627 research outputs found

    TOWARDS AN EFFICIENT MULTI-CLOUD OBSERVABILITY FRAMEWORK OF CONTAINERIZED MICROSERVICES IN KUBERNETES PLATFORM

    Get PDF
    A recent trend in software development adopts the paradigm of distributed microservices architecture (MA). Kubernetes, a container-based virtualization platform, has become a de facto environment in which to run MA applications. Organizations may choose to run microservices at several cloud providers to optimize cost and satisfy security concerns. This leads to increased complexity, due to the need to observe the performance characteristics of distributed MA systems. Following a decision guidance models (DGM) approach, this research proposes a decentralized and scalable framework to monitor containerized microservices that run on same or distributed Kubernetes clusters. The framework introduces efficient techniques to gather, distribute, and analyze the observed runtime telemetry data. It offers extensible and cloud-agnostic modules that can exchange data by using a multiplexing, reactive, and non-blocking data streaming approach. An experiment to observe samples of microservices deployed across different cloud platforms was used as a method to evaluate the efficacy and usefulness of the framework. The proposed framework suggests an innovative approach to the development and operations (DevOps) practitioners to observe services across different Kubernetes platforms. It could also serve as a reference architecture for researchers to guide further design options and analysis techniques

    FIWARE Lab: managing resources and services in a cloud federation supporting future internet applications

    Get PDF
    Real-world experimentation facilities accelerate the development of Future Internet technologies and services, advance the market for smart infrastructures, and increase the effectiveness of business processes through the Internet. The federation of facilities fosters the experimentation and innovation with larger and more powerful environment, increases the number and variety of the offered services and brings forth possibilities for new experimentation scenarios. This paper introduces a management solution for cloud federation that automates service provisioning to the largest possible extent, relieves the developers from time-consuming configuration settings, and caters for real-time information of all information related to the whole lifecycle of the provisioned services. This is achieved by proposing solutions to achieve the seamless deployment of services across the federation and ability of services to span across different infrastructures of the federation, as well as monitoring of the resources and data which can be aggregated with a common structure, offered as an open ecosystem for innovation at the developers' disposal. This solution consists of several federation management tools and components that are part of the work on Cloud Federation conducted within XIFI project to build the federation of cloud infrastructures for the Future Internet Lab (FIWARE Lab). We present the design and implementation of the solution-concerned FIWARE Lab management tools and components that are deployed within a federation of 17 cloud infrastructures distributed across Europe

    BIM and sensor-based data management system for construction safety monitoring

    Get PDF
    Purpose This research aims to investigate the integration of real-time monitoring of thermal conditions within confined work environments through wireless sensor network (WSN) technology when integrated with building information modelling (BIM). A prototype system entitled confined space monitoring system (CoSMoS), which provides an opportunity to incorporate sensor data for improved visualization through new add-ins to BIM software, was then developed. Design/methodology/approach An empirical study was undertaken to compare and contrast between the performances (over a time series) of various database models to find a back-end database storage configuration that best suits the needs of CoSMoS. Findings Fusing BIM data with information streams derived from wireless sensors challenges traditional approaches to data management. These challenges encountered in the prototype system are reported upon and include issues such as hardware/software selection and optimization. Consequently, various database models are explored and tested to find a database storage that best suits the specific needs of this BIM-wireless sensor technology integration. Originality value This work represents the first tranche of research that seeks to deliver a fully integrated and advanced digital built environment solution for automating the management of health and safety issues on construction sites. </jats:sec

    BotCloud: Detecting botnets using MapReduce

    Full text link

    Efficient Data Streaming Analytic Designs for Parallel and Distributed Processing

    Get PDF
    Today, ubiquitously sensing technologies enable inter-connection of physical\ua0objects, as part of Internet of Things (IoT), and provide massive amounts of\ua0data streams. In such scenarios, the demand for timely analysis has resulted in\ua0a shift of data processing paradigms towards continuous, parallel, and multitier\ua0computing. However, these paradigms are followed by several challenges\ua0especially regarding analysis speed, precision, costs, and deterministic execution.\ua0This thesis studies a number of such challenges to enable efficient continuous\ua0processing of streams of data in a decentralized and timely manner.In the first part of the thesis, we investigate techniques aiming at speeding\ua0up the processing without a loss in precision. The focus is on continuous\ua0machine learning/data mining types of problems, appearing commonly in IoT\ua0applications, and in particular continuous clustering and monitoring, for which\ua0we present novel algorithms; (i) Lisco, a sequential algorithm to cluster data\ua0points collected by LiDAR (a distance sensor that creates a 3D mapping of the\ua0environment), (ii) p-Lisco, the parallel version of Lisco to enhance pipeline- and\ua0data-parallelism of the latter, (iii) pi-Lisco, the parallel and incremental version\ua0to reuse the information and prevent redundant computations, (iv) g-Lisco, a\ua0generalized version of Lisco to cluster any data with spatio-temporal locality\ua0by leveraging the implicit ordering of the data, and (v) Amble, a continuous\ua0monitoring solution in an industrial process.In the second part, we investigate techniques to reduce the analysis costs\ua0in addition to speeding up the processing while also supporting deterministic\ua0execution. The focus is on problems associated with availability and utilization\ua0of computing resources, namely reducing the volumes of data, involving\ua0concurrent computing elements, and adjusting the level of concurrency. For\ua0that, we propose three frameworks; (i) DRIVEN, a framework to continuously\ua0compress the data and enable efficient transmission of the compact data in the\ua0processing pipeline, (ii) STRATUM, a framework to continuously pre-process\ua0the data before transferring the later to upper tiers for further processing, and\ua0(iii) STRETCH, a framework to enable instantaneous elastic reconfigurations\ua0to adjust intra-node resources at runtime while ensuring determinism.The algorithms and frameworks presented in this thesis contribute to an\ua0efficient processing of data streams in an online manner while utilizing available\ua0resources. Using extensive evaluations, we show the efficiency and achievements\ua0of the proposed techniques for IoT representative applications that involve a\ua0wide spectrum of platforms, and illustrate that the performance of our work\ua0exceeds that of state-of-the-art techniques

    Exploring Strategies to Integrate Disparate Bioinformatics Datasets

    Get PDF
    Distinct bioinformatics datasets make it challenging for bioinformatics specialists to locate the required datasets and unify their format for result extraction. The purpose of this single case study was to explore strategies to integrate distinct bioinformatics datasets. The technology acceptance model was used as the conceptual framework to understand the perceived usefulness and ease of use of integrating bioinformatics datasets. The population of this study included bioinformatics specialists of a research institution in Lebanon that has strategies to integrate distinct bioinformatics datasets. The data collection process included interviews with 6 bioinformatics specialists and reviewing 27 organizational documents relating to integrating bioinformatics datasets. Thematic analysis was used to identify codes and themes related to integrating distinct bioinformatics datasets. Key themes resulting from data analysis included a focus on integrating bioinformatics datasets, adding metadata with the submitted bioinformatics datasets, centralized bioinformatics database, resources, and bioinformatics tools. I showed throughout analyzing the findings of this study that specialists who promote standardizing techniques, adding metadata, and centralization may increase efficiency in integrating distinct bioinformatics datasets. Bioinformaticians, bioinformatics providers, the health care field, and society might benefit from this research. Improvement in bioinformatics affects poistevely the health-care field which has a positive social change. The results of this study might also lead to positive social change in research institutions, such as reduced workload, less frustration, reduction in costs, and increased efficiency while integrating distinct bioinformatics datasets

    Secure and Privacy-Aware Cloud-Assisted Video Reporting Service in 5G Enabled Vehicular Networks

    Get PDF
    Vehicular networks are one of the main technologies that will be leveraged by the arrival of the future fifth generation (5G) mobile cellular networks. While scalability and latency are the major drawbacks of IEEE 802.11p and 4G LTE enabled vehicular communications, respectively, the 5G technology is a promising solution to empower the real-time services offered by vehicular networks. However, the security and privacy of such services in 5G enabled vehicular networks need to be addressed first. In this paper, we propose a novel system model for a 5G enabled vehicular network that facilitates a reliable, secure and privacy-aware real-time video reporting service. This service is designed for the participating vehicles to instantly report the videos of traffic accidents to guarantee a timely response from official and/or ambulance vehicles toward accidents. While it provides strong security and privacy guarantees for the participating vehicle’s identity and the video contents, the proposed service ensures traceability of misbehaving participants through a cooperation scheme among different authorities. We show the feasibility and the fulfilment of the proposed reporting service in 5G enabled vehicular networks in terms of security, privacy and efficiency

    Exploiting Kubernetes' Image Pull Implementation to Deny Node Availability

    Full text link
    Kubernetes (K8s) has grown in popularity over the past few years to become the de-facto standard for container orchestration in cloud-native environments. While research is not new to topics such as containerization and access control security, the Application Programming Interface (API) interactions between K8s and its runtime interfaces have not been studied thoroughly. In particular, the CRI-API is responsible for abstracting the container runtime, managing the creation and lifecycle of containers along with the downloads of the respective images. However, this decoupling of concerns and the abstraction of the container runtime renders K8s unaware of the status of the downloading process of the container images, obstructing the monitoring of the resources allocated to such process. In this paper, we discuss how this lack of status information can be exploited as a Denial of Service attack in a K8s cluster. We show that such attacks can generate up to 95% average CPU usage, prevent downloading new container images, and increase I/O and network usage for a potentially unlimited amount of time. Finally, we propose two possible mitigation strategies: one, implemented as a stopgap solution, and another, requiring more radical architectural changes in the relationship between K8s and the CRI-API

    Secure and Privacy-Aware Cloud-Assisted Video Reporting Service in 5G Enabled Vehicular Networks

    Get PDF
    Vehicular networks are one of the main technologies that will be leveraged by the arrival of the future fifth generation (5G) mobile cellular networks. While scalability and latency are the major drawbacks of IEEE 802.11p and 4G LTE enabled vehicular communications, respectively, the 5G technology is a promising solution to empower the real-time services offered by vehicular networks. However, the security and privacy of such services in 5G enabled vehicular networks need to be addressed first. In this paper, we propose a novel system model for a 5G enabled vehicular network that facilitates a reliable, secure and privacy-aware real-time video reporting service. This service is designed for the participating vehicles to instantly report the videos of traffic accidents to guarantee a timely response from official and/or ambulance vehicles toward accidents. While it provides strong security and privacy guarantees for the participating vehicle’s identity and the video contents, the proposed service ensures traceability of misbehaving participants through a cooperation scheme among different authorities. We show the feasibility and the fulfilment of the proposed reporting service in 5G enabled vehicular networks in terms of security, privacy and efficiency

    Garantia de privacidade na exploração de bases de dados distribuídas

    Get PDF
    Anonymisation is currently one of the biggest challenges when sharing sensitive personal information. Its importance depends largely on the application domain, but when dealing with health information, this becomes a more serious issue. A simpler approach to avoid this disclosure is to ensure that all data that can be associated directly with an individual is removed from the original dataset. However, some studies have shown that simple anonymisation procedures can sometimes be reverted using specific patients’ characteristics, namely when the anonymisation is based on hidden key attributes. In this work, we propose a secure architecture to share information from distributed databases without compromising the subjects’ privacy. The work was initially focused on identifying techniques to link information between multiple data sources, in order to revert the anonymization procedures. In a second phase, we developed the methodology to perform queries over distributed databases was proposed. The architecture was validated using a standard data schema that is widely adopted in observational research studies.A garantia da anonimização de dados é atualmente um dos maiores desafios quando existe a necessidade de partilhar informações pessoais de carácter sensível. Apesar de ser um problema transversal a muitos domínios de aplicação, este torna-se mais crítico quando a anonimização envolve dados clinicos. Nestes casos, a abordagem mais comum para evitar a divulgação de dados, que possam ser associados diretamente a um indivíduo, consiste na remoção de atributos identificadores. No entanto, segundo a literatura, esta abordagem não oferece uma garantia total de anonimato, que pode ser quebrada através de ataques específicos que permitem a reidentificação dos sujeitos. Neste trabalho, é proposta uma arquitetura que permite partilhar dados armazenados em repositórios distribuídos, de forma segura e sem comprometer a privacidade. Numa primeira fase deste trabalho, foi feita uma análise de técnicas que permitam reverter os procedimentos de anonimização. Na fase seguinte, foi proposta uma metodologia que permite realizar pesquisas em bases de dados distribuídas, sem que o anonimato seja quebrado. Esta arquitetura foi validada sobre um esquema de base de dados relacional que é amplamente utilizado em estudos clínicos observacionais.Mestrado em Ciberseguranç
    corecore