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Abstract

Today, ubiquitously sensing technologies enable inter-connection of physical
objects, as part of Internet of Things (IoT), and provide massive amounts of
data streams. In such scenarios, the demand for timely analysis has resulted in
a shift of data processing paradigms towards continuous, parallel, and multi-
tier computing. However, these paradigms are followed by several challenges
especially regarding analysis speed, precision, costs, and deterministic execution.
This thesis studies a number of such challenges to enable efficient continuous
processing of streams of data in a decentralized and timely manner.

In the first part of the thesis, we investigate techniques aiming at speeding
up the processing without a loss in precision. The focus is on continuous
machine learning/data mining types of problems, appearing commonly in IoT
applications, and in particular continuous clustering and monitoring, for which
we present novel algorithms; (i) Lisco, a sequential algorithm to cluster data
points collected by LiDAR (a distance sensor that creates a 3D mapping of the
environment), (ii) p-Lisco, the parallel version of Lisco to enhance pipeline- and
data-parallelism of the latter, (iii) pi-Lisco, the parallel and incremental version
to reuse the information and prevent redundant computations, (iv) g-Lisco, a
generalized version of Lisco to cluster any data with spatio-temporal locality
by leveraging the implicit ordering of the data, and (v) Amble, a continuous
monitoring solution in an industrial process.

In the second part, we investigate techniques to reduce the analysis costs
in addition to speeding up the processing while also supporting deterministic
execution. The focus is on problems associated with availability and utiliza-
tion of computing resources, namely reducing the volumes of data, involving
concurrent computing elements, and adjusting the level of concurrency. For
that, we propose three frameworks; (i) DRIVEN , a framework to continuously
compress the data and enable efficient transmission of the compact data in the
processing pipeline, (ii) STRATUM , a framework to continuously pre-process
the data before transferring the later to upper tiers for further processing, and
(iii) STRETCH , a framework to enable instantaneous elastic reconfigurations
to adjust intra-node resources at runtime while ensuring determinism.

The algorithms and frameworks presented in this thesis contribute to an
efficient processing of data streams in an online manner while utilizing available
resources. Using extensive evaluations, we show the efficiency and achievements
of the proposed techniques for IoT representative applications that involve a
wide spectrum of platforms, and illustrate that the performance of our work
exceeds that of state-of-the-art techniques.

Keywords: continuous analysis, stream processing, scalability, elasticity
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Introduction

“The world’s most valuable resource is no longer oil, but data” – The economist1

From the first industrial revolution that introduced water and steam power
to reduce hard manual labor, to the invention of mass production and assembly
lines using electricity in the second, the third industrial revolution shifted the
emphasis from analog and mechanical technology to digital and automation
with the adoption of computers. Today, we are in the midst of the fourth
industrial revolution, a.k.a. Industry 4.0, that optimizes the computerization
from recent decades with the use of Internet technologies to create smart
production and smart services [1].

Industry 4.0 takes what was started in the third revolution and enhances it
with smart and autonomous systems through the introduction of Cyber Physical
Systems (CPS). The term CPS refers to automated systems with integrated
computational and physical capabilities. Unlike traditional embedded systems
that are designed to be used as stand alone devices, CPS focus on networking
several devices and enabling machine-to-machine communication [2]. This
vision has led to the emergence of Internet-of-Things (IoT) paradigm [3]. IoT
allows everyday objects to communicate with one another over the Internet
to achieve some useful objective without human involvement. The result of
these trends is a new set of applications with a range of requirements, from low
latency control loops that quickly react to incoming data, to high throughput
processing of aggregated data from connected devices. By 2025, the number
of IoT devices (e.g. smart watches, smart phones, etc.) installed world wide
is estimated to grow to more than 75 billion [4]. The enormous collection of
connected devices in IoT makes a significant contribution to the volume of data
collected. This massive data, nonetheless, is not lucrative by its own but the
analytics offer value [5].

Over the past decades, machine learning (ML) and data mining techniques
have been widely adopted in a number of complex data-intensive fields to
mine the information hidden in the data [6]. However, the characteristics of
the continuously collected data (often referred to as Big Data) such as high
volume and high rate, make the traditional ML algorithms inefficient and
impractical. This is because, for instance, most traditional ML algorithms
are designed for data to be completely loaded into memory which does not
hold in the context of Big Data [7]. Furthermore, cloud computing has been a
support for Big Data scenarios and the most popular solution to on-demand
processing of IoT data [8]. However, the dramatic escalation in data volumes
and data rates pushes the limits of centralized data processing infrastructures

1https:www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
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for deriving timely intelligence [9]. In the case of IoT applications, the amount
of data generated by each device, as well as the need to immediately extract
knowledgeable information from such data, make it inefficient and impractical
to send all the traffic to the cloud, doing the processing there, and then receive
back the results.

The aforementioned inefficiency of traditional data analytics, has begun a
new wave of scientific revolution and led to innovative tools such as continuous
processing that analyses flows of data on the fly. This thesis investigates how
algorithms and analytical frameworks, with a focus on CPS, can be adapted to
perform continuous data processing in an efficient and decentralized manner.
In the next section, we overview the opportunities and challenges introduced
by continuous processing of IoT Big Data.

1 Motivation

The emergence of CPS and Industry 4.0 have rapidly accelerated the growth
of data and made Big Data a trend in industry [2]. This gives immense
opportunities to the research community to introduce innovative, practical,
and efficient analytics to help the industry achieve its goals. Big data analytics
is a form of advanced data mining (i.e. Knowledge Discovery from Data [10])
that has progressed gradually to turn a large collection of data into knowledge.
To distinguish Big Data analytics from conventional ones, it is first necessary
to define Big Data and its features.

1.1 Big Data Features
By hearing the term Big Data, normally the first impression is about its size.
However, it involves several dimensions while size is only one. Although there
has been a divergent discourse on the exact definitions for Big Data during
past years, all share a few dimensions based on the “three Vs” suggested by
Doug Laney [11]. Laney suggested the Volume, Velocity, and Variety, as three
dimensions of challenges in data management. Later, Gartner [12] gave a more
detailed definition as:

“Big Data is high-volume, high-velocity and/or high-variety in-
formation assets that demand cost-effective, innovative forms of
information processing that enable enhanced insight, decision mak-
ing, and process automation.”

In the following, each dimension is described briefly.
Volume refers to the size of the data. As also appeared in the name, Big

Data is enormous amount of data. It is, nevertheless, impractical to define a
threshold for the size of a dataset to be considered as Big Data. The reason is
that the volume dimension along the other dimensions, i.e. velocity and variety,
categorizes a dataset as Big Data. In some cases (e.g. sensor readings), data is
in form of unbounded streams with infinite size which can be also categorized
as Big Data.
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Velocity refers to the speed of generating data. In recent years, using the
well developed and ubiquitous technological tools, the generating rate of data
is unprecedented. However, the term of velocity refers to not only the speed of
incoming data, but also the speed that the data should be processed. Therefore,
due to the increasing rate at which data is generated, there is a growing demand
for processing data immediately as it streams from its sources [13].

Variety refers to the range of the data types. Big Data covers the various
data types of the spectrum from fully structured (e.g. tabular data) that can
be easily sorted and stored, to unstructured (e.g. video, audio) that is difficult
for the machine to analyze. The high variety of the data is what makes data
“really big" [14].

1.2 Computing Continuum

Big Data has arguably changed the direction of the development of the hardware
architecture as well as software [15]. Motivated by scalability demands of
analytical methods, the number of cores in processors is being increased to
support scalable parallel computing. Moreover, cloud computing was introduced
as one step towards revolutionizing distributed computing to enable convenient
and on-demand access to a shared pool of resources (e.g. servers, storage). The
concept of cloud computing is about providing nearly unlimited computing
capacity and storage by sharing and merging the resources, on request. In
IoT applications, the main motivation behind employing clouds, consisting
of high-end servers, is to carry out heavy data analysis. This is because IoT
devices are often equipped with reduced computational power, i.e. they are
resource-constrained devices, and hence likely to be less efficient in performing
heavy analysis.

The benefits of cloud computing are nonetheless followed by challenges.
The first challenge is that, when dealing with Big Data, it might be impossible
to send all data to the cloud without exhausting the available communication
bandwidth. Also, sending data to the cloud for analysis and getting back
the results to make further decisions, could cause significant high latency
which is not tolerable for certain applications requiring real-time processing.
Furthermore, such high latency causes a drastic effect on power and energy
consumption and influences the reliability of the system [16]. This in turn,
would be an indication of degradation in the Quality-of-Service (QoS).

The difficulties of shifting all data to the cloud for analysis led to the
emergence of fog computing and edge computing in which the processing
procedures are being pushed down closer to where data originates. Edge
computing puts the computing at the proximity of data sources. In this
paradigm, the intelligence and data processing is offloaded onto the edge
devices (e.g. routers, switches, sensors and actuators.) without being sent to
the cloud [17]. Edge computing is especially beneficial for applications which
require ultra-low latency and real-time analysis. Moreover, edge computing
can utilize the communication bandwidth by pre-processing data and making
it much more compact than raw information before transferring it to the upper
layers.
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Figure 1: An example of the 3-tier architecture for IoT applications. It includes
a cloud tier with high-end servers, a fog tier closer to data origin, and an edge
tier with resource constrained devices.

Similar to edge computing, fog computing is pushing the analysis from cloud
servers down, closer to the source of data. In fog computing, the analysis is
performed on fog nodes (e.g. gateways and small computing servers) that reside
near the edge devices and not necessarily on the device itself. By bringing the
intelligence away from the cloud, each fog node performs data processing closer
to the IoT devices and consequently reduces the amount of data transported.
A fog node also can be seen as a mini-cloud, which is located near the edge
layer and the IoT devices connected to [18].

Bringing cloud, fog, and edge computing together results in a 3-tier ar-
chitecture, as shown in Figure 1, where the distribution of data processing is
enabled along the things-to-cloud computing continuum. The edge/fog/cloud
architecture brings several benefits as it allows applications to distribute the
intelligence and take advantage of a diverse range of computing resources
and storing assets. Nevertheless, in order to design efficient algorithms and
frameworks to process data in such 3-tier architecture we need to know how
and where to process the data.

How to process the data? The increasing speed of the data generation
demands some form of analytics to process data before it becomes too big. ML
is a fundamental component of such data analytics which gives computers the
ability to learn from data, provide data driven insights, and make decisions.
Nevertheless, the high rate and unbounded nature of data streams challenge
traditional ML algorithms to uncover fine-grained patterns and perform timely
analysis [19]. To this end, regardless of which layer of the 3-tier architecture the
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analysis is running on, there is a need to adapt the traditional ML algorithms
to continuously process the flow of data.

Continuous processing allows improvements in memory access patterns
as well as enabling real-time monitoring which is a requirement for many
applications (e.g. e-commerce order processing, failure detection, air traffic
control). The ability of continuous processing in performing analysis on data
in motion, as the latter is received, makes it possible to generate results
continuously and quickly, thus, significantly benefits applications with small
delay constraints. For example, by using continuous processing and querying
the constant stream of data received from a temperature sensor, it is possible
to raise an alarm once the temperature reaches a certain threshold.

Where to process the data? As data processing requirements grow, IoT
applications demand utilization of the whole spectrum of devices in the com-
puting continuum, from cloud data centers to edge systems and endpoint
devices. This, in turn, requires hardware-aware processing approaches that can
be efficiently deployed at multiple tiers, taking into account the application
characteristics as well as the hardware capabilities and constraints. To this
end, many research works (e.g. [20] and [21]) conduct performance analysis
of the resources across the layers to support the decision process of where to
compute applications. Based on such recommendations, for instance, a machine
learning application with a neural network consisting of multiple layers and
large data sets is a better option for cloud computing while a collaborative data
filtering can be run on fog nodes. Moreover, edge computing is recommended
for applications with soft execution time constraints to reduce the energy costs
and carbon footprints [20].

The heterogeneity of the computing continuum provides opportunities
for applications with different requirements where a fluid integration of the
resources can be leveraged to support data-driven workflow [22]. Figure 2
illustrates an example of smart transportation system that utilizes edge, fog,
and cloud computing. As shown in the figure, the data regarding street
conditions and unexpected events such as accidents are generated by many
sensors deployed in the cars. This data, then, can be processed locally by
resource constrained devices next to the sensors, to be used by the cars to adjust
the velocity and avoid obstacles (edge computing). Cars can also send such data
to the nearby traffic lights to be processed by the small embedded servers and
extract information in order to adjust the lights, thus, relieve potential traffic
congestion around the reported location (fog computing). Moreover, the city
services can receive data from cars as well as the transportation infrastructures
including traffic lights, to process the aggregated data for making further
decisions (cloud computing).

2 Background

In this section, we overview the background topics of the focus areas of this
thesis to facilitate the reading.
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Figure 2: Smart transportation use case with computing options in the edge,
fog, and cloud tiers.

2.1 Data Mining Algorithms

The Big Data produced by CPS could transform how we live, work, and think by
empowering insight discovery and improving decision making. The realization of
this grand potential relies on the ability to extract value through data analytics
and identify hidden patterns as the first step towards enabling diagnosis
tools [23] (e.g. for detection-based predictive maintenance applications). During
the last decade, data mining and ML has gained significant attention in
applications related to CPS due to the generation of a large amount of data [24].
In the following, we briefly review two problems related to CPS that are also
studied in this thesis.

2.1.1 Spatio-Temporal Data Clustering

In Industry 4.0, sensors play an important role to make CPS smarter by
observing physical environments and detecting events of interest. Since sensors
reflect the nature of the physical systems, there is usually a spatio-temporal
relation implicitly defined in the sensed data [25]. For example, a GPS provides
spatial and temporal information of a moving object, which makes it possible
to classify the transportation mode of car, bus, or walk as well as to predict
the most probable route [26]. In these circumstances, it is important to
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identify critical events by correlating similar data points, which can be done
by clustering. Clustering is a core problem in data mining. It is the process of
grouping data into sets (i.e. clusters) using similarity metrics, in a way that
the intra-cluster similarity is maximized. In general, there are a few typical
requirements for clustering [10]. For instance, clusters should be in any size or
shape. To motivate this requirement, consider clustering of a sensor’s data for
a surveillance application, for which the clustering algorithms should be able to
detect objects with arbitrary shapes. Moreover, it is preferable for clustering
algorithms to not require domain knowledge to determine the parameters such
as the desired number of clusters. This requirement is particularly important
for applications in which the user still needs to grasp a deep understanding
of the data. It is also important that the clustering algorithm is capable
of handling noisy data as most real data sets contain outliers and missing
data. Furthermore, desirable clustering algorithms are required to update the
existing clusters incrementally with respect to the incoming data rather than
recomputing new clusters from scratch.

An extensive literature exists about clustering algorithms that differ on what
should be considered as a cluster (cf. [27] and references therein). For instance,
K-means [28] generates well-balanced ball-like clusters, whereas density based
algorithms such as DBSCAN [29] and OPTICS [30], partition a given set based
on the density regions. Among widely used approaches, distance based methods
are employed in different applications due to the ability of the former to find
arbitrarily shaped clusters without requiring to know the number of clusters a
priori.

Distance based clustering methods partition spatially isolated regions and
potentially detect clusters by using a distance metric. For example, the
Euclidean distance based clustering algorithm [31] builds the clusters based on
the Euclidean distances between data points, as the clustering metric, using
two user defined parameters minPts and ϵ. The algorithm creates clusters each
containing at least minPts number of points. Within each cluster, each point
is expected to have a distance less than ϵ with at least another point in the
cluster. Points that do not belong to any cluster at the end of the procedure
are characterized as noise.

2.1.2 Bottleneck Detection

One of the main indicators of system performance in industrial processes that is
often required from the analysts to monitor, is the throughput of the production
system [32]. Throughput is commonly affected by arbitrary disruptions in the
machines in the system, such as fluctuations in the cycle time, down times and
minor stops. These machines are thus referred to as throughput bottlenecks. To
detect bottlenecks, several methods exist in the literature that use different
information (cf. [33] and references therein). In the average-waiting-time [34],
the machine in which a job waits longest, as measured by the average time
a job spends in the queue, is considered the bottleneck. The active-period
method [35] measures the duration of the periods in which a machine is active
without interruption, and calculates the average active period for each machine.
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The machine which has the longest average active period is considered the
bottleneck. The shifting-bottleneck detection method [36] uses the active period
of machines to detect momentary bottlenecks of a production system and
identifies sole and shifting bottlenecks over a selected interval of time (e.g.
a production run hour, shift, day, week). Detecting shifting bottlenecks is
particularly important when there is a correlation between machines in a
production system. In such systems, there is a higher probability of bottlenecks
shifting from one machine to the other during different production runs due
to various reasons such as random maintenance stops in the machine, random
processing times, and so on.

2.2 Aspects of Big Data Processing

As mentioned before, Big Data has several dimensions which make data pro-
cessing challenging. The challenges arise especially when the volume or velocity
of data overwhelms the processing system, which in turn results in degradation
of performance. In this regard, to address the challenges and improve the
performance of the Big Data processing, efficient analytics need to adapt various
scales [37]:

• scale down the amount of data processed.
The first step to effectively process Big Data is to reduce its massive size.
Data reduction methods include algorithms for pre-processing, redund-
ancy elimination, compression based data reduction, dimension reduction,
etc [38]. Another useful technique for data reduction is approximation.
This technique is especially important for applications that require ana-
lytics to be fast even if it comes with the price of a lower precision, rather
than being exact with long waiting time.

• scale up the computing resources on a node.
Scaling up and employing additional cores on a node to analyze the data
is the next step towards tackling the challenges in Big Data processing.
Today, thanks to decades of research that provided current modern com-
puting platforms, scaling up (i.e. vertical scaling) can improve processing
performance significantly due to availability of high computational power
and memory in each node. Exploiting available resources is especially
beneficial for powerful computing nodes deployed in the cloud layer that
enable shared memory and parallel computing.

• scale out the computing to distributed nodes.
When a single node with all its available resources is not capable of
performing efficient processing, the computing should be scaled out to
other nodes. Scaling out (i.e. horizontal scaling) involves workload
distribution over several nodes in the cloud, fog, or edge layer. In this
kind of scaling, multiple independent machines are employed to enhance
data processing power.
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2.2.1 On Data Compression

Due to the increasing amount of data being collected at the edge, scaling down
techniques such as data compression are being leveraged and further developed
to significantly reduce the amount of data. In this sense, some compression
algorithms are designed to support the exact reconstruction of the original
data after decompression (i.e. lossless compression) while other algorithms
reconstruct data with an approximation of the original information (i.e. lossy
compression) [39]. Although lossy algorithms may lead to loss of information,
they generally ensure some additional gains in terms of time, communication,
and energy saving [40]. One of the most commonly used lossy algorithms on
the edge devices to continuously reduce the size of the data – which is also
leveraged in this thesis – is Piecewise Linear Approximation (PLA).

PLA refers to the approximation of a time series T , of length n, with
K straight lines (i.e. segments). Because K is typically much smaller than
n, PLA makes the storage, transmission and computation of the data more
efficient [41]. Additionally, many of the techniques employing PLA, consider
an approximation error (or maximum deviation between the original data
and the piecewise linear representation). A larger error typically results in
longer segments and thus a reduced size of the encoding while achieving smaller
representations compared to lossless algorithms. Recent works on PLA [42]
increasingly place the focus on the streaming aspect of the compression process,
and advocate low time and memory consumption as well as small latency while
achieving a high compression, in order for PLA to be feasibly implemented
close to a sensor’s stream.

2.2.2 Parallel Processing

The demand for more computing power, encouraged processor designers to
improve the performance of a processor by increasing the clock rate. This
strategy worked fine until it hit the physical limit (i.e. power wall) which showed
a break down in Dennard scaling by indicating that the power dissipation does
not scale with the size of a transistor. After crashing into the power wall, the
designing approach shifted from employing a power-inefficient processor to
usage of many efficient ones on the same chip, and hence promoting parallel
computing rather than sequential programming [43]. While parallel computing
is not new, during the recent years the interest in it has increased due to
multi-cores becoming the norm in computing systems, ranging from smaller
devices such as phones, to high-end servers. Therefore, it is true to say that the
interest in parallel computing nowadays, is not only the result of an innovation
in programming but also the actual limitations in building power-efficient, high
clock-rate, single core chips [44].

A processor on a chip hosting multiple computational units (i.e. cores), is
referred to as multicore processor. A system containing one or more multicore
processors is referred as multicore system. Such systems enable parallelism (i.e.
multi-threaded executions) by running tasks on different cores. Ideally, a large
task is divided into several small independent sub-tasks, each is assigned to a
core to be completed. However, distributing sub-tasks over cores is not always
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Figure 3: Classical architecture for shared-memory multicore systems

trivial. In many cases, sub-tasks have correlations that require the overlapping
execution of threads to be synchronized through the shared memory.

Figure 3 illustrates a classical architecture for shared-memory multicore
systems including several cores, connected via a shared memory, where each
core may have several private and shared caches. The cores execute tasks
independently and coordinate via a shared address space to which each core
has access with different layer of memory hierarchy. In parallel computing,
concurrent access of cores to a shared data object, needs to be synchronized
in order to guarantee data consistency. This is provided by several synchron-
ization mechanisms (e.g. locks, semaphores) and hardware primitives (e.g.
compare-and-swap, test-and-set) using which, the notion of atomic operations
is supported. Atomic operations are the ones that appear to be completed by
a thread without any interference [45], [46].

Shared-Memory vs Shared-Nothing Architecture
In the concept of parallel processing, there are two predominant architectures,
namely shared-memory and shared-nothing. In a shared-memory (or simply
shared) environment, all processes (e.g. threads, computing nodes) have
access to a shared pool of memory resources which implies the need for an
appropriate synchronization among processes. In a shared-nothing environment,
however, each process operates independently, and controls its own memory
resources. In shared-nothing, data is partitioned among the processes, and the
workload is distributed such that each process operates on its own data, without
sharing hardware resources with other processes. In shared environments, the
focus is on maximizing resource utilization while shared-nothing enhances
independence and parallelism among threads by preventing contention over the
shared resources.

2.3 Processing Models

In the literature, various big data processing approaches are introduced for
different IoT applications that employ one or more of the aforementioned
scaling techniques [15]. These approaches can be categorized to two common
models, batch processing and stream processing.
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2.3.1 Batch Processing

Traditional database management systems (DBMSs) have been used for decades
to manage data. The primary goal of DBMSs is to store data in a form of
persistent dataset and then run one-time queries over it. This is called batch
processing model. One of the most famous and powerful batch processing tools
for Big Data is Apache Hadoop which implements the computational paradigm
named MapReduce [47]. MapReduce facilitates processing by splitting the huge
amount of data into smaller chunks and running the analysis in parallel on
Hadoop commodity servers. In the end, it aggregates all the data from multiple
servers to return a consolidated output back to the application.

Although batch processing is great for many applications, it is not a real-
time and high performance processing model. Therefore, for certain stream
data applications in the field of IoT and CPS — which are relevant to the
context of this thesis — stream processing for real-time analytics is mightily
necessary.

2.3.2 Stream Processing

For many modern high-velocity data-driven applications where Big Data is
being generated continuously, batch processing model, in which the data is first
stored and then queried, is inefficient. The main reason of this inefficiency is
the high cost of the frequent access to the storage in such model. As a response
to this problem, one option is to remove the requirement of storing data before
processing, and therefore analyse data upon receiving it. This modification has
emerged a new paradigm for continuous processing, which is referred as data
stream processing.

Stream processing is one pass analysis over the data on the fly. In contrast
to batch processing, stream processing employs continuous queries [48] which
are queries that are issued once and continuously run over the flow of data.
As an example, consider a scenario where a sensor is used to monitor speed
of a vehicle and raise an alert if it exceeds a certain threshold. Using stream
processing, the continuous query is run over arriving data records (referred
as tuples in the remaining), monitoring the speed of the vehicle. Figure 4
illustrates a high level overview of information processing procedure using
batch and stream processing. As shown in the figure, stream processing can
run the query immediately after a new tuple arrives which in turn enables
online real-time analysis. However, it faces issues in the way that tuples need
to be processed.

A challenging issue regarding data stream processing lies in the fact that
naturally, streaming data is unbounded. In addition, since stream processing
does not store data, there is a requirement to keep a portion of it to run the
queries that need past data. In the vehicle example, assume we are interested in
finding the average speed during the past hour and raise an alert if the average
is above a threshold. To reason about time in stream processing, a tuple carries
its event-time, among all other attributes according to the schema. Event time,
which we refer to as timestamp, is the time at which events actually occur [49].
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Figure 4: Illustration of information processing using traditional batch pro-
cessing and stream processing.

Various models have been proposed to keep a portion of a stream of data
with differences in downgrading the importance of the older tuples [50]. Among
all, sliding window [51] is one of the prominent models in which only the most
recent tuples that fit in a window are kept. The window itself can be either
time-based or tuple-based and is defined by two parameters size and advance.
In time-based windows, size is indicating the length of a window in time units
and advance shows how much in time the window should go forward (e.g. to
group latest tuples within a window of size 10 seconds every 3 seconds). In
tuple-based windows, size is the length of a window in the order of number of
tuples and advance indicates how many tuples the window should go forward
(e.g. to group last 10 tuples every 3 receiving tuples).

To support the stream processing paradigm, Stream Processing Engines
(SPEs) have been introduced as a new class of system software. Examples
of such systems are STREAM [52], Apache Storm [53], Apache Flink [54],
StreamCloud [55]. SPEs are generally providing high level programming
interfaces to run continuous queries. The queries are modeled as Directed
Graphs (DGs) where vertices are processing operators and directed edges are
continuous streams of data. An operator is the basic processing unit in stream
processing, receiving one or more streams, processing the data items in an online
manner and producing one or more output streams. Special input operators
(i.e. Sources or Spouts), deliver the streams to the streaming query. Moreover,
the final results are handled by special output operators (i.e. Sinks). One of
the most basic stream processing applications is a collection of three operators:
a source operator, one of the processing operators, and a sink operator. The
processing operators are either stateless, i.e. do not keep state as the result
of previous tuples and perform actions based on each tuple individually (e.g.
filter out the tuples using their attributes), or stateful, i.e. use state affected
by the previous tuples to produce results (e.g. aggregate to compute average).
Due to the unbounded nature of the streams, stateful operators are computed
over windows.
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Performance Metrics
Typically, the performance of SPEs is measured by two QoS metrics; throughput
and latency. Throughput indicates number of tuples processed per time unit
while latency is the timestamp differences of the output tuple and the latest
input tuple that contributed to it. In stream processing, when the velocity of
the arriving data exceeds the operator’s maximum processing speed, the QoS
of the whole streaming query might start to degrade. More specifically, since
the operator will not be able to process data quickly enough, its input queue(s)
will start growing in size. This, in turn, leads to an increase in operator’s
processing latency. Consequently, this latency will affect downstream operators,
potentially leading to an increase in the overall latency of the streaming query.
In such circumstances, one way to keep the latency low is to use a backpressure
mechanism [56] and propagate the overload notifications from the operators
backward to the data sources. By doing so, however, the throughput of the
whole system might decrease.

Parallelism
In order to achieve higher throughput and lower latency, SPEs provide task
parallelism, naturally, by assigning independent operators to different processing
units. Pipeline parallelism is a subset of task parallelism, where the parallel
operators have a producer-consumer relationship. Moreover, SPEs enable data
parallelism by running multiple identical instances of a single operator on
different subsets of the data in parallel. In data parallelism, a splitter partitions
the input data, which is then processed by multiple identical parallel operator
instances. The partitioning of the data stream for stateless operators can be
accomplished in an arbitrary fashion (e.g. random, round-robin) while stateful
operators require techniques that are aware of states and route tuples, that affect
the same state, to the same partition. Finally, the parallel input streams are
merged into a single stream by a merger. Nevertheless, the asynchronous and
distributed execution of parallel instances can result in arbitrary interleaving
of tuples from distinct sub-streams. This may cause that operators can be fed
out-of-timestamp-order tuples [57]. In the following we review how to handle
such out-of-timestamp-order streams.

Event-Time Ordering and Determinism
When dealing with out-of-timestamp-order tuples, one approach is the time-
agnostic processing [49]. This approach is used for cases in which time is
essentially irrelevant. A stateless operator (e.g. filter) is very basic form of
time-agnostic processing. Since the stateless operator processes one single
tuple at any time, having the input stream unbounded and unordered is not
important. For stateful operators, however, the requirements are different.
Considering the vehicle example, to compute the average speed of the vehicle
for the past hour, the operator requires all tuples that belong exactly to the
window covering the last hour to correctly produce the result. Therefore, a
stateful operator needs to determine if it has received all the data that belongs
to a certain window covering a portion of event-time. This can be done by
enforcing event-time ordering across the whole query when the stream generated
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by each data source or parallel instance of an operator is timestamp-sorted.
To do so, one option is to merge the input streams of the stateful operator
into one timestamp-sorted stream and then, process tuples from the latter in
the timestamp order [58]. The most common benefit of enforcing event-time
ordering is having deterministic executions [57].

When leveraging parallelism, deterministic execution should ensure that
the results given by the parallel query are exactly the same that would be
given by its centralized counterpart. Determinism in SPEs can be guaranteed
by having (i) deterministic processing components, and (ii) deterministic flow
of the results to downstream operators [59]. To ensure (i), it is important
that the splitter, partitions the input stream(s) according to the semantics of
the operation in a way that each input sub-stream contains all data required
for the operation. Moreover, to ensure (ii), one way is to enforce event-time
ordering and merge output sub-streams into one timestamp sorted stream. In
Section 2.4, we discuss a concurrent data structure, ScaleGate — also leveraged
in this thesis — that enables deterministic execution in stream processing.

2.4 Concurrent Data Structures

Shared data objects can be described through Abstract Data Types (ADTs).
ADT is an interface definition of operations that can be executed on the data
structure. An algorithmic implementation of ADT in the shared-memory
system is a concurrent data structure which organizes data for efficient con-
current access while hiding details on the interaction of the processes. An
efficient concurrent data structure is a key to harness the available parallelism
in multicore systems by providing correct synchronization with high-level of
interface operations. Design and implementation of concurrent data struc-
tures, nonetheless, are challenging as they are required to be consistent and
scalable [45]. Such requirements are proved through the safety and liveness
properties [60]. The safety property describes the consistency guarantees by
showing that “something bad will not happen”, while the liveness property
describes the progress guarantees by showing “something good will eventually
happen”.

Various formalizations are presented in the literature for the safety property
such as linearizability [61] and sequential consistency [62]. Linearizability
preserves real-time occurrence of the operations and requires that each operation
takes effect instantaneously at some point (i.e. linearization point) between its
invocation and response. An execution is linearizable if there exists an ordered
sequence of invocation and response events that observes real-time ordering of
the latter at all processes. However, in some cases, the real-time order of events
at different processes may not be significant. In such situations, sequential
consistency is used as the safety condition. Instead of real-time order of events,
sequential consistency preserves the program order of operations issued by
the same process. Sequential consistency is a weaker condition compared to
the linearizability since every linearizable execution also provides sequential
consistency but the reverse is not necessarily true.

Similarly, the liveness property is defined through various formalizations
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such as wait-freedom [63] and lock-freedom [45]. Wait-freedom is the strongest
progress guarantee which concerns individual progress. It guarantees that
every process has a bound on the number of steps to take before its operation
completes regardless of delays or failures of other processes. Lock-freedom
guarantees some process complete its operation after a bounded number of
steps, and hence ensures the system-wide progress. During the past years,
extensive effort has been made to construct more efficient and practical data
structures (cf. [45], [46], [64], [65] and references therein). In the following,
we review two state-of-the-art concurrent data structures, STINGER and
ScaleGate, which are also leveraged in this thesis.

STINGER Data Structure
Spatio-Temporal Interaction Networks and Graphs Extensible Representation,
STINGER, is a high performance concurrent data structure for streaming graph
processing [66]. It is a shared memory data structure based on adjacency lists.
STINGER’s model consists of a vertex table and an edge list. Each element of
the vertex table (called Logical Vertex Array) points to a given location in the
edge list (Edge Block Array). The vertex table holds the vertices in the graph
while the edge list consists of edge blocks, which hold the edges associated with
each vertex. Edge blocks can point to other edge blocks to accommodate more
space for edges belonging to a vertex.

The STINGER data structure permits the operations of query, insert, and
delete, on both vertices and edges. Asynchronous processes may concurrently
insert and delete vertices and edges from the STINGER data structure. In
case of concurrency, timestamps are used to avoid conflicts on any insertion
and deletion. For instance, when inserting an edge into a vertex’s adjacency
list, there are three possible scenarios; (1) if the edge already exists, the insert
function should increment the edge weight and update the timestamp, (2) if
the edge does not exist, a new edge should be inserted in the first empty space
in an edge block of the appropriate type, and (3) if there are no empty spaces,
a new edge block containing the new edge should be allocated and added to
the list. The parallel implementation guarantees these outcomes by following a
simple protocol using atomic compare-and-swap instructions.

In STINGER, parallelism exists at many levels. Each vertex has its own
linked list of edge blocks that is accessed from the logical vertex array. Within
an edge block, the incident edges can be explored in a parallel loop. The size
of the edge block, and therefore the quantity of parallel work to be done, is a
user-defined parameter.

ScaleGate Data Structure
ScaleGate [58], [67], [68] is concurrent data structure that is used to merge-sort
the parallel streams. It efficiently merges several timestamp-sorted streams
into one and allows the operator instances to process tuples in timestamp
order once they are “ready”. A tuple is defined as ready to be processed, if
its timestamp is less than or equal to the latest tuple timestamps received
from all input streams [58]. ScaleGate provides an encapsulated object which
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Figure 5: ScaleGate merge-sorting tuples from two input streams, R and S
(adopted from [58]).

(i) guarantees properties essential for concurrently merging streams, (ii) in-
tegrates the necessary synchronization to allow multiple threads to consume
ready tuples concurrently, and (iii) allows for an arbitrary number of source
threads to deliver the tuples concurrently. The interface of ScaleGate provides
the following methods:

• addTuple(tuple,sourceID): which allows a tuple from the source
thread sourceID to be merged by ScaleGate in the resulting timestamp-
sorted stream of ready tuples.

• getNextReadyTuple(readerID): which provides to the calling reader
thread readerID the next earliest ready tuple that has not been yet
consumed by the former.

The implementation of ScaleGate builds upon the idea of lock-free lineariz-
able skip lists. In particular, the addTuple method implementation allocates a
new node, searches for the appropriate position in the list, and tries to insert it in
a lock-free manner. For updating the related pointers, an atomic compare-and-
swap instruction is used. When retrieving tuples with the getNextReadyTuple
method, a tuple will be returned only if it is ready, i.e. if it is not the last
inserted tuple from the respective input source. This is checked by using a
pointer back to the input source handle and comparing with the address of
its last inserted node. Figure 5 shows an example structure of ScaleGate to
merge-sort two input streams R and S into one timestamp sorted stream of
ready tuples. In the figure, the dashed red line shows the search path for the
insertion of a new tuple from stream R.

3 Research Problems

As mentioned earlier, continuous data processing is a general approach to
analyze Big Data in the context of CPS. In the previous section, we provide
background on topics related to machine learning, parallel computing, and
stream processing. In this section, we describe problems and challenges associ-
ated with efficient continuous analysis divided into two parts, namely continuous
data mining algorithms, and utilization of computing resources.
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3.1 Continuous Data Mining Algorithms
As discussed before, continuous processing has several advantages over batch
processing which make the former be more beneficial for CPS related applic-
ations. However, continuous processing is more complicated to design and
implement as the result of the new challenges introduced by it [50]. In the
following, we review a few of these challenges that are mainly caused by the
single pass over the streams of data.

• Accuracy: The main challenge when designing a continuous processing
algorithm is to achieve accurate results. Unlike conventional algorithms
which have a complete knowledge about data by accessing the stored data
probably multiple times, in continuous processing there is a complete
lack of information regarding the upcoming data. In these circumstances,
producing accurate results despite of incomplete information is a major
challenge in designing continuous processing algorithms.

• Data Management: Another challenge that arises naturally when
designing an algorithm for continuous processing is handling the continu-
ously arriving tuples in an efficient manner. To do so, it is important
to employ efficient data structures that allow frequent updates. Having
such data structures is especially critical in case of parallelism where
the concurrent access to the data by several processes requires some
synchronizations to guarantee safety and liveness properties.

• Performance: To achieve high throughput of results while keeping the
latency low, thus contribute to real-time analysis, it is necessary to save
time and redundant work. This is particularly important when yielding
results in multiple and configurable time granularity is desired which
would cause higher latency. To this end, a challenging aspect in designing
continuous processing algorithms is to incrementally update the results
by reusing the previous computations.

3.1.1 Representative Examples for Continuous ML Applications

The design of algorithmic approaches that can enable continuous processing
is problem dependent and hence appropriate analysis methods are required.
In this section, we describe two case studies in the context of CPS, for which
continuous data mining and ML could have large impacts. For each application,
we discuss the aforementioned challenges in more details.

Case Study 1 - Spatio-Temporal Data Clustering
For the first application, we consider the problem of online clustering streams
of spatio-temporal data while the latter is being received. To give a more
intuitive description, we focus on LiDAR which generates data with similar
characteristics.

LiDAR, which stands for Light Detection And Ranging, is a sensing techno-
logy to measure distance and depth data of objects. The idea behind LiDAR
has been around since 1960s [69]. Nevertheless, it was only the recent years
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Figure 6: Illustration of a LiDAR system to show how it computes distances of
the surrounding objects.

that LiDAR’s capabilities have really opened up. Nowadays, LiDAR is used in
different applications such as airborne, mobile phones, and smart transporta-
tion [70]–[72] to identify 3D shapes and objects. LiDAR technology is especially
beneficial for autonomous vehicles as it is less influenced by light compared to
cameras and consequently could provide more robust features in challenging
environments. In such applications, a rotating LiDAR sensor (shortly LiDAR
in the remaining) is mounted on a vehicle or a robot to provide 360 degrees
horizontal field of view and detect surrounding objects such as other vehicles,
pedestrians, cyclists, etc.

A typical LiDAR mounts several lasers on a column with different vertical
shooting angles, each emitting pulsed light waves into the environment. These
pulses bounce back to the sensor once hitting an object. LiDAR, then, calculates
the distance of the reflected point by considering the time it took for the pulse
to return to the sensor. Figure 6 illustrates a LiDAR system. The column of
lasers also rotates horizontally very rapidly while producing distance readings
which provides a real-time 3D map of the environment. The collection of 3D
LiDAR distance readings is called point cloud.

A common way of extracting valuable information from LiDAR data (e.g.
to detect objects surrounding the sensor) is by clustering [73]. As described in
Section 2.1, distance based clustering approaches form clusters using a given
distance metric. Since computing the distances between all pairs of n tuples to
find the ones within the threshold would imply O(n2) operations, it is important
to prune the search space. For this purpose, several clustering approaches
introduce an intermediate step before performing the clustering algorithm. This
additional step, organizes the tuples in a supporting data structure (e.g. kd-
tree [31]) to speed up finding nearest neighbours. This way, a batch processing
approach is introduced which improves the expected complexity to O(nlogn)
(i.e. not worst-case). However, such batch processing requires multiple passes
over the data which in turn, might affect the performance.

LiDAR generates the data in streams which are implicitly ordered. There-
fore, continuous clustering is desirable to produce streams of results while
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organizing the data points in an additional step may be avoided. For instance,
Klasing [74] leverages the inherent ordering of LiDAR data points. However, it
achieves lower accuracy than the Euclidean distance based method. Moreover,
Zermas et al. [75] proposed a clustering method specific to the structure of
LiDAR data points. Though, it still relies on a kd-tree for some necessary
nearest neighbour searches. In another work, Yin et al. [76] speed up cluster-
ing by grouping separate objects in the same azimuth zone using spherical
coordinates with the cost of losing accuracy.

The aforementioned common state-of-the-art approaches indicate that
achieving accurate results while performing the clustering continuously and
efficiently poses challenges such as modifying the clusters while new points
arrive. Besides, high data rates and the implied need for parallelization require
efficient data structures for concurrent and frequent modifications. Moreover,
considering that consecutive 360-degree scans of LiDAR most often have large
similarities, results from previous rotations should be reusable, to prevent
redundant computations and support incremental clustering. Furthermore,
it is desired to yield the results in small time granularity for making further
decisions quickly and attentively.

Case Study 2 - Bottleneck Monitoring in Industrial Processes
For the second application, we consider the problem of continuous monitoring
to detect bottlenecks in industrial processes. A system concept that enables
monitoring and collecting data from manufacturing activities across globally
distributed plants is Manufacturing Execution Systems (MES). The MES
concept was born from the demand on the manufacturing enterprise to fulfil
the requirements of markets from a point of view of reactivity, quality, and
reduction in cost. In principle, MES provides the log of the machines’ activities
from the shop floor in real time to improve the functionality and resource
utilization of the system as well as to react to risky situations [77].

By analysing the data provided using MES, bottlenecks can be monitored
on a real-time basis in order to reduce the response time and implement im-
provement actions, thereby facilitate real-time production [35]. However, most
of the current bottleneck detection methods are simulation-based approaches
which are time consuming [78]. Such approaches also require huge efforts
in terms of developing the simulation model of the production system and
updating the simulation model with the changes made in the real production
system. Moreover, since simulation-based approaches take a long time to run,
it is difficult to obtain results on a real-time basis [79]. To improve simulation-
based approaches, several data driven methods are presented in literature. For
instance, the turning point method [79], which is a simulation based approach,
uses the blockage and the starvation data of machines to detect the bottlenecks.
However, the online measurements of blockage and starvation times of the
machines are greatly affected by the buffers in the production system and
therefore fail to detect the true bottlenecks in a completely decoupled system
with large buffers and frequent small stoppages in the machines. Another
approach that facilitates the bottleneck detection procedure is the shifting
bottleneck identification [78]. Nevertheless, the method needs to be further
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developed to yield results continuously.
The aforementioned approaches indicate important challenges for real-time

monitoring such as detecting bottlenecks in an efficient and timely manner
while the accuracy of the results is not traded for the performance. Another
important challenge is to detect the bottlenecks at configurable time granularity
(e.g. the bottlenecks of minutes, hours, shifts, days, months, etc), since the
latter can provide great insight for improvements in the production pipelines.
It is also critical to employ data structures that not only enable frequent
modifications efficiently, but also allow timely extraction of the results.

3.2 Utilization of Computing Resources

As mentioned before, the major challenge of CPS applications is given by the
volume and velocity of the data that is produced continuously. For instance, a
modern vehicle senses approximately 4 terabytes of data a day [80] containing
huge amount of information. Unlocking the potential of this information
hinges on the development of sophisticated analytical frameworks and scalable
tools capable of exploiting all computational resources in cost-effective ways.
Depending on the analytics activity, the specific requirements include, among
others, the distribution of the processing procedure across multiple tiers and
elastic resource acquisition. In the following we discuss these two requirements,
as the focus of this thesis, in more details.

3.2.1 Multi-tier Processing

Given the current data growth, having an analysis that pipelines data generation
and processing is a challenging necessity. Therefore, as mentioned before,
processing is no longer done only in massive servers but distributed across
a wide spectrum, including intermediate processing layers (fog nodes) and
resource-constrained devices (edge devices). Moreover, by distributing the
processing tasks on multiple tiers, the communication bandwidth will no longer
be a limiting factor.

Nevertheless, due to different characteristics of the resources deployed at
various tiers, the concept of multi-tier computation implies some trade-offs.
At one end of the spectrum, clouds typically consist of high-end servers with
abundant storage and massive computing resources which enable high parallel
computing. Therefore, performing analysis on data-intensive applications in the
cloud would decrease the processing latency. However, if the accuracy is a top
priority for the application (which implies that all data needs to be sent to the
cloud), processing all data in the cloud would increase the load as well as the
latency of the communication medium. At the other end, the computational
and memory of the edge devices are very limited. This means, pushing the
computations to the lower tiers, although decreases the communication latency,
might increase the processing latency. Moreover, distributing the computation
on the edge devices might require combining the partial results produced by
these devices, which in turn, introduces an extra latency.

In these circumstance, it is important to know which type of processing is
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best done in which part of the analysis pipeline. Generally, existing literature
scale down the collected data on the edge, and then, transfer the reduced data
to the upper tiers to run the heavy analysis. For instance, data sanitization
(i.e. pre-processing) is applied on the data before performing different ana-
lysis [81]. Here, the sanitization usually includes operations such as removing
information outside the time interval of interest, extreme outliers, and faulty
signals. Moreover, various solutions in the literature (e.g. [41], [82]–[84]) use
approximation techniques to reduce the size of the data by compacting the
latter. Each of these solutions focuses on different aspects of the approxim-
ation (bounded error, processing time, etc.). A recent work [85] targets at
compressing wireless sensor streams before transmission. In this work, PLA
(discussed in Section 2.2.1) is used on embedded edge devices to reduce the
size of the data, thus, reduce communication and energy consumption. In
another recent work [86], the authors propose a PLA algorithm to be run on
resource-constrained wireless sensor nodes.

While the aforementioned approaches indicate the necessity of utilizing
the cumulative computational power of edge devices, they do not discuss the
effects of factors which cause out-of-timestamp order data such as varying
speeds and reliability of the underlying communication layer. Moreover, when
compacting the data to scale it down at the edge, an important challenge that
needs more investigation is the trade-off between space saving and accuracy
loss. Furthermore, in addition to distributing the computation on the edge
devices, it is important to utilize the resources over the computing continuum
in order to achieve high throughput of results with low latency.

3.2.2 Elasticity

In the concept of stream processing, there is rich scientific literature on lever-
aging the modern multicore systems’ computational power in terms of paral-
lelism where the number of parallel instances of an operator is fixed. Such
techniques focus on a specific operator parallelization [58], [87], [88] or determin-
ism [58], [59], among other aspects. These fixed resources, nonetheless, are not
able to be adjusted at runtime and therefore render over- or under-provisioning
scenarios in the case of changing stream rates [89].

In the over-provisioning scenario, the number of allocated resources is set
regarding the load peaks, which causes under-utilization of the system and
high cost during non-peak times. In the under-provisioning scenario, there
are not enough resources, which causes higher analysis latency and, in the
case of bursty workload, saturation in the system [90]. Moreover, when the
overall work is unbalanced but could be carried out by the available threads
as a whole, a load balancing adaptive reconfiguration is needed to change the
work distribution to threads. Therefore, elasticity is an important requirement
that has to be provided in order to enhance resource utilization in the system.

The elasticity mechanism enables runtime resource adjustments to adapt
the number of parallel computational instances regarding the stream rate. It
introduces challenges especially for the stateful analysis where redistribution of
work among new number of resources is often followed by state migration [90],
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[91]. State migration is the procedure of transferring the current state from
one thread to the new one, as the latter has been running the analysis.

As an example, consider a user that is interested in parallelizing the analysis
of a streaming application that consumes tweets and runs analysis on a per-
hashtag basis. The user could leverage multiple threads to run the analysis
in parallel by assigning distinct hashtags to such threads. This, nonetheless,
cannot be done in a straightforward fashion, since tweets can carry two or
more hashtags assigned to different threads. A possible approach is to copy
each tweet (as many times as the hashtags each carries in the worst case).
However, the cost of data duplication hampers unnecessarily the performance.
The second type of overhead is caused by the operators’ dedicated internal
state. Since instances’ states are not shared, state transfer is needed in elastic
reconfigurations to adjust the workload distribution and/or parallelism degree
of an operator.

While these overheads are unavoidable for distributed shared-nothing sys-
tems, they are not for parallel instances that share memory, and could thus
share tuples and states too. In addition, as discussed in Section 2.2, to take
advantage of all available resources, it is required to efficiently manage and
scale computation on a node level first (i.e. scaling up) before scaling out to the
distributed nodes. Another challenge in programming elastic stateful analysis,
relies on preserving determinism even with varying degree of parallelism which,
in turn, might require elastic and re-configurable data structures.

4 Thesis Objectives

In this thesis, we investigate aspects of continuous processing, with a focus on
CPS applications, to achieve high throughput with low latency while preserving
determinism by designing, implementing, and evaluating efficient analytics; i.e.,
algorithms that perform timely processing on streams of data, and frameworks
that can improve utilization of resources and balance application perform-
ance metrics. The thesis particularly concentrates on the following research
questions:

RQ1 How are throughput, latency, and precision impacted by continuous
processing streams of data?

RQ2 How can efficient data structures for scalable and configurable continuous
analysis, contribute to real-time processing?

RQ3 How do pipelining the analysis and utilization of multiple tiers of the
computing continuum affect the analysis speed and costs?

RQ4 How can we achieve instantaneous elastic reconfigurations in stream
processing while preserving determinism?

RQ1 is relevant to the applications for which continuous processing is more
beneficial than traditional batch processing, due to the high rate of the incoming
data and the demand for online processing. Such applications, typically, require
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Table 1: Research questions addressed in each chapter.

Chapter A Chapter B Chapter C Chapter D Chapter E

RQ1
RQ2
RQ3
RQ4

high throughput of results with low latency. To this end, online processing of
streams of data raises interesting research questions on how to analyse data in
one pass and achieve high performance without losing accuracy of results.

RQ2 emphasizes the need for efficient data structures to manage the flow
of data in continuous processing and match the rate of processing with that of
incoming data. This is especially important in case of having parallel computing
in order to enable safe and efficient concurrent accesses for parallel processes.
Today, suitable hardware for parallel processing can be found on all tiers of
the computing continuum which indicates the necessity of having scalable
algorithms and efficient concurrent data structures.

RQ3 is relevant in the context of moving processing away from the cloud
and distributing it on multiple tiers. By doing part of the processing on the
edge, while still performing heavy analysis on the upper tiers, the bandwidth
between different tiers will be utilized as the result of the scaled down data.
However, this might cause data loss and affect the accuracy of the results. To
this end, enabling multi-tier data processing is a challenging research topic
which entails a practical trade-off between data reduction and pipeline speed
on the one hand, and accuracy loss on the other.

RQ4 becomes particularly important by considering the varying rate of
the incoming data that needs to be processed. Unpredictable behaviour of the
data rate makes it even more difficult to prepare the system. Therefore, it
is important to have frameworks which adjust the processing resources with
respect to the incoming rate. This raises several research questions on how
to provide a framework that allows reconfiguration during the runtime with
deterministic execution to maximize efficiency in terms of throughput, latency
and reconfiguration times.

We relate back to these research questions and how we address them in the
context of the thesis contributions discussed next.

5 Thesis Contributions

The contributions of this thesis are solutions for a number of data analytical
challenges on designing continuous data mining/ML algorithms and utilizing
computing resources, mentioned in Section 3. In this section, we outline the
results and connect to the research questions raised in Section 4. The structure
of the following chapters of this thesis and the research questions they address
are described in Table 1.
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5.1 Continuous Data Mining Algorithms

In the first part, we target continuous data mining and ML algorithms through
two representative problems: (i) spatio-temporal data clustering, and (ii) bottle-
neck monitoring. The common challenge that we address in both applications
is to provide a single pass analysis of streams of data in an efficient and timely
manner while producing accurate results. By doing so, we contribute towards
RQ1 and RQ2 and show (i) how continuous processing of streams of data
can produce accurate results even with incomplete information, and (ii) how
efficient data structures can benefit continuous processing.

5.1.1 Spatio-Temporal Data Clustering

Chapter A

We begin this problem in Chapter A by focusing on LiDAR point cloud
clustering, since LiDAR allows more intuitive description of data with spatio-
temporal locality. For that, we introduce Lisco, a single-pass continuous
Euclidean distance based clustering that can enable fine-grained pipelining and
parallelism. The intuition behind Lisco is to leverage the sorted delivering
of tuples from the LiDAR. Therefore, unlike the state-of-the-art Euclidean
distance based clustering [31] that organises data in a supporting data structure
to find ϵ-neighbours of point p and cluster them together, Lisco translates
the ϵ-neighbourhood of p into a set of readings given by certain steps and
lasers around p, thus, eliminates the need for a search-optimized data structure.
This way, while points are being collected, Lisco performs clustering on them
efficiently. Subsequently, we propose the parallel version of Lisco, p-Lisco, which
is architecture-independent and scales the analysis by exploiting the inherent
disjoint-access parallelism of the algorithm’s pipeline and of the calculations
needed for each point.

Lisco and p-Lisco address the challenge of incomplete information by
leveraging the symmetric characteristic of the Euclidean distance. Considering
this characteristic, the algorithms guarantee if two points have a distance less
than ϵ, upon processing the point that arrives second, the two points will
be grouped together. The contributions of p-Lisco also include a concurrent
efficient data structure which enables continuous data management as well as
orchestrating all parallel threads to avoid contention. Moreover, the lock-free,
linearizable implementation of the proposed shared data structure in p-Lisco
allows balanced partitioning of the work among parallel threads. By addressing
the issue of incomplete information and managing the continuous data as well
as the intermediate results efficiently, the proposed algorithms provide accurate
clustering results at the end of each rotation.

We analyze the complexity behaviour of Lisco and compare it with that of
state-of-the-art. We show that O(nlogn) is Lisco’s time complexity in the worst
case, whereas it is the expected complexity for state-of-the-art. Furthermore, we
present a thorough comparative evaluation, using both real-world and synthetic
data. We use hardware representative of devices in the computing continuum
and observe that Lisco offers high benefits already in its sequential from. It is



5. THESIS CONTRIBUTIONS 27

also shown that, in cases with more workload, when it is possible to employ
higher number of threads, p-Lisco shows a significant improvement compared
to the baseline.

Chapter B

We continue the problem of LiDAR point cloud clustering by advancing Lisco
algorithm to re-use computations between rotations. For that, we propose
parallel and incremental Lisco, pi-Lisco, whose key idea is the exploitation of
the locality properties of the points that belong to the same clusters, not only in
the same LiDAR rotation, but also in subsequent rotations’ point clouds. The
algorithm pi-Lisco enables incremental processing through using an efficient
data structure to manage the incoming data continuously and re-using the
parts of the data structure which had not any updates between subsequent
rotations. The algorithm also leverages parallelism by partitioning large part
of the work and assign the latter to the parallel threads.

To ensure deterministic executions, pi-Lisco exploits the synchronization
and data-sharing properties of the ScaleGate data structure (discussed in Sec-
tion 2.4), that allows disjoint parallelism in a fine-grained manner. Moreover,
the algorithm proposes a customised version of the STINGER data structure
(discussed in Section 2.4) that facilitates further to concurrently and efficiently
share spatial data. Furthermore, we discuss the consistency and work-saving
properties of pi-Lisco and its algorithmic implementation as a streaming op-
erator to output clusters in configurable regular intervals. Using real-world
data set and an extensive evaluation, we show the computational benefits from
incrementally processing the consecutive point clouds, as well as continuously
increasing sustainable rates with increasing number of threads.

Chapter C

As a part of a work that have done in chapter C, we generalize Lisco, and
propose g-Lisco, to cluster data with spatio-temporal locality. The algorithm
g-Lisco presents a distance based clustering approach which exploits the im-
plicit sorting carried by one or more attributes of the tuples to speed-up the
clustering procedure. Similar to the previous versions, g-Lisco achieves accurate
clustering results while leveraging efficient data structures for continuous data
management. In this work, we show the benefits of employing g-Lisco for
several use cases, such as clustering LiDAR data transmitted from a single
vehicle, and clustering GPS positions transmitted from a fleet of vehicles.

5.1.2 Bottleneck Monitoring

Chapter D

For the problem of continuous monitoring and bottleneck detection in industrial
processes, in a part of chapter D, we introduce an efficient continuous shifting
bottleneck detection algorithm, Amble. Unlike the state-of-the-art shifting
bottleneck detection method [36] that first collects the data in batches and then
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performs the analysis, Amble provides a fine-grained continuous processing
with a single pass over data while achieving accurate results.

The main idea of Amble is to use a tree data structure, which is updated fre-
quently by pruning and inserting new tuples upon reception, thus, maintaining
all chains of momentary bottlenecks. The chain of momentary bottlenecks in a
production line specifies how several machines might affect the performance of
each other. Using the tree data structure, Amble enables fast identification of
the bottleneck chain at any time, by simply making the chain equivalent to a
path in the tree.

We implement Amble as an operator in stream processing and analyze the
complexity of Amble by distinguishing two parts (i) the complexity of node
insertion in the tree, and (ii) the complexity of traversing the tree to announce
the chain of bottlenecks. In a system with m machines, the insertion complexity
is O(m) while the traversing complexity is linear on the path representing the
bottleneck chain in the tree. We also evaluated Amble with real data to show
the benefits that the former provides by enabling timeliness, configurable, and
continuous processing compared to the state-of-the-art.

5.2 Utilization of Computing Resources

In the second part, we target distributing the work over computing resources at
(i) multiple tiers, and (ii) single node. Specifically, we focus on scaling down the
data before distributing the work over the computing continuum, and scaling
up the processing on a node level. Therefore, we contribute to RQ3 and RQ4
by studying the effect of different scaling down policies on the performance and
enabling intra-node elastic reconfiguration to adjust the computing resources
at runtime.

5.2.1 Multi-tier Processing

Chapter C

In this chapter, we target the problem of distributing the work over multiple
tiers with a focus on the application of vehicular networks. Motivated by the
limited communication bandwidth compared to the volume of sensed data in
vehicular networks and the monetary costs of data transmission, we study the
trade-off between scaling down the data and the accuracy lost.

To this end, we present a framework, called DRIVEN , to utilize com-
putational resources and communication bandwidth of different tiers in the
edge/fog/cloud architecture. The intuition behind DRIVEN is to avoid gather-
ing the data to be processed in a raw format from each vehicle, but rather to
allow for a configurable streaming-based error-bounded approximation, through
PLA, to compress the volumes of data to be gathered. Moreover, DRIVEN
leverages g-Lisco in upper tiers to cluster the compact data in a continuous
fashion. This way, DRIVEN provides a framework that pipelines data genera-
tion and processing. Therefore, the latency of the components overlap instead
of being additive. Using thorough evaluation with real data, we show DRIVEN
allows tuning the trade off between the amount of data and the accuracy in
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the form of approximation. We also discuss the benefits of using g-Lisco as a
continuous processing approach in the DRIVEN framework.

Chapter D

Similar to Chapter C, this chapter also studies the problem of multi-tier com-
putation and scaling down the data, but with a different focus. In this chapter,
rather than compacting the raw data, we investigate the effect of running
pre-processing and filtering on the data at the edge. To design appropriate
problem-analysis methods, we consider an industrial process and the problem
of monitoring throughput bottlenecks.

We provide a framework, STRATUM , to support configurable and auto-
mated analysis, leveraging stream processing and enhancing task parallelism
by distributing the work on the embedded processing units at the machines, as
well as the analysis center. In STRATUM , the lower tier is responsible for data
validation and filtering, while the upper tier takes care of the combined data-
stream analysis. For continuously monitoring bottlenecks, the Amble algorithm
is used in the framework. Moreover, to support deterministic execution, we use
a ScaleGate component in the framework to coordinate and sort all streams
emitted from different machines.

We evaluate the potential of STRATUM by running an experiment with
data collected from a production system over two years. The evaluation of
STRATUM , together with Amble, indicates the capability of the proposed
tools in accurately detecting bottlenecks with configurable time granularity.
Moreover, we discuss that, since STRATUM pipelines collecting and validating
data at the lower tier with the analysis using Amble at the upper tier, the latency
of Amble is hidden in the pipeline. Therefore, the STRATUM framework
contributes to online and real-time analysis.

5.2.2 Elasticity

Chapter E

In this chapter, we propose the notion of virtual shared-nothing parallelism,
using which it is possible to define parallel and elastic SPE operators that, while
virtualizing the common APIs based on shared-nothing parallelism, leveraging
shared memory to scale streaming applications up, before scaling them out.

To leverage virtual shared-nothing parallelism, we introduce a framework,
STRETCH , that allows exploitation of parallelization techniques and shared-
memory synchronization to boost the scaling up. The framework offers in-
stantaneous elastic reconfigurations, without state transfer, while supporting
determinism even with varying degree of parallelism. Moreover, we provide
formal guarantees and correctness proofs for the semantics of the analysis tasks
supported by STRETCH , showing they extend the ones found in common SPEs.
As means to apply the elasticity, we also extend the API for ScaleGate [58], and
propose Elastic ScaleGate to enable thread provisioning and decommissioning
at runtime. With lock-free, linearizable algorithmic implementation, Elastic
ScaleGate supports efficient reconfigurations without breaking determinism.
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We provide an extensive discussion and an exhaustive evaluation, based
both on synthetic and real data. We also compare STRETCH ’s performance
with that of various (well established) baselines by studying different metrics
such as throughput, latency, and reconfiguration time. For instance, it is
shown in one of the experiments that, by enabling state transfer-free elasticity,
STRETCH offers unprecedented ultra-fast reconfigurations, taking less than
40 milliseconds even when provisioning tens of new operator instances.

6 Conclusions

In this thesis, we show that timely continuous processing is crucial in this era
of Big Data where data is being generated continuously with high rate. We
demonstrate this by addressing several challenges (e.g. performance, precision,
determinism, etc.) for designing continuous data mining and ML algorithms as
well as utilizing resources over the computing continuum.

We first focus on the challenges associated with continuous data mining and
ML. We start by proposing three algorithms, Lisco, p-Lisco, and pi-Lisco to
continuously cluster LiDAR data points in sequential, parallel, and incremental
manner, respectively. Lisco is a single pass Euclidean distance based clustering
that maximizes the granularity of the data processing pipeline and thus shows
the potential for parallelism. p-Lisco exploits the parallelism of Lisco’s pro-
cessing pipeline in an architecture-independent fashion and thus, contributes to
real-time processing. pi-Lisco extends the previous versions to allow for continu-
ous, parallel and incremental clustering in order to benefit from the completed
work in previous rotations and avoid unnecessary recalculations. Moreover, we
introduce a generalized version of Lisco, g-Lisco, which continuously clusters
data with spatio-temporal locality by exploiting the implicit sorting carried
by the attributes of the data. Furthermore, we introduce Amble, a continuous
monitoring algorithm to detect throughput bottlenecks of an industrial process
in an efficient, automated and configurable manner.

Next, we focus on the challenges associated with distributing the work
to utilize available resources at (i) multiple tiers, and (ii) single node. For
multi-tier utilization, we develop two frameworks leveraging stream processing,
DRIVEN and STRATUM , that scale down the raw data using the embedded
devices at the edge, and then transfer the reduced data to upper tiers for
further processing. While DRIVEN studies the effect of compacting the raw
data on the accuracy of results and the communication bandwidth in order to
enable real-time analysis, STRATUM studies the performance improvement,
in terms of throughput and latency, when the raw data is pre-processed at the
edge. Furthermore, to address the challenges of utilizing resources at a single
node, we introduce STRETCH , a framework that provides virtual shared-
nothing parallelism and supports determinism while easing the programming of
intra-node scalable, elastic, high-throughput and low-latency stateful streaming
analysis.

The achievements of Lisco algorithm in clustering LiDAR point clouds
motivate investigating other applications with strict time constraints that can
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benefit from continuous processing. One such application is online object
tracking which is particularly interesting for security and safety reasons. For
instance, a moving object in a prohibited area can be detected online to react
properly, or vehicles can continuously monitor other moving objects for various
purposes such as path planning and obstacle avoidance. It would be also
interesting to investigate the opportunities brought by pi-Lisco to track an
object in consecutive rotations of LiDAR point clouds.

As the field of IoT and Industry 4.0 grow, manufacturing processes are
becoming increasingly digital, which indicates the demand for frameworks such
as DRIVEN and STRATUM . In this sense, an important step forward would
be to identify the benefits of the proposed frameworks in designing a digital
twin (i.e. a digital image of a physical object or process that helps optimize
business performance) for industrial automation and predictive maintenance.
Furthermore, based on insights from the work in elasticity, there are interesting
aspects worth to be investigated as followup work. An example would be
combining scale-out capabilities with STRETCH ’s scale-up mechanism so to
have a framework which allows scaling up first and then scaling out if still
needed. Another exciting direction for the future work is to provide automatic
insightful control mechanisms for the STRETCH framework to decide on
the reconfiguration, and for the DRIVEN framework to decide on PLA-error
margins.
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