312 research outputs found

    Relaxed Models for Adversarial Streaming: The Advice Model and the Bounded Interruptions Model

    Get PDF
    Streaming algorithms are typically analyzed in the oblivious setting, where we assume that the input stream is fixed in advance. Recently, there is a growing interest in designing adversarially robust streaming algorithms that must maintain utility even when the input stream is chosen adaptively and adversarially as the execution progresses. While several fascinating results are known for the adversarial setting, in general, it comes at a very high cost in terms of the required space. Motivated by this, in this work we set out to explore intermediate models that allow us to interpolate between the oblivious and the adversarial models. Specifically, we put forward the following two models: (1) *The advice model*, in which the streaming algorithm may occasionally ask for one bit of advice. (2) *The bounded interruptions model*, in which we assume that the adversary is only partially adaptive. We present both positive and negative results for each of these two models. In particular, we present generic reductions from each of these models to the oblivious model. This allows us to design robust algorithms with significantly improved space complexity compared to what is known in the plain adversarial model

    Secret Key Generation Schemes for Physical Layer Security

    Get PDF
    Physical layer security (PLS) has evolved to be a pivotal technique in ensuring secure wireless communication. This paper presents a comprehensive analysis of the recent developments in physical layer secret key generation (PLSKG). The principle, procedure, techniques and performance metricesare investigated for PLSKG between a pair of users (PSKG) and for a group of users (GSKG). In this paper, a detailed comparison of the various parameters and techniques employed in different stages of key generation such as, channel probing, quantisation, encoding, information reconciliation (IR) and privacy amplification (PA) are provided. Apart from this, a comparison of bit disagreement rate, bit generation rate and approximate entropy is also presented. The work identifies PSKG and GSKG schemes which are practically realizable and also provides a discussion on the test bed employed for realising various PLSKG schemes. Moreover, a discussion on the research challenges in the area of PLSKG is also provided for future research

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Compressive Sensing with Low-Power Transfer and Accurate Reconstruction of EEG Signals

    Get PDF
    Tele-monitoring of EEG in WBAN is essential as EEG is the most powerful physiological parameters to diagnose any neurological disorder. Generally, EEG signal needs to record for longer periods which results in a large volume of data leading to huge storage and communication bandwidth requirements in WBAN. Moreover, WBAN sensor nodes are battery operated which consumes lots of energy. The aim of this research is, therefore, low power transmission of EEG signal over WBAN and its accurate reconstruction at the receiver to enable continuous online-monitoring of EEG and real time feedback to the patients from the medical experts. To reduce data rate and consequently reduce power consumption, compressive sensing (CS) may be employed prior to transmission. Nonetheless, for EEG signals, the accuracy of reconstruction of the signal with CS depends on a suitable dictionary in which the signal is sparse. As the EEG signal is not sparse in either time or frequency domain, identifying an appropriate dictionary is paramount. There are a plethora of choices for the dictionary to be used. Wavelet bases are of interest due to the availability of associated systems and methods. However, the attributes of wavelet bases that can lead to good quality of reconstruction are not well understood. For the first time in this study, it is demonstrated that in selecting wavelet dictionaries, the incoherence with the sensing matrix and the number of vanishing moments of the dictionary should be considered at the same time. In this research, a framework is proposed for the selection of an appropriate wavelet dictionary for EEG signal which is used in tandem with sparse binary matrix (SBM) as the sensing matrix and ST-SBL method as the reconstruction algorithm. Beylkin (highly incoherent with SBM and relatively high number of vanishing moments) is identified as the best dictionary to be used amongst the dictionaries are evaluated in this thesis. The power requirements for the proposed framework are also quantified using a power model. The outcomes will assist to realize the computational complexity and online implementation requirements of CS for transmitting EEG in WBAN. The proposed approach facilitates the energy savings budget well into the microwatts range, ensuring a significant savings of battery life and overall system’s power. The study is intended to create a strong base for the use of EEG in the high-accuracy and low-power based biomedical applications in WBAN

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    The White-Box Adversarial Data Stream Model

    Full text link
    We study streaming algorithms in the white-box adversarial model, where the stream is chosen adaptively by an adversary who observes the entire internal state of the algorithm at each time step. We show that nontrivial algorithms are still possible. We first give a randomized algorithm for the L1L_1-heavy hitters problem that outperforms the optimal deterministic Misra-Gries algorithm on long streams. If the white-box adversary is computationally bounded, we use cryptographic techniques to reduce the memory of our L1L_1-heavy hitters algorithm even further and to design a number of additional algorithms for graph, string, and linear algebra problems. The existence of such algorithms is surprising, as the streaming algorithm does not even have a secret key in this model, i.e., its state is entirely known to the adversary. One algorithm we design is for estimating the number of distinct elements in a stream with insertions and deletions achieving a multiplicative approximation and sublinear space; such an algorithm is impossible for deterministic algorithms. We also give a general technique that translates any two-player deterministic communication lower bound to a lower bound for {\it randomized} algorithms robust to a white-box adversary. In particular, our results show that for all p≥0p\ge 0, there exists a constant Cp>1C_p>1 such that any CpC_p-approximation algorithm for FpF_p moment estimation in insertion-only streams with a white-box adversary requires Ω(n)\Omega(n) space for a universe of size nn. Similarly, there is a constant C>1C>1 such that any CC-approximation algorithm in an insertion-only stream for matrix rank requires Ω(n)\Omega(n) space with a white-box adversary. Our algorithmic results based on cryptography thus show a separation between computationally bounded and unbounded adversaries. (Abstract shortened to meet arXiv limits.)Comment: PODS 202

    The Second Conference on Lunar Bases and Space Activities of the 21st Century, volume 1

    Get PDF
    These papers comprise a peer-review selection of presentations by authors from NASA, LPI industry, and academia at the Second Conference (April 1988) on Lunar Bases and Space Activities of the 21st Century, sponsored by the NASA Office of Exploration and the Lunar Planetary Institute. These papers go into more technical depth than did those published from the first NASA-sponsored symposium on the topic, held in 1984. Session topics covered by this volume include (1) design and operation of transportation systems to, in orbit around, and on the Moon, (2) lunar base site selection, (3) design, architecture, construction, and operation of lunar bases and human habitats, and (4) lunar-based scientific research and experimentation in astronomy, exobiology, and lunar geology
    • …
    corecore