53 research outputs found

    On the tailoring of CAST-32A certification guidance to real COTS multicore architectures

    Get PDF
    The use of Commercial Off-The-Shelf (COTS) multicores in real-time industry is on the rise due to multicores' potential performance increase and energy reduction. Yet, the unpredictable impact on timing of contention in shared hardware resources challenges certification. Furthermore, most safety certification standards target single-core architectures and do not provide explicit guidance for multicore processors. Recently, however, CAST-32A has been presented providing guidance for software planning, development and verification in multicores. In this paper, from a theoretical level, we provide a detailed review of CAST-32A objectives and the difficulty of reaching them under current COTS multicore design trends; at experimental level, we assess the difficulties of the application of CAST-32A to a real multicore processor, the NXP P4080.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal grant RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Understanding Shared Memory Bank Access Interference in Multi-Core Avionics

    Get PDF
    Deployment of multi-core platforms in safety-critical applications requires reliable estimation of worst-case response time (WCRT) for critical processes. Determination of WCRT needs to accurately estimate and measure the interferences arising from multiple processes and multiple cores. Earlier works have proposed frameworks in which CPU, shared cache, and shared memory (DRAM) interferences can be estimated using some application and platform-dependent parameters. In this work we examine a recent work in which single core equivalent (SCE) worst case execution time is used as a basis for deriving WCRT. We describe the specific requirements in an avionics context including the sharing of memory banks by multiple processes on multiple cores, and adapt the SCE framework to account for them. We present the needed adaptations to a real-time operating system to enforce the requirements, and present a methodology for validating the theoretical WCRT through measurements on the resulting platform. The work reveals that the framework indeed creates a (pessimistic) bound on the WCRT. It also discloses that the maximum interference for memory accesses does not arise when all cores share the same memory bank

    High-Integrity Performance Monitoring Units in Automotive Chips for Reliable Timing V&V

    Get PDF
    As software continues to control more system-critical functions in cars, its timing is becoming an integral element in functional safety. Timing validation and verification (V&V) assesses softwares end-to-end timing measurements against given budgets. The advent of multicore processors with massive resource sharing reduces the significance of end-to-end execution times for timing V&V and requires reasoning on (worst-case) access delays on contention-prone hardware resources. While Performance Monitoring Units (PMU) support this finer-grained reasoning, their design has never been a prime consideration in high-performance processors - where automotive-chips PMU implementations descend from - since PMU does not directly affect performance or reliability. To meet PMUs instrumental importance for timing V&V, we advocate for PMUs in automotive chips that explicitly track activities related to worst-case (rather than average) softwares behavior, are recognized as an ISO-26262 mandatory high-integrity hardware service, and are accompanied with detailed documentation that enables their effective use to derive reliable timing estimatesThis work has also been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Enrico Mezzet has been partially supported by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva-Incorporación postdoctoral fellowship number IJCI-2016- 27396.Peer ReviewedPostprint (author's final draft

    MC2: Multicore and Cache Analysis via Deterministic and Probabilistic Jitter Bounding

    Get PDF
    In critical domains, reliable software execution is increasingly involving aspects related to the timing dimension. This is due to the advent of high-performance (complex) hardware, used to provide the rising levels of guaranteed performance needed in those domains. Caches and multicores are two of the hardware features that have the potential to significantly reduce WCET estimates, yet they pose new challenges on current-practice measurement-based timing analysis (MBTA) approaches. In this paper we propose MC2, a technique for multilevel-cache multicores that combines deterministic and probabilistic jitter-bounding approaches to reliably handle both the variability in execution time generated by caches and the contention in accessing shared hardware resources. We evaluate MC2 on a COTS quad-core LEON-based board and our initial results show how it effectively captures cache and multicore contention in pWCET estimates with respect to actual observed values.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Carles Hernández is jointly funded by the MINECO and FEDER funds through grant TIN2014-60404-JIN.Peer ReviewedPostprint (author's final draft

    Tracing Hardware Monitors in the GR712RC Multicore Platform: Challenges and Lessons Learnt from a Space Case Study

    Get PDF
    The demand for increased computing performance is driving industry in critical-embedded systems (CES) domains, e.g. space, towards the use of multicores processors. Multicores, however, pose several challenges that must be addressed before their safe adoption in critical embedded domains. One of the prominent challenges is software timing analysis, a fundamental step in the verification and validation process. Monitoring and profiling solutions, traditionally used for debugging and optimization, are increasingly exploited for software timing in multicores. In particular, hardware event monitors related to requests to shared hardware resources are building block to assess and restraining multicore interference. Modern timing analysis techniques build on event monitors to track and control the contention tasks can generate each other in a multicore platform. In this paper we look into the hardware profiling problem from an industrial perspective and address both methodological and practical problems when monitoring a multicore application. We assess pros and cons of several profiling and tracing solutions, showing that several aspects need to be taken into account while considering the appropriate mechanism to collect and extract the profiling information from a multicore COTS platform. We address the profiling problem on a representative COTS platform for the aerospace domain to find that the availability of directly-accessible hardware counters is not a given, and it may be necessary to the develop specific tools that capture the needs of both the user’s and the timing analysis technique requirements. We report challenges in developing an event monitor tracing tool that works for bare-metal and RTEMS configurations and show the accuracy of the developed tool-set in profiling a real aerospace application. We also show how the profiling tools can be exploited, together with handcrafted benchmarks, to characterize the application behavior in terms of multicore timing interference.This work has been partially supported by a collaboration agreement between Thales Research and the Barcelona Supercomputing Center, and the European Research Council (ERC) under the EU’s Horizon 2020 research and innovation programme (grant agreement No. 772773). MINECO partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC2013-14717).Peer ReviewedPostprint (published version

    Modelling multicore contention on the AURIXTM TC27x

    Get PDF
    Multicores are becoming ubiquitous in automotive. Yet, the expected benefits on integration are challenged by multicore contention concerns on timing V&V. Worst-case execution time (WCET) estimates are required as early as possible in the software development, to enable prompt detection of timing misbehavior. Factoring in multicore contention necessarily builds on conservative assumptions on interference, independent of co-runners load on shared hardware. We propose a contention model for automotive multicores that balances time-composability with tightness by exploiting available information on contenders. We tailor the model to the AURIX TC27x and provide tight WCET estimates using information from performance monitors and software configurations.The research leading to this work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644080 (SAFURE). This work has also been partially funded by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. The Ministry of Economy and Competitiveness partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717) and Enrico Mezzetti under Juan de la Cierva-Incorporación postdoctoral fellowship (IJCI-2016-27396).Peer ReviewedPostprint (published version

    Timing Predictability in Future Multi-Core Avionics Systems

    Full text link

    Quasi Isolation QoS Setups to Control MPSoC Contention in Integrated Software Architectures

    Get PDF

    Development and certification of mixed-criticality embedded systems based on probabilistic timing analysis

    Get PDF
    An increasing variety of emerging systems relentlessly replaces or augments the functionality of mechanical subsystems with embedded electronics. For quantity, complexity, and use, the safety of such subsystems is an increasingly important matter. Accordingly, those systems are subject to safety certification to demonstrate system's safety by rigorous development processes and hardware/software constraints. The massive augment in embedded processors' complexity renders the arduous certification task significantly harder to achieve. The focus of this thesis is to address the certification challenges in multicore architectures: despite their potential to integrate several applications on a single platform, their inherent complexity imperils their timing predictability and certification. Recently, the Measurement-Based Probabilistic Timing Analysis (MBPTA) technique emerged as an alternative to deal with hardware/software complexity. The innovation that MBPTA brings about is, however, a major step from current certification procedures and standards. The particular contributions of this Thesis include: (i) the definition of certification arguments for mixed-criticality integration upon multicore processors. In particular we propose a set of safety mechanisms and procedures as required to comply with functional safety standards. For timing predictability, (ii) we present a quantitative approach to assess the likelihood of execution-time exceedance events with respect to the risk reduction requirements on safety standards. To this end, we build upon the MBPTA approach and we present the design of a safety-related source of randomization (SoR), that plays a key role in the platform-level randomization needed by MBPTA. And (iii) we evaluate current certification guidance with respect to emerging high performance design trends like caches. Overall, this Thesis pushes the certification limits in the use of multicore and MBPTA technology in Critical Real-Time Embedded Systems (CRTES) and paves the way towards their adoption in industry.Una creciente variedad de sistemas emergentes reemplazan o aumentan la funcionalidad de subsistemas mecánicos con componentes electrónicos embebidos. El aumento en la cantidad y complejidad de dichos subsistemas electrónicos así como su cometido, hacen de su seguridad una cuestión de creciente importancia. Tanto es así que la comercialización de estos sistemas críticos está sujeta a rigurosos procesos de certificación donde se garantiza la seguridad del sistema mediante estrictas restricciones en el proceso de desarrollo y diseño de su hardware y software. Esta tesis trata de abordar los nuevos retos y dificultades dadas por la introducción de procesadores multi-núcleo en dichos sistemas críticos: aunque su mayor rendimiento despierta el interés de la industria para integrar múltiples aplicaciones en una sola plataforma, suponen una mayor complejidad. Su arquitectura desafía su análisis temporal mediante los métodos tradicionales y, asimismo, su certificación es cada vez más compleja y costosa. Con el fin de lidiar con estas limitaciones, recientemente se ha desarrollado una novedosa técnica de análisis temporal probabilístico basado en medidas (MBPTA). La innovación de esta técnica, sin embargo, supone un gran cambio cultural respecto a los estándares y procedimientos tradicionales de certificación. En esta línea, las contribuciones de esta tesis están agrupadas en tres ejes principales: (i) definición de argumentos de seguridad para la certificación de aplicaciones de criticidad-mixta sobre plataformas multi-núcleo. Se definen, en particular, mecanismos de seguridad, técnicas de diagnóstico y reacción de faltas acorde con el estándar IEC 61508 sobre una arquitectura multi-núcleo de referencia. Respecto al análisis temporal, (ii) presentamos la cuantificación de la probabilidad de exceder un límite temporal y su relación con los requisitos de reducción de riesgos derivados de los estándares de seguridad funcional. Con este fin, nos basamos en la técnica MBPTA y presentamos el diseño de una fuente de números aleatorios segura; un componente clave para conseguir las propiedades aleatorias requeridas por MBPTA a nivel de plataforma. Por último, (iii) extrapolamos las guías actuales para la certificación de arquitecturas multi-núcleo a una solución comercial de 8 núcleos y las evaluamos con respecto a las tendencias emergentes de diseño de alto rendimiento (caches). Con estas contribuciones, esta tesis trata de abordar los retos que el uso de procesadores multi-núcleo y MBPTA implican en el proceso de certificación de sistemas críticos de tiempo real y facilita, de esta forma, su adopción por la industria.Postprint (published version

    Methodologies for the WCET Analysis of Parallel Applications on Many-core Architectures

    Get PDF
    Euromicro Conference on Digital System Design (DSD 2015), Funchal, Portugal.There is an increasing eagerness to deploy and execute parallel applications on many-core infrastructures, pre- serving the time-predictability of the execution as required by real-time practices to upper-bound the response time of the embedded application. In this context, the paper discusses the application of the currently-available WCET analysis techniques and tools on such platforms and with highly parallel activities. After discussing the pros and cons of all different methodologies for WCET analysis, we introduce a new approach that is developed within the P-SOCRATES project
    • …
    corecore