14,368 research outputs found

    Digital design of medical replicas via desktop systems: shape evaluation of colon parts

    Get PDF
    In this paper, we aim at providing results concerning the application of desktop systems for rapid prototyping of medical replicas that involve complex shapes, as, for example, folds of a colon. Medical replicas may assist preoperative planning or tutoring in surgery to better understand the interaction among pathology and organs. Major goals of the paper concern with guiding the digital design workflow of the replicas and understanding their final performance, according to the requirements asked by the medics (shape accuracy, capability of seeing both inner and outer details, and support and possible interfacing with other organs). In particular, after the analysis of these requirements, we apply digital design for colon replicas, adopting two desktop systems. ,e experimental results confirm that the proposed preprocessing strategy is able to conduct to the manufacturing of colon replicas divided in self-supporting segments, minimizing the supports during printing. ,is allows also to reach an acceptable level of final quality, according to the request of having a 3D presurgery overview of the problems. ,ese replicas are compared through reverse engineering acquisitions made by a structured-light system, to assess the achieved shape and dimensional accuracy. Final results demonstrate that low-cost desktop systems, coupled with proper strategy of preprocessing, may have shape deviation in the range of ±1 mm, good for physical manipulations during medical diagnosis and explanation

    Subdivision surface fitting to a dense mesh using ridges and umbilics

    Get PDF
    Fitting a sparse surface to approximate vast dense data is of interest for many applications: reverse engineering, recognition and compression, etc. The present work provides an approach to fit a Loop subdivision surface to a dense triangular mesh of arbitrary topology, whilst preserving and aligning the original features. The natural ridge-joined connectivity of umbilics and ridge-crossings is used as the connectivity of the control mesh for subdivision, so that the edges follow salient features on the surface. Furthermore, the chosen features and connectivity characterise the overall shape of the original mesh, since ridges capture extreme principal curvatures and ridges start and end at umbilics. A metric of Hausdorff distance including curvature vectors is proposed and implemented in a distance transform algorithm to construct the connectivity. Ridge-colour matching is introduced as a criterion for edge flipping to improve feature alignment. Several examples are provided to demonstrate the feature-preserving capability of the proposed approach

    Intelligent sampling for the measurement of structured surfaces

    Get PDF
    Uniform sampling in metrology has known drawbacks such as coherent spectral aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement for intelligent sampling strategies has been outlined over recent years, particularly where the measurement of structured surfaces is concerned. Most of the present research on intelligent sampling has focused on dimensional metrology using coordinate-measuring machines with little reported on the area of surface metrology. In the research reported here, potential intelligent sampling strategies for surface topography measurement of structured surfaces are investigated by using numerical simulation and experimental verification. The methods include the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods which originate from computer graphics, coordinate metrology and previous research by the authors. By combining the use of advanced reconstruction methods and feature-based characterization techniques, the measurement performance of the sampling methods is studied using case studies. The advantages, stability and feasibility of these techniques for practical measurements are discussed

    Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Get PDF
    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed

    Repairing triangle meshes built from scanned point cloud

    Get PDF
    The Reverse Engineering process consists of a succession of operations that aim at creating a digital representation of a physical model. The reconstructed geometric model is often a triangle mesh built from a point cloud acquired with a scanner. Depending on both the object complexity and the scanning process, some areas of the object outer surface may never be accessible, thus inducing some deficiencies in the point cloud and, as a consequence, some holes in the resulting mesh. This is simply not acceptable in an integrated design process where the geometric models are often shared between the various applications (e.g. design, simulation, manufacturing). In this paper, we propose a complete toolbox to fill in these undesirable holes. The hole contour is first cleaned to remove badly-shaped triangles that are due to the scanner noise. A topological grid is then inserted and deformed to satisfy blending conditions with the surrounding mesh. In our approach, the shape of the inserted mesh results from the minimization of a quadratic function based on a linear mechanical model that is used to approximate the curvature variation between the inner and surrounding meshes. Additional geometric constraints can also be specified to further shape the inserted mesh. The proposed approach is illustrated with some examples coming from our prototype software

    Towards recovery of complex shapes in meshes using digital images for reverse engineering applications

    Get PDF
    When an object owns complex shapes, or when its outer surfaces are simply inaccessible, some of its parts may not be captured during its reverse engineering. These deficiencies in the point cloud result in a set of holes in the reconstructed mesh. This paper deals with the use of information extracted from digital images to recover missing areas of a physical object. The proposed algorithm fills in these holes by solving an optimization problem that combines two kinds of information: (1) the geometric information available on the surrounding of the holes, (2) the information contained in an image of the real object. The constraints come from the image irradiance equation, a first-order non-linear partial differential equation that links the position of the mesh vertices to the light intensity of the image pixels. The blending conditions are satisfied by using an objective function based on a mechanical model of bar network that simulates the curvature evolution over the mesh. The inherent shortcomings both to the current holefilling algorithms and the resolution of the image irradiance equations are overcom
    corecore