
Reputation Assessment in
Collaborative Environments

Università degli Studi dell’Insubria

Dipartimento di Scienze

Teoriche ed Applicate – DiSTA

PhD Thesis of:
Lorenzo Bossi

Supervisor:
Prof. Alberto Trombetta

January 7, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università dell'Insubria

https://core.ac.uk/display/322777662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I thank my family who supported me day by day, even in the worst ones
when I can be very grumpy and intractable. I would not have achieved this
goal without them.

A special thank to my advisor, prof. Alberto Trombetta, who led me in
this difficult path being always very patient and supportive.

I want to acknowledge also 7pixel society, with a special mention to
Nicola Lamberti, because they believe in research and financially supported
my PhD.

I am grateful to prof. Tan Kian-Lee who not only gave me a great
opportunity during the last year of my PhD, but also a new hope to finish
it; and eventually kindly accepted to review this thesis.

In addition, my gratitude goes also to dr. Stefano Braghin, who helped
me understanding the PhD lifestyle, made really interesting coffee break de-
bates about coding style and philosophy and pleased me with his friendship.

Last but not least I want to express my gratitude to all the professors,
labmates, coworkers and friends who, sharing moments of their life with
me, made these years memorable. It would be impossible to list everyone is
worth a mention here, so I prefer to close with a simple

Thank you all

Contents

1 Introduction 6
1.1 Problem definition . 7

2 State of the art and related work 11
2.1 Reputation in team formation 12
2.2 Reputation in service composition 14
2.3 Reputation in Wiki environments 15

2.3.1 Semi-structured Wiki 17

3 Reputation in explicit collaborative environments 19
3.1 Case of study: team formation system 22

3.1.1 Reputation in a team formation setting 23
3.1.2 Motivating example 23
3.1.3 The model . 25
3.1.4 Complexity . 30
3.1.5 Experimental results 31

3.2 Generalization: service composition system 36
3.2.1 Motivating example 37
3.2.2 The model . 37
3.2.3 Complexity . 43
3.2.4 Experimental results 43

4 Implicit collaborative environments: the wiki case 46
4.1 Case of study: semi-structured data Wiki 48

4.1.1 Project motivation . 48
4.1.2 Motivating scenario 50
4.1.3 Documents and Templates 51
4.1.4 Our scenario, continued 53
4.1.5 Validation of documents 55
4.1.6 Evolution of templates and documents 56
4.1.7 Interacting with templates and documents 56
4.1.8 Evolution of documents 57
4.1.9 Evolution of templates 59

2

Contents

4.1.10 Revision control support 61
4.1.11 Our framework . 63
4.1.12 Experimental results 64
4.1.13 Reputation system for a semi-structured Wiki 65

4.2 Case of study: Wikipedia . 71
4.2.1 MediaWiki and the Wikipedia community 71
4.2.2 Project proposal . 75
4.2.3 Wikipedia analysis . 76
4.2.4 Results . 82
4.2.5 Reputation system architecture 82

5 Conclusions 85
5.1 Discussion: similarity with recommender systems 85
5.2 Team formation . 88
5.3 Service composition . 88
5.4 Semi-structured data wiki . 89
5.5 Wikipedia reputation system 90

3

List of Figures

3.1 Recommendation, trust and reputation 20
3.2 Team reputation compared to the members’ one 21
3.3 Examples of transitive closure of trust 25
3.4 Similarity relationships between skills 26
3.5 Distribution used to generate the team formation dataset . . 33
3.6 The results for commissioned team in different graphs 35
3.7 Service composition of a working unit execution time 44
3.8 The reputation of selected working unit in different graphs . . 45

4.1 Infoboxes do not enforce any constraint about data 50
4.2 Framework schema for semi-structured wiki 63
4.3 Template update performance test 66
4.4 Wikipedia edits per day . 77
4.5 Registered user (not bot) activity in Wikipedia 77
4.6 Activity in different Wikipedia categories 79
4.7 Overview about activity of different user groups of Wikipedia 80
4.8 Different activity per user group in Wikipedia 81
4.9 Registered users’ activity compared to administrators’ one . . 81
4.10 Wiki reputation system architecture 82

4

List of Algorithms

1 Team formation extended reputation function 28
2 Team selection given a user (egocentric team) 30
3 Generalized team selection . 31
4 Service composition extended reputation function 41
5 Service composition of a working unit 42

6 Validation after a document update 56
7 Validation after a template update 58

5

Chapter 1

Introduction

The popularity of open collaboration platforms is strongly related to the
popularity of Internet: the growing of the latter (in technology and users) is
a spring to the former. With the advent of Web 2.0, not only the Internet
users became from passive receiver of published content to active producer
of content, but also active reviewers and editors of content.

With the increase of popularity of these platforms, some new interesting
problems arise related on how to choose the best one, how to choose the
collaborators and how evaluate the quality of the final work.

This evolution has brought much benefit to the Internet community, es-
pecially related to the availability of free content, but also gave rise to the
problem of how much this content may be trusted. In the pre-digital era,
professional reporters were designated to gather information and newspaper
redactors to validate, filter and only eventually publish it. This mechanism
guarantees – or makes its best to guarantee – the quality of the news re-
ported. But nowadays a lot of news is published on websites that do not
have this kind of filter. Overall, this can be seen as a good point since it
lets information flow outside places where the “traditional” system is not
allowed, such as countries in war or under totalitarianism. The problem is
that without this filter at the source of information, the final user that has
to make his own filters to discern real information from the manipulated
one, deciding which source is trustworthy and which one is not.

Similar problems arise when we have to deal with an online collaborative
environment. People cooperate because they are aware that together they
can reach better result than if they work one by one. In the pre-Internet era,
people looked for collaborators in their friend network, so that they already
knew the candidate collaborators. This let them make – usually – good
decisions, because they already trust the others and know that they can
work peacefully and well all together. With the new era of Web 2.0, a lot of
websites are born to help people find coworkers, usually each one specialized

6

Chapter 1. Introduction

in some very narrow field. Starting from LinkedIn1, which is a social network
that let you browse for professionals through the friendship connections;
a lot of other websites let you not only look for people but also directly
and actively work with them: for example writing code (e.g. GitHub2,
SourceForge3); composing music (e.g. Kompoz4, Digital Musician5); doing
handmade works (e.g. instructiontables6, kollabora7) and many others. All
these websites make the task to find a coworker so much easy that it becomes
tricky again: if looking for a particular skill in the friend network can result
in a very small group of persons, or even no one, looking for the same skill
in a world wide community can result in a huge set of persons, too many to
contact one by one to find the best coworker required. A filter is needed in
order to reduce this set and this filter must be good in order to present to
us only the best – often for a very personal definition of “best” – people.

These problems can be addressed using reputation systems, which let us
rank people according to their public reputation and so infer from this a
personal level of trust we want grant to them.

The purpose of this thesis is to present different reputation systems suit-
able for collaborative environments; to show that we must use very different
techniques to obtain the best from the data we are dealing with and, even-
tually, to compare reputations systems and recommender systems and show
that, under some strict circumstances, they become similar enough and we
can just make minor adjustment to one to obtain the other.

1.1 Problem definition

It is quite easy to see that the terms trust and reputation denote concepts
involving several subjective features related to a wide range of human ac-
tivities and behaviors. As such, framing them into a – more or less – formal
definition is far from trivial. Many different approaches have been pro-
posed [30].

Starting from the definitions given by The Oxford Dictionary of English,
we can read that reputation is:

A widespread belief that someone or something has a particular
characteristic.

On the other hand, trust is defined as:

1http://www.linkedin.com/
2https://github.com/
3http://sourceforge.net/
4http://www.kompoz.com/
5http://www.digitalmusician.net/
6http://www.instructables.com/
7http://www.kollabora.com

7

http://www.linkedin.com/
https://github.com/
http://sourceforge.net/
http://www.kompoz.com/
http://www.digitalmusician.net/
http://www.instructables.com/
http://www.kollabora.com

Chapter 1. Introduction

The firm belief in the reliability, truth, or ability of someone or
something.

The main difference between these definitions is that reputation quantifies
a public opinion, while trust is totally a subjective value.

For the purposes of this thesis, we need some stricter definitions in order
to describe better the reputation systems. So, for trust we stick with the
informal definition given by Jøsang [37], namely:

Trust is the extent to which one party is willing to depend on the
other party in a given situation with a feeling of relative security,
even through negative consequences are possible.

By using this trust definition, we define reputation as an aggregation of trust
from different people.

Another key concept is that both reputation and trust are relative on a
particular characteristic of the subject. Therefore, in a teamwork environ-
ment, the trust is not related to one person, but to a particular competence
of a person. Therefore also reputation – which we have just defined as an
aggregation of trust – must be related to the pair of person and skill.

In real world scenarios it is common for a person to have different rep-
utations, which may be totally unrelated. For example consider someone
who has a very high reputation as singer but a very low reputation as cook.
Differently, if one is a very good singer maybe she/he is also a fairly good
musician. This happen because skills are not totally unrelated with each
other. Thus, the knowledge of the reputation of someone with respect to a
particular skill can be used to infer the reputation about some other (related)
skill.

Reputation depends also by the reference group of people. For example,
a musician can have a very high reputation between people who share the
same taste in music, let’s say they like pop music, but a low reputation
between people from a different interest, let’s say rock.

We must bear in mind all this concepts when we discuss about reputation
systems, because if the target system is very narrow and deals with very
focused user skills we can omit these distinction and deal just about a single
value for a user reputation; but if the system is quite wide and deals with
different user competences, we must deal with a set of reputation for each
user, otherwise we risk to misevaluate people and give wrong suggestions.

Among all the different kinds of mass collaboration systems [23], this
thesis will follow describing two different types of them, classified considering
the interactions that users have in the system itself: explicit collaborative
environments and implicit collaborative environments.

In the explicit collaborative environments, users look for coworkers in
order to achieve a common goal; they have the possibility to choose people
to work with and to create – usually – small teams. In this scenario it is

8

Chapter 1. Introduction

easy evaluate the quality finally achieved by soliciting a direct feedback from
the team members, because the quality of the teamwork is subjective and
depends on personal experience. We will discuss this collaborative environ-
ment in Chapter 3 where we will present two different scenarios: a team
formation system and a service composition system.

In the team formation system (Section 3.1.1) we will show how to create
a graph of trust to attach to an existent social network. In this graph each
user is identified by a set of competences and two users are connected if the
first one trusts the second one with respect to a given skill. We will show
that it is possible to create an algorithm that computes the quality of a team
with respect to the personal opinions of each member and we will show that
is possible to extend this algorithm to propose teams given a set of skills
needed to fulfill a job.

In the service composition system (Section 3.2) we will deal with Internet
of Things and cloud computing services by showing how we can adapt the
previous network to create a service aggregation system. In this scenario
the input of the algorithm is a set of services required and the output is the
best selection of platform. We use the reputation of the services – which is
an aggregation of reliability and mutual compatibility – to choose the best
platform.

The perspective will totally change analyzing the implicit collaborative
environments in the Chapter 4. In this scenario the users are part of a single
big community that shares a common goal which is not well defined. In
this case it is impossible to ask directly opinions about other users because
(i) although different users can have different visions about how to reach
the goal, everyone can contribute somehow to it; (ii) the community is too
big and (iii) the teams are not well defined, in the sense that new users
frequently join a sub-community, contribute for a while and eventually leave
it, without really knowing or choosing other contributors.

We will discuss two case of studies, both related to Wiki systems, and
we will see how constraint imposed on the data recorded by the wiki change
– and simplify – the analysis and therefore the reputation system.

The first case of study deals with a wiki for semi-structured data. This
kind of wiki is not popular yet but – since can be used to solve different
open problems (see Section 4.1.1) – it has found a good interest in the
research community. We use as reference the model specified in the Sec-
tion 4.1 and discuss how to attach an attack resistant reputation system in
the Section 4.1.13.

The second case of study is focused on a classical wiki that stores plain
text pages. In this scenario we use Wikipedia8 as model and show in Sec-
tion 4.2 how a statistical model can be used to find the best user among
the most active contributors. We show and validate its result using the Ital-

8http://www.wikipedia.org/

9

http://www.wikipedia.org/

Chapter 1. Introduction

ian Wikipedia, but since our model is language independent and semantic
unaware, it works with every textual Wiki.

10

Chapter 2

State of the art and related
work

Reputation evaluation is a relevant task because it can help cope with a
lot of issues that people face when dealing with big online communities.
Unfortunately, the lack of formal definitions and different scenarios where
reputation systems can be applied, results in models and results that are
very difficult to compare.

In a widely cited survey [36], Jøsang et al. noticed that, even though
reputation systems are already being used in successful commercial online
applications and there is a rapidly growing literature around this area, the
research activity is not very coherent because authors often propose new sys-
tems from scratch, without trying to extend and enhance previous proposals.
In this work, the authors recall that trust can be classified in different ways
according to its purpose [30]: i.e. identity trust describes the belief that an
agent identity is exactly what it claims, and it can be achieved using some
authentication schema; delegation trust describes trust in an agent that acts
and makes decision on behalf of the relying party and cannot be achieved
by any sort of authentication, no matter how complex it is. They classify
trust also according to its semantic in a two dimensional space: the first
dimension describes that trust can be subjective, when an agent provides
a rating based on a subjective judgment, or objective when it is computed
by formal criteria; in the second dimension trust can be specific when it
measures only an aspect, such as the ability to deliver on time; or – as the
opposite – it can be general when it averages different aspects.

Mezzetti proposes a socially inspired reputation model [49] for web ser-
vices, concluding with a proposal of a trust aware naming service.

Reputation can be used in wireless sensor networks too as a measure of
the quality of a node, resulting in a better throughput at the price of a little
more energy consumption [50].

A problem often faced when dealing with reputation systems is how to

11

Chapter 2. State of the art and related work

aggregate feedback from different sources. In [27] the authors show that a
simple arithmetic mean is not always the best choice because it is a good
indicator only when ratings are unbiased and normally distributed. Unfor-
tunately, this is not a normal scenario in real world data. They show that
with real world data the weighted mean is in general more informative, while
the median is more robust.

The importance of reputation in community is highlighted in [45], where
the authors propose also an abstract model for it. In their simulations the
authors show that there is a need for collaborative systems that allow large
group of professionals to make decisions better than single individuals.

A good overview of different reputation systems can be found in [26],
where the authors discuss the importance – and the difficulty – of making
a manipulation resistant reputation system. The idea is that if malicious
users can alter the results provided by a reputation system, the system itself
becomes totally useless since no one will trust its results anymore.

Because of this big variety of models and proposals, in this thesis we will
focus mainly on the related work closer to the topic we will discuss in the
next chapters: reputation in team formation and in wiki environments.

2.1 Reputation in team formation

As it is relatively easy to track the behavior of users of an online social
network and – more in general – structured communities, such information
can help in forming teams and performing/solving a given set of tasks.

A framework similar to what we will discuss in Section 3.1.1 is pre-
sented in [42], where the authors model a system to manage users, tasks
and skills. The compatibilities among users are inferred from an underlying
social network. The social network is represented as an undirected, edge-
weighted graph, where the weights denote how well the corresponding users
may collaborate. Thus, the problem is to find, given a task t, a subgraph of
the social network such that every skill needed for accomplishing t is pos-
sessed by at least one node in the subgraph. It is shown that this problem
is NP-Hard and accordingly, approximation algorithms that perform well
in real-world datasets are given. However, similarities among enumerated
skills are ignored in that approach. Likewise, past interactions among users
in previously formed teams are overlooked.

In [14], a similar framework (tasks, skills, etc.) is taken into account
but here the problem is how to optimally allocate the users’ skills to cope
with multiple, concurrent tasks. As in the previous work, the allocation of
skills takes into account the social interactions among users, as recorded by
a social network. The model presented in this work is utility-based. That is,
given a set of concurrent tasks that require certain skills, the aim is to find
a skill allocation that maximizes the probability of successfully completing

12

Chapter 2. State of the art and related work

the highest number of tasks. Thus, the problem is orthogonal to what we
study here. Furthermore, again the effect of interactions among users being
involved in past teamwork is not taken into account.

The problem of how to define and compute trust in an online com-
munity is a well-known and thoroughly researched problem. It has been
analyzed and modeled with very different approaches. One of them consists
of computing transitive closure of trust in a single dimensional model using
subjective logic [35]. Other approaches are probabilistic, like in [74] where
authors propose a model to compute trust of generic provider agents; while
in [60] authors develop a probabilistic multidimensional trust model focused
on how trust can be propagated in a real-world scenario of a supply chain
market. In [61] authors compute trust in a multidimensional network where
agents can estimate the utility of a contract by computing the probabil-
ity that each dimension of a contract can be fulfilled. They also propose
a protocol to propagate rumors and compute trust in a totally distributed
network.

A similar scenario, where a multidimensional network is used to auto-
matically make recommendations to users, is described in [40]. In this work
the authors use a multidimensional social network on a Flickr dataset to
suggest potentially interesting users. They create a multidimensional graph
where every node is a user and edges on a single dimension represent some
kind of relation between users (i.e. both commented the same photo). Fi-
nally they aggregate information from all the dimensions to create a list
of similar users to suggest. User’s feedback about suggestions is used to
correct the weight used to aggregate the different dimensions.

A method to propagate social trust through friendship relations is pre-
sented in [52]. The purpose of this work is to compute the popularity of the
users in the system. The authors show that their approach can be used to
model the friendship effects in a social network (i.e. a person followed by a
popular person is likely to have more followers).

Pizzato et al. describe, in various works [56, 57, 58], the people-to-people
class of recommender systems using the case of online dating. They focus on
the fact that this kind of recommender systems differ from the traditional
items-to-people recommenders as they must satisfy both parties and they
call this type of recommenders reciprocal. They also notice that, in such
kind of recommenders, the cost of a poor recommendation can be quite high
because users are more afraid of continuous rejects from other people than
wrong suggestions on purchasable items.

In [47] Masthoff discusses how a system can aggregate recommender
information from individual users to make a recommendation for a group
of users (i.e. suggest which movie to watch among certain friends). For
multidisciplinary team recommendation, coverage of the necessary skills as
well as collective compatibility among the members of the team are essential,
and this work looks at these issues that are typically studied in isolation in

13

Chapter 2. State of the art and related work

a holistic manner.

2.2 Reputation in service composition

Internet of Things (IoT) is a novel paradigm that is receiving an increasing
interest from the research community [3, 64, 69]: the increasing number
of things that are able to communicate wireless (RFID and NFC sensors,
mobile phones, wearable computers, etc.) leads to the idea that these things
– communicating together – could reach some common goal.

It is already possible to see some preview of this technology: for example
smart phones are already capable of discovering open networks and it is
possible to find NFC tags used as smart label for contact less payment.
But the base idea of IoT is that interactions must be easier and wider.
In order to reach this goal a lot of effort is made in developing standard
protocols to discover services and provide communications among different
devices [32, 67].

Standard service discovery protocols are already widely used: for exam-
ple Simple Service Discovery Protocol (SSDP) – a part of Universal Plug
and Play (UPnP) protocol1 – is designed mainly for residential networks to
let PCs, printers and routers seamlessly discover each other and configure
themselves for data sharing.

Research in service composition is focused on developing richer languages
to describe services: for example in [7] authors analyze composing semantic
web services using a constructive description logic; in [10] authors proposed
a language to define security constraints to check during the phase of service
discovery and filter the services required in the service composition phase.
A similar work is proposed in [20] where an ontology-based annotation is
used to define security constraints using the DAML-S protocol.

To the best of our knowledge, one of the first works that proposed a
reputation model for service composition is presented in [43], where the
authors described a model that uses an ontology to enforce similarity checks
between services, but computes the reputation – in a quite naive way – as
the average of users’ vote in a given context (i.e. the application domain).

In [73] a model is presented to evaluate QoS in service selection. Each
service is ranked by different non-functional properties – in their example:
(i) execution price, (ii) execution duration, (iii) reputation, (iv) reliability
and (v) availability – in order to select the overall best service. Also in this
work, reputation is defined as the average ranking given to the service by
end users.

1http://www.upnp.org/

14

http://www.upnp.org/

Chapter 2. State of the art and related work

2.3 Reputation in Wiki environments

The concept of wiki – intended as an online platform for open collaboration
that allows people to add, modify or delete information, in the form of text
– is a relatively old idea. The first wiki was developed in 1995 by Ward
Cunningham [29], but the popularity of this approach grew in 2001 with
the launch of the Wikipedia project that, nowadays, ranks in the top-ten
most-visited websites worldwide.

The wiki model, that lets everyone edit its contents, naturally poses a
lot of questions about how reliable such contents are. Wikis work because
volunteers collaborate adding information, and one of the fundamental prin-
ciples on Wikipedia is the assumption that editors’ edits and comments are
made in good faith. Nevertheless wiki information can be wrong in many
different ways: someone can write wrong content but in good faith, some-
one else writes to support his/her own point of view against all the others,
eventually there are also just vandals who like to simply destroy content.
Moreover, wiki information is written in plain text with all the issues that it
implies: it is possible to find good information so poorly written to be dif-
ficult to read and understand, or very bad information written so well that
seems plausible and all the different shading between these two extremes.
In general it is very difficult to discern the textual presentation from the
underlying information.

Several studies had addressed these problems; one of the most cited was
published in 2005 in Nature [28], where the authors assert that scientific
articles from Wikipedia came close to the level of accuracy in Encyclopædia
Britannica and have a similar rate of “serious errors”.

Since this work, a lot of research was made to evaluate both Wikipedia
content or users – often called Wikipedians. As we will discuss further in
Section 5.1, the difference between evaluating content and evaluating users
who produce it is very scarce.

We can group the approaches used to evaluate Wikipedia roughly in
three different big categories:

1. text survival, where the underlying idea is that textual information
that remains unchanged for long time is better than text that is edited
very fast;

2. information visualization, where information like text similarity or edit
history is organized in a graph to identify recurring patterns that can
discriminate good versus bad content;

3. machine learning techniques, where Wikipedia categories like Featured

15

Chapter 2. State of the art and related work

articles2, Stubs3 or Disputed4 are used to create a ground truth of good
and bad pages that is used to train a classifier with features extracted
from the pages themselves.

In [2] Alder and Alfaro present a reputation system based on text sur-
vival. They evaluated their system using Italian and French Wikipedias
showing that their system shows a good predictive value because changes
made by low-reputation authors have a larger probability of being undone
compared to high-reputation authors’ changes.

In [59] the authors introduce the impact of an edit as a measure of how
many views it has. The idea is that edits on most viewed pages have a
higher impact than edits on less viewed pages. Their proposed model uses
a text survival approach but, instead of measuring just the time that a text
survives, they measure the text life as number of its views. They concluded
the work proposing a classification of damages that users can make.

WikiTrust [19] is an extension for Firefox browser which colors text of
Wikipedia based on its reputation. Text gains reputation if it is revised by
high-reputation authors, and authors gain reputation if their text survives
for subsequent edits.

In general, one common problem of the text survival approach is that it
is difficult to track when a text is moved from one page to another, because
this information does not emerge from any log and there are too many pages
to search for common text among them. Unfortunately is quite common in
Wikipedia to split a page, when it becomes too big, in smaller ones or to
move text from pages to other more appropriate ones.

In [62], Sabel develops a tool which displays revisions of a Wikipedia page
in a tree based on the similarity of the text. By analyzing the ramification of
the tree it is possible to recognize some visual patterns typical of edit wars
and vandalism acts. Sabel shows that good articles usually have a linear
growth.

In [72] authors propose a dynamic Bayesian network to compute article
trust using as features the author trust and the amount of insertion and
deletion for each article revision.

In [65], Swarts discuss about the collaborative construction of informa-
tion – that is called “facts” in the paper – on Wikipedia. Starting from
the premise that knowledge is not fixed, he shows how people collaborate
in Wikipedia to produce articles. Swarts does not focus his work on the
quality of the facts, but in the process that makes them emerge, grow and
stabilize in accepted information by the community.

2http://en.wikipedia.org/w/index.php?title=Wikipedia:Featured_

articles&oldid=576658176
3http://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_Stub_

sorting/Stub_types&oldid=575430035
4http://en.wikipedia.org/w/index.php?title=Template:Disputed&oldid=

546562025

16

http://en.wikipedia.org/w/index.php?title=Wikipedia:Featured_articles&oldid=576658176
http://en.wikipedia.org/w/index.php?title=Wikipedia:Featured_articles&oldid=576658176
http://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_Stub_sorting/Stub_types&oldid=575430035
http://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_Stub_sorting/Stub_types&oldid=575430035
http://en.wikipedia.org/w/index.php?title=Template:Disputed&oldid=546562025
http://en.wikipedia.org/w/index.php?title=Template:Disputed&oldid=546562025

Chapter 2. State of the art and related work

Another analysis about team collaboration in Wikipedia is made in [70],
where the authors created a social network connecting Wikipedia coauthors
and showed that also distrust can be beneficial to the articles’ quality, when
distrust is accompanied by a high activity on the talk pages.

A deep analysis of conflicts in Wikipedia is made in [71], where the au-
thors analyze how edit wars are made and, eventually, conclude that usually
they are fought by few editors only.

A sort of reputation systems focused on Wikipedia administrators is
shown in [17], where the authors develop a way to quantify the suspicious
activity of an administrator measuring his focus on controversial topics.
The idea is that Wikipedia administrators have great power because they
can block the edit on controversial pages or even block authors, so an ad-
ministrator that act maliciously can modify a hot topic and mold public
opinion.

2.3.1 Semi-structured Wiki

One of the main purposes of a reputation system in a Wiki is to stimulate the
community to contribute more and better in increasing the shared knowledge
preserved by the Wiki.

In this scenario the reputation system becomes a sort of game with a
purpose where, through a process of gamification, the reputation score is
seen by the users as an index that they need to increase to show their
engagement in the community [33, 38].

On the other hand, the purpose to collect better data in the wiki system
can also be achieved by offering better tools to store, edit and validate the
data. Traditional wiki systems work very well with plain text but have
a lack of support to structured data. Unfortunately, as is it well known,
most information is better represented by structured – or, possibly, semi-
structured – data rather than plain text or wiki markup language.

Classical wiki systems handle structured data through infoboxes5. An
infobox is a template page which is designed to be included in other pages,
pages can pass variables to the template, so infoboxes are used to display
similar information sharing the same layout in different pages. The problem
with infoboxes is that they do not support any kind of constraints to validate
the corresponding data, nor a system to evolve automatically data with
respect to a new version of the template. All this work is made manually
by the community, but this leads to some inconsistency in the presentation
of the data, especially in the less visited pages. As such, different projects
have been proposed in order to cope with this issue.

To the best of our knowledge, the most mature work closest to what is
discussed in Section 4.1 is present in [9] in which the authors describe a pro-

5http://en.wikipedia.org/w/index.php?title=Help:Infobox&oldid=455091951

17

http://en.wikipedia.org/w/index.php?title=Help:Infobox&oldid=455091951

Chapter 2. State of the art and related work

totype for a wiki for structured data. The main difference with our proposal
is that they manage only one – usually fairly big – XML document. It turns
out that the considered schemas are simpler than ours: for example, they do
not allow specification of the datatype of the tree structure. Rather, the au-
thors focus on query language issues. They are developing a powerful query
language which enables selecting only a fragment of the XML queries based
on various constraints which can involve also annotation on nodes. Finally
they support only two types of schema updates: (i) insertion that happens
automatically when inserting a data which require a schema extension and
(ii) deletion which delete also the corresponding data subtree.

A very early prototype is Data Wiki6. Developed at Google Labs and
now moved to Appspot, it lets users to add, modify and delete tuples from
a table.

Other works deal only with the schema evolution. We think that the
most important contribution for our context is presented in [41] in which
the authors propose a conceptual model for XML Schema evolution. They
use a graphical environment to define schemas and schema update. Then
some normalizations are performed on updates to minimize the updates
themselves. After schema update, they recheck document validity and per-
form a document update. But there’s no way to update node values on
documents. Another interesting work is [31], where the authors define a set
of update primitives for XML Schema. They study which evolution prim-
itives are known not to compromise documents validity. Then, they use a
labeling process to keep track of the document portions whose validity might
have been compromised so they can revalidate only subtree to speedup the
process. Their approach to documents’ evolution consists on the detection
of the minimal modifications required to make the documents valid for the
evolved schema. But only document structure can evolve, not document
data.

Since semi-structured wikis are still in a stage of research and – with
some minor exception – not used by the public, it is difficult to find works
that describe a reputation system for this environment. To the best of our
knowledge, the only one is described in [25] where their primary scope was
to develop a recommender system for any kind of data. To achieve this,
they modify a wiki to manage structured data (i.e. movies and restaurant).
The problem is that they need to develop a new module for every schema.

We will discuss reputation systems for semi-structured wikis in Sec-
tion 4.1.13.

6http://datawiki.appspot.com/

18

http://datawiki.appspot.com/

Chapter 3

Reputation in explicit
collaborative environments

It is a well known fact that cooperation is the way to achieve the most
ambitious goals. Cooperation is the key to put different competences and
qualities together to achieve a common purpose, something that cannot be
done by only one person or using only one service.

The problem is that with the advent of Web 2.0, both the resources
– people and services – are so overabundant that it becomes difficult to
find the best ones to cooperate. The risk is that when there are too many
alternatives, eventually it is like have none of them; because analyzing all
of them becomes too difficult and makes it almost impossible to have a wise
choice.

Usually people ask for some recommendation to friends in order to have
some suggestions and orientate within so many possibilities; the problem
is that sometimes we do not have friends with the specific competence or
knowledge to give us the recommendation we request. In this case a rec-
ommender system can solve the problem: with an automatic system it is
easier to aggregate large amounts of data and use this widespread knowl-
edge to make a personalized recommendation. In teamwork and explicit
collaborative scenarios it is important to have tailored recommendation,
since everyone is looking for something different: the same service can have
different reviews according to the expectations of the user, also a coworker
can be seen in a very different way according to temperament affinity.

We recall the definition of trust and reputation from Section 1.1, where
we defined trust as a personal belief that someone or something will act as ex-
pected, while reputation is taken as an aggregation of trust since reputation
represents a public opinion. In this chapter we will also define reputation
in a slightly more precise way as the transitive closure of trust. We will use
also the word recommendation as the relation that is symmetric of the trust
relation (see Image 3.1).

19

Chapter 3. Reputation in explicit collaborative environments

Trust

Recommendation

Trust

Recommendation

Trust

Reputation

Indirected trust

Figure 3.1: Recommendation is the relation symmetric of trust, the transi-
tive closure of trust is considered a reputation

In our approach, reputation is computed locally, so – in principle – every
user may compute a different reputation based on his/her previous personal
experiences with other users (asymmetry). Informally, a user is encouraged
to report truthful information about his/her previous interactions because
every user privately computes the reputation of other users. Hence, misre-
porting information has consequences only on his/her own reputation com-
putation. In order to compute the reputation of a user from the point of
view of another, in the absence of direct trust information, the system infers
it by searching for a trust path between the two users (trust transitivity).

The core idea of this work is to define algorithms that maximize the over-
all internal reputation for teams or services. It is important to understand
that this process can not be simplified as selecting the entities with highest
reputation. Consider the example given in Figure 3.2): someone needs to
perform a certain task, s/he worked successfully in the past with both Cat
and Dog and they are proficient in the skills required to accomplish the said
task. Nevertheless, a team with both Cat and Dog as members is not op-
timal – thus, the team does not reach its fully potential nor maximizes the
team reputation value – because such users do not work well together. It
is better if the team master choose Canary instead of Cat even though its
reputation is lower, because the overall team reputation will be higher.

20

Chapter 3. Reputation in explicit collaborative environments

++ ++
+

+

--

+

Figure 3.2: The reputation of a team is not just the sum of its members’
reputation

21

Chapter 3. Reputation in explicit collaborative environments

3.1 Case of study: team formation system

Often one needs to form teams in order to perform a complex collaborative
task. Therefore, it is interesting and useful to assess how well constituents
of a team have performed in the past, and leverage this knowledge to guide
future team formation.

With the advent of Web 2.0, social networking and crowd-sourcing tech-
nologies, there is an increasing trend of collaborative teamwork in online
environments. This is naturally receiving an ever-growing academic atten-
tion as well [14, 60, 42].

Previous work (as seen in Section 2.3.1) focuses on how to find an optimal
solution for the allocation of users for accomplishing the given tasks, taking
into consideration how well the users are mutually compatible. Compati-
bility among users may be extracted from external sources, like interaction
graphs in online social networks. User skills are often determined by the
system by fiat and in a static, immutable manner. More precisely, a set of
users – each possessing some skills – and a set of tasks, that need certain
skills to be accomplished are assumed a priori. Then, upon requiring that a
certain set of tasks has to be performed (from now on, for simplicity we con-
sider the case in which there is a single task to be performed), the “best” set
of users having the required skills is provided, thus forming the best suited
team for the task.

In this section, we present a framework for team formation in which the
assessment on how good a user is in a given skill is determined dynamically,
depending on, among other things, the judgments or feedback ratings that
the user had obtained when performing tasks requiring similar skills. Natu-
rally, taking into account users’ ratings lends itself to a system dealing with
the reputations of the users themselves. That is, users – by giving (and re-
ceiving) ratings about the work other users have done (and about the work
they have done) – form a web of trust such that (i) two users are directly
connected if one rated the work done by the other; (ii) the overall reputation
of a user (with respect to a given skill) is computed as an aggregate value of
the ratings (relative to such skill) given by other users; (iii) the perception
of the reputation of user u from the point of view of another user v depends
on the reputations and ratings of the users connecting (possibly by multiple
hops over the web of trust) users u and v.

An important aspect of the presented work is that we take into account
how skills are related among them. In other words, we consider the skills
to be similar (in varying degrees) and this contributes in determining who
are the best team members that can cope with the task to be performed.
The computation of reputation takes into account skills’ similarities thanks
to the “multi-dimensionality” of the web of trust, that takes into account
users’ ratings for every skill, along with information about skills’ similarities.
We next outline and discuss some relevant points concerning how reputation

22

Chapter 3. Reputation in explicit collaborative environments

may be computed and used in assembling the best possible team for a given
task.

In this work we propose a model for assessing the reputation of partici-
pants in collaborative teams. The model takes into account several features
such as the different skills that a participant has and the feedback of team
participants on her/his previous works. We validate our model based on
synthetic datasets extrapolated from real-life scenarios.

3.1.1 Reputation in a team formation setting

In real-world settings it is fairly common to have different reputations, de-
pending on the different skills that are being evaluated. Furthermore, such
reputations may be correlated, given that the corresponding skills are sim-
ilar and can be different according to the reference group (see the example
in Section 3.1.2). We try to capture this natural phenomenon in our model.
Once a team has been formed, team members may rate each other about
the work done. We assume that every team member sees everything that
has been done by every other team member. While performing such ratings,
they add to the reputation system new information regarding the trust they
have about particular skills of other users. Features that should be rated
may vary from how well a team member collaborates with others or his/her
effective skill on a given topic. In this fashion, the reputation of a user is
determined not only on the basis as assessed by the team recommendation
system (an ex-ante process which derives information by graph mining and
information retrieval mechanisms [14, 8, 42, 39]), but also on the ex-post
judgment of one’s peers. Doing this operation they add in the reputation
system new information about the trust they have about particular skills of
others.

The ex-ante rating process of a user may include the judgment about
him/herself or the judgment of another high-reputation user. Note that such
judgment is given before the team recommendation process has occurred.
The last point is particularly relevant in assessing the ex-ante reputation
of unregistered users, since they are allowed by the team recommendation
system. Thus, the overall reputation is taken into account in future team
recommendations.

3.1.2 Motivating example

In order to show how such concepts may be related to finding the right
people for performing a given task, we consider the following scenario. Alice
is a singer who wants to find people capable of composing songs (that is,
their music and lyrics) and play them as well. Since Alice is not good in
composing, she looks for help from Carl, a composer she knows. In doing so,
she is depending on him and implicitly taking the associated risks of failure

23

Chapter 3. Reputation in explicit collaborative environments

because she trusts him.
Alice also looks for a guitarist, but she does not know anyone with such

skill. Thus, she asks some of her friends for a recommendation, with the
goal to find some good – that is, with a high reputation – guitarist. From
the collected suggestions, Alice has to choose only one person. In doing this,
Alice takes into account how much she trusts the friend that made the sug-
gestion and how much such friend trusts as guitarist the suggested person.
It is not sufficient for Alice to trust her friend on a general ground, rather
it is essential that Alice trusts him/her as an expert in rating musicians.
It is thus very important that both reputation and trust are relative about
a particular skill (as suggested in [53]). In real-world scenarios it is com-
mon for a person to have different reputations, which may show a degree of
correlation among themselves.

That is, Alice does not trust any recommendation of her musician friends,
but she trusts the recommendation of another friend of her, who is very
knowledgeable in music trends. This may succeed because skills are not
totally unrelated among each other. Thus, the knowledge of the reputation
of someone with respect to a particular skill (rating music) can be used to
infer the reputation about some other related skill (rating a guitarist).

Asking for a recommendation is thus based on a sort of transitive closure
of trust. But, generally speaking, trust cannot be assumed to be a transi-
tive relation [15] unless consider further constraints [37] are specified. In
our approach, we explicitly pose such constraints by introducing a similar-
ity function over a given set of skills. Skills are not considered as independent
from one another, but we take into account the fact that if one possesses a
given skill then it is highly probable that she/has some proficiency in an-
other, related one. We use such skill similarity in order to build transitive
trust relationships among users that do not have direct connections. As a
consequence (as we will explain formally in Section 3.1.3) one of the more
relevant features of our approach is that a user may have different repu-
tations about a given skill, depending on which user is asking for it. In
literature, such feature has been referred to as asymmetry of reputation and
plays a fundamental role in guaranteeing the trustworthiness of users’ rat-
ings, as explained in [54]. The fact that the users’ reputations are computed
in an asymmetric way takes into account that one’s reputation in a given
skill s depends on – of course – on the expertise she/he has in skill s, but
also on the expertise that other raters have in skills related to s.

Furthermore, consider that Alice needs a drummer, too. None of her
friends knows such a musician, and she looks for recommendations from
friends of her friends. This way of proceeding can be iterated and if every-
one in the sequence of recommendations is trustworthy, Alice accepts these
recommendations by means of a chain of trust, that is a directed graph in
which the node relative to person A is connected with a directed edge to the
node relative to person B if A trusts B.

24

Chapter 3. Reputation in explicit collaborative environments

We present in an informal way how reputation is managed in our ap-
proach by explaining a possible way for Alice to decide over three candi-
dates, as shown in Figure 3.3a. The first one is considered untrustworthy by
a trustworthy person (Dave) and Alice decides against this candidate; the
second one is recommended by Eve and – since Alice does not consider Eve
trustworthy – she decides against this candidate as well; Alice finally accepts
the recommendation from Carl because refers to a trustworthy person rec-
ommended only by trustworthy persons. Furthermore, an important issue
is how to deal with different – possibly discording – recommendations. This
happens fairly often in real-world situations as well: people may choose to
trust more the ratings coming from persons “closer” to them (that is, chains
of trust involving the minimum number of persons); or they may opt for rat-
ings from the persons with highest reputation (disregarding the “distance”
from such persons). As we will explain in the model (Section 3.1.3), we aim
at finding a chain of trust that minimizes its length while maximizing the
reputations of the recommenders included in it. Hence, in the example in
Figure 3.3b, if Alice asks for the reputation of Greg in playing guitar, she
has two different paths. We remark that in the computation of the reputa-
tion, the similarity of the skills are taken into account by adding a weight
on an edge connecting two persons (the higher the weight, the less similar
the relative skills)

The shortest one (from Steve) has the first edge labeled with a skill very
different from playing guitar, so its weight is very high. For this reason, the
longer path weighs less than the previous one and it is used to compute the
reputation.

Alice

Drummer 1Drummer 3 Drummer 2

DaveCarl Eve

TrustDistrustTrust

Trust Trust Distrust

(a) Alice prefers the last drummer be-
cause is a trustworthy person recom-
mended by a person she trust (Carl)

Alice

Dave Bob

Greg

Steve

Pianist

(0.9)

Bassist

(0.8)
Guitarist

(0.9)

Disk Jockey

(0.9)

Guitarist

(0.6)

(b) To compute the reputation of the
guitarist Greg as seen by Alice, we
use the longer path because edges are
labeled by skills more similar to gui-
tarist

Figure 3.3: Examples of transitive closure of trust

3.1.3 The model

We now set up the model in which we define in a precise way the concepts
sketched so far. We assume a finite set U = {u1, . . . , un} of users, that will

25

Chapter 3. Reputation in explicit collaborative environments

be grouped in teams. We also assume a finite set S = {s1, s2, . . . , sk} of
skills which users are apt to perform (i.e. playing an acoustic guitar, bass
or violin). Skills may be related, and we introduce a similarity function

l : S × S → [0, 1]

to take into account such relationships. We write l(s, s′) to denote the
probability that given the presence of skill s it is likely that s′ is present as
well. For example, over a set of music-related skills, one may assume that if
a user is skilled in playing the acoustic guitar, she/he should be more likely
able play the electric guitar than the bass guitar. On the other hand, a user
proficient into playing acoustic guitar may not be able to play trumpet, in
general.

Furthermore, we assume that the similarity function l satisfies the fol-
lowing (rather intuitive) properties:

1. ∀s ∈ S, l(s, s) = 1, which means that every skill is semantically similar
to itself, and that

2. ∀s, s′ ∈ S, l(s, s′) = l(s′, s), which means that a skill s is similar to
another skill s′ as much as s′ is similar to s.

We do not assume that l holds a transitivity-like or triangular-like properties
such that ∀s, s′, s′′ ∈ S, if l(s, s′) = x and l(s′, s′′) = y then l(s, s′′) ' x (or y)
or ≤ x+ y. In fact, given the similarity values between s and s′ and the one
between s′ and s′′, nothing can be inferred about the existing relationship
between s and s′′ (as shown in Figure 3.4). The exact definition of the
similarity function depends of the problem instance.

s

s'

s''

x

y

?

Figure 3.4: Similarity relationships between skills

In our model, both users and tasks are characterized by a set of skills.
The user’s skill set identifies her/his competences, while the skill set of a
task denotes the competences required to accomplish it. Note that a user
may participate in solving different, concurrent tasks – contributing with at
least one of her/his skills – and a task may be accomplished by different
teams of users having the required skills.

As introduced in Section 3.1.1, the goal of the presented work is to
find the best team to successfully accomplish a given task t characterized

26

Chapter 3. Reputation in explicit collaborative environments

by a set of skills St = {s1, . . . , sm}. To do this, we take advantage of
ratings assigned to each user from her/his past team co-members. Thus,
the proposed model does not only leverage on skills’ competence as declared
by a user, but on such competences as defined by other users according to
their past experiences interacting with her/him. In such a way, ratings may
help in building teams that aim to maximize productivity and collaborative
efforts. The ratings associated with a single user uf coming from user ui
are the values of a function r defined below, which depend on a given skill
s, as well.

The reputation function r is defined as

r : U × U × S → [−1, 1]

where r(ui, uf , s) denotes the reputation that user uf has on the skill s as
assessed by the user ui. More precisely, the reputation value is 0 if uf has
a neutral competence in the skill s – according to ui –, 1 if uf is considered
very competent in s and −1 if uf is considered not competent with respect
to s.

The reputation function r induces a weighted, labeled, directed multi-
graph G over the set U of users: two users ui and uf are connected by a
directed edge labeled with s and weighted with the value x if (and only if)
the reputation function is such that r(ui, uf , s) = x.

In general, when dealing with large online communities, we may assume
that the graph G is not completely connected, which means that it is unlikely
that all users directly know each other. Hence, we do not have all the possible
reputations for all the possible users over all the existing skills. Moreover,
we may assume that directly connected users have common interests, that
is, they may possess similar skill sets [63].

Based on such assumptions, we propose an algorithm for computing the
reputation on a skill s, between two users not necessarily directly connected
in G by an edge labeled with skill s.

This is achieved by searching the shortest path SP (ui, uf) in G between
ui and uf such that its edges satisfy the following condition: given a skill
s ∈ S and an edge e ∈ E, the weight of the edge e with respect to s, denoted
by ws(e) is computed as:

ws(e) =
1

l(s, s(e)) · (2 + r(e))
(3.1)

Informally, Formula 3.1 assigns higher weights to edges with skills not
similar to the requested one (when they are totally different the similarity
function is null, so the weight is infinite) and with low reputation. In this
way, the algorithm yields a shortest path having edges with highest reputa-
tion labeled with skills more similar to the requested one. Furthermore, we
require that ∀e ∈ SPs(ui, uf)r(e) ≥ 0, unless uf is the head of the edge e.

27

Chapter 3. Reputation in explicit collaborative environments

We introduce this constraint because in a chain of trust – recall its definition
in Section 3.1.2 – one does not want rankings from untrusted sources. On
the other hand, the last edge may be negative because, in such a case, we
trust a negative opinion expressed by a trusted source. We refer to such a
path between two nodes as the admissible path.

Having defined what is an admissible path between two nodes in G, we
now proceed to describe how to compute the reputation between them with
respect to a skill s ∈ S. We define an extended reputation function

r∗s : U × U → [−1, 1]

that takes as input a pair of users ui, uf and measures the reputation that
ui has of uf about skill s. The computation of the extended reputation
function is based on the reputation values defined, by the different users, on
the edges composing an admissible path between ui and uf . It is described
in Algorithm 1 and is the minimum value of the reputation multiplied the
similarity between the skills found on the admissible path.

Data: The skill s to search for the reputation
Input: The admissible path SPs(ui, uf) between two users
Output: The extended reputation function r∗s(ui, uf)
begin

rep = null;
for e ∈ SPs(ui, uf) do

rep = min(rep, l(se, s) · re);
end
if rep == null then

return 0;
else

return rep;
end

end
Algorithm 1: Computation of the extended reputation function

We have now the tools required to compute suggested teams for a given
task t. We propose two possible scenarios. At first we consider that the
user asking for the task t wants to be a member of the team which will
accomplish t. Later on, we generalize the approach assuming a scenario in
which who commissioned the task is not going to be involved in it.

Reminding that a task t is defined over a set of skills st = {s1, . . . , sn},
our objective is to find a set (or, team) of users T ⊆ U such that:

1. all the skills required to accomplish the task are provided by the team
members, which means that st ⊆

{⋃
u∈T su

}
;

28

Chapter 3. Reputation in explicit collaborative environments

2. each team member contribute to the fulfillment of the task with at
least a skill, which means that ∀u ∈ T , su ∩ st 6= ∅;

3. the size of the team is the smallest possible, in the sense that there
are no redundant members;

4. the reputation of the team is maximized.

Based on the function r∗ previously described, we define the reputation
of a team T = {u1, u2, . . . , un} as the average of the reputation of all its
members. More formally

r(T) =

∑
u∈T

∑
v∈T\{u} r

∗
sv(u, v)

|T |(|T | − 1)
(3.2)

In the first scenario, in which we remind the user u who asked for the
resolution of the task is also a member of the team, the algorithm first selects
the “best” skill for the existing user. This is done choosing the skill with
the highest reputation score according to the edges having u as end node.
After this, the algorithm searches for the best user for each remaining skill.
This is achieved exploring the shortest paths, rooted in u, searching for the
best team member for each skill (see Algorithm 2).

The generalized version of the proposed algorithm, which is suitable
for the second scenario where a customer searches for a team, is shown in
Algorithm 3. In this version, the algorithm searches for the best team in
order to complete the required task according to the available reputation
values.

Following the previous example, suppose that someone wishes to com-
pose a simple jingle. Suppose further that this task can be accomplished
by two persons, say Alice and Bob or Alice and Carl. Alice is a singer
while Bob and Carl are guitarists. Alice never worked before with Bob nor
with Carl, so she has not an opinion about them (r(Alice,Bob, guitar) =
r(Alice, Carl, guitar) = 0). But she worked with Dave who worked both
with Bob and Carl. Alice has a strong reputation on Dave, who plays bass,
so she trusts him and, since bass and guitar are quite similar, she trusts his
opinion more than Eve’s one who is saxophonist. In this case, to compute
r∗guitar(Alice,Bob) we can choose two different path. We prefer Dave’s opin-
ion for Formula 3.1, because Dave’s skill is more similar to what we need to
estimate than Eve’s one. While the definition of admissible path is used to
enforce the constraint that we need a chain of trust, not of distrust: suppose
that there is also Ted, who worked with everyone. He is a guitarist, so his
opinion should be the strongest one to evaluate Bob and Carl. But Alice
has a very bad reputation of Ted, so she does not trust him and does not
want his opinion infers her choice (recall Figure 3.3).

29

Chapter 3. Reputation in explicit collaborative environments

Data: A map userskill between skills and a list of users who possess
that skill

Input: A task t = {s1, . . . , sn}, an initial user u ∈ U , a searching
depth limit d

Output: A team T or ⊥ if such team can not be found within depth
d

begin
su = select best skill(su ∩ st, u);
userskill = ∅;
for each user u′ distant at most d from u do

for each skill s′ of u′ do
if s′ ∈ st then

userskill[s′].add(u′);
end

end

end
if userskill does not contain at least a user for each skill in
st \ su then

Failed to find a suitable candidate for some task skill;
return ⊥;

end
for every team T in userskill do

compute r(T ∪ u) and return the team with maximum
reputation

end

end
Algorithm 2: Team selection given a user (egocentric team)

3.1.4 Complexity

The core of the algorithms consists in finding the admissible path between
users. Since the admissible path is the shortest path with respect of the
weight Function 3.1, we can use Dijkstra’s shortest path algorithm to find
it. Dijkstra’s algorithm finds the shortest path between two users in time
O(|U |2) (where U is the set of users). Computing the extended reputation
requires a fixed number of mathematical operations for each edge of the
admissible path (see Algorithm 1), so we can consider the complexity of the
extended reputation function to be the same as Dijkstra’s shortest path.

The reputation of a team consists of the average of the reputation be-
tween each pair of members (see Function 3.2). Hence, for a team T , we
compute |T | · (|T | − 1) reputations.

In the worst case to compute the reputation of one team requires O(|T |) ·
O(|U |2) steps. Given the facts that the size of the team is significantly

30

Chapter 3. Reputation in explicit collaborative environments

Data:
Input: A task t = {s1, . . . , sn}, a searching depth limit d
Output: A team T or ⊥ if such team can not be found within depth

d
begin

T = ∅;
for u ∈ usersdistantatmostdfromthecustomer do

T ′ = select egocentric team(t, u, d);
if T ′ 6= ⊥ then

if r(T) < r(T ′) then
T = T ′;

end

end

end
if T 6= ∅ then

return T ;
else

return ⊥;
end

end
Algorithm 3: Generalized team selection

smaller than the total number of users and that it is upper bounded by the
number of skills, we can consider O(|T |) limited by a constant. Therefore
the final time complexity of the algorithm is O(|U |2).

3.1.5 Experimental results

In what follows we present the experimental results of the proposed ap-
proach. To the best of our knowledge there are no public datasets on team
collaboration. Therefore, in order to evaluate the proposed approach, we
needed to generate test data.

The prototype

In order to create the dataset and test our algorithms we developed a Java
prototype which uses the JUNG1 library to store and manage the user graph.
We used JUNG’s implementation of Dijkstra’s shortest path algorithm to
find the path between to users used to compute their reputation. Because
this is the most time consuming operation, it’s very important to implement
a cache to store this results (the pair of users, the skill and the computed
reputation) in order to speed up our proposed team formation algorithms.

1http://jung.sourceforge.net/

31

http://jung.sourceforge.net/

Chapter 3. Reputation in explicit collaborative environments

Hence, we implemented a caching mechanism to improve the overall perfor-
mances.

Dataset generation

The dataset used in the evaluation of the proposed algorithms have been
generated in such a way that they respect the properties of real world social
network graphs. Thus, to be comparable with real data. In particular, many
studies show that complex networks’ vertex connectivity follows a power law
distribution, because new vertices connect preferentially with already well
connected ones [1, 4]. Thus, to make a dataset suitable for our purposes, we
create a graph of users where the edges – representing the past interactions
between users – follow a power law distribution. To obtain such a graph, we
take advantage of a well known social graph generation algorithm from Epp-
stein [24] (see [11] for a more comprehensive discussion on graph generation
algorithms). We tweak the algorithm so that the generated graphs resemble
the Extended Epinions dataset [46] because, to the best of our knowledge,
it is the real-world dataset which is the most similar to what we need for
evaluating our algorithms.

We defined 10 skills connected in a binary tree, and a similarity function
based on their distance in it: if it is greater than the half of the longest
path we consider the skills unrelated. In this way we model a non linear and
quite complex relation of similarity which can be suitable for a real scenario
where, let’s say, there is a big competence area divided in subareas each of
them is composed by other subareas. In this case it is logical to consider
two subareas of the same quite related each other, and two areas too distant
in the graph unrelated. We consider 10 skills to be sufficient to describe the
competences of a significantly large community, as stated – for example –
by U.S. National Research Council [55] in the case of Computer Science.

The assignment of the skills to users is made using different algorithms
in order to simulate different degrees of cohesion in the community. The
number of skills of a given user is a random number drawn with geometric
distribution (Figure 3.5a), since in this way there are few users with many
skills, while a large number of users have only a few of them. Starting with
a subset of users, we uniformly select a skill for each user in such subset.
For each of such skills, we then randomly generate a set of related skills and
we assign them to the neighbors of the users in the initial subset.

After that, we use a beta distribution (Figure 3.5b), modeled according
to real rating from Epinions dataset, to compute at random his reputation
as seen from other users. We chose such a distribution type, because it
better fits the Epinions data.

For our experiments, we generated a set of social graphs of various sizes.
Namely consisting of 50 to 200 users. The complete statistics of such graphs
are presented in Table 3.1.

32

Chapter 3. Reputation in explicit collaborative environments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8

Geometric(.75)

(a) User’s skill number is defined by a geometric distribu-
tion

 0

 0.5

 1

 1.5

 2

 2.5

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Beta(19, 7)

(b) Users’ rating are generated from a beta distribution
scaled in [−1; 1]

Figure 3.5: Distribution used to generate the team formation dataset

33

Chapter 3. Reputation in explicit collaborative environments

Users Competences
Users # Reputations similarity (avg) similarity (avg)

50 65 0.542773 0.718668
100 283 0.560407 0.659207
150 757 0.547320 0.611460
200 1286 0.493560 0.580858

Table 3.1: The statistics of the generated datasets

Evaluation

To evaluate the algorithms, we performed several series of tests with the
datasets generated. For each dataset we identified the top user for each
skill, which means the user with the highest reputation for a given skill
according to its incoming edges.

We simulated only the scenario in which a user wants to perform a task
being one of the member of team (Algorithm 2) because the scenario in which
a user wants to commission a task to some other users is a generalized version
of the first one, where the first algorithm is called multiple time for each
possible team leader (Algorithm 3). That is, the team formation algorithm
is required to find the remaining members of a team able to perform a
given task. We limited the search of suitable users to different distances
d ∈ {4, 5, 6} noticing that, while increasing the search distance from 4 to 5
there is sensible growth of the average reputation, using searching distance
greater than 6 does not change the quality of the results.

We compare the reputation of the generated team with those of the
team composed by the top users and the teams created substituting each
user of the original team with the corresponding top user (excluding the
user who requested the generation of the team). Figure 3.6 shows the team
reputations using a cumulative distribution function.

We can observe that, on average, the teams generated by the proposed
algorithms have a better reputation score than the ones consisting only of
top users and than the teams in which we substituted a member with a top
user, especially when the user graph became bigger, because it statistically
became more difficult to have a top user near the selected team. We remind
that the computed reputation takes into account indirect trust, therefore the
computed value is greatly affected by the subjective trust that each user has
in the other members of the team. Hence, according to the presented exper-
imental results, we can say that the proposed algorithm is a suitable mean
to identify cohesive teams which should, reasonably, fulfill the appointed
tasks.

34

Chapter 3. Reputation in explicit collaborative environments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

Reputation

team
with best max
with best avg

only best users

(a) Graph with 100 users

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

C
D

F

Reputation

team
with best max
with best avg

only best users

(b) Graph with 150 users

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

C
D

F

Reputation

team
with best max
with best avg

only best users

(c) Graph with 200 users

Figure 3.6: The results for commissioned team in different graphs

35

Chapter 3. Reputation in explicit collaborative environments

3.2 Generalization: service composition system

In this section we discuss how to extend the previous model to work in a
totally different context with a slightly different definition of reputation.

Internet of Things (IoT) and Web of Thing (WoT) are two new paradigms
that are built on the idea that nowadays we are surrounded by a variety of
things which are able to connect each other to interact and reach a common
goal. The idea of both of these paradigms is that, if the things communi-
cate using a standard protocol, with the proper discover protocols they can
interact in an easy way simplifying – with a potentially high impact – the
every day life and behavior of potential users.

The difference is that in the former paradigm objects communicate using
protocols built directly on the top of TCP, in the latter they communicate
using web protocols built on the top of HTTP. The strength of the former
consists in more flexibility and capability – i.e. bidirectional communication
sockets – while, on the other hand, the latter makes service composition
and test easier also for not programmers – let’s think that it is possible to
interact with REST interfaces using a normal browser.

For example, imagine a domotic hotel room: instead of using a remote for
the television, another one for the air conditioner and searching the desk for
the restaurant menu, a smartphone could initiate a discovery protocol to find
all the nearby smart objects, discover the television, the air conditioner, the
restaurant website and – using some well known standards – automatically
create an interface to interact with them. The big advantage of this approach
is that the interface will be uniform and localized in the user’s language,
freeing him/her from the need to understand and learn how to use the new
remote each time he/she moves to another hotel.

In this scenario, standardization is essential to let all the devices commu-
nicate with each other. Service discovery protocols are important too to let
users make queries like find all the nearby devices or find an online rock ra-
dio station. Service composition tools must be so easy to use to let everyone
compose a service like play the web radio station to the closest stereo and
pause it when my phone is making a call ; last but not least, it is important
to have reputation tools to rank and filter services.

When the services are potentially unlimited, and deal with sensible data,
it is essential to filter and use only the trusted ones: if my phone can talk
with the bus stop sign to retrieve the bus timetable and pay the ticket, I
want to be sure that I’m buying a real ticket and not a faked one; if I ask
my television to show a webcam of Prague, I want to choose between a
list of webcams ranked by decreasing quality, for some – maybe complex –
definition of quality, i.e. best sight, possibility to remote control it and so
on.

36

Chapter 3. Reputation in explicit collaborative environments

3.2.1 Motivating example

In this section we discuss about how to attach a reputation system to a
service composition system. We will not deal about how to discover services
or how to connect them, our assumption is that already an infrastructure
exists for it or – if it does not exist or is not completely automatized – it is
supported by manual work.

In this scenario imagine someone who wants to set up a new e-commerce
website. In order to work, the website needs a set of services: a web hosting,
a database, a payment service, a mail tracking service, a datasheet provider
to automatically fill the technical specification of the item sold.

Nowadays usually – especially for small projects – people do not bother
too much to find these services because they rely on some well known one.
For example database and web hosting are typically bought from the same
provider, well known payment services are hard coded in the website and
technical specifications of items are written by hand or totally missing, leav-
ing the duty to find them to the user.

In an IoT scenario, all these services are exposed and described in some
standard language that makes them discoverable and understandable by
search engines. Hence it is possible to query the search engine and obtain
a list for each service needed. At this point the problem becomes choosing
the services to use among all the possibilities. In this scenario – as in the
one described in Section 3.1.1 – reputation cannot be computed globally;
imagine for example a very popular and high quality database service, it is
better to discard it, despite its high reputation, if it exposes the API only
for Ruby and the website is written in PHP. On the other hand, if we have
a website written to use MySQL but we find a better database service that
uses PostgreSQL, we can consider migrating to it because the little effort to
change the website is worth the better service.

In our model a service can recommend another one when they are con-
nected by a trust relation. In this case trust measures an aggregation of
different factors: mainly API compatibility or known problems in service
composition. Also users can recommend services, the idea is that their rec-
ommendation is based on a trust computed by slightly different aggregation
of factors: for example a user can evaluate better the quality of the assistance
service or the respectfulness of the service level agreements.

The aggregation of these trusts, computed locally to the requester, gives
the reputation of the service. Thus the reputation is used to rank and select
the “best” service aggregation according to the user’s request.

3.2.2 The model

The model presented in this section is an extension of the one presented in
Section 3.1.3; to summarize we can say that the main difference consists in

37

Chapter 3. Reputation in explicit collaborative environments

adding the support for the users who provide reputations but no services.
In order to support this change we had to modify the algorithm to compute
reputation and alter all the definitions to fit the new scenario.

We assume a finite set SP = {sp1, . . . , spn} of service providers, that
will be grouped in working unit WU to perform some complex task. A
finite set of reputation provider RP = {rp1, . . . , rpm} contains whatever in
the system can provide reputations but not services (i.e. users or service
comparison aggregators).

We also assume a finite set S = {s1, s2, . . . , sk} of service types that
are provided by the service providers (i.e. cloud storage, database server,
web hosting). Services can be interchangeable, in the sense that it is always
possible to exchange two service providers when they offer the same service
and is likely to exchange two service providers when the services are similar
enough to be exchanged with minimum modification in the system. There-
fore we introduce a measure of the service interchangeability l : S×S → [0, 1]
informally defined as follows:

• l(s, s′) = 1 iff s′ can be used in every situation where s can be used
(e.g. they offer the same database model and version);

• l(s, s′) ∈ [0.5, 1) iff the services can be exchanged with minor effort
(e.g. different databases but with the same language specification);

• l(s, s′) ∈ (0, 0.5) iff the services can be exchanged with big effort (e.g.
different web hosting with different language support);

• l(s, s′) = 0 iff s′ is a totally different service compared to s (e.g. a
random number generator and a web hosting).

Furthermore, we assume that the interchangeability function l satisfies
the reflexive property – namely ∀s ∈ S, l(s, s) = 1, which means that every
service can be exchanged with itself.

We do not assume that l holds a transitivity-like or triangular-like prop-
erty, because knowing the difficulty to migrate from a service s to a service
s′ and from s′ to s′′ does not let us infer any relation between s and s′′ that
could be the same service or a total different one.

We do not even require a symmetric property, because even though it
seems reasonable – i.e. the effort required to migrate from MySQL to Post-
greSQL is reasonably similar to the one required to change back – it is
completely wrong when it is possible to simulate service with another one
that offer a larger set of API – i.e. it is easy to simulate a key-value pair
storage using an SQL server, but the opposite is far from trivial.

In our model, we define a working plan – WP – as a subset of service
types. It defines the sketch of the project, itemizing the services needed.
The algorithm we propose takes as input a working plan and provides as
output the working unit with the highest overall reputation able to fulfill

38

Chapter 3. Reputation in explicit collaborative environments

the working plan requested. We highlight the fact that the service types
exposed by the working unit may be different by the service set requested by
the working plan, because we think that is better to make a little effort and
change the initial plan to use a highest reputation service – more reliable for
example – instead of changing nothing and using a very low quality service
provider. Besides, the service interchangeability function assures that the
changing effort is always minimized and worth the reputation increase.

In this model, each service provider is identified by its set of services
exposed, as example note that almost every web hosting service provides
a database service too. Nevertheless, the reputation of the same service
provider can be different regarding which service type we are considering.
Our algorithm considers this issue by looking for the best matching of the
service type, and not service provider. Therefore it can happen that a service
provider has an unused – but required – service if the algorithm is able to
select a higher reputation service provider for it.

To find the best working unit to successfully accomplish a given working
plan WPt = {s1, . . . , sw}, we take advantage of ratings assigned by each
reputation provider and service provider. Thus, the proposed model does
not only leverage on service provided as declared by a service provider, but
on such quality as defined by other – both service and reputation – providers
according to their past experiences interacting with it.

We recall that a service provider can express a trust value upon another
one according to internal policy (like API compatibility or commercial agree-
ment). But if we only rely on them the risk is to find a very low connected
and highly clustered graph centered on the biggest providers. We also miss
an entry point for the user who has a working plan to implement. Whereby
we introduced in the model the reputation providers as entities that provide
only reputation. A user is a reputation provider that can trust services as
well as other reputation providers – coworker for example – and so the entry
point in the graph is the reputation provider represented by the user who
is projecting a working plan, so the algorithm uses his/her connections to
discover the services requested by the working plan.

In such a way, ratings may help in building working units that collect
service providers that are known working well together, maximizing produc-
tivity and minimizing connecting effort.

For the sake of readability, we introduce a new set P = SP ∪RP which
aggregate every entity that can provide reputation – both service and rep-
utation providers – and we will call it just provider.

The reputation function r collects all the trust values in the systems.
Formally is defined as

r : P × P × S → [−1, 1]

where r(pi, pf , s) denotes the trust that the entity pf has gained on the
service type s as assessed by pi, from −1 (totally distrusted) to 1 (totally

39

Chapter 3. Reputation in explicit collaborative environments

trusted). The precise semantic is a bit tricky and depends on what is eval-
uating what (service or reputation provider). An evaluation between two
reputation providers can assert the competence regarding the usage of the
service or the credibility of the evaluated. An evaluation between two service
providers can assert the API compatibility or special commercial agreement
like discount if using both of them. An evaluation from one service provider
to one reputation provider can be related to some sort of certified user, like a
company that certifies its consultants or known aggregators. Eventually, an
evaluation from one reputation provider to one service provider is – usually
– the one that contains direct usage experience as seen by some user, team
or organization.

The reputation function r induces a weighted, labeled, directed multi-
graph G over the set P of providers: two providers pi and pf are connected
by a directed edge labeled with s and weighted with the value x if (and only
if) the reputation function is such that r(pi, pf , s) = x.

In general, when dealing with large online communities, we may assume
that the graph G is not completely connected, which means that it is unlikely
that all the providers have a direct reputation about all the others.

Based on such assumptions, we propose an algorithm for computing the
reputation of a service provider pf , according to the required service s, as
seen by an entity pi ∈ P not necessarily directly connected in G by an edge
labeled s to pf .

This is achieved by searching the shortest path SP(pi, pf) in G between
pi and pf such that its edges satisfy the following condition: given a service
s ∈ S and an edge e ∈ E, the weight of the edge e with respect to s, denoted
by ws(e) is computed as:

ws(e) =
1

l(s, s(e)) · (2 + r(e))
(3.3)

Informally, Formula 3.3 assigns higher weights to edges with services
very different from the requested one (when they are totally different the
interchangeability function is null, so the weight is infinite) and with low
reputation. In this way, the algorithm yields a shortest path having edges
with highest reputation labeled with services most interchangeable to the
requested one. Furthermore, we require that ∀e ∈ SPs(pi, pf), r(e) > 0,
unless pf is the head of the edge e. We introduce such a constraint because
in a chain of trust – recall its definition in Section 3.1.2 – one does not want
rankings from untrusted sources. On the other hand, the last edge may be
negative because, in such a case, we trust a negative opinion expressed by a
trusted source. We refer to such a path between two nodes as to admissible
path.

Having defined what is an admissible path between two nodes in G, we
now proceed to describe how to compute the reputation between them with

40

Chapter 3. Reputation in explicit collaborative environments

respect to a service s ∈ S. We define an extended reputation function

r∗s : P × SP → [−1, 1]

that takes as input a provider pi, a service provider pf and measures the
reputation that pi has of pf about the service s. The computation of the
extended reputation function is based on the reputation values defined by
the different providers, on the edges composing an admissible path between
pi and pf . It is described in Algorithm 4 and is the minimum value of the
reputation multiplied the interchangeability between the services found on
the admissible path.

Data: The service s to search for the reputation
Input: The admissible path SPs(pi, pf) between two providers
Output: The extended reputation function r∗s(pi, pf)
begin

rep = null;
for e ∈ SPs(pi, pf) do

rep = min(rep, l(se, s) · re);
end
if rep == null then

return 0;
else

return rep;
end

end
Algorithm 4: Computation of the extended reputation function

We have now the tools required to compute the reputation for a given
working unit and, therefore, to select and rank the highest reputation work-
ing unit that can fulfill a given working plan.

Firstly we define the reputation of a working unit W as seen from the
reputation provider u ∈ RP – who is looking for the service aggregation –
based on the function r∗ previously described, as the average of the reputa-
tion of all its service providers and the contractor u. More formally

ru(W) =

∑
p∈W∪{u}

∑
p′∈W∪{u}\{p} r

∗
sp′

(p, p′)

|W |(|W |+ 1)
(3.4)

Reminding that a working plan is defined over a set of service types, our
goal is to find a set of service providers – the working unit – such that:

1. all the services required in the working plan – or some easily inter-
changeable service – are provided by some service provider;

2. each service provider contributes providing at least one service;

41

Chapter 3. Reputation in explicit collaborative environments

3. the size of the team is the smallest possible, in the sense that there is
at most one service provider for each service required;

4. the reputation of the working unit is maximized.

The exact process is described in Algorithm 5, informally what we do is
looking for all the service providers at a known distance from the provider
that requested the composition. For each service requested we create a list
of all the providers that can provide it or an easily exchangeable one –
according to the defined service interchangeability function l – and compose
from it all the possible working units. We compute the reputation for each
working unit and return the highest one, or an error if no working unit is
found.

Data: A map providers between services and a list of providers that
can provide a compatible service

Input: A working plan Wp = {s1, . . . , sn}, the node u ∈ P that
initiated the request, a searching depth limit d

Output: A working unit W or ⊥ if such unit can not be found
within depth d

begin
services = ∅;
for each service provider p distant at most d from u do

for each service s of p do
for each service s′ of Wp do

if l(s, s′) ≥ 0.5 then
providers[s′].add(p);

end

end

end

end
if providers does not contain at least a service provider for each
service in Wp then

Failed to find a suitable candidate for some task skill;
return ⊥;

end
for every working unit W ∈ providers do

compute ru(W) and return the working unit with maximum
reputation

end

end
Algorithm 5: Service composition of a working unit

42

Chapter 3. Reputation in explicit collaborative environments

3.2.3 Complexity

As in the team formation algorithms described in Section 3.1, also the core
of the Algorithm 5 consists in finding the admissible path between two en-
tities. Therefore, all the considerations made in Section 3.1.4 are still valid
and we can consider the complexity of this algorithm as the complexity re-
quired to find the shortest path between the two providers. Using Dijkstra’s
algorithm, the time complexity is O(|P |2), where P is the set of providers.

3.2.4 Experimental results

The algorithm presented in this section was tested with an enhanced version
of the prototype described in Section 3.1.5. It selects the 10% of nodes
that have the highest ratio between outgoing and incoming reputation as
reputation providers, all the other nodes are labeled as service providers.

In this prototype we relaxed also the constraint that trust must be a
symmetric relation: in the previous one it was a reasonable constraint be-
cause we considered trust as a relation modeled after a teamwork, so if two
persons have worked together it is reasonable to think that both of them
have a certain degree of trust – maybe different and related to different skills
too – considering the other. In this case this constraint is not reasonable
anymore because if someone trusts a service there is no reason to think that
the service must have any knowledge of the person who is using it – also if
it is not strictly forbidden.

The tests were made on an Intel R© CoreTM i7 3.40GHz PC with 8GB of
RAM. Note that the prototype is not highly parallelized so its execution time
does not fully benefit of the multi-core architecture. The average execution
time for each service composition request is displayed in Figure 3.7, and it
goes from 7 seconds for the smallest graph (50 nodes) to 42 minutes for the
biggest graph (130 nodes). Also with these few points it is possible to spot
that the execution time is exponential in the size of the graph.

Figure 3.8 displays the reputations for different service aggregation re-
quested from a random reputation provider that require a random set of
services. Using a cumulative distribution function, the graphs show the
probability that a working set has reputation lower than the given x value.
We can see that the working set selected by our algorithm has higher rep-
utation compared to the one aggregating only the services with the highest
reputation for the services type requested. Generally speaking, changing
only one service with the one with the highest reputation is enough to drop
the working unit overall reputation. There are only some exceptions in
the graphs with 70, 110 and 130 nodes (Figures 3.8b, 3.8d and 3.8e) where
changing only one service could lead to comparable – sometimes even slightly
better – results. These cases can be easily explained seeing the graph struc-
ture, where some very high reputation provider is well connected with a lot

43

Chapter 3. Reputation in explicit collaborative environments

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50 60 70 80 90 100 110 120 130

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
in

)

Graph size (number of providers)

execution time

Figure 3.7: Service composition of a working unit execution time

of nodes, but not connected well enough to fall within the search depth limit
we used in the tests (5 levels). So our algorithm does not find it, but when
we force its presence in the new working set the overall reputation results
improve.

44

Chapter 3. Reputation in explicit collaborative environments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Reputation

selected woking unit
with best max
with best avg

only best service providers

(a) Graph with 50 providers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Reputation

selected woking unit
with best max
with best avg

only best service providers

(b) Graph with 70 providers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Reputation

selected woking unit
with best max
with best avg

only best service providers

(c) Graph with 90 providers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Reputation

selected woking unit
with best max
with best avg

only best service providers

(d) Graph with 110 providers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Reputation

selected woking unit
with best max
with best avg

only best service providers

(e) Graph with 130 providers

Figure 3.8: The reputation of selected working unit in different graphs

45

Chapter 4

Implicit collaborative
environments: the wiki case

In the modern Internet we can find a lot of websites and platforms for im-
plicit collaborative environment. According to our definition (in Chapter 1)
an “implicit collaborative environment” is where people collaborate without
knowing or choosing the other contributors.

Using some wide interpretation of this definition we can consider also
newsgroups and forums a sort of implicit collaborative environment: peo-
ple from very different backgrounds collaborate to a – usually thematic –
knowledge base adding small pieces of text in a sort of questions and answers
format.

However, thinking about one public place where people from every-
where can collaborate to achieve a common goal the first idea is very likely
Wikipedia. Since its opening in 2001, Wikipedia grew in popularity and size
becoming one of the most visited website according to Alexa statistics1.

The growing popularity of Wikipedia leads to an increase of popularity
of the wiki platform in general. The Wikimedia Foundation itself, besides
supporting Wikipedia, operates several other wiki projects. Moreover, a lot
of websites offer free wiki hosting services, so it is easy to find also very
small wikis that focus on some narrow topic.

For these reasons in this thesis we focus on wiki systems to discuss about
implicit collaborative environments, analyzing two different case of studies.

In the Section 4.1 we will present a novel model for wiki that deals
with semi-structured data that we developed to solve some of the tricky
issues that arise when we try to store structured data in a plain text format
without the ability to add any kind of constraint. Starting from a real-
world scenario, we point out such issues and present a simple and efficient
framework to store semi-structured data in a consistent way focusing on the
following key concept:

1http://www.alexa.com/topsites

46

http://www.alexa.com/topsites

Chapter 4. Implicit collaborative environments: the wiki case

1. define ad-hoc methods for automatic documents evolution upon tem-
plate change;

2. propose a new kind of revision control system that is centered on how
to minimize loss of new data and maximize data coherence in case of
template rollback;

3. define a simple, ad-hoc, XML-based data model to store data and an
XQuery like update language for it.

The proposed solution has been implemented in an XML-based prototype
framework, which has been tested with large, real-world dataset.

In the end of the section we will show how to attach to this new wiki
a recommender system that can rank users according to their contribution
quality.

In the Section 4.2 we will discuss about the problems of a classical –
plain text – wiki system. In the whole section we will use the name wiki as
synonymous of Wikipedia for three reasons:

1. it is the biggest and most known wiki around the world;

2. a huge and very active community works day by day to maintain fresh
and quality content;

3. it provides its full content for free, so we had the ability to use it as
dataset to validate our idea.

47

Chapter 4. Implicit collaborative environments: the wiki case

4.1 Case of study: semi-structured data Wiki

Developing a wiki for semi-structured data is not a trivial task. Chang-
ing radically the kind of data to store raises many open problems to solve.
For example, is not trivial to define how a document should react upon a
template update; what should happen to a document if someone reverts its
template; or how can we rate the documents quality when it strictly de-
pends on the template. Eventually, the biggest problem of all wikis: how to
encourage users to contribute. We will propose a solution to these problems
in this section.

4.1.1 Project motivation

The community of users of a large data-driven web site may directly con-
tribute to its management by feeding corrections and new additions, thus
keeping “fresh” the information provided by the site. However, several is-
sues may arise due to the fact that users may modify data in a more or less
controlled way.

In the last years, wiki systems have been widely adopted on the web.
In fact, besides Wikipedia, a large and ever-growing number of open source
projects use wikis to share documentation. Although many studies demon-
strate that large communities can develop and maintain a very high-quality
wiki, there is the problem of users accessing information that may be out-
dated, deliberately vandalized, or simply partial. In order to let users leave a
feedback on the perceived quality of the information they access, Wikipedia
itself is working to introduce a system to rate articles2.

The aim of this project is to design methods and techniques to be im-
plemented in a system in order to evaluate the quality of the pages and the
trustworthiness of the contributors in a wiki-based repository for fine-grained
semi-structured data.

Large electronic commerce sites allow users to actively participate in
collecting feedback information about items and products available on such
sites. Typically, users may add comments and rank or tag items accord-
ing to their preferences. Typically, the information provided by e-commerce
sites’ users is used for providing tailored recommendations to them and as
the functionalities offered to the users for adding and manipulating informa-
tion are very limited: users typically can only add comments to items and
rate them, according to some ranking criteria. Following the recent trend of
community-based information management [22, 21, 9] – according to which
the information may be directly manipulated by end users – we propose
to augment the “expressive power” of tools users employ in organizing and
managing the semi-structured (XML-based) information they provide about

2http://en.wikipedia.org/w/index.php?title=Wikipedia:Article_Feedback_

Tool&oldid=573517780

48

http://en.wikipedia.org/w/index.php?title=Wikipedia:Article_Feedback_Tool&oldid=573517780
http://en.wikipedia.org/w/index.php?title=Wikipedia:Article_Feedback_Tool&oldid=573517780

Chapter 4. Implicit collaborative environments: the wiki case

items, in order to allow an expressive and useful structuring of the informa-
tion itself. As such, users may add and structure information about items
(or even add new items) of their interest. We adopt an approach inspired by
wikis, in which users may structure the data they provide in complex ways
and manage it in a collaborative way.

Our application scenario (see Section 4.1.2) deals with a vast number of
XML documents containing information about items as shown on a large
e-commerce site and, since such information is not completely unstructured,
our framework assumes that each document may (possibly in a loose way)
adhere to one of a relatively small number of schemas (thereon called tem-
plates). Henceforth, users may create and modify both documents and their
corresponding templates. Furthermore users may interact by modifying doc-
uments and templates created by other users as well, thus adding and mod-
ifying information in a collaborative way (of course, such interactions have
to be regulated by proper access policies and trust/reputation mechanisms
stating which users may modify which data. In the present work we do not
deal with such issues). Having the users such possibilities entails that our
system has to take into account the interplay occurring among a modified
template and the corresponding (unmodified) documents. More precisely
the system, enforcing the constraints about the document structure, sup-
ports users in finding ill-formed documents by allowing them to improve
their content.

While supporting a community-based approach for updating documents
and templates offers the advantage in keeping information up to date (pro-
vided by users’ feedbacks), such an approach poses several non-trivial ques-
tions about the correct management of such information. In particular,
(i) when and how updates on templates are reflected on the correspond-
ing documents? (ii) How to manage the rollbacks of unwanted (possibly
malicious) updates without erasing subsequent licit ones? And how such
rollbacks on templates affect the corresponding documents?

This may be non-trivial tasks, as we will argue in the following. As for
point (i) above, the problems we incur in dealing with a community-inspired
data management approach come from the existence of integrity constraints
that are expressed in a template and that the corresponding documents have
to satisfy; whereas for point (ii) the difficulties arise in guaranteeing the
maximum possible number of updates without losing validity of documents
with respect of their templates.

In fact classical wikis handle structured data through the use of in-
foboxes3, but they do not support any kind of constraint enforcement which
can guarantee the uniformity of pages which use them (see the example in
Figure 4.1).

The framework we present in this work is based on XML Schema [44, 66]

3http://en.wikipedia.org/w/index.php?title=Help:Infobox&oldid=564475822

49

http://en.wikipedia.org/w/index.php?title=Help:Infobox&oldid=564475822

Chapter 4. Implicit collaborative environments: the wiki case

Figure 4.1: Infoboxes do not enforce any constraint about data; in this
example, three infoboxes describe similar data in a not uniform way (see the
line highlighted)

for the definition of the basic structure of templates, on Schematron [34]
for the definition of more complex integrity constraints and on a XQuery
Update-like language for the query language.

4.1.2 Motivating scenario

As a real-world example of a large repository of relatively small and rela-
tively uniform documents, we consider the price comparison service Shop-
pyDoo4. This site holds the large majority of the market share in Italy with
more than 2 million users and it has a very significant presence in other
European countries (e.g. Spain, France, Germany, Netherlands) and non-
European as well (e.g. Brazil). More details on data volumes are detailed
in Section 4.1.12.

The site stores information about more than 1 million items, grouped
in roughly one hundred categories. Items are described in pages containing
their technical details. The information is displayed in concise and tabular

4http://www.shoppydoo.it/

50

http://www.shoppydoo.it/

Chapter 4. Implicit collaborative environments: the wiki case

form for letting users quickly find and compare items.
For example, the information about technical details about digital cam-

era must specify brand and model, as well as camera resolution and memory
support. Other less relevant – but still useful information – may comprise
the presence of features like an image stabilizer or a face detector, etc.

The users of this site form an online community that may create, update
and share information about items by interacting with the site itself. At the
present time, the site does not allow its users to actively participate in the
management of the displayed information. Our long-term goal is to provide
community-based information capabilities to a large, e-commerce-based web
site.

Thus, for example, in the case that the user Alice notices that the page
describing her preferred camera reports incorrect information about its res-
olution, she can correct it. Further, Bob is a more active user and notes
that almost every digital camera is able to connect to a pc and thus explic-
itly specifying such information is useless. As such, he decides to modify
the digital camera template in order to remove such information from every
corresponding document.

In what follows we present methods and techniques that allow users to
directly manage such updates and to control the interplay between docu-
ments and templates. We will present in a more detailed way the actions
performed by such users, as we unfold our motivating scenario in the follow-
ing sections.

4.1.3 Documents and Templates

We customarily represent a document as an XML tree. For example, a docu-
ment containing information about a given digital camera may be structured
in the following – rather conventional – way: the camera’s model is stored
in an alphanumeric string, its megapixel capacity is an integer number and
the supported memory is a single value chosen from a set of alphanumeric
strings. Further, we add a section element which is used to group related
elements under a section name. Each element name is unique in its section.

Templates are defined in a way similar to what proposed by Exam-
plotron [68]. We have chosen this approach for its ease of use (see Sec-
tion 4.1.5). Thus, we define a template as an instance of an empty doc-
ument, where each element has an additional boolean attribute specifying
whether it is mandatory or not in the documents.

More formally, a document is composed by data nodes and element nodes
where: a data node contains only a string value; an element node is a tuple
associated with a name, a type and a set of children nodes;

Elements may have simple or complex types, where complex types are
in {enum, values, section} and simple types are in {int, float, str, bool}.
The type of an element node defines restrictions on the set of children nodes.

51

Chapter 4. Implicit collaborative environments: the wiki case

That is,

1. simple type elements and enum elements children set must contain
only a data node;

2. values elements children set must be a non empty set of distinct data
nodes;

3. section element children sets can be only a non empty list of chil-
dren elements with distinct names (in this way, elements can be found
without ambiguity).

As such, the document is an unordered tree of section and value elements,
where the root is a section element.

A template is composed by template elements which are similar to doc-
uments’ one. In addition, they have an extra boolean mandatory attribute.
Every template has to satisfy the following constraints:

1. template elements of simple type must have an empty set of children;

2. template elements with type values or enum must have a non empty
set of distinct data nodes;

3. template elements with type section must have a non empty set of
children elements with distinct names.

As for documents, a template is an unordered tree where root element is a
template section element.

A document is valid, of course we assume the well-formedness, if all data
nodes contain values that:

1. an integer, if the type of parent node is int ;

2. a float, if the type of parent node is float ;

3. a boolean, if the type of parent node is bool ;

4. a non empty string, if the type of parent node is str.

A document is valid with respect to a template if and only if:

1. it is valid (see above);

2. all document’s elements are also present in the template with the same
name and the same type;

3. all template’s elements with mandatory set has a corresponding ele-
ment in the document;

52

Chapter 4. Implicit collaborative environments: the wiki case

4. the children of enum, values and section elements of the document are
also children of the corresponding template’s elements.

More formally, we define a function f between the document root and
the template root such as a document element d and a template element t
are related if one of

• name(d) = name(t) ∧ type(d) = type(t) ∈ simple type

• name(d) = name(t)∧type(d) = type(t) ∈ {enum, values}∧children(d) ⊂
children(t)

• name(d) = name(t) ∧
type(d) = type(t) = section ∧
∀di ∈ children(d)⇒ f(di) ∈ children(t) ∧
{t′ = f(d′) : d′ ∈ children(d)} ⊃ {t′ ∈ children(t) : mandatory(t′) =
true}

If the function f exists and the document d is valid, d is valid with respect
to the template t.

4.1.4 Our scenario, continued

As one may suspect, documents and templates are stored in XML files.
Document elements are serialized in XML nodes where the tag name defines
the node type and the name is stored in an attribute. For example an
element Model of type string is serialized as

<s t r name=" Model ">Z80</ s t r>

A full example of a document describing a digital camera follows.

<document>
<template>Digital_camera</ template>
<s e c t i o n name=" Digital camera ">
<s t r name=" Brand ">Olympus</ s t r>
<s t r name=" Model ">Z80</ s t r>
< i n t name=" Resolution (Mpx)">12</ i n t>
<s e c t i o n name=" Aspect ">
< f l o a t name=" Weight (g)">117</ f l o a t>
< f l o a t name=" Width (mm)">96</ f l o a t>
< f l o a t name=" Height (mm)">62</ f l o a t>
< f l o a t name=" Depth (mm)">27</ f l o a t>

</ s e c t i o n>
<bool name=" Built -in Flash ">true</ bool>
<enum name=" Supported memory ">xD−Picture Card</enum>
<s e c t i o n name=" Lens system ">

53

Chapter 4. Implicit collaborative environments: the wiki case

<bool name=" Auto focus ">true</ bool>
</ s e c t i o n>
<va lue s name=" Extra feature ">
<value>Face detection</ value>
<value>Red eye removal</ value>

</ va lues>
</ s e c t i o n>

</document>

Templates enforce the information type of complex element, in such a
way that the Wiewfinder can be one of optical or LCD, while Extra feature
must be one or more between a list of valid values. Templates XMLs are
very similar to documents’ one, the main difference is that simple elements
are empty and that every element has an attribute mandatory which contain
a boolean value. For example the element Model in a template is

<s t r name=" Model " mandatory=" true "/>

A template for digital camera can be saved in XML in a similar way

<template>
<s e c t i o n name=" Digital camera " mandatory=" true ">
<s t r name=" Brand " mandatory=" true "/>
<s t r name=" Model " mandatory=" true "/>
< i n t name=" Resolution (Mpx)" mandatory=" true "/>
<s e c t i o n name=" Aspect " mandatory=" true ">
< f l o a t name=" Weight (g)" mandatory=" true "/>
< f l o a t name=" Width (mm)" mandatory=" true "/>
< f l o a t name=" Height (mm)" mandatory=" true "/>
< f l o a t name=" Depth (mm)" mandatory=" true "/>

</ s e c t i o n>
<bool name=" Built -in Flash " mandatory=" true "/>
<enum name=" Supported memory " mandatory=" true ">
<value>Secure Digital</ value>
<value>xD−Picture Card</ value>
<value>CompactFlash</ value>

</enum>
<enum name=" Viewfinder " mandatory=" false ">
<value>Optical</ value>
<value>LCD</ value>

</enum>
<s e c t i o n name=" Lens system " mandatory=" true ">
<bool name=" Auto focus " mandatory=" true "/>
<bool name=" Image stabilizer " mandatory=" false "/>

</ s e c t i o n>
<va lue s name=" Extra feature " mandatory=" false ">

54

Chapter 4. Implicit collaborative environments: the wiki case

<value>Face detection</ value>
<value>Red eye removal</ value>
<value>Closed eye detection</ value>

</ va lues>
</ s e c t i o n>

</ template>

4.1.5 Validation of documents

We use XML Schema [44, 66] to validate documents and templates as serial-
ized XML documents. This first step validates the overall structure of XML
documents. Regarding documents, XML Schema is used to check that they
are structured in sections containing the named values and the correct types
of simple elements’ values. Regarding templates, XML Schema is used to
check sections, the uniqueness of name into their sections and the presence
of a mandatory boolean attribute for each element.

As said before, users specify templates as an empty document. As such,
in order to validate a document with respect to some template, templates
themselves have to be rewritten in some suitable XML schema language.

We use Schematron [34] since its assertion rule validation style makes
error reporting clearer and the usage of XPath constraints allows the def-
inition of constraints over unordered sets of context-dependent elements.
Furthermore, Schematron checks the presence of mandatory elements, the
absence of illegal elements and the correctness of values and enum children
elements. The conversion from a template to its corresponding Schematron
schema is performed by an XSLT stylesheet [16].

As already pointed out, the main advantage in writing templates in the
above presented XML format is its compact and easily readable syntax, that
can be promptly deployed by the community users. For example, the simple
constraint Viewfinder can contain only ‘Optical’ or ‘LCD’ in our template
is defined by

<enum name=" Viewfinder " mandatory=" false ">
<value>Optical</ value>
<value>LCD</ value>

</enum>

while its translation in Schematron is:

<s c h : r u l e context="/ document / section [@name =’ Digital

camera ’]/ enum [@name =’ Viewfinder ’]">
<s c h : a s s e r t t e s t="(text () = ’Optical ’) or (text () = ’

LCD ’)">
"<sch:value -of select ="text () "/>" is not a valid value

for enum Viewfinder

55

Chapter 4. Implicit collaborative environments: the wiki case

</ s c h : a s s e r t>
</ s c h : r u l e>

4.1.6 Evolution of templates and documents

Returning to our motivating scenario, since Bob considers it is very impor-
tant to know if a digital camera is able to record videos, he adds a new
boolean mandatory field called video recording in the camera template. We
note that this kind of update invalidates all the documents associated to
the corresponding template. We patch this problem adding a special page
showing all invalid documents to let active users of the community perform
updates on such documents, to restore their validity again.

4.1.7 Interacting with templates and documents

Community users can read, create and modify documents and templates.
After a document is updated, the following steps are performed: (i) check
whether the document is valid according to the corresponding XML Schema,
if this is not the case, reject the update; (ii) otherwise get the associated
template and translate it into a Schematron document; (iii) validate the
document with the corresponding Schematron to check if it complies with
the template and return the validation results. A pseudocode executing
such steps is shown in Algorithm 6.

input : A document doc
input : A document update up
output: The status of the update
xup ← TranslateToXQueryUpdate(up);
doc ← XQueryProcessor(doc, xup);
if not ValidateWithW3CSchema(doc) then

return RejectUpdate();
end
tpl ← FindAssociatedTemplate(doc);
sch ← TranslateTemplateToSchematron(tpl);
if not ValidateWithSchematron(doc, sch) then

return RejectUpdate();
end
return AcceptUpdate();

Algorithm 6: Validation after a document update

A template update can (i) leave all associated documents valid (for ex-
ample, the insertion of a new value in an enumeration); (ii) invalidate all as-
sociated documents (for example, adding a mandatory element in a manda-
tory section); (iii) require a necessary update and consequent re-checking

56

Chapter 4. Implicit collaborative environments: the wiki case

of all associated documents (for example, deleting an element); or, finally,
(iv) leave the documents in an unpredictable state, regarding their validity
(for example, an optional value becomes mandatory). In this case, the only
way to discern the documents’ validity is to re-check them all. Since the
last two cases are similar, because the last one is like the previous with an
empty update, we treat them in the same way.

The pseudocode showing the different cases just show is presented in
Algorithm 7.

The update language we propose allows community users to create and
update elements’ types, their name, mandatory fields, add, modify and
delete elements.

Since the community users may perform updates on templates and doc-
uments defined by the previously defined data model, we do not need the
full expressive power of XQuery Update Facility [12] and, thus, our up-
date language is basically a simplified version of XQuery Update. First,
we define the element selector as a string that allows finding an element
in unambiguous way. It is formed by the element name preceded by all
sections name separated by the slash sign (e.g. /Digital camera/Brand
). We also define a data selector as the selector of its container followed
by a slash sign followed by the data text value wrapped by brackets (e.g.
/Digital camera/Supported memory/[CompactFlash]). Those selectors can
be easily translated into XPath[6] expressions. The last example in XPath
is written /∗/∗[@name=’Digital camera’]/∗[@name=’Supported memory’]/∗[
text()=’CompactFlash’].

4.1.8 Evolution of documents

In this section we describe our document update language and how each
command can be translated in an XQuery Update statement.

Every command that we define takes a selector as parameter. Whether
it is an element selector or a data selector is first transformed into an XPath
selector while the command is recognized and translated into a valid XQuery
Update statement.

A user may delete either a data or element node with the command
delete node <selector>. In this case we need only to translate the selec-
tor to have a valid update.

Add new data into a document let a user to fill values list. This operation
is performed by the command

insert data (text) into <e l ementSe l e c to r>

which is converted into

insert node <value>text</ value>+\lstinline+
into <xpathSe l e c to r>

57

Chapter 4. Implicit collaborative environments: the wiki case

input : A template tpl
input : A template update up
output: The status of the update
xup ← TranslateToTemplateXQueryUpdate(up);
tpl ← XQueryProcessor(tpl, xup);
if not ValidateWithW3CSchema(tpl) then

return RejectUpdate();
end
switch StatusOfDocuments(tpl,up) do

case all valid
break;

endsw
case all invalid

foreach doc in GetAssociatedDocuments(tpl) do
SetValidity(doc, false)

end
break;

endsw
case must recheck

sch ← TranslateTemplateToSchematron(tpl);
xup ← TranslateToDocumentXQueryUpdate(up);
foreach doc in GetAssociatedDocuments(tpl) do

doc ← XQueryProcessor(doc, xup);
if not ValidateWithW3CSchema(doc) then

SetValidity(doc, false)
end
else

SetValidity(doc, ValidateWithSchematron(doc,
sch))

end

end
break;

endsw

endsw
return AcceptUpdate();

Algorithm 7: Validation after a template update

58

Chapter 4. Implicit collaborative environments: the wiki case

Since the most of elements node need a data child to be valid (all simple
and enum types) we provide the command

insert node (type , name , value) into <e l ementSe l e c to r>

to insert both of them. When translated into XQuery Update, such com-
mand becomes

insert <type name=" name ">value</ type>
into <xpathSe l e c to r>

Differently, section and values elements have may child nodes, so we need
an overload for this command that does not require a value.

The last command we describe is for replacing the value of a data node.
Its syntax is

replace value of <s e l e c t o r> with <newval>

and is translated into XQuery Update in

replace <xpathSe l e c to r>/text () with ’newval ’

4.1.9 Evolution of templates

Template evolution is more difficult because for every defined command we
need not only to update – of course – the template but also to decide whether
the documents associated have to be modified as well and, in the affirmative
case, perform such updates. It is important to note that our node selectors
(and the translated XPath equivalents) are valid both on documents and
templates.

To add a new field to a template we have to specify the name, the type
and if this information is considered mandatory. This operation is performed
with the instruction

insert node (type , elName , isMandatory)
into <e l ementSe l e c to r>

which we translate into XQuery Update with

insert <type name=’elName ’ mandatory=’ isMandatory ’/>
into <xpathSe l e c to r>

If the inserted node is not mandatory, after this update documents are
still valid. If the inserted node is mandatory and all ancestors sections are
mandatory too, after this update all associated documents are no longer
valid. Otherwise all associated document must be re-checked to define if
they are still valid.

Another useful command is similar to the last one but lets user specify
a default value for the new elements. The template update is equal to the
last one, but in this case we have also the following document update.

59

Chapter 4. Implicit collaborative environments: the wiki case

insert <type name=’elName ’>defaultVal</ type>
into <xpathSe l e c to r>

New data nodes can be added to an enum or values element with

insert data (val) into <e l ementSe l e c to r>

This update preserves validity of documents and can be written in XQuery
Update as

insert <value>val</ value> into <xpathSe l e c to r>

The command

change type <e l ementSe l e c to r> with newType

is useful to change the type of an element. The template and document
XQuery Update is

rename node <xpathSe l e c to r> as newType

It is important to note that, depending on the update and on the old data,
document validity could be preserved after this update.

In a similar way, to change the name of an element we use

changename <e l ementSe l e c to r> with newName

and we apply to the template and the corresponding documents the instruc-
tion

replace <e l ementSe l e c to r>/@name with newName

The command

changemandatory <s e l e c t o r> with (true | false)

is used to change the mandatory value of an element. It is translated in

replace <e l ementSe l e c to r>/@mandatory with (true | false)

After this operation, if the updated element is not mandatory all documents
are still valid. If it is mandatory, as well as all the section ancestors, all
documents are marked as invalid. Otherwise, all documents have to be
revalidated.

The simplest operation is the deletion of a node, that is performed in
the same way both on templates and documents by the XQuery

delete node <xpathSe l e c to r>

The last operation is

replace value of <s e l e c t o r> with newVal

that uses XQuery functions to compute newVal. This operation is used to
perform an update to a field on all documents associated to the current
template.

60

Chapter 4. Implicit collaborative environments: the wiki case

It is important to note that particular updates sequence can leave the
system in an inconsistent state. For example we have a template with a
not mandatory element, then some documents will contain this element
while some other will not. All documents and templates are valid. This is
the initial state. A user decides that the element must be mandatory and
update the template. As described previous, after the template update, all
documents are revalidate. So we have some valid documents (those have
the mandatory elements) and some invalid ones (all the other). In this state
another user sees the new template and changes back the same element
to be optional. An unskilled or heedless user can perform this operation
as a normal update, instead of using the correct feature of the versioning
system. So the template is updated however no operation on document is
performed because this kind of update does not compromise their validity.
But all documents that was marked as invalid is now valid again and in
this final state we have all templates and documents valid but with some
document marked as invalid. Therefore we need also a process scheduled
for re-checking at regular intervals the validity of documents to achieve an
eventual consistency of data.

4.1.10 Revision control support

Revision control is a very relevant feature for wikis. It is useful for monitor-
ing a page evolution and dealing with modifications performed by malicious
users.

Implementing a revision control system for our wiki-based repository is
not trivial, since documents are represented as XML trees with complex con-
straints occurring among their elements, as specified by their corresponding
templates.

In order to illustrate the problems in building a revision control system
fulfilling the above mentioned conditions, we consider the scenario in which
a user wishes to undo a template update, but – in the meanwhile, after
the template update – the documents associated to this template have been
modified, so they are no more valid with the old template.

In this scenario we can operate in two different and completely opposite
way: (i) we can revert all documents to their valid versions with the old
template or (ii) we can leave all documents to the last revision and revert
only the template. Both solutions have pros and cons: The former main-
tains consistency between documents and templates but it can potentially
lose many useful document updates. The latter does not lose document
updates, but it can potentially leave all documents in an invalid state.

There is no single best solution to the problem of how to retain docu-
ment updates while satisfying template consistency too, since it may depend
very heavily from the context. For example, if one wishes to undo revert a
malicious template update (possibly the outcome of a deliberate act of van-

61

Chapter 4. Implicit collaborative environments: the wiki case

dalism), it is pointless to save the corresponding document updates because
documents contain information corrupted by the vandalism act, as well. In
this case, the first solution appears to be the best fit.

On the other side, inconsistencies between a template and the corre-
sponding documents arising from a minor change in the template structure
(e.g., an element may become optional) seem to be viably managed by the
second solution.

Given the extreme sensitiveness to the context of the chosen solution,
our aim is to define helpful techniques and tools that support the user in
adopting the best possible solution that fits its needs.

In particular, we define a hierarchy of possible solutions formed by the
two scenarios introduced above, plus other two intermediate levels that offer
a sort of “interpolation” between such two extremes. In more detail, when
a user has to “revert” a template to a previous version, we can choose to:

1. revert all the corresponding documents to their previous versions, in
agreement with the reverted template

2. revert only the structure (as dictated by the reverted template) of the
documents but not the content.

3. revert only the document involved by the template update.

4. leave the document unmodified.

The following examples show a real-world scenario the four options just
introduced.

As a deliberate act of vandalism, consider the following: a user deletes a
large part of a template and renames the elements of the remaining part with
unrelated content. A document update performed with the new template,
can only try to limit the damages, but cannot improve the document quality.
In this case the best solution is ignoring the document updates and revert
documents as they were before the template update.

As for the second option, consider a car radio template, describing its
features. In the Car Radio template, a user rename the Audio section in
Speaker system. The semantic of the section does not change. So every doc-
ument update is legit. But all the other templates which describe consumer
electronics stuffs contain an Audio section. So, to uniform the templates, is
better revert this update undoing the rename but without lose any update
to the documents (Level 2).

Consider a Notebook template which contains a Memory and a HD sec-
tions. Both of them contains two integer Total size and Max size. An
unskilled user, who does not know the difference between RAM memory
and Hard Disk, can rename the Memory section in Disk sizes section hop-
ing to make the template better. This update changes the semantic of the

62

Chapter 4. Implicit collaborative environments: the wiki case

section. So every document update which involves this section is compro-
mised. When someone reverts the template update, the best solution should
revert all documents updates which involved this section, but should keep
all the others (Level 3).

Suppose that someone adds a new data Autofocus under the multi-values
Extra features in a camera template. This is a useful information, but it is
redundant since there is an optional boolean field Auto focus in the section
Lens system yet. In this case document updates happen after the template
update contains useful information but in the wrong place. The better
solution consists of reverting the template but not the documents so no
information is lost (Level 4). In this way we can encourage the community
to correct the documents moving the information in the right place.

4.1.11 Our framework

Our framework, as shown in Figure 4.2, is composed by four components:
(i) the XML repository, (ii) the query/update processor, (iii) the document
and template validity checker and (iv) the user interface.

XML
DatabaseWeb Server

query
processor

Internet

Users

eventual
consistency

Figure 4.2: Framework schema for semi-structured wiki

For the XML repository we need a system that can efficiently handle
many XML files and that supports XQuery Update. We choose eXist5 be-
cause, as of now, is the most standards-compliant and extensible among free
native XML databases. This component provides the persistence of data,
the XQuery Update engine and the XML validation.

The query processor component takes as input the user queries and trans-
lates them into XQuery Update. It communicates with the database by
sending updates, asking for validations and performs commit or rollback

5http://exist-db.org/

63

http://exist-db.org/

Chapter 4. Implicit collaborative environments: the wiki case

depending on validation results. Algorithms described in Section 4.1.3 are
implemented in this component.

According to the XQuery Update Facility recommendation, updates are
not performed immediately but are stored into a pending update list which
is an

unordered collection of update primitives, which represent node
state changes that have not yet been applied [13]

and they are executed at the end of a query in a possibly different order
than as they were written. So following updates

insert node <section name=" new section "/> into / ,
insert node <int name=" new int ">21</int> into /section

[@name=" new section "]

will raise an error because when they are parsed the new section does not
exist yet. We need to normalize them as

insert node <section name=" new section ">
<int name=" new int ">21</int>

</section> into /

to preserve the semantics defined in the previous section. This normalization
is performed by the query processor. Since eXist update language – although
it is quite close to XQuery Update Facility – does not use the pending
update list paradigm, in our framework we had not implement the query
normalization engine yet.

The user interface provides a set of features which let the user to in-
tuitively interact with the prototype without the requirement of a formal
training. Since the purpose of the prototype is to build a collaborative sys-
tem, the user interface is a web application. It lets the user to (i) easily
find documents and templates based on different criteria, (ii) read a rendered
version of templates and documents and (iii) edit templates and documents
in an interactive way.

4.1.12 Experimental results

Since the relatively small size of documents and templates and since updates
and validations are performed on a native XML database, we can safely
assume that a single update operation is performed in a relatively short,
constant time roughly equal to 10 ms.

Thus, the performance issues of our framework depend on the number
of documents that have to be checked, depending on the kind of update
operation that has been issued.

All tests have been performed on a PC with an Intel R© CoreTM2 Duo
P8700 CPU and 4GB of RAM running Windows VistaTM. The framework
is implemented in C] 3.0 and deploys eXist 1.4 as the XML native database.

64

Chapter 4. Implicit collaborative environments: the wiki case

As already mentioned in the introduction, the dataset used in the ex-
periments come from the ShoppyDoo online price comparison service which
is visited by more than two million of unique user per month and compare
prices of four million offers from fifteen hundred merchants. Every document
describes the technical details of a single product and there is one template
for product category. In total, our dataset contains 9605 documents and 72
templates, totaling about 65 MB of XML files. The less populated category
(Digital photo frames) contains only 3 documents, while the most populated
one (LCD, LED and plasma TVs) contains 798 documents. We want to re-
mark that the current dump of Wikispecies6 is approximately 370 MB of
XML data. It’s interesting for us show that our test dataset is big about
the 18% of a small Wikimedia Foundation project.

As explained in Section 4.1.7, a template update can fall into three dif-
ferent categories, depending upon its impact on the associated documents:
it can leave them all valid, it can invalidate all of them or it can make nec-
essary to update and recheck all of them. As such, we performed editing
templates tests with different quantities of documents and with the three
different kinds of update. The results are shown in Figure 4.3.

The first type of update is very fast and it is not affected by how many
documents are associated to the modified template. Since the Algorithm 7
needs only to update one (typically) small XML document (the template
itself) it executes in about 100 milliseconds.

We point out the in our current prototype, all documents have a meta-
data field that records their validity with respect to their templates. In this
way, the second type of update performs in a time linear in the number of
documents. Since updating the validity to given value is very fast, all our
tests ended within 150 milliseconds.

The last type of update is the worst because, after the template update,
the prototype has to perform an update to all the documents and they all
have to be revalidated. The time is linear to the number of documents, and
since validation process is slower than the update execution, the worst case
takes about two minutes to execute.

4.1.13 Reputation system for a semi-structured Wiki

The purpose of the recommender system is to rank pages based on their
quality (like Wikipedia Featured articles7) We want to develop a system that
supports the community to (i) find low quality pages in order to improve
them and – e.g.– quickly react to deliberate act vandalism and (ii) to find
better contributors in order to support election of wiki administrators.

6http://species.wikimedia.org/
7http://en.wikipedia.org/w/index.php?title=Wikipedia:Featured_

articles&oldid=482633582

65

http://species.wikimedia.org/
http://en.wikipedia.org/w/index.php?title=Wikipedia:Featured_articles&oldid=482633582
http://en.wikipedia.org/w/index.php?title=Wikipedia:Featured_articles&oldid=482633582

Chapter 4. Implicit collaborative environments: the wiki case

0

20000

40000

60000

80000

100000

120000

140000

0 100 200 300 400 500 600 700 800

T
im

e
(m

il
li

se
co

n
d

s)

Documents involved

all invalid

++++ + + + +

+
all valid

×××× × × × ×

×
recheck

∗∗ ∗
∗
∗ ∗

∗

∗

∗

Figure 4.3: Template update performance test

Each step of the mechanized approach developed to evaluate Wikipedia
articles’ quality starting from revision history, is based on some criteria to
find similarities in different revisions.

Typically, text is tokenized, a predefined list of stop words and the wiki
markups are ignored, and finally common text between two successive ver-
sions is searched with algorithms such as longest common subsequence [51].
A challenge in this approach consists in correctly identify paragraphs that
have been moved around in different versions. A fine tune is also needed to
identify correctly the list of stop words and the minimum length threshold
of two sequences of tokens to identify them as the same text.

Our scenario is very different from classical wikis, but we can borrow
many things by those approaches with the necessary corrections.

Firstly we do not need to tokenize text because we managed semi-
structured data, so we have a minimum unit of meaningful text yet. On
the other side, we have to deal with hierarchic data, so a change to an inner
node must weigh more than a change to a leaf node.

In order to work, a wiki system needs the assumption that the majority
of users are trustworthy. It follows that good content should survive longer
than worst one.

The reputation system is modeled starting from this assertion: (i) every
user can rate the quality of a document in the form of a “like” or “dislike”;
(ii) the reputation of a user depends on the quality of his work, which can be
either edit pages or evaluating other users’ work; (iii) every contributor of a
page should be rewarded in term of reputation for his work in a proportional
way of his contribution; (iv) also small edit can heavily change the quality
of a page;

Following the classification made in [19] our system is:

• User-driven, it relies on ratings provided by users instead of analysis
of content and user interactions;

66

Chapter 4. Implicit collaborative environments: the wiki case

• Visible to users, users are aware of it, because the aim is to stimulate
their contribution;

• Weak identity, users can easily acquire new identity with a new regis-
tration;

• Existence of a ground truth, since our wiki is designed for semi-structured
data when a document contains all information expected by its tem-
plate, and this data is correct there is no reason to edit the document
again unless the template change.

• Global, it considers the whole system operating in batch mode at reg-
ular intervals.

We decided to make the system user-driven because the existence of a
ground truth enables the documents to quickly converge to a stable version.
We made some analysis on Wikipedia infoboxes and noticed that they usu-
ally do not have great changes between revisions, most of them are quite
complete on the first one. Techniques like text survival are pointless in this
context because we have very simple text which describes a concept, is not
like in Wikipedia where the same concept can be explained in a lot of way
and the reputation system must reward the best one. We decided to let
users choose between only two ratings (like and dislike) because the purpose
of this system is also to help community to find best and worst articles, like
Wikipedia with featured and stub pages. So users should express judgment
like “this page contains only correct and complete information” or “this page
is useless or wrong”, we are not interested in interpolation between this two
opposite approaches, if a user considers a page as “average”, the user simply
does not vote for it.

Since a page is written collaboratively, our system has to redistribute
among all the authors’ page the reputation votes received by the page. This
can be done exploiting the fact that a page is a fine-grained semi-structured
document: we simply attach proper metadata to every element that form
the page that stores who is its author. In this way, knowing who has au-
thored what at a very fine-grained level, we redistribute reputation among
different authors. But redistributing reputation is not as trivial as it could
seem, because, as previously said, also small edits can change the overall
reputation. Consider for example a page contains information about Paris,
someone changes the field Country from France to Texas; since a city whit
this name exists in both of these countries, the page seems valid but contains
only wrong data. The system must recognize rapid changes of reputation of
a page produced by updates and avoid to decreasing the reputation of old
authors. The system should also reward equally good authors which oper-
ate on less viewed (and so voted) pages than good authors which operate on
popular ones. We want to also avoid that a very small edit on a very popular
page can pay better than some big contribution on less viewed pages.

67

Chapter 4. Implicit collaborative environments: the wiki case

Since also user votes bring information to the system, users’ reputation
must be affected also by their votes. In this case the system must reward
users which rate a page correctly, where “correct” is defined as the common
sense of the community. So if the majority of users rate a page as good,
the system must increase reputation on users who rate the page good and
decrease it on users who rate it as bad. But the system must reward more
the “riskier” votes than the votes which follow a well established trend,
because the first ones bring new information and furthermore we want to
avoid that users gain too much reputation by simply ranking pages.

More formally

We consider the reputation of a user as formed by a set of “units” (or points).
Then, a user gains a single unit of reputation for every like associated with
an editorial change the user has made. Analogously, a user loses the same
amount for every dislike he gets for his editorial changes. This unit must
be shared by all the authors of the page with respect to their contributor.
For example, consider the revision history of a page as shown in Table 4.1.
The page is created by the user A1, so the revision R1 (the first version of
the page) belongs exclusively to him. Furthermore, at the beginning, the
reputation of every user Ai is set to zero.

After some time, the revision R1 gains 10 likes and 1 dislike. In this way,
the reputation of A1 increases by 9 units. Afterwards, the page is updated
by the user A2, which edits the 10% of it. The 4 likes gained by this revision
are shared for the 10% to A2 and for the 90% to A1. So after this update
the reputations will be

R(A1) = 9 + 4 · 0.9

R(A2) = 4 · 0.1

Votes Contributors
Revision (like/dislike) A1 A2 A3 A4

R1 10/1 100% - - -
R2 4/0 90% 10% - -
R3 20/3 50% 10% 40% -
R4 100/5 40% 0% 40% 20%

Table 4.1: Different revisions of the same page with authors contributor and
users vote

We define PA(Ri) as the contribution of author A to the revision Ri and
L(Ri) the sum of users’ votes (likes minus dislikes) for revision Ri. We can

68

Chapter 4. Implicit collaborative environments: the wiki case

then define the reputation R(A) gained by an author A from a page R as

R(A) =
∑

i∈revision of R

PA(Ri) · L(Ri) (4.1)

A problem we encountered and still present in this preliminary version is
that the reputation of a user is linked to a page until every part he updated
is deleted. In this way, a highly popular edit which survive for a long time
span on a very popular page can increase indefinitely the reputation of the
corresponding author, even if it is no more active. A solution could be to
introduce an ‘half-life’-like mechanism that ‘weakens’ the link between a user
and the edits he did, as time passes.

We are aware that the proposed reputation mechanism is very coarse
and presents several problems. More precisely: (a) a small, positive edit
on a very popular page can excessively increase the reputation of the corre-
sponding user with respect to more active users on less popular pages; (b) it
is an oversimplification to assume that a small change in a page yields small
changes in how that page will be evaluated later on (that is, the number of
likes and dislikes). Problem (a) can be easily solved surrounding the For-
mula 4.1 by a sublinear monotonically increasing function. For example, in
our preliminary test, we achieved good results whit:

R′(A) =

{
ln(R(A) + 1) if R(A) > 0

−ln(−R(A) + 1) otherwise
(4.2)

Problem (b) is the idea that after an update, if the first n votes show
an inversion of trend, we cut the link to the previous authors for computing
the reputation. Supposing the system updates the reputation every day, n
can be set as a fraction of average daily votes so it is adaptive as the system
grown.

One of the biggest problems is how the system should update reputation
when a user restores a previous version of an article. The simpler solution is
to not manage this situation: since the system knows both revisions, there
is no new information so the reputation should not change. The problem
of this approach is that reverting a revision brings little information “the
previous version is better”, and this information must be rewarded. But how
much rewarded? We cannot consider a reverted version like it was written by
the user, because we expose the system to a sybil attack: a user can create
a fake identity to compromise many documents and restore them with the
main identity to gain reputation artificially. To solve this problem our idea
is that a revert should be rewarded by the amount of reputation lost by the
authors of the reverted version. For example, a user U reverts the last tree
versions from authors A1, A2 and A3. Suppose that the reputation gained
by them for this updates is R(A1) = 5, R(A2) = −3 and R(A3) = −10
(where a negative value means that they lose reputation). The user U earns

69

Chapter 4. Implicit collaborative environments: the wiki case

from this revertion R(U) = −(5−3−10) = 8 points. In this way to perform
a sybil attack a user must create a fake identity, wait enough to receive bad
votes and revert the document. But if he waits too much someone else can
revert and gain reputation, if he waits too little he does not earn reputation.
Since this system is a zero sum game, it works well also when two or more
authors start an edit war reverting each the revision of the others because
the system does not create reputation.

70

Chapter 4. Implicit collaborative environments: the wiki case

4.2 Case of study: Wikipedia

Our preliminary analysis was made on the Italian Wikipedia mainly because
it lets us deal with a “small” dataset from an active community. The Italian
Wikipedia, in the dump8 of April 2013, is formed by:

• 1.522.452 encyclopedic articles (usually referred as namespace 0 pages);

• 41.646.947 total revisions in the namespace 0;

• 179.955 users with at least one contribution in the namespace 0;

• more than 700 GB of complete XML dump.

We now give a brief description of the MediaWiki platform and how it
is used by the Wikipedia community, followed by our analysis.

4.2.1 MediaWiki and the Wikipedia community

In order to fully understand the dynamics of Wikipedia, it is essential to
have a brief overview about the technology that it uses, the organization (a
foundation, namely) that supports it and the ideas of its community.

MediaWiki

Wikimedia Foundation9 is a US-based charitable organization headquar-
tered in San Francisco, California. Its stated goal is to develop and main-
tain open content, wiki-based projects and to provide free of charge the full
contents of those projects to the public.

MediaWiki10 is a free and open source wiki software developed mainly by
the Wikimedia Foundation. It runs all the Wikimedia wikis and thousands
of other websites as well [5]. Even though it offers a quite wide set of features
that help the community to organize, grow and preserve the wiki content, a
lot of work is still made by hand by the most involved users. The purpose
of this section is to make a quick overview about the features that this
platform provides out of the box, give all the definitions we need to discuss
about wikis – with a particular consideration to Wikipedia – and present the
tasks that still lack a support from the platform and so are mostly performed
by community handwork.

As easily expected, MediaWiki provides tools to edit the content, repre-
sented as an ad-hoc lightweight markup language designed to be easier to
use and learn than HTML. It also supports integration with other content

8http://dumps.wikimedia.org/itwiki/
9https://wikimediafoundation.org/

10http://www.mediawiki.org/

71

http://dumps.wikimedia.org/itwiki/
https://wikimediafoundation.org/
http://www.mediawiki.org/

Chapter 4. Implicit collaborative environments: the wiki case

different from wiki markup, for example it is possible to enable LATEX sup-
port for mathematical formulas or to read and manage Exif11 metadata from
images. When some functionality is not available by default it is possible
to write a corresponding plugin. There is a large number of such plugins12

ranging from the support to mathematical plotting or to Egyptian hiero-
glyphs rendering.

For every page MediaWiki saves all the associated revisions, with also
some related metadata like the user who made it (if registered), the IP
address and the time. It lets also the user to add a short edit summary that
helps to read the revision history page. Keeping track of all the revisions
helps the community to track the growing of a page and to preserve it from
vandalism.

Templates are wiki text block that are designed to be dynamically loaded
inside another page. As discussed in the Section 4.1.1, templates are gen-
erally used to create infoboxes that are useful to display structured data in
a uniform way in different pages, because – thanks to a template processor
– it is possible to call templates by passing parameters that can be used to
generate the content.

Categories are used to organize the pages. Creating a category is very
easy since it is sufficient to add a special tag in the pages that belong to
it. Adding these tags automatically creates a link to the bottom of the
page that points to an automatically maintained list of all the pages in the
selected category.

MediaWiki organizes the content in different namespaces also, which
can be viewed as folders that separate different basic types of information
or functionality. The main difference between categories and namespaces is
that the latter are used to organize meta information. For example there
are namespaces for the core articles (usually referred as namespace 0); for
user pages, personal pages used by registered users to write their interests
or their preferred activity in the community; for help pages used to describe
how to use MediaWiki and its tools and many other. In total there are
16 default namespaces. Each namespace is numbered with the convention
that content page namespaces have even numbers and their associated talk
page namespaces have odd numbers. Talk pages are support pages where
community can propose and discuss about sensible changes regarding the
relative main page.

The Wikipedia community

The Wikipedia community is formed by normal people who not only read
the website, but also contribute to it; they are usually referred as Wikipedi-

11http://en.wikipedia.org/w/index.php?title=Exchangeable_image_file_

format&oldid=578374490
12http://www.mediawiki.org/wiki/Category:Extensions

72

http://en.wikipedia.org/w/index.php?title=Exchangeable_image_file_format&oldid=578374490
http://en.wikipedia.org/w/index.php?title=Exchangeable_image_file_format&oldid=578374490
http://www.mediawiki.org/wiki/Category:Extensions

Chapter 4. Implicit collaborative environments: the wiki case

ans13. There is no barrier to write in Wikipedia, everyone with an internet
connection can – potentially – do it. This can be problematic when the com-
munity has to deal with harmful users. Overall Wikipedians showed that
they are quite good to deal with such kind of users keeping a high quality
content. This is done mainly by maintaining a sort of hierarchy of users
where everyone, with different roles and rights, helps the project to flourish.
The complete list of user rights is quite long14 because its aim is to create a
role for every special need. As some examples consider: the right CheckUser
which lets the owner to see the list of IP addressed used by an account,
this role is intended to control and block potentially harmful users that try
to whitewash their reputation creating new accounts; the File mover right
that allows users experienced in working with files to rename them, the
idea is that is more complex to deal with files than text also because they
can be saved both in Wikipedia and Wikimedia Commons15. For the pur-
pose of this thesis we focus on four different user categories: administrators,
unregistered users, bots and autoconfirmed users.

Unregistered users, often refereed as anonymous users, are Wikipedia
contributors who are not registered themselves. They can contribute almost
as a registered user, the main difference is that they cannot create articles
(but they can edit existing ones), upload files or rename pages. It is however
possible to semi-protect pages against the edit from anonymous users. The
biggest restriction against unregistered users is that their participation to the
community life is limited: they cannot vote or be elected as administrators
or similar roles (but they can participate in discussions).

Autoconfirmed users are registered users with accounts older than four
days who have made at least 10 edits. Since the registration is free and there
is no need of any sort of other method for authentication (like providing a
real ID or a credit card number), without this limitation an unregistered
user could just create a new identity to elude the limitation of his/her sta-
tus. Since such requirements are very light and do not really impose tight
conditions, for simplicity we will refer to autoconfirmed users just as regis-
tered users.

Bots are a special category that groups accounts that are connected
to some automated or semi-automated software. Since a bot is capable of
making a huge amount of edits in a very short time, this category is used
to know the active bots and monitor their activity. Everyone can propose
a bot and register it as official one, but the process is quite long because it
must be proved that the bot is useful and harmless, adheres to the Wikipedia

13http://en.wikipedia.org/w/index.php?title=Wikipedia:Wikipedians&oldid=

581988854
14For a complete list see http://en.wikipedia.org/w/index.php?title=Wikipedia:

User_access_levels&oldid=573036838
15A database of freely usable media files, accessible from http://commons.wikimedia.

org/, that every localized Wikipedia can use out of the box.

73

http://en.wikipedia.org/w/index.php?title=Wikipedia:Wikipedians&oldid=581988854
http://en.wikipedia.org/w/index.php?title=Wikipedia:Wikipedians&oldid=581988854
http://en.wikipedia.org/w/index.php?title=Wikipedia:User_access_levels&oldid=573036838
http://en.wikipedia.org/w/index.php?title=Wikipedia:User_access_levels&oldid=573036838
http://commons.wikimedia.org/
http://commons.wikimedia.org/

Chapter 4. Implicit collaborative environments: the wiki case

policies and performs some task that the community agree must be done but
without wasting resources. Generally, bots are used to perform some easy
and repetitive task like correcting common typos, update interwiki links16

or perform bulk updates.
In this thesis we will focus on administrators, sometimes referred as

admin or sysops, because it is the group of users with highest rights. Ad-
ministrators have the ability to block and unblock user accounts and IP
addresses from editing, protect and unprotect pages from editing, delete
and restore pages, rename pages without restriction, and – in general – they
have access to a set of tools that can monitor, control, interfere with the
work of other wikipedians. Administrators are not employees of Wikimedia
Foundation, they are just volunteers, as all the other Wikipedians. Since the
administrator role is so powerful, choosing good candidates is a very sensible
problem. There are no official requirements to become an administrator, the
only expectation is to have the trust and confidence of the community, so –
usually – administrators are users who have a considerable experience and
popularity among Wikipedians. The exact rules to become an administra-
tor change in time and in different Wikipedia localizations, but the general
requirement is to have a strong consensus of the community; this consensus
can be achieved after a formal vote or just a discussion.

The typical procedure to became an administrator is as follows:

1. propose the candidate, another person or oneself, to a special page17

– formally a request for adminship;

2. a discussion is opened for a fixed number of days, where every wikipedian
can participate and expose her/his opinions about the candidate;

3. an optional – according to the current Wikipedia rules – vote is pro-
claimed to gather community consensus, only registered users – and
sometimes further constraints are required – can vote supporting, op-
posing or expressing a neutral opinion about the candidate election;

4. according to the results of the discussion, the optional vote and the
current rules, a bureaucrat18 or an administrator promotes the candi-
date to admin or closes the request for adminship.

It is also possible to lose the administrator rights and this may happen
usually for three different reasons: (i) voluntary removal, (ii) inactivity
or (iii) losing the trust of the community. Different Wikipedias measure
inactivity in different ways: it can be complete inactivity – i.e. no logins
or contribution – or lacking of administrative actions, the time to measure

16Links between different language Wikipedias or different Wikimedia projects.
17http://en.wikipedia.org/w/index.php?title=Wikipedia:Requests_for_

adminship&oldid=576527268
18A user with the right to change other users’ role.

74

http://en.wikipedia.org/w/index.php?title=Wikipedia:Requests_for_adminship&oldid=576527268
http://en.wikipedia.org/w/index.php?title=Wikipedia:Requests_for_adminship&oldid=576527268

Chapter 4. Implicit collaborative environments: the wiki case

inactivity usually is from some months to a year. The exact procedure to
evaluate when or if the administrator has lost the trust of the community
depends on the Wikipedia considered, and also inside the same Wikipedia
rules change quite frequently. As rule of thumb we can say that the process
to dismiss an administrator consist in something similar to:

1. a user reports the admin in some page (usually called Requests for
comment/User conduct or Problematic user/administrator);

2. if there is good evidence of some problem or the support of other users
a discussion or a formal vote is opened;

3. analyzing the results of the previous step, and applying the current
rules, a bureaucrat may establish that there is no more consensus from
the community regarding the admin’s work and dismisses him/her
or declares the report as an isolated case and close it without any
consequence.

Former administrators can usually ask to be reintroduced in their role
with another request for adminship. Some Wikipedias require that they did
not lose their position due to a lack of trust by the community, while some
has faster procedures to reintroduce administrators that were downgraded
due to inactivity.

Moreover, some Wikipedias require a recurring verification of adminis-
trators, usually annual and with mutual renewal unless someone opposes.

4.2.2 Project proposal

As showed in the previous section, administrators have a very important
role in Wikipedia because their additional rights grant them the power to
supervise the work of the community. Administrators are in charge to con-
trol – in a democratic way – the community, preventing the participation of
malicious users and guiding the newer ones.

All this power brings with it the old question who watches the watchmen?
In the fundamental principles of Wikipedia – referred as Five pillars19 – the
fourth rule is:

editors should treat each other with respect and civility

and in its explanation there are many references on how to obtain consen-
sus20. Although democracy may be not directly mentioned, we can see that
the community uses typical tools used in a democratic setting (mainly votes

19http://en.wikipedia.org/w/index.php?title=Wikipedia:Five_pillars&oldid=

571244060
20http://en.wikipedia.org/w/index.php?title=Wikipedia:Consensus&oldid=

574030593

75

http://en.wikipedia.org/w/index.php?title=Wikipedia:Five_pillars&oldid=571244060
http://en.wikipedia.org/w/index.php?title=Wikipedia:Five_pillars&oldid=571244060
http://en.wikipedia.org/w/index.php?title=Wikipedia:Consensus&oldid=574030593
http://en.wikipedia.org/w/index.php?title=Wikipedia:Consensus&oldid=574030593

Chapter 4. Implicit collaborative environments: the wiki case

and discussion) to achieve it. So we can say that the community itself is
responsible to watch the administrators.

The problem is that, even though the community is huge, the active
users are not so many and the users that actively participate to discussions
and votes are even less because participating them requires a big effort since
the user’s history on Wikipedia must be manually scrutinized in order to
evaluate his/her previous work and involvement in the community.

So promoting users to administrators and downgrading them from their
role is not an easy task, and it is easy to find in every Wikipedia some
scandals involving malicious administrators; for example administrators who
proposed themselves to edit blocked pages for a bribe21.

The goal of the work presented in this section is to develop a language in-
dependent tool, which can be thus applied to the different language specific
versions of Wikipedia, to support the election and the evaluation of adminis-
trators that is usable in big and small communities. The idea is that in large
communities it can support the process freeing human resources that can be
used to improve the wiki content; on the other hand, small communities can
use it to guarantee the constant monitoring that is essential to maintain an
high quality standard of their content.

4.2.3 Wikipedia analysis

The first step of the analysis consisted in comparing the statistics – mainly
about number, frequency and type of edits – from Italian Wikipedia with
the literature (especially in [71]) to be sure that the dynamics are the same
both in the Italian and in the English one.

From this analysis we confirm that the distributions that describe Wikipedia
are very asymmetric in almost every aspect. In the Figure 4.4, the log-log
graph shows the probability that one page has more than y edits in x days.
As we can easily see, the curve shows that the edit frequency of both pages in
namespace 0 (from now on called just pages) and discussion pages (support
pages that are used to discuss how to change an encyclopedic page) follow
almost an exponential law, where very few pages have a very high attention
from the community, with more than 10 edits per day, and a very long tail
of pages that have less than one edit per month.

We can see a similar trend in the Figure 4.5, that shows the registered
user activity, excluding the automated bot. In this graph we can see a trend
where very few users have made the most edits in Wikipedia.

In Figure 4.6 we analyzed the work of the community in different cate-
gories. We divided the community according to the user privileges, so for
each graph we can see the activity of administrators, unregistered users, reg-
istered users and automated bot. From these graphs we can see that – with

21http://en.wikipedia.org/w/index.php?title=Wikipedia:Requests_for_

comment/Paid_editing&oldid=412481447

76

http://en.wikipedia.org/w/index.php?title=Wikipedia:Requests_for_comment/Paid_editing&oldid=412481447
http://en.wikipedia.org/w/index.php?title=Wikipedia:Requests_for_comment/Paid_editing&oldid=412481447

Chapter 4. Implicit collaborative environments: the wiki case

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000 1e+06 1e+07

N
u
m

b
e

r
o

f
e

d
it
s

Pages
Discussion pages

Figure 4.4: Wikipedia edits per day

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

N
u
m

b
e
r

o
f
e
d

it
s

Revisions
Pages

Revisions/Pages

Figure 4.5: Registered user (not bot) activity in Wikipedia

77

Chapter 4. Implicit collaborative environments: the wiki case

the only exception of bots – usually the activity of the different subcom-
munities is the same in the analyzed categories. In fact we can see that –
although the absolute number of edits is different – the attention that every
category receives from Wikipedia editors is the same: if we do not consider
bot activity, it is difficult to spot significant differences among these graphs.

To produce these graph we analyzed the edit history of each page in
the selected category, and counted the number of edits it received in a fixed
number of different time slots of equal length (in the graphs showed here 7
time slots), where the first starts from the page creation and the last ends
with its last edit. We computed the percentage of edit each page received
in each time slot and aggregated this data per category. We expected to
see that some categories stabilize their data faster than others: for example,
when the page related to a movie contains the plot, the complete list of
the actors and some data about its popularity and awards its information
is almost complete and typically will not change, so future edits can just
change its presentation but not its content; vice versa we expected that
pages related to actors changed more frequently, at least once for every new
movie released. Instead, from the graphs we can see that, on average, pages
gain a lot of attention at the beginning of their life and tend to stabilize
quickly within a small number of edits. The exception in this trend is
produced by bots and it is quite easily explained since they are not part
of the community but automated scripts that make some sort of repetitive
work – like changing the formatting or updating interwiki links – so they
do not focus on most viewed or modified (that is interesting) pages but just
process each page with the same attention. According to this analysis we
can say that text survival techniques should weight time in different ways
because it is normal that text changes more frequently in the beginning. So a
text fragment that survives one day in the first weeks of a page very likely is
qualitatively better than a similar fragment that survives some weeks when
the page is already in a quite stable version.

The two graphs in Figure 4.7 are intended to show how important it
is to elect the right administrator. The pie charts compare the activity in
Wikipedia (measured as number of edits) per users group and the cardinality
of the groups. As we can see in Figure 4.7a, registered users are responsible
of almost half of edits in Wikipedia; bots are very important too and per-
form about a quarter of the total edits as anonymous users; administrators
make a relevant number of edits, beside smaller if compared to the other
groups. We are aware that this one is just a rough approximation of the
real activity, the point is that any sort of weight would be just a different
approximation too: a difference of few characters compared to the previous
version does not tell us if the text was just reorganized or heavily rewrit-
ten; counting only words (skipping the wiki markup language) would mean
do not consider the presentation of the information, but a lot of work is
made to present different pages in a coherent way. So we decided to use the

78

Chapter 4. Implicit collaborative environments: the wiki case

 0

 0.05

 0.1

 0.15

 0.2

 0.25

%
 o

f
e
d
it
s

Time

UNREGISTERED normal edit

UNREGISTERED rollback

REGISTERED normal edit

REGISTERED rollback

ADMIN normal edit

ADMIN rollback

BOT normal edit

BOT rollback

(a) Movies category

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

%
 o

f
e
d
it
s

Time

UNREGISTERED normal edit

UNREGISTERED rollback

REGISTERED normal edit

REGISTERED rollback

ADMIN normal edit

ADMIN rollback

BOT normal edit

BOT rollback

(b) Actors category

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

%
 o

f
e
d
it
s

Time

UNREGISTERED normal edit

UNREGISTERED rollback

REGISTERED normal edit

REGISTERED rollback

ADMIN normal edit

ADMIN rollback

BOT normal edit

BOT rollback

(c) Soccer player category

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

%
 o

f
e
d
it
s

Time

UNREGISTERED normal edit

UNREGISTERED rollback

REGISTERED normal edit

REGISTERED rollback

ADMIN normal edit

ADMIN rollback

BOT normal edit

BOT rollback

(d) Soccer teams category

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

%
 o

f
e
d
it
s

Time

UNREGISTERED normal edit

UNREGISTERED rollback

REGISTERED normal edit

REGISTERED rollback

ADMIN normal edit

ADMIN rollback

BOT normal edit

BOT rollback

(e) Politicians category

 0

 0.05

 0.1

 0.15

 0.2

 0.25

%
 o

f
e
d
it
s

Time

UNREGISTERED normal edit

UNREGISTERED rollback

REGISTERED normal edit

REGISTERED rollback

ADMIN normal edit

ADMIN rollback

BOT normal edit

BOT rollback

(f) Political parties category

Figure 4.6: Number of edits in different Wikipedia categories compared to
the page life

79

Chapter 4. Implicit collaborative environments: the wiki case

simplest approximation, namely counting only the number of edits, without
any weight. It is very interesting to compare this graph with the one in
Figure 4.7b, in this second we present the number of users per groups. It
is important to note that in the latter graph we miss the information about
anonymous contributors, this is because – by definition – it is not possible
to track them. The only information available is their IP addresses which is
not enough to infer any reasonable evaluation. What we can see from this
graph is that the registered users outnumber largely both administrators
and bots. The administrators are so few that it is impossible to identify
their sector in the chart. With the help of these graphs we underline that
very few administrators are responsible of a huge amount of edits. It is vital
for the community to elect the right administrators because big amount of
work depends on this choice.

7.54%

29.11%

41.48%

21.86%

Admin

Bot

Registered

Anonymous

(a) Number of edits per user group

0.06%
0.20%

99.74%

Admin

Bot

Registered

(b) Cardinality of user groups

Figure 4.7: Overview about activity of different user groups of Wikipedia

The histogram in Figure 4.8 analyzes the contributions, in a more ex-
haustive way, partitioning them in six – not mutual exclusive – categories:

• edit : each change in a page that deletes, adds or reorders text creating
a new revision that did not exist in the history of the page itself;

• rollback : the act of restoring a previous revision of a page;

• rolled back : any revision that will be overwritten by a future rollback;

• restored : a revision that will be restored by a future rollback;

• deleted : a revision that is deleted (hidden to non administrators) from
the history, usually because it contains some text that is copyrighted
and thus incompatible with the license used by Wikipedia;

• war : a revision that is marked both rolled back and restored, this
means that it was reverted by someone and later restored by someone
else (this is a good approximation to detect edit wars).

In this graph we can see that different groups act in a very different way: for
example administrators edit very few pages that will be deleted compared

80

Chapter 4. Implicit collaborative environments: the wiki case

to the other categories and perform more rollbacks with respect to normal
edits as anyone else.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

Administrators Bots Registered Anonymous

Edits
Rollback

RolledBack
Restored

Deleted
War

Figure 4.8: Different activity per user group in Wikipedia

The graphs in Figure 4.9 show the same data of the previous one but in a
cumulative distribution function and only for administrators and registered
users. We can see that the administrator contributions is more regular and
does not present the long tail of a lot of users that perform few edits that is
very visible in the registered users group.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

N
u
m

b
e
r

o
f
e
d
it
s

edits

rollback

rolledBack

restored

deleted

war

(a) Registered users activity

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

N
u
m

b
e
r

o
f
e
d
it
s

edits

rollback

rolledBack

restored

deleted

war

(b) Administrators activity

Figure 4.9: Registered users’ activity compared to administrators’ one

81

Chapter 4. Implicit collaborative environments: the wiki case

4.2.4 Results

In this analysis we showed that dynamics in Italian Wikipedia are compa-
rable – in smaller scale – with the English one. This emphasizes the idea
that some dynamics – for example the difference between administrators and
normal editors – are language independent leading to the concept that rep-
utation systems should be developed starting from a language-independent
analysis tool.

The analysis shows also that the community has found a quite robust and
well trained way to control and administrate itself. Unfortunately, especially
in smaller Wikipedias like the Italian one – it is easy to see the community
discusses the lack of administrators or the difficulty to efficiently monitor all
the aspects of the project. In this section we showed that is possible to dis-
cern normal editors and administrators observing statistics about their edits
only, so it is possible to use these statistics to support the administrators’
election and have a hint of their work quality.

4.2.5 Reputation system architecture

Considering a standard wiki architecture – composed by one web server
and one database server – a reputation system which takes into account
all the aspects discussed could be structured in three modules, as showed
in Figure 4.10: (i) a page viewer counter, (ii) a reputation collector and
(iii) an offline analyzer.

Page views counter

Reputation collector

Offline analyzer

Internet

Reputation system

DB
Server

WEB
Server

Figure 4.10: Wiki reputation system architecture

The page viewer counter is a module that analyzes data from the web
server and counts how many users see each revision of each page. It is useful

82

Chapter 4. Implicit collaborative environments: the wiki case

to have a measure of the “time lapse” between two page revisions which is
independent from the popularity of the page itself.

The offline analyzer has direct access to the database (for performance
reasons) and performs batch analysis on the wiki pages. This module is
responsible to analyze the difference between two consecutive revisions and
track the editors work. How often this process executes depends on the
real context: the computation can be very heavy for popular wikis (like
Wikipedia) but could be optimized by doing incremental computation on
previous data. Ideally, to have better and fresher reputation values, this
process must execute very often, like daily. To reduce the required compu-
tational power, we can add extra functionality to this module to identify the
most sensitive data and trigger updates on it more frequently. For example
it is more important to have a very fresh administrators’ reputation than
normal users’ one.

The reputation collector is the module that aggregates information pro-
vided by the previous two to compute the final reputation value. Having
access to both edit time and page views it can weight correctly the impact
of each edit, and thereon compute the reputation according to its impact as
seen by the community.

A system like this could provide both reputation to users and quality of
pages (as we will discuss better in Section 5.1). We identified different – but
not mutually exclusive – scenarios that could take advantage of this data:
(i) user reputation, (ii) page quality, (iii) edits monitoring and (iv) access
control.

In the first scenario the system provides only users’ reputation. This
is the case we originally analyzed and the system could be used to support
administrators elections. Moreover, the system computes reputation of every
user so this value could be used to create a sort of reward badges to display
on most active users’ personal pages. This triggers a gamification process
that could stimulate users to participate more actively in the community
life and, doing so, improve the wiki content.

User reputation can be used to infer page quality: if a page is reviewed
by high reputation users the probability that the page is well structured
and contains good data is high. So it is possible to use editors’ reputation
to compute an index that estimates the page quality. This index could be
useful in different way: if it is shown on the page itself new users could
consider it to have a better idea about how much to trust the page content;
on the other hand, the community could use it to rank the worst pages and
concentrate the effort to improve them or rank the best pages to select easily
featured articles to put in home page.

Manually reviewing recent changes is a normal task in Wikipedia: some
voluntary editors constantly look at the recent changes page to identify –

83

Chapter 4. Implicit collaborative environments: the wiki case

and revert – harmful edits; this process is called recent changes patrol22. A
reputation system that computes both users’ reputation and pages’ quality,
could mix these information and raise a warning when a user edits a page
reviewed by higher reputation users. This helps patrollers to focus their
effort better.

Eventually, extending the previous proposal to a radical approach, the
wiki could refuse an edit made by a user who have the reputation lower than
the quality of the page he/she is willing to modify. This approach creates
an access control policy which describes, in an adaptive way, who has the
right to change what portion of wiki content. This last point could be highly
debated because it is against one of the Wikipedia fundamental principles

Wikipedia is free content that anyone can edit, use, modify, and
distribute23

since it actually creates a barrier for new users: they have to increase some-
how their reputation (i.e. contributing on talk pages) before being able to
modify some pages and they have to be registered too (because it is impossi-
ble to track the reputation of an anonymous user). But we believe that this
approach could be useful for other wikis that have stricter approaches re-
garding edit policies: for example a lot of open source projects use wikis for
their documentation that already accept contributions only from registered
users. In this case an access control policy that guarantees edits only from
high reputation users could help to maintain an high quality documentation
wiki.

22http://en.wikipedia.org/w/index.php?title=Wikipedia:Recent_changes_

patrol&oldid=582849929
23http://en.wikipedia.org/w/index.php?title=Wikipedia:Wikipedia_is_free_

content&oldid=581571571

84

http://en.wikipedia.org/w/index.php?title=Wikipedia:Recent_changes_patrol&oldid=582849929
http://en.wikipedia.org/w/index.php?title=Wikipedia:Recent_changes_patrol&oldid=582849929
http://en.wikipedia.org/w/index.php?title=Wikipedia:Wikipedia_is_free_content&oldid=581571571
http://en.wikipedia.org/w/index.php?title=Wikipedia:Wikipedia_is_free_content&oldid=581571571

Chapter 5

Conclusions

In this thesis we proposed novel approaches to reputation systems and we
focused on showing how this name groups a vast variety of very different
technologies and models together.

We are confident that a lot of research will be made in this field in the
near future: online interactions are becoming more important and frequent
in the everyday life of everyone, reputation systems are a good tool to sup-
port decisions about future works.

Furthermore collaborative platforms to share knowledge are growing in
popularity and – as we shown – automatically evaluating the quality of
text is not a trivial task. Furthermore evaluating the quality of some more
complex data – like maps of OpenStreetMap1 or Waze2 – requires new and
fundamentally different approaches.

We will conclude this thesis showing how and when it is possible to
modify and adapt a reputation system as a recommendation system, we
will show also that in particular domains the difference between them is so
small that in literature they are often mixed together and, eventually, we
will close with a short discussion to summarize each scenario we presented
in this work.

5.1 Discussion: similarity with recommender sys-
tems

At a first sight, recommender and reputation systems appear to have very
different goals and so they seem to share almost nothing in common. The
purpose of this chapter is to show their difference and similarity and how,
when used in some particular domains, they are just two different approaches
to solving the same problem.

1http://www.openstreetmap.org/
2https://www.waze.com/

85

http://www.openstreetmap.org/
https://www.waze.com/

Chapter 5. Conclusions

We can define a recommender system by the goal that it is supposed
to reach: generate meaningful recommendations to a collection of users for
items or products that might interest them. Its actual design is strictly de-
pendent on the domain and the particular characteristics of the data avail-
able.

Recommender systems are widely used in websites, especially in online
marketplace. For example Amazon3 uses a recommender system to suggest
to buyers interesting products based on their previously watched or bought
items; eBay4 has a feedback mechanism to highlight best shops; Google itself
provides a recommender system – Personalized Search5 – that uses users’
search history and information from their personal account to provide better
results.

According to the categorization made in [48], recommender systems can
be classified in two main categories: content-based recommending and col-
laborative filtering.

Content-based recommending systems – sometimes referred as content-
based filtering – use information about users and items to perform recom-
mendations. For example, if a user likes science fiction movies – according
to what is declared in his/her profile – the recommender system can use this
information to suggest him/her some popular science fiction movies. Even
better, also if there is no information in the profile, but the user has liked
Star Wars and 2001: A Space Odyssey, the system can infer that he/she
likes science fiction movies and suggest them.

Collaborative filtering systems work collecting user feedback and looking
for similarities in their rating behavior to determine how to recommend
items. Following the previous example, if a user has liked The Lord of the
Rings the system can suggest The Hobbit not because it knows that both
of them are fantasy movies or that the user likes that sort of movies, but
because it sees that these two movies are usually liked together by other
users.

As it is easy to imagine, these groups are just the two extreme different
kinds of recommender systems; a system can be a hybrid, leveraging on the
strong aspects of both the categories.

In our context of team formation system (as described in Section 3.1) it
is difficult to spot similarity with a recommendation system: the proposed
system is designed to compute users’ reputation and to compose a team
according to the required skills. From this point it is difficult to imagine that
the reputation can be used to compute the quality of the work performed
and use it to rank or aggregate the final results. This is mainly because
we do not have any extra information about the work proposed: it can

3http://www.amazon.com/
4http://www.ebay.com/
5http://googleblog.blogspot.it/2005/06/search-gets-personal.html

86

http://www.amazon.com/
http://www.ebay.com/
http://googleblog.blogspot.it/2005/06/search-gets-personal.html

Chapter 5. Conclusions

be anything, also if we constrain the system to a particular domain – for
example a musician reputation system – we do not know if the purpose of the
team is to make some new and experimental music, compose a traditional
song or just play an existing composition.

One may object that information like the director of a movie is success-
fully used to recommend movies to a user and the director’s reputation is
considered a quite good indicator of the quality of the movie itself. But
our system is different because it does not assume that the work is made to
be sold: a movie is planned with the idea to sell it, so a target audience is
analyzed and used to design the plot; our model is more suitable for small
teams that develop something like a short film. This scenario is closer to the
YouTube style – with a lot of people working on very different projects for
passion – than the Hollywood one – where a relatively small number of very
high reputation people work in a well known way. It is easy to see that the
high competition, the different styles that the same author can achieve in
the first – mostly amateur – model and the usually short life cycle of prod-
ucts lead to a very fragmented market: a recommendation system like the
YouTube one [18] cannot make meaningful recommendations based only on
connections among users, nor suggest only videos published from the liked
authors.

We can do similar considerations for the service composition system
described in Section 3.2: it is easy to guess that there is no meaning in
recommending a service only because it uses high reputation infrastructures.
We can just infer something about its availability: a website hosted in some
high reputation farm is more willing to be always online than a website
hosted in a very low level farm, but there is no reason to expect that the
high reputation farm hosts only good websites.

But if we change perspective, we can consider also these systems as
a strange sort of recommendation systems that, instead of recommending
items, recommend people or services. The main difference is that traditional
recommendation systems are made to push suggestions to the user: Netflix
or Amazon suggest day by day items to their users because it makes their
business; the model proposed is a pull system, where a user requires for a skill
or services and the reputation system ranks a set of recommendations. From
this point of view we can consider the two models proposed as collaborative
filtering systems, where recommendations are made according to what users
– coworkers or services – and their neighbors liked in the past.

Differences between recommender and reputation systems become so mi-
nor to have just a very blurred border between them when we deal with wiki
systems. As already seen in Section 2.3, literature often does not differen-
tiate between them. The idea here is that people share a common goal –
improve and increase the information stored on the wiki – so high reputation
users will contribute with good content and good content is usually made or
reviewed by high reputation users. Moreover, a recommendation system in

87

Chapter 5. Conclusions

a wiki context has a slightly different definition of interested item: in tradi-
tional recommendation systems, the recommendations are made to suggest
something tailored to the user interests mainly because they are used to
suggest items to buy. An approach like this is not very meaningful in a wiki
environment, firstly it is not useful for the wiki business, secondly a user can
find related interesting topics simply navigating across the links.

In a wiki recommender system, an interesting item is a page that is
qualitatively above the average, something that the community is proud to
show to the newcomers and that is used to encourage people to trust the
wiki and the community itself.

5.2 Team formation

We presented in Section 3.1 new reputation-based algorithms for team rec-
ommendation and formation. Such algorithms maximize the overall reputa-
tion between the team members. We empirically validate the algorithms on
synthetic data. Such data have been generated in a way that the obtained
reputation graphs are similar to real-world social graphs. With the term
“similar” we mean that the generated and real-world graphs present charac-
teristics like node connectivity, distribution of number of connections, that
follow closely those of real-world graphs.

We are currently implementing the algorithms as module of a web-
application for team recommendation [8]. The reason to do that is twofold.
First, to use the application to collect real-world team data that are required
to further validate the proposed algorithms. Second, using crowdsourcing
techniques, we will be able to extend the algorithms in order to include a
feedback mechanism. More precisely, we are working on the possibility to
extend the algorithms such that the result of one execution will update the
social graph to provide better results upon subsequent executions. The final
goal of this research is to define a proper heuristic for limiting the search
space and speedup the team formation algorithms with the minimum loss
of quality, since we are aware that the current approach becomes very slow
when the graph increase in size.

5.3 Service composition

In Section 3.2 we showed how it is possible to use the transitive closure of
trust in another – and more complex – context than the one exposed in
Section 3.1.

We believe that this is a powerful approach to the problem of service
composition and can be extended to handle more difficult scenarios as well.
For example, including the extension that handles reputation providers –
as entity who provide reputation but no services – in the team formation

88

Chapter 5. Conclusions

example we can describe, with minor modification only, some new and in-
teresting case studies such as: represent individuals that we trust for their
opinion but – for some reason – not for their work, like a very clever surgeon
now retired; or, as the opposite, represent people we trust their work but
not their recommendation, mainly because they are overenthusiastic about
other people’s work.

We are also aware that this approach is computationally very demand-
ing, as seen in Section 3.2.4, and not very suitable for big environment like
a world wide service composition scenario. We think that further research
could be made to decentralize the reputation computation to compute it in a
p2p fashion by each node in the graph. In this scenario new and interesting
problems arise mainly related to the fact that, without the centralized rep-
utation manager, security checks must be added to be sure that each node
truthfully reveals the reputation of its neighbors without altering it using a
sybil attack.

5.4 Semi-structured data wiki

Although we are aware that the framework presented in Section 4.1 is still
under development, the first experimental results show that updates of tem-
plates associated with small – yet meaningful – sets of documents execute
in reasonable time; still, there is ample space for optimizing the proposed
procedures. The optimization process may involve as well a phase of logical
redesign of large XML schemas into smaller, more manageable ones. Along
with optimization issues, we are dealing with the realization of a suitable
web application that allows users to easily interact with the repository.

We showed also how to attach a reputation system to this kind of wikis
and how we can use this particular kind of data to have a more fine grained
analysis. Since the system is quite complex already, there are many open
problems which must be investigate before it can be usable.

We are confident that such kind of wiki will see some practical usage in
the next years because it solves a lot of tricky problem in some well-defined
context; for example Wikispecies6 – a Wikimedia project whose aim is to
create a catalogue of all living species – a semi-structured wiki would fit
better instead of a classical one.

Another very complex open problem is how to evaluate a template up-
date. Since a template describes the structure of many documents, a high-
reputation work on a template should reward more than a high-reputation
work on a document. The problem is to decide how much. The first answer
is that it should reward more proportionally on how many documents use
this template. But in this trivial solution we do not address the problem that
a normal user does not see templates and does not vote it. Unfortunately

6http://species.wikimedia.org/

89

http://species.wikimedia.org/

Chapter 5. Conclusions

evaluating the work on a template is even more difficult than evaluating
the work on a document, also because it is strictly related to the operation
allowed on it.

Therefore it is even more difficult to propose reputation system models
that deal with it because, without real data, is difficult to infer what oper-
ations will be more used or more required by the community and create a
model that considers all the possible operations that could be performed on
a template is troublesome, weigh them correctly in a reputation system is
even worst.

5.5 Wikipedia reputation system

In Section 4.2 we presented several statistics regarding Italian Wikipedia
that show the Italian community has dynamics similar to the English one.
We showed also that the behavior of administrators is different from normal
editors, also considering only the most active editors. This is because admin-
istrators have a special role in the community: they are not considered only
as advanced contributors, but as supervisors that control and address the
work of the community in a peaceful and constructive way. Their work con-
sists also of supervising newer editors, control and limit problematic users
and bring consensus in edit wars.

Also considering that most of this work is made editing special pages and
using administrator tools, we showed that is somehow reflected in analyzing
their edit history – mainly seeing they have higher ratio of rollback per edit
– and so we argued that is possible to create a language independent history
based reputation system for Wikipedia, and – plausibly – for other wikis
too.

90

Bibliography

[1] Lada A. Adamic and Bernardo A. Huberman. Power-Law Distribution
of the World Wide Web. Science, 287(5461):2115, March 2000.

[2] B Thomas Adler and Luca De Alfaro. A content-driven reputation
system for the wikipedia. 2006.

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of
things: A survey. Computer Networks, 54(15):2787–2805, 2010.

[4] A. L. Barabasi and R. Albert. Emergence of scaling in random networks.
Science (New York, N.Y.), 286(5439):509–512, October 1999.

[5] Daniel J. Barrett. MediaWiki - Wikipedia and beyond. O’Reilly, 2009.

[6] Anders Berglund, Scott Boag, Donald D. Chamberlin, Mary F.
Fernández, Michael Kay, Jonathan Robie, and Jérôme Siméon. XML
path language (XPath) 2.0 (second edition). W3C recommendation,
W3C, December 2010.

[7] Loris Bozzato and Mauro Ferrari. Composition of semantic web services
in a constructive description logic. In Web Reasoning and Rule Systems,
pages 223–226. Springer, 2010.

[8] Stefano Braghin, Jackson Tan Teck Yong, Anthony Ventresque, and
Anwitaman Datta. SWAT: Social Web Application for Team Recom-
mendation. In Proceedings of IEEE International Workshop on Scalable
Computing for Big Data Analytics (SC-BDA), 2012.

[9] Peter Buneman, James Cheney, Sam Lindley, and Heiko Müller. The
database wiki project: A general-purpose platform for data curation
and collaboration. SIGMOD Record, 40(3):15–20, 2011.

[10] Barbara Carminati, Elena Ferrari, and Patrick CK Hung. Security
conscious web service composition. In Web Services, 2006. ICWS’06.
International Conference on, pages 489–496. IEEE, 2006.

[11] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws,
generators, and algorithms. ACM Comput. Surv., 38(1), June 2006.

91

Bibliography

[12] Don Chamberlin, Jonathan Robie, Daniela Florescu, Jim
Melton, Jérôme Siméon, and Michael Dyck. XQuery update
facility 1.0. Candidate recommendation, W3C, June 2009.
http://www.w3.org/TR/2009/CR-xquery-update-10-20090609/.

[13] Don Chamberlin, Jonathan Robie, Daniela Florescu, Jim
Melton, Jérôme Siméon, and Michael Dyck. XQuery update
facility 1.0. Candidate recommendation, W3C, June 2009.
http://www.w3.org/TR/2009/CR-xquery-update-10-20090609/.

[14] Meenal Chhabra, Sanmay Das, and Boleslaw Szymanski. Team for-
mation in social networks. In Proceedings of the 27th International
Symposium on computer and Information Sciences, 2012.

[15] Bruce Christianson and William S. Harbison. Why isn’t trust transi-
tive? In Proceedings of the International Workshop on Security Proto-
cols, pages 171–176, London, UK, UK, 1997. Springer-Verlag.

[16] James Clark. XSL transformations (XSLT) version
1.0. W3C recommendation, W3C, November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.

[17] Sanmay Das, Allen Lavoie, and Malik Magdon-Ismail. Manipulation
among the arbiters of collective intelligence: How wikipedia adminis-
trators mold public opinion.

[18] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor
Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Liv-
ingston, and Dasarathi Sampath. The youtube video recommendation
system. In Proceedings of the fourth ACM conference on Recommender
systems, RecSys ’10, pages 293–296, New York, NY, USA, 2010. ACM.

[19] Luca De Alfaro, Ashutosh Kulshreshtha, Ian Pye, and B Thomas Adler.
Reputation systems for open collaboration. Communications of the
ACM, 54(8):81–87, 2011.

[20] Grit Denker, Lalana Kagal, Tim Finin, Massimo Paolucci, and Katia
Sycara. Security for daml web services: Annotation and matchmaking.
In The Semantic Web-ISWC 2003, pages 335–350. Springer, 2003.

[21] AnHai Doan. Data quality challenges in community systems. In QDB,
page 9, 2007.

[22] AnHai Doan, Raghu Ramakrishnan, Fei Chen, Pedro DeRose, Yoonky-
ong Lee, Robert McCann, Mayssam Sayyadian, and Warren Shen.
Community information management. IEEE Data Eng. Bull., 29(1):64–
72, 2006.

92

Bibliography

[23] AnHai Doan, Raghu Ramakrishnan, and Alon Y Halevy. Mass collab-
oration systems on the world-wide web. Communications of the ACM,
15(2):196–216, 2010.

[24] David Eppstein and Joseph Wang. A steady state model for graph
power laws. In INTERNATIONAL WORKSHOP ON WEB DYNAM-
ICS, 2002.

[25] Dan Frankowski, Shyong K. Lam, Shilad Sen, F. Maxwell Harper, Scott
Yilek, Michael Cassano, and John Riedl. Recommenders everywhere:
: the wikilens community-maintained recommender system. In Alain
Désilets and Robert Biddle, editors, Int. Sym. Wikis, pages 47–60.
ACM, 2007.

[26] Eric Friedman, Paul Resnick, and Rahul Sami. Manipulation-resistant
reputation systems. Algorithmic Game Theory, pages 677–697, 2007.

[27] Florent Garcin, Boi Faltings, and Radu Jurca. Aggregating reputa-
tion feedback. In Proceedings of the First International Conference on
Reputation: Theory and Technology, Gargonza, Italy, volume 1, pages
62–67, 2009.

[28] Jim Giles. Internet Encyclopedias Go Head to Head. Nature, 438:900–
901, 2005.

[29] Markus Glaser, Richard Heigl, and Alexander Warta. Wiki: Web Col-
laboration. Springer, 2008.

[30] Tyrone Grandison and Morris Sloman. A survey of trust in internet
applications. Commun. Surveys Tuts., 3(4):2–16, October 2000.

[31] Giovanna Guerrini, Marco Mesiti, and Daniele Rossi. Impact of xml
schema evolution on valid documents. In Angela Bonifati and Dongwon
Lee, editors, WIDM, pages 39–44. ACM, 2005.

[32] Dominique Guinard. A web of things application architecture: integrat-
ing the real-world into the web. PhD thesis, 2011.

[33] Shaili Jain, Yiling Chen, and David C Parkes. Designing incentives for
online question-and-answer forums. Games and Economic Behavior,
2012.

[34] R. Jelliffe. Schematron. Web page, October 2000.
http://www.ascc.net/xml/resource/schematron/.

[35] Audun Jøsang, Ross Hayward, and Simon Pope. Trust network analysis
with subjective logic. In Proceedings of the 29th Australasian Computer
Science Conference - Volume 48, ACSC ’06, pages 85–94, Darlinghurst,
Australia, Australia, 2006. Australian Computer Society, Inc.

93

Bibliography

[36] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and
reputation systems for online service provision. Decision support sys-
tems, 43(2):618–644, 2007.

[37] Audun Jøsang and Simon Pope. Semantic constraints for trust transi-
tivity. In Proceedings of the 2nd Asia-Pacific conference on Conceptual
modelling - Volume 43, APCCM ’05, pages 59–68, Darlinghurst, Aus-
tralia, Australia, 2005. Australian Computer Society, Inc.

[38] Roula Karam and Michele Melchiori. Improving geo-spatial linked
data with the wisdom of the crowds. In Proceedings of the Joint
EDBT/ICDT 2013 Workshops, pages 68–74. ACM, 2013.

[39] Ahmad Kardan, Amin Omidvar, and Farzad Farahmandnia. Expert
finding on social network with link analysis approach. In Electrical
Engineering (ICEE), 2011 19th Iranian Conference on, pages 1 –6,
may 2011.

[40] Przemys law Kazienko, Katarzyna Musia l, and Tomasz Kajdanowicz.
Multidimensional Social Network in the Social Recommender System.
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Sys-
tems and Humans, 41(4):746–759, July 2011.

[41] Meike Klettke. Conceptual xml schema evolution - the codex approach
for design and redesign. In Matthias Jarke, Thomas Seidl, Christoph
Quix, David Kensche, Stefan Conrad, Erhard Rahm, Ralf Klamma,
Harald Kosch, Michael Granitzer, Sven Apel, Marko Rosenmüller,
Gunter Saake, and Olaf Spinczyk, editors, BTW Workshops, pages 53–
63. Verlagshaus Mainz, Aachen, 2007.

[42] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of
experts in social networks. In John F. Elder IV, Françoise Fogelman-
Soulié, Peter A. Flach, and Mohammed Javeed Zaki, editors, KDD,
pages 467–476. ACM, 2009.

[43] Shalil Majithia, Ali Shaikh Ali, Omer F Rana, and David W Walker.
Reputation-based semantic service discovery. In Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2004. WET ICE 2004.
13th IEEE International Workshops on, pages 297–302. IEEE, 2004.

[44] Ashok Malhotra and Paul V. Biron. XML schema part 2:
Datatypes second edition. W3C recommendation, W3C, oct 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[45] Iulia Maries and Emil Scarlat. Modeling trust and reputation within
communities of practice. In Systems Man and Cybernetics (SMC), 2010
IEEE International Conference on, pages 2192–2199. IEEE, 2010.

94

Bibliography

[46] Paolo Massa and Paolo Avesani. Trust-aware bootstrapping of recom-
mender systems. In Proceedings of ECAI 2006 Workshop on Recom-
mender Systems, pages 29–33, 2006.

[47] Judith Masthoff. Group recommender systems: Combining individ-
ual models. In Francesco Ricci, Lior Rokach, Bracha Shapira, and
Paul B. Kantor, editors, Recommender Systems Handbook, pages 677–
702. Springer, 2011.

[48] Prem Melville and Vikas Sindhwani. Recommender systems. Encyclo-
pedia of machine learning, 1:829–838, 2010.

[49] Nicola Mezzetti. A socially inspired reputation model. In Public Key
Infrastructure, pages 191–204. Springer, 2004.

[50] Sudip Misra and Ankur Vaish. Reputation-based role assignment for
role-based access control in wireless sensor networks. Computer Com-
munications, 34(3):281–294, 2011.

[51] Eugene W. Myers. An o(nd) difference algorithm and its variations.
Algorithmica, 1:251–266, 1986.

[52] Surya Nepal, Sanat Kumar Bista, and Cécile Paris. An association
based approach to propagate social trust in social networks. In UMAP
Workshops, 2012.

[53] Surya Nepal, Wanita Sherchan, and Cecile Paris. Building trust com-
munities using social trust. In Liliana Ardissono and Tsvi Kuflik, ed-
itors, Advances in User Modeling, volume 7138 of Lecture Notes in
Computer Science, pages 243–255. Springer Berlin Heidelberg, 2012.

[54] Eva Tardos Noam Nisan, Tim Roughgarden and Vijay V. Vazirani.
Algorithmic Game Theory, chapter 27. Cambridge University Press,
2007.

[55] National Research Council (U.S.). Committee on the Fundamentals of
Computer Science: Challenges and Opportunities. Computer Science:
Reflections on the Field, Reflections from the Field. National Academies
Press, 2004.

[56] Luiz Pizzato, Tomasz Rej, Joshua Akehurst, Irena Koprinska, Kalina
Yacef, and Judy Kay. Recommending people to people: the nature
of reciprocal recommenders with a case study in online dating. User
Modeling and User-Adapted Interaction, pages 1–42, 2012.

[57] Luiz Pizzato, Tomek Rej, Thomas Chung, Irena Koprinska, and Judy
Kay. Recon: a reciprocal recommender for online dating. In Proceedings
of the fourth ACM conference on Recommender systems, RecSys ’10,
pages 207–214, New York, NY, USA, 2010. ACM.

95

Bibliography

[58] Luiz Augusto Sangoi Pizzato, Tomek Rej, Kalina Yacef, Irena Koprin-
ska, and Judy Kay. Finding someone you will like and who won’t reject
you. In UMAP, pages 269–280, 2011.

[59] Reid Priedhorsky, Jilin Chen, Shyong K. Lam, Katherine A. Panciera,
Loren G. Terveen, and John Riedl. Creating, destroying, and restoring
value in wikipedia. In GROUP, pages 259–268, 2007.

[60] Steven Reece, Stephen Roberts, Alex Rogers, and Nicholas R. Jen-
nings. A multi-dimensional trust model for heterogeneous contract ob-
servations. In Proceedings of the 22nd national conference on Artificial
intelligence - Volume 1, AAAI’07, pages 128–135. AAAI Press, 2007.

[61] Steven Reece, Alex Rogers, Stephen Roberts, and Nicholas R. Jennings.
Rumours and reputation: evaluating multi-dimensional trust within a
decentralised reputation system. In Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems, AA-
MAS ’07, pages 165:1–165:8, New York, NY, USA, 2007. ACM.

[62] Mikalai Sabel. Structuring wiki revision history. In Proceedings of the
2007 international symposium on Wikis, WikiSym ’07, pages 125–130,
New York, NY, USA, 2007. ACM.

[63] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T.
Riedl. Application of dimensionality reduction in recommender system
– a case study. In IN ACM WEBKDD WORKSHOP, 2000.

[64] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and Sylvie
Woelfflé. Vision and challenges for realising the internet of things. Clus-
ter of European Research Projects on the Internet of Things, European
Commision, 2010.

[65] Jason Swarts. The collaborative construction of fact on wikipedia. In
Proceedings of the 27th ACM international conference on Design of
communication, pages 281–288. ACM, 2009.

[66] Henry S. Thompson, Murray Maloney, David Beech, and Noah Mendel-
sohn. XML schema part 1: Structures second edition. W3C rec-
ommendation, W3C, oct 2004. http://www.w3.org/TR/2004/REC-
xmlschema-1-20041028/.

[67] Vlad Mihai Trifa. Building blocks for a participatory Web of things.
PhD thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich,
Nr. 19890, 2011, 2011.

[68] Eric van der Vlist. Examplotron. Technical report, 2003.
http://examplotron.org/.

96

Bibliography

[69] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli,
Harald Sundmaeker, Alessandro Bassi, Ignacio Soler Jubert, Mar-
garetha Mazura, Mark Harrison, M Eisenhauer, et al. Internet of things
strategic research roadmap. O. Vermesan, P. Friess, P. Guillemin, S.
Gusmeroli, H. Sundmaeker, A. Bassi, et al., Internet of Things: Global
Technological and Societal Trends, pages 9–52, 2011.

[70] Adam Wierzbicki, Piotr Turek, and Radoslaw Nielek. Learning about
team collaboration from wikipedia edit history. In Proceedings of the 6th
International Symposium on Wikis and Open Collaboration, page 27.
ACM, 2010.

[71] Taha Yasseri, Robert Sumi, András Rung, András Kornai, and János
Kertész. Dynamics of conflicts in wikipedia. PloS one, 7(6):e38869,
2012.

[72] Honglei Zeng, Maher Alhossaini, Li Ding, Richard Fikes, and Debo-
rah L. Mcguinness. Computing trust from revision history. In Pro-
ceedings of the 2006 International Conference on Privacy, Security and
Trust: Bridge the Gap Between PST Technologies and Business Ser-
vices. Proceedings of the 2006 International Conference on Privacy, Se-
curity and Trust, 2006.

[73] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant
Kalagnanam, and Quan Z Sheng. Quality driven web services com-
position. In Proceedings of the 12th international conference on World
Wide Web, pages 411–421. ACM, 2003.

[74] Xiaoqing Zheng, Zhaohui Wu, Huajun Chen, and Yuxin Mao. Develop-
ing a composite trust model for multi-agent systems. In Proceedings of
the fifth international joint conference on Autonomous agents and mul-
tiagent systems, AAMAS ’06, pages 1257–1259, New York, NY, USA,
2006. ACM.

97

	Introduction
	Problem definition

	State of the art and related work
	Reputation in team formation
	Reputation in service composition
	Reputation in Wiki environments
	Semi-structured Wiki

	Reputation in explicit collaborative environments
	Case of study: team formation system
	Reputation in a team formation setting
	Motivating example
	The model
	Complexity
	Experimental results

	Generalization: service composition system
	Motivating example
	The model
	Complexity
	Experimental results

	Implicit collaborative environments: the wiki case
	Case of study: semi-structured data Wiki
	Project motivation
	Motivating scenario
	Documents and Templates
	Our scenario, continued
	Validation of documents
	Evolution of templates and documents
	Interacting with templates and documents
	Evolution of documents
	Evolution of templates
	Revision control support
	Our framework
	Experimental results
	Reputation system for a semi-structured Wiki

	Case of study: Wikipedia
	MediaWiki and the Wikipedia community
	Project proposal
	Wikipedia analysis
	Results
	Reputation system architecture

	Conclusions
	Discussion: similarity with recommender systems
	Team formation
	Service composition
	Semi-structured data wiki
	Wikipedia reputation system

