165 research outputs found

    Monitoring and optimal management approaches to reduce water and energy consumption in milk processing processes

    Get PDF
    This paper proposes a methodology for the monitoring and optimal management of milk processing processes to reduce water and energy consumption. First, the key variables that should be measured to characterize the water/energy consumption are identified. Then, a monitoring system that is integrated with the current SCADA system already deployed in the production process has been developed that is able to evaluate the energy consumptions not directly computed from the available sensors. From real historical measurement records of the different subprocesses, their efficiency is determined. This information is used for developing an optimal management system that allows reducing the water/energy consumption. The work presented in this paper has been developed in the context of the European project named EnReMilk that aims to introduce significant water and energy in several milk processing processes by the introduction of new processing and management technologies. The assessment the proposed approach is based on the comparison with the current baseline consumptions.Peer ReviewedPostprint (author's final draft

    Digital twin-driven real-time planning, monitoring, and controlling in food supply chains

    Get PDF
    There needs to be more clarity about when and how the digital twin approach could benefit the food supply chains. In this study, we develop and solve an integrated problem of procurement, production, and distribution strategies (PPDs) in a medium-scale food processing company. Using the digital twin approach, the model considers the industrial symbiosis opportunities between the supplier, manufacturer, and customer using interval and sequence variables operating in a constrained environment using mixed-integer linear programming (MILP) and agent-based simulation (ABS) methodology. The study optimizes the make-span and lead time, simultaneously achieving a higher level of digitalization. The analysis demonstrates how digital twin accelerates supply chain productivity by improving makespan time, data redundancy (DR), optimal scheduling plan (OSP), overall operations effectiveness (OOE), overall equipment effectiveness (OEE), and capacity utilization. Our findings provide compelling evidence that the seamless integration PPDs enormously enhance production flexibility, resulting in an excellent service level of 94 %. Managers leverage real-time simulation to accurately estimate the replenishment point with minimal lead time, ensuring optimized operations. Furthermore, our results demonstrate that implementing PPDs has yielded considerable benefits. Specifically, we observed a remarkable 65 % utilization of the pasteurizer and aging vessel and an impressive 97 % utilization of the freezer. Moreover, by applying the DT model, the present model found a notable 6 % reduction in backlog, further streamlining operations and enhancing efficiency

    Production planning of biopharmaceutical manufacture.

    Get PDF
    Multiproduct manufacturing facilities running on a campaign basis are increasingly becoming the norm for biopharmaceuticals, owing to high risks of clinical failure, regulatory pressures and the increasing number of therapeutics in clinical evaluation. The need for such flexible plants and cost-effective manufacture pose significant challenges for planning and scheduling, which are compounded by long production lead times, intermediate product stability issues and the high cost - low volume nature of biopharmaceutical manufacture. Scheduling and planning decisions are often made in the presence of variable product titres, campaign durations, contamination rates and product demands. Hence this thesis applies mathematical programming techniques to the planning of biopharmaceutical manufacture in order to identify more optimal production plans under different manufacturing scenarios. A deterministic mixed integer linear programming (MILP) medium term planning model which explicitly accounts for upstream and downstream processing is presented. A multiscenario MILP model for the medium term planning of biopharmaceutical manufacture under uncertainty is presented and solved using an iterative solution procedure. An alternative stochastic formulation for the medium term planning of biomanufacture under uncertainty based on the principles of chance constrained programming is also presented. To help manage the risks of long term capacity planning in the biopharmaceutical industry, a goal programming extension is presented which accounts for multiple objectives including cost, risk and customer service level satisfaction. The model is applied to long term capacity analysis of a mix of contractors and owned biopharmaceutical manufacturing facilities. In the final sections of this thesis an example of a commercial application of this work is presented, followed by a discussion on related validation issues in the biopharmaceutical industry. The work in this thesis highlighted the benefits of applying mathematical programming techniques for production planning of biopharmaceutical manufacturing facilities, so as to enhance the biopharmaceutical industry's strategic and operational decision-making towards achieving more cost-effective manufacture

    Measuring cost effectiveness of product wheels in food manufacturing

    Get PDF
    Master of AgribusinessDepartment of Agricultural EconomicsKeith HarrisThe focus of this research is to create a production schedule that will increase capacity while staying within business constraints of shelf life and warehouse space in a industrial food processing environment. The results support that product wheels maximize process responsiveness by lengthening production runs, and increasing safety stock inventory. In doing so, it maintains acceptable customer service levels and minimizes overtime costs. This study develops a model that simulates the relevant variables impacting the performance of the operation. The results show significant cost reductions are achieved by eliminating changeovers, increasing line capacity, safety stock levels protect against 99% of order variation, and warehouse space is available to house increased cycle stock and safety stock. Given the results on this line, I recommend expanding the model to other food processing locations within the business to further increase capacity and decrease overtime expenses

    Industrial insights into lot sizing and schedulingmodeling

    Get PDF
    © 2015 Brazilian Operations Research Society. Lot sizing and scheduling by mixed integer programming has been a hot research topic inthe last 20 years. Researchers have been trying to develop stronger formulations, as well as to incorporatereal-world requirements from different applications. This paper illustrates some of these requirements anddemonstrates how small- and big-bucket models have been adapted and extended. Motivation comes fromdifferent industries, especially from process and fast-moving consumer goods industries

    Optimal batch scheduling of a multiproduct dairy process using a combined optimization/constraint programming approach

    Get PDF
    This paper presents the optimal batch scheduling of a multi-product dairy process using an approach that combines optimization and constraint programming techniques. A suitable model describing the subprocesses and production rules is developed allowing to obtain scheduling constraints relating the production process and the machines available together with their relative efficiencies. After the scheduling problem has been formulated, the batch scheduling of a real powder milk/yogurt process is obtained in an optimal manner using the proposed approach with the objective of meeting customers’ deadlines considering the efficiencies/costs of available alternative machines. Results using real consumer orders on some representative scenarios corresponding to the dairy production plant used as a case study are provided. This application shows a formulation closer to the engineering problem description thanks to the constraint-based language that facilitates the adaptation of the optimization objectives and constraints to real applications.Peer ReviewedPostprint (author's final draft

    Bulk wheat transportation and storage problem of public distribution system

    Get PDF
    This research investigates the multi-period multi-modal bulk wheat transportation and storage problem in a two-stage supply chain network of Public Distribution System (PDS). The bulk transportation and storage can significantly curtail the transit and storage losses of food grains, which leads to substantial cost savings. A mixed integer non-linear programming model (MINLP) is developed after studying the Indian wheat supply chain scenario, where the objective is to minimize the transportation, storage and operational cost of the food grain incurred for efficient transfer of wheat from producing states to consuming states. The cost minimization of Indian food grain supply chain is a very complex and challenging problem because of the involvement of the many entities and their constraints such as seasonal procurement, limited scientific storages, varying demand, mode of transportation and vehicle capacity constraints. To address this complex and challenging problem of food grain supply chain, we have proposed the novel variant of Chemical Reaction Optimization (CRO) algorithm which combines the features of CRO and Tabu search (TS) and named it as a hybrid CROTS algorithm (Chemical reaction optimization combined with Tabu Search). The numerous problems with different sizes are solved using the proposed algorithm and obtained results have been compared with CRO. The comparative study reveals that the proposed CROTS algorithm offers a better solution in less computational time than CRO algorithm and the dominance of CROTS algorithm over the CRO algorithm is demonstrated through statistical analysis
    • …
    corecore