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Abstract 
 

Tele-monitoring of EEG in WBAN is essential as EEG is the most powerful 

physiological parameters to diagnose any neurological disorder. Generally, EEG signal 

needs to record for longer periods which results in a large volume of data leading to 

huge storage and communication bandwidth requirements in WBAN. Moreover, 

WBAN sensor nodes are battery operated which consumes lots of energy. The aim of 

this research is, therefore, low power transmission of EEG signal over WBAN and its 

accurate reconstruction at the receiver to enable continuous online-monitoring of EEG 

and real time feedback to the patients from the medical experts. To reduce data rate and 

consequently reduce power consumption, compressive sensing (CS) may be employed 

prior to transmission. Nonetheless, for EEG signals, the accuracy of reconstruction of 

the signal with CS depends on a suitable dictionary in which the signal is sparse. As the 

EEG signal is not sparse in either time or frequency domain, identifying an appropriate 

dictionary is paramount.  There are a plethora of choices for the dictionary to be used. 

Wavelet bases are of interest due to the availability of associated systems and methods. 

However, the attributes of wavelet bases that can lead to good quality of reconstruction 

are not well understood. For the first time in this study, it is demonstrated that in 

selecting wavelet dictionaries, the incoherence with the sensing matrix and the number 

of vanishing moments of the dictionary should be considered at the same time.  

In this research, a framework is proposed for the selection of an appropriate wavelet 

dictionary for EEG signal which is used in tandem with sparse binary matrix (SBM) as 

the sensing matrix and ST-SBL method as the reconstruction algorithm. Beylkin (highly 

incoherent with SBM and relatively high number of vanishing moments) is identified as 

the best dictionary to be used amongst the dictionaries are evaluated in this thesis. The 

power requirements for the proposed framework are also quantified using a power 

model. The outcomes will assist to realize the computational complexity and online 

implementation requirements of CS for transmitting EEG in WBAN. The proposed 

approach facilitates the energy savings budget well into the microwatts range, ensuring 

a significant savings of battery life and overall system’s power. 

The study is intended to create a strong base for the use of EEG in the high-accuracy 

and low-power based biomedical applications in WBAN.  
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Chapter 1 
                                Introduction 
 

1.1 Overview and Motivation of the Thesis 

Electroencephalography (EEG) is one of the most vital physiological signals which 

presents brain’s electrical activity. Therefore its interpretation plays an important role in 

the research of brain and diagnosis of neurological disorders. Especially in the diagnosis 

of epilepsy, the examination of EEG is essential. However, in the typical wired EEG 

monitoring system, patients need to stay very close to the monitoring device and 

medical specialist in the hospital. This significantly interrupts daily lives of patients and 

also restricts EEG studies. 

Recently, tele-monitoring of EEG via wireless body area network (WBAN) has become 

an evolving trend in home-based e-health. Tele-monitoring EEG is a way of recording 

patient EEG signals constantly in the ambulatory environment by using a portable 

device that the patient can carry without interrupting their daily activities. 

On the other hand, the high volume of data and power consumptions are main 

constraints in the transmission of EEG signal through WBAN, due to the short life of 

battery and processing capability of wireless sensor nodes. It is stated that the most 

energy hungry part in WBAN is its transmitter. Hence, sensing and processing 

methodologies are required to apply to the signal before transmission. In this thesis, 

compressive sensing (CS) being an energy efficient data compression technique is 

employed prior to the transmission.   

However, a requirement of CS is that the signal has to be sparse in the domain where it 

is compressed. The problem is EEG signal is not sparse in time or the frequency 

domains. Thus the main challenge of employing CS for EEG signal is to identify the 

domain known as the dictionary in which the EEG signal is sufficiently sparse. Wavelet 

bases are widely used as a dictionary in CS; however, its features have not been 

analyzed fully, except the existing widely adopted approach of its high incoherency 

with the sensing matrix. In most other applications, a key feature employed in the 

selection of a wavelet basis is the number of vanishing moments, which determines its 

ability to represent complex signals efficiently or more sparsely. 
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This study demonstrates that during the selection of the wavelet dictionaries, the 

incoherence with the sensing matrix and the number of vanishing moments of the 

dictionary should be considered simultaneously. There are dictionaries with high 

incoherence that lead to poor reconstruction and there are those with high number of 

vanishing moments that lead to a similarly poor outcome. However, dictionaries having 

both a high incoherence with the sensing matrix and relatively large number of 

vanishing moments tend to lead to less error in reconstruction. 

In this work, Beylkin is identified as the best dictionary to be used amongst the 

dictionaries are used.  This has a similar performance to discrete cosine dictionary while 

demonstrating a moderately better performance at higher compression levels. 

Furthermore, Beylkin leads to substantially better performance at higher compression 

ratios compared to reconstruction without using sparsifying dictionaries.   

1.2 Research Questions  

EEG signals need a prolong periods of recording, resulting in large volume of data 

which lead to huge storage and communication bandwidth requirements in WBAN. 

Moreover, battery-operated WBAN sensor nodes consume lots of energy. Therefore, an 

energy efficient EEG transmission and reconstruction is required.  CS may be employed 

prior to transmission to reduce data rate and thereby to reduce power consumptions, but 

a CS prerequisite is that in the domain where it is compressed the signal must be sparse. 

Moreover, EEG signal is neither sparse in time domain nor in frequency domain. The 

main challenge of using CS for EEG signal is therefore to determine the domain 

referred to as the dictionary in which EEG signal is sparse enough. Wavelet bases are 

commonly used in CS as a dictionary; however, their features are not thoroughly 

studied. Therefore, the research question is which features of wavelet bases need to be 

considered for the selections of appropriate wavelet dictionary of EEG signal. 

1.3 Aim of the Thesis  

The aim of this research is energy efficient transmission of EEG signal over WBAN and 

its accurate reconstruction at the receiver with the aim of ensuring continuous EEG 

monitoring and real time feedback from the physicians to the patients.  
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1.4 Objectives of the Thesis  

The objective of this study is to identify a suitable wavelet dictionary by investigating 

incoherence and vanishing moment with an aim to improving accuracy of 

reconstruction of the EEG signals. Although state-of-the-art approaches show accurate 

reconstruction of EEG, however the specific features that make these dictionaries 

appropriate, have not investigated yet. In this thesis, these features are investigated 

fully. Another objective of this work is to analyse the power requirements for the 

proposed framework-based EEG sensor node. 

 

1.5 Research Knowledge Gap 

The properties of dictionary that make them appropriate selections for EEG signals have 

not analyzed fully in the state-of-the-art studies. While incoherence has been 

investigated and is understood well for CS, vanishing moment, on the other hand, is 

understood in terms of wider Discrete Wavelet Transform (DWT) applications to 

represent complex signals efficiently and sparsely. These two important properties are 

considered in isolation and to the best of my knowledge have not been analyzed 

together for CS in EEG signals. The investigation of this research indicates that both 

features should be looked at the same time in the selection of the dictionary; this is 

something that is often overlooked. 

1.6 Contributions of the Thesis  

Based on the addressed problems and the purpose of the work, the contribution of this 

research can be divided into the following two parts: 

A. In this dissertation, a framework is proposed for the selection of an appropriate 

wavelet dictionary for EEG signal which is used in tandem with sparse binary 

matrix (SBM) as the sensing matrix and Spatiotemporal Block Sparse Bayesian 

Learning (ST-SBL) method as the reconstruction algorithm. The results would 

assist users in identifying an appropriate dictionary to be employed for CS of 

EEG signals.  

This research is primarily aimed at investigating incoherence of dictionary with 

SBM, together with vanishing moments of wavelet dictionaries for effective 

implementation of compressive sensing for EEG signal acquisition. In this work, 



4 
 

clear evidence is provided that Beylkin having high incoherence with SBM and 

relatively high number of vanishing moments leads to the best performance and 

subsequently assess the effects on possible clinical outcome in detecting 

epilepsy. 

 

B. The power requirements of transmitting EEG signal in WBAN are investigated 

by exploring the effectiveness of proposed approach. The studies are carried out 

by numerical experiments following a power model. The outcomes will assist to 

realize the computational complexity and online implementation requirements of 

CS for EEG transmission in WBAN.  The proposed framework enables the 

energy savings budget well into the    range which contributes substantially to 

the savings of battery life and overall energy of the system.  

1.7 List of Workshop, Conference and Submitted Publication 

Dey, M.R., (2018) ‘Compressive Sensing of EEG signal with Discrete Wavelet 

Transform (DWTs)’, Presented at Workshop on Sensors, Circuits and Systems: 

University College of London, 25 June.  

 Dey, M.R., Shiraz, A., Lota, J. and Demosthenous, A. (2019) ‘Compressive Sensing of 

EEG Signals over Wireless Body Area Network with Incoherent DWT Dictionary’, 

UEL Research and Knowledge Exchange Conference, 27 June. London. 

1.8 Outline of the Thesis  

The thesis is structured as follows. 

Chapter 2 depicts literature review of the research. 

Chapter 3 provides the concept of EEG signal transmission over WBAN with the 

background knowledge of EEG signal, generation, recording system and application of 

EEG signals. The chapter also presents the overview of WBAN based EEG system, its 

advantages, challenges and also gives a brief discussion of the methodologies are used 

to overcome the challenges. The chapter concludes by introducing CS as energy 

efficient method. 
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Chapter 4 provides research methodology which includes research problem, research 

literature survey, properties of DWT, proposed approach, data Selection and 

Simulations and Validation of the Proposed Approach. 

Chapter 5 proposes the framework of identifying an appropriate wavelet dictionary. The 

details of CS method are given in this chapter as well as the generation of DWT 

dictionary and the key features of selecting the suitable dictionary also described 

elaborately. Method and materials are also provided in this chapter. 

Chapter 6 presents all the experimental results of the proposed approach that are 

discussed in chapter 5. The chapter starts with providing the datasets which are used for 

the experiments. The outcomes of incoherence, reconstruction using DWT dictionaries 

to identify an appropriate dictionary also provides this chapter. A comparison of DWT, 

DCT and the case of using no dictionary for different compression ratios (CRs) are also 

given, classification error of clinical data is also shown. The chapter ends with a brief 

discussion of the results. 

Chapter 7 has analyzed the feasibility of the proposed framework to enable online data 

reduction, from the power point of view. The power requirements for the proposed 

framework based EEG sensor node are quantified in this chapter using a power model. 

The chapter also presents the approach of further reduction of power consumption. 

Finally, Chapter 8 concludes this dissertation by summarizing the research contributions 

and ended with suggesting the potential extension of the research.  
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Chapter 2 
Literature Review 

 
The dynamic nature of physiological signals such as electroencephalographic (EEG) or 

electrocorticographic (ECo G) signals in individuals results in a broad range of normal 

and pathological characteristics. In order to predict pathological events the use of 

manually extracted features with a large volume of data is not practical even for a small 

number of electrodes because it causes processing delays (Hosseini et al., 2017). For 

real time and clinically useful implementation in such applications, thus automated 

feature extraction and signal processing are required. The real-time processing can be 

facilitated using cloud computing, Internet of Things (IoT) and deep learning, to 

effectively monitor and predict seizures using EEG signal (Hosseini et al., 2017), which 

requires high data volume transmission of the acquired bio-signals. In addition, remote 

online monitoring and diagnosis of EEG signals can reduce patient’s frequency of visits 

to hospitals (Ivanov et al., 2012; Lim, Baumannand Li, 2011; Seyedi et al., 2013; Zhang 

et al., 2013a ). 

Due to the limited battery life and processing capacity of sensor nodes, energy 

consumption and high volume of data are major constraints in EEG signal transmission. 

Recent efforts aimed at increasing battery life focus on reducing the transmission power 

and data rate with compressed sensing (CS) (Liu, Vosand and Huffel, 2015; Candes and 

Wakin, 2008). CS provides a significant computational savings during on-chip 

implementation, therefore, it is considered as most feasible technique for the 

transmission of large volumes of data and high data rate signals (Balouchestani, 

Raahemifar and Krishnan, 2012a; Balouchestani, Raahemifar and Krishnan, 2012b; 

Zhang et al., 2013a; Casson and Rodriguez-Villegas, 2014; Lalos et al., 2014; 

Majumdar and Ward, 2016; Kaliannan and Pasupureddi, 2016; Djelouat et al., 2017; 

Gogna, Majumdar and Ward, 2017; Hanafy, Ali and Shaalan, 2017;). In CS data is 

projected into a compressed format non-adaptively upon acquisition using a sensing 

matrix, which differs from conventional compression techniques where data is acquired 

then compressed and indices are stored (Majumdar, Gogna and Ward, 2014). 

One main requirement of CS is that the signal must be sparse (Candes and Wakin, 

2008).  EEG signal is not sparse, however, in time or the frequency domains (Zhang et 

al., 2013a). A challenge, therefore, in employing CS for the EEG signal is to identify 

the domain known as the dictionary in which the EEG signal is sufficiently sparse. This 
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leads to another important requirement for CS which is the incoherence between the 

dictionary and the sensing matrix (Singh et al., 2014; Zhang, Rao and Jung, 2013; 

Majumdar, Gogna, and Ward, 2014). Incoherence defines the level of dissimilarity 

between the two (Candes and Wakin, 2008). In order to achieve accurate reconstruction 

of the original signal, the dictionary and sensing matrix has to be highly incoherent 

(Majumdar, Gogna and Ward, 2014). For EEG signals, the accuracy of reconstruction of 

the signal with CS depends on a suitable dictionary that is maximally incoherent with 

the sensing basis (Majumdar, Gogna, and Ward, 2014).  Different dictionaries have 

been developed and investigated to make EEG signal sparse, for example, Gabor 

transforms (GT), discrete wavelet transforms (DWT), spline and discrete cosine 

transforms (DCT) (Zhang, et.al 2013a; Aviyente, 2007; Abdulghani, Casson, and 

Rodriguez-Villegas, 2010; Mahrous and Ward, 2016a; Gangopadhyay et al., 2011; 

Kamal et al., 2013). Kronecker Fourier basis is used as a dictionary in (Shukla, 

Majumdar and Ward, 2015). DCT is used as dictionary in (Zhang (2013a); Majumdar, 

Gogna and Ward, 2014). It is stated in (Higgins, Ginley, et al., 2010; Hilton, Jawerth 

and Sengupta, 1994) at lower compression ratio it shows better performance but at 

higher compression ratio its performances deteriorates quickly while DWT degrades 

much more gradually. Aviyente (2007) uses GT for sparse representation of EEG 

signal. 

The findings of these techniques suggest correct reconstructions with less error; 

however, there has been no explanation or clarification of the particular features that 

make these dictionaries appropriate. It is challenging to select a particular DWT for a 

given application to ensure that the compressed signal is accurately reconstructed. A 

key feature used in selecting a DWT in most applications is the number of vanishing 

moments, which defines its ability to effectively or sparsely represent complex signals. 

Unser (1996) states that the approximation order of a DWT increases with the number 

of vanishing moments up to the smoothness index (Hlder regularity) of the 

approximated signal according to the Strang-Fix condition (as a special case). An equal 

number of vanishing moments for the DWT can also be seen as all doing same amount 

of works (Selesnick, 2004).  

Besides the dictionary the Block Sparse Bayesian Learning (BSBL) is used to achieve 

the block sparsity of EEG/ECG (Electrocardiography) signals. EEG signals have a 

correlation structure. Reconstruction efficiency of the algorithms deteriorates if the 

correlation structure is ignored. This function has been ignored by most state-of - the-art 
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algorithms. Sparse Bayesian Learning (SBL) methods stated in (Zhang and Rao, 2011; 

Zhang, Rao and Jung, 2013) take advantage of signal correlation structure to make 

significant improvements in reconstruction efficiency. It is reported Zhang et al., 2013a; 

Zhang et al., 2013b, Zhang et al., 2014) that the exploitation of the correlation structure 

with the sparsity of the non-sparse physiological signals may significantly increase the 

efficiency of reconstruction. It is demonstrated in (Zhang et al. 2013a; Zhang et al., 

2013b) SBL algorithms obtain the high performance to reconstruct sparse signals. A 

spatio-temporal sparse Bayesian learning (ST-SBL) approach is proposed in (Zhang, 

Rao and Jung 2013; Zhang et al., 2014) to exploit both the intra-channel and inter-

channel correlation of the signals. ST-SBL simultaneously reconstructs the 

multichannel EEG signals. This exploits temporal correlation in each channel signal and 

also the spatial correlation between different channel signals (Zhang, Rao and Jung 

2013).  

 A novel method is proposed in (Zhang et al, 2013a) to use BSBL algorithm to 

compress and reconstruct raw FECG signals. Findings demonstrated that the in 

comparison of other BSBL and CS DWT based methods the algorithm can reconstruct 

the signals with greater quality. A matrix completion based method is used in 

(Majumdar, Gogna. and Ward, 2014) for signal reconstruction from under-sampled 

measurements. In order to develop an optimal dictionary and its suitability for hardware 

implementation a comparison of various dictionaries is made in (Craven et al., 2015). 

The authors, however, do not reflect dictionary properties such as incoherence and 

vanishing moments when choosing the dictionaries in prior study. In (Mahrous and 

Ward 2016b) a novel BSBL approach is presented and as a dictionary DCT is used for 

both ECG and EEG signals, but does not contribute to the option of DCT selection 

(Mahrous and Ward 2016b). An explanation of incoherence is provided by (Majumdar 

and Ward 2015) for choosing the dictionary on the basis of a pre-selected class of 

dictionaries followed by an optimization algorithm. The research in (Singh et al, 2017) 

specific on hardware implementation, there is no discussion on the novel properties of 

the dictionaries. The research carried out in (Zhang et al., 2014) provides a novel 

computational improvement over the BSBL methods, which is referred to as a ST-SBL 

method, and is not intended to highlight DWT attributes for optimal dictionary 

selection. An approach is given in (Mishra et al., 2012) for comparing the 

reconstruction accuracy with different dictionaries, but in terms of the properties of 

incoherence and vanishing moments, it does not address the choice or selection of 

wavelets. 
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Chapter 3 
Overview of EEG Transmission over Wireless 

Body Area Network 
 

3.1 Introduction 

The aim of this dissertation is the transmission of Electroencephalogram (EEG) signals 

over wireless body area network (WBAN) in an energy-efficient way. In order to have a 

clear idea about the transmission of EEG signals over WBAN, this chapter mainly 

presents the overview of EEG transmission through the wireless sensor network 

including its concept, architectures, limitations and solutions. 

Before providing the detail of EEG transmission over WBAN, this chapter introduces 

the background information about EEG in section 3.2 which includes the generation, 

frequency bands, recoding process, rhythms and applications of EEG. Section 3.3 

depicts the concept of EEG transmission over WBAN, this section is divided into some 

subsections which provide challenges and shortcomings of WBAN and also the 

methodologies to use to overcome the limitations of EEG transmission over WBAN. 

The summary of the chapter is presented in section 3.4. 

3.2 Background information about EEG 

This section provides the background information about EEG. Before the brief 

discussion on EEG signal transmission, it is necessary to know what EEG is, how it 

generates, what the frequency bands are, how it records and what its applications are. 

The following subsections will provide all the information to introduce some 

terminologies and associated information of this research.  

3.2.1 Electroencephalogram Signals (EEG) 

The human brain comprises millions of neurons that play a key role in regulating the 

human body's conduct in relation to internal/external motor/sensory stimulation. These 

neurons act as carriers of information between the human body and the brain. Cognitive 

brain behaviours can be understood through the analysis of either signals or brain 

images (Kumar and Bhuvaneswari, 2012). Electroencephalogram (EEG) is a powerful 
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physiological parameter which measures brain’s electrical activity. It has been 

considered as the gold standard for neurology and neurophysiology research over the 

years (Meng et al., 2014; Gil Y et al., 2011). The EEG is commonly used to study brain 

functions and to diagnose neurological disorders by doctors and researchers. 

An English physicist Richard Caton found the presence of electrical currents in the 

brain in 1875 (Teplan, 2002). Caton noted the EEG from the rabbit and monkey's 

exposed brains. In 1924, a German neurologist Hans Berger first introduced the 

electrical activity of human brain. Using a regular radio device, he amplified the brain 

signal which captured from the human scalp without exposing the skull. He showed a 

graphical representation of brain signal. He also noticed that the brain signal changed 

with the functional status of the human, such as anesthesia, sleep, absence of oxygen, 

epilepsy (Teplan, 2002).  

3.2.2 Generation of EEG 

Local current flows are generated during the stimulations of brain cells (neurons). EEG 

mainly measures the currents which flow in the cerebral cortex during synaptic 

excitations of the dendrites of brain cells (Teplan, 2002). A great amount of activated 

neurons can produce sufficient electrical activity to provide a recordable signal. It is 

necessary to amplify and process the recorded EEG signal (Taywade and Raut, 2012). 

EEG can record both the regular or critical signals of brain, therefore it is considered as 

a strong tool in the field of medical science. 

3.2.3 EEG Recording System 

EEG recording system comprised of a variety of electrodes, amplifiers, filters and a 

monitor or computer. Electrodes acquire the electrical signal from the brain. Generally, 

one pair of electrodes are connected to the amplifier. Since EEG is a microvolt range 

signals (typically 1 to 100 μV of amplitude); it needs to amplify before digitization 

(Nuwer et al., 1998). Finally, the recorded EEG displays a continuous graphical 

representation of the electrical activity of the brain on the computer screen. Figure 3.1 

shows a typical EEG system. EEG can be recorded in two different ways based on the 

location from where the signal is recorded in the head. The first way is known as scalp 

EEG or non-invasive EEG; electrodes are placed on the scalp with good mechanical and 

electrical contact. The other one is known as intracranial EEG or electrocorticogram 

(ECoG) where electrodes are directly implanted in the cerebral cortex of brain by 
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surgery (Adeli et al., 2003). This kind of EEG recording also called invasive EEG 

(Mansor et al., 2011). There are various kinds of electrodes available, such as 

disposable conductive gel (Ag-Cl), reusable disc electrodes (with gold, silver, tin 

compositions), headband and cap electrode and needle electrode.  

 

Figure 3.1. Typical EEG system (Waltz, 2017). 

 

EEG system can have up to 128 or 256 electrodes on the basis of use (Teplan, 2002). 

This is known as multichannel EEG system. Usually, each pair of electrodes indicates a 

single channel that presents a signal in the EEG system. Usually, electrodes placement 

for the non-invasive EEG recording follows the internationally standardized 10-20 

system (Jasper, 1958). The numbers "10" and "20" indicate the matter that the real 

distances between two neighbouring electrodes are either 10% or 20% of the skull's 

complete front-back or right-left range. It can be seen in Figure 3.2, one measurement is 

drawn from the starting reference point nasion, over the top of the head to the other 

reference point inion. Similarly other measurement is taken from the right ear across the 

top of the head to the left ear (Klem et al., 1999). The 

electrodes are marked with letters indicating the position of the brains’ lobe, for 

example, F-frontal, T –Temporal, C-Central, P-Parietal, O-Occipital. The electrode that 

is positioned in the midline is marked by ‘z’. Besides, numbers are used to define the 



12 
 

position of electrodes on the hemisphere, such as odd numbers refer left hemisphere and 

even numbers show the position of the right hemisphere (Kumar and Bhuvaneswari, 

2012). For example, F8 is placed on right frontal lobe of the brain. 

 

 

Figure 3.2. The international 10-20 electrode placement system (Sazgar and 

Young, 2019).  

3.2.4 EEG signal Natures or Rhythms  

The frequency of brain signal is one of the most significant factors that help to detect 

any neurological disorder. The frequency of EEG signal differs according to the states 

of human, such as, sleeping or awakens state or physical condition. Depending on the 

frequency band and mental states EEG rhythms generally classified in particular groups, 

such as delta (0.1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) beta (13-30 Hz) and gamma 

(>30 Hz) (Kumar and Bhuvaneswari, 2012). Figure 3.3 displays the waveforms of these 

five types of EEG rhythms and the frequency bands and the associated mental states of 

human are presented in Table 3.1.  
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     Figure 3.3. Typical EEG rhythms (Crystal Blue Enterprises, 2015).  

 

Table 3.1 EEG rhythms types, their frequency band and associated mental states. 

EEG Rhythm 

Types 

Frequency Band Mental States. 

Delta (δ) 0.1 Hz-4 Hz Profound sleep, severe brain disorder 

and awake conditions. 

Theta (θ) 4 Hz -8 Hz Creative thought, profound meditation, drowsine

ss, unconscious content, frustration or 

disappointment. 

Alpha (α) 8 Hz -13 Hz Relaxation, closed eyes, subconscious. 

Beta ( β) 13 Hz -30 Hz Conscious, concentration, problem-solving, 

active thinking. 

Gamma (γ) 30 Hz -100 Hz Hyper alertness, certain cognitive and motor 

functions. 
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3.2.5 Applications of EEG Signals 

EEG signal can be used to identify any neurological disorders, brain diseases, physical 

abnormalities and also can use for research purposes. The applications of EEG are 

stated below. 

Clinical Application:  

 Detection of epilepsy and locating the region of seizure.  

 Sleeping disorder and drowsiness investigation 

 The depth of anaesthesia monitoring 

 Monitoring consciousness, coma and brain death.  

 Locating harm regions after brain injury, stroke, tumour, etc. 

Research Application: 

EEG signals have enormous applications in the field of neuroscience, cognitive science 

and psychophysiological research. 

It is very evident from the above list of applications that it has a huge scope for EEG 

signal analysis, processing and transmission with advanced technique and technology so 

that EEG interpretation becomes easier and clears to the clinicians. The following 

section describes the tele-monitoring of EEG signals in the application of WBAN. 

3.3 WBAN-oriented EEG transmission 

In the typical wired EEG system, patients need to remain very close to the monitoring 

device and medical expert in the hospital (Figure 3.1). This significantly interrupts 

patients’ daily life and also constricts the research on EEG applications (Gil et al., 

2011). For example, for real-time epileptic seizure detection, patient’s EEG needs to be 

monitoring continuously for a long period of time which is a lengthy and expensive 

effort. This also consumes both the resources of hospitals and the time of the 

physicians. In addition, the patient is separated from their regular environment and 

therefore any related variables may affect their epilepsy (Higgins et al., 2010).  

Recently, tele-monitoring of EEG through wireless body area network (WBAN) has 

become an emerging trend in home-based e-health (Zhang et al., 2013a; Higgins et al., 

2010). Tele-monitoring of EEG is a way of capturing EEG signals of patient 

continuously in an outpatient environment using a portable device which is carried by 

the patient even without interrupting their regular activities (Higgins et al., 2010; Büsze 
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et al., 2010). WBAN- based EEG system consists of a number of EEG sensor nodes. 

These sensor nodes are either place on the scalp to get non-invasive EEG signal or 

directly implanted inside the brain to acquire ECoG signal. The sensor nodes also 

compress the EEG signal (Negra, Jemili and Belghith, 2016). The compressed EEG is 

sent to a neighbouring computer or smartphone via Bluetooth and then transferred over 

the internet to the receiver or medical server where the original EEG can be 

reconstructed using a computer (Zhang et al., 2013a). Thus the system enables patients 

to keep track of their medical status without visiting hospitals frequently (Balouchestani 

et al., 2012a). Therefore, the development of wireless sensor networks has enhanced 

healthcare applications and real-time patient monitoring systems (Hussein et al, 2015). 

The rapid development of wireless communication technology paves the way to support 

medical and healthcare system in order to enhance the quality of treatment and reduced 

associate expenses. WBAN is an emerging technology which offers remote monitoring 

of the patient’s health using some embodied sensors that collect health information of 

the patient (Al-Janabi et al., 2016). Figure 3.4 shows the general architecture of WBAN. 

WBAN incorporates several sensors which are positioned either directly on the surface 

of the user’s body or implanted inside the body. The sensor nodes collect vital 

information from the human body. There are various types of sensor nodes depending 

on the requirement of the users such as EEG sensor is used to study user’s brain 

activity, similarly to gather information about user’s heart activity, ECG sensor nodes 

are incorporated. Some other sensor nodes are used to measure blood pressure, body 

temperature, etc. (Al-Janabi et al., 2016). Since the focus of this research is EEG signal 

transmission, only EEG sensor node is considered in the WBAN architecture (Figure 

3.4). The EEG sensor node is placed on the user’s head which collects EEG signal from 

the human brain and as EEG signal has high volume of data it needs to be compressed 

before transmission. WBAN used different compression techniques to compress 

physiological signals in energy efficient way.  The compressed EEG is sent to a nearby 

personal server (PS) through ultralow-power short-haul radios (for example, Bluetooth, 

Zigbee, Medical Implant Communication Service (MICS), Ultra Wide Band (UWB), 

Wireless fidelity (Wifi), etc.) (Khan et al., 2010).  Mobile phone or computer can be 

used as personal server which also controls WBAN and transmits the user’s 

physiological information to the remote terminal via the internet. 



16 
 

The remote terminal can be considered as medical server (MS) as the ultimate goal of 

transmitting signals is to monitor user’s physical status. In the medical server, the 

original signal is retrieved using computer. Medical databases store the health 

information of each registered patient and offer them different services according to the 

demands. For example if the patient needs immediate attention they send emergency 

service. The patients need not visit hospitals frequently because of portable monitoring 

devices. This wireless network also ensures location independent healthcare services, 

for instance, the user can be at home or at work continuing with their regular activities, 

and still their health can be monitored flawlessly and continuously. 

 

The physiological data acquired from this wireless network can also be used for 

research purposes. The black box in Figure 3.4 indicates the research database where 

the collected data are going through further analysis with filter out the noise and then 

send the related decision to the medical server.  
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3.3.1 Advantages of WBAN-oriented System 

WBAN offers a number of advantages over the existing wired system that is discussed 

below: 

 WBAN provides real time data acquisition, processing, transmitting and 

monitoring remotely.  

 The main constraint of the existing wired systems is they are made of 

location-specific sensors which are clumsy in nature. Whereas, WBAN facilities 

location independent services (Khan et al., 2010).  

 WBAN also ensures mobility of users because of wearing portable devices. 

Users can continue their daily activities carrying the portable device of WBAN 

which will continuously collect and transfer their health information to the 

healthcare centre to monitor it ubiquitously.  

3.3.2 Challenges in WBAN-based EEG transmission system 

Despite the numerous advantages of WBAN, there are some limitations that need to be 

considered during designing the network. Energy consumption is the essential one 

(Zhang et al., 2013a; Singh et al., 2014). WBAN sensor nodes are battery-driven which 

is confined in longevity. Therefore, it is important to save power as much as possible 

which will consequently increase battery life as well as the efficiency of the overall 

system (Liu et al., 2015). 

The second challenge of WBAN based EEG system is high volume of data of the EEG 

signal which needs to be compressed to a great extent before transmission. The reason 

for high level of compression is that the transmission link (for example, Bluetooth) that 

used to transmit data has limited transmission capacity. In addition, usually mobile 

phone is used as the personal server which initially stores the data. Therefore it is 

essential to ensure that data volume does not overwhelm the mobile phone’s capacity by 

interrupting its main tasks like calling, texting and browsing (Zhang et al., 2013a).  

Hardware expenses are another limitation. Minimum equipment expenses will make the 

portable online-monitoring device economically feasible and acceptable to the users. 

Furthermore, economically reasonable equipment also indicates the fact that its data 

processing and reconstruction technique is also less complex.    
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3.3.3 Methodology to resolve challenges in WBAN 

The constraints in WBAN introduce three major requirements: i) lower energy 

consumption at the sensor node, ii) higher data compression rate and iii) minimum 

equipment cost. In order to address all these requirements, an energy efficient signal 

processing methodology is required to ensure that EEG signal is compressed, 

transmitted and reconstructed energy efficiently (Lalos et al., 2015).  

There exists a variety of EEG signal processing methods. Some of these methods, EEG 

is compressed directly in time domain, for example, Antoniol and Tonella (1997) used 

Huffman coding technique to compress EEG signal in time domain, a near-lossless 

compression technique is used in (Memon et al., 1999, Sriraam and Eswaran, 2008). 

According to (Mahajan and Bansal, 2014) these methods are able to compress signal at 

high level but they are not computationally effective.  

There are some researches that used wavelet transform (WT) to compress EEG (Sornmo 

and Laguna, 2005; Fira and Goras, 2010; Dehkordi et al., 2011; Sriraam, 2012; Kamat 

et al., 2013; Chitra et al., 2015; Panessai and Abdulbaqi, 2019). Zhang (2013a) stated 

that wavelet compression is not able to address all the WBAN constraints together. 

Moreover, WT is also a computationally complex technique.  

Most of the methodologies that are mentioned above fail to recover the clinical features 

in EEG because of poor reconstruction quality. Therefore, automated feature extraction 

and signal processing methods are necessary for real time and clinically useful 

implementation in such applications. 

Recent efforts aiming to increase battery life focus on reducing the power of 

transmission and data rate with compressive sensing (CS) (Zhang et al., 2013a; Sing et 

al., 2014; Liu et al., 2015; Candes and Wakin, 2008) As CS can lead to significant 

computational savings for on-chip implementation with relatively low sampling rates, 

recently, it has been viewed with considerable interest as a viable technique for the 

transmission of large data volumes and high data rate signals over WBAN (Zhang et al., 

2013a; Balouchestani et al., 2012b; Djelouat et al., 2017; Imtiaz et al., 2014; Gogna et 

al., 2017; Hanafy et al., 2017; Majumdar and Ward, 2016; Kaliannan and Pasupureddi, 

2016; Lalos et al., 2014; Balouchestani et al., 2012a). In CS data is projected into a 

compressed format non-adaptively upon acquisition using a sensing matrix, which 

differs from conventional compression techniques where data is acquired then 

compressed and indices are stored. In this study, CS is employed for transmission of 

EEG signal over WBAN. The detail of CS is discussed in the next chapter. 
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3.4 Summary 

This chapter provides the concept of EEG signal transmission over WBAN. Tele-

monitoring of EEG in WBAN is very important since EEG is the most powerful 

physiological parameters for diagnosing any brain diseases. EEG signal usually needs to 

be recorded for a longer period of time which results in a large volume of data leading 

to huge storage and communication bandwidth requirements in WBAN. Besides, 

WBAN sensor nodes are functioned by the battery which consumes lots of energy. The 

aim is, therefore, to transmit EEG signal in an energy and computationally efficient 

way.  This chapter also provides information about the existing methodologies that are 

used for EEG signal processing. From the literature review it can be concluded that 

compressive sensing method is the best approach compared to others as it compresses 

EEG signal at a low sampling rate and also enables to reconstruct the signal from much 

lower number of samples while retaining the significant clinical information. 

The detail discussion on CS and the proposed framework is presented in chapter 5.  
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Chapter 4 
                       Research Methodology 
 

4.1 Research Problem 

For a successful transmission and reconstruction of EEG signals using CS relies on the 

selection of the dictionary which make the signal sparse.  Wavelet bases are widely used 

as dictionaries in CS; however, their properties are not studied in depth. The research 

problem is, therefore, which properties of wavelet bases need to be considered for 

selecting the suitable wavelet dictionary of EEG signal. 

4.2 Literature Survey 

The authors in (Craven et al., 2015) make a comparison of several dictionaries for CS in 

EEG and ECG signals for developing an optimal dictionary and its suitability for 

implementing in embedded hardware. However, there is no reflection in prior analysis 

of dictionary properties such as incoherence and vanishing moments for the choice of 

the dictionaries. A novel BSBL method is described in (Mahrous and Ward 2016b) and 

the DCT is used to increase sparsity with the results shown for both ECG and EEG 

signals, but is not linked to the option of choosing DCT (Mahrous and Ward 2016b). An 

explanation in terms of incoherence is given in (Majumdar and Ward, 2015) for 

dictionary choice followed by an optimization algorithm that leads to optimal dictionary 

selection, based on a pre-selected dictionary class. The research discussed in (Singh et 

al, 2017) is on hardware implementation, there is no discussion of novel dictionary 

properties. The research in (Zhang et al., 2014) provides a novel computational 

improvement over the BSBL methods known as the ST-SBL method, and is not 

intended to highlight DWT attributes for optimal dictionary selection. The methodology 

in (Mishra et al., 2012) contrasts the accuracy of the reconstruction for specific 

dictionaries. In terms of the properties of incoherence and vanishing moments, it does 

not address the choice or selection of wavelets. 
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4.3 Properties of DWT 

In the state-of - the-art research, the dictionary properties that make them ideal choices 

for EEG signals have not been thoroughly studied. Although incoherence has been 

studied and is well understood for CS, the vanishing moment, on the other hand, is 

understood to represent complex signals efficiently and sparsely in terms of Discrete 

Wavelet Transform (DWT) applications. These two essential properties are considered 

in isolation and have not been jointly investigated for CS in EEG signals. The study of 

this research shows that both features should be explored simultaneously in the 

dictionary selection; this is often ignored. 

4.4 Proposed Approach 

This research propose an approach for the selection of an appropriate wavelet dictionary 

by investigating incoherence of dictionary with SBM, together with vanishing moments 

of wavelet dictionaries for effective implementation of compressive sensing for EEG 

signal transmission and reconstruction. Spatiotemporal Block Sparse Bayesian Learning 

(ST-SBL) method is used as the reconstruction algorithm.  

4.5 Data Selection and Simulations 

The research is based on transmission and reconstruction of EEG signal. There are 

various EEG datasets are available. In this research, three types of EEG datasets are 

used for validating proposed approach; they are driving task, visual task and epileptic 

and non-epileptic datasets. The details of datasets selections are given in chapter 6.  

All the simulations involve in this study are accomplished in MATLAB. 

4.5 Validation of the Proposed Approach 

Clinical data are used for validation. The proposed approach is validated to determine 

the clinical effects of CS using the appropriate DWT using a classification algorithm 

based on feedforward neural network which classify epileptic from nonepileptic EEG 

signal.  
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Chapter 5 
Wavelet Bases for Compressive Sensing of EEG 

Signals with Accurate Reconstruction 
 

5.1 Introduction  
Tele-monitoring of electroencephalogram (EEG) signals over wireless body area 

networks (WBAN) is challenging due to high volume of data and power requirements. 

To reduce data rate and consequently reduce power consumption, compressive sensing 

(CS) is employed prior to transmission. Generally, there are three main components in 

compressive sensing; a sensing matrix, a sparsifying dictionary/basis and a 

reconstruction algorithm.  

Sparse binary matrix is of interest for the sensing matrix in the target application due to 

its ease of implementation and reduced power footprint.  

A requirement of CS is that the signal has to be sparse in the domain where it is 

compressed.  A challenge, therefore, in employing CS for the EEG signal is to identify 

the domain known as the dictionary in which the EEG signal is sufficiently sparse. 

There are a plethora of choices for the dictionary to be used. Wavelet base is widely 

used as a dictionary in CS; however, its features have not been analyzed fully. Two key 

criteria for an appropriate selection of the dictionary are the number of vanishing 

moments, indicating to what extent it can represent complex signals sparsely; and with 

respect to CS, incoherence of the dictionary with the sensing basis, denoting how 

accurately the original signal may then be reconstructed.  

Spatiotemporal block sparse Bayesian learning method (ST-SBL) is a suitable choice 

for the reconstruction algorithm since it is designed for multichannel acquisition by 

exploiting inter-channel correlation. While such an algorithm only requires block 

sparsity, in the absence of temporal correlation transferring the signal onto a domain in 

which the signal is sparse may compensate for it. Current motivations in employing CS 

include low hardware complexity with optimization algorithms, and novel ST-SBL 

approaches to reduce latency. 
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In this chapter, the background knowledge of CS and the framework associated with 

selecting a suitable wavelet dictionary for accurate reconstruction of EEG signal are 

presented.  

A brief introduction of the background and the theory of CS are given in section 5.2 

followed by the subsections of sensing basis, sparsifying dictionary, incoherence, 

selection of the wavelet dictionary and vanishing moment. Section 5.3 provides method 

and materials and section 5.4 presents the summary of the chapter. 

5.2 Overview of Compressive Sensing and its Background 

Knowledge 

The traditional approach of signal processing follows the well-known Shanon theorem 

for sampling signal which states that it is possible to represent and reconstruct a signal 

successfully by sampling it at a rate twice of its maximum frequency (known as Nyquist 

rate). However, there exist many signals which have such a high bandwidth that it is 

impractical to process them especially, in wireless sensor systems. Moreover, signals 

with lower bandwidth such as EEG signals (0.1-100 Hz bandwidth) (Kumar and 

Bhuvaneswari, 2012) sampling at Nyquist rate generate a large volume of data that are 

expensive for wireless transmission and also significantly restricts WBAN’s battery 

lifetime (Mamaghanian et al., 2011). Therefore, to transmit EEG signal energy 

efficiently over WBAN, it is required to lessen the number of EEG samples before 

transmission. Compressive sensing (CS) is possibly a very appropriate approach for this 

purpose which asserts that it is possible to reconstruct some signals from a far lesser 

number of samples than the conventional approach (Candes and Wakin, 2008; Donoho, 

2006). In order to achieve this, CS is based on two criteria; the sparsity of the signals of 

concern and incoherence of the sensing mode (Candes and Wakin, 2008).   

CS Theory: CS relies on the assumption that a signal of length N, denoted by   

    , is compressed by a random matrix denoted by       , to yield, which is the 

measured signal is given by:  

                                                                  (5.1) 

here M is the number of samples in the compressed signal and M << N; which means 

the signal is sampled at a comparatively much lower rate. Φ is the sensing matrix and 

should be known at the receiver for reconstruction of the original signal x. The success 
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of reconstructing the original signal relies on the assumption that the signal x is sparse 

i.e., it has only a few non-zero entries and the rest of the entries are all zero. If x is not 

sparse in time, it is necessary to represent it in a suitable domain in which it exhibits 

sparsity. This domain represented by a dictionary matrix, denoted by       . Thus, 

x can be represented as:  

 where z contains the coefficients of x in   domain. Assume x is K-sparse in this 

domain (i.e., z has only K N non-zero elements; in practice, z may contain K relatively 

large elements whilst the rest may be ignored, in which case the signal is compressible 

in this domain). Using (5.1) and (5.2): 

Therefore, for reconstructing the original signal, CS algorithms need to reconstruct z 

first using y and  , and subsequently, the original signal x can be reconstructed by using 

(5.2). At the receiver end, a recovery algorithm is applied to reconstruct the original 

signal. It is not necessary to have knowledge of   in the compression stage but receiver 

side users must have the prior knowledge of   to reconstruct signal from its sparse 

representation (Imtiaz, Casson and Rodriguez-Villegas, 2014). Figure 5.1 shows the 

block diagram of CS in EEG transmitter and receiver. 

 

                                                                                 (5.2) 

                                                                                 (5.3) 
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Figure 5.1. Block diagram of CS-based EEG Transmitter-Receiver. 
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In summary, CS consists of two stages; i) compression stage: which randomly samples 

input signal. This stage consumes energy of the sensor node but it is computationally 

less complex since it is run on-chip/online. ii) reconstruction stage: which 

computational complexity is bit higher but it operates off-line with much relaxed energy 

limitations on remote computer (Casson and Rodriguez-Villegas, 2012).  

During designing a low-power and efficient CS-based system two important factors are 

considered in this research:   

 Reconstruction accuracy and energy efficiency:  the system maintains a high 

level of compression with excellent quality of reconstruction which satisfies the 

low power requirements of WBAN.  

 Computational simplicity: an optimal system must sustain an easy on-line 

compression and efficient algorithms for off-line reconstruction. Nevertheless, 

there always has some trade-off between system complexity and efficiency. 

5.2.1 Challenges in CS-based EEG transmission 

A requirement of CS is that the signal has to be sparse in the domain where it is 

compressed (Candes and Wakin, 2008).  EEG signal, however, is not sparse in time or 

the frequency domains (Zhang et al., 2013a). A challenge, therefore, in employing CS 

for the EEG signal is to identify the domain known as the dictionary in which the EEG 

signal is sufficiently sparse.  This leads to another significant requirement for CS which 

is the incoherence between the dictionary and the sensing basis matrix termed as 

sensing matrix henceforth (Singh et al., 2014; Zhang, Rao and Jung, 2013; Majumdar, 

Gogna, and Ward, 2014) i.e., the level of dissimilarity between the two. For an accurate 

reconstruction of the original signal, the dictionary and sensing matrix must be highly 

incoherent. Therefore two main challenges of CS-based EEG transmission are i) 

selection of sparsifying dictionary and ii) incoherence between sensing basis and 

sparsifying dictionary. Before describing these two challenges it is necessary to have 

knowledge about sparsifying dictionary and sensing basis. The following sections 

present these two basises. 

 

5.2.3 Sensing Basis 

Sensing basis (   is responsible for the compression of signal in CS. The choice of   is 

mostly directed towards minimal power usage and low complexity in the hardware of 
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WBAN-based EEG transmission system. One of the main requirements of CS is sensing 

basis needs to be highly incoherent with sparsifying dictionary and random sensing 

basis are found maximally incoherent with any sparsifying dictionary (Candes & 

Wakin, 2008). Usually, Gaussian and Sparse Binary basis are most frequently used as 

random sensing basis. 

Gaussian Basis: the entries of this basis are selected from normal distribution with zero 

mean and 1/N variance (Shukla, 2014). This is a dense basis which means each entry of 

the matrix has some value (Majumdar, Gogna, and Ward, 2014).  Though this is mostly 

used basis it is not efficient to use in embedded platforms like WBAN sensor node 

because it requires huge storage and needs to perform large computation for matrix 

multiplication of compression process (Tiwari, Bansod and Kumar, 2015; 

Mamaghanian et al., 2011). In contrast to this, sparse binary basis enables the matrix 

multiplication in CS very quickly and efficiently. 

Sparse Binary Basis (SBM): a sparse binary matrix is often used as it consumes very 

low power (Mamaghanian et al., 2011; Zhang, et al., 2013b; Pei and Wang, 2017). This 

is because sparse binary matrix (SBM) has very few of its entries as ones and most the 

entries are zeros (Zhang, et.al 2013a). This reduces less storage, complexity and power 

requirements as it simplifies the hardware implementation, which is crucial to design of 

low-power and efficient transmitters in WBANs.  

5.2.4 Sparsifying Dictionary 

Sparse representation of the desired signal is another fundamental requirement of CS. 

Some biomedical signals, such as EEG is not sparse in nature. Therefore, it requires a 

dictionary to represent it sparsely. For CS of EEG signals various dictionaries have been 

developed and investigated to enable sparse representation. These include discrete 

cosine transform (DCT), Gabor transforms (GT) and wavelet bases, i.e., discrete 

wavelet transforms (DWT) (Zhang, et.al 2013a; Aviyente, 2007; Abdulghani, Casson, 

and Rodriguez-Villegas, 2010; Mahrous & Ward, 2016a; Gangopadhyay et al., 2011; 

Kamal et al., 2013). Other methods include using Kronecker Fourier basis as a 

dictionary (Shukla, Majumdar and Ward, 2015). DCT is used in (Zhang, et.al 2013a; 

Majumdar, Gogna and Ward, 2014) as sparsifying domain. It shows good performance 

at lower compression ratio but investigation shows that at higher compression ratio its 

performances degrade quickly while DWT deteriorates much more gradually (Higgins, 
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Ginley, et al., 2010; Hilton, Jawerth and Sengupta, 1994). GT is used in (Aviyente, 

2007) for sparse representation of EEG signal which is supposed to consist of short 

sinusoidal waves. EEG signals have varying spike structures that are more complicated 

than short-term sinusoidal waves. In addition, EEG are designed as windowed, piece-

wise smooth polynomials and it is well established that a piece-wise polynomial can be 

represented sparsely in DWT (Mallat, 2008). Therefore, the performance of 

sparsification of EEG signals in DWT is significantly better than GT (Gangopadhyay et 

al., 2011). Thus, the focus of this research is DWT as sparsifying dictionary.  

5.2.4.1 Discrete Wavelet Transforms (DWT) Dictionary  

EEG signal has a concise representation while presenting in a proper sparsifying 

domain. For example, Figure 5.2 depicts an EEG epoch and its DWT wavelet 

coefficients.  

                       Figure 5.2. Example of EEG signal and its DWT coefficients. 

It can be seen that the EEG epoch has most of the non-zero values but the DWT 

coefficients providing a concise presentation where most of the coefficients are zero and 

comparatively a few non-zero coefficients which capturing the most of the signal 

information. 

Mathematically, suppose   is the EEG signal and the wavelet dictionary is  . The 

sparse representation of x is then as follows: 
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where, z is the coefficients of x,    〈    〉. For convenient x is presented as (5.2). 

Since the dictionary is fixed, all the information are captured by the coefficients (Hilton, 

Jawerth and Sengupta, 1994). The impact of sparsity is apparent now: once a signal has 

its sparse presentation, the small coefficients can be discarded without any significant 

loss (Candes and Wakin, 2008).  In this work,    are the DWT coefficients and   is the 

inverse DWT matrix which is known as mother wavelet.  

Generation of the DWT coefficients: The DWTs use a multi-level decomposition to 

generate the coefficients using Quadrature Mirror Filter (QMF) bank. The filter bank is 

composed of a number of high-pass (h) and low-pass filters (g) correspond to the type 

of the wavelet used (Yger, and Rakotomamonjy, 2011). The high-pass filter generates a 

detail coefficient (coef),       while low-pass filter generates an approximation 

coefficient,        (Figure 5.3). After filtering, the DWT coefficients are downsampled 

by a factor of 2. The process is repetitively implemented in the low-pass sequence until 

the required level of decomposition is achieved (Higgins, Ginley, et al., 2010). The 

level of decomposition depends on the signal’s sampling frequency, for instance, a 

signal with 256 sampling frequency needs to go through a 5-levels of decompositions 

(Mahmoodin et al., 2015). Owing to the decomposition process, signal should have the 

samples which are multiple of   , where n indicts the number of decomposition levels. 

 

     ∑    

 

   

    

 

  

(5.4) 

Figure 5.3. 3-level decomposition of DWT coefficients of a signal with 32 
samples. 
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Figure 5.3 shows 3 levels decomposition of DWT coefficients of a signal which have 32 

samples.  

Reconstruction of the signal from the DWT coefficients: The inverse DWT (IDWT) 

is used to reconstruct the signal from its DWT coefficients of details and approximation. 

This is the opposite process of the decomposition where upsampling is performed by 

inserting zeroes between samples. Since the coefficient vectors were generated by 

downsampling, they contain only half the length of the original. For that reason, it is not 

possible to add them directly to reconstruct the signal. The approximation and details 

need to be reproduced before merging them; they are the real components of the original 

signal. Figure 5.4 indicates the process of reconstruction (Misiti et al., 2004).  

 

 

  

 

 

  

Thus the original signal can be obtained by adding the reconstructed approximation and 

details: 

        

Accordingly, the 3-level decomposed signal can be reconstructed as Figure 5.5. 

    
 x 
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       Figure 5.5. Block diagram of reconstruction of 3-level decomposed signal. 
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  Figure 5.4. Reconstruction of approximation and details of the single level signal. 
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In this research, 15-different DWTs are used from wavelet families to reconstruct the 

EEG signal, they are: 4-DWTs from Daubechies wavelet family (db3, db4, db8, and 

db10), 2 from Battle family (Battle-1, Battle-3), 5 from Coiflet family (coif1, coif2, 

coif3, coif4 and coif5), Haar, Vaidianathan, Symelt-10, and Beylkin. Figure 5.6 shows 

the mother wavelet of these 15-DWTs.  

All the simulations of this work are done in MATLAB but the problem is MATLAB 

does not have any function for generating wavelet dictionary. The wavelab toolbox 

(Buckheit and Donoho, 1995; Stanford University, 2005 ) is, therefore, used to generate 

wavelet dictionary in MATLAB.  

 

                               Figure 5.6. Mother wavelets of different DWTs. 

5.2.5 Incoherence between sensing basis and Sparsifying dictionary 

The accuracy of reconstruction of the EEG signal with CS depends on a suitable 

dictionary that is maximally incoherent with the sensing basis (Singh et al., 2014; 

Zhang, Rao and Jung, 2013; Majumdar, Gogna, and Ward, 2014). The reconstruction 

performance of CS depends on the level of incoherence between   and   (Majumdar, 

Gogna, and Ward, 2014). For successful reconstruction,   should follow a condition 

referred to as restricted isometry property (RIP). RIP may be achieved with high 
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probability if sensing matrix is random (Candes and Wakin, 2008). A condition related 

to RIP is the incoherence that denotes rows of  ,     , and columns of  ,      should 

not be correlated. It is noted that M should be sufficiently large. Coherence ( ) is 

quantified as shown in (5.5) (Candes and Wakin, 2008). 

                                            √           |〈     〉|  (5.5) 

where N indicates the total number of samples of the signal. A smaller   indicates a 

lower level of similarity between the elements of the two basises, i.e.,   and   are 

highly incoherent. The value of   is between 1 and  N (Candes and Wakin, 2008).  

As EEG is not sparse in either time or frequency domain (Majumdar, Gogna and Ward, 

2014) it is essential to find a suitable   for sparsity, and ensuring that it is maximally 

incoherent with   (Pereira et al., 2014). Thus the main concern of CS in EEG is to find 

a high incoherent pair for accurate reconstruction of EEG. In (Candes and Wakin, 2008) 

some examples are given of such pairs: the coherence between noiseltes (   and 

wavelet basis (Haar, db4 and db8 are 1.4, 2.2 and 2.9, respectively.  Nevertheless, the 

investigation results of this study show that the coherence between SBM (and these 3 

wavelet dictionaries are 1.6, 1.4 and 1.5, respectively and the lowest coherence is found 

with Beylkin DWT which is 1.3. Consequently, the reconstruction of EEG is supposed 

to be more accurate with Beylkin ( ) and SBM ( ) incoherent pair. Details are given 

in the results chapter. 

5.2.6 Selection of wavelet (DWT) dictionary 

The different incoherent sparsifying dictionaries that are used in the state-of-the-art CS-

based techniques are mentioned in section 5.2.4. Results of those techniques indicate 

accurate reconstructions with less error; however, the specific features that make these 

appropriate or suitable dictionaries have not been investigated or explained. Selecting a 

specific DWT for a given application to ensure an accurate reconstruction of the 

compressed signal is challenging.  In most applications, a key feature employed in 

selection of a DWT is the number of vanishing moments, which determines its ability to 

represent complex signals efficiently or more sparsely.  According to the Strang-Fix 

condition (as a special case) the approximation order of a DWT increases with the 

number of vanishing moments up to the smoothness index (Hlder regularity) of the 

approximated signal (Unser, 1996). That is, the sparseness of the wavelet-transformed 

signal is, in general, higher for longer wavelets. An equal number of vanishing moments 
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for the DWT can also be viewed as all doing ‘similar amounts of work” (Selesnick, 

2004).  

In addition to the dictionary the Block Sparse Bayesian Learning (BSBL) may employ 

to exploit the block sparsity of EEG/ECG (Electrocardiography) signals. The authors in 

(Zhang et al, 2013a) propose a novel method to use the BSBL framework to 

compress/reconstruct non-sparse raw FECG recordings. Experimental results show that 

the framework can reconstruct the raw recordings with higher quality as compared to 

other BSBL and CS DWT based methods.  The authors in (Majumdar, Gogna. and 

Ward, 2014) depart from previous CS-based approaches and formulate signal recovery 

from under-sampled measurements as a matrix completion problem. In (Craven et al., 

2015) the authors compare and detail performance of various dictionaries for CS in 

EEG and ECG signals in order to come up with an optimal dictionary and its suitability 

for deployment in embedded hardware. However, the authors do not reflect in prior 

analysis of dictionary properties such as incoherence and vanishing moments for the 

choice of the dictionaries.  A novel BSBL approach is given in (Mahrous and Ward 

2016b) and the DCT is employed for increasing sparsity with the results presented for 

both ECG and EEG signals, but does not relate to choice of selecting the DCT 

(Mahrous and Ward 2016b). In (Majumdar and Ward, 2015) an explanation in terms 

incoherence is given for choice of dictionary followed by an optimization algorithm that 

leads the optimal selection of the dictionary, based on a pre-selected class of 

dictionaries. The work detailed in (Singh et al, 2017) is on hardware implementation, no 

novel properties of the dictionaries are discussed. The work in (Zhang et al., 2014) 

offers a novel computational improvement over the BSBL methods known as ST-SBL 

method and is not aimed at highlighting the attributes of DWTs for an optimal 

dictionary choice. The approach in (Mishra et al., 2012) compares the accuracy of 

reconstruction for various dictionaries. It does not mention of the choice or selection of 

wavelet in terms of the properties of incoherency and vanishing moments.  

This thesis is not aimed at comparisons of any BSBL approaches which is done in, or 

offering an improved BSBL approach, or comparison of DWT CS methods with any 

BSBL methods. The state-of-the-art studies (Zhang et al, 2013a; Mahrous and Ward 

2016b) compares BSBL approaches and offers an improved BSBL approach but there is 

no proper explanation regarding the choice of dictionaries. This study mainly aims to 

investigate the incoherence of the dictionary with the sparse binary matrix (SBM), along 

with the vanishing moment of DWT dictionaries for the effective implementation of 
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compressive sensing for the reconstruction of EEG signals. While incoherence has been 

explored and is well known for CS, on the other hand, vanishing moments are 

understood to represent complex signals effectively and sparsely in terms of wider 

DWT applications. These two significant properties are considered in isolation and there 

has been no joint analysis for CS in EEG signals to the best of my knowledge. 

The incoherence is already discussed in section 5.2.5 and the details of the vanishing 

moment for DWT are described in the following section. 

5.2.7 Vanishing Moment of Wavelet Dictionary 

The number of vanishing moments is related to the order, decay rate and smoothness of 

wavelets. A continuous wavelet (CW)   has p vanishing moments when: 

                                   ∫           ,              for        (5.6) 

  and for the DWT with filter coefficients h                      

                                     ∑          ,          for n = 0, 1, ..1-p  (5.7) 

The number of vanishing moments is the differentiability or a measure of the 

smoothness of functions. The DWT has p vanishing moments if and only if the wavelet 

scaling function can generate polynomials up to degree p-1. The "vanishing" part means 

that the wavelet coefficients are zero for polynomials of degree at most p-1. A higher 

value of p implies that the wavelet filter is able to filter out high frequency components 

of the signal accurately from any of the low-frequency or long-term data variations. 

This accordingly leads to an accurate reconstruction of the signal. CWs and DWTs with 

a higher value of p can represent more complex functions.          

 A higher p also increases sparsity of a large class of signals being represented by the 

DWTs. The p indicates the number of zeros at  z = -1 i.e. at half the sampling frequency 

for the low-pass Discrete Fourier Transfer (DFT) filter or the scaling filter ; which is the 

same as number of zeros at z = 1 i.e. at DC for the high-pass DFT filter or the wavelet 

filter. In most cases the DWT name is suffixed by its order n. The Daubechies-n and 

Symlet-n DWTs both have p = n vanishing moments and accordingly has p number of 

zeros at z = 1 and -1 for the scaling and the wavelet filters respectively. The number of 

filter coefficients nc for the DWTs is 2p. Their difference lies wherein Symlet filters are 

as symmetrical as possible as compared to the Daubechies filters which are highly 

asymmetrical. The Coiflet-n DWT has p = 2n vanishing moments with nc = 6n. The 
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Battle-Lemarie also known as Battle-n DWT generates spline orthogonal wavelet filters, 

where n is the degree of spline. The Battle-n DWTs have p = n + 1. The Battle-n have 

infinite support but with an exponential decay, and filter coefficients below 10-4 are 

neglected in this work, giving nc = 12 and 21 for Battle-1 and Battle-3 respectively. The 

Beylkin is optimised for placement of additional zeros close to half the sampling 

frequency for obtaining higher attenuation of high-frequency components for the scaling 

filter and close to DC for attenuation of the low-frequency components. It has fixed 

number of filter coefficients nc =18 and although it has three zeros at z = -1 and 1, it has 

p~9.The Vaidyanathan DWT is optimised for speech coding with nc =24 with additional 

zeros close to high frequency and DC for the scaling and wavelet filters. It offers 

accurate reconstruction of the decomposed signal just as in case of other DWTs 

including Beylkin but does not satisfy any moment condition. The Haar DWT is least 

complex to implement as it has nc = 2, has one zero at z = -1 and 1 for the scaling and 

wavelet function indicating p = 1. 

5.3 Methods and Materials 

This section provides the method and materials of the proposed framework. Subsection 

5.3.1 gives the method and material of measuring incoherence of SBM with DWT 

dictionary. The algorithm is used to reconstruct the EEG signal is described in section 

5.3.2. The performances matrices use to measure the quality of the reconstruction signal 

are presented in section 5.3.3. The comparison of DWT, DCT and the case using no 

dictionary is given in section 5.3.4. The method uses to measure classification error of 

clinical EEG signal is presented in section 5.3.5.  

5.3.1 Incoherence of SBM with DWT dictionaries 

At first, the number of non-zero entries ( ) in each column of the sparse binary matrix 

(SBM) that would lead to a moderate incoherence for all the DWT dictionaries to be 

used is identified by measuring the coherence of randomly generated SBM with each 

dictionary for a varying number of non-zero entries. It is also verified if   has any 

impact on the reconstruction algorithm by investigating error in terms of variation of  .  

After identifying the specific value of   that gives a moderate incoherence between 

SBM and DWT, the coherence between them for that value of   is also measured. The 

identified   value with moderate coherence is used across the work.  



35 
 

5.3.2 Reconstruction by exploiting block sparsity in the DWT 

coefficients 

Physiological signals like EEG signals have correlation structure. The reconstruction 

performance of the algorithms degrades if the correlation structure is disregarded. Most 

of the state-of-the-art algorithms have overlooked this feature. Sparse Bayesian 

Learning (SBL) (Zhang and Rao, 2011; Zhang, Rao and Jung, 2013) methods exploit 

correlation structure in the signal and consequently ensure significant improvement in 

the performance of reconstruction. It is stated that the exploitation of correlation feature 

with the sparsity of the non-sparse physiological signals can significantly enhance the 

reconstruction efficiency (Zhang et al., 2013a; Zhang et al., 2013b, Zhang et al., 2014). 

SBL algorithms achieve top performance to reconstruct sparse signal (Zhang et al., 

2013a; Zhang et al., 2013b). 

In this thesis, EEG is reconstructed by exploiting the block sparsity of the signal. 

Exploiting such a block sparsity of a non-sparse signal can further improve the 

reconstruction performance of the CS algorithms for energy-efficient wireless tele-

monitoring (Pei & Wang, 2017). A block structured signal x may be represented as in 

(5.8) where   blocks are shown. 

                                                   
                  

    (5.8) 

where        is the block size and   indicates the number of segments. For a block 

sparse signal, only     blocks are non-zero. The Block size can be chosen arbitrarily 

and it is not necessary that the block partition of the signal has a clear block structure 

(Zhang et al., 2013a; Zhang and Rao, 2013). Different block sizes are usually employed 

indicating that block size does not affect the algorithm performance in SBL, as is also 

indicated in (Zhang et al., 2013b). This is because the block size is kind of 

regularization in SBL algorithm to estimate the covariance matrix of  , which enhances 

the estimation of  . 

For exploiting both the intra-channel and inter-channel correlation of the signals a 

spatio-temporal sparse Bayesian learning (ST-SBL) method has been proposed in 

(Zhang, Rao and Jung 2013; Zhang et al., 2014). ST-SBL reconstructs multichannel 

EEG signals simultaneously. This exploits temporal correlation in each channel signal 

and additionally the spatial correlation among signals of different channels (Zhang, Rao 

and Jung 2013). Thereby its computational complexity does not increase with the 

number of channels (Zhang et al., 2014). The ST-SBL model is expressed as (5.9). 
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                                                            +V  (5.9) 

where        represents the measured signal,        is the SBM matrix, 

       are the noise and        are the multichannel EEG signal which have   

rows and   columns. Each channel signal is represented by a column of  . In this case 

the block structure of     can be stated as (5.10). 

                                                        [  

  

  

 
   

  ]  

   

   (5.10) 

where          is the  -th block of   , and ∑      
   , is the block size. Most of the 

blocks of    blocks are zero and a few of them are nonzero. The main concept of ST-

SBL is that elements in the same column of each block are correlated (temporal 

correlation) and also the elements of the same row of each block are correlated (spatial 

correlation. 

It is not useful to exploit temporal correlation if the components of each channel signal 

do not possess any robust temporal correlation. In that case, exploiting sparsity of each 

channel signal in a sparsifying domain is beneficial (Zhang et al., 2014). Therefore, the 

model of (5.9) now can be expressed as:  

                                                            +V  (5.11) 

where      , and   is the sparse representation of    in the sparsifying domain  .  

As EEG signal neither have any block structure in the time domain and nor have 

temporal correlation in each channel, ST-SBL is employed on the signal’s DWT 

coefficients    . The DWT dictionary matrix generates DWT coefficient vectors to 

present EEG signals in the transformed domain (details see in section 5.2.4.1). The 

DWT coefficients    are concatenation of a number of blocks, only a few of them are 

non-zero and the rest of them are all zeros. Thus, ST-SBL algorithm exploits the block 

sparsity (assuming the signal is block sparse) in the DWT coefficient of the signal. It is 

already stated that the size of block can be chosen arbitrarily. It is demonstrated in 

(Zhang et al., 2014) that ST-SBL shows stable performance for a variety range (15-60) 

of block size. In this research the block size is chosen 16 for all the experiments in order 

to keep all the blocks of same size.  
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5.3.3 Performances Indicators  

The reconstruction quality of EEG signals using different DWT dictionary are 

compared using the following three performance indicators.  

I. Normalised Means Square Error (NMSE): this is mostly used 

performance index to measure error, defined as (5.12). 

 

                        ‖ ̂   ‖
 

 
 ‖ ‖ 

   (5.12) 

                 where  ̂ is the estimate of the original signal  .  

II. Structural Similarity Index (SSIM): this metric measures the similarity 

between the reconstructed signal and the original signal. It is mathematically 

expressed as (5.13) (Wang et al., 2004). 

 

     
     ̂

  
    ̂

  
    ̂

  
   ̂

   (5.13) 

 

where   ,   ̂ ,   
  ,   ̂

  and    ̂ are the mean, variance and cross-covariance 

of original signal and the estimated signal. For higher value of SSIM 

indicates the better reconstruction. When the reconstructed signal and the 

original signal are same, SSIM =1.  

 

III. Compression Ratio (CR): the performance matric indicates how much data 

of the original signal is compressed and is defined as: 

 

                             
   

 
       (5.14) 

 

where   and   are the length of the original signal and reconstructed signal. 

To compare the performance of the DWT dictionaries in the first instance a 50% 

compression ratio is considered. CR in the CS-based system strongly related to 

reconstruction quality and power consumption. By adjusting CR in the 

application of CS in WBAN system, one can achieve desired reconstruction 

quality with reasonable power consumption. 
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5.3.4 Comparison of DWT, DCT and no dictionary 

As will be demonstrated in chapter 6 the best performance may be associated to Beylkin 

dictionary. Therefore, for comparison the performance is compared with discrete cosine 

dictionary as well as the case of using no sparsifying dictionary for different CR values 

ranging from 50% - 80%. The same block size is used across. The comparison is done 

for both the clinical and non-clinical EEG signals. 

5.3.5 Classification error 

To assess the clinical implication of CS using the suitable DWT, a classification 

algorithm based on feedforward neural network is used to classify epileptic from non-

epileptic EEG signal. The developed artificial neural network is used 1387 

iterations during the training stage on the original data. The weight and the bias values 

are updated according to Levenberg-Marquardt optimization approach. The algorithm is 

subsequently tested on the reconstructed data (Men et al., 2007). 

It is noted that specific errors of the classification algorithm are not of interest here. The 

process should primarily show that, using a conventional classification method, how 

much the result is different for the original and the reconstructed. This gives an 

indication of the level of information distortion seen by the algorithm which implies the 

actual distortion as a result of CS. 

5.4 Summary 

In recent years, CS has gained considerable attention as a key enabler for transfer of 

large data rate and volume signals over WBAN, primarily driven by emerging 

technologies such as the IoT. Even using ST-SBL algorithms, finding an appropriate 

sparsifying dictionary may improve reconstruction by forming block structure. As EEG 

signals are not sparse in time and frequency domain, CS requires a suitable dictionary in 

which EEG is sparse. Although many of the existing approaches indicate accurate 

reconstruction results but there is no rationale with regards to the choice of a suitable 

DWT dictionary. The choice of the DWT is normally based on its ability to represent 

complex signals given by the number of vanishing moments. A higher number of 

vanishing moments increases sparsity of a large class of signals being represented by 

the DWTs. However, incoherence with the sensing matrix also needs to be considered 

that can affect the quality of reconstructed signal. In this chapter a framework is 
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proposed for the selection of DWT dictionary used in tandem with SBM as the sensing 

matrix and ST-SBL method as the reconstruction algorithm. The following chapter 

presents the investigation results.  
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Chapter 6 
                      Results and Discussion 
 

6.1 Introduction 

In the previous chapter, it is explained that a suitable dictionary is required for the 

accurate reconstruction of the EEG signal. During selection of the dictionary its 

incoherence with the sensing matrix as well as its number of vanishing moments should 

be considered at the same time. A high level of incoherence with the sensing matrix is 

required for accurate reconstruction of the EEG signal with minimal error, whereas a 

higher number of vanishing moments increases sparsity of a large class of signals being 

represented by the DWTs.  

This chapter presents all the experimental results for selecting a suitable dictionary. 

Section 6.2 provides the datasets that are used for the experiments. Section 6.3 gives the 

results followed by the subsections associated with the results of incoherence, 

reconstruction results using DWT dictionaries, result analysis with coherence and 

vanishing moments, comparisons of DWT, DCT and no dictionary for different CRs, 

classification error. Section 6.4 presents discussion and summary of the chapter is given 

in section 6.5. 

6.2 Experimental Datasets 

In this research, both clinical and non-clinical EEG datasets are used in order to verify 

the performance of the proposed frameworks. Information about these datasets 

including subjects, number of channels, sampling rate and data points are provided in 

the following subsections. 

6.2.1 Visual attention tasks EEG dataset 

This is the most used EEG dataset that is collected from EEGlab (Delorme and Makeig, 

2004). The dataset is recorded using 10-20 system from one subject during visual 

attention task. The dataset consists of one epoch, 154 events and 32 channels. Each 

channel contains 30464 data points. The sampling rate is 128 Hz and it is about a 4 

minutes of dataset.  
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6.2.2 Car driving tasks EEG dataset 

This is the dataset that is used in (Lin et al., 2005; Zhang et al., 2014) for estimating 

driver’s drowsiness. The dataset consists of raw EEG signals recorded from a subject 

during car driving with a certain degree of drowsiness. The task was done in a virtual-

reality driving simulator, the details can be found in (Lin et al., 2005). The dataset 

consists of 29 channels and each channel has 12288 data points. The sampling rate is 

250 Hz.  

6.2.3 Epileptic and non-epileptic dataset 

This is a dataset of 15 subjects involving 10 epileptic and 5 non-epileptic datasets from 

the Temple University Hospital (TUH) EEG data corpus. The TUH EEG corpus is the 

biggest online accessible database in the world (Harati et al., 2014; Veloso et al., 2017). 

It comprises of different EEG databases. The datasets for this research are taken from 

TUH EEG Epilepsy Corpus database which has 237 patients data among them 133 are 

epileptic and 104 are non-epileptic patients. For the experiment, 10 patients with 

epilepsy and 5 without epilepsy of ages 19 to 82 (male/female) are chosen among all the 

patients by studying their clinical history. EEG were recorded during different periods 

of time from 2002 to 2013 using standard 10-20 electrode placement system. The 

datasets are comprised of channels that vary among 30, 33 and 36. Some of the channels 

consist of Electrocardiogram (EKG) and Electromyography (EMG) signals which are 

ignored in this study and 23 channels containing relevant clinical information are taken 

which sampled at 250 samples per second. Frequency ranges between 1 Hz - 100 Hz as 

shown in the fast Fourier spectra of normalised aggregate signal shown in Figure 6.1. In 

order to form the spectra shown in Figure 6.1, data points (29952) of all 23 channels at a 

given time are summed up to demonstrate the spectra of all channels at the same time. 

EEG features related to epilepsy were spike and sharp waves. 10 epileptic patients were 

diagnosed with different phases of epilepsy involving localization-related epilepsy, 

idiopathic generalized epilepsy, epilepsy with seizures. Among the 5 non-epileptic 

patients one had bike accident with multiple facial fractures, one had electric shocks in 

the head, someone had stroke, other one had anxiety and the last one had critical mental 

status (The Institute for Signal and Information Processing, 1994). Their EEG were 

recorded with the consideration of having epilepsy. But none of them had epilepsy; 

most of them were diagnosed with cerebral dysfunction.  
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                  Figure 6.1. Frequency spectra of aggregate EEG signal for all subjects. 

6.3 Results 

In this section, the experimental results are provided for selecting a suitable dictionary 

for reconstruction of EEG signal of the datasets stated above. The following subsection 

6.3.1 contains the incoherence results of SBM with DWT dictionary to identify the 

DWT which is mostly incoherent with SBM. Subsection 6.3.2 gives the results of the 

reconstruction with the DWT dictionaries which demonstrates the best DWT with less 

error and maximum similarity. Results are further analysed in subsection 6.3.3 with 

coherence and vanishing moments. The identified best DWT is then compared with 

other dictionary (DCT) and with the case of using no dictionary in subsection 6.3.4. The 

classification error for epileptic and non-epileptic data is presented in subsection 6.3.5.  

6.3.1 Incoherence of SBM with DWT dictionaries 

As the first step, the number of non-zero entries ( ) of the sparse binary matrix (SBM) 

that would lead to a moderate incoherence for all the DWT dictionaries to be used are 

identified by calculating the coherence of randomly generated SBM with each 

dictionary for a varying number of non-zero entries. The fifteen DWT basis considered 

are Daubechies-3, Daubechies-4, Daubechies-8, Daubechies-10, Symmlet-10, 

Vaidyanathan, Coiflet-1, Coiflet-2, Coiflet-3, Coiflet-4, Coiflet-5, Harr, Battle-1, Battle-
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3 and Beylkin of size 256×256 as the   matrix. The outcome is shown in Figure 6.2. 

Subsequently, the number of nonzero entries ( ) selected is 30. 

 

 

                         Figure 6.2. Coherence with varying number of non-zero elements. 

Beylkin shows least coherence (blue line) and Haar indicates the highest 

coherence (orange line) with SBM. 

 

    Figure 6.3. Variation of reconstruction error with no of non-zero elements, 

where red marks represent mean and error bar shows variance. 
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In order to know the impacts of the number of nonzero elements to the performance of 

reconstruction, a similar investigation of (Zhang et al., 13b) is done here.  The size of 

SBM ( ) is chosen 128   256, which has   nonzero elements of value 1 in each 

column. The value of   is ranged from 2 to 70 similar to experiment performed in 

Figure 6.2. For each range of d the experiment is performed several times on the 

epilepsy datasets. Figure 6.3 presents the experimental results where NMSE shows the 

reconstruction error of the epileptic signal and it is clear from the investigation that   

does not have any impact on the reconstruction quality of the signal. The change of 

error is marginal for different values of  .  This is another advantage of ST-SBL 

algorithm that it is not sensitive to   which also helps to reduce power consumption 

(Zhang et al., 2013b). By adjusting the number of nonzero entry one can control 

execution time (Mamaghanian et al., 2011).  

In this research,   =30 is used for all the experiments as it gives moderate incoherence 

between SBM ( ) and DWT ( ) which is demonstrated in Figure 6.2. For a clear view 

of incoherence between the two basises Figure 6.4 presents the coherence between   

and   which is determined using (5.5), where   in   is chosen 30. It is shown in Figure 

6.4 that the Beylkin DWT has the least coherence of 1.35. Similar lower coherencies are 

indicated by the Symmlet-10 and Coiflet-5 with values of 1.36 and 1.37 respectively. 

While the Daubechies-20 and Haar DWTs have highest coherencies of 1.562 and 1.56 

in comparison. 

      

 

                                   Figure 6.4. Coherence between Φ and Ψ. 
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6.3.2 Reconstruction using DWT dictionary 

The dictionary that is maximally incoherent with SBM is already identified in the 

previous subsection. This subsection demonstrates that this maximally incoherent 

dictionary (Beylkin) gives the best reconstruction result. To measure the quality of the 

reconstruction two performance indexes NMSE and SSIM are used, the details of the 

indexes can be found in chapter 5. The dictionary with the least NMSE and highest 

SSIM value is selected as the best one.  

6.3.2.1 Reconstruction results for the visual attention tasks EEG data 

The signal has 30464 data points in each channel (32) which is partitioned into  =238 

segments of length  , here   is set 128 since the sampling rate is 128 Hz. Each segment 

is compressed by 50 % (CR=50%) which means,          . The block size is 

chosen 16. The total numbers of nonzero blocks are 8 which starting locations are (1, 

17, 33, 49, 65, 81, 97, and 113). The SBM (   is of size 128   64 and DWT ( ) is of 

size 128   128. ST-SBL is applied to the DWT coefficients to reconstruct the signal 

with all the segments together. The results are shown in Figure 6.5 and 6.6. The 

reconstruction quality is measured by NMSE and SSIM which is obtained using (5.12) 

and (5.13).  

 

 

                      Figure 6.5 NMSE of the visual attention task EEG signal 
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                    Figure 6.6. SSIM of the visual attention task EEG signal. 

The Outcomes demonstrated that Beylkin reconstructed signal more accurately with the 

least error and highest SSIM. Similar better performances are given by Symmlet-10 and 

Coiflet-5. 

 

              Figure 6.7. Example of the visual attention task EEG signal (channel 1 and  

channel 22) of the original and reconstructed with Beylkin DWT. 

Reconstruction of EEG for channel 1 and channel 22 of the multichannel (32) visual 

attention task EEG signal using Beylkin DWT are plotted in Figure 6.7 for a given time 

duration. The plot indicates that the reconstructed signal is able to accurately capture the 

amplitude variations of the original signal for both channels 1 and 22. 
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6.3.2.2 Reconstruction results for the car driving tasks EEG data 

Each channel has 12288 data points in this dataset which is divided 48 segments of 

length 256,  where the sampling rate is 250 Hz. Data is compressed by 50 % (CR=50%) 

which gives   128. The block size is same as the previous experiment, 16. The total 

numbers of nonzero blocks are 16 which starting locations are (1, 17, 33, 49…..241). 

The starting location of each block is increasing by 16. In this case the size of SBM (   

and DWT ( ) is 256   128  and 256   256, respectively. 

 

 

              Figure 6.8. NMSE of the car driving task EEG signal reconstruction. 

 

 

                Figure 6.9. SSIM for the car driving task EEG signal reconstruction. 
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The NMSE and SSIM results of reconstruction are shown in Figure 6.8 and 6.9, 

respectively. The experimental results also indicate that Beylkin, Symmlet-10 and 

Coiflet-5 show better performance for reconstructing the driving task EEG signals 

compare to the other DWTs. 

An example of reconstruction for channel 5 and channel 25 of the multichannel (29) car 

driving task EEG signal using Beylkin DWT are plotted in Figure 6.10 for a given time 

duration. The plot indicates the accurate reconstructions of the signal for both the 

channels. 

 

Figure 6.10. Example of the car driving task EEG signal (channel 5 and 

channel 25) of the original and reconstructed with Beylkin DWT. 

6.3.2.3 Reconstruction results for the epileptic and non-epileptic data 

The dataset which contain 29952 datapoints is partitioned into 117 segments of length 

256.  The sampling rate is same as the driving task data set, 250 Hz. Block size and 

number of nonzero blocks are same as previous experiment. The size of SBM (   and 

DWT ( ) are also same as previous experiment. The median of NMSE and SSIM for 

all the segments associated with a subject is calculated as the measure of center due to 

the skewed distribution of values across the 117 segments. The mean and standard 

deviation of the center are subsequently calculated across the 15 subjects. Figure 6.11 

and 6.12 show NMSE and SSIM (bar indicating the mean and errorbar showing the 
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standard deviation) of the reconstructed signal (CR=50%) for all the subjects and for all 

the 15 DWT dictionaries. Both figures of merit indicate a superior performance by 

Beylkin.   

 

Figure 4.11. NMSE of epileptic and non-epileptic EEG signal reconstruction, 

where bar indicates mean and errorbar gives standard deviation. 

6.3.3 Result analysis with coherence and vanishing moments 

Figure 6.13 shows the scatter plot of coherence versus vanishing moments for all the 

dictionaries and indicates the correlation these features have (  and  ) with the 
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         Figure 6.12. SSIM of epileptic and non-epileptic EEG signal reconstruction, 

where bar indicates mean and errorbar gives standard deviation. 
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reconstruction performance (mean of NMSE). The results indicate that while those 

dictionaries that tend to have both high incoherence and vanishing moments tend to 

perform better. These show that presumably the effect of coherence is more significant 

when comparing Beylkin with Symlet or Coiflet. That is, Beylkin has higher 

incoherence with SBM but slightly lower number of vanishing moments compared to 

these two but the overall performance associated with Beylkin is better. 

 

Figure 6.13. Demonstrating the relationship between coherence and 

vanishing moments for the 15 DWT dictionaries. Also, the correlations 

between vanishing moment and coherence with reconstruction performance 

for all the dictionaries are shown. 

The increasing or decreasing trend of    with p can be explained in terms of similarity 

of the DWT with the SBM. Signals with higher similarity tend to be highly coherent. 

The similarity between two signals a, b of length n can be defined in terms of the 

Euclidean Distance given by: 

                                       ∑ |     |
  

     (6.1) 

More is the value of         means further are the signals apart in terms of the 

Euclidean Distance and lesser is the signal similarity. The probability cumulative 

density function (CDF) of         for various DWTs with SBM having a prior 

probability of 0.5 is obtained. The CDF plot for Coiflet-3, -4 and -5 is given in Figure 

6.14. The         for 50% values i.e.            0.5 are 2.93, 3.40 and 3.82 

respectively indicating that similarity is decreasing since         increases with 

increase in n. 
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                   Figure 6.14. Coiflet CDF plot for de( a,b ) for n=3,4,5. 

 

The         for            0.5 for Daubechies, Coiflet, Battle and Symlet DWTs for 

various filter lengths are given in Figure 6.15. As        increases the similarity of 

Coiflet and Symlet decreases with respect to the SBM, so does the coherency. However, 

the similarity of Battle and Daubechies increases since the value of         decreases 

with the filter length. 

 

    

                                            Figure 6.15. Variation of de (a,b). 
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The statistical values of results (for all the datasets) are detailed in Table 6.1 The mean 

( ) and variance (  ) values obtained in respect of Beylkin, Symlet-10 and Coiflet-5 

DWTs indicate Beylkin shows a slightly better performance in terms of the 

reconstruction quality of the original signal than other two. However, these DWTs also 

differ in terms of their complexities. Table 6.1 indicates that Coiflet-5 has a higher 

number of filter coefficients, requiring more computational resources, as compared to 

Symlet-10 although they have same values of   and therefore have similar results for 

quality of the reconstructed signal. Since Beylkin has least    with a slightly smaller p 

value to that of Coiflet-5 and Symlet-10, it would imply as the least complexity in terms 

of implementation.   

 

Visual attention task 

dataset   

  

      

  

NMSE 

 

SSIM 

DWT               

Beylkin- 18 18 9 0.0642 0.00073 0.7731 0.1182 

Symlet-10 10 20 10 0.0721 0.00098 0.6741 0.1672 

Coiflet-5 5 30 10 0.0656 0.00078 0.7386 0.1353 

Car driving task 

dataset 

 

Beylkin 18 18 9 0.0084 0.000047 0.9264 0.0080 

Symlet-10 10 20 10 0.0091 0.000051 0.9262 0.0089 

Coiflet-5 5 30 10 0.0093 0.000055 0.9221 0.0123 

Epilepsy and no-

epilepsy dataset 

 

Beylkin 18 18 9 0.0351 0.00091 0.919 0.0034 

Symlet-10 10 20 10 0.0359 0.00096 0.916 0.0038 

Coiflet-5 5 30 10 0.0360 0.00095 0.915 0.0036 

 

Table 6.1 Statistical values of results. 
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6.3.4 Comparison of Beylkin, DCT and No dictionary for different CRs 

As demonstrated in the previous section the best performance is associated with Beylkin 

DWT. Therefore, in this section the performance of Beylkin is compared with DCT as 

well as the case of using no sparsifying dictionary for a varied range (50%-80 %) of CR.  

6.3.4.1 Comparison for the visual attention task dataset 

Figure 6.16 and 6.17 show NMSE and SSIM results associated with using Beylkin, 

DCT as the dictionary and using no dictionary at all for CR ranges from (50%-70%), 

 

 

Figure 6.16. NMSE for different CRs associated with Beylkin, DCT and when 

no dictionary is used in the visual attention task EEG dataset. 

 

Figure 6.17. SSIM for different CRs associated with Beylkin, DCT and when 

no dictionary is used in the visual attention task EEG dataset. 
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where bar and error bar indicate mean and standard deviation, respectively. In order to 

keep the consistency of the work 80% compression is ignored for this experiment. As 

the numbers of non-zero entries are set 30 for all the study, therefore 80 % compression 

is not meeting the requirements of SBM.  Both the outcomes (Figure 6.16 and Figure 

6.17) indicate that Beylkin outperforms DCT and no dictionary for all CRs. 

6.3.4.2 Comparison for the car driving task dataset 

 

 

Figure 6.18. NMSE for different CRs associated with Beylkin, DCT and when no 

dictionary is used in the car driving task EEG dataset. 

 

Figure 6.19. SSIM for different CRs associated with Beylkin, DCT and when no 

dictionary is used in the car driving task EEG dataset. 
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Figure 6.18 and Figure 6.19 provide the NMSE and SSIM results of comparison of the 

aforementioned three cases in the car driving task dataset, where bar and error bar 

provides mean and standard deviation, respectively. Beylkin and DCT perform almost 

similar up to 60% CR. At higher CRs (70%-80%) Beylkin performs better than the 

other two cases.   

6.3.4.3 Comparison for the epileptic and non-epileptic dataset 

 

 

Figure 6.20. Examples of normalised aggregate EEG signal (addition of all 

23 channels at a given time) of the original and reconstructed for different 

values of CR for Beylkin, DCT and the case of using no dictionary. Blue 

traces show the original while the red traces are the reconstructed. At 80% 

CR Beylkin outperforms DCT and No dictionary. 
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Figure 6.20 shows an example of aggregate EEG signals (original and reconstructed 

upon using different CRs) associated with using Beylkin and DCT as the dictionaries 

and using no dictionary at all. It is noted that while Beylkin and discrete cosine appear 

to lead to similar outcome, when using no dictionary the reconstruction is quite poor at 

higher CRs. There is also a slight indication that Beylkin outperforms DCT at CR=80%. 

 

 

Figure 6.21. The box plot of NMSE and SSIM for different CRs 

associated with Beylkin and DCT and when no dictionary was used. 

 

Figure 6.21 shows the box plot of NMSE and SSIM comparing the aforementioned 

three cases. Up to CR=60% the three cases perform at the same level. However, while 

Beylkin and DCT lead to almost similar performance for CR=70%, using no dictionary 

deteriorates the performance at this level and higher significantly. At CR=80%, Beylkin 

outperforms DCT and no dictionary. 
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6.3.5 Classification Error 

Figure 6.22 shows the raster plot of misclassifications of the classification algorithm as 

calculated for both the original and the reconstructed using Beylkin at CR=50%. Every 

sample is the recording in a given time instance from 23 channels. The results are 

pooled together so that the first third of samples are associated with non-epileptic EEG 

signal and the rest are associated with epileptic EEG. The algorithm leads to 91.7% 

accuracy of classification on the original test data comparing to 91% accuracy of 

classification on the reconstructed data. The sample by sample classification difference 

is 4.7%.  

 

Figure 6.22. The raster plot of misclassification using the classification 

algorithm is used in this paper in the original training data and the 

reconstructed test data. 

6.4 Discussion 

The accurate reconstruction of the EEG signal with CS depends on a suitable dictionary 

that is maximally incoherent with the sensing basis. The choice of the dictionary is 

normally based on its ability to represent complex signals given by the number of 

vanishing moments. A higher number of vanishing moments increases sparsity of a 

large class of signals being represented by the DWTs. However, incoherence with the 

sensing matrix also needs to be considered that can affect the quality of reconstructed 

signal. A high level of incoherence with the sensing matrix is required for accurate 
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reconstruction of the EEG signal with negligible error. In this study, a suitable DWT 

dictionary is identified by investigating incoherence with an aim of improving accuracy 

of reconstruction of the EEG signals. Results indicate that the Beylkin is maximally 

incoherent with SBM, also yield most accurate reconstruction of the original signal as 

compared to other DWT dictionaries. Similar higher incoherencies and accurate 

reconstructions are shown by Symlet-10 and Coiflet-5 DWT dictionaries, even though 

they may have similar number of vanishing moments. The Debaucchies DWT is widely 

employed for most applications as it has high number of vanishing moments. While 

Debaucchies-10 has equal number of vanishing moments to Symlet-10 and Coiflet-5, it 

has least incoherence with the SBM yields less accurate results in comparison. Although 

a high number of vanishing moments indicates an increase in sparsity of a large class of 

signals, incoherence of the DWT with the sensing matrix antecedence the former for 

accurate reconstruction of the EEG signal. To reduce the complexity of implementation 

among those having similar values of incoherence and vanishing moments, dictionaries 

with lower number of filter coefficients can be implemented to minimize the order of 

complexity with a view to reduce the power requirements in WBANs. 

An interesting demonstration in this thesis is that Beylkin has considerably better 

performance at higher CRs, compared with DCT and using no sparsifying dictionary. 

CR=80% would correspond to sampling at 50 Hz which is a substantial reduction. The 

effect of ensuing errors at this level of CR was not investigated here as the focus of the 

study is on the specifics of selecting DWT dictionaries. Comparisons of performance 

with DCT and the case of using no dictionaries were presented merely to demonstrate 

relevance and for putting the problem into context. For CR=50%, Beylkin led to 

marginal levels of error using the conventional classification paradigm used. This 

indicates further the relevance of the effort in arriving at a suitable dictionary to be used 

in tandem with SBM and ST-SBL algorithm. 

6.5 Summary   

This chapter provides results of identifying a suitable dictionary for accurate 

reconstruction of EEG signal in the application of WBAN. It is demonstrated that in 

selecting the dictionary its incoherence with the sensing matrix as well as its number of 

vanishing moments should be considered at the same time. Amongst the dictionaries are 

studied, Baylkin is maximally incoherent with sensing basis and also leads to the best 

performance in terms of the reconstruction compare to the other dictionaries, though it 
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has slightly lower vanishing moment. This indicates that incoherence presumably has a 

slightly stronger impact on the outcome.  

Therefore more inform choice for selection of DWT are incoherence which people use 

separately and Vanishing moment to see DWT in larger variation. The impact is in 

order to select appropriate DWT both property need to be considered together and 

classification prove clinical validation. 
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Chapter 7 
                  Power Consumption Analysis 
 

7.1 Introduction 

It is already stated that energy consumption and the high volume of data are major 

constraints in the transmission of EEG signal over WBAN due to limited battery life 

and processing capability of sensor nodes. To increase battery life focus on reducing the 

power of transmission and data rate compressive sensing (CS) is emploed (Zhang et al., 

2013a; Singh et al., 2014; Liu,Vos & Huffel, 2015; Candes & Wakin, 2008). AS CS can 

lead to significant computational savings for on-chip implementation with relatively 

low sampling rates, recently, it has been viewed with considerable interest as a viable 

technique for the transmission of large data volumes and high data rate signals over 

WBAN (Zhang et al., 2013a). 

In this chapter, the overall energy savings of transmitting EEG signal in WBAN is 

investigated by exploring the effectiveness of the proposed approach. The investigations 

are done by numerical experiments following a power model. The results will help to 

realize the computational complexity and online implementation requirements of CS for 

transmitting EEG in WBAN.  

Section 7.2 presents the necessity of energy efficient sensing system. The wireless 

sensor nodes types are presented in section 7.3. Multiple hop WBAN system is 

described in section 7.4. The following section 7.5 provides design of WBAN sensor 

node. The power consumption analysis of a sensor node is given in section 7.6. Power 

consumption at different compression rates is presented in section 7.7. Section 7.8 

offers further savings of power and the chapter summary is provided in section 7.9. 

7.2 The Necessity of Energy Efficient Sensing System  

There are various health monitoring applications that require the transfer of biomedical 

signals over Wireless Body Area Networks (WBAN). Online monitoring of 

physiological signals over wireless body area networks (WBAN) is challenging due to 

the high volume of data and power requirements. WBAN sensors should have 

lightweight, low cost and power consumption while enabling an enhanced analysis of 
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biomedical signals that involve high data volume for effective monitoring and treatment 

(Lim, Baumann and Li, 2011; Ivanov et al., 2012; Seyedi et al., 2013; Dharshini and 

Subashini, 2017).  

 

   

Figure 7.1. Bandwidth and energy constraints for the transmission of EEG 

signals. Nyquist sampling shows rigid constraints, requiring information to 

be reduced to a great extent that can possibly be accomplished through 

effective signal compression techniques like CS. (ECoG: electrocorticogram, 

LFP: local field potential) (Shoaib, 2013). 

 

 

The dynamic nature of biomedical signals such as electroencephalographic (EEG) and 

electrocorticographic (ECoG) traces results in a wide variation in normal and pathologic 

features in different individuals. The use of manually extracted features for prediction of 

pathological events is impractical with a large volume of data even for a small number 

of electrodes, leading to large processing delays. 

The major constraints of transmitting physiological signals in wireless sensor networks 

are illustrated in Figure 7.1(Shoaib, 2013). For instance, transcutaneous or MICS-band 
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(Medical Implant Communication Service) links are usually used to transmit 

physiological signals, i.e., neuronal spikes from the energy constrained node to external 

node (Mandal and Sarpeshkar, 2008; Pandey and Otis, 2011).The top part of Figure 5.1 

depicts the data storage capacity and transmission energy limitations in the energy 

efficient sensor network. The bottom left part of Figure 7.1 shows high data volume 

requirements with the increments of channels, the bottom right part of shows the power 

requirements to transmit EEG signals. Therefore, an efficient data processing technique 

is required to reduce data volume dramatically and thereby reduce power consumption. 

As an emerging technique, compressed sensing (CS) shows its great potential to 

minimize the power consumption in the sensor node by compressing the data in a more 

compact manner (Wang, Song, and Xu, 2014). 

7.3 Types of Wireless Sensor nodes  

WBAN consists of a number of sensor nodes. On the basis of their implementations the 

sensor nodes are classified into the following three types (Al-Janabi et al., 2016): 

 Implantable node: This kind of node is usually implanted underneath the 

skin or inside the human body tissue. 

 Body surface node: It is placed on the surface of the body. 

 External node: This type of node is placed a few centimeters to 5 meters 

away from the human body (Al-Janabi et al., 2016).  

Each sensor node has specific requirements and is utilized for a different purpose. For 

example, the EEG sensor node is used to detect brain signal, whereas ECG sensor nodes 

detect heart signal. Sensor nodes communicate with the intermediate node which can be 

named as a central control unit (CCU). CCU generally consumes less energy and has 

higher processing capacities (Negra, Jemili and Belghith, 2016). CCU is responsible to 

transmit physiological signals of the patient to the remote device or medical for real-

time diagnostic or health care purposes. The remote terminal is known as a base station  

which does not consume any energy of the WBAN (Zhang et al., 2013a). 

The electronics of the sensor nodes need to be miniaturized, energy-efficient and able to 

detect physiological signals (Khan and Yuce, 2010).  
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7.4 Multiple hops WBAN system 

Figure 7.2 is showing a multi-hop WBAN. The EEG sensor node acquires brain signal 

and transmits them to the intermediate unit (CCU) and then the signal is finally sent to 

the base station. This is a multi-hop network that consists of two networking links; one 

is between the sensor node and CCU and the other one is between CCU and medical 

server or base station. CCU can be a smartphone or the user’s personal computer (PC). 

Several technologies, such as Bluetooth, Zigbee, MICS, Ultra Wide Band (UWB), Wifi, 

and internet are usually used as a networking link (Khan and Yuce, 2010; Negra, Jemili 

and Belghith, 2016).  

7.5 Design of WBAN Sensor Node  

The sensor node is designed to acquire EEG signal from the user’s brain. The sensor 

node undertakes three tasks: sensing the signal through electrodes, processing 

(digitizing, controlling) and finally transmission of the signal via a transmitter. Most of 

the power consumption occurs in the transmitter (Abdulghani, Casson and Rodriguez-

Villegas, 2010).  

Therefore, methodologies are required for sensing and processing the signal before 

transmission. In this research, CS being an energy efficient data compression technique 

is used prior to transmission. As EEG signal is very weak and small (1-100μV), first it 

needs to go through the amplification process as shown in Figure 7.3 (Khan and Yuce, 

2010). After amplification, the signal is converted into the digital domain using an 

analog to digital converter (ADC). Further processing of the signal is done in the 

 

Figure 7.2. Multi-hop EEG based WBAN system. 
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microcontroller. In order to control the power distribution from the battery in an 

optimized way, microcontroller maintains an energy management method. The 

compression of the signal is done in this stage. The aim of compression is to reduce the 

system power consumption by reducing the data volume. Finally, the processed and 

compressed signal is transmitted to the transmitter. 

 

7.6 Power consumption analysis of a sensor node 

It is discussed in chapter 5 that while CS is employed in WBAN, signals are 

compressed on the sensor node with a reduced number of samples without losing 

essential information. Only this reduced number of samples is transmitted to the 

receiver where the original signal is reconstructed offline (Abdulghani, Casson and 

Rodriguez-Villegas, 2010). Only the compression stage consumes on-chip power in 

WBAN (Zhang et al., 2013a). At the receiver or server node, the matrix   is known to a 

CS algorithm and the matrix   is determined by a user. This stage does not cause any 

energy consumption in WBAN (Zhang et al., 2013a). Therefore, the sensor node power 

consumption is the only concern and investigated here. Figure 7.4 shows the EEG 

WBAN sensor/server node architecture.  

To analyze sensor node power consumption, a power model proposed in (Abdulghani, 

Casson and Rodriguez-Villegas, 2010) is used in this research. The sensor node 

incorporates two electrodes (E1 and E2) in order to sense EEG signals, an amplifier to 

amplify the weak EEG signals, an ADC to digitize the signals, a random number 

generator (RNG) to generate the sensing matrix   which is used to select a random set 

of samples to form the compressed signal  , a Digital signal Processor (DSP) or 

microcontroller to do the compression and a transmitter to transmit the signal to the 

receiver.  

Figure 7.3. Block diagram of a WBAN sensor node. 
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The total power consumption of the CS-based sensor node is comprised of three parts: 

                                     where             (          )   is the sensing power                                                           

                              , is the processing power 

                   , is the transmission power 

where   is the total number of the channels,      is the power consumption in the 

amplifier,      gives the ADC power consumptions,      is power consumption of the 

random number generator,        is the microcontroller power consumption. Processing 

power does not depend on the number of channels (Abdulghani, Casson and Rodriguez-

Villegas, 2010; Shukla, Majumdar and Ward, 2015),    is the sampling frequency of the 

ADC,   is the number of bits per sample (resolution) and   is the net transmission 

power per bit.  

Thus, the total power consumption by the CS-based EEG sensor node is:  

                                    
 

 
      (7.2) 

The Transmission power requirement has been reduced by a factor of    . This 

corresponds to the compressive sensing in model 5.1 where there is a reduction in 

dimensionality between   and  . 

                                                                       (7.1) 

Figure 7.4. The architecture of EEG WBAN sensor/server node. 
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In order to get an idea about the actual power consumption and savings, the hard values 

can be established using realistic and state-of-the-art values. Five separate blocks are 

considered for this which is discussed successively below: 

 Amplifier: EEG signals are typically in the range of 1-100   . Therefore, it is 

necessary to amplify the signal before it transmits to ADC so that it can match the ADC 

input range. Moreover, it is assumed that the signal is band-limited to the approximate 

range of 0.5 Hz to 70 Hz (Abdulghani, Casson and Rodriguez-Villegas, 2010). 

Considering all the requirements of EEG signals a low power, low noise 

instrumentation amplifier of 30 Hz bandwidth and 40 dB gain is chosen which 

consumes 0.9 μW power (Harrison, 2002).  

Analogue-to-digital converter (ADC): The ADC is used to digitize the EEG signal for 

further processing and transmission. Sampling rate and resolution are the two core 

parameters of interest in ADC. After removal of any d.c. offset in the signal by the 

instrumentation amplifier a medium resolutions and low sampling rate ADC is generally 

required for the EEG sensor node. In (Verma and Chandrakasan, 2007) an ultra-low 

power ADC has been fabricated in a 0.18   CMOS technology. A 1V supply is used to 

power all the circuits. At a resolution of 12-bits, and a sampling rate of 0.5      (kilo 

Samples per second), the power consumption of the ADC is 0.2μW (Verma and 

Chandrakasan, 2007). The power consumption increases linearly with sampling rate and 

is measured to be approximately 25μW (microwatt) at 100 kS   (Verma and 

Chandrakasan, 2007).  Table 7.1 indicates the change in power consumption of ADC 

and also the total power consumption of the sensor node using (7.3) with the change of 

sampling rate. ADC power is directly scaled with the number of channels; it is clear 

from the Table 7.1 that with the increased number of channels both the ADC power and 

total power consumption also increased. It is also noticeable that sampling rate up to 0.5 

      the power consumption is in the μW range, it increased for higher sampling rate 

of ADC. 

A widely used figure-of-merit (FOM) normalizes the ADC power consumption to the 

input bandwidth it can digitize and the dynamic range it achieves (Verma and 

Chandrakasan, 2007): 

                   
    

         
  (7.3) 

where     is the input frequency of the ADC. For 100 kS/s sampling rate     is 50 kHz. 
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In 12-bit mode, the ADC samples at 100 kS/s and achieves an effective number of bits 

(ENOB) of 10.55 bits at its Nyquist rate (Verma & Chandrakasan, 2007). 

The ADC also achieves a FOM of 165 fJ per conversion step in its 12-bit mode (Verma 

and Chandrakasan, 2007): 

 

Table 7.1. Power consumption at different sampling rates of ADC. 
 

R    

(kS/s) 

     

(μW) 

Total Power 

Consumption, 

Ptotal 

(for 32  channel) 

Total Power 

Consumption, 

Ptotal 

(for 29  channel) 

Total Power 

Consumption, 

Ptotal 

(for 23  channel) 

12 0.25 0.1 627 μW 601 μW 550 μW 

12 0.5 0.2 870 μW 822 μW 725 μW 

12 50  2 49 mW 47 mW 35 mW 

12 100 25 97 mW 88 mW 70 mW 

 

The resolutions of ADC also affect the power consumption of the ADC and thereby 

affect the total power consumption. Figure 7.5 shows the change in total power 

consumption with the varying resolution of ADC (8-12 bits). Table 7.2 summarizes the 

variation of ADC power consumption and total power consumption with the change of 

ADC resolution. In this case, the sampling rate is fixed at 100 kS/s.  

 

Table 7.2. Power consumption at different resolution of ADC. 
 

R    
            
(kS/s) 
 

     

(μW) 

Total Power  
Consumption, 
Ptotal 
(for 32  channel) 
 

Total Power  
Consumption, 
Ptotal 
(for 29  channel) 
 

Total Power  
Consumption, 
Ptotal 
(for 23  channel) 
 

8 100 19 65 mW 59 mW 47 mW 

10 100 23 81 mW 74 mW 58 mW 

12 100 25 97  mW 88 mW 70 mW 
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Random number generator: It is used to generate sensing matrix Ф. There is various 

type of random number generator (RNG) are available depending on their applications. 

For example, the RNG that was used in (Holleman et al., 2006) can be used for 

generating Ф.  

matrix (Abdulghani, Casson and Rodriguez-Villegas, 2010). A comparative analysis on 

the basis of bit rates and power consumption is also made in (Holleman et al., 2006) 

with other existing RNG. The RNG fabricated on 0.35 µm process and it operates at 5V. 

It consumes only 2.9 µW power with the output data rate of 500 bps. 

Microcontroller or Microprocessor: This is where the compressive sensing is 

executed by the matrix multiplications. In order to minimize sensor node power 

consumptions, in this work, a sparse binary matrix (SBM) is used as the sensing matrix 

Ф with values of 1 and 0 which means each matrix entry is represented by a single bit. 

This results in reducing the size of the sensing matrix and subsequent matrix 

multiplication. In addition, SBM requires only accumulator registers for the matrix 

multiplication operation in the microprocessor. Any other choice of a full rank sensing 

matrix     would cause additional circuit complexity, data storage, and computation 

requirements. Moreover, CS with SBM matrix costs less power. During compression of 

a   number of samples of the signal, a          Ф matrix is used for 

multiplications. So, the input data is compressed by   dimension and this compressed 

data are encoded on the microprocessor, i.e., the processor needs a fewer code 

 

Figure 7.5. Total power consumption Vs ADC Resolution. 
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execution.  The power requirements of the processor strongly depend on the 

specifications of the model chosen to be used. Because of its ultra-low power 

consumption, TI MSP430 family (Texas Instruments, 2013) is a popular choice for 

sensor nodes. MSP430 operates at clock frequency 1 MHz for a 16-bit resolution of Ф 

and its active mode power consumption is approximately 352 µW (Texas Instruments, 

2013). Ф can be generated priori in MATLAB using and stored in the memory of 

MSP430 (Sheng, Yang and Herbordt, 2015). 

It is already stated that most power is dissipated in the transmitter of a sensor node; 

therefore to minimize the power consumption of the sensor node it is necessary to 

reduce power in the transceiver. The best way of achieving this is to reduce the data 

volume before transmission. At DSP/microcontroller Φ randomly taking   samples 

from   samples of signal that’s mean it compressed signal by     compression ratio 

so finally the signal is transmitting to the receiver at a highly reduced rate 

   
 

 
                              ; which means data is compressed at 0.63 nyquist 

rate of EEG (EEG nyquist rate is 200 Hz). Compressing signal such a below nyquist 

rate also increase the processing and transmission sleep time. Thus it is possible to 

transmit signal only when it is required.  

Figure 7.6 shows the circuitry for the sensor node illustrating the reduced data rate by 

the microcontroller. Figure 7.7 depicts the total power consumption of the sensor node 

with the variation of different nyquest rate of compression.  It is clear from the Figure 

7.7 that at nyquist rate 0.63 the total power consumption by the sensor node is lowest in 

comparison to other rates.  It is also noted that this rate is used across this research to 

compress various types of EEG signal.  
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Figure 7.6. The circuitry of a sensor node. 
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Figure 7.7. Power consumption Vs EEG Nyquist rate. 

Transmitter: The performances of several off-the-shelf transmitters are analysed in 

(Yates and Rodriguez-Villegas, 2007). Two figures for energy per bit ( ) are considered 

and analysed briefly in that paper. One figure is 50 nJ/b, which is considered on the 

performance basis of 2.4 - 2.5 GHz (The Industrial, Scientific and Medical) ISM radio 

transceiver nRF2401 (Nordiac semiconductor, 2004) and Bluetooth Specification v1.2 

solution BRF6150 (Texas Instruments, 2003). On the other hand based on the 

performance of UWB devices such as the XS110 (Freescale Semiconductor, 2004) 

second figure 5 nJ/b is taken. In (Khan and Yuce, 2010) UWB is used as a high data 

rate transmission link for WBAN sensor node. As 5 nJ/b is already used as a 

considerable   figure for UWB device. In this work, 5 nJ/b is used as   value.  

All the parameters that are used for power consumption calculation are summarized in 

Table 7.3. 
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7.7 Power Consumption at different CR 

 

 

Figure 7.8. Power consumption at different CR, while ADC sampling 

rate is 250 Hz. 
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Table 7.3. Summary of the parameters used in power consumption analysis. 

Parameter Symbol Value 

Amplifier Power PAMP 0.9 μW 

ADC Power PADC .1 μW 

Random Number Generator Power PRNG 2.9 μW 

Matrix Multiplication Power, PMULT 352 μW 

Transmission Power per bit, j 5 nj/b 

Total Number of Sample N 256 

Number of samples taken M 128 

Nyquist Sampling Frequency fs 0.25 kS/s 

ADC Sampling Resolution R 12 

Number of Channels in the system C Variable 
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Figure 7.8 shows the power consumption in terms of CR at a variety of ranges (50%-

80%). The outcome indicates that at each CR level the amount of power consumption is 

strict into μW range. This is because the data is under sampled at very below Nyquist 

rate. The findings indicate that by compressing signal at 50% it is possible to achieve a 

reduced rate of (at μW range) power consumption even without sacrificing 

performances. As it is demonstrated in the previous chapter that at 80% CR the 

reconstruction error is a bit high still if necessary system can use 80% compression to 

save about 97 μW of energy by sacrificing the reconstruction accuracy.   

7.8 Further Power Savings in WBAN 

The ST-SBL framework can further decrease the power consumption without affecting 

the reconstruction accuracy. It is shown in section 6.3.1 that the variation in the entries 

of d (number of non-zero entries in the columns of SBM) does not affect the 

reconstruction performance. Therefore, further savings of power is possible by using a 

lower value of  , for example, 2 can be used instead of 30 as   in each column of SBM 

which will reduce the number of computation and execution time to a great extent.  

The experimental outcomes in (Mamaghanian et al., 2011; Zhang et al., 2013b) indicate 

that the performances of other algorithms are affected by the variation of  . In (Zhang et 

al., 2013b) it is stated that only SBL algorithms can sampled signal using a SBM of 

such a less number of non-zero entries and can contribute to the further energy savings. 

7.9 Summary 

The development of WBAN based EEG sensor node is crucial in facilitating the distant 

monitoring of a patient in their everyday environment.  The critical factor in realizing 

the benefit of wireless sensor nodes is its power consumption. Minimizing the battery 

size which determines the device size and power consumption of the EEG sensor node 

is key to its success (Imtiaz, Casson and Rodriguez-Villegas, 2014). In order to 

minimize the size and power consumption, some data reduction strategy is required at 

the sensor node (Chen, Chandrakasan and Stojanovic, 2012). It is widely accepted that 

CS has its significant use in simplifying the operation of wireless EEG sensor nodes 

from physically small batteries over a long period of time. Thus it ensures the reliability 

and robustness of the total system as the device is easier to use and more comfortable to 

wear. CS is a signal sampling paradigm that effectively samples a signal at a sampling 
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rate much lower than the Nyquist rate (Sheng, Yang and Herbordt, 2015; Donoho, 

2006) and still ensures accurate reconstruction of the signal. The signal reconstruction is 

described in the previous chapter. This chapter has analyzed the feasibility of the 

proposed framework to enable online data reduction, from the power point of view. The 

power requirements for the proposed framework based EEG sensor node are quantified 

in this chapter following a power model. It is shown that at a data compression ratio of 

50% (0.63 of nyquist rate), the proposed approach enables the energy savings budget 

well into the microwatts range which ensures a significant savings of battery life and 

overall system’s power. Further reduction of the power consumption is also possible by 

reducing the number of non-zero elements in SBM. 

Therefore, the findings indicate that the proposed strategy can help to save power, 

execution time and lessen the requirements of computation, transmission and storage in 

WBANs sensor nodes. 
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Chapter 8 
       Conclusion and Future Research Scopes 
 

8.1 Conclusion 

As a conclusion of the dissertation, this chapter emphasizes the primary contributions 

and its effect in the associate research area. Furthermore, the possible directions of 

further study are also suggested in the end.  

WBAN is intended to help human’s regular life and also enhance the quality of life. A 

numbers of studies have been accomplished over the past few years to integrate sensor 

nodes in WBANs which an individual can carry easily. This allows a variety of 

biomedical applications, for example, detection of epilepsy, transmission and 

monitoring of EEG signals, ECG signal, blood pressure, temperature etc. Thus WBAN 

can help people (especially disabled people who are not able to visit hospitals regularly) 

in their daily lives by recording their health status and tele-monitoring them in an 

outpatient setting.  

The aim of this study is the low power transmission of EEG signal over WBAN and its 

accurate reconstruction at the receiver to ensure continuous EEG record monitoring and 

real time feedback to the patients from the medical experts.  

The high volume of data and power consumption are the main limitations in 

transmission of EEG signal over WBAN, because of the short life of battery and 

processing capability of wireless sensor nodes. It is found that most of the energy 

consumptions occur during transmission of the signal. Therefore, methodologies are 

required for sensing and processing the signal before transmission. In this research, CS 

being an energy efficient data compression technique is applied prior to the 

transmission.  

A requirement of CS is that the signal has to be sparse in the domain where it is 

compressed.  EEG signal, however, is not sparse in time or the frequency domains. A 

challenge, therefore, in employing CS for the EEG signal is to identify the domain 

known as the dictionary in which the EEG signal is sufficiently sparse. This leads to 

another sufficient requirement for CS which is the incoherence between the dictionary 

and the sensing basis matrix. The aim of this study is to identify a suitable DWT 

dictionary by investigating incoherence with an aim  
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of improving accuracy of reconstruction of the EEG signals. Although state-of-the-art 

approaches show accurate reconstruction of EEG, however the specific features that 

make these suitable dictionaries have not investigated. 

It is demonstrated in this work that there are two key criteria for an appropriate selection 

of the DWT are the number of vanishing moments, indicating to what extent it can 

represent complex signals sparsely; and with respect to CS, incoherence of the 

dictionary with the sensing basis, denoting how accurately the original signal may then 

be reconstructed.  In this thesis, the relationship between incoherence of the DWTs and 

the ensuing reconstructed signal is investigated for a range of DWTs while using sparse 

binary matrix (SBM) as the sensing basis. SBM, owing to its low power features, is 

suitable for WBAN. Results indicate that DWTs that are more incoherent with the SBM 

lead to lower errors in reconstruction and that the accuracy in reconstruction is a 

stronger function of incoherence compared with vanishing moments. The experimental 

result shows that Beylkin among all the DWT is maximally incoherent with SBM. The 

reconstruction results of the signal also show that best reconstructions are also obtained 

with Beylkin. Further analysis of the results with vanishing moments and coherence 

shows that Beylkin has higher incoherence with SBM but slightly lower number of 

vanishing moments compared to other DWTs but the overall performance associated 

with Beylkin is better. Moreover, Beylkin has least number of filter coefficients in 

comparison to others which also increase the computational efficiency. 

In addition, the overall energy savings of transmitting EEG signal in WBAN are 

investigated by exploring the effectiveness of the proposed approach. The investigations 

are done by numerical experiments following a power model. In order to get an idea 

about the actual power consumption and savings, the hard values are established using 

realistic and state-of-the-art values.  The results will help to realize the computational 

complexity and online implementation requirements of CS for transmitting EEG in 

WBAN. It is stated that the most energy consumption part of WBAN is transmission. 

Therefore, the Transmission power requirement has been reduced by a factor of       

using CS. This is the advantage of CS that it compresses signal at a below rate of 

Nyquist. In this work the sampling rate is much bellow than Nyquist rate which assists 

to keep the power consumption in    range. 

Thus, proposed approach enables energy savings-reconstruction quality trade-off in the 

system. 
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8.2 Future Research Scopes 

There are many possible scopes of further research of the work presented in this 

dissertation.  Several possible directions are highlighted below: 

Clinical evaluation 

One possible scope of the work is applying the given approach for clinically evaluating 

EEG Signal to detect epilepsy or sleep apnea or any other brain diseases by employing 

appropriate classification method to the reconstructed signal in proposed framework. 

Thus, this will assist WBAN system to detect disease through tele-monitoring and will 

improve and ease the treatment process.  

Since the nature of EEG, ECG, EMG signals are almost similar, the proposed concept 

can be applied for these physiological signals which requires compression and 

transmission over WBAN to see the feasibility that can it be done and then followed by 

clinical evaluation. 

Hardware implementations 

Another possible extension of the work is to implement the proposed approach in 

hardware to check its performances and efficiency. The proposed framework offers a 

broad range of opportunities to improve the implementation of hardware. Furthermore, 

during designing SBM, there are scopes of further algorithmic improvements which can 

contribute to the system’s overall efficiency.  

Exploiting other features of EEG 

This work is focused on the correlation structures of EEG signals among channels. 

There are scopes of exploring other structures of EEG signal, such as group structure, 

tree structure and so on. By employing different methods in the proposed approach 

these features of EEG can be explored. 

Employing other methods  

In addition, there have been efforts to develop data-driven schemes for learning the best 

sparsifying dictionaries as well as using Deep Neural Network (DNN) for 

reconstructing the compressed signals (Hamner, Chavarriaga and Millan, 2011; 

Majumdar and Ward, 2016; Palangi, Ward, and Deng, 2016; Tour et al., 2018). 

Considering these methods for further benchmarking could be a promising direction for 

future research. 
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Appendix: MATLAB Code 
 

 

%% Generate DWT Dictionary using Wavelab toolbox 
  
% DWT generates using QMF filter bank  
  
qmf = MakeONFilter('Beylkin'); 
   N=256; 
   XI=eye(N); 
   W=zeros(N); 
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   for i=1:N, 
      W(:,i)=IWT_PO(XI(:,i),1,qmf); 
   end 
  
 %% Figure Mother Wavelets 
 
subplot(5,3,1); 
plot(db6,'b','LineWidth',2,'MarkerSize',12); 
title('db3 '); 
  
subplot(5,3,2); 
plot(db8,'b','LineWidth',2,'MarkerSize',12); 
title('db4'); 
  
subplot(5,3,3); 
plot(db16,'b','LineWidth',2,'MarkerSize',12); 
title('db8'); 
  
subplot(5,3,4); 
plot(db20,'b','LineWidth',2,'MarkerSize',12); 
title('db10'); 
  
subplot(5,3,5); 
plot(Haar,'b','LineWidth',2,'MarkerSize',12); 
title('Haar'); 
 
subplot(5,3,6); 
plot(Vaidyanathan,'b','LineWidth',2,'MarkerSize',12); 
title('Vaidyanathan'); 
  
 subplot(5,3,7); 
plot(Battle1,'b','LineWidth',2,'MarkerSize',12); 
title('Battle1'); 
  
 subplot(5,3,8); 
 plot(Battle3,'b','LineWidth',2,'MarkerSize',12); 
title('Battle3'); 
  
subplot(5,3,9); 
plot(Sym10,'b','LineWidth',2,'MarkerSize',12); 
title('Sym10'); 
  
subplot(5,3,10); 
plot(coif1,'b','LineWidth',2,'MarkerSize',12); 
title('coif1 '); 
  
subplot(5,3,11); 
plot(coif2,'b','LineWidth',2,'MarkerSize',12); 
title('coif2 '); 
  
subplot(5,3,12); 
plot(coif3,'b','LineWidth',2,'MarkerSize',12); 
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title('coif3'); 
  
subplot(5,3,13); 
plot(coif4,'b','LineWidth',2,'MarkerSize',12); 
title('coif4'); 
  
subplot(5,3,14); 
plot(coif5,'b','LineWidth',2,'MarkerSize',12); 
title('coif5'); 
  
subplot(5,3,15); 
 plot(Beylkin,'b','LineWidth',2,'MarkerSize',12); 
title('Beylkin'); 
 
 
%% Coherence of SBM with DWT dictionary 
  
close all; 
clear all; 
  
% Load DWT Dictionary 
load W_Beylkin.mat;  
  
% generate SBM (128 by 256) 
M = 128; 
N = 256; 
%  
while(1) 
    [Phi,flag] = genPhi(M,N,30);    
    if flag == 1, break; end; 
end 
  
%Normalized data 
Phi=Phi/norm(Phi); 
W_Beylkin =W_Beylkin/norm(W_Beylkin); 
  
% Calculate Crosscorelation 
 xc = abs(Phi * W_Beylkin'); 
  
% Get the maximum 
result = max(max(abs(Phi * W_Beylkin'))); 
  
% Measure Coherency 
n=256; 
N=sqrt(n); 
coherency = N*result 
 

/********************************************************************** 

*    Title: Spatio-Temporal Sparse Bayesian Learning  

*    Author: Zhang, Z 
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*    Date: 2014 

*    Code version: 1.0 

*    Availability: https://sites.google.com/site/researchbyzhang/software 

**********************************************************************/ 

function [Phi,flag] = genPhi(M,N,D) 
% generate the sensing matrix Phi, which is a sparse binary matrix. 
%  Input: 
%        M - row number of the matrix 
%        N - column number of the matrix 
%        D - number of nonzero entries of value 1 in each column of Phi 
% 
% Output 
%        Phi - the generated sparse binary matrix 
%       flag - if the genrated Phi matrix is full rank, then flag = 1; 
%              otherwise, flag= 0. 
 
if M>N, 
    error('M should <= N\n'); 
end 
  
Phi = zeros(M,N); 
  
for i = 1 : N 
    ind = randperm(M); 
    indice = ind(1:D); 
    col = zeros(M,1); 
    col(indice) = ones(D,1); 
    Phi(:,i) = col; 
end 
  
if rank(Phi) == M 
    flag = 1; 
else 
    flag = 0; 
end 
 

% STSBL-EM: Spatio-temporal Sparse Bayesian Learning Based on the EM Method 
% Describe: 
%     The algorithm solves the following inverse problem  
%                        Y = Phi * X + V 
%     where Y is N by L known matrix, Phi is N by M known matrix,  
%     X is M by L unknown matrix, V is N by L unknown noise matrix. Each 
%     column in X has the same block structure (defined by input variable 
%     'blkStartLoc'); the locations of nonzero blocks in each column are 
%     identical. X may have both intra-column correlation and inter-column 
%     correlation, which are exploited to improve the algorithm's    performance. 
% 
% ===========================INPUTS =========================== 
%   Phi         : N X M known matrix 
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% 
%   y           : N X L measurement vector  
% 
%   blkStartLoc : Start location of each block 
%    
%   LearnLambda : (1) If LearnLambda = 1, use the lambda learning rule for generaly 
%    noisy  
%                     cases (SNR<=20dB) (thus the input lambda is just as initial value) 
%                 (2) If LearnLambda = 2, use the lambda learning rule for high SNR cases 
%                 (SNR>20dB) 
%                 (3) If LearnLambda = 0, do not use the lambda learning rule, but use the % 
%                    input  
%                     lambda value (or the default lambda value). 
%                  
% [varargin values -- in most cases you can use the default values] 
% 
%  'LEARNTYPE'    : LEARNTYPE = 0: Ignore intra-column correlation (but 
%                   still exploits inter-column correlation) 
%                   LEARNTYPE = 1: Exploit intra-block correlation  
%                 [ Default: LEARNTYPE = 1 ] 
% 
%  'PRUNE_GAMMA'  : threshold to prune out small gamma_i  
%                   (generally, 10^{-3} or 10^{-2}) 
% 
%  'LAMBDA'       : user-input value for lambda 
%                  [ Default: LAMBDA=1e-14 when LearnLambda=0; 
LAMBDA=std(y)*1e-2 in noisy cases ] 
% 
%  'MAX_ITERS'    : Maximum number of iterations. 
%                 [ Default value: MAX_ITERS = 800 ] 
% 
%  'EPSILON'      : Solution accurancy tolerance parameter  
%                 [ Default value: EPSILON = 1e-6   ] 
% 
%  'PRINT'        : Display flag. If = 1: show output; If = 0: supress output 
%                 [ Default value: PRINT = 0        ] 
% 
% ========================= OUTPUTS ==========================  
%   Result : A structured data with: 
%      Result.x          : the estimated X 
%      Result.gamma_used : indexes of nonzero groups in the sparse signal 
%      Result.gamma_est  : the gamma values of all the groups of the signal 
%      Result.count      : iteration times 
%      Result.lambda     : the final value of lambda 
% Scaling (will be re-scalling back in the end of the code) 
% This step is to make those default values effective 
 
scl = mean(std(y)); 
if (scl < 0.4) | (scl > 1) 
    y = y/scl*0.4; 
end 
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% get problem dimension 
[N,M] = size(Phi); 
L = size(y,2); 
  
% Default Parameter Values for Any Cases 
EPSILON       = 1e-6;       % solution accurancy tolerance   
MAX_ITERS     = 800;        % maximum iterations 
PRINT         = 0;          % don't show progress information 
LEARNTYPE     = 1;          % adaptively estimate the covariance matrix B 
  
if LearnLambda == 0   
    lambda = 1e-12;    
    PRUNE_GAMMA = 1e-3;  MatrixReg = zeros(L); 
elseif LearnLambda == 2 
    lambda = 1e-3;     
    PRUNE_GAMMA = 1e-2;  MatrixReg = eye(L) * 0.5; 
elseif LearnLambda == 1 
    lambda = 1e-3;     
    PRUNE_GAMMA = 1e-2;  MatrixReg = eye(L) * 2; 
else 
    error(['Unrecognized Value for Input Argument ''LearnLambda''']); 
end 
   
if(mod(length(varargin),2)==1) 
    error('Optional parameters should always go by pairs\n'); 
else 
    for i=1:2:(length(varargin)-1) 
        switch lower(varargin{i}) 
            case 'learntype' 
                LEARNTYPE = varargin{i+1}; 
                if LEARNTYPE ~= 1 & LEARNTYPE ~= 0 
                    error(['Unrecognized Value for Input Argument ''LEARNTYPE''']); 
                end 
            case 'prune_gamma' 
                PRUNE_GAMMA = varargin{i+1};  
            case 'lambda' 
                lambda = varargin{i+1};     
            case 'epsilon'    
                EPSILON = varargin{i+1};  
            case 'print'     
                PRINT = varargin{i+1};  
            case 'max_iters' 
                MAX_ITERS = varargin{i+1};   
            otherwise 
                error(['Unrecognized parameter: ''' varargin{i} '''']); 
        end 
    end 
end 
  
 if PRINT 
    
fprintf('\n====================================================\n'); 
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    fprintf('           Running STSBL_EM....... \n'); 
    fprintf('           Information about parameters...\n'); 
    fprintf('====================================================\n'); 
    fprintf('PRUNE_GAMMA  : %e\n',PRUNE_GAMMA); 
    fprintf('lambda       : %e\n',lambda); 
    fprintf('LearnLambda  : %d\n',LearnLambda);     
    fprintf('LearnType    : %d\n',LEARNTYPE); 
    fprintf('EPSILON      : %e\n',EPSILON); 
    fprintf('MAX_ITERS    : %d\n\n',MAX_ITERS); 
end 
  
 %% Initialization 
  
y0 = y; 
Phi0 = Phi; 
blkStartLoc0 = blkStartLoc; 
p = length(blkStartLoc);   % block number 
for k = 1 : p-1 
    blkLenList(k) = blkStartLoc(k+1)-blkStartLoc(k); 
end 
blkLenList(p) = M - blkStartLoc(end)+1; 
maxLen = max(blkLenList); 
if sum(blkLenList == maxLen) == p,  
    equalSize = 1; 
else 
    equalSize = 0; 
end 
  
for k = 1 : p 
    Sigma0{k} = eye(blkLenList(k)); 
end 
  
gamma = ones(p,1); 
keep_list = [1:p]'; 
usedNum = length(keep_list); 
mu_t = zeros(M,L); 
count = 0; 
  
B = eye(L); 
  
%% Iteration 
while (1) 
    count = count + 1; 
  
    %=========== Prune weights as their hyperparameters go to zero =========== 
    if (min(gamma) < PRUNE_GAMMA) 
        index = find(gamma > PRUNE_GAMMA); 
        usedNum = length(index); 
        keep_list = keep_list(index); 
        if isempty(keep_list),  
            
fprintf('\n=====================================================\n'); 
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            fprintf('x becomes zero vector. The solution may be incorrect. \n'); 
            fprintf('Current ''prune_gamma'' = %g, and Current ''EPSILON'' = 
%g.\n',PRUNE_GAMMA,EPSILON); 
            fprintf('Try smaller values of ''prune_gamma'' and ''EPSILON'' or normalize ''y'' 
to unit norm.\n'); 
            
fprintf('=====================================================\n\n'); 
            break;  
        end; 
        blkStartLoc = blkStartLoc(index); 
        blkLenList = blkLenList(index); 
         
        % prune gamma and associated components in Sigma0  
        gamma = gamma(index); 
        temp = Sigma0; 
        Sigma0 = []; 
        for k = 1 : usedNum 
            Sigma0{k} = temp{index(k)}; 
        end 
         
        % construct new Phi 
        temp = []; 
        for k = 1 : usedNum 
            temp = [temp, Phi0(:,blkStartLoc(k):blkStartLoc(k)+blkLenList(k)-1)]; 
        end 
        Phi = temp; 
        %clear temp; 
    end 
  
    % =================== Spatially Whitening ============== 
    y = y0 * sqrtm(inv(B)); 
     
    %=================== Compute new weights ================= 
    PhiAPhi = zeros(N); 
    currentLoc = 0; 
    for i = 1 : usedNum 
         
        currentLen = size(Sigma0{i},1); 
        currentLoc = currentLoc + 1; 
        currentSeg = currentLoc : 1 : currentLoc + currentLen - 1; 
         
        PhiAPhi = PhiAPhi + Phi(:, currentSeg)*Sigma0{i}*Phi(:, currentSeg)'; 
        currentLoc = currentSeg(end); 
    end 
  
    H = Phi' /(PhiAPhi + lambda * eye(N)); 
    Hy = H * y;  
    HPhi = H * Phi; 
     
    mu_x = zeros(size(Phi,2),L); 
    Sigma_x = []; 
    Cov_x = []; 
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    A = []; invA = []; A0 = zeros(maxLen); r0 = zeros(1); r1 = zeros(1); 
    
    currentLoc = 0; 
    for i = 1 : usedNum 
         
        currentLen = size(Sigma0{i},1); 
        currentLoc = currentLoc + 1; 
        seg = currentLoc : 1 : currentLoc + currentLen - 1; 
         
        mu_x(seg,:) = Sigma0{i} * Hy(seg,:);       % solution 
        Sigma_x{i} = Sigma0{i} - Sigma0{i} * HPhi(seg,seg) * Sigma0{i}; 
        %Cov_x{i} = Sigma_x{i} + mu_x(seg,:) * mu_x(seg,:)'; 
         
        currentLoc = seg(end); 
               
         
        %=========== Learn intra-block correlation within columns =========== 
        % do not consider correlation structure in each block 
        if LEARNTYPE == 0 
            A{i} = eye(currentLen); 
            invA{i} = eye(currentLen); 
  
        % constrain all the blocks have the same correlation structure 
        elseif LEARNTYPE == 1 
            if equalSize == 0 
                if currentLen > 1 
                    %temp = Cov_x{i}/gamma(i); 
                    temp = Sigma_x{i}/gamma(i) + mu_x(seg,:)*mu_x(seg,:)'/L/gamma(i); 
                     
                    r0 = r0 + mean(diag(temp)); 
                    r1 = r1 + mean(diag(temp,1)); 
                end 
            elseif equalSize == 1 
                %A0 = A0 + Cov_x{i}/gamma(i); 
                A0 = A0 + Sigma_x{i}/gamma(i) + mu_x(seg,:)*mu_x(seg,:)'/L/gamma(i); 
            end 
  
        end % end of learnType 
  
    end % end of usedNum 
     
    %========== Learn the intra-block correlation with regularization =========== 
    % If blocks have the same size 
    if (equalSize == 1) & (LEARNTYPE == 1) 
  
        % Constrain all the blocks have the same correlation structure 
        % (an effective strategy to avoid overfitting) 
        b = (mean(diag(A0,1))/mean(diag(A0))); 
        if abs(b) >= 0.99, b = 0.99*sign(b); end; 
        bs = []; 
        for j = 1 : maxLen, bs(j) = (b)^(j-1); end; 
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        A0 = toeplitz(bs); 
  
        for i = 1 : usedNum 
              
            A{i} = A0; 
            invA{i} = inv(A{i}); 
        end 
     
    % if blocks have different sizes 
    elseif (equalSize == 0) & (LEARNTYPE == 1) 
        r = r1/r0; if abs(r) >= 0.99, r = 0.99*sign(r); end; 
  
        for i = 1 : usedNum 
            currentLen = size(Sigma_x{i},1); 
  
            bs = []; 
            for j = 1 : currentLen, bs(j) = r^(j-1); end; 
            A{i} = toeplitz(bs); 
            invA{i} = inv(A{i}); 
        end  
    end 
  
     
    % estimate gamma(i) and lambda  
    if LearnLambda == 1         % this learning rule is suitable for general noisy cases 
(SNR<=20dB) 
        gamma_old = gamma; 
        lambdaComp = 0;  
        currentLoc = 0; 
        for i =  1 : usedNum 
  
            currentLen = size(Sigma_x{i},1); 
            currentLoc = currentLoc + 1; 
            currentSeg = currentLoc : 1 : currentLoc + currentLen - 1; 
            lambdaComp = lambdaComp + 
trace(Phi(:,currentSeg)*Sigma_x{i}*Phi(:,currentSeg)'); 
            currentLoc = currentSeg(end); 
  
            %gamma(i) = trace(invA{i} * Cov_x{i})/currentLen; 
            gamma(i) = trace(invA{i}*Sigma_x{i})/currentLen ... 
                + sum( sum( (mu_x(currentSeg,:)'*invA{i}).*mu_x(currentSeg,:)' 
,2))/(L*currentLen); 
             
            Sigma0{i} = A{i} * gamma(i); 
             
        end 
        lambda = norm(y - Phi*mu_x,'fro')^2/(N*L) + lambdaComp/N; 
         
    elseif LearnLambda == 2   % this learning rule is suitable for high SNR cases 
%(>20dB) 
        gamma_old = gamma; 
        lambdaComp = 0;   
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        currentLoc = 0; 
        for i =  1 : usedNum        
            lambdaComp = lambdaComp + trace(Sigma_x{i}*invA{i})/gamma(i); 
             
            currentLen = size(Sigma_x{i},1); 
            currentLoc = currentLoc + 1; 
            currentSeg = currentLoc : 1 : currentLoc + currentLen - 1; 
             
            gamma(i) = trace(invA{i}*Sigma_x{i})/currentLen ... 
                + sum( sum( (mu_x(currentSeg,:)'*invA{i}).*mu_x(currentSeg,:)' 
,2))/(L*currentLen); 
            Sigma0{i} = A{i} * gamma(i); 
             
            currentLoc = currentSeg(end); 
        end 
        lambda = norm(y - Phi * mu_x,'fro')^2/(N*L) + lambda * (length(mu_x) - 
lambdaComp)/N;  
         
    else   % only estimate gamma(i) 
        gamma_old = gamma; 
        currentLoc = 0; 
        for i =  1 : usedNum 
            currentLen = size(Sigma_x{i},1); 
            currentLoc = currentLoc + 1; 
            currentSeg = currentLoc : 1 : currentLoc + currentLen - 1; 
             
            gamma(i) = trace(invA{i}*Sigma_x{i})/currentLen ... 
                + sum( sum( (mu_x(currentSeg,:)'*invA{i}).*mu_x(currentSeg,:)' 
,2))/(L*currentLen); 
             
            Sigma0{i} = A{i} * gamma(i); 
             
            currentLoc = currentSeg(end); 
        end 
    end 
  
     
    % ========== Learn Spatial (inter-column) Covariance Matrix B ============ 
    mu_old = mu_t; 
    mu_t = mu_x * sqrtm(B);  
    B = zeros(L); currentLoc = 0; 
    for i = 1 : usedNum 
       
        currentLoc = currentLoc + 1; 
        currentLen = size(Sigma0{i},1); 
        seg = currentLoc : 1 : currentLoc + currentLen - 1; 
         
        B = B + mu_t(seg,:)' * invA{i} * mu_t(seg,:)/gamma_old(i);   
        % invA should choose the previous value, but it can use the updated 
        % value since the value of invA changes slowly. 
         
        currentLoc = seg(end); 
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    end 
    B = B/norm(B,'fro'); 
    B = B + MatrixReg; 
    B = B./norm(B);   
    if size(Phi,2) <= size(Phi,1), B = eye(L); end; 
  
     
    % ================= Check stopping conditions, eyc. ============== 
         
        % check convergence 
        if (size(mu_t) == size(mu_old)) 
            dmu = max(max(abs(mu_old - mu_t))); 
            if (dmu < EPSILON)  break;  end; 
        end; 
        if (PRINT) 
            disp([' iters: ',num2str(count),... 
                ' num coeffs: ',num2str(usedNum), ... 
                ' min gamma: ', num2str(min(gamma)),... 
                ' gamma change: ',num2str(max(abs(gamma - gamma_old))),... 
                ' mu change: ', num2str(dmu)]); 
        end; 
        if (count >= MAX_ITERS), if PRINT, fprintf('Reach max iterations. Stop\n\n'); 
end; break;  end; 
%     end 
     
end; 
  
%% Expand hyperparameyers 
gamma_used = sort(keep_list); 
gamma_est = zeros(p,1); 
gamma_est(keep_list,1) = gamma; 
  
%% reconstruct the original signal 
x = zeros(M,L); 
currentLoc = 0; 
for i = 1 : usedNum 
  
    currentLen = size(Sigma0{i},1); 
    currentLoc = currentLoc + 1; 
    seg = currentLoc : 1 : currentLoc + currentLen - 1; 
  
    realLocs = blkStartLoc0(keep_list(i)) : blkStartLoc0(keep_list(i))+currentLen-1; 
  
    x( realLocs,: ) = mu_t( seg,: ); 
    currentLoc = seg(end); 
end 
  
if (scl < 0.4) | (scl > 1) 
    Result.x = x * scl/0.4; 
else 
    Result.x = x; 
end 
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%Result.x = Result.x * sqrtm(B);  
Result.gamma_used = gamma_used; 
Result.gamma_est = gamma_est; 
Result.A = A; 
Result.count = count; 
Result.lambda = lambda; 
return; 
 
 
%% Reconstruction of EEG using ST-SBL Method 
  
clear;  clc; 
  
% Load Eppilepsy_Subject1 
load Eppilepsy_Subject1;     % 250 Hz 
  
% generate SBM (128 by 256) 
M = 128; 
N = 256; 
%  
while(1) 
    [Phi,flag] = genPhi(M,N,30);    
    if flag == 1, break; end; 
end 
  
% Load Dictionary 
load W_Beylkin.mat; 
  
% Block size 
blkLen = 16; 
groupStartLoc = 1:blkLen:N; 
  
 % variable for storing reconstructed Eppilepsy_Subject1 set 
X_hat = zeros(size(Eppilepsy_Subject1)); 
segNb = floor(size(Eppilepsy_Subject1,2)/N); 
  
% run.... 
for j = 1 : segNb 
      
    %  Signal Compression  
    y = Phi * Eppilepsy_Subject1(:,(j-1)*N+1:j*N)';     
     
    %  Signal Reconstruction  
     
    Result = STSBL_EM(Phi* W_Beylkin',y,groupStartLoc,0,'prune_gamma',-1, 
'max_iters',40); 
     
    signal_hat = W_Beylkin' * Result.x; 
   
    % Reconstructed EEG epoch 
    X_hat(:,(j-1)*N+1:j*N) = (signal_hat)'; 
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    % calculate the MSE for current epoch 
    mse(j) = (norm(Eppilepsy_Subject1(:,(j-1)*N+1:j*N) - 
(signal_hat)','fro')/norm(Eppilepsy_Subject1(:,(j-1)*N+1:j*N),'fro'))^2; 
%     fprintf('Segment %d out of %d: MSE = %f\n',j,segNb, mse(j)); 
      
    % Calculate SSIM 
    windowLen = 100; 
    [mssim, ssim_map] = ssim_1d(Eppilepsy_Subject1(:,(j-1)*N+1:j*N),(signal_hat)', 
windowLen); 
    ssim(j) = mssim; 
    
%      fprintf('Segment %d out of %d: MSE = %f | SSIM=%f\n',j,segNb, mse(j),ssim(j)); 
end 
  
%% Figure 
fs=250; 
time=0:1/fs:5000/fs-1/fs; 
  
% Example Traces 
figure; 
subplot(211);plot(time,Eppilepsy_Subject1(5,1:5000),'r','linewidth',2);hold 
on;plot(time,X_hat(5,1:5000),'b','linewidth',2); 
       legend('Original Signal at Channel 5','Reconstructed Signal at Channel 5'); 
xlabel('Time(s)'); 
  
 subplot(212);plot(time,Eppilepsy_Subject1(28,1:5000),'r','linewidth',2);hold 
on;plot(time,X_hat(28,1:5000),'b','linewidth',2); 
       legend('Original Signal at Channel 25','Reconstructed Signal at Channel 25'); 
      xlabel('Time(s)'); 
  
 % Calculate Median of results     
  median(mse) 
  median(ssim) 
 

 

 

/********************************************************************** 

*    Title: SSIM Index  

*    Author: Wang, Z 

*    Date: 2012 

*    Code version: 1.0 

*    Availability: https://www.cns.nyu.edu/~lcv/ssim/ssim_index.m 

**********************************************************************/ 

%SSIM Index 
 



101 
 

function [mssim, ssim_map] = ssim_1d(sig1, sig2, windowLen) 
 
 
C1 = 0; 
C2 = 0; 
C3 = 0; 
   
N = length(sig1); 
  
for j = 1 : N-windowLen+1 
    mu1 = mean(sig1( j : j+windowLen-1 )); 
    mu2 = mean(sig2( j : j+windowLen-1 )); 
    mu1_sq = mu1^2; 
    mu2_sq = mu2^2; 
     
    sigma1 = std(sig1( j : j+windowLen-1 )); 
    sigma2 = std(sig2( j : j+windowLen-1 )); 
    sigma1_sq = sigma1^2; 
    sigma2_sq = sigma2^2; 
     
    sigma_12 = mean((sig1( j : j+windowLen-1 ) - mu1).* (sig2( j : j+windowLen-1 )-
mu2)); 
     
    ssim_map(j) = (2*mu1*mu2+C1)/(mu1_sq + mu2_sq + C1) * 
(2*sigma1*sigma2+C2)/(sigma1_sq+sigma2_sq+C2)... 
        * (sigma_12+C3)/(sigma1*sigma2+C3); 
end 
  
mssim = mean(ssim_map); 
 
 
%% Comparison Traces of Beylkin, DCT and No dictionary for different 
CRs  
 
% Aggregates EEG 
sum_Reconstruction_Data_Beylk_77=sum(X_hat);  
% Normalized data 
nor_data_blk_77=sum_Reconstruction_Data_Beylk_77/length(sum_Reconstruction_Da
ta_Beylk_77); 
data_blk_77_re=nor_data_blk_77(:,1:5000); 
  
fs=250; % Sampling Frequency,250 Hz 
time=0:1/fs:5000/fs-1/fs; 
  
% Figure 
subplot(4,3,1); 
plot(time,data_cr,'b','linewidth',2);hold on;plot(time,data_blk_128_re,'r','linewidth',2); 
title('Beylkin,CR=50% '); 
xlabel('Time(s)'); 
  
subplot(4,3,4); 
plot(time,data_cr,'b','linewidth',2);hold on;plot(time,data_blk_102_re,'r','linewidth',2); 
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title('Beylkin,CR=60% ','FontName', 'Times New Roman','fontsize',14); 
xlabel('Time(s)'); 
  
subplot(4,3,7); 
plot(time,data_cr,'b','linewidth',2);hold on;plot(time,data_blk_77_re,'r','linewidth',2); 
title('Beylkin,CR=70% '); 
xlabel('Time(s)'); 
  
subplot(4,3,10); 
plot(time,data_cr,'b','linewidth',2);hold on;plot(time,data_blk_51_re,'r','linewidth',2); 
title('Beylkin,CR=80% '); 
xlabel('Time(s)'); 
  
subplot(4,3,2); 
plot(time,data_cr,'b','linewidth',2);hold on;plot(time,data_DCT_128_re,'r','linewidth',2); 
title('DCT,CR=50% '); 
xlabel('Time(s)'); 
  
subplot(4,3,5); 
plot(time,data_cr,'b','linewidth',2);hold on;plot(time,data_DCT_102_re,'r','linewidth',2); 
title('DCT,CR=60% '); 
xlabel('Time(s)'); 
  
subplot(4,3,8); 
plot(time,data_cr,'b','linewidth',2);hold on;plot(time,data_DCT_77_re,'r','linewidth',2); 
title('DCT,CR=70% '); 
xlabel('Time(s)'); 
  
subplot(4,3,11); 
plot(time,data_cr,'b','linewidth',2);hold on;plot(time,data_DCT_51_re,'r','linewidth',2); 
title('DCT,CR=80% '); 
xlabel('Time(s)'); 
  
subplot(4,3,3); 
plot(time,data_cr,'b','linewidth',2);hold 
on;plot(time,data_NO_DIC_128_re,'r','linewidth',2); 
title('No dictionary,CR=50% '); 
xlabel('Time(s)'); 
  
subplot(4,3,6); 
plot(time,data_cr,'b','linewidth',2);hold 
on;plot(time,data_NO_DIC_102_re,'r','linewidth',2); 
title('Beylkin,CR=60% '); 
xlabel('Time(s)'); 
  
subplot(4,3,9); 
plot(time,data_cr,'b','linewidth',2);hold 
on;plot(time,data_NO_DIC_77_re,'r','linewidth',2); 
title('No dictionary); 
xlabel('Time(s)'); 
  
subplot(4,3,12); 



103 
 

plot(time,data_cr,'b','linewidth',2);hold 
on;plot(time,data_NO_DIC_51_re,'r','linewidth',2); 
title('No dictionary); 
xlabel('Time(s)'); 
 
 
%% Box plot of NMSE and SSIM for different CRs 
  
% Generate Group Variable to store CRs 
g1 = repmat({'50'},15,1); 
g2 = repmat({'60'},15,1); 
g3 = repmat({'70'},15,1); 
g4 = repmat({'80'},15,1); 
g=[g1;g2;g3;g4]; 
  
%Variables to store Belkin's NMSE and SSIM Values 
xb1=[Beylkin128;Beylkin_NMSE_102;Beylkin_NMSE_77;Beylkin_NMSE_51]; 
xb2=[Beylkin_ssim128;Beylkin_SSIM_102;Beylkin_SSIM_77;Beylkin_SSIM_51]; 
  
%Variables to store DCT's NMSE and SSIM Values 
xd1=[DCT_NMSE_128;DCT_NMSE_102;DCT_NMSE_77;DCT_NMSE_51]; 
xd2=[DCT_SSIM_128;DCT_SSIM_102;DCT_SSIM_77;DCT_SSIM_51]; 
  
%Variables to store no dictionary's NMSE and SSIM Values 
xn1=[NO_DIC_NMSE_128;NO_DIC_NMSE_102;NO_DIC_NMSE_77;NO_DIC_BN
SE_51]; 
xn2=[NO_DIC_SSIM_128;NO_DIC_SSIM_102;NO_DIC_SSIM_77;NO_DIC_SSIM_
51]; 
  
% Boxplots 
subplot(2,3,1); 
h1=boxplot(xb1,g,'symbol',''); 
set(h1,'LineWidth',2) 
set(h1(7,:),'MarkerSize',10) 
set(gca, 'YGrid','on') 
title('Beylkin' 
xlabel('CR(%)'); 
ylabel('NMSE'); 
  
subplot(2,3,2); 
h2=boxplot(xd1,g,'symbol',''); 
set(h2,'LineWidth',2) 
set(h2(7,:),'MarkerSize',10) 
set(gca, 'YGrid','on') 
title('DCT'); 
xlabel('CR(%)'); 
ylabel('NMSE'); 
  
subplot(2,3,3); 
h3=boxplot(xn1,g,'symbol',''); 
set(h3,'LineWidth',2) 
set(h3(7,:),'MarkerSize',10) 
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set(gca, 'YGrid','on') 
title('No dictionary'); 
xlabel('CR(%)'); 
ylabel('NMSE'); 
  
subplot(2,3,4); 
h4=boxplot(xb2,g,'symbol',''); 
set(h4,'LineWidth',2) 
set(h4(7,:),'MarkerSize',10) 
set(gca, 'YGrid','on') 
title('Beylkin'); 
xlabel('CR(%)'); 
ylabel('SSIM'); 
  
subplot(2,3,5); 
h5=boxplot(xd2,g,'symbol',''); 
set(h5,'LineWidth',2) 
set(h5(7,:),'MarkerSize',10) 
set(gca, 'YGrid','on') 
title('DCT'); 
xlabel('CR(%)'); 
ylabel('SSIM'); 
  
subplot(2,3,6); 
h6=boxplot(xn2,g,'symbol',''); 
set(h6,'LineWidth',2) 
set(h6(7,:),'MarkerSize',10) 
set(gca, 'YGrid','on') 
title('No dictionary'); 
xlabel('CR(%)'); 
ylabel('SSIM'); 
 
 

%%Power Consumption Calculation at different Sampling Rate 
  
clear;  clc; 
  
C1 = 32; % number of channel of 1st dataset 
C2 = 29; % number of channel of 2nd dataset 
C3 = 23; % number of channel of 3rd dataset 
  
M= 128;  % number of compressed samples 
N=256;   %Total number of samples 
  
P_AMP = 0.9; % Amplifier Power consumption 
  
% Sampling Frequency 
fs1 = 0.25; 
fs2 = 50; 
fs3 = 100; 
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%ADC Power consumption at different fs 
P_ADC1=0.1;  
P_ADC2 = 12; 
P_ADC3=25; 
  
j = 5; % Transmitter Power 5 nj/b  
  
R = 12; % ADC Resolution 
  
P_RNG = 2.9;%RNG Power 
P_MULT = 352;% Multiplier Power 
  
% Processing power 
P_proc = P_RNG + P_MULT;  
  
% Sensing power for 1st Dataset 
P_sense11 = C1*(P_AMP + P_ADC1); 
P_sense12 = C1*(P_AMP + P_ADC2); 
P_sense13 = C1*(P_AMP + P_ADC3); 
  
% Communication power for 1st Dataset 
P_comm11 = C1*M/N*J*fs1*R; 
P_comm12 = C1*M/N*J*fs2*R; 
P_comm13 = C1*M/N*J*fs3*R; 
  
% Systems power for 1st Dataset 
P_tota11 = P_sense11 + P_proc + P_comm11 
P_tota12 = P_sense12 + P_proc + P_comm12 
P_tota13 = P_sense13 + P_proc + P_comm13 
  
% Sensing power for 2nd Dataset 
P_sense21 = C2*(P_AMP + P_ADC1); 
P_sense22 = C2*(P_AMP + P_ADC2); 
P_sense23 = C2*(P_AMP + P_ADC3); 
  
% Communication power for 2nd Dataset 
P_comm21 = C2*M/N*J*fs1*R; 
P_comm22 = C2*M/N*J*fs2*R; 
P_comm23 = C2*M/N*J*fs3*R; 
  
% Total power for 2nd Dataset 
P_tota21 = P_sense21 + P_proc + P_comm21 
P_tota22 = P_sense22 + P_proc + P_comm22 
P_tota23 = P_sense23 + P_proc + P_comm23 
  
% Sensing power for 3rd Dataset 
P_sense31 = C3*(P_AMP + P_ADC1); 
P_sense32 = C3*(P_AMP + P_ADC2); 
P_sense33 = C3*(P_AMP + P_ADC3); 
  
% Communication power for 3rd Dataset 
P_comm31 = C3*M/N*J*fs1*R; 
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P_comm32 = C3*M/N*J*fs2*R; 
P_comm33 = C3*M/N*J*fs3*R; 
4 
% Total power for 1st Dataset 
P_tota31 = P_sense31 + P_proc + P_comm31 
P_tota32 = P_sense32 + P_proc + P_comm32 
P_tota33 = P_sense33 + P_proc + P_comm33 
  
%Variables to Store Power 
X1=[P_tota11,P_tota12,P_tota13]; 
X2=[P_tota21,P_tota22,P_tota23]; 
X3=[P_tota31,P_tota32,P_tota33]; 
%Variable to Store Sampling frequency 
Y=[fs1,fs2,fs3]; 
  
%Figure 
figure 
plot(Y,X1,'--',Y,X2,':', Y,X3,'-','LineWidth',2,'MarkerSize',12); 
legend('32 Channel','29 Channel'); 
title('Power consumption Vs Sampling Rate'); 
xlabel('Sampling Rate(kS/s)'); 
ylabel('Total Power Consumption(uW)'); 
 

 

%% Power Consumption for different resolution and at sampling rate 
100kS/s 
  
clear;  clc; 
C1 = 32; % number of channel of 1st dataset 
C2 = 29; % number of channel of 2nd dataset 
C3 = 23; % number of channel of 3rd dataset 
  
M= 128; %number of compressed samples 
N=256;  % Total number of samples 
  
P_AMP = 0.9; %Power consumption at amplifier 
  
P_ADC1=19;   %Power consumption at ADC of resolution 8 
P_ADC2=23;   %Power consumption at ADC of resolution 10 
P_ADC3=25;   %Power consumption at ADC of resolution 12 
  
j = 5; %Transmitter Power 5 nj/b  
  
fs = 100; %Sampling frequency 
R1=8;     % Resolution of ADC1 
R2 = 10;  % Resolution of ADC2 
R3=12;    % Resolution of ADC3 
  
P_RNG = 2.9; % Power consumption at RNG 
P_MULT = 352; % Multiplier power consumption 
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% Processing power 
P_proc = P_RNG + P_MULT;  
  
% Sensing power for 1st Dataset 
P_sense11 = C1*(P_AMP + P_ADC1); 
P_sense12 = C1*(P_AMP + P_ADC2); 
P_sense13 = C1*(P_AMP + P_ADC3); 
  
% Communication power for 1st dataset 
P_comm11 = C1*M/N*J*fs*R1; 
P_comm12 = C1*M/N*J*fs*R2; 
P_comm13 = C1*M/N*J*fs*R3; 
  
%Total power for 1st dataset 
P_tota11 = P_sense11 + P_proc + P_comm11 
P_tota12 = P_sense12 + P_proc + P_comm12 
P_tota13 = P_sense13 + P_proc + P_comm13 
  
% Sensing power for 2nd Dataset 
P_sense21 = C2*(P_AMP + P_ADC1); 
P_sense22 = C2*(P_AMP + P_ADC2); 
P_sense23 = C2*(P_AMP + P_ADC3); 
  
% Communication power for 2nd dataset 
P_comm21 = C2*M/N*J*fs*R1; 
P_comm22 = C2*M/N*J*fs*R2; 
P_comm23 = C2*M/N*J*fs*R3; 
  
%Total power for 2nd datase 
P_tota21 = P_sense21 + P_proc + P_comm21 
P_tota22 = P_sense22 + P_proc + P_comm22 
P_tota23 = P_sense23 + P_proc + P_comm23 
  
% Sensing power for 3rd Dataset 
P_sense31 = C3*(P_AMP + P_ADC1); 
P_sense32 = C3*(P_AMP + P_ADC2); 
P_sense33 = C3*(P_AMP + P_ADC3); 
  
% Communication power for 3rd dataset 
P_comm31 = C3*M/N*J*fs*R1; 
P_comm32 = C3*M/N*J*fs*R2; 
P_comm33 = C3*M/N*J*fs*R3; 
  
%Total power for 3rd datase 
P_tota31 = P_sense31 + P_proc + P_comm31 
P_tota32 = P_sense32 + P_proc + P_comm32 
P_tota33 = P_sense33 + P_proc + P_comm33 
  
%Variables to Store Power 
X1=[P_tota11,P_tota12,P_tota13]; 
X2=[P_tota21,P_tota22,P_tota23]; 
X3=[P_tota31,P_tota32,P_tota33]; 
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%Variables to Resolutions 
Y=[R1,R2,R3]; 
  
% Figure 
figure 
plot(Y,X1,'--',Y,X2,':',Y,X3,'-','LineWidth',2,'MarkerSize',12); 
legend('32 Channel','29 Channel','23 Channel'); 
title (' Power Consumption vs Resolution'); 
xlabel('ADC Resolutionod(bits)'); 
ylabel('Total Power Consumption(mW)'); 
  
 

%% Power Consumption at different CR 
  
clear;  clc; 
  
C = 23; % number of channe 
  
%number of compressed samples 
M1= 128; 
M2=102; 
M3=77; 
M4=51; 
  
N=256; % Total number of samples 
  
P_AMP = 0.9; %Power consumption at amplifier 
P_ADC=0.1;  %Power consumption at ADC of  
  
J = 5; % Transmitter Power 5 nj/b  
fs1 = .25; %Sampling frequency 0.25 kS/s  
R = 12; % Resolution of ADC 
  
P_RNG = 2.9; % Power consumption at RNG 
P_MULT = 352; % Multiplier power consumption 
  
% Processing power 
P_proc = P_RNG + P_MULT;  
  
% Sensing power 
P_sense11 = C*(P_AMP + P_ADC); 
  
% Communication Power  
P_comm11 = C*M1/N*J*fs1*R; 
P_comm12 = C*M2/N*J*fs1*R; 
P_comm13 = C*M3/N*J*fs1*R; 
P_comm14 = C*M4/N*J*fs1*R; 
  
%Total power 
P_tota11 = P_sense11 + P_proc + P_comm11 
P_tota12 = P_sense11 + P_proc + P_comm12 
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P_tota13 = P_sense11 + P_proc + P_comm13 
P_tota14 = P_sense11 + P_proc + P_comm14 
  
%Variables to Store Power 
X1=[P_tota11,P_tota12,P_tota13,P_tota14]; 
  
%Variables to Store CRs 
Y=[M1,M2,M3,M4]; 
  
%Figure 
figure 
plot(Y,X1,'-'); 
title (' Power Consumption vs Resolution'); 
xlabel('CR%','FontName'); 
ylabel('Total Power Consumption(mW)'); 
  
 

 


