4,516 research outputs found

    Downscaling landsat land surface temperature over the urban area of Florence

    Get PDF
    A new downscaling algorithm for land surface temperature (LST) images retrieved from Landsat Thematic Mapper (TM) was developed over the city of Florence and the results assessed against a high-resolution aerial image. The Landsat TM thermal band has a spatial resolution of 120 m, resampled at 30 m by the US Geological Survey (USGS) agency, whilst the airborne ground spatial resolution was 1 m. Substantial differences between Landsat USGS and airborne thermal data were observed on a 30 m grid: therefore a new statistical downscaling method at 30 m was developed. The overall root mean square error with respect to aircraft data improved from 3.3 °C (USGS) to 3.0 °C with the new method, that also showed better results with respect to other regressive downscaling techniques frequently used in literature. Such improvements can be ascribed to the selection of independent variables capable of representing the heterogeneous urban landscape

    VAS Demonstration Sounding Workshop: The Proceedings of a satellite sounding workshop

    Get PDF
    Retrieval techniques that yield satellite derived temperature and moisture profiles are considered, with emphasis on TIROS-N and VISSR atmospheric sounder measurements. Topics covered include operational sounding, colocation concepts, correcting cloud errors, and the First GARP Global Experiment

    Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series

    Get PDF
    Land Surface Temperature (LST) is increasingly important for various studies assessing land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress. The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution, which is particularly appropriate for local or small-scale studies. Numerous studies have proposed LST retrieval algorithms for the Landsat series, and some datasets are available online. However, those datasets generally require the users to be able to handle large volumes of data. Google Earth Engine (GEE) is an online platform created to allow remote sensing users to easily perform big data analyses without increasing the demand for local computing resources. However, high spatial resolution LST datasets are currently not available in GEE. Here we provide a code repository that allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users for computing Landsat LST as part of any analysis within GEE

    Land and cryosphere products from Suomi NPP VIIRS: overview and status

    Get PDF
    [1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Fitting the Viking lander surface pressure cycle with a Mars General Circulation Model

    Get PDF
    We present a systematic attempt to fit the Viking lander surface pressure cycle using a Mars General Circulation Model, MarsWRF. Following the earlier study by Wood and Paige (1992) using a one-dimensional model, high-precision fitting was achieved by tuning five time-independent parameters: the albedo and emissivity of the seasonal caps of the two hemispheres and the total CO_2 inventory in the atmosphere frost system. We used a linear iterative method to derive the best fit parameters: albedo of the northern cap = 0.795, emissivity of the northern cap = 0.485, albedo of the southern cap = 0.461, emissivity of the southern cap = 0.785, and total CO_2 mass = 2.83 × 10^(16) kg. If these parameters are used in MarsWRF, the smoothed surface pressure residual at the VL1 site is always smaller than several Pascal through a year. As in other similar studies, the best fit parameters do not match well with the current estimation of the seasonal cap radiative properties, suggesting that important physics contributing to the energy balance not explicitly included in MarsWRF have been effectively aliased into the derived parameters. One such effect is likely the variation of thermal conductivity with depth in the regolith due to the presence of water ice. Including such a parameterization in the fitting process improves the reasonableness of the best fit cap properties, mostly improving the emissivities. The conductivities required in the north to provide the best fit are higher than those required in the south. A completely physically reasonable set of fit parameters could still not be attained. Like all prior published GCM simulations, none of the cases considered are capable of predicting a residual southern CO_2 cap

    Harmonization of remote sensing land surface products : correction of clear-sky bias and characterization of directional effects

    Get PDF
    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Deteção Remota), Universidade de Lisboa, Faculdade de Ciências, 2018Land surface temperature (LST) is the mean radiative skin temperature of an area of land resulting from the mean energy balance at the surface. LST is an important climatological variable and a diagnostic parameter of land surface conditions, since it is the primary variable determining the upward thermal radiation and one of the main controllers of sensible and latent heat fluxes between the surface and the atmosphere. The reliable and long-term estimation of LST is therefore highly relevant for a wide range of applications, including, amongst others: (i) land surface model validation and monitoring; (ii) data assimilation; (iii) hydrological applications; and (iv) climate monitoring. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Satellite LST products generally rely on measurements in the thermal infrared (IR) atmospheric window, i.e., within the 8-13 micrometer range. Beside the relatively weak atmospheric attenuation under clear sky conditions, this band includes the peak of the Earth’s spectral radiance, considering surface temperature of the order of 300K (leading to maximum emission at approximately 9.6 micrometer, according to Wien’s Displacement Law). The estimation of LST from remote sensing instruments operating in the IR is being routinely performed for nearly 3 decades. Nevertheless, there is still a long list of open issues, some of them to be addressed in this PhD thesis. First, the viewing position of the different remote sensing platforms may lead to variability of the retrieved surface temperature that depends on the surface heterogeneity of the pixel – dominant land cover, orography. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should correspond to the ensemble directional radiometric temperature of all surface elements within the FOV. In this thesis, a geometric model is presented that allows the upscaling of in situ measurements to the any viewing configuration. This model allowed generating a synthetic database of directional LST that was used consistently to evaluate different parametric models of directional LST. Ultimately, a methodology is proposed that allows the operational use of such parametric models to correct angular effects on the retrieved LST. Second, the use of infrared data limits the retrieval of LST to clear sky conditions, since clouds “close” the atmospheric window. This effect introduces a clear-sky bias in IR LST datasets that is difficult to quantify since it varies in space and time. In addition, the cloud clearing requirement severely limits the space-time sampling of IR measurements. Passive microwave (MW) measurements are much less affected by clouds than IR observations. LST estimates can in principle be derived from MW measurements, regardless of the cloud conditions. However, retrieving LST from MW and matching those estimations with IR-derived values is challenging and there have been only a few attempts so far. In this thesis, a methodology is presented to retrieve LST from passive MW observations. The MW LST dataset is examined comprehensively against in situ measurements and multiple IR LST products. Finally, the MW LST data is used to assess the spatial-temporal patterns of the clear-sky bias at global scale.Fundação para a Ciência e a Tecnologia, SFRH/BD/9646

    Land Surface Temperature Product Validation Best Practice Protocol Version 1.0 - October, 2017

    Get PDF
    The Global Climate Observing System (GCOS) has specified the need to systematically generate andvalidate Land Surface Temperature (LST) products. This document provides recommendations on goodpractices for the validation of LST products. Internationally accepted definitions of LST, emissivity andassociated quantities are provided to ensure the compatibility across products and reference data sets. Asurvey of current validation capabilities indicates that progress is being made in terms of up-scaling and insitu measurement methods, but there is insufficient standardization with respect to performing andreporting statistically robust comparisons.Four LST validation approaches are identified: (1) Ground-based validation, which involvescomparisons with LST obtained from ground-based radiance measurements; (2) Scene-based intercomparisonof current satellite LST products with a heritage LST products; (3) Radiance-based validation,which is based on radiative transfer calculations for known atmospheric profiles and land surface emissivity;(4) Time series comparisons, which are particularly useful for detecting problems that can occur during aninstrument's life, e.g. calibration drift or unrealistic outliers due to undetected clouds. Finally, the need foran open access facility for performing LST product validation as well as accessing reference LST datasets isidentified

    Retrieval of canopy component temperatures through Bayesian inversion of directional thermal measurements

    Get PDF
    Evapotranspiration is usually estimated in remote sensing from single temperature value representing both soil and vegetation. This surface temperature is an aggregate over multiple canopy components. The temperature of the individual components can differ significantly, introducing errors in the evapotranspiration estimations. The temperature aggregate has a high level of directionality. An inversion method is presented in this paper to retrieve four canopy component temperatures from directional brightness temperatures. The Bayesian method uses both a priori information and sensor characteristics to solve the ill-posed inversion problem. The method is tested using two case studies: 1) a sensitivity analysis, using a large forward simulated dataset, and 2) in a reality study, using two datasets of two field campaigns. The results of the sensitivity analysis show that the Bayesian approach is able to retrieve the four component temperatures from directional brightness temperatures with good success rates using multi-directional sensors (Srspectra˜0.3, Srgonio˜0.3, and SrAATSR˜0.5), and no improvement using mono-angular sensors (Sr˜1). The results of the experimental study show that the approach gives good results for high LAI values (RMSEgrass=0.50 K, RMSEwheat=0.29 K, RMSEsugar beet=0.75 K, RMSEbarley=0.67 K); but for low LAI values the results were unsatisfactory (RMSEyoung maize=2.85 K). This discrepancy was found to originate from the presence of the metallic construction of the setup. As these disturbances, were only present for two crops and were not present in the sensitivity analysis, which had a low LAI, it is concluded that using masked thermal images will eliminate this discrepanc
    corecore