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A B S T R A C T   

There needs to be more clarity about when and how the digital twin approach could benefit the food supply 
chains. In this study, we develop and solve an integrated problem of procurement, production, and distribution 
strategies (PPDs) in a medium-scale food processing company. Using the digital twin approach, the model 
considers the industrial symbiosis opportunities between the supplier, manufacturer, and customer using interval 
and sequence variables operating in a constrained environment using mixed-integer linear programming (MILP) 
and agent-based simulation (ABS) methodology. The study optimizes the make-span and lead time, simulta-
neously achieving a higher level of digitalization. The analysis demonstrates how digital twin accelerates supply 
chain productivity by improving makespan time, data redundancy (DR), optimal scheduling plan (OSP), overall 
operations effectiveness (OOE), overall equipment effectiveness (OEE), and capacity utilization. Our findings 
provide compelling evidence that the seamless integration PPDs enormously enhance production flexibility, 
resulting in an excellent service level of 94 %. Managers leverage real-time simulation to accurately estimate the 
replenishment point with minimal lead time, ensuring optimized operations. 

Furthermore, our results demonstrate that implementing PPDs has yielded considerable benefits. Specifically, 
we observed a remarkable 65 % utilization of the pasteurizer and aging vessel and an impressive 97 % utilization 
of the freezer. Moreover, by applying the DT model, the present model found a notable 6 % reduction in backlog, 
further streamlining operations and enhancing efficiency.   

1. Introduction 

In recent years, food supply chains have been an influential area of 
research among practitioners and academicians (Sharma et al., 2023; 
Belhadi et al., 2021; Georgiadis et al., 2020; Gharbi et al., 2022; Mogale 
et al., 2020; Matsumoto et al., 2020). Perishable products account for 
over USD 36 billion of losses in the food and grocery sector, making it 
difficult to ignore the effect of perishability (Gharbi et al., 2022). The 
worldwide food processing industry was valued at USD 143.51 billion in 
2020 and is estimated to reach USD 235.67 billion by 2028. The food 
processing sector in India has an average annual growth rate of 11.18 % 
(MFPI, 2021). In 2019–20, it constituted 9.87 % of the gross value added 

in manufacturing, based on 2011–12 prices. The upsurge in resource 
demand, with an estimated increase of 50 % by 2050, will bring new 
challenges to the processing and transportation companies to manage 
such a vast food supply chain network (Latino et al., 2022; Mogale et al., 
2020; Zhang et al., 2021). 

Efficiently scheduling resources such as equipment, utilities, and 
human resources is essential to satisfy increasing demand and mitigate 
disruptions (Georgiadis et al., 2020; Maheshwari et al., 2023b; 
Maheshwari et al., 2023a). Furthermore, the traditional food supply 
chain has other challenges, including unorganized data, inaccessible 
datasets leading to data redundancy, poor plant utilization, storage 
systems, procurement, and vehicle routing (Florio et al., 2020; Wari and 
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Zhu, 2019). The existing literature indicates that most of the studies on 
food supply chain have addressed the issues of procurement, production, 
and distribution independently, whereas the collaborative approaches 
are limited (Georgiadis et al., 2020; Moons et al., 2017; Liu et al., 2021). 
The extraordinary combinatorial intricacy involved in such plans makes 
it difficult to monitor the integrated production schedule to mitigate 
random demand fluctuations (Georgiadis et al., 2020; Wari and Zhu, 
2019; Florio et al., 2020). Consequently, these constraints limit the food 
supply chain from generating feasible integrated schedules for different 
modules (i.e., procurement, processing, packaging, and delivery). 

Generally, perishable food supply chain managers first calculate the 
weekly and monthly demand using system applications (Georgiadis 
et al., 2020); hence, the data processing interface generates production 
schedules under the plant capacity constraints (Matsumoto et al., 2020; 
Nguyen et al., 2022). Many food supply chains experience frequent 
changeovers, packaging, and delivery challenges when switching from 
one product to another, evident in a multi-product manufacturing sys-
tem (Masruroh et al., 2020). Hence, this context identifies an urgent 
need for an optimal strategy that could work seamlessly, efficiently, and 
qualitatively using valuable information (Tsarouhas, 2020). Recent 
studies confirm that using digital technologies in the food supply chains 
positively impacts optimal operational strategies (Farajpour et al., 
2022). Despite having a plethora of literature on the instrumental role of 
digital technologies in building organizational performance, there still 
needs to be a greater degree of certainty among firms regarding the 
impact of digital technologies on food supply chains (Qader et al., 2022). 

The managerial stance related to technological developments needs 
to be studied to assess the readiness and maturity of emerging digital 
technologies. In recent years, qualitative research findings suggest that 
the upfront technologies of Industry 4.0 (I4T), such as the Internet of 
Things (IoT), cloud computing, artificial intelligence (AI), cyber- 
physical systems (CPS), cognitive computing, and blockchain have the 
potential to solve challenges related to procurement, production, and 
distribution strategies (PPDs) (Agrawal et al., 2022; Hosseini et al., 
2019; Mukhuty et al., 2022; Nguyen et al., 2022; Srivastava et al., 2022; 
Zhang et al., 2021). Núñez-Merino et al. (2022) suggest eight thematic 
areas on I4T that are focused on integrating I4T supply chain flows, 
processes, and activities. Farajpour et al. (2022), Sharma et al. (2022), 
and Maheshwari et al. (2023a) posit that I4T supports building resilient 
supply chains to address uncertainty in supply chains. Nguyen et al. 
(2022), in their review of PPDs, found that digital twin provides a virtual 
representation of an actual process using real-time data based on 
simulation, machine learning, and optimization approaches. They 
confirmed the existence of a significant gap between the theoretical 
procedures and essential digital twin implementation practices. 

Meanwhile, the interest of academics and practitioners in digital 
twins has grown substantially in recent years (Dhar et al., 2022; 
Maheshwari et al., 2022; Maheshwari et al., 2023c). It is argued that 
supply chain practitioners must cut through the hype surrounding these 
technologies and understand the genuinely transformational potential 
for competitive differentiation. The academician's and practitioners' 
perceptions of the PPDs are placed on a spectrum with highly different 
views that cannot be ignored (Hashemi-Amiri et al., 2023). Therefore, 
this domain needs more theoretical consensus advocates for future 
research (Farajpour et al., 2022). Additionally, the existing literature 
emphasizes the development of combined discrete and continuous 
production approaches to mitigate data-related challenges (Carvalho 
et al., 2015; Tsarouhas, 2019; Wari and Zhu, 2019). Georgiadis et al. 
(2020) state that discrete production systems include the packaging and 
transportation of goods, whereas continuous production process in-
cludes pasteurization, dehydration, and freezing. Thus, in this study, 
using digital twin applications, we attempt to develop optimal PPDs for 
food supply chains, and the research objectives are as follows. 

RO1: To develop digital twin-driven real-time planning, monitoring, 
and control strategies for the food supply chain. 

RO2: To analyze the benefits of the digital twin-driven modeling 

approach on the food supply chain performance. 
To achieve our research objectives, the following research questions 

were developed. 
RQ1: What is the present state-state art of digital twin-driven 

approach on PPDs? 
RQ2: How to formulate and execute the mathematical model for 

PPDs under various categorical constraints? To what extent does the 
digital twin-driven approach help to implement real-time planning, 
monitoring, and controlling for the food supply chain? 

The present study is conducted in an Ice cream manufacturing 
company (ICMC) that operates on a complex production schedule 
because of high product variety and shelf life-related issues. The digital 
twin model developed in this study is based on real-time planning, 
monitoring, and controlling in the food supply chain. The methodology 
included mixed-integer linear programming (MILP) to define the PPDs 
with constraint programming (Hashemi-Amiri et al., 2023), followed by 
experimental optimization and agent-based simulation (ABS) on Any-
logic software. The proposed digital twin-driven optimal PPDs divided 
the objective function into procurement, production scheduling, and 
logistics issues. 

The research implications highlight the effectiveness of the digital 
twin-driven model in terms of key performance indicators (KPIs) such as 
reduction in makespan time, data redundancy (DR), optimal scheduling 
plan (OSP), overall operations effectiveness (OOE), overall equipment 
effectiveness (OEE), capacity utilization (CU). 

This is one of the earlier studies integrating the procurement and 
production planning function with the delivery assignment policy, of-
fering enhanced visibility and traceability using a digital twin-driven 
positioning system. For instance, the proposed model reduces order 
waiting and lead time distribution, achieving improved batch capacity 
utilization of 0.98, 0.90, 0.65, and 0.52 for pasteurizers, aging vessels, 
freezers, and packaging lines. At the same time, this is one of the earlier 
dynamic models to describe a multi-period ice cream manufacturing 
process using the dynamic feature of the ABS and provide essential in-
sights. This model assumes significance as the MILP algorithm is 
formulated and deployed with the assistance of the ABS model, and the 
comparative analysis validates the proposed results with a shorter 
computational time. In addition, the results show that digital twin- 
driven modeling ensures a 95 % service level which follows the shelf- 
life variability condition suggested by Gharbi et al. (2022). 

The remainder of the paper is organized as follows. Section 2 dis-
cusses the literature review, while the problem description and research 
methodology are explained in Section 3. The model formulation is 
presented in Section 4, followed by the solution approach, results, and 
analysis in Section 5. Section 6 shows the research implications. Finally, 
we conclude the paper in Section 7. 

2. Literature review 

2.1. Research background 

The real-time planning, monitoring, and controlling of the food 
supply chain impose challenges, such as insignificant analysis, design 
failure, data redundancy, lack of optimization, and collaboration-related 
issues (Matsumoto et al., 2020). In the food supply chain context, Wari 
and Zhu (2019) performed production planning experiments using two 
cases with constraint programming modeling; however, the study was 
restricted to production planning. Some recent studies emphasized the 
need and development of comprehensive PPDs which can take advan-
tage of I4T and enhance supply chain visibility (Hashemi-Amiri et al., 
2023; Liu et al., 2021; Masruroh et al., 2020; Moons et al., 2017). 

The digital twin has been a popular topic among academia and in-
dustry under the umbrella of I4T to ensure supply chain visibility for the 
food supply chain (Maheshwari and Kamble, 2022; Maheshwari et al., 
2023c). The digital twin is a key enabling technology of I4T for realizing 
the paradigm of smart manufacturing (Kamble et al., 2022; Maheshwari 
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and Kamble, 2022; Ricci et al., 2021; Zheng et al., 2021). Recent qual-
itative studies show that digital twin has significant potential to solve 
the complex challenges in the food supply chain (Ricci et al., 2021). For 
instance, Nguyen et al. (2022) proposed a knowledge mapping strategy 
to incorporate the digital twin in the supply chain and listed the digital 
twin's capabilities. Similarly, Kamble et al. (2022) provided the digital 
twin implementation framework based on a data-driven scenario gen-
eration technique, explaining physical, analysis, and application layers 
and endorsing a lack of digital twin-driven experimental studies in the 
supply chain. This analysis further leads to ambiguity on how and when 
the digital twin-driven strategies may benefit the food supply chain 
(Gharbi et al., 2022). 

This paper extracts the relevant literature that connects the missing 
linkage between the digital twin-driven paradigm and PPDs to enable 
real-time planning, monitoring, and control capabilities for the food 
supply chain. Meanwhile, the review of existing literature suggested a 
need for studies on digital twin-driven PPDs for the food supply chain. 
Nevertheless, in such conditions, Gharbi et al. (2022) proposed a 
category-based literature review analysis to connect missing linkages, 
which we adopted in this study. The first category addressed the food 
supply chain's procurement and production modeling strategies, 
whereas the second category represented end-to-end supply chain 
modeling. Finally, we reviewed digital twin technologies and solutions 
based on machine learning approaches. In the preceding sections, we 
synthesize and discuss the current state of the literature and formally 
summarise the literature voids. 

2.1.1. Category I: integrated procurement and production modeling 
strategies 

Product perishability increases the complexity of procurement de-
cisions in the supply chain (Maheshwari et al., 2021). Utama et al. 
(2022) found that the shelf life (random or deterministic) becomes a 
critical factor in mathematical model formulation. The procurement 
practices of raw materials in the food supply chain act as additional 
constraints in discrete and continuous systems because most items are 
highly perishable and deteriorate in intermediate processes, storage, 
and transportation (Carvalho et al., 2015; Maheshwari et al., 2021). 
Hence, procurement and production should be consumed within a 
limited time frame. In a traditional food supply chain, the procurement 
and production lot sizes at various production points are determined 
separately. Therefore, Hosseini et al. (2019) and Nguyen et al. (2022) 
emphasized that integrated procurement and production decisions must 
be simultaneous and address time dynamics, waiting period, customer 
response, and complexity. 

The stochastic demand, massive data set, and inbound-outbound 
resource constraints are mainly responsible for the complexity of the 
food supply chain (Kopanos et al., 2012). Mogale et al. (2020) and 
Upadhyay et al. (2021) identified wide product variety, varying volume, 
rapid change in capacity, packaging line, and retailer-oriented distri-
bution strategy as the critical barriers to the efficient food supply chain. 
Carvalho et al. (2015) stated that experimental batch production pro-
cesses in the food supply chain are sequential and depend on recipes. In 
recent years, multistage-multiproduct flexible scheduling plans and 
computational strategies are gaining importance among researchers 
(Masruroh et al., 2020). Wang et al. (2015) proposed a solution based on 
the Genetic Algorithm (GA) for two-stage production scheduling prob-
lems. The job was selected and coded as genes and scheduled as chro-
mosomes. Furthermore, Wang et al. (2015) proposed integrating a 
branch and bound algorithm for the food supply chain by combining 
heuristics and metaheuristics optimization techniques (Wari and Zhu, 
2019). 

2.1.2. Category II: end-to-end supply chain modeling 
The earlier studies on the food supply chain dealt with multi- 

sequential product process flow, treating them as NP-hard problems 
(Jolai et al., 2012). The NP-hard problem addresses uncertain demand 

and production schedules (monthly, weekly, daily production, and 
sequencing problem) that affects the end-to-end supply chain decisions. 
The scheduling problems in food supply chains are managed through 
central databases, driven by product quality, line productivity, and 
resource mapping (Kopanos et al., 2012). It is observed that linear 
programming-based approaches, particularly MILP, are prominent in 
solving NP-hard problems (Moons et al., 2017). Some researchers have 
developed mathematical models based on MILP to optimize the make- 
span within the ice cream manufacturers (the present paper also deals 
with the ICMC) (Masruroh et al., 2020). Wari and Zhu (2019) developed 
a Constraint Programming (CP) based model for an ice cream manu-
facturer by incorporating various products. Table 1 exhibits the relevant 
literature on the food supply chain. 

Ice cream manufacturers are more interested in saving costs and 
improving service levels in the competitive business environment. 
Moons et al. (2017) suggested that integrating production and distri-
bution scheduling operations can be an approach to enhance overall 
performance. Therefore, integrated PPDs are considered critical stra-
tegic decision-making processes in the food supply chain (Georgiadis 
et al., 2020; Jraisat et al., 2021). Although these supply chain functions 
are interrelated, they are solved sequentially (Masruroh et al., 2020); the 
uncoordinated approach can lead to suboptimal solutions. In practice, 
PPDs are often unreliable without the implications of digital technolo-
gies and interfaces. Recent studies show that digital twin has the po-
tential to achieve ground-breaking improvements in complex scheduling 
issues and fix vulnerabilities (Maheshwari et al., 2023c). 

2.1.3. Category III: digital twin-driven solution approach to assessing real- 
time planning, monitoring, and controlling for the integrated PPDs 

Kamble et al. (2022) defined the digital twin as “a virtual model and 
comprehensive depiction of the system used to understand the perfor-
mance parameters, facilitate processes, and effectively enhance value- 
added activities.” Physical Internet (PI) is an open global logistics sys-
tem of hyperconnected components for increased efficiency and sus-
tainability. The digital twin, a physical object's virtual representation, is 
well-perceived as a critical driver in developing a PI-based supply chain. 
Ji et al. (2019) performed three experiments to solve PI-related issues. 
The first set consists of performance evaluation-related experiments, the 
second set consists of cost parameter sensitivity-related experiments, 
and the third consists of investigations related to the service level, 
maximum backlog period, and vehicle type. The finding suggested that 
as the service level increases, the performance advantages of digital 
twin-aligned PI increase significantly. 

The ISO 23247 standard defines the principles and requirements for 
developing a digital twin in the manufacturing domain. It provides a 
framework to support the creation of a digital twin of visual 
manufacturing elements, including personnel, equipment, materials, 
manufacturing processes, facilities, environment, products, and sup-
porting documents (ISO, 2021). Nguyen et al. (2022) imparted two main 
research streams in digital twin-driven AI-based approaches: (1) moni-
toring and forecasting and (2) defect detection. In the existing literature, 
monitoring and forecasting objectives are commonly achieved by MILP 
formulation for multi-echelon scenarios (Mogale et al., 2020). Hosseini 
et al. (2019) modeled the defect rate of raw materials and reviewed the 
available quantitative methods. 

However, multi-agent systems have become a promising tool for 
solving integrated AI-based supply chain problems in the last several 
years. The agents are used to emulate the behavior of each of the entities 
embedded in the model. Meng et al. (2017) argue that when using a 
multi-agent approach to model SC, providing a communication platform 
for information exchange through coordination or negotiation protocol 
is essential. Ivanov (2017a) used AnyLogic multi-method simulation 
software to reduce the ripple effect of integrating production and dis-
tribution scheduling complexity. Furthermore, none of the studies 
formulated digital twin-driven PPDs using MILP and solved them by 
agent-based simulation. 
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Table 1 
Summary of the literature review on the food supply chain.  

Reference Targeted function Problem formulation Software used Characteristics Methodological approach 

CP MILP B&B DA GA SA ICA ACO TS PSO ABC H OA 

Wari and Zhu 
(2019) 

Makespan Ice cream processing facility IBM CP Optimizer Dynamic market 
conditions & procurement 

√             

Wari and Zhu 
(2016). 

Optimize Makespan time Multi-week scheduling IBM ILOG CPLEX Stochastic optimization  √   √         

Wang et al. (2015) Optimize Makespan time Two-stage scheduling MATLAB Applicable only for a win- 
win situation     

√       √  

Carvalho et al. 
(2015) 

Batch scheduling Raw materials planning along 
with scheduling 

GAMS software +
CPLEX solver 

change-overs Time  √            

Jolai et al. (2012). Optimize Makespan time A no-wait flexible flow shop 
scheduling 

MATLAB Sequence-dependent setup      √ √       

Gunn et al. (2014). Hierarchical Production 
Scheduling 

Daily production model Gurobi Optimizer+
CPLEX 

Stochastic optimization  √            

Georgiadis et al. 
(2020) 

Optimize make-span time Ice cream processing facility GAMS software +
CPLEX solver 

Applicable for predictive 
schedule    

√       √   

Kopanos et al. 
(2012) 

Optimize make-span time Sequencing decisions GAMS software +
CPLEX solver 

batches sequencing and 
procurement  

√            

Matsumoto et al. 
(2020). 

Batch Processing No-wait flow-shop system Analytical approach Applicable for predictive 
schedule         

√     

Van Elzakker et al. 
(2012) 

Optimize make-span time State and Resource Task 
Networking Model 

Gurobi Optimizer Applicable only to small- 
scale problem  

√            

Hecker et al. 
(2014). 

Optimize make-span time Bakery items scheduling MATLAB Multi-objective 
optimization     

√   √  √    

Meng et al. 
(2017). 

Optimize competitive 
performance 

Intermediate Storage JAVA Related period model, 
stochastic demand  

√           √ 

Kopanos et al. 
(2011) 

Optimize make-span time Multi-product multi-stage semi 
contiguous processes 

GAMS software +
CPLEX solver 

Applicable only to small- 
scale problem  

√            

Mogale et al. 
(2020) 

Sustainable food grain sc Two-stage Flexible Flow Shop 
Scheduling 

MATLAB Bi-objective approach  √   √     √    

Moons et al. 
(2017). 

Optimal Integrating 
production scheduling 

Multi-product multi-stage 
semicontinuous processes 

Analytical approach Applicable only to small- 
scale problem             

√ 

Tsarouhas (2019) Optimize Makespan time Hybrid flow shop model OPL Studio Stochastic optimization  √          √  
Bongers and 

Bakker (2007) 
De-bottlenecking Optimization of feasible 

schedules 
INFOR software Solve only Small-Scale 

Problems  
√            

Tsarouhas (2020) Maintain & Manage 
packing lines 

Ice Cream processing facility MINITAB software Applicable only to small- 
scale problem 

√             

NOTES: CP: constraint programming, MILP: Mixed-integer linear programming. B&B: Branch and bound. GA: Genetic algorithm. SA: Simulated annealing. ICA: Imperialist Competitive Algorithm. ACO: Ant colony 
optimization. TS: Tabu search. PSO: particle swarm optimization. ABC: artificial bee colony. H: Heuristic. OA: Other's approach, DA: Decomposition algorithm. 
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2.2. Research gaps and challenges 

The application of digital twin-driven approaches has been limited in 
the food supply chain. Furthermore, the food supply chain is associated 
with various operational constraints, parameters, and variables. Thus, 
this paper narrows down the research area and reduces the complexity 
by considering the ICMC as a food supply chain example. Therefore, we 
included more ice cream manufacturing-related studies for review using 
the snowballing approach (Aldrighetti et al., 2021). 

First, we have studied the advancement of literature in ice cream 
manufacturing regarding PPDs and the implications of a digital twin. 
The initial analysis confirmed the scarcity of integrated PPD studies in 
the ice cream industry context (Carvalho et al., 2015; Gunn et al., 2014; 
Tsarouhas, 2020; Wari and Zhu, 2019). Bongers and Bakker (2007) were 
the first to develop the production schedule for medium-scale ice cream 
manufacturers and confirmed the need for digital technologies to 
enhance the overall capacity. The results of their study endorse product 
variety and random seasonal demand as the main limitations of the 
traditional production approach. 

Most studies incorporate the constant procurement process to 
manage scheduling problems but need improvement in describing 
innovative business systems (Hosseini et al., 2019; Mogale et al., 2020). 
Consequently, the models must comprise specific parameters and vari-
ables to enable thinking and decision-making around critical strategic 
questions and consequences (Dai et al., 2020). Utama et al. (2022) stated 
that the development of integrated procurement and production model 
should be considered the world's most complex issue in modeling. Most 
studies are deterministic, and there is a need to develop a digital twin- 
driven AI-based approach to address the dynamic demand situations. 

The IPP strategies are mainly applied to minimize costs instead of the 
supply chain network responsiveness and profit maximization. Ji et al. 
(2019) stated that the existing integrated production and distribution 
modeling approach mainly relies on traditional supply chain networks. 
The multi-echelon hierarchical framework comprises only upstream 
(processing plants and distribution centers) and downstream facilities 
(wholesalers, retailers) (Tsarouhas, 2020; Gharbi et al., 2022). Hence, 
the food supply chain often optimizes a specific component of a supply 
chain network, ignoring the synergy between the streams. For instance, 
varieties of ice cream products are moved from company to customer via 
wholesalers and retailers. This independency induces the fragmentation 
of logistics issues, lack of visibility, and several inefficiencies such as a 
high unloaded ratio, demand backlog, a quiet repose to stochastic de-
mand, and deterioration due to the pressure of high-delivery frequency 
to mitigate the random customer demand. 

Apart from a production point of view, location-routing problems 
have emerged as a significant challenge for the food supply chain. 
Aldrighetti et al. (2021) and Liu et al. (2021) identified that location- 
routing and closed-loop logistics networks have received little atten-
tion in the literature. Nguyen et al. (2022) considered the vehicle 
routing problem (VRP) a significant element of the supply chain network 
responsiveness. Visualizing, evaluating, and integrating the PPDs re-
quires an efficient platform to ensure real-time planning, monitoring, 
and controlling (Tao et al., 2019). The existing studies show that I4T- 
based digital twins can solve complex PPDs. In this study, we develop 
digital twin-driven PPDs for the food supply chain to ensure real-time 
planning, monitoring, and controlling. 

3. Problem description and research methodology 

3.1. Problem description 

This section defines the problem of the traditional food supply chain 
involving the operational and technological points of view. The con-
ventional operating method followed the sequential approach- “Defini-
tion-Model Development-Algorithm-Design-Optimization and Control” 
(Wari and Zhu, 2019). Due to limited capabilities, traditional 

operational methods constrain the measurement of the system's real- 
time performance (Tsarouhas, 2020). Therefore, the solution approach 
should involve strategic mapping based on real-time planning, moni-
toring, and controlling. 

3.1.1. Operational point of view 
The ICMC operates on a complex scheduling plan, a wider variety 

with mixed volumes, and a threat of a higher deterioration rate (Tsar-
ouhas, 2020). Using INFOR software, Bongers and Bakker (2007) dis-
cussed manufacturing complexity (packing lines, minimum and 
maximum standing time in buffers), material flow, and baseline opera-
tions. The main limitations of their study were i) unable to predict 
feasible schedules, ii) lack of visibility, and iii) the assumption of zero 
cleaning time. Kopanos et al. (2012) used novel mixed-integer pro-
gramming to ensure interaction among the different departments of the 
production facility, while the research implications suggested two hours 
of cleaning time before shutting down the packing lines. Van Elzakker 
et al. (2012) incorporated the MILP model, and the results indicate that 
computational efficiency was increased by dedicating time intervals to 
product types. 

Wari and Zhu (2016 and 2019) overcame the scheduling problem by 
addressing fill alternative, vessel, freeze, and packaging constraints, but 
procurement and delivery variables were assumed to be constant. 
Change-over-time, procurement, and delivery strategy directly affect the 
system's optimality (Tsarouhas, 2020; Georgiadis et al., 2020). 

Furthermore, Wari and Zhu (2016) developed a MILP method for a 
production scheduling problem with a constant procurement rate and 
infinite capacity; hence the model failed to predict actual scheduling and 
optimization cost due to randomization in procurement strategy. 
Meanwhile, the uniform production rate is not feasible in stochastic 
market conditions and is responsible for backlog or buffer stock 
conditions. 

Meanwhile, the studies still need to integrate the PPDs using digital 
twin and AI-based approaches to ensure real-time planning, monitoring, 
and controlling. Because of critical operations, few questions are 
considered to ensure real-time planning, monitoring, and control in the 
food supply chain.  

• How to manage the procurement, production, and distribution to 
mitigate the random demand under the production constraints? 

• What will be the significance of the MILP model and ABS-based so-
lution approach in the context of the digital twin? 

3.1.2. Technological point of view 
Maintaining the quality and texture of ice cream during storage and 

transportation is a challenge as it is a perishable product. There is a need 
for efficient and cost-effective production methods to meet the 
increasing product demand. Keeping up with rapidly advancing tech-
nology and incorporating operation innovations is challenging for food 
processors. 

However, Bi et al. (2021) emphasized that IoT and AI-based ap-
proaches can enhance strategic mapping in virtual modeling platforms 
by building libraries and databases for real-time simulation. To achieve 
this, it is necessary to integrate the dimensions of geometry, function-
ality, operations, execution, and behavior in ice cream manufacturing 
resource modeling. Leng et al. (2021) recommend using a digital twin- 
based design to validate system performance through semi-physical 
simulation, which provides a hardware-in-the-loop approach. Anylogic 
software offers an additional advantage of an agent-based feature that 
supports multi-agent reinforcement learning to understand the logical 
sequence of data (Ivanov, 2017a). Despite these advancements, there 
need to be more technical studies in this area, and several critical 
technological perspectives and questions must be addressed to ensure 
real-time planning, monitoring, and control in the food supply chain. 
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• How to build the logical interface between the integrated PPDs 
system?  

• How to manage the production schedule for the variety of products?  
• What will be the performance criteria to measure the advantage of 

the digital twin? 

3.2. Research methodology 

The proposed study develops a novel approach to integrate PPDs for 
the food supply chain to leverage digital twin-driven practices. Fig. 1 
represents the various steps involved in the proposed research meth-
odology. The step-1 investigates the problem identification, while step 2 
demonstrates the review method to enlist the relevant literature. Step 3 
elaborates on the problem formulation and execution using MILP and 
ABS. Furthermore, digital twin-driven experimental optimization con-
nects the missing linkages between the PPDs using digital twins in the 
food supply chain. Finally, step 4 focused on the descriptive and pre-
scriptive analysis of research findings. 

This study provides an exhaustive category-based literature review 
(See- Section 2) that explores and identifies the present state of the art 
and research gap. Table 1 summarizes the various methodological ap-
proaches published for food processing companies. The analysis shows 
that most of the research was conducted in the procurement, production, 
or distribution domain compared to integrated PPDs in the context of the 
food supply chain. The recent papers emphasize the need for a novel 
methodology for PPDs in food supply chains to mitigate the limitations 
of different modeling methods. 

For instance, Georgiadis et al. (2020) used the decomposition 
method for scheduling in a food processing company. However, this 
method works on the occurrence of the same seasonal pattern 
throughout the entire time series assumption. Tsarouhas (2019) 
executed a heuristic approach for OEE evaluation for an automated ice 
cream production line, but it could not deliver an optimal solution for 
the sequence-dependent changeover. To reduce this ambiguity, Wari 
and Zhu (2019) provided a constraint programming method for ice 
cream product; however, combined PPDs remains in their infancy stage. 
The visibility and real-time planning, monitoring, and control of the 
operational processes are among the enormous challenging aspects 
recognized by researchers and practitioners. 

As a novel methodological approach, this paper presents the execu-
tion of the end-to-end operational analysis in an ICMC to incorporate the 
PPDs. However, the proposed MILP mathematical model is an extension 
of Wari and Zhu (2019), whereas the theoretical framework follows the 

approach of Ricci et al. (2021). Finally, the proposed MILP model is 
solved by ABS with consideration of constrained programming in Any-
logic software (Ivanov, 2017b; Tao et al., 2019; ISO, 2021). 

Ice cream production follows a hybrid flow shop process from the 
scheduling point of view (Carvalho et al., 2015; Tsarouhas, 2020). Ac-
cording to Moons et al. (2017), a company has a flow shop process if a 
product or a job undergoes a series of processing steps on machines 
(Wang et al., 2015). However, if a production step consists of several 
parallel machines, this production step is referred to as a stage (Van 
Elzakker et al., 2012). 

In this study, we follow the sequential approach. First, we have 
developed the MILP model integrating the PPDs. The second stage 
deployed the model into the graphical editor of Anylogic to define the 
standardized structure for the digital twin-driven model (Ivanov, 
2017b). We have focused on effectively integrating advanced technol-
ogies such as AI, ML, and IoT into procurement, production, and dis-
tribution strategies. The integration is achieved through optimal 
coordination and combining various environmental factors, agents, ac-
tions, states, and feedback. We initially gathered industry procurement, 
production, and distribution data and trained it using a multi-agent 
reinforcement model to accomplish this. Leveraging the detailed and 
realistic simulation environments provided by the AnyLogic interface, 
which is particularly suitable for multi-agent modeling, we developed a 
DT model (Ivanov, 2017b). The AnyLogic interface allowed us to code 
and model all the production process-related equipment and their 
maintenance schedules. In the present case study, ICMC utilized AWS 
IoT Core, a managed cloud service, to securely connect and manage IoT 
devices, which served as input for the AnyLogic model. Consequently, 
we successfully created PPDs. 

Additionally, we have described this model as a system of Structure- 
of-Procurement (SoP), Structure-of-Process-Scheduling (SoPS), 
Structure-of-Delivery (SoD), and Structure-of-Resource (SoR) planning 
(Leng et al., 2021). The stochastic optimal theory is applied to generate 
the random variables. Therefore, random variables create random con-
straints to the defined objective functions. 

Next, the optimal makespan time and profit maximization objective 
was modeled using spatial dependence. Therefore, the AI-based 
approach is a directed graph Gg = (SoPg, SoPSg,SoDg,Eg). Eg = eg

1, eg
2,

…eg
n, represents the relationships among different agents. 
The simulation model represents the procurement, production, and 

distribution system, including the agents involved (e.g., suppliers, 
manufacturers, distributors), behaviors, and interactions. Based on the 
evaluated strategies, the proposed model simulates the behavior of the 

Fig. 1. Proposed research methodology.  
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system change over time. The model's results analyze the system's 
behavior and the strategies' impact on critical metrics such as makespan 
time, data redundancy, optimal scheduling plan, operations effective-
ness, equipment effectiveness, and capacity utilization. 

A detailed conceptual framework for digital twin-based PPDs was 
structured as follows:  

• Inputs: This section included the data inputs used to create the digital 
twin, such as market demand forecasts, production capacity, and 
procurement data.  

• Digital twin creation: This section involved the development of a 
digital twin that accurately reflects the procurement, production, 
and distribution processes. The digital twin is created using data 
from the inputs section and advanced technologies, such as machine 
learning and simulation.  

• Optimization: In this section, the digital twin is used to optimize the 
procurement, production, and distribution processes. This involved 
identifying the most cost-effective procurement sources, optimizing 
production schedules, and finding the most efficient distribution 
routes.  

• Performance Evaluation: This section evaluated the performance of 
the procurement, production, and distribution processes based on 
various metrics, such as overall equipment effectiveness, overall 
operations effectiveness, and capacity utilization. 

• Feedback Loop: This section incorporated the results of the perfor-
mance evaluation back into the digital twin, thus, creating a 
continuous feedback loop that allows the procurement, production, 
and distribution processes to be continually improved and 
optimized.  

• Outputs: The final section of the conceptual framework included the 
digital twin results for procurement, production, and distribution 
strategy. These outputs included improved operational efficiency, 
reduced costs, and a lower carbon footprint. 

This conceptual framework provides a high-level overview of the 
critical components and processes of a digital twin-based procurement, 
production, and distribution strategy. It can be a starting point for 
further research and development. 

4. Model formulation 

This section formed the mathematical model for PPDs. Initially, we 
have described the prerequisites for policies followed by model 
formulation. 

4.1. Model prerequisites 

4.1.1. Procurement 
In this section, we begin with a description of the procurement policy 

for the ICMC. Utama et al. (2022) broadly categorized procurement 
stakeholders into two groups. The first group addressed internal stake-
holders, including the budget owners, legal professionals, and the pur-
chasing department, while the second group had suppliers. To map the 
procurement policies, the suppliers for milk, additives, milk powder, 
sugar or non-sugar sweetener, emulsifiers, flavors, colors, dry fruits, 
eggs, and other ingredients, were considered the primary external 
stakeholders for ICMC. Wari and Zhu (2019) assumed a constant sup-
plier procurement policy with infinite capacity. We overcame this un-
realistic assumption and considered the supplier's point of view. 

In the model, we assumed that (m) quantity of raw material is pur-
chased from the supplier s′(s′ ∈ S′) in the period (t) denoted by PurQms′t . 
We have formed this policy to satisfy the definition proposed by Dai 
et al. (2020). Some prerequisites are the following -  

i. Initial inventory levels are zero.  

ii. Suppliers and intermediate inventory facilities have limited 
supply and storage capacity for each period. 

iii. The ICMC has independent customer segments, and no compe-
tition exists among them. 

iv. The conversion rate of raw material to the final product trans-
forms customer demand into raw material demand, shifting de-
mands backward to periods (production lead time).  

v. The vehicles have restricted capacity, and the number of vehicles 
is unlimited. 

4.1.2. Production 
Fig. 2 represents the typical layout of the ICMC involving a three- 

stage semicontinuous process from a production point of view. The 
first stage is the blending and pasteurization process to prepare a 
pathogen-protected homogenous mixture at around 68◦C (Carvalho 
et al., 2015; Georgiadis et al., 2020). In the second stage, the pasteurized 
mixture is cooled to 4◦C (aging and freezing process) (Wari and Zhu, 
2016). Jolai et al. (2012) defined various temperature ranges for the 
freezing process. The connection between the aging vessel and the 
freezer depends on the product variety; for example, in Fig. 2, freezers 
one to four are succeeding stages of the aging vessel v01 to v03, 
explaining that the same mixture family fulfills the product mixed type 
strategy requirement. 

In contrast, the freezer is dedicated to a specific product. Tsarouhas 
(2020) enhanced the literature by stabilizing the link between the 
product mix and packaging line with the freezing and aging process. In 
stage three, the abbreviations (A, B, C…J) and L1 to L12 represent the 
product type to be produced and the allocation of the packaging line, 
respectively. 

We assume the ice cream processing rate is (x) kilograms per hour 
(kg/h). Moreover, this rate feeds all the available aging vessels at a given 
time in one round. The shelf life of the mixture in the intermediate stage 
is 72 h (Kopanos et al., 2011). The following are some prerequisites for 
production policies -  

i. No capacity constraints in intermediate storage units: There are 
various intermediate storage units between different stages of ice 
cream production, e.g., aging vessels, aseptic tanks, pasteurization 
tanks, and fermentation vessels. These prerequisites allow the plant 
to work on the designed capacity for maximum output; this gives the 
manager additional freedom to schedule the continuous process.  

ii. Always maintain a higher production level and lower changeover 
rate: Masruroh et al. (2020) illustrated the impact of change over 
time in a multi-product manufacturing system and described 
rapid sequence-dependent changeover shift reduces system per-
formance. To keep a higher production level, the manager should 
switch the strategy from one product type to another (Georgiadis 
et al., 2020; Gunn et al., 2014).  

iii. The number of products and size should be predefined: Gunn 
et al. (2014) suggested that the plant's higher efficiency depends 
on the man-machine system's effective engagement and ware-
house utilization strategy. However, different seasonality depicts 
the behavior of the retailers and customers. For example, the 
demand forecast is high during summer, so estimating prior batch 
sizes can mitigate the seasonality. 

4.1.3. Distribution 
Masruroh et al. (2020) computed the effectiveness of integrated 

production and distribution planning in a multi-plant, multi-retailer, 
multi-period, and multi-item model while considering demand as a 
variable. In this model, we incorporated the products' demand as a 
prerequisite variable. Liu et al. (2020) provided a hybrid multi-level 
optimization framework for integrated production scheduling and 
vehicle routing with flexible departure times. They emphasized the need 

P. Maheshwari et al.                                                                                                                                                                                                                           



Technological Forecasting & Social Change 195 (2023) 122799

8

for customer data and location to mitigate customer expectations. This 
paper considers the customer's historical data and location coordinates 
as prerequisites. Ji et al. (2019) integrated a model for the production- 
inventory-distribution problem in the physical internet. Therefore, we 
determine variable transportation costs by accounting for the distance 
between the nodes, the product type, and product flow as a prerequisite. 
This prerequisite will help assess interconnected logistics performance 
using AI and simulation (El Raoui et al., 2021). 

4.2. Mathematical model 

We deployed the MILP technique to solve and represent combina-
torial problems (Mogale et al., 2020). Hence, it optimized the PPDs for 
multi-week production scheduling plans and established linkage be-
tween procurement constraints, change overtime decisions, starts/stops 
interval constraints, and week clean-up sessions with the VRP model, 
which received less attention in the current literature. Different exper-
imental runs are implemented on Anylogic Software to achieve the 
targeted objectives. The notation used in this study is presented in 
Table 2. 

Before formulating the problem, we fixed some assignments and 
assumptions as follows- 

Assumptions:  

i. Let us assume the sequencing of the processing stage is s1, 
s2, and s3,where sϵS denotes a process, aging/storage, and packing 
stage, respectively (Wari and Zhu, 2019).  

ii. Quantity of batches ∇minimum
j that completes the demand of each item 

i is given by Eq. (1) (Tsarouhas, 2019). 

∇minimum
j =

ζi

μmax
j

where j ϵ (Ji ∩ Js2 ) (1)    

iii. Aging vessel filling timing σfill
i for the product, i is calculated by 

Eq. (2) (Gunn et al., 2014). 

σfill
i =

μmax
j

ρij′
where jϵ(Ji ∩ Js2 )&j′ϵ(Ji ∩ Js1 ) (2)   

Fig. 2. Food processing Industry (Ice cream) facility.  
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iv. Emptying time of each aging vessel σempt
i for the product, i is given 

by Eq. (3) (Carvalho et al., 2015). 

σempt
i =

μmax
j

ρij′
where jϵ(Ji ∩ Js2 )&j′ϵ

(
Ji ∩ Js3

)
(3)  

where j′ ∈ js1, j′ ∈ js2&j′ ∈ js3 correspond to the process line, aging ves-
sels, and packaging line. The expression for each problem instance for 
the available production horizon (ω) is given by Eq. (4), as suggested by 
Kopanos et al. (2012) and Georgiadis et al. (2020). Where j ∈ Match[s] :
s = 3. 

ω = 1.2

⎡

⎣δminimum
j +

(
αminimum

j − 1
)

γj +
minimum

i

(
∑

iϵIj

τminimum
i ∇minimum

i

)⎤

⎦ (4)  

4.2.1. Decision variables 
To formulate the various constraint relation summarizing the pro-

cessing restrictions of ice cream production, we define two types of 
decision variables, i.e., continuous and binary. Continuous variables 
include completion times of product Cibs and C0ibs, the starting times Libs 
and L0 ibs, and the waiting or standing periods Wibs and W0 ibs when 
product i of batch b proceeded in stage s (with the index ibs) and 

Table 2 
Notations used in the study.  

Particular Notation Description 

Sets b,b′,b” ∈ B Product's batches 
j ∈ J Processing Units 
i, i′,∈ I Types of the product 
s1, s2, s3,where s ∈ S Stages of various process 
Itransfer ∈ I Product kinds moved from the previous workweek. 

Subsets Iij Product (i) manufactured in unit j where Iij is not related to (i) 
ISuc
i The current successor of product i 

ISucc
i Successors of product i 

IPred
i The predecessor of product i. 

ISP
i A product that stakes a similar packaging line with the product i. 

Ji Units j is responsible for the processing of product i 
J2i Units j is responsible for processing product i in stage number two. 
Matchs Units j that processes in stage s 
Jlast

ij Product i, which proceeds in the last unit of j 
Important parameters αmin

j Minimum quantity of items allocated to packaging line j 

∇min
j or ∇minimum

j Minimum quantity of batches of item i. 
Decision variables Cibs Completion time (when i. product of batch b proceeds in stages. 

C0 ibs Completion time for product i. of batch b transferred in stage s. 
CMax Objective function total make-span time 
CWeekibs Processing completion period (weekly) for product i. of batch b in stage s 
Libs Starting period for stage s of batch b of product i 
L0 ibs Starting time when product i. part of batch b transferred from stage s 
Wibs Waiting or standing period for stage s of batch b of product i. 
W0 ibs Waiting or standing period (for stage s to transfer batch b of product i) 
PurQms′t The quantity of raw material (m) purchased from supplier s′(s′ ∈ S′) in the period t 
Xibi′b′ Binary decision variable 1 

Condition (if batch b of item i succeed before batch b’ of item i’) 
Yibsj Binary decision variable 1 

Condition (if batch b of ice cream product i is sequenced in stage s and is manufactured in unit j) 
yms′t Binary variable; 1, if raw material m purchased from supplier s′(s′ ∈ S′) in period t; 0 otherwise 

Other operating 
Parameters 

WeekNumber Processing week 
WeekNumberlength Available production horizon 
Lms′ The lead time of procuring raw material (m) from the supplier s′(s′ ∈ S′). 
δminimum

j Minimum standing time (for packaging line j) 

σfill
i 

Time taken by aging vessel for a product i(Pouring or filling period) 

σempty
i Time taken by aging vessel for the product i(Emptying period) 

σag
i Time taken byproduct (i) in the aging vessel 

ρi j Product processing rate at packaging line j 
μmax

i Aging vessel (maximum capacity) 
λi The overall quantity of aging vessels to produce products i 
ω Production horizon 
θi Preference of item i at packaging unit j operation 
ζi Demand for the product i 
πlife

i 
The shelf life of the item during production 

IdleGammai Change over timing while products are at idle condition (Sequence-dependent Approach) 
γminimum

i Changeover timing in packaging units j (Minimum sequence-dependent between packages) 
λii′j Changeover timing for the product i and i ‘in unit j (sequence dependency) 

∇Itransfermin
i or∇Itransferminimum

i 
Minimum quantity of batches transferred (product i from the preceding week in the schedule). 

VRP A Set of retailers/Customers 
P Nodes, with P = {0}∪N 
R Arcs, with R = {C, D} ∈ p2: C ∕= D 
TCD Travelling cost of over the arc {C, D} ∈ R 
Q Goods carrying capacity of the vehicle 
qi Quantity of items have to be supplied to retailer / Customer i∈N 
xCD the path goes from location C to D 
Cu Cumulative demand  
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transferred in stage s (with the index 0ibs). Fig. 3 presents the sequence 
of time decision variables. We include CMax and CWeekibs as the total make- 
span time and the total processing completion period (weeks) for 
product i of batch b in stage s and PurQms′t as the quantity of raw material 
(m) purchased from the supplier s′(s′ ∈ S′) in the period t. Three binary 
decision variables were used in our model. First, Xibi′b′ Indicates whether 
batch b of product i is achieved before batch b’ of item i’. Second, Yibsj 

Indicates whether batch b of product i is sequenced in stage s and 
manufactured in unit j. Third, yms′t Indicates whether the raw material m 
is purchased from the supplier s′(s′ ∈ S′) in the period t. All the binary 
variables are coded as 1 if the associated condition is satisfied and 
0 otherwise. 

4.2.2. Objective function 
The proposed mathematical model minimizes the make-span for the 

maximum quantity of batches by incorporating PPDs. Hence, the 
objective target function can be formulated as 

Minimize (Vessel assignment by maximizing Product mix (i) and 
maximizing the minimum number of batches (b). 

Mini Cmax = [PurQms′t +Cibs +(TCD*xCD) ]∀i (5)  

4.2.3. Integration of constraints 
Six categories of constraints are formulated to solve the objective 

function. These constraints are mainly based on production and pro-
curement decisions, batches' assignment to vessels, the priority level of 
batches, packaging issues, and warehouse alongside VRP. The first 
category of constraints identifies the production & procurement deci-
sion, which describes the availability of purchased raw material and 
delivery in period t; Eq. (6) deals with the quantity of raw material (m) 
purchased from supplier s′(s′ ∈ S′) in the period t. 
∑

s′∈S′

PurQms′t − Lms′ =
∑

i∈I
(umi × pQit)∀m, t = 1 − Lms′………,T (6)  

where Lms′: Lead Time between procurement and supply s′(s′ ∈ S′), pQit: 
For period t production quantity of item i, umi: Amount of raw material m 
consumed during a unit quantity of product i. 

t ∈ T set of the time. 

Bn.yms′t ≥ PurQms′t∀s′ ∈ S′,m, t (7) 

Eq. (7) defines the ordering constraints of raw material, which 

suppose that all demands are allocated to single production sites. Where 
Bn big number, yms′t binary variable coded as 1, if raw material m pur-
chase from supplier s′(s′ ∈ S′) in period t and 0 otherwise. 

The second category of constraints identifies each product's 
completion cycle (i) batch (b) from beginning to end and creates the 
processing chain. The constraints define the interval variables, 
sequencing, and real-time conditions. Sequencing and real-time con-
straints-imposed restrictions on a system's temporal action stipulate that 
an event S2 must occur before event S1. 

Let us assume the execution period Cibs for stage s of targeted batch b 
of item i. 

Cibs = Libs + σfill
i for all value of i b ≤ ∇min

i , stage (s) = 1 (8)  

where ∇min
i : Defined minimum quantity of batches of product (i), 

Therefore, the overall execution period for production can be 
expressed as follows: 

Cibs = Libs + σfill
i + σag

i +Wibs + σempty
i ∀i b ≤ ∇min

i , s = 2 (9)  

where Libs is the execution period for particular batch (b) of the item (i) 
in stage s, σag

i : is the execution period for the product (i) in an aging 
vessel, σfill

i and σempty
i represent the pouring and emptying time for item i 

in an aging vessel. 
However, Wibs the waiting Time (Standing time in an aging vessel) 

should be less than the product's shelf life or item (i) 

Wibs ≤ πlife
i − σag

i for all values of i, b ≤ ∇minimum
i , s = 2 (10)  

where πlife
i : Shelf life of the product (i) 

Libs + σempty
i = Cibs∀i b ≤ ∇min

i , s = 3 (11) 

The following constraints are related to the time between two 
consecutive processing stages, as shown in Fig. 3. 

Libs = Libs− 1∀i b ≤ ∇min
i , Stage (s) = 2 (12)  

Cibs = Cibs− 1∀i b ≤ ∇min
i , Stage (s) = 3 (13) 

The following constraints define the time taken by batches in pack-
aging stage 3. We assume that the targeted batches are identical. 

Cibs ≤ Lib+1s∀i b ≤ ∇minimum
i , s = 3 (14) 

The overall completion time for movement/transformation of batch 

Fig. 3. The decision-making process of product batch b of item i.  
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(b) of the product (i) in the aging process, i.e., stage two, can be 
formulated as follows; 

C0 ibs = W0 ibs + σempty
i ∀i b ≤ ∇Itransferminimum

i , s = 2 : i in Itransfer (15) 

The overall completion time for movement/transformation of the 
product (i) of batch (b) in the packaging process, i.e., stage three, is- 

C0 ibs = L0 ibs + σempty
i ∀i, b ≤ ∇Itransferminimum

i , Stage (s) = 3 : i in Itransfer
(16) 

Assume that the third stage is a continuous process. Hence, 

C0 ibs = C0 ibs− 1∀i b ≤ ∇Itransferminimum
i , s = 3 : i in Itransfer (17) 

Let us assume that the consecutive arrangement of moving products 
in stage three can be expressed as: 

C0 ibs = L0 ib+1s∀i b ≤ ∇Itransferminimum
i − 1, s = 3 : i in Itransfer (18) 

The third category of constraints targets the assignment of batches to 
vessels. These conditions assign every batch to a specific vessel in a 
particular manner (Wari and Zhu, 2016). 
∑

Yibsj = 1∀i, i ∈ I b ≤ ∇minimum
i , s = 2 (19)  

Yibsj = 1 for all value of i, i ∈ Itransfer, b = 1, s = 2, j = first(J2i) (20)  

Yibsj = Yib+1sj+1 for all value of i, i ∈ Itransfer, b ≤ ∇Itransferminimum
i − 2, s

= 2, j ∈ J2i : ∇Itransfermin
i ≤ ∇minimum

i

(21)  

Yibsj = Yib+1sj+1∀i, i ∈ Itransfer, b ≤ ∇minimum
i − 1, s = 2, j ∈ J2i

: ∇Itransferminimum
i > ∇minimum

i (22) 

If the aging vessels' assignment is continuous, the following con-
straints, Eqs. (23) to (25), do not define a gap between the last batch of 
the transferred items and the first batch of the current week. 

Yibsj = Yi′b′sj+1∀i, i ∈ Itransfer, b =
Min
i

(
∇Itransferminimum

i − 1,∇minimum
i

)
, i′

∈ Last(IPredi), b′ = ∇Itransferminimum
i′ , s = 2, j ∈ J2i : card(IPredi)〉0

(23)  

Yibsj = Yib+sj+1∀i, i ∈ Itransfer, b = ∇Itransferminimum
i − 1, s = 2, j ∈ J2i

: ∇Itransferminimum
i ≤ ∇minimum

i , card(IPredi) = 0 (24)  

Yibsj = Yi′b′sj+1∀i, i ∈ Itransfer, b = ∇Itransfermin
i − 1, i′ ∈ ISuci, b′

= ∇Itransfermin
i′ , s = 2, j ∈ J2i : ∇Itransfermin

i − 1 ≤ ∇min
i , card(IPredi)

= 0
(25) 

To address the processing and packaging stage, we used two con-
straints, Eqs. (26) and (27) define the cyclic sequence arrangement for 
all the products of the previous week to the present week and the present 
week to the following week. They arrange the scheduling of products in 
the current and succeeding weeks. These constraints provide the cor-
relation between the allocations of successive products. 

Let us consider two successive products i and i’, where i represents 
the final product of the batch 

(
b = ∇min

i
)

and i’ represents the first 
product of the next successive batch, b’ i′ ∈ ISuci. We can express that: 

Yibsj = Yi′b′sj+1∀i, i ∈ I, b = ∇minimum
i , i′ ∈ ISuci, b′∇Itransferminimum

i′ , stage (s)

= 2, j ∈ J2i

(26)  

Yibsj = Yib+1sj+1∀i, i ∈ I,∇Itransferminimum
i ≤ b ≤ ∇min

i , stage (s) = 2, j ∈ J2i

(27) 

The fourth category of constraints works on the priority level of 
batches. These constraints rearrange the product for the machining 
process. 

Li′b′s ≥ Cibs + γii′ − ω(1 − Xibi′b′ ) for all value of i, b ≤ ∇minimum
i , i′ ∈ I, b′

≤ ∇minimum
i′ , s = 1, j ∈ Ji ∩ Ji′ ∩ Match[s] : i < i′

(28)  

Li′b′s ≥ Ci′b′s + γi′i − ω(Xibi′b′ ) for all value i, b ≤ ∇minimum
i , i′ ∕∈ I, b′

≤ ∇minimum
i′ , s = 1, j ∈ Ji ∩ Ji′ ∩ Match[s] : i < i′ (29)  

Li′b′s ≥ Cibs + γii′∀i, b ≤ ∇minimum
i , i′ ∈ ISP

i , b′ ≤ ∇minimum
i′ , s(stage) ∕= 2, j(unit)

∈ Ji ∩ Ji′ ∩ Match[s] : θI < θi′

(30)  

Li′b′s ≥ Cibs + γii′ − ω
(
2 − Yibsj − Yi′b′sj

)
for all value of i, b ≤ ∇minimum

i i′

∈ ISP
i , b′ ≤ ∇minimum

i′ , s = 2, j ∈ Ji ∩ Ji′ ∩ Match[s] : θI < θi′ (31)  

Lib′s ≥ Cibs∀i, b ≤ ∇min
i , b′ ≤ ∇minimum

i′ , stage (s) = 2, j(unit) ∈ Ji ∩ Match[s]

: b(batch) < b′

(32)  

Li′b′s ≥ Cibs − ω
(
2 − Yibsj − Yi′b′sj

)
∀i, b ≤ ∇mini

i , b′ ≤ ∇mini
i′ , stage (s) = 2, j(unit)

∈ Ji ∩ Ji′ ∩ Match[s] : b(batch) < b′

(33)  

Li′b′s = C0 ibs + γii′ − ω
(
2 − Yibsj − Yi′b′sj

)
∀i, b ≤ ∇Itransfermin

i − 1, i′

∈ I,∇minimum
i′ ≤ b′ ≤ ∇minimum

i′ , stage (s) = 2, j(unit) ∈ Ji ∩ Match[s] : i

∈ Itransfer
(34)  

Li′b′s = C0 ibs + γii′, ∀i, b ≤ ∇Itransferminimum
i − 1, i′ ∈ I,∇minimum

i′ ≤ b′

≤ ∇min
i′ , stage (s) = 3, j ∈ Ji ∩ Match[s] : i ∈ Itransfer (35) 

Moreover, we have included miscellaneous constraints in the fifth 
group, as presented in Eqs. (36) to (43). 

CMax ≥ Cibs∀i, b ≤ ∇minimum
i , s ≥ 2 (36)  

CMax ≥ δminimum
j +

(
αminimum

j − 1
)

γj +
minimum

j
∑

i∈Ij

σfill
i ∇minimum

i ∀j ∈ Match[s]

: stage(s) = 3
(37)  

Yibsj ∈ {0, 1} for all value of i, b ≤ ∇minimum
i , stage (s) = 2, j(unit)

∈ Ji ∩ Match[s] (38)  

Xibi′b′ based on {0, 1}∀i b ≤ ∇minimum
i , i′ ∈ ISP

I , b ≤ ∇minimum
i : where i < i′

(39)  

Libs,Cibs,C0 ibs ≥ 0∀i, b ≤ ∇minimum
i , s ∈ S (40)  

Wibs,W0 ibs ≥ 0∀i, b ≤ ∇minimum
i , s = 2 (41)  

Libs ≤ (n*Workweeklength)&Cibs ≥ ((n*Workweeklength) − IdleGammai )

Libs ≥ (n)*Workweeklength, (for all value of i), j ∈ Js, i

∈ I,∇Itransferiminimum ≤ b ≤ ∇minimum
i′ , stage (s) = 1, n ∈ WeekNumber

(42)  
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CWeekibs ≤

(
Cibs

Workweeklength − IdleGammai

)

+ 1, for all value of i, i ∈ I, j

∈ J, s ∈ S  

CWeekibs ≥

(
Cibs

Workweeklength − IdleGammai

)

(43)  

for all value of i,where i ∈ I&Unit (j) ∈ J, stage(s) ∈ S {set of stage (s) }

The sixth category of constraints is related to VRP and included to 
optimize product delivery. We use capacitated VRP, in which each 
retailer has some specific demand that the visit must fulfill. We assume a 
similar capacitated transporting medium starts at C and ends at D with a 
centralized depot. The main objective of this part is to minimize the 
overall transportation time for a fixed vehicle's cost. In this model, the 
demands are linked with arcs/edges; hence, Q, the capacity of the 
vehicle, fulfills the demand of n customers subjected to: 

A = {1, 2, 3, 4…. n} is the customers' locations. 

xCD =

{
1, the path goes from location C to D

0,Otherwise
∑

C∈A,C∕=D

xCD = 1 D ∈ A

(44)  
∑

D∈A,D∕=C

xCD = 1 C ∈ A (45)  

CuC +CuD +(n − 1)xCD ≤ (n − 2) Where C ∈ A{1},D ∈ A{1},C ∕= D  

5. Solution approach, results, and analysis 

5.1. Solution approach 

Real-time planning, monitoring, and control strategies for the food 
supply chain are essential to ensure food products' efficient and effective 
flow from producers to consumers. These strategies help to minimize 
waste and improve the quality of food products by tracking the entire 
supply chain process in real-time. They also help to mitigate risks, 
ensure compliance with food safety regulations, and make informed 
decisions to meet the demands of consumers. ICMC can improve its 
overall cold supply chain efficiency and maintain customer satisfaction 
by implementing real-time planning, monitoring, and control strategies. 

Therefore, our RO1 and RO2 deal with developing real-time plan-
ning, monitoring, and controlling the food supply chain. Ivanov (2017a) 
suggested the agent-based simulation method as a power solution 
approach to solving complex problems and justified it as the best solu-
tion method for several reasons: (1) Flexibility: Agent-based simulation 
allows for the modeling of complex systems with multiple interacting 
components such as procurement, production, and distribution. This 
approach can handle a wide variety of food supply chain problems. (2) 
Representation of Autonomy: In the agent-based simulation, the agents 
are modeled as autonomous entities that can make decisions based on 
their characteristics, behaviors, and objectives. This representation of 
autonomy is essential in modeling complex systems where agent in-
teractions can produce emergent behavior that cannot be predicted by 
modeling the system. (3) Exploratory Capability: The iterative process of 
food supply chain modeling, simulation, and analysis allow for 
exploring a wide range of scenarios and conditions, including changes in 
demand, supply chain disruptions, and variations in production and 
distribution processes. This enables researchers to identify optimization 
opportunities and evaluate trade-offs between different strategies. (4) 
Repeatability: Agent-based simulation provides a controlled and 
repeatable way to study complex systems, enabling researchers to vali-
date their models and results and to compare different scenarios and 
strategies. (5) Integration with Real-World Data: Agent-based simula-
tion can be integrated with real-world data, validating models and 

results and exploring how changes in the real world might affect the 
system. 

Overall, the flexibility, representation of autonomy, exploratory 
capability, repeatability, and integration with real-world data make 
agent-based simulation a valuable method for solving complex problems 
in various fields, including economics, social sciences, and engineering. 

Designing efficient solutions hinges on the supply chain's capability 
to handle data accumulated through the product's lifecycle and inte-
grated PPDs (Bertoni and Bertoni, 2022). Previous studies to understand 
the evaluation of makespan time and product mixed concentrate on pure 
production issues. At the same time, very little is known about digital 
twin applications for developing and innovating integrated PPDs pur-
poses in the food supply chain. Therefore, using a digital twin, our so-
lution approach combines numerical methods, control resource theory, 
agent-based simulation modeling, MILP, design of experiment, and 
response surface methodology. On the other hand, our study has suc-
cessfully coupled stochastic optimal control with optimization and 
simulation methods to resolve multiple complex MILP decision-making 
problems. Hence, numerous control problems have been used with the 
application of AI, such as in Gharbi et al. (2022) and Ji et al. (2019). The 
process begins with the MILP formulation of the optimal PPDs based on 
optimal control theory. 

Next, a coupled simulation-optimization approach is used to model 
and optimize the PPDs parameters (El Raoui et al., 2021; El Raoui et al., 
2020). The primary operations steps are as follows: 

First, MILP model formulation- The MILP model incorporates inte-
grated PPDs structure using stochastic optimal theory. The proposed 
PPDs strategy is expressed by Eqs. (1)–(45) and is characterized by 
specific monitoring and controlling parameters representing the 
different hedging points at each stage of model formulations. 

The second stage deployed the digital twin model. This step created 
the digital twin, representing the actual configuration and functional 
units of the ICMC. However, Ivanov (2017b) suggested three digital twin 
creation strategies: resource-centric, process-centric, and hybrid crea-
tion. We have followed hybrid creation with a footprint synchronization 
strategy to map all the parameters, variables, and constraints (Aldrigh-
etti et al., 2021). The proposed virtual model is designed in such a way as 
to reflect physical objects accurately; hence it is known as component 
manager-based aggregation (Utama et al., 2022). 

Ivanov (2017a) states that AnyLogic software provides distinctive 
multi-paradigm design and modeling facilities and encapsulates pa-
rameters, ports, equations, variables, timers, animations, process charts, 
and analysis. In addition, AnyLogic is an object-oriented design and 
modeling tool that formulate the problem in JAVA coding. Despite that, 
AnyLogic enables customized JAVA coding for complex problems. The 
geographical mapping makes the real-life situation much easier than the 
other packages. 

Therefore, we used an Anylogic-based digital twin engine to imple-
ment the operation module's creation, synchronization, and utilization 
procedures. During the simulation, we used the inbuilt library of Any-
logic that collects the configuration information of resources for a work 
center's accurate and rapid simulation. It consists of three parts – base 
model, metadata, and logic. 

In the third stage, we created the agents using the Anylogic inbuild 
palette facility to map PPDs. Finally, the MILP-based ABS model con-
sisted of autonomous decision-making entities. The following are the 
agents of the developed model.  

• Procurement agents: responsible for sourcing and purchasing raw 
materials, components, and supplies. 

• Production agents: responsible for the complete ice cream produc-
tion process. These consisted of quality control agents accountable 
for monitoring and maintaining product quality standards during the 
changeover.  

• Distribution agents: responsible for the temporary storage of final 
products, transportation, and delivery of finished goods to 
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customers, thus, coordinating and managing the flow of products, 
information, and finances within the food supply chain. 

5.2. Results and analysis 

The ICMC mainly relies on high seasonal demand (Wari and Zhu, 
2019). Therefore, it is highly required to establish strong and effective 
linkages between the procurement, production, and delivery strategy 
decision. Fig. 4 represents the integrated PPDs using set, subset, pa-
rameters, and variables shown in Table 2 and appendix. The additional 
experimental data are as follows- Number of aging vessels = 2, the ca-
pacity of Aging vessels 1 and 2 = 8000 kg/h, working time = 5 days 
working schedule with 24 h per day. We assume the last two hours of the 
week are allocated for clean-up, considering the lead time between 
procurement and supply and the amount of raw material (m) consumed 
during producing a unit quantity of product (i). Table 3 shows the 
problem instance (the numbers are in 1000 Kg) and processing param-
eter data. Table 4 represents the processing and packaging line 
changeover time for the MILP model. 

However, multiple items could be processed in a single or multi-line 
using different fixtures; a line must produce a suitable product with a 
specific quantity to achieve maximum benefit during the seasonal de-
mand. Masruroh et al. (2020) suggested that integrated production 
scheduling and distribution allocation for multi-products considering 
sequence-dependent setups, are essential for the supply chain perfor-
mance assessment. Utama et al. (2022) investigated the effect of inte-
grated procurement and production strategy in the supply chain 
network. To achieve the target objective and analyze the digital twin 
effect on the system's performance, Fig. 4 implements the digital twin 
idea. In contrast, Fig. 5 shows the corresponding results in terms of KPIs. 

We analyzed all three agents (procurement_stragegy, production_-
stragegy, and delivery_stragegy) represented in this section. Integration 
of MILP and ABS allows for more realistic and comprehensive modeling 
of complex systems and optimizing their performance while considering 
agents' behavior. 

This section elaborates on the practical application of this integration 
in the food supply chain, where MILP can be used to optimize inventory 
levels and production schedules. In contrast, ABS is used to model 
agents' behavior, allowing a more comprehensive and realistic repre-
sentation of the food supply chain and the ability to make better- 
informed decisions. 

5.2.1. Digital twin-based procurement analysis 
In the Anylogic model, we assumed procurement demand is variable 

and fulfilled by the suppliers with constant lead time. The z-value is 1.65 
for a service level of 94 %. In the Anylogic model, we created a 
“Stockout” event that computes the end of the planning horizon. 

Furthermore, the analysis shows that if the inventory level reaches 
the replenishment point, a new order is generated by the ICMC. In 
contrast, the new order arrives in two or three days defined in the 

“LeadTime” parameter. The event “NewOrder” used the historical data 
by incorporating reinforcement learning when the logical variable 
“OrderReceived” value is “false.” Hence no more orders are released to 
the suppliers. The experimental optimization and simulation result for 
replenishment point for 100 units and mean lead time is one day without 
deviation. 

5.2.2. Digital twin-based production analysis 
The Anylogic model created a processing chain for the product's 

completion cycle (i) and batch (b) from beginning to end. It incorporates 
pasteurizers, aging vessels, freezer production, and packaging line 
blocks. The obvious implementation of product strategy in Anylogic 
reinforcement learning helps maintain, for each action, compounding 
records of all the rewards associated with the action that has followed 
the selection of the action. Therefore, the action value during the 
execution period is estimated and shown in Table 5. 

The results show a reduction in makespan time because the collab-
orative approach linked the delivery data with the source while the 
source originated the demand corresponding to the suppliers. The data 
redundancy is restricted by limiting erasure coding of production data at 
the sink and sink 2; therefore, both the data are maintained in the cluster 
for source coding. Hence, the digital twin increases the overall opera-
tions and equipment effectiveness with optimal capacity utilization. 

The conditional operator ensures the value should be less than 
enclosed in the event. Whereas the uniform distribution strategy pro-
vides the processing of identical batches for similar items, this process is 
shown as a continuous process in Fig. 4. Fig. 5(a) shows the flow time of 
the WIP inventory in the production process. The graph shows that the 
digital twin-driven strategy limits the successor and predecessor 
changeover time. Since a similar product can be produced on the same 
line, the “spilt” logic ensures the operations of product lines 1 and 2. The 
concavity in the graph after 80-unit completion shows the downtime in 
the production line due to changing flexure on the same line. 

Fig. 5(b) represents the pasteurizer, aging vessel, freezer, and pack-
aging line utilization as 1, 0.65, 0.97, and 0.49, respectively, on a scale 
of 1. Since the pasteurization and freezer are evaluated as the most 
occupied assets of the ICMC, they should require continuous monitoring 
for higher performance. Fig. 5(c) shows the production utilities' capacity 
utilization. The batch capacity utilization of the pasteurizer, aging 
vessel, freezer, and packaging line were 0.98,0.90,0.65, and 0.52, 
respectively. 

The DT-based model can reduce order waiting and lead time distri-
bution on the operational side, as shown in Figs. 5(d) and (e). The flow 
time distribution is represented in Fig. 5(f). The analysis indicates that 
the predecessor and successor of one batch to another required 29.91 
min to change the setup for the upcoming batch. In comparison, the 
mean capacity utilization depends on the number of waiting orders. The 
same holds “true” for the flow and lead times. These results align with 
theoretical concepts of waiting for line theory and Little's Law, while 
Fig. 5(g) depicts these dependencies. The analysis shows that the mean 

Fig. 4. Digital twin logic representation of ICMC.  
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WIP inventory was 8000 kgs, the mean capacity utilization was 65 %, 
and the average flow time was 30 days. We can observe from the visu-
alization that the orders have long wait times at the pasteurizer and 
freezer. The reasons are twofold. First, the incoming flow should be 
smaller than the machine's capacity. Second, the processing time at the 
freezer is twice as high as the case at pasteurizers, aging vessels, freezers, 
and packaging lines. Therefore, the freezer is a bottleneck shown in 
Fig. 5(i) regarding wait time in WIP. Fig. 5(j) represents the reduction in 
backlog orders. 

5.2.3. Digital twin-based distribution analysis 
This model incorporates the “delivery strategy” external agent to 

analyze the distribution strategy. As delivery agents, we defined the 
customers with the specific demand of each item category. The agent 
“delivery strategy” works on queuing rule first in first out (FIFO) coded 
with replenishment rule {if (InventoryLevel ≤ ReplenishmentPoint &&! 
OrderReceived) then the order is delivered to customer follows binary 
logic expressed as (NewOrder.restart(LeadTime)) and OrderReceived =
true. Meanwhile, the output of this agent updates the inventory as 
InvControl_x_CD. The logical model integrated “sink” and “sink1” are 
used as temporary warehouses connected with the agent “truck.” 

6. Research implications 

This section summarizes the practical and theoretical insights ob-
tained from the study. The findings impart the managerial implications 
related to four major areas, i.e., why to use digital twin-driven inte-
grated PPDs models for the food supply chain, how to improve the KPIs, 
the supply chain visibility at the network level, and what proactive and 
reactive measures should be taken to implement digital twin. 

The digital twin has been a revolutionary concept concerning 
decision-making based on cumulative and real-time data measurements. 
Nguyen et al. (2022) broadened the simulation scope to a digital twin, 
focusing on management-level decision-making issues. However, using 
simulation models as digital twin represents an alternative to commer-
cial digital solutions, which usually involve heavy investments and 
limited scope. Leng et al. (2021) specify that simulation technology is 
the core of running or creating a digital twin and confirms an effective 
closed loop between the digital twin and the corresponding physical 
entity. The theoretical implications of the proposed research works are 
as follows-  

• This study presents a category-based literature review analysis of the 
food supply chain, focusing on integrating procurement and pro-
duction planning with delivery assignment policies and positioning 

Table 3 
Problem instance and processing parameters data.  

Product mix Problem instance Aging time 
(hours) 

Min vesselsize (Kg.) Filling rate (Kg/Hr) Empty rate 
(Kg/Hr) 

Filling time (hours) Empty time (hours) 

A  48  96  32  48  80  1  8000  4500  1750  2  5 
B  16  16  80  96  16  3  8000  4500  1500  2  5 
C  64  72  32  64  80  3  8000  4500  1000  1  7 
D  32  24  112  96  160  0  8000  4500  1500  2  5 
E  48  68  124  124  120  2  8000  4500  1750  2  5  

Table 4 
Processing and packaging line changeover time (in hours).  

Processing changeover times (in hours) Packaging line changeover times (in 
hours)  

A B C D E A B C D E 

A  0  1  1  1  1  0  1  1  1  1 
B  1  0  1  1  1  0  0  1  1  1 
C  1  1  0  1  1  0  0  0  1  1 
D  1  1  1  0  1  0  0  0  0  1 
E  1  1  1  1  0  0  0  0  0  0  

Fig. 5. Digital twin-based PPDs results.  

Table 5 
Execution period and estimation.  

Problem instances Total batch size Make span 
(in hrs) 

Run time 
(in seconds)  

1  60  150  20  
2  80  182  39  
3  100  210  45  
4  120  249  55  
5  140  274  63  
6  160  338  70  
7  180  356  110  
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to stabilize the Digital Twin-driven system linkages. The theoretical 
framework encompasses crucial strategic elements, including flow 
time, utilization of pasteurizers, aging vessels, freezers, and pack-
aging lines, capacity assessment, lead time distribution, flow time 
distribution, WIP assessment, and ICMC throughput.  

• The study highlights the evolution of ice cream manufacturing and 
sequential operations over time. Table 1 aids researchers in evalu-
ating the available methodologies, tools, and techniques for 
resolving the multi-objective functions of the food processing com-
pany, particularly ice cream manufacturing. Additionally, we pro-
vide a logical evaluation for practitioners to integrate procurement 
and delivery strategies.  

• From the practitioner's point of view, we design the ABS algorithm to 
obtain high-quality solutions for MILP formulation with a short 
computational time, and a lower bound is developed to evaluate the 
solution quality.  

• The analysis shows that digital twin-driven strategies are efficient 
when the VRP price and service levels are relatively higher. 
Furthermore, the food supply chain should follow the heterogeneous 
fleet for maximum benefit and club the higher demanding customers 
in one cluster with their more selective product priority. 

Finally, the significance of the proposed MILP-based ABS model for a 
food supply chain can be numerous. For instance:  

• Optimization of production processes: A MILP-based ABS model can 
help the ice cream manufacturers to optimize their production pro-
cesses by providing a virtual environment to test different strategies, 
such as production schedules, resource allocation, and inventory 
management, and evaluate their impact on key performance in-
dicators like throughput, production efficiency, and resource 
utilization.  

• Predictive analytics: Our model provides valuable insights. Including 
pasteurization, aging vessels, freezer production, and packaging line 
stages offers a comprehensive view of the process. Integrating 
product strategy in Anylogic and utilizing reinforcement learning 
ensures accurate recording and monitoring of each action, which can 
be used to make informed decisions about capacity planning and 
resource investment.  

• Improved food supply chain management: The model can be used to 
simulate and analyze the performance of the ice cream 
manufacturing supply chain, including the behavior of suppliers, 
distributors, and other agents, to identify bottlenecks and improve 
overall supply chain efficiency.  

• Decision-making support: An agent-based simulation model can 
provide a platform for decision-makers to test different scenarios and 
evaluate their decisions' impact on the company's overall 
performance.  

• Risk mitigation: By simulating potential successor and predecessor 
scenarios of products, the model can help the company assess the risk 
and prepare for potential challenges, thereby mitigating the risk of 
business interruption. 

A digital twin helps to reduce data redundancy, lack of plant utili-
zation, unorganized datasets, and complexity in procurement, produc-
tion, and distribution processes by providing a centralized and 
integrated view of the entire system. By combining data from various 
sources into a single digital model, a digital twin eliminates the need for 
duplicate data storage and ensures that all stakeholders have access to 
the same information. This helps to reduce confusion and improve 
decision-making by providing a single source of truth for all parties 
involved in the food supply chain. 

Furthermore, a digital twin can also help to improve plant utilization 
by providing real-time insights into the state of the facilities, enabling 
better planning and optimization. This can lead to increased efficiency 
and reduced waste. Additionally, a digital twin can help streamline the 

scheduling process by providing a clear view of the system's current 
status and helping to identify potential bottlenecks and delays. 

In procurement, a digital twin can help improve decision-making by 
providing real-time data on the availability of raw materials and the 
demand for finished products. This allows for better planning and 
optimization of procurement processes, reducing waste and increasing 
efficiency. 

Finally, a digital twin can also help simplify the production and 
distribution processes by providing real-time data on the system's status 
and enabling better planning and optimization. This can improve effi-
ciency, reduce waste, and improve customer satisfaction. 

The results show that an agent-based simulation model can benefit 
an ice cream manufacturing company by providing a virtual environ-
ment for experimentation and decision-making, enabling more informed 
and efficient operations and mitigating risks. 

7. Conclusion, limitations, and future scope 

Academia has been very responsive in investigating the potential of 
the digital twin in the food supply chain. Thus, numerous frameworks 
have been reported in this field. However, many are theoretical and lack 
real-life implementation case studies. Furthermore, the existing studies 
are primarily based on the perception of academicians and industry 
experts. 

Mukhuty et al. (2022) reported surplus revenue of 110 billion euros 
in the European industry through digitizing goods and services. 
McKinsey & Company has predicted a 45 % to 55 % jump in productivity 
using digital technology automation technologies (Mukhuty et al., 
2022). 

The proposed model addresses challenges and potential opportu-
nities within the food supply chain at all four stages, including raw 
material suppliers, component suppliers, manufacturers, and distribu-
tion centers, with the ultimate objective of maximizing supply chain 
gain, as suggested by Masruroh et al. (2020). The proposed model op-
timizes integrated PPDs, including data inconsistency, procurement, 
storage facility, and process scheduling. The digital twin-driven system 
demonstrated real-time data visibility to develop a MILP model with 
ABS methodology. The results optimized the makespan time, procure-
ment, and delivery decision plan. 

The proposed study can provide benefits to managers and academics 
through the following findings-  

• Integration of advanced technologies: There is a need for research to 
integrate advanced technologies such as artificial intelligence, ma-
chine learning, and the IoT into procurement, production, and dis-
tribution strategies to improve efficiency and decision-making (Ji 
et al., 2019; Liu et al., 2021; Masruroh et al., 2020; Hashemi-Amiri 
et al., 2023). Therefore, our study presents the integration of 
advanced technologies, such as digital twins, IoT, artificial intelli-
gence, and integrated computing, to address complex procurement, 
production, and distribution challenges. The proposed study 
demonstrated the virtual replica of optimal PPDs. 

• Green food supply chain management: Research is needed to inves-
tigate how PPDs can be made more environmentally sustainable and 
socially responsible. Our study helps practitioners to eliminate waste 
with the integration of optimal VRP.  

• Collaborative approaches: Our innovative research methodology will 
aid researchers in integrating the MILP with ABS models. 

• Dynamic and uncertain environments: The proposed model demon-
strated the dynamic capability of a digital twin. In dynamic and 
uncertain environments, a digital twin can model and analyze po-
tential outcomes and scenarios, identify potential risks and vulner-
abilities, and optimize real-time performance. This allows 
organizations to make informed decisions, anticipate and respond to 
environmental changes, and improve efficiency and effectiveness. 
Additionally, the digital twin can also be used for the predictive 
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scheduling of products and to develop contingency plans for unex-
pected events.  

• Performance evaluation and metrics: The development of robust 
metrics for evaluating the performance of integrated PPDs is a crucial 
area of research. Our study aimed to address this by demonstrating 
the performance evaluation and metrics, including data redundancy, 
optimal scheduling plan, operational effectiveness, equipment 
effectiveness, and capacity utilization. These metrics aim to compare 
different approaches' efficacy and provide insights into the optimal 
strategies for integrated procurement, production, and distribution.  

• Cross-functional integration: The proposed results revealed that the 
digital twin catalyzes cross-functional integration by providing a 
platform for various functions to collaborate, communicate, and 
make informed decisions, leading to improved performance and 
enhanced operational efficiency. By integrating real-time data from 
different sources and simulating the behavior of the physical object 
or system, the digital twin provides a comprehensive view of the 
entire system, allowing for better coordination and alignment across 
different functions. 

Despite the numerous advantages of a digital twin-based food supply 
chain, our study has some limitations. The main limitations of the pro-
posed digital twin-driven model are the following- First, the integrated 
PPDs model uses a fixed procurement and delivery process; hence the 
group of suppliers at procurement and cluster of customers at the de-
livery end are specified. The dynamic procurement and delivery strategy 
may convert the existing model into complex mixed integer non-linear 
programming that requires a meta-heuristic approach. Second, the 
current production schedule is based on available data since reinforce-
ment learning requires many sales to execute the co-relationship be-
tween product demand and supply. Therefore, a larger dataset can help 
to produce an efficient production schedule. Third, the proposed ABS 
model is highly dependent on the initial conditions and internal struc-
ture of the MILP model resulting in the need for risk-based analysis for 
supplier quality. 

As DT technology develops rapidly, there needs to be standardized 
frameworks and regulations addressing data security and privacy con-
cerns in DT applications (Bertoni and Bertoni, 2022). DT demands 
extensive data collection and integration from various sources. This can 
increase the risk of data breaches, where unauthorized individuals or 
entities gain access to sensitive information. Meanwhile, Breaches can 
lead to privacy violations, identity theft, or other malicious activities. 
The ownership and control of data in a DT ecosystem can be complex, 
involving multiple stakeholders, including procurement, production, 
and distribution. Determining who has access to and control over the 
data and its associated rights can be challenging and may result in 
conflicts or privacy issues (Bi et al., 2021). For instance, The Identity 
Management Institute estimates that 75 % of digital twins will be inte-
grated with at least five endpoints by 2023. The massive amount of data 
collected from numerous endpoints poses a nightmare regarding po-
tential security breaches. Real-time planning, monitoring, and control in 
food supply chains involve collecting and sharing sensitive data, 
including information about products, suppliers, customers, and logis-
tics. Ensuring the privacy of this data is critical to prevent unauthorized 
access or misuse. Safeguarding the integrity and confidentiality of the 
data is essential to maintain the trust and security of the system. 
Ensuring seamless integration and interoperability among these diverse 
data sources can be challenging, mainly when dealing with different 
data formats, protocols, or standards. 

Additionally, the availability of resources and budget constraints can 
limit the implementation. However, in specific regions or remote areas, 
access to reliable connectivity may be limited, affecting the effectiveness 
of digital twin implementations. Finally, scaling up digital twins to cover 
large-scale supply chains while maintaining real-time capabilities can be 
challenging. 

Researchers encourage future research to consider more dynamic 

procurement and delivery strategy elements. The digital twin-driven 
modeling enhances the supply chain visibility of the food supply 
chain. For instance, Kamble et al. (2022) highlighted the future ques-
tions in the context of a digital twin for practitioners and researchers 
about software, hardware, and hybrid solutions, vendor behavior, dig-
ital twin architectures, and cybersecurity. 

Our research can be extended to integrate internal (operational) and 
external (market) data to create a more comprehensive procurement 
digital twin. One approach could be developing more advanced algo-
rithms to analyze large datasets and predict market trends. Another 
option could be integrating real-time data feeds from multiple sources to 
provide a more up-to-date view of market conditions. These are just a 
few possibilities, and we look forward to exploring this further in future 
work. 
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