexing techniques.
In [296], pages 455–466.

[102] Y. Chen and K. Aberer. Combining pat-trees and signature
files for query evaluation in document databases. In T. J. M.
Bench-Capon, G. Soda, and A. M. Tjoa, editors, DEXA,
volume 1677 of Lecture Notes in Computer Science, pages
473–484. Springer, 1999.

[103] T. Cheng, X. Yan, and K. C.-C. Chang. EntityRank: search-
ing entities directly and holistically. In VLDB ’07: Proceed-
ings of the 33rd international conference on Very large data bases,
pages 387–398. VLDB Endowment, 2007.

[104] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating
queries with generalized path expressions. In [201], pages
413–422.

[105] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C, 1999.

[106] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachabil-
ity and distance queries via 2-hop labels. In SODA, pages
937–946. 2002.

[107] S. Cohen, Y. Kanza, B. Kimelfeld, and Y. Sagiv. Interconnec-
tion semantics for keyword search in XML. In O. Herzog,
H.-J. Schek, N. Fuhr, A. Chowdhury, and W. Teiken, editors,
CIKM, pages 389–396. ACM, 2005.

[108] S. Cohen, Y. Kanza, Y. A. Kogan, Y. Sagiv, W. Nutt, and
A. Serebrenik. EquiX – a search and query language for
XML. JASIST, 53(6):454–466, 2002.

330 bibliography

[109] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSearch: A
semantic search engine for XML. In VLDB, pages 45–56.
2003.

[110] A. Collins and E. Loftus. A spreading-activation theory of
semantic processing. Psychological Review, 82(6), 1975.

[111] S. Comai. Graphical query languages for semi-structured
information. In EDBT PhD Workshop. 2000.

[112] S. Comai, E. Damiani, and P. Fraternali. Computing graph-
ical queries over XML data. ACM Trans. Inf. Syst., 19(4):371–
430, 2001.

[113] S. Comai, E. Damiani, and L. Tanca. Semantics-aware query-
ing in the www: The WG-Log web query system. In ICMCS,
Vol. 2, pages 317–322. 1999.

[114] S. Comai, S. Marrara, and L. Tanca. XML document sum-
marization: Using XQuery for synopsis creation. In DEXA
Workshops, pages 928–932. IEEE Computer Society, 2004.

[115] D. Connolly. Gleaning resource descriptions from dialects
of languages (GRDDL). Recommendation, W3C, 2007.

[116] M. P. Consens, R. A. Baeza-Yates, M. Lalmas, and S. Amer-
Yahia. XML retrieval: DB/IR in theory, web in practice. In
[225], pages 1437–1438.

[117] J. Cowan and R. Tobin. XML information set (2nd ed.).
Recommendation, W3C, 2004.

[118] A. Cregan. Symbol grounding for the semantic web. In
E. Franconi, M. Kifer, and W. May, editors, ESWC, volume
4519 of Lecture Notes in Computer Science, pages 429–442.
Springer, 2007.

[119] F. Crestani. Application of spreading activation techniques
in information retrieval. Artif. Intell. Rev., 11(6):453–482,
1997.

[120] B. Croft and J. Yufeng. An association thesaurus for in-
formation retrieval. In J.-L. Funck-Brentano and F. Seitz,
editors, RIAO, pages 146–161. CID, 1994.

[121] I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe,
P. Mika, M. Uschold, and L. Aroyo, editors. The Seman-
tic Web - ISWC 2006, 5th International Semantic Web Con-
ference, ISWC 2006, Athens, GA, USA, November 5-9, 2006,
Proceedings, volume 4273 of Lecture Notes in Computer Science.
Springer, 2006.

bibliography 331

[122] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical
query language supporting recursion. In U. Dayal and I. L.
Traiger, editors, SIGMOD Conference, pages 323–330. ACM
Press, 1987.

[123] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Probabilistic
query expansion using query logs. In WWW, pages 325–332.
2002.

[124] C. V. Damme, M. Hepp, and K. Siorpaes. FolksOntology:
An integrated approach for turning folksonomies into on-
tologies. In In Proceedings of the ESWC Workshop ”Bridging
the Gap between Semantic Web and Web 2.0. Springer, 2007.

[125] S. Dar, G. Entin, S. Geva, and E. Palmon. DTL’s DataSpot:
Database exploration using plain language. In A. Gupta,
O. Shmueli, and J. Widom, editors, VLDB, pages 645–649.
Morgan Kaufmann, 1998.

[126] J. Davies and R. Weeks. QuizRDF: Search technology for
the semantic web. In HICSS. 2004.

[127] R. Davis, H. E. Shrobe, and P. Szolovits. What is a knowl-
edge representation? AI Magazine, 14(1):17–33, 1993.

[128] U. Dayal, K. Ramamritham, and T. M. Vijayaraman, editors.
Proceedings of the 19th International Conference on Data Engi-
neering, March 5-8, 2003, Bangalore, India. IEEE Computer
Society, 2003.

[129] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Onto-
broker: Ontology based access to distributed and semi-
structured information. In R. Meersman, Z. Tari, and S. M.
Stevens, editors, DS-8, volume 138 of IFIP Conference Pro-
ceedings, pages 351–369. Kluwer, 1999.

[130] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas,
and R. A. Harshman. Indexing by latent semantic analysis.
JASIS, 41(6):391–407, 1990.

[131] D. DeHaan, D. Toman, M. P. Consens, and M. T. Özsu. A
comprehensive XQuery to SQL translation using dynamic
interval encoding. In [182], pages 623–634.

[132] K. Dello, E. P. B. Simperl, and R. Tolksdorf. Creating and
using semantic web information with Makna. In [352].

[133] S. DeRose, E. Maler, and R. D. Jr. XML Pointer Language
(XPointer) 1.0. W3C, 2001.

[134] A. Deutsch, editor. Proceedings of the Twenty-third ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 14-16, 2004, Paris, France. ACM, 2004.

332 bibliography

[135] A. Deutsch, M. F. Fernández, D. Florescu, A. Y. Levy, and
D. Suciu. XML-ql. In QL. 1998.

[136] A. Deutsch and V. Tannen. Containment and integrity
constraints for XPath. In M. Lenzerini, D. Nardi, W. Nutt,
and D. Suciu, editors, KRDB, volume 45 of CEUR Workshop
Proceedings. CEUR-WS.org, 2001.

[137] P. F. Dietz. Maintaining order in a linked list. In STOC,
pages 122–127. ACM, 1982.

[138] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery 1.0
and XPath 2.0 formal semantics. Recommendation, W3C,
2007.

[139] M. Ehrig. Ontology Alignment: Bridging the Semantic Gap,
volume 4 of Semantic Web And Beyond Computing for Human
Experience. Springer, 2007.

[140] A. Eisenberg and J. Melton. An early look at XQuery API
for Java (XQJ). SIGMOD Record, 33(2):105–111, 2004.

[141] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and
H. Tompits. Combining answer set programming with
description logics for the semantic web. Artif. Intell., 172(12-
13):1495–1539, 2008.

[142] A. El Ghali, A. Tifous, M. Buffa, A. Giboin, and R. Dieng-
Kuntz. Using a semantic wiki in communities of practice.
In 2nd Intern. Workshop on Building Technology Enhanced
Learning Solutions for Communities of Practice. 2007.

[143] S. Elbassuoni, M. Ramanath, R. Schenkel, M. Sydow, and
G. Weikum. Language-model-based ranking for queries on
RDF-graphs. In Proceedings of the 18th ACM Conference on
Information and Knowledge Management (CIKM 2009). ACM,
Hongkong, China, 2009.

[144] S. Elbassuoni, M. Ramanath, R. Schenkel, and G. Weikum.
Searching RDF graphs with SPARQL and keywords. IEEE
Data Enginerring Bulletin, 33(1), 2010.

[145] M. Erwig. Xing: a visual XML query language. J. Vis. Lang.
Comput., 14(1):5–45, 2003.

[146] P. Fankhauser, T. Groh, and S. Overhage. XQuery by the
book: The IPSI XQuery demonstrator. In [204], pages 742–
744.

[147] S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills,
editors. Proceedings of the 13th international conference on

bibliography 333

World Wide Web, WWW 2004, New York, NY, USA, May 17-
20, 2004. ACM, 2004.

[148] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. XQuery 1.0 and XPath 2.0 data model. Rec-
ommendation, W3C, 2007.

[149] M. F. Fernández, J. Siméon, B. Choi, A. Marian, and G. Sur.
Implementing XQuery 1.0: The Galax experience. In VLDB,
pages 1077–1080. 2003.

[150] J. Fischer, Z. Gantner, S. Rendle, M. Stritt, and L. Schmidt-
Thieme. Ideas and improvements for semantic wikis. In
Y. Sure and J. Domingue, editors, ESWC, volume 4011 of
Lecture Notes in Computer Science, pages 650–663. Springer,
2006.

[151] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, and A. Sundararajan. The bea
streaming xquery processor. VLDB J., 13(3):294–315, 2004.

[152] D. Florescu, D. Kossmann, and I. Manolescu. Integrating
keyword search into XML query processing. Computer
Networks, 33(1-6):119–135, 2000.

[153] M. J. Franklin, B. Moon, and A. Ailamaki, editors. Pro-
ceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, Madison, Wisconsin, June 3-6, 2002.
ACM, 2002.

[154] J. Frohn, G. Lausen, and H. Uphoff. Access to objects
by path expressions and rules. In J. B. Bocca, M. Jarke,
and C. Zaniolo, editors, VLDB, pages 273–284. Morgan
Kaufmann, 1994.

[155] N. E. Fuchs, K. Kaljurand, and G. Schneider. Attempto
Controlled English meets the challenges of knowledge rep-
resentation, reasoning, interoperability and user interfaces.
In G. Sutcliffe and R. Goebel, editors, FLAIRS Conference,
pages 664–669. AAAI Press, 2006.

[156] T. Furche. Implementation of Web Query Language Reconsid-
ered: Beyond Tree and Single-Language Algebras at (Almost) No
Cost. Ph.D. thesis, Ludwig-Maxmilians University Munich,
2008.

[157] T. Furche, B. Linse, F. Bry, D. Plexousakis, and G. Gottlob.
RDF querying: Language constructs and evaluation meth-
ods compared. In P. Barahona, F. Bry, E. Franconi, N. Henze,
and U. Sattler, editors, Reasoning Web, volume 4126 of Lec-
ture Notes in Computer Science, pages 1–52. Springer, 2006.

334 bibliography

[158] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Du-
mais. The vocabulary problem in human-system communi-
cation. Commun. ACM, 30(11):964–971, 1987.

[159] P. Gärdenfors. How to make the semantic web more se-
mantic. In Proceedings of the Third International Conference on
Formal Ontology in Information Systems (FOIS 2004). 2004.

[160] P. Genevès and J.-Y. Vion-Dury. XPath formal semantics
and beyond: A Coq-based approach. In Proc. Int’l. Conf.
on Theorem Proving in Higher Order Logics (TPHOLs), pages
181–198. University Of Utah, Salt Lake City, Utah, United
States, 2004.

[161] S. A. Golder and B. A. Huberman. The structure of collab-
orative tagging systems. CoRR, abs/cs/0508082, 2005.

[162] S. A. Golder and B. A. Huberman. Usage patterns of collab-
orative tagging systems. J. Information Science, 32(2):198–208,
2006.

[163] R. Goldman and J. Widom. DataGuides: Enabling query
formulation and optimization in semistructured databases.
In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos, and M. A. Jeusfeld, editors, VLDB, pages
436–445. Morgan Kaufmann, 1997.

[164] G. Gottlob and C. Koch. Monadic queries over tree-
structured data. In LICS, pages 189–202. IEEE Computer
Society, 2002.

[165] G. Gottlob, C. Koch, and R. Pichler. The complexity of
XPath query evaluation. In PODS, pages 179–190. ACM,
2003.

[166] G. Gottlob, C. Koch, and R. Pichler. XPath query evaluation:
Improving time and space efficiency. In [128], pages 379–
390.

[167] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms
for processing XPath queries. ACM Trans. Database Syst.,
30(2):444–491, 2005.

[168] G. Gottlob, N. Leone, and F. Scarcello. The complexity of
acyclic conjunctive queries. J. ACM, 48(3):431–498, 2001.

[169] J. Graaumans. Usability of XML Query Languages. Ph.D.
thesis, Universiteit Utrecht, 2005.

[170] O. M. Group. Unified Modeling Language (UML), version
2.2. 2009.

bibliography 335

[171] W. O. W. Group. OWL 2 web ontology language. W3c
recommendation, W3C, 2009.

[172] T. Gruber. Collective knowledge systems: Where the social
web meets the semantic web. J. Web Sem., 6(1):4–13, 2008.

[173] T. Gruber and T. Gruber. Ontology of folksonomy: A mash-
up of apples and oranges. Intern. Journal on Semantic Web
and Information Systems, 3(1):1–11, 2007.

[174] T. Grust. Accelerating XPath location steps. In [153], pages
109–120.

[175] T. Grust, J. Rittinger, and J. Teubner. eXrQuy: Order indif-
ference in XQuery. In ICDE, pages 226–235. IEEE, 2007.

[176] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL hosts. In
[281], pages 252–263.

[177] T. Grust, M. van Keulen, and J. Teubner. Accelerating
XPath evaluation in any RDBMS. ACM Trans. Database
Syst., 29:91–131, 2004.

[178] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and
T. Yu. Approximate XML joins. In [153], pages 287–298.

[179] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked keyword search over XML documents. In
[182], pages 16–27.

[180] C. Gutiérrez, C. A. Hurtado, and A. O. Mendelzon. Foun-
dations of semantic web databases. In [134], pages 95–106.

[181] P. Haase, D. Herzig, M. A. Musen, and T. Tran. Seman-
tic wiki search. In L. Aroyo, P. Traverso, F. Ciravegna,
P. Cimiano, T. Heath, E. Hyvönen, R. Mizoguchi, E. Oren,
M. Sabou, and E. P. B. Simperl, editors, ESWC, volume
5554 of Lecture Notes in Computer Science, pages 445–460.
Springer, 2009.

[182] A. Y. Halevy, Z. G. Ives, and A. Doan, editors. Proceedings
of the 2003 ACM SIGMOD International Conference on Man-
agement of Data, San Diego, California, USA, June 9-12, 2003.
ACM, 2003.

[183] H. Halpin. The semantic web: The origins of artificial intel-
ligence redux. In Third Intern. Workshop on the History and
Philosophy of Logic, Mathematics, and Computation. Donostia
San Sebastian, Spain, 2004.

[184] H. Halpin, V. Robu, and H. Shepherd. The complex dy-
namics of collaborative tagging. In [367], pages 211–220.

336 bibliography

[185] D. Harel and R. E. Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM J. Comput., 13(2):338–355,
1984.

[186] S. Harnad. The symbol grounding problem. 1990.

[187] E. Hatcher and O. Gospodnetic. Lucene in Action (In Action
series). Manning Publications Co., Greenwich, CT, USA,
2004.

[188] T. Haveliwala, S. Kamvar, and G. Jeh. An analytical compar-
ison of approaches to personalizing PageRank. Technical
Report 2003-35, Stanford InfoLab, 2003.

[189] P. Hayes and B. McBride. RDF semantics. Recommendation,
W3C, 2004.

[190] M. Heckner, T. Neubauer, and C. Wolff. Tree, funny, to_read,
google: what are tags supposed to achieve? a comparative
analysis of user keywords for different digital resource
types. In I. Soboroff, E. Agichtein, and R. Kumar, editors,
SSM, pages 3–10. ACM, 2008.

[191] J. Hendler. What is the semantic web really all
about? http://blogs.nature.com/jhendler/2009/06/16/
what-is-the-semantic-web-really-all-about, 2009.

[192] M. Hepp. Possible ontologies: How reality constrains the
development of relevant ontologies. IEEE Internet Comput-
ing, 11(1):90–96, 2007.

[193] P. Heymann and H. Garcia-Molina. Collaborative creation
of communal hierarchical taxonomies in social tagging
systems. Technical Report, Stanford University, 2006.

[194] J. Hidders. Satisfiability of XPath expressions. In G. Lausen
and D. Suciu, editors, DBPL, volume 2921 of Lecture Notes
in Computer Science, pages 21–36. Springer, 2003.

[195] F. Hogenboom, V. Milea, F. Frasincar, and U. Kaymak. RDF-
GL: A SPARQL-based graphical query language for RDF.
In L. Jain, X. Wu, R. Chbeir, Y. Badr, A. Abraham, and A.-E.
Hassanien, editors, Emergent Web Intelligence: Advanced In-
formation Retrieval, Advanced Information and Knowledge
Processing, pages 87–116. Springer London, 2010.

[196] I. Horrocks and J. A. Hendler, editors. The Semantic Web
- ISWC 2002, First International Semantic Web Conference,
Sardinia, Italy, June 9-12, 2002, Proceedings, volume 2342 of
Lecture Notes in Computer Science. Springer, 2002.

http://blogs.nature.com/jhendler/2009/06/16/what-is-the-semantic-web-really-all-about
http://blogs.nature.com/jhendler/2009/06/16/what-is-the-semantic-web-really-all-about

bibliography 337

[197] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Sri-
vastava. Keyword proximity search in XML trees. IEEE
Trans. Knowl. Data Eng., 18(4):525–539, 2006.

[198] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
proximity search on XML graphs. In [128], pages 367–378.

[199] J. Huai, R. Chen, H.-W. Hon, Y. Liu, W.-Y. Ma, A. Tomkins,
and X. Zhang, editors. Proceedings of the 17th International
Conference on World Wide Web, WWW 2008, Beijing, China,
April 21-25, 2008. ACM, 2008.

[200] H. Hwang, V. Hristidis, and Y. Papakonstantinou. Objec-
tRank: a system for authority-based search on databases.
In [99], pages 796–798.

[201] H. V. Jagadish and I. S. Mumick, editors. Proceedings of the
1996 ACM SIGMOD International Conference on Management
of Data, Montreal, Quebec, Canada, June 4-6, 1996. ACM Press,
1996.

[202] B. J. Jansen, A. Spink, and T. Saracevic. Real life, real users,
and real needs: a study and analysis of user queries on the
web. Inf. Process. Manage., 36(2):207–227, 2000.

[203] G. Jeh and J. Widom. Scaling personalized web search. In
WWW, pages 271–279. 2003.

[204] C. S. Jensen, K. G. Jeffery, J. Pokorný, S. Saltenis, E. Bertino,
K. Böhm, and M. Jarke, editors. Advances in Database Tech-
nology - EDBT 2002, 8th International Conference on Extending
Database Technology, Prague, Czech Republic, March 25-27, Pro-
ceedings, volume 2287 of Lecture Notes in Computer Science.
Springer, 2002.

[205] K. Jones et al.. A statistical interpretation of term specificity
and its application in retrieval. Journal of Documentation,
28(1):11–21, 1972.

[206] K. S. Jones and D. M. Jackson. The use of automatically-
obtained keyword classifications for information retrieval.
Information Storage and Retrieval, 5(4):175–201, 1970.

[207] N. Jussien, C. Prud’homme, H. Cambazard, G. Rochart,
and F. Laburthe. choco: an open source java constraint
programming library. In CPAIOR’08 Workshop on Open-
Source Software for Integer and Contraint Programming. 2008.

[208] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. De-
sai, and H. Karambelkar. Bidirectional expansion for key-
word search on graph databases. In [62], pages 505–516.

338 bibliography

[209] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.
Golub. Exploiting the block structure of the web for com-
puting PageRank. In Stanford University Technical Report.
2003.

[210] G. Karvounarakis, A. Magkanaraki, S. Alexaki,
V. Christophides, D. Plexousakis, M. Scholl, and K. Tolle.
RQL: A functional query language for RDF. In P. Gray,
P. King, and A. Poulovassilis, editors, The Functional
Approach to Data Management, chapter 18, pages 435–465.
Springer-Verlag, 2004.

[211] H. Katz, D. Chamberlin, D. Draper, M. Fernandez, M. Kay,
J. Robie, M. Rys, J. Simeon, J. Tivy, and P. Wadler. XQuery
from the Experts: A Guide to the W3C XML Query Language.
Addison-Wesley, 1st edition, 2003.

[212] E. Kaufmann and A. Bernstein. How useful are natural
language interfaces to the semantic web for casual end-
users? In [8], pages 281–294.

[213] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ra-
makrishnan. On the integration of structure indexes and
inverted lists. In [364], pages 779–790.

[214] M. Kay. XPath 2.0 Programmer’s Reference. John Wiley, 2004.

[215] M. Kay. XSL Transformations, version 2.0. Recommenda-
tion, W3C, 2007.

[216] M. Kay, N. Walsh, H. Zongaro, S. Boag, and J. Tong. XSLT
2.0 and XQuery 1.0 serialization. Working draft, W3C, 2005.

[217] S. Kepser. A simple proof for the turing-completeness of
XSLT and XQuery. In [4].

[218] M. Kiesel. Kaukolu: Hub of the semantic corporate intranet.
In [352].

[219] P. Kilpeläinen and H. Mannila. Ordered and unordered
tree inclusion. SIAM J. Comput., 24(2):340–356, 1995.

[220] M. Kindborg and K. McGee. Visual programming with
analogical representations: Inspirations from a semiotic
analysis of comics. J. Vis. Lang. Comput., 18(2):99–125, 2007.

[221] B. Klein, C. Höcht, and B. Decker. Beyond capturing and
maintaining software engineering knowledge-“Wikitology”
as shared semantics. In Workshop on Knowledge Engineering
and Software Engineering, KI. 2005.

[222] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. In SODA, pages 668–677. 1998.

bibliography 339

[223] G. Klyne, J. J. Carroll, and B. McBride. Resource Description
Framework (RDF): Concepts and abstract syntax. Recom-
mendation, W3C, 2004.

[224] C. Koch. On the complexity of nonrecursive XQuery and
functional query languages on complex values. In C. Li,
editor, PODS, pages 84–97. ACM, 2005.

[225] C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava,
K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti,
C.-C. Kanne, W. Klas, and E. J. Neuhold, editors. Proceed-
ings of the 33rd International Conference on Very Large Data
Bases, University of Vienna, Austria, September 23-27, 2007.
ACM, 2007.

[226] L. Kong, R. Gilleron, and A. Lemay. Retrieving top Relaxed
Tightest Fragments for XML keyword search. online, 2008.

[227] M. Kotelnikov, A. Polonsky, M. Kiesel, M. Völkel, and
H. Haller. Interactive semantic wikis. Technical Report,
Nepomuk, 2006.

[228] L. Kotthoff. Constraint solvers: An empirical evaluation of
design decisions. CoRR, abs/1002.0134, 2010.

[229] T. Kowatsch and W. Maass. The impact of pre-defined
terms on the vocabulary of collaborative indexing systems.
In W. Golden, T. Acton, K. Conboy, H. van der Heijden,
and V. Tuunainen, editors, 16th European Conference on In-
formation Systems (ECIS 2008). Galway, Ireland, 2008.

[230] M. Krötzsch, S. Schaffert, and D. Vrandecic. Reasoning in
semantic wikis. In G. Antoniou, U. Aßmann, C. Baroglio,
S. Decker, N. Henze, P.-L. Patranjan, and R. Tolksdorf, edi-
tors, Reasoning Web, volume 4636 of Lecture Notes in Com-
puter Science, pages 310–329. Springer, 2007.

[231] M. Krötzsch and D. Vrandecic. Semantic wikipedia. In [61],
pages 393–421.

[232] M. Krötzsch, D. Vrandecic, and M. Völkel. Semantic Medi-
aWiki. In [121], pages 935–942.

[233] J. Kruskal. On the shortest spanning subtree of a graph and
the traveling salesman problem. Proceedings of the American
Mathematical Society, 7(1):48–50, 1956.

[234] T. Kuhn. AceWiki: A natural and expressive semantic wiki.
CoRR, abs/0807.4618, 2008.

[235] G. Ladwig and T. Tran. Combining query translation with
query answering for efficient keyword search. In L. Aroyo,

340 bibliography

G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt,
L. Cabral, and T. Tudorache, editors, ESWC (2), volume
6089 of Lecture Notes in Computer Science, pages 288–303.
Springer, 2010.

[236] R. Landefeld and H. Sack. Collaborative web-publishing
with a semantic wiki. In S. Auer, C. Bizer, C. Müller, and
A. V. Zhdanova, editors, CSSW, volume 113 of LNI, pages
23–34. GI, 2007.

[237] O. Lassila. Semantic web soul searching. http:
//www.lassila.org/blog/archive/2007/03/semantic_

web_so_1.html, 2007.

[238] K.-H. Lee, K.-Y. Whang, W.-S. Han, and M.-S. Kim. Struc-
tural consistency: Enabling XML keyword search to elim-
inate spurious results consistently. CoRR, abs/0911.4329,
2009.

[239] Y. Lei, V. Uren, and E. Motta. SemSearch: A search engine
for the semantic web. Proc. 5th Intern. Conf. on Knowledge
Engineering and Knowledge Management Managing Knowledge
in a World of Networks, Lect. Notes in Comp. Sci., Springer,
Podebrady, Czech Republic (Oct 2006), pages 238–245, 2006.

[240] B. Leuf and W. Cunningham. The Wiki way: quick collabora-
tion on the Web. Addison-Wesley, 2001.

[241] V. Levenshtein. Binary codes capable of correcting dele-
tions, insertions and reversals. In Soviet Physics Doklady,
volume 10. 1966.

[242] G. Li, J. Feng, J. Wang, X. Song, and L. Zhou. SAILER: an ef-
fective search engine for unified retrieval of heterogeneous
XML and web documents. In [199], pages 1061–1062.

[243] G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword
search for valuable LCAs over XML documents. In M. J.
Silva, A. H. F. Laender, R. A. Baeza-Yates, D. L. McGuinness,
B. Olstad, Ø. H. Olsen, and A. O. Falcão, editors, CIKM,
pages 31–40. ACM, 2007.

[244] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: an
effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In J. T.-L. Wang, edi-
tor, SIGMOD Conference, pages 903–914. ACM, 2008.

[245] J. Li, C. Liu, and R. Zhou. XBridge: Answering XML key-
word search with structured queries. 2008.

[246] J. Li, C. Liu, R. Zhou, and W. Wang. Suggestion of promis-
ing result types for XML keyword search. In [260], pages
561–572.

http://www.lassila.org/blog/archive/2007/03/semantic_web_so_1.html
http://www.lassila.org/blog/archive/2007/03/semantic_web_so_1.html
http://www.lassila.org/blog/archive/2007/03/semantic_web_so_1.html

bibliography 341

[247] J. Li and J. Wang. XQSuggest: An interactive XML keyword
search system. In S. S. Bhowmick, J. Küng, and R. Wagner,
editors, DEXA, volume 5690 of Lecture Notes in Computer
Science, pages 340–347. Springer, 2009.

[248] Y. Li, I. Chaudhuri, H. Yang, S. Singh, and H. V. Jagadish.
DaNaLIX: a domain-adaptive natural language interface
for querying XML. In [98], pages 1165–1168.

[249] Y. Li, H. Yang, and H. V. Jagadish. Constructing a generic
natural language interface for an XML database. In Y. E.
Ioannidis, M. H. Scholl, J. W. Schmidt, F. Matthes, M. Hat-
zopoulos, K. Böhm, A. Kemper, T. Grust, and C. Böhm,
editors, EDBT, volume 3896 of Lecture Notes in Computer
Science, pages 737–754. Springer, 2006.

[250] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In
[281], pages 72–83.

[251] J. Liu and D. M. Gruen. Between ontology and folksonomy:
a study of collaborative and implicit ontology evolution. In
J. M. Bradshaw, H. Lieberman, and S. Staab, editors, IUI,
pages 361–364. ACM, 2008.

[252] Z. Liu and Y. Chen. Identifying meaningful return infor-
mation for XML keyword search. In [98], pages 329–340.

[253] Z. Liu and Y. Chen. Return specification inference and
result clustering for keyword search on XML. ACM Trans.
Database Syst., 35(2), 2010.

[254] Z. Liu, P. Sun, Y. Huang, Y. Cai, and Y. Chen. Chal-
lenges, techniques and directions in building XSeek: an
XML search engine. IEEE Data Eng. Bull., 32(2):36–43, 2009.

[255] Z. Liu, J. Walker, and Y. Chen. XSeek: A semantic XML
search engine using keywords. In [225], pages 1330–1333.

[256] J. Lovins. Development of a stemming algorithm. Me-
chanical Translation and Computational Linguistics, 11:22–31,
1968.

[257] J. Łukasiewicz. O logice trójwartościowej (On three-valued
logic), pages 169–170. Ruch Filozoficzny, 1920.

[258] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and
XPath 2.0 functions and operators. Working draft, W3C,
2005.

[259] F. Manola, E. Miller, and B. McBride. RDF primer. Recom-
mendation, W3C, 2004.

342 bibliography

[260] I. Manolescu, S. Spaccapietra, J. Teubner, M. Kitsuregawa,
A. Léger, F. Naumann, A. Ailamaki, and F. Özcan, edi-
tors. EDBT 2010, 13th International Conference on Extending
Database Technology, Lausanne, Switzerland, March 22-26, 2010,
Proceedings, volume 426 of ACM International Conference Pro-
ceeding Series. ACM, 2010.

[261] C. Marlow, M. Naaman, D. Boyd, and M. Davis. Position
paper, tagging, taxonomy, flickr, article, toread. In Collabo-
rative Web Tagging Workshop. 2006.

[262] J. Marsh. XML base. Recommendation, W3C, 2001.

[263] C. C. Marshall and F. M. Shipman, III. Which semantic
web? In Hypertext, pages 57–66. ACM, 2003.

[264] J. M. Martínez. MPEG-7 overview. Technical Report
ISO/IEC JTC1/SC29/WG11N6828, INTERNATIONAL OR-
GANISATION FOR STANDARDISATION (ISO), 2004.

[265] M. Marx. Conditional XPath, the first order complete XPath
dialect. In [134], pages 13–22.

[266] M. Marx. XPath with conditional axis relations. In [56],
pages 477–494.

[267] M. Marx. First order paths in ordered trees. In T. Eiter and
L. Libkin, editors, ICDT, volume 3363 of Lecture Notes in
Computer Science, pages 114–128. Springer, 2005.

[268] J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. In B. Meltzer
and D. Michie, editors, Machine Intelligence 4, pages 463–502.
Edinburgh University Press, 1969. Reprinted in McC90.

[269] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management system for
semistructured data. SIGMOD Record, 26(3):54–66, 1997.

[270] J. McHugh and J. Widom. Query optimization for XML. In
M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik,
and M. L. Brodie, editors, VLDB, pages 315–326. Morgan
Kaufmann, 1999.

[271] C. Metz. Web 3.0. http://www.pcmag.com/article2/0,
2817,2102852,00.asp, 2007.

[272] H. Meuss and K. U. Schulz. Complete answer aggregates
for treelike databases: a novel approach to combine query-
ing and navigation. ACM Trans. Inf. Syst., 19(2):161–215,
2001.

http://www.pcmag.com/article2/0,2817,2102852,00.asp
http://www.pcmag.com/article2/0,2817,2102852,00.asp

bibliography 343

[273] H. Meuss, K. U. Schulz, and F. Bry. Towards aggregated
answers for semistructured data. In J. V. den Bussche and
V. Vianu, editors, ICDT, volume 1973 of Lecture Notes in
Computer Science, pages 346–360. Springer, 2001.

[274] P. Mika. Ontologies are us: A unified model of social
networks and semantics. J. Web Sem., 5(1):5–15, 2007.

[275] G. Miklau and D. Suciu. Containment and equivalence for
an XPath fragment. In L. Popa, editor, PODS, pages 65–76.
ACM, 2002.

[276] A. Mikroyannidis. Toward a social semantic web. IEEE
Computer, 40(11):113–115, 2007.

[277] G. Miller. WordNet: a lexical database for english. Commu-
nications of the ACM, 38(11):41, 1995.

[278] L. Miller, A. Seaborne, and A. Reggiori. Three implementa-
tions of SquishQL, a simple RDF query language. In [196],
pages 423–435.

[279] T. Milo and D. Suciu. Index structures for path expressions.
In C. Beeri and P. Buneman, editors, ICDT, volume 1540 of
Lecture Notes in Computer Science, pages 277–295. Springer,
1999.

[280] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML ac-
cess control using static analysis. In S. Jajodia, V. Atluri,
and T. Jaeger, editors, ACM Conference on Computer and
Communications Security, pages 73–84. ACM, 2003.

[281] M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller,
J. A. Blakeley, and K. B. Schiefer, editors. (e)Proceedings
of the Thirtieth International Conference on Very Large Data
Bases, Toronto, Canada, August 31 - September 3 2004. Morgan
Kaufmann, 2004.

[282] T. Nelson. Literary Machines. Mindful Press, 1993.

[283] N. F. Noy and M. C. A. Klein. Ontology evolution: Not the
same as schema evolution. Knowl. Inf. Syst., 6(4):428–440,
2004.

[284] N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson,
and M. A. Musen. Creating semantic web contents with
Protégé-2000. IEEE Intelligent Systems, 16(2):60–71, 2001.

[285] C. Ogden, I. Richards, B. Malinowski, and F. Crookshank.
The Meaning of Meaning: A Study of the Influence of Language
upon Thought and of the Science of Symbolism. Harcourt, Brace
& Company, 1938.

344 bibliography

[286] W. C. Ogden and S. R. Brooks. Query languages for the
casual user: Exploring the middle ground between formal
and natural languages. In CHI ’83: Proceedings of the SIGCHI
conference on Human Factors in Computing Systems, pages
161–165. ACM, New York, NY, USA, 1983.

[287] R. O’Keefe and A. Trotman. The simplest query language
that could possibly work. In Proceedings of the 2nd INEX
Workshop. 2004.

[288] D. Olteanu. SPEX: Streamed and progressive evaluation of
XPath. IEEE Trans. Knowl. Data Eng., 19(7):934–949, 2007.

[289] D. Olteanu, T. Furche, and F. Bry. An efficient single-pass
query evaluator for XML data streams. In H. Haddad,
A. Omicini, R. L. Wainwright, and L. M. Liebrock, editors,
SAC, pages 627–631. ACM, 2004.

[290] D. Olteanu, T. Furche, and F. Bry. Evaluating complex
queries against XML streams with polynomial combined
complexity. In M. H. Williams and L. M. MacKinnon,
editors, BNCOD, volume 3112 of Lecture Notes in Computer
Science, pages 31–44. Springer, 2004.

[291] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Look-
ing forward. In A. B. Chaudhri, R. Unland, C. Djeraba,
and W. Lindner, editors, EDBT Workshops, volume 2490 of
Lecture Notes in Computer Science, pages 109–127. Springer,
2002.

[292] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury. ORDPATHs: Insert-friendly XML node labels.
In [364], pages 903–908.

[293] N. Onose and J. Siméon. XQuery at your web service. In
[147], pages 603–611.

[294] E. Oren. Semantic wikis for knowledge workers. Techni-
cal Report, Digital Enterprise Research Institute National
University of Ireland, Galway, 2005.

[295] E. Oren. SemperWiki: a semantic personal wiki. In Proc. of
1st WS on The Semantic Desktop, Galway, Ireland. 2005.

[296] F. Özcan, editor. Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Baltimore, Maryland,
USA, June 14-16, 2005. ACM, 2005.

[297] D. Panagiotou and G. Mentzas. A comparison of semantic
wiki engines. In 22nd European Conf. on Operational Research.
2007.

bibliography 345

[298] J. F. Pane and B. A. Myers. The influence of the psychology
of programming on a language design: Project status report.
In Proceedings of the 12th Annual Meeting of the Psychology of
Programmers Interest Group, pages 193–205. 2000.

[299] J. Paredaens, J. V. den Bussche, M. Andries, M. Gemis,
M. Gyssens, I. Thyssens, D. V. Gucht, V. M. Sarathy, and
L. V. Saxton. An overview of GOOD. SIGMOD Record,
21(1):25–31, 1992.

[300] J. Paredaens, P. Peelman, and L. Tanca. G-Log: A graph-
based query language. IEEE Trans. Knowl. Data Eng.,
7(3):436–453, 1995.

[301] T. J. Parr and R. W. Quong. ANTLR: A predicated- ll(k)
parser generator. Softw., Pract. Exper., 25(7):789–810, 1995.

[302] C. Peirce. On a new list of categories. In Proceedings of
the American Academy of Arts and Sciences, volume 7, pages
287–298. 1868.

[303] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and com-
plexity of SPARQL. In [121], pages 30–43.

[304] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A naviga-
tional language for RDF. In [332], pages 66–81.

[305] E. Pietriga, J.-Y. Vion-Dury, and V. Quint. VXT: a visual
approach to XML transformations. In ACM Symposium on
Document Engineering, pages 1–10. ACM, 2001.

[306] J. Pokorný. Vector-oriented retrieval in XML data collec-
tions. In V. Snásel, K. Richta, and J. Pokorný, editors,
DATESO, volume 330 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

[307] A. Polleres. From SPARQL to rules (and back). In [367],
pages 787–796.

[308] E. Prud’hommeaux and A. Seaborne. SPARQL query lan-
guage for RDF (working draft). Technical Report, W3C,
2007.

[309] Y. Qu. Q2RDF: Ranked keyword query on RDF data. South-
east University, PR China, Tech. Rep, 2008.

[310] F. Radlinski and T. Joachims. Query chains: Learning to
rank from implicit feedback. CoRR, abs/cs/0605035, 2006.

[311] K. Ray. Web 3.0. http://vimeo.com/11529540, 2010.

http://vimeo.com/11529540

346 bibliography

[312] M. Richardson and P. Domingos. The intelligent surfer:
Probabilistic combination of link and content information
in PageRank. Advances in Neural Information Processing
Systems, 2, 2002.

[313] J. Robie. Updates in XQuery. In XML Conference & Exhibiton.
2001.

[314] H. Rode, P. Serdyukov, and D. Hiemstra. Combining
document- and paragraph-based entity ranking. In SIGIR
’08: Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval,
pages 851–852. ACM, New York, NY, USA, 2008.

[315] A. Russell and P. R. Smart. NITELIGHT: A graphical editor
for SPARQL queries. In C. Bizer and A. Joshi, editors, Inter-
national Semantic Web Conference (Posters & Demos), volume
401 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[316] G. Salton, A. Wong, and C. S. Yang. A vector space model
for automatic indexing. Commun. ACM, 18(11):613–620,
1975.

[317] F. Saussure. Course in general linguistics (w. baskin, trans.).
New York: Philosophical Library, 1916.

[318] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation
Language for the Web. Dissertation/ph.d. thesis, University
of Munich, 2004.

[319] S. Schaffert. IkeWiki: A semantic wiki for collaborative
knowledge management. In WETICE, pages 388–396. IEEE
Computer Society, 2006.

[320] S. Schaffert and F. Bry. Querying the web reconsidered: A
practical introduction to Xcerpt. In [4].

[321] S. Schaffert, F. Bry, J. Baumeister, and M. Kiesel. Semantic
wikis. IEEE Software, 25(4):8–11, 2008.

[322] S. Schaffert, F. Bry, J. Baumeister, and M. Kiesel. Semantis-
che wikis. In [61], pages 245–258.

[323] S. Schenk and S. Staab. Networked graphs: a declarative
mechanism for SPARQL rules, SPARQL views and RDF
data integration on the web. In [199], pages 585–594.

[324] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An
efficient connection index for complex XML document col-
lections. In [56], pages 237–255.

[325] T. Schlieder. Similarity search in XML data using cost-based
query transformations. In WebDB, pages 19–24. 2001.

bibliography 347

[326] T. Schlieder and H. Meuss. Querying and ranking XML
documents. JASIST, 53(6):489–503, 2002.

[327] A. Schmidt, M. L. Kersten, and M. Windhouwer. Querying
XML documents made easy: Nearest concept queries. In
ICDE, pages 321–329. IEEE Computer Society, 2001.

[328] N. Schmidt and C. Sas. Software usability: a comparison
between two tree-structured data transformation languages.
In R. Raisamo, editor, NordiCHI, pages 145–148. ACM, 2004.

[329] T. Schwentick. XPath query containment. SIGMOD Record,
33(1):101–109, 2004.

[330] A. Seaborne. SPARQL 1.1 property paths. Working draft,
W3C, 2010.

[331] D. Shasha, J. T.-L. Wang, H. Shan, and K. Zhang. ATreeGrep:
Approximate searching in unordered trees. In SSDBM,
pages 89–98. IEEE Computer Society, 2002.

[332] A. P. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard,
T. W. Finin, and K. Thirunarayan, editors. The Semantic Web
- ISWC 2008, 7th International Semantic Web Conference, ISWC
2008, Karlsruhe, Germany, October 26-30, 2008. Proceedings,
volume 5318 of Lecture Notes in Computer Science. Springer,
2008.

[333] T. Shimizu and M. Yoshikawa. Full-text and structural
indexing of XML documents on B+-tree. IEICE Transactions,
89-D(1):237–247, 2006.

[334] D. W. Shipman. The functional data model and the data
languages DAPLEX. ACM Transactions on Database Systems,
6(1):140–173, 1981.

[335] F. M. Shipman, III and C. C. Marshall. Formality considered
harmful: Experiences, emerging themes, and directions on
the use of formal representations in interactive systems.
Computer Supported Cooperative Work, 8(4):333–352, 1999.

[336] C. Shirky. The semantic web, syllogism, and
worldview. http://www.shirky.com/writings/semantic_
syllogism.html, 2003.

[337] D. Smiley and E. Pugh. Solr 1.4 Enterprise Search Server.
Packt Publishing, 2009.

[338] G. Smith. Tagging: People-powered Metadata for the Social Web
(Voices That Matter). New Riders Press, 2007.

[339] A. Souzis. Building a semantic wiki. IEEE Intelligent Sys-
tems, 20(5):87–91, 2005.

http://www.shirky.com/writings/semantic_syllogism.html
http://www.shirky.com/writings/semantic_syllogism.html

348 bibliography

[340] P. Stickler. CBD—concise bounded description. Online
only, 2004.

[341] M. Strube and S. P. Ponzetto. WikiRelate! computing se-
mantic relatedness using Wikipedia. In AAAI. AAAI Press,
2006.

[342] C. Sun, C. Y. Chan, and A. K. Goenka. Multiway SLCA-
based keyword search in XML data. In [367], pages 1043–
1052.

[343] K.-C. Tai. The tree-to-tree correction problem. J. ACM,
26(3):422–433, 1979.

[344] R. Tazzoli, P. Castagna, and S. Campanini. Towards a
semantic wiki wiki web. In Proceedings of the International
Semantic Web Conferenc (ISWC). 2004.

[345] J. Tekli, R. Chbeir, and K. Yétongnon. An overview on
XML similarity: Background, current trends and future
directions. Computer Science Review, 3(3):151–173, 2009.

[346] A. Termehchy. Keyword and natural language query pro-
cessing for semi-structured data sources. In Proceedings
of the Third SIGMOD PhD Workshop on Innovative Database
Research (IDAR 2009). 2009.

[347] J. Thom-Santelli, M. J. Muller, and D. R. Millen. Social
tagging roles: publishers, evangelists, leaders. In M. Cz-
erwinski, A. M. Lund, and D. S. Tan, editors, CHI, pages
1041–1044. ACM, 2008.

[348] R. Tolksdorf and E. P. B. Simperl. Towards wikis as semantic
hypermedia. In D. Riehle and J. Noble, editors, Int. Sym.
Wikis, pages 79–88. ACM, 2006.

[349] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k ex-
ploration of query candidates for efficient keyword search
on graph-shaped (RDF) data. In [5], pages 405–416.

[350] S. Trißl and U. Leser. Fast and practical indexing and
querying of very large graphs. In [98], pages 845–856.

[351] Z. Vagena, L. S. Colby, F. Özcan, A. Balmin, and Q. Li. On
the effectiveness of flexible querying heuristics for XML
data. In D. Barbosa, A. Bonifati, Z. Bellahsene, E. Hunt,
and R. Unland, editors, XSym, volume 4704 of Lecture Notes
in Computer Science, pages 77–91. Springer, 2007.

[352] M. Völkel and S. Schaffert, editors. SemWiki2006, First
Workshop on Semantic Wikis - From Wiki to Semantics, Pro-
ceedings, co-located with the ESWC2006, Budva, Montenegro,

bibliography 349

June 12, 2006, volume 206 of CEUR Workshop Proceedings.
CEUR-WS.org, 2006.

[353] P. Wadler. Two semantics for XPath. Online only, 2000.

[354] N. Walsh and L. Muellner. DocBook: The Definitive Guide.
O’Reilly, 1999.

[355] J. W. W. Wan and G. Dobbie. Mining association rules from
XML data using XQuery. In J. M. Hogan, P. Montague,
M. K. Purvis, and C. Steketee, editors, ACSW Frontiers,
volume 32 of CRPIT, pages 169–174. Australian Computer
Society, 2004.

[356] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual labeling:
Answering graph reachability queries in constant time. In
L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang, editors, ICDE,
page 75. IEEE Computer Society, 2006.

[357] H. Wang, Q. Liu, T. Penin, L. Fu, L. Zhang, T. Tran, Y. Yu,
and Y. Pan. Semplore: A scalable IR approach to search the
web of data. J. Web Sem., 7(3):177–188, 2009.

[358] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A dynamic
index method for querying XML data by tree structures. In
[182], pages 110–121.

[359] H. Wang, K. Zhang, Q. Liu, T. Tran, and Y. Yu. Q2Semantic:
A lightweight keyword interface to semantic search. In [41],
pages 584–598.

[360] Q. Wang, C. Nass, and J. Hu. Natural language query
vs. keyword search: Effects of task complexity on search
performance, participant perceptions, and preferences. In
M. F. Costabile and F. Paternò, editors, INTERACT, volume
3585 of Lecture Notes in Computer Science, pages 106–116.
Springer, 2005.

[361] F. Weigel. A Survey of Indexing Techniques for Semistruc-
tured Documents. Master’s thesis, Institute for Informatics,
University of Munich, 2002.

[362] F. Weigel, H. Meuss, F. Bry, and K. U. Schulz. Content-
Aware DataGuides: Interleaving IR and DB indexing tech-
niques for efficient retrieval of textual XML data. In S. Mc-
Donald and J. Tait, editors, ECIR, volume 2997 of Lecture
Notes in Computer Science, pages 378–393. Springer, 2004.

[363] F. Weigel, K. U. Schulz, and H. Meuss. The BIRD num-
bering scheme for XML and tree databases - deciding and

350 bibliography

reconstructing tree relations using efficient arithmetic oper-
ations. In S. Bressan, S. Ceri, E. Hunt, Z. G. Ives, Z. Bellah-
sene, M. Rys, and R. Unland, editors, XSym, volume 3671
of Lecture Notes in Computer Science, pages 49–67. Springer,
2005.

[364] G. Weikum, A. C. König, and S. Deßloch, editors. Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004. ACM,
2004.

[365] N. Wiegand. Investigating XQuery for querying across
database object types. SIGMOD Record, 31(2):28–33, 2002.

[366] K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds.
Efficient RDF storage and retrieval in Jena2. In I. F. Cruz,
V. Kashyap, S. Decker, and R. Eckstein, editors, SWDB,
pages 131–150. 2003.

[367] C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, and
P. J. Shenoy, editors. Proceedings of the 16th International
Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007. ACM, 2007.

[368] N. Wirth. What can we do about the unnecessary diver-
sity of notation for syntactic definitions? Commun. ACM,
20(11):822–823, 1977.

[369] P. T. Wood. On the equivalence of XML patterns. In
J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau,
C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey,
editors, Computational Logic, volume 1861 of Lecture Notes
in Computer Science, pages 1152–1166. Springer, 2000.

[370] X. Wu, L. Zhang, and Y. Yu. Exploring social annotations
for the semantic web. In L. Carr, D. D. Roure, A. Iyengar,
C. A. Goble, and M. Dahlin, editors, WWW, pages 417–426.
ACM, 2006.

[371] J. Xu, J. Lu, W. W. 0009, and B. Shi. Effective keyword
search in XML documents based on MIU. In M.-L. Lee,
K.-L. Tan, and V. Wuwongse, editors, DASFAA, volume
3882 of Lecture Notes in Computer Science, pages 702–716.
Springer, 2006.

[372] Y. Xu and Y. Papakonstantinou. Efficient keyword search
for smallest LCAs in XML databases. In [296], pages 537–
538.

[373] J. Yang, Y. Matsuo, and M. Ishizuka. Triple Tagging: Toward
bridging folksonomy and semantic web. ISWC07, page 14,
2007.

bibliography 351

[374] R. Yang, P. Kalnis, and A. K. H. Tung. Similarity evaluation
on tree-structured data. In [296], pages 754–765.

[375] C. Zaniolo. The database language GEM. In D. J. DeWitt
and G. Gardarin, editors, SIGMOD Conference, pages 207–
218. ACM Press, 1983.

[376] H. Zauner, B. Linse, T. Furche, and F. Bry. A RPL through
RDF: Expressive navigation in RDF graphs. In P. Hitzler
and T. Lukasiewicz, editors, RR, volume 6333 of Lecture
Notes in Computer Science, pages 251–257. Springer, 2010.

[377] X. Zhang, G. Cheng, and Y. Qu. Ontology summarization
based on RDF sentence graph. In [367], pages 707–716.

[378] Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu. SPARK:
Adapting keyword query to semantic search. In [8], pages
694–707.

[379] R. Zhou, C. Liu, and J. Li. Fast ELCA computation for
keyword queries on XML data. In [260], pages 549–560.

[380] J. Ziegler and K. Fahnrich. Handbook of Human-Computer
Interaction, chapter Direct Manipulation, pages 123–133.
Elsevier Science, 1988.

[381] M. M. Zloof. Query by example. In AFIPS National Computer
Conference, volume 44 of AFIPS Conference Proceedings, pages
431–438. AFIPS Press, 1975.

[382] A. Zollers. Emerging motivations for tagging: Expression,
performance, and activism. In WWW2007 Tagging and Meta-
data for Social Information Organizations. 2007.

[383] Q. Zou, S. Liu, and W. W. Chu. Ctree: a compact tree
for indexing XML data. In A. H. F. Laender, D. Lee, and
M. Ronthaler, editors, WIDM, pages 39–46. ACM, 2004.

Lebenslauf

2001 Abitur, Rabanus-Maurus-Gymnasium Mainz

2001–2002 Studium Anglistik und öffentliches Recht, Universität Potsdam

2002–2005 Studium Kognitionswissenschaft, Universität Osnabrück

abgeschlossen mit Bachelor of Science in Kognitionswissenschaft
2004 Auslandssemester, Radboud Universiteit Nijmegen

2005–2007 Studium Artificial Intelligence, Universiteit van Amsterdam

abgeschlossen mit Master of Science in Artificial Intelligence
2008– Wissenschaftliche Mitarbeiterin am Institut fr Informatik der LMU München

	Abstract
	Zusammenfassung
	Publications
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 Structure of this Thesis

	Preliminaries
	2 The Semantic Web
	2.1 Vision, Achievements, and Challenges
	2.2 New Directions in Semantic Web Research
	2.2.1 Linked Data
	2.2.2 The Social Semantic Web

	3 Semantic Wikis
	3.1 Wikis: Collaborative Content Creation
	3.2 Semantic Wikis: Concepts and Systems
	3.3 Semantic Wikis: Two Examples
	3.3.1 Semantic MediaWiki
	3.3.2 IkeWiki

	3.4 Searching and Querying in Semantic Wikis

	4 Web Querying
	4.1 Data on the Semantic Web
	4.1.1 Extensible Markup Language (XML)
	4.1.2 Resource Description Framework (RDF)

	4.2 Database-Style Query Languages
	4.2.1 Trees and Documents—XML
	4.2.2 Graphs and Resources—RDF
	4.2.3 Outlook—Versatile Languages

	4.3 Keyword-based Query Languages
	4.3.1 Classifying Keyword Query Languages
	4.3.2 Querying XML
	4.3.3 Querying RDF
	4.3.4 Discussion

	The KiWi Wiki
	5 A Conceptual Model for the KiWi wiki
	5.1 Content
	5.1.1 Content Items
	5.1.2 Fragments
	5.1.3 Links

	5.2 Annotations
	5.2.1 Formal Knowledge Representation—RDF
	5.2.2 Informal to Semi-Formal Annotations—Tags and Structured Tags

	5.3 Social Content Management

	6 Experimental Evaluation: Structured Tags and RDF
	6.1 Experimental Setup and Execution
	6.2 Results
	6.2.1 User Judgments
	6.2.2 Time Requirements for annotations
	6.2.3 Analysis of the Annotations

	6.3 Discussion

	KWQL
	7 KWQL: Design and Model
	7.1 A High Level Look at KWQL
	7.2 KWQL Syntax
	7.2.1 Data Model
	7.2.2 KWQL Terms
	7.2.3 KWQL Bodies
	7.2.4 KWQL Heads
	7.2.5 KWQL Rules

	7.3 A Formal Semantics for KWQL

	8 visKWQL
	8.1 Visual Query Languages
	8.1.1 Form-Based Approaches
	8.1.2 Diagram-Based Approaches

	8.2 Design Goals
	8.3 Language and Editor Features
	8.4 visKWQL Queries in Practice
	8.5 Implementation

	9 Experimental Evaluation: The KWQL User Experience
	9.1 Experimental Setup and Execution
	9.2 Results
	9.2.1 Task 1: Query creation
	9.2.2 Task 2: Query understanding
	9.2.3 User Judgments

	9.3 Discussion

	10 Architecture and Implementation
	10.1 Related Work
	10.2 A Few Words on Injectivity
	10.3 Query Preprocessing
	10.4 KWilt: Architecture and Evaluation Phases
	10.4.1 Keyword Queries
	10.4.2 Structural Constraints
	10.4.3 First-Order Constraints

	10.5 KWQL Sublanguages
	10.5.1 Keyword KWQL
	10.5.2 Tree-shaped KWQL

	10.6 Evaluating a KWQL Query in KWilt
	10.7 Performance Evaluation
	10.8 Outlook

	Extensions
	11 PEST: Approximate Querying of Graph-Structured Data
	11.1 Related Work
	11.2 A Formal Model for Structured Data
	11.3 Computing the pest Matrix
	11.3.1 Weighted Propagation Graph
	11.3.2 Informed Leap
	11.3.3 Properties of the pest Matrix

	11.4 Term Propagation with pest: An Example
	11.5 Validating pest: The Simpsons Wiki
	11.5.1 Experiment: Setup and Parameters
	11.5.2 Comparison with Other Ranking Methods
	11.5.3 User Study
	11.5.4 Performance Evaluation

	11.6 Discussion

	12 Implementation of Structured Tags
	13 Querying RDF with KWQL
	13.1 SPARQL Queries in KWQL
	13.2 Adding a resource for RDF to KWQL
	13.3 RPL Queries in KWQL
	13.4 Discussion

	14 Conclusion
	14.1 Summary
	14.2 Perspectives for Further Research
	14.2.1 Querying Versions of Content Items
	14.2.2 Social Factors in KWQL
	14.2.3 More Expressiveness for KWQL Queries
	14.2.4 KWQL and the Social (Semantic) Web

	Supplementary Material
	A Structured Tags and RDF
	A.1 Introductory Text on Structured Tags
	A.2 Introductory Text on RDF
	A.3 Text A
	A.4 Text B

	B KWQL and visKWQL
	B.1 Introductory Text on the KiWi Wiki
	B.2 Introductory Text on KWQL
	B.3 Introductory Text on visKWQL

	Bibliography

