
Master in Innovation and Research in Informatics
High Performance Computing

Software Support to Strengthen
Measurement-Based Timing

Analysis

Author Enrique Dı́az Roque?

Advisors Francisco J. Cazorla Almeida?†

Jaume Abella Ferrer?

Tutor Mateo Valero Cortés?‡

? Barcelona Supercomputing Center (BSC)
† Spanish National Research Council (IIIA-CSIC)
‡ Computer Architecture Department (DAC-UPC)

July 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87657944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements
I would like to express my gratitude to my advisors, Fran and Jaume, for their

guidance, their experience, and the opportunity given. I would also like to thank
Mikel, Carles, Pedro, Gabriel, Enrico and Leonidas for the help given. Furthermore,
I would like to thank all the CAOS research group at the Barcelona Supercomputing
Center for their help and support through these two years.

I would also like to express my gratitude to my parents for their help and to my
girlfriend Maŕıa for her always kind support. Furthermore, I would like to thank
Adrián and Calvin for the experiences we lived during the Master.

The research leading to these results has received funding from the
European Community’s FP7 [FP7/2007-2013] under the PROXIMA Project
(http://www.proxima-project.eu), grant agreement no. 611085. This work has also
been partially supported by the Spanish Ministry of Science and Innovation (grant
TIN2015-65316-P) and the HiPEAC Network of Excellence.

i

Abstract
In critical domains, the advent of high-performance (complex) hardware, used to

provide the rising levels of guaranteed performance, complicates providing evidence
of reliable software execution specially on aspects related to the timing dimension.
Caches and multicores are two of the hardware features that have the potential to
significantly reduce worst-case execution time (WCET) estimates, yet they pose
new challenges on current-practice measurement-based timing analysis (MBTA)
approaches.

MBTA methods rely on some form of instrumentation, either at hardware or
software level, of the target program or fragments thereof to collect execution-time
measurement data. Instrumentation does affect the timing and functional behavior
of a program, resulting in the so-called probe effect : leaving the instrumentation code
in the final executable can negatively affect average performance and could not be
even admissible under stringent industrial qualification and certification standards;
removing it before operation jeopardizes the results of timing analysis as the WCET
estimates on the instrumented version of the program cannot be valid any more due,
for example, to the timing effects incurred by different cache alignments.

Measurement-Based Probabilistic Timing Analysis (MBPTA) is a variant of
MBTA that aims at increasing the confidence on WCET estimates. MBPTA aims at
relieving the user from controlling hardware sources of jitter. MBPTA implicitly
controls the impact of jittery resources on measurements captured at analysis.
Some hardware resources are randomized so that their execution times at analysis
vary according to a probabilistic execution time distribution that can be used to
upperbound the latencies during operation and give a WCET prediction with a certain
probability.

In this Master Thesis we present our approach to mitigate the impact of
instrumentation code on cache behavior by reducing the instrumentation overhead
while at the same time preserving and consolidating the results of timing
analysis. We further propose a technique for multilevel-cache multicores that
combines deterministic and probabilistic jitter-bounding approaches to reliably handle
variability in execution time generated by caches and the contention in accessing
shared hardware resources.

iii

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Contributions . 3

1.2.1 Contribution 1 . 3
1.2.2 Contribution 2 . 4

1.3 Structure of the Thesis . 5

2 Software-Instrumentation Cache Effects 6
2.1 Introduction . 6
2.2 Background . 8
2.3 Problem statement . 9

2.3.1 Probe effect . 10
2.4 Illustrative example . 11
2.5 Proposal . 12

2.5.1 Functionally-neutral program (fnprog) 13
2.5.1.1 Impact argument . 14

2.5.2 Instrumented program (iprog) 15
2.5.2.1 WCET upper bounding 15

2.6 Experimental results . 16
2.6.1 Experiment setup . 16
2.6.2 EEMBC . 17
2.6.3 Case study . 18

2.7 Related work . 19
2.8 Conclusions and future work . 19

3 Multicore and Caches . 21
3.1 Introduction . 21
3.2 Background . 23

3.2.1 MBPTA . 23
3.2.2 Software Randomization . 25

3.3 Platform . 25
3.4 Handling multicore contention and cache jitter 26

3.4.1 Goals and challenges . 27

v

3.4.2 Overall process . 27
3.4.3 Detailed explanation . 28
3.4.4 Request Characteristics . 29

3.5 fTC contention model . 30
3.6 pTC contention model . 30

3.6.1 Bounding contention . 32
3.6.2 Other considerations . 33

3.7 Experimental results . 34
3.7.1 Hardware Setup . 34
3.7.2 MBPTA Setup . 34
3.7.3 Synthetic application . 34
3.7.4 EEMBC . 37

3.8 Related work . 38
3.9 Conclusions . 39

4 Summary . 40

Bibliography . 41

vi

List of Figures

2.1 Memory layout impact . 12
2.2 Execution-time impact . 13
2.3 Schematics of the proposed approach 13
2.4 Histogram and MBPTA projection for a2time 18

3.1 pWCET example . 24
3.2 MBPTA steps . 24
3.3 Reference architecture . 26
3.4 Schematic view of the proposed pTC contention model 28
3.5 Events and PMCs . 31
3.6 Pairing steps . 31
3.7 Results of TASA and MBPTA on a single-core setup. 35
3.8 Execution time when c(τa) create clean/dirty misses and fTC 36
3.9 Result of the pTC under different load scenarios generated by the

contenders . 36
3.10 Results of EEMBCs against 3 copies of themselves 38

vii

List of Tables

2.1 pWCET estimates for 10−12 for fnprog and iprog normalized to oprog 17
2.2 Average increase in code size and execution time of fnprog and iprog

normalized to oprog . 17
2.3 pWCET estimates for 10−12 for fnprog and iprog w.r.t to that for oprog 18

3.1 Request types and their latency in our reference board 29
3.2 PMCs available in the reference processor 29

viii

1. Introduction

This chapter introduces the work presented in this thesis. We start in Section 1.1
with the motivation behind this work to the presented problems. We then continue in
Section 1.2 by presenting the contributions of this work. At the end of this chapter,
Section 1.3, we describe the structure of the rest of the document.

1.1 Motivation

Real-Time Embedded Systems (RTES) are those that have tasks that are expected
to be executed within a given time budget in order to guarantee responsiveness. They
are said to be embedded as they form part of a larger system (e.g. a car), usually
acting as the controller. The RTES industry nowadays represents an important part
of the computer market and it is expected to drive the global chip demand in the
next years [1].

RTES programs have a set of deadlines to fulfill. These deadlines are time limits
of the application running on the embedded system. If the duration of a software
activity (usually implemented as a task) exceeds its timing budget, we say that it has
missed its deadline. Depending on how critical is missing a deadline, we can grossly
classify real-time systems into two categories:

• Soft Real-Time Embedded Systems. While missing a deadline is not desirable,
the system can continue with its operation as long as the deadline miss rate is
below a threshold. An example of this type of systems is a video decoder. If the
processing of a frame is not completed on time – it did not meet the deadline
– the result is not catastrophic, furthermore, it may pass unnoticed by the end
user.

• Hard Real-Time Embedded Systems. Also known as Critical Real-Time

1

Embedded Systems (CRTES). Missing deadlines may affect system’s safety.
Examples of this type of systems include those on-board in cars, airplanes, or
satellites that may cause fatalities if the system is unresponsive beyond the time
stipulated during the system design phase.

Since recently industrial solutions have been based on adding more than one
embedded processor in order to provide increased performance. For instance, a
modern car may contain up to 70 Electronic Control Units (ECUs) and this trend is
predicted to grow rapidly as automation expands in the automotive industry [2].
As industry keep implementing new features, the number of embedded devices
on-board increases. The number of devices to maintain and test in the future will
be unsustainable, furthermore, it will complicate design itself. The introduction of
high-performance processors in the embedded market is then a need. Deep memory
hierarchies and multicore processors will make the difference and will help to reduce
money spent in design, maintenance and test. However, the introduction of multicores
and high-performance caches in the RTES market is not trivial. We have to pay close
attention on how timing budgets are analyzed.

Timing analysis in real-time systems is needed in order to obtain system’s
execution time profiles so that an upper bound of its execution time can be derived. At
task level, this upper bound ideally covers what we know as the worst-case execution
time (WCET). WCET estimates for each task are used in conjunction with system’s
specifications (schedule) so we know ahead if the programs are going to fulfill their
assigned time budget. It is worth noting that the WCET estimate derived from
timing analysis techniques needs to be (1) reliable, so it trustworthily upper bounds
all possible execution times and (2) tight, so it should be close to the actual WCET
to avoid over estimation, which leads to a waste of resources [3]. There are two main
timing analysis approaches in the literature:

• Static Timing Analysis [3]. STA is based on mathematical models of the
processor architecture. The model must take into account low-level details of
the processor, such as pipeline stages, latencies,... STA is becoming increasingly
difficult as new powerful (and complex) processors are released in the market. It
is also noted that manufacturers do not provide many implementation details,
especially those related to the timing of the processor. All these problems
translate into pessimistic assumptions to cover the unknown, resulting in a
pessimistic WCET estimate [4].

• Measurement-Based Timing Analysis. This methods estimates the WCET
based on execution time observations. Several runs are required, varying the
possible inputs of the program in order to cover the timing space domain. Time

2

observations are used to feed statistical methods to derive a WCET estimate.
The conditions of the system at analysis time must hold at operation time. All
events that can cause significant impact in the execution time at operation must
be captured during the analysis [4].

In this work we build on MBPTA [5], a probabilistic variant of measurement-based
timing analysis. MBPTA targets to alleviate the problem of capturing events that can
impact the execution time at operation. Extreme Value Theory is applied in MBPTA,
a statistical method that builds upon the complementary cumulative distribution
function (CCDF) of the observed execution times to project a probability distribution.
Given a threshold, e.g. target probability of 10−12 in the EVT projection, we can then
infer a probabilistic WCET (pWCET) that can only be exceeded with a probability
below such threshold. In Sections 2.2 and 3.2 we review the concept and explain
further details.

1.2 Contributions

In this section we describe the main contributions of this work.

1.2.1 Contribution 1

MBTA in general – and MBPTA in particular – requires instrumenting the
program in the analysis phase to extract information (traces) from its execution on
the target board. This information includes execution times and other events such as
cache miss counts.

The first contribution focuses on the negative effect that software-instrumentation
can introduce on measurement-based timing analysis. In particular, we show
how instrumented code can change program execution time behavior due to the
probe-effect. We also show how we can proceed in order to obtain a reliable timing
bound.

• We introduce and analyze the challenge of instrumenting a program in order to
generate valid timing analysis.

3

• We illustrate the problem with an example where software-instrumentation
interferes optimistically leading to potentially unreliable worst-case execution
time bounds.

• We propose a solution for the probe effect caused by software-instrumentation.
We implemented our solution and collected information about its impact in
representative benchmarks and an industrial case study.

Our results show how our proposal to mitigate the impact of instrumentation code
generates valid analysis to infer worst-case execution time estimates while incurring
low overhead in terms of execution time.

As a result of this work we have published the following paper: Enrique
Dı́az, Jaume Abella, Enrico Mezzetti, Irune Agirre, Mikel Azkarate-Askasua, Tullio
Vardanega, and Francisco J. Cazorla, “Mitigating Software-Instrumentation Cache
Effects in Measurement-Based Timing Analysis”, in 16th International Workshop on
Worst-Case Execution Time Analysis (WCET 2016), Toulouse (France), July 2016.

1.2.2 Contribution 2

We propose a method to model contention on shared hardware resources, called
MC2 (multicore and cache).

• We present two contention models to address the increase in execution time due
to multicore environments and to address variability introduced by caches. We
first introduce a contention model (fTC) that captures all possible contention
without knowledge on the contender being executed. We also present a
contention model (pTC) that tightens execution time estimates by adding
additional knowledge of the contention the task under analysis is going to suffer.

• We applied our methodology to a LEON3 based multicore platform
implemented on a FPGA and evaluated our model with synthetic applications
resembling an aggressive contender and a set of representative benchmarks.

The results presented show how our models tightly and reliably capture contention
of other applications running in our multicore platform.

As a result of this work we have published the following paper: Enrique Dı́az, Mikel
Fernández, Leonidas Kosmidis, Enrico Mezzetti, Carles Hernandez, Jaume Abella,

4

and Francisco J. Cazorla, “MC2: Multicore and Cache Analysis via Deterministic and
Probabilistic Jitter Bounding”, in 22nd International Conference on Reliable Software
Technologies (Ada-Europe 2017), Vienna (Austria), June 2017.

1.3 Structure of the Thesis

The rest of this document is structured as follows:

• Chapter 2 presents our approach to tackle software-instrumentation cache
effects, also called probe effect. We make a quick review on measurement-based
timing analysis and how software-instrumentation can interfere with the
analysis. We also propose a solution to this problem and show results of our
approach on a well-known set of benchmarks and an industrial case-study.

• Chapter 3 presents the challenge that multicore embedded systems represent for
current measurement-based timing analysis techniques. To be more precise, we
explore and model contention on shared hardware resources to enable reliable
timing analysis. We also present our results on a real hardware platform using
a well-known set of benchmarks.

• Chapter 4 closes the Master Thesis by summarizing our contributions to
strengthen measurement-based timing analysis.

5

2. Software-Instrumentation Cache Effects

In this chapter we address the problematics of software instrumentation and its
implication in the cache layout.

2.1 Introduction

Measurement-based timing analysis (MBTA) methods are widely used in
application domains such as automotive, railway or space [3]. With MBTA,
execution-time measurements of selected fragments of software programs of interest
are taken while observing runs of the program on the target processor, performed
under stressful conditions. The highest value, usually known as high-water mark time
(HWMT), is recorded. The HWMT of all code fragments (the smallest of which is a
basic block) in the program are then combined to determine the worst-case execution
time (WCET) of the corresponding task. It is worth noting that MBTA works on
the premise that the testing conditions are representative of real system operation,
so that the HWMT approximates the real WCET.

The places in the code where the required execution-time observations are
made are usually referred to as instrumentation points (ipoints). MBTA generates
a run-time trace that logs which ipoints are traversed at what time during the
observation run. Two differing approaches exist to generate time readings at ipoints:
the generation of time traces via hardware methods has been made possible with the
advent of processors with advanced debug capabilities that do not affect program
timing behavior. Hardware instrumentation ideally provides transparent generation
of timing traces – assuming that collected traces can be output in a fast-enough and
equally transparent way so that no trace data are lost because of overfull buffers
and no explicit program action is to be taken. However, this support is not present
in all processors candidate for use in real-time systems. As a result, in the general
case, software-level solutions are adopted where some form of instrumentation code

6

is required in the program to generate timing information.

In contrast with its hardware-based counterpart software instrumentation is
highly intrusive, especially on the temporal behavior. In the presence of caches,
instrumentation code can generate unwanted timing effects far beyond the intrinsic
timing penalty of the additional instrumentation instructions, that would not have
been observed in the un-instrumented (original) program. The user thus faces the
dilemma of whether to remove the instrumentation code from or leave it in the final
program.

• Removing the instrumentation code from the final executable raises the question
of how the execution-time observations taken with the instrumented code
correlate with the timing behaviour of the un-instrumented program. In fact,
both functional and timing verification would have been conducted on a different
software artifact and strong additional argument must be provided for the
analysis result to hold.

• Leaving instrumentation code in the final executable spares the burden (for cost
and complexity) of demonstrating equivalent functionality as WCET estimation
is performed on the executable that will be deployed in the operational system.
However, certification and qualification practices may simply not accept the
presence of this instrumenter-added code in the executable. As an immediate
effect, leaving instrumentation code in a program is likely to worsen memory
footprint and average performance. Further, some memory-mapped I/O space
– where execution-time readings might be kept – may be unnecessarily wasted.

In fact, both leaving and removing instrumentation code may have disruptive
effects on the certification process. While there have been several methods to minimize
the number of instrumentation points, without losing too much precision [6], in this
work we show that even a single instrumentation point can lead to significantly
different timing behavior between the original (un-instrumented) program and the
instrumented version.

We present a novel technique that strikes an optimal balance between the two
approaches, basing on the concept of functionally-neutral program, that is used
at system operation. From the original program (oprog), fnprog is generated by
inserting nop instructions at desired instrumentation points. The neutral nature of
nop instructions and the fact that they can neither generate interrupts nor have input
or output dependences simplifies certification/qualification argumentation. For the
purposes of timing analysis, nop instructions are replaced by actual instrumentation
operations, resulting in an instrumented program (iprog). The number of nops

7

inserted per ipoint in fnprog is carefully selected so that the cache alignment of code
in fnprog and iprog stays unchanged. This prevents any unwanted impact on timing
behavior that may stem from variations in cache alignment. The increase in terms
of memory footprint and execution time of fnprog as compared to oprog, instead,
depends on the program and the number of ipoints inserted.

We have applied this method within the scope of measurement-based probabilistic
timing analysis (MBPTA) [7]. Besides its evident benefits on the fronts of qualification
and certification alike, our approach significantly reduces the impact of software-level
instrumentation. In quantitative terms, assuming basic block level instrumentation
with two instructions per ipoint, the average degradation we observed in the computed
execution-time bounds was 9.3% for EEMBC benchmark programs and 8.7% for a
railway case-study application.

2.2 Background

MBTA differentiates between the analysis phase, when verification of timing
behavior takes place, and the operation phase, when the system is deployed into
operation. MBTA computes WCET estimates with execution-time measurements
taken at analysis time, on the condition that the corresponding bound holds at
operation. This requires the user to define test scenarios that trigger worst-case
conditions that can occur during system operation. We intentionally omit discussing
here how difficult, if at all possible, that is for the user.

MBPTA [7] is a variant of MBTA that derives probabilistic WCET (pWCET)
estimates – an execution-time distribution expressing the maximum probability that
upper bounds the residual risk that one instance of the program may exceed a
given execution-time threshold. MBPTA handles the sources of execution-time
variability caused by hardware and software effects by ensuring that the jitter they
cause at analysis matches or upper bounds that which occurs during operation [5].
Cache memories, whose behavior cannot be treated that way, are time randomized
instead [8], so that their impact on execution time can be studied probabilistically for
both analysis and operation conditions and the former can be made to upper bound
the latter. MBPTA employs extreme value theory [9] (EVT) to model the distribution
of extreme (worst-case) execution times (pWCET), considering the timing impact of
randomized hardware resources both individually and collectively.

8

2.3 Problem statement

MB(P)TA generates a trace that records which and when ipoints are traversed
during execution. Every such trace is a sequence of <ipointid, timestamp> pairs.
Two main steps take place in the generation of ipoint traces:

• Generation. Modern hardware comprises advanced debug interfaces that
trigger specific actions when certain opcodes are executed. For example, debug
hardware can be used, on every branch instruction taken by program execution,
to collect a <branch (instruction) address, execution cycle> pair of trace data.
The type of instruction (event) to trace and the action to perform when such
an instruction is hit can be programmed through a provided interface, e.g.
Nexus or GRMON for the LEON processor family [10]. Debug hardware of
that kind is not present in all processors used in real-time systems. In general,
therefore, some form of software instrumentation is needed. To that end,
specific instrumentation instructions are inserted at the desired granularity of
information in the execution context of the program of interest. For instance,
these instructions may read the time-base register and output its contents to a
specific I/O address.

• Collection. Once instrumentation (in either hardware or software) is in place,
the execution of the unit of analysis on the target processor results in a set
of timestamps and events. This list is output outside of the processor and
dispatched to some off-line analysis tool. The capture and offloading process can
be the source of further interference. On-chip debug hardware usually includes
off-band buses so that the transfer of <timestamp, event> pairs does not affect
the execution of the unit of analysis. Depending on the speed of the CPU and
the quantity of ipoints, the volume of timestamped data can be high. This can
be managed by outputting the data to high-speed ports. Specialized hardware
to process the trace at very high speed has been proposed [11] and exists
commercially [12], which prevents loss of information or stalls of execution.

The generation and collection of this trace may interfere with the system’s timing
and perturb its behavior. This phenomenon is known as the probe effect, which causes
the instrumented program to have register and cache usage profiles that differ from
those of the original (un-instrumented) program.

9

2.3.1 Probe effect

We categorize and analyze the effects of unwanted noise introduced by the
instrumented version of the original program. We can classify its impact as follows:

• Direct impact stems from the execution latency of fetching and executing
instrumentation code (icode). The icode usually involves reading internal
processor registers, e.g., the time register – timestamp –, (∆core−exec

icode) and
outputting the readout to a specific memory address. If this information
is transferred via buses or I/O controllers used by the application under
analysis, this action is bound to interfere with application’s timing behavior.
Furthermore, if ipoint information is cached, this can also cause significant
effects (∆chip−exec

icode). Not all processors are capable of tracing and dumping
data implicitly, without using ipoints. Fast debug links and I/O ports (e.g.,
GPIO, Ethernet) are often available to dump trace data transparently to the
application as long as the ipoints are conveniently placed in the program being
run. Trace data can be either processed in real-time of stored for off-line
processing.

• Indirect impact of the icode arises from the change in the layout of program
code in memory. When an ipoint is inserted in the program, it shifts the position
in memory of the subsequent instructions and hence also their address and
possibly its cache set layout. This may make it considerably difficult for the
user to provide evidence that the execution-time measurements obtained with
the instrumented binary (iprog) are larger or smaller than those obtained with
oprog. This in turn causes the pWCET estimates obtained for iprog to not safely
upper bound oprog’s execution time.

The execution time of the original program (EToprog) is affected in a direct manner
by icode in the instrumented program (ETiprog) as shown in the second addend of
Equation 2.1.

ETiprog = EToprog +
(

∆core−exec
icode + ∆chip−exec

icode + ∆collect
icode

)
+ ∆malign

icode (2.1)

Without loss of generality, we assume that both trace-generation impact, other
than executing icode at the core level, and trace-collection overhead are null (∆collect

icode =
∆chip−exec
icode = 0), and instrumentation overheads only arise from the core execution of

ipoints included in the unit of analysis (∆core−exec
icode 6= 0), which however creates a

constant execution time overhead. The actual problem stems from the fact that the

10

insertion of the icode may change the memory layout of the original code in oprog.
Unlike the direct impact of icode that is bound to be a positive value, misalignment
impact (∆malign

icode) can be either positive or negative. This may cause iprog to run
either faster or slower than oprog.

This may lead to the situation in which, despite the direct impact caused by the
insertion of icode, the execution-time distribution and pWCET estimate for iprog are
even smaller than those for obtained for oprog, i.e., ∆core−exec

icode + ∆chip−exec
icode + ∆collect

icode <

∆malign
icode so ∆core−exec

icode < ∆malign
icode .

2.4 Illustrative example

In this section we use a small example to demonstrate how instrumentation code
can create unexpected timing behavior in which the instrumented program yields an
execution-time profile that does not upper bound the profile of the un-instrumented
program.

Let us consider the code fragment shown in the left part of Figure 2.1. This code
comprises a for structure with a nested switch structure. In the example, I1, I2
and I3 (not shown) correspond to loop and switch control instructions; I4 − I6 are
in the first case of the switch; I7− I10 in the second; and I11− I15 in the third.

Further assume that before any instrumentation is applied the code (instruction
addresses) is laid out in memory as presented in (a), occupying 5 cache lines. Further
assume that a single instrumentation instruction is inserted somewhere before this
fragment, causing a shift of one instruction and resulting in the memory layout
presented in (b). The body of the loop thus occupies 4 lines.

We executed this code on a light-weight processor simulator comprising a 2-set
2-way instruction cache. Other than the jitter caused by the instruction cache – 4
cycles in case of hit and 94 cycles in case of miss – instructions have a back-end latency
of 6 cycles. We assume an arbitrary input vector that causes a different branch of
the switch to be triggered at each loop iteration. We assume ∆core−exec

icode = 2 for the
only added ipoint.

In terms of MBPTA, this yields the empirical complementary cumulative
distribution functions (ECCDFs) shown in Figure 2.2 (a) from where we see that the
execution profile of the un-instrumented code is higher than that of the instrumented
code. If we apply MBPTA to those observed execution times we obtain the pWCET

11

Figure 2.1: Memory layout impact

estimates shown in Figure 2.2 (b). We observe that both the empirical distribution
and the pWCET for the original code are much higher than those for the instrumented
code.

Hence, even a single instrumentation instruction can change the cache layout so
that the instrumented program has lower execution time than the un-instrumented
one.

2.5 Proposal

The proposal presented in this section aims to help the user be assured that
the version of the program used for WCET analysis leads to an execution-time
distribution that reliably upper bounds the execution time of the version of the
program deployed during operation. As a secondary goal, we want to reduce ∆core−exec

icode

to produce tighter WCET estimates.

In our approach we define three versions of the program of interest (see Figure 2.3):

12

(a) (b)

Figure 2.2: Execution-time impact

1. oprog, the original program.

2. fnprog, augmented functionally-neutral version of the original program, which
is used in operation.

3. iprog, the instrumented version of the original program, which is used for
analysis.

Figure 2.3: Schematics of the proposed approach

2.5.1 Functionally-neutral program (fnprog)

The functionally-neutral program is a version of oprog enlarged with nop
instructions inserted to bound the indirect impact of the instrumentation code, icode

13

(∆malign
icode). Of course, this modification results in a program with unaltered functional

behavior that can therefore be used in operation.

The nop instructions in fnprog are inserted at all places where ipoints are needed.
The number of nop instructions inserted per ipoint is sufficient to ensure that,
when the actual instrumentation instructions are inserted in iprog, no cache-line
misalignment occurs. Typically, one or two instrumentation instructions per ipoint
are sufficient to collect timing information, depending on the actual hardware support
and instruction set. Hence, fnprog includes one or two nops at the place of each
ipoint. It is worth noting that oprog may already include some nops. For instance, in
an architecture with delayed branches (e.g., SparcV8), delayed slots may not be filled
with useful instructions or nops, depending on compiler flags or program semantics.
Further, some compilers include options that insert nops to enforce memory alignment
at the level of function, branches, jumps and loops (e.g., -falign-functions=n,
-falign-labels=n, -falign-loops=n, -falign-jumps=n in GCC). Those nops are
just fine for placing instrumentation code in iprog.

However, an argument is needed to show that fnprog provides the same functional
output as oprog. Furthermore, we also need to prove that the average performance
of fnprog is near and not unacceptably worse than that of oprog.

2.5.1.1 Impact argument

The use of nops simplifies providing arguments that fnprog does not change the
functional behavior of oprog: most of today’s Instruction Set Architectures (ISAs)
include nop-type instructions, whose function is to perform no operation in the
processor other than fetch and, possibly, decode, where the instruction is usually
stripped from the execution stream.

The main advantage of using nops is that they are functionally neutral:

1. By definition, a nop performs no operation.

2. Its execution does not change status flags or any other control registers.

3. A nop generates neither raises interrupts nor exceptions.

4. A nop uses no architectural (programmer accessible) register, which allows
inserting nops anywhere in the code.

5. A nop has no input and no output (register) dependences.

14

From all these properties we can state that fnprog cannot change the functional
behavior of oprog.

From the average performance standpoint, whose improvement we defined as our
second goal, nops usually take a few cycles to execute. In some architectures, the
processor may even strip nops out from the pipeline before they reach the execution
stage. This is in contrast with actual instrumentation instructions that usually need
to access off-core or off-chip resources such as I/O ports or trace buffers, thus incurring
longer execution times.

2.5.2 Instrumented program (iprog)

The execution-time measurement traces needed by MB(P)TA are obtained from
a modified version of fnprog. In that version, which we call instrumented binary,
iprog, some or even all of the inserted nops are replaced by actual instrumentation
instructions impacting execution time. This change is made in a way that causes
no code realignment with respect to fnprog which simplifies ensuring that the
execution-time traces obtained from iprog can be reliably used to derive a pWCET
estimate for fnprog as used in operation.

If our approach is adopted, the required nops could be automatically added
by the (qualified) compiler. The number of nops and the level they are
added could be easily controlled via compiler parameters, e.g., -fnopcount=n and
-fnoplevel=basicblock.

A further argument is needed to show that the execution-time behavior of iprog is
never less than that of fnprog, so that the execution-time observations taken for iprog
can be used to upper bound the WCET of fnprog.

2.5.2.1 WCET upper bounding

The difference between fnprog and iprog is that some nops in the former are
changed to actual instrumentation instructions in the latter. The number of nops
inserted at the place of each ipoint in fnprog is such that exactly the same cache-line
alignment occurs in fnprog and in iprog. The net result is an increase in the execution
time of iprog in comparison to fnprog since the instrumentation code takes longer to
execute than nops. The fact that this overhead has an additive nature ipoint by ipoint
– in a processor free of timing anomalies – facilitates making an argument about the
fact that the resulting execution-time distribution collected with iprog upper bounds

15

that of fnprog. Notably, the execution time of fnprog might be lower than that of
oprog, owing to the instruction cache effects described before. However, this does not
create any issue since fnprog is the one that will be deployed to operation.

Recent work [13] in the specific context of MBPTA [7] for time-randomized
caches [8] helps us contend that the execution time of iprog does indeed upper bound
that of fnprog. Let ISorg be a sequence of instructions to which we add a set O of
new operations – both acting within core (e.g., add) and on memory – resulting in
the extended instruction sequence ISext.

The authors of [13] show that the probabilistic execution time (pET) of ISext is
higher than the pET of ISorg. We say that pET (ISi) ≥ pET (ISj) if, for any cut-off
probability, the execution time of ISi is higher than or equal to the execution time
of ISj. We contend that this argument can be made for standard MBTA, not just
MBPTA, but we leave the corresponding demonstration as future work.

In addition to cache-related instrumentation code variability – which we attack in
this chapter – measurement-based timing analysis needs to handle timing anomalies
if they can happen.

2.6 Experimental results

So far we have provided arguments in support to the fact that our
functionally-neutral approach provides a reasonable solution to the software
instrumentation problem from the qualification and certification standpoint as fnprog
can be safely deployed instead of the oprog and iprog. In our experimental evaluation
we focus on providing evidence that the fnprog always exhibits pWCET that tightly
upper bounds oprog and is always lower than iprog.

2.6.1 Experiment setup

To perform our experiments we use a cycle-accurate processor trace-driven
simulator that implements 4KB L1 instruction and data caches, which comprise 128
sets and 2 ways each. Both caches implement random placement and replacement [8].
The access latency to the L1 caches is 1 cycle and that to main memory is 28
cycles. For the instrumentation instructions, we assume they have the cost of 2
cycles. This technical specifications were extracted from a real implementation of a
LEON3 processor [14].

16

We focus on the pessimistic scenario where ipoints are added at basic block
boundary, the smallest granularity of instrumentation in general. While in this case
the instrumentation impact is high, we have seen that a single instrumentation point
can cause unwanted cache effects between the instrumented and non-instrumented
code. In the presence of techniques reducing the number of ipoints, the overhead
introduced by our approach will naturally reduce.

2.6.2 EEMBC

We start our evaluation with the well-known EEMBC automotive benchmark
suite [15]. In particular, we use the following benchmark programs: a2time (A2),
aifftr (AI), aifirf (AF), aiifft (AT), bitmnp (BI),cacheb (CB), canrdr (CN),
idctrn (ID), iirflt (II), matrix (MA).

For the case of 2 instrumentation operations per ipoint, we compare the pWCET
estimates obtained from the execution-time measurements from oprog, fnprog and
iprog. We collected 1.000 runs for each version, which have sufficed to pass the
MBPTA convergence criteria [7].

prog. A2 AI AF AT BF BI CB CN ID II MA

fnprog 26.4% 3.8% 11.6% 7.1% 11.5% 11.9% 2.1% 14.1% 12.3% 11.9% 6.4%
iprog 33.0% 9.3% 22.1% 12.4% 22.0% 16.8% 4.0% 27.1% 23.3% 21.6% 12.7%

Table 2.1: pWCET estimates for 10−12 for fnprog and iprog normalized to oprog

For the other benchmarks, Table 2.1 summarises the difference observed for the
three versions of the program for a cut-off probability of 10−12 per run. As shown,
fnprog is relatively tight with respect to oprog. The only exception we can observe is
A2, which includes many basic blocks, and therefore takes a higher density of nops.
In Table 2.2 we show the average code size increase and execution time overhead.

no. instruct. Code Size execution time fnprog execution time iprog

1 inst. 6.87% 4.35% 8.33%

2 inst. 13.74% 9.28% 17.54%

Table 2.2: Average increase in code size and execution time of fnprog and iprog
normalized to oprog

Figure 2.4 shows the execution-time histogram and the resulting pWCET estimate
for a2time benchmark. We observe how fnprog is close to oprog’s. Further, changing
nops by instrumentation instructions causes iprog’s execution-time to upper bound
fnprog’s.

17

(a) Histogram (b) pWCET estimate

Figure 2.4: Histogram and MBPTA projection for a2time

2.6.3 Case study

We also present a railway case study application that is part of the European
Railway Traffic Management System (ERTMS) [16] initiative that seeks to define a
unique European train signaling standard. To be more specific, our focus is on the
on-board unit of the ERTMS, called European Train Control System (ETCS).

We performed simulations on 10 different input sets (S0 to S9). For the iprog we
assume 2 instrumentation instructions per ipoint.

Table 2.3 reports analogous results for the railway case study for 2 instrumentation
instructions per ipoint. We can observe that the results are even tighter on average
than those we obtained for the EEMBC benchmarks, with an average increase in
pWCET estimates of 8.7% and 11.9% for fnprog and iprog respectively. The average
code size increase observed is 12%, which is also less than the average incurred with
the EEMBC benchmarks.

prog. S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

fnprog 8.4% 7.6% 9.5% 9.1% 8.1% 9.5% 9.4% 8.3% 8.6% 8.9%
iprog 11.5% 10.4% 12.1% 12.3% 12.2% 13.3% 12.4% 11.9% 12.2% 11.1%

Table 2.3: pWCET estimates for 10−12 for fnprog and iprog w.r.t to that for oprog

Overall, our proposed solution provably abates the negative misalignment effects
of icode, for a small cost in execution time in general.

18

2.7 Related work

The literature on measurement-based timing analysis is abundant [3,6,17,18,19].

In [17], the authors discuss the pros and cons of several ways to collect execution
traces and how the frequency of ipoints results in light-weight or heavy-weight
instrumentation.

Measurements can be taken (i.e., ipoints can be placed) at program boundaries.
However, hybrid mechanisms exist to identify smaller program parts. The particular
segments used are extracted from an analysis of the Control-Flow Graph [19,20]. The
segments (partitions) are chosen to facilitate the derivation of a WCET by composing
the WCET of each segment, facilitating measurements [6,19] or reducing the number
of ipoints. Some of these techniques also work on an automatic generation of input
data [6, 20, 21]. In [20], the authors decompose execution paths into sub-paths and
then use formal methods to derive the required test data (in an automatic manner)
and measure the execution time of the sub-paths.

In [22], the authors propose the concept of context-sensitive traces to capture the
impact of execution history on the precision of measurement-based execution-time
estimates. This is done using the concept of “call string” that defines the sequence
(of the last k calls) that keeps information similar to the call stack.

For trace collection, some research approaches developed an FPGA board to
transfer information from the target to the host to increase trace processing
capabilities [11]. Other approaches propose on-line aggregation of timing data
removing the need for collecting and post-processing long traces [23].

2.8 Conclusions and future work

We have presented a new approach to mitigate the impact of instrumentation
code to prevent cache misalignments from occurring between the instrumented and
un-instrumented versions of the program under analysis, while incurring low overhead
in terms of execution time. In particular, we build upon the use of functionally-neutral
operations such as nops to create a program version to be deployed that is functionally
equivalent to the original program, and has a provable lower execution time than the
instrumented version.

19

As part of our future work we plan to evaluate the fnprog approach in a real
hardware platform and a commercial timing analysis tool. We also plan to extend
the argumentation about the timing impact of iprog w.r.t to fnprog to non probabilistic
timing analysis.

20

3. Multicore and Caches

In this chapter we propose the MC2 (multicore and cache) MBPTA approach for
the analysis of a Commercial-Off-The-Shelf (COTS) multicore processor equipped
with multilevel-caches. Our approach factors in both cache jitter and multicore
contention jitter.

3.1 Introduction

Computing power needs are steadily increasing in the critical real-time embedded
domains, fuelled by the complexity and sheer amount of data a modern on-board
software is expected to handle [24,25,26]. At hardware level, while high-performance
features, such as caches and multicore processors, provide the demanded performance,
they also bring about hard-to-model jitter (variability) in execution time, which
complicates timing validation and verification. This has resulted in an increased
attention on timing in safety standards (e.g., ISO26262 [27] in automotive) and
support documents (e.g., CAST32-A [28] in aerospace).

MBTA is the dominant timing analysis approach in most real-time domains [3].
MBTA aims at deriving a worst-case execution time (WCET) estimate that holds for
the program during system operation from the execution time measurements captured
during the tests executed at various stages in the analysis phase. The quality of the
derived WCET estimates lies on the user’s ability to design stressful test scenarios
(conditions) that are presumably close to the worst-case conditions that can arise
during system operation. The degree of control available to the user, while adequate
on simple processor designs, diminishes with the inclusion of complex hardware that
challenges: (i) designing worst-case scenarios, e.g., identifying the memory object
allocation (code and data) that results in cache set mappings with high impact on
execution time, and the worst contention scenarios that the application can suffer
in a multicore; and (ii) designing experiments in which bad (pathological) behavior

21

for several resources occurs simultaneously. Overall, despite the user may perform
thousands of experiments, there is no guarantee on whether the bad behavior in the
sources of jitter (soj), like the cache, has been sufficiently captured. This reduces
the confidence on the MBTA WCET estimates, which in turn can prevent the use of
some high-performance hardware features in critical real-time embedded systems.

Measurement-Based Probabilistic Timing Analysis (MBPTA) [7, 29] is a variant
of MBTA that aims at increasing the confidence on WCET estimates. MBPTA,
which has been successfully evaluated on several case studies (e.g., [29, 30]), aims
at relieving the user from controlling hardware soj. Instead, MBPTA makes that
their impact on the measurements emerges naturally, reducing user’s burden to only
controlling the number of runs to perform [5]. To that end, MBPTA implicitly
controls the impact of jittery resources on measurements captured at analysis. In
particular, some resources are forced to work on their worst latency during analysis
(upperbounding), hence ensuring measurements conservatively capture their impact.
The latency of other resources is instead randomized so that their execution times
at analysis vary according to a probabilistic execution time distribution that can be
used to upperbound the latencies during operation.

While hardware designs have been proposed [8, 31] for MBPTA compliance, and
some of them have hit pre-silicon (RTL) readiness level [31], analyzing MBPTA
applicability on COTS multicore processors is fundamental to favor a fast and
widespread adoption of MBPTA. MC2 exposes, in a combined MBPTA-compliant
manner, the jitter of caches and multicore contention to the execution time
measurements taken at analysis. As a result, the WCET estimates MBPTA
generates from those measurements upperbound the impact of both resources on
program execution time. MC2 combines two techniques that have been classified
as MBPTA compliant: software randomization [32] for cache-jitter management,
and delay upperbounding for multicore contention management [33]. For the latter,
since multicore contention can lead to very pessimistic WCET estimates [34] when
contention bounds are provisioned for the worst possible contention, MC2 provides
adaptable WCET estimates that depend on contenders’ contention.

Our results provides evidence that MC2 effectively captures the impact on
execution time - and hence on WCET estimates - of both resources, and provides
tight WCET estimates.

22

3.2 Background

When selecting the timing analysis technique to use, industrial users balance the
cost-effectiveness of the technique and the evidence that it can provide to satisfy
the level of confidence required by the domain-specific standards [4]. Static timing
analysis (STA) methods are sound, though at considerable cost for effort, with the
quality of their results depending on whether sufficient and accurate information are
available about hardware timing and software flow facts. Measurement based timing
analysis (MBTA) techniques are less rigorous than static analysis methods but, in
general, are more attractive because of their cost-effectiveness and major affinity
with the consolidated industrial practice.

The quality of MBTA’s derived WCET estimates relates to the evidence on their
coverage of the worst-case conditions. When evidence obtained is sufficient, MBTA
can be used for high-integrity software, e.g., DAL-A functions in avionics [35]. In
practice, all techniques require user-provided inputs, e.g., worst-case scenarios for
measurements for MBTA and hardware timing models for static timing analysis
(with hardware documentation potentially being inaccurate or incomplete [4], thus
eventually resorting to measurements to reverse engineering the timing model [36]).
This makes complex argue about the quality of a WCET figure. In this chapter, we
focus on MBTA with the intent to increase the confidence that can be placed on the
provided WCET estimates.

3.2.1 MBPTA

MBPTA applies Extreme Value Theory [37] (EVT) on execution time observations
from the analysis phase to derive the probabilistic WCET (pWCET) distribution
that upperbounds program’s execution time during operation. MBPTA requires
guaranteeing that the observations obtained at analysis capture those events that
can impact execution time at operation, and so pWCET estimates [4]. MBPTA, by
deploying EVT (see Figure 3.1), is able to derive the probability that bad behavior
of several of the soj (whose impact has been captured in the analysis-time runs)
are triggered in the same run. Hence, EVT has to be seen as a method to predict
pathological combinations of observed events in the analysis-time measurements. In
general, EVT cannot predict the appearance of unobserved events since their impact
on execution time can be arbitrarily large. To cover this gap, MBPTA builds an
argument on representativeness by means of i) either injecting randomization in the
timing behavior of certain hardware resources (e.g., caches and buses) so that it
is possible to determine the probability of their worst behavior to be captured in

23

Figure 3.1: pWCET example Figure 3.2: MBPTA steps

the analysis-time measurement runs; or ii) making resources to work on their worst
latency so the analysis time measurements capture their worst timing behavior.

MBPTA application procedure starts by (1) collecting a set of representative
observations, see Figure 3.2. MBPTA then (2) applies some statistical test such as
independence and identical distribution tests [7] required for EVT application. Since
in a MBPTA-compliant platform these probabilistic properties hold by construction,
in case statistical tests are failed, the user is simply asked for more runs until statistical
tests – which are subject to false positives/negatives – are passed. (3) MBPTA checks
whether the size of the sample is enough to include all relevant events and ensure
certain statistical stability of the results. To that end we use the initial findings
in [38] and ask the user for more runs until this condition is satisfied. As final step,
(4) MBPTA derives an EVT distribution (pWCET estimate) as shown in Figure 3.1.

Despite time-randomization, programs might exhibit a degenerate distribution of
timing, e.g., having a single or very few different execution times. While extremely
rare in practice for real-size programs, the lack of jitter would suggest that the
maximum observed execution time could be reasonably used as a precise WCET
indicator.

24

3.2.2 Software Randomization

MBPTA handles resources with small jitter (usually in the order of few cycles) by
means of upperbounding, i.e., by forcing the resource to operate on its worst latency
during analysis time [31]. However, cache resources exhibit high jitter between hit and
miss events, especially when these events span across multiple levels of cache. For this
reason, timing randomization is used. In particular we use software randomization
which, by randomly varying the memory layout between distinct program executions,
causes cache events (hits/misses) to have a probabilistic behavior that holds during
operation. This allows cache jitter to be properly modeled by MBPTA.

In this work we use our custom implementation of TASA (Toolchain Agnostic
Software rAndomization) [39,40], a static variant of software randomization, applied
at source-code level. TASA randomizes the position in memory for any memory
object in the software under analysis such as functions, stack frames and global data.
Moreover, TASA can randomly affect the internal memory layout of several memory
objects such as stack frames and structures.

In general, compilers allocate memory objects in the order they are in the source
file. Very few compiler options violate this principle, which can be disabled during
compilation with small (if any) impact in the compiler performance [39]. TASA,
by randomly rearranging the order of declarations for the corresponding objects in
the source file, modifies their relative position in the binary. This, in combination
with additional random-sized padding in the form of nop instructions or unused data,
increases the potential difference among binary layouts. When the binary is loaded to
main memory for the program execution, the random binary memory layout translates
into random main memory mapping and hence, a random cache layout, i.e., memory
objects are allocated in random cache sets.

3.3 Platform

We use a 4-core LEON3 [14] platform implemented on a FPGA. Each LEON3 core
implements a 7-stage pipeline: fetch (F), decode (D), register access (RA), execution
of non-memory operations (Exe), dc access (M), Exceptions (Exc) and write back
(WB). Each core comprises first level instruction (ic) and data (dc) caches, with the
dc implementing a write-through no write allocate policy, see Figure 3.3. An AMBA
AHB bus propagates stores, dc misses and ic misses to the partitioned L2 cache.

Requests send to the bus are not split. Hence, the bus is locked all the time a

25

Figure 3.3: Reference architecture

request accesses the L2. If it misses in L2, the bus is locked until the request is solved
in main memory and answered back. Requests are arbitrated in the bus using a
round-robin arbiter which has been shown to provide time predictability [41]. Hence,
our reference architecture comprises two main hardware shared resources, the bus
and the memory, with the bus arbiter controlling the contention in both of them.

Our platform also comprises performance monitoring counters (PMCs) from
which we track ic misses, dc misses, store operations and L2 misses, as detailed
in Section 3.4.

In our experiments we consider one task under analysis (tua or τa) and several
(up to three) contender tasks, referred to as c(τa) or τb, τc and τd. τa is always a
time-critical task for which a WCET estimate is to be derived.

3.4 Handling multicore contention and cache jitter

In this section we cover an introduction to our objectives and procedure to measure
contention suffered in multicore environments.

26

3.4.1 Goals and challenges

MC2 aims at reliably capturing the impact that multicore contention (handled
by the bus arbiter in our reference architecture) and cache jitter have on pWCET
estimates. This requires ensuring that the execution time observations collected at
analysis capture the impact of the jitter of both. To ease MC2 adoption, this goal
has to be achieved under the following restrictions:

1. MBPTA compliance. The proposed technique must be MBPTA-compliant
requiring minimum changes to the single-core MBPTA timing analysis
approach, which has already been evaluated with several industrial case
studies [29].

2. pWCET estimates should be time composable, so that they are independent of
the load contenders put on resources. Time composability enables incremental
integration of applications, performing timing analysis of applications mostly in
isolation, without the need of regression tests. Time composability also allows
updating functionality during system operation without the need of analysing
the entire task set, but just those tasks that are updated.

3. The information required by MC2 from the tasks should be obtained via PMCs
to facilitate its applicability to real hardware.

4. WCET estimates should be obtained as early as possible in the design process
to facilitate incremental software integration [42] (ideally during unit testing)
and should hold across integrations for incremental verification purposes.

3.4.2 Overall process

MC2 process starts by running the software-randomized task under analysis (τa)
in isolation, see Figure 3.4. This exposes the impact of cache jitter to the observed
execution time (oeti) in each run ri. As a side effect, since the hit/miss pattern of τa
changes across runs (due to software-randomization), its number of accesses to the bus
and the memory also varies. Hence, τa has an access distribution to cache/memory
rather than a single value (with small variations) as it would be the case if τa had not
been time randomized.

MC2 also factors in the maximum contention delay (mcd) for each request type
and the level of contention generated by τa’s contenders (c(τa)), which is refereed as
locc(a). ∆cont in Equation (3.1) captures both mcd and locc(a). By feeding MBPTA

27

Figure 3.4: Schematic view of the proposed pTC contention model

with enlarged execution times (eet), MC2 provides MBPTA with representative
information on the impact of cache and multicore contention.

eeti = oeti + ∆cont (3.1)

3.4.3 Detailed explanation

MC2 builds upon the following assumptions and inputs:

1. τa’s observed execution times (oetia) in each run ria of τa’s in isolation.

2. τa’s number of requests (pmcia) obtained with PMC readings in each run ria of
τa’s in isolation. The particular counters are discussed later.

3. Worst-case request overlap assumptions : MC2 assumes that contenders’
requests align in the worst possible manner with each τa request causing
maximum impact on τa’s execution time. While this assumption is pessimistic,
it relieves the end user from modeling the particular cycle when requests occurs,
which would be an overly expensive effort, and would only be doable after
integration. Instead, assuming mcd delay for each contenders’ request brings
some pessimism but allows MC2 enable WCET estimates during unit testing to
favor incremental integration [42]. This is in contrast to the number of requests
that can be derived during unit testing and do not change (for our architecture)
at integration, i.e., the number of requests of a task to the bus/memory is not
affected by its contenders.

4. User-provided contender’s level of contention (locc(a)): MC2 factors in the
contention (i.e., number of requests) of c(τa). To that end, we follow two
models. The first one, called fully Time Composable (fTC), assumes each
contender task makes as many requests of the longest duration as total number
of requests generated by τa. The fTC models results in fully time-composable

28

estimates, but at the cost of over-estimation. To reduce the latter, a second
model, called partially Time Composable (pTC), is adjustable to the expected
level of contention of the contenders (i.e., its number of requests and their
type). The pTC model derives the WCET estimate for τa in isolation under a
given level of contention of its contenders. At integration time, composability
can be assessed by simply checking that the contention level of the particular
contenders is smaller than the level assumed at analysis. Both models are
detailed in Section 3.5 and Section 3.6 respectively.

3.4.4 Request Characteristics

MC2 requires information about the types of requests to the bus, with emphasis
on those having different usage of the bus, and the maximum time each request holds
the bus (mcd).

From processor manuals, we identify six types of request to the bus (see Table 3.1):
load/store requests that hit/miss in L2, and for the case of misses, since the L2 is
write-back, request evicting and not evicting dirty data. The former are called dirty
misses and the latter clean misses.

The mcd for each request, see the second column of Table 3.1, is the time interval
(measured in cycles) since a request is granted access to the bus until it relinquishes
the bus. Hence, mcd is the maximum contention that a request of each type can
incur on other requests. We have derived mcd values empirically following the process
described in [33]. The general approach consists in generating small benchmarks that
generate a single-type of requests (e.g., load hits in L2) and architect experiments so
tight bounds to request latencies can be derived.

Table 3.1: Request types and their
latency in our reference board

Type mcd Description

sh lsh = 1 L2 st hit
lh llh = 8 L2 ld hit in L2
lmc llmc = 28 L2 ld clean miss
smc lsmc = 28 L2 st clean miss
lmd llmd = 31 L2 ld dirty miss
smd lsmd = 31 L2 st dirty miss

Table 3.2: PMCs available in the
reference processor

Name Description

pmcicm Bus reads caused by ic misses
pmcdcm Bus reads caused by dc misses
pmcst Writes to L2
pmcm Misses in the L2

29

3.5 fTC contention model

fTC derives a WCET estimate that is an upper bound to the slowdown τa can
suffer regardless of the load its contender tasks put on the shared resources. This
requires the model to pessimistically assume that the number of contenders equals
Nc − 1 where Nc is the number of cores – four in our platform. Further, the model
assumes that for every τa request its contenders have one request of the worst type,
i.e., causing the longest contention on it that in our architecture corresponds to lmd
and smd (indistinctly referred to as xmd). Hence, fTC assumes that each request of
τa is delayed 31 cycles = lsmd = llmd by each contenders’ request.

Overall, fTC builds a set of enlarged execution time observations as shown in
Equation (3.2), where nia is the total number of request that τa performs in run ri.

eetia = oetia + ∆i,fTC
cont = oetia +

[
nia × (Nc− 1)× lxmd

]
(3.2)

3.6 pTC contention model

The fTC model may result in noticeably pessimistic WCET estimates. The
partially Time Composable (pTC) model presented in this section trades time
composability to tighten WCET estimates. With pTC [41], the user can yet enjoy
benefits of incremental integration with small effort to assess time composability.

The pTC model, instead of assuming Nc− 1 contenders, takes the actual number
of running τa contenders. Also, unlike fTC, pTC tracks the number of requests of each
type. This offers a powerful solution to tighten WCET estimates with a reasonable
low impact on time composability. pTC assumes that an upper bound to the number
of contenders’ request of each type can be derived.

The pTC model derives the impact that the number of requests for each contender
task τb can cause on τa.

Ideally, we would like to have a PMC for the number of requests of each type
made by the task. We refer to that ideal counter as nxxx where xxx corresponds to
one of the types in Table 3.1. However, in the target platform there is not a specific
set of PMCs measuring those values as shown in Table 3.2, which lists the relevant
PMCs we used.

30

We performed an analysis of the relation we derive among the events needed by
the pTC model and the PMCs in the architecture (pmcyyy) as shown in Figure 3.5:
the number of loads to L2 (nl) matches the number of misses to the dc and the ic
(pmcdcm + pmcicm); the number of stores matches pmcst; and the number of misses
pmcm covers those caused by clean and dirty evictions (pmcm = nlmc +nsmc +nlmd +
nsmd). Further, the number of stores nst matches pmcst = nsh + nsmd + nsmc.

With the existing PMC we approximate the number of requests of each type made
by each contender task. In doing so, we take into account the request latency so that
the resulting impact that τb causes on τa derived with PMCs is an upperbound to
the actual one we would derive if we had the ideal PMCs. The approach consists in
upper bounding high-latency requests first, which in our architecture are dirty misses
(lmd and smd).

Figure 3.5: Events and PMCs

Bounding Dirty Misses: The number of L2 misses evicting a dirty line is upper
bounded by the minimum between the number of stores (nst = pmcst) that cause lines
to be dirty and the number of L2 misses (nm = pmcm) that evict cache lines, see left

Figure 3.6: Pairing steps

31

part of Equation (3.3).

n̂md = min(pmcm, pmcst) → ňmc = pmcm − n̂md (3.3)

Since nm = nmd + nmc, the approximation in Equation (3.3) may result in
assuming that some misses generate dirty evictions while, in reality, they do not,
thus introducing some pessimism. In particular, it results in a lower bound to the
number of clean misses (ňmc), see the right side of Equation (3.3).

Bounding Load Hits: The number of loads that hit in cache is upper bounded
by the minimum between the number of hits (nh) and the number of loads (nl) to
the L2, see Equation (3.4). They are respectively computed from PMCs as follows:

The number of loads performed to the L2 cache (nl) equals the number of misses
in the dc and ic, i.e., nl = pmcicm + pmcdcm. Note that the number of loads to the
L2 includes hits and misses (dirty and clean), i.e., nl = nlh + nlmc + nlmd.

The number of hits in L2, nh is obtained with existing PMCs as nh = (pmcicm +
pmcdcm + pmcst)− pmcm, that is, the number of read/write accesses to the L2, which
include load misses in the ic and the dc plus stores (due to the write-through policy
of the dc cache), minus the number of L2 misses. Note that pmcm does only count the
number of direct misses. More specifically, it does not count the number of memory
accesses due to write backs.

n̂lh = min(nh, nl) → ňsh = nh − n̂lh (3.4)

Since nh = nlh+nsh, a lower bound to the number of store hits is derived as shown
in the right side of Equation (3.4).

3.6.1 Bounding contention

Once bounds to τb accesses have been computed, the pTC model assumes that
requests from τb delay τa requests by their respective mcd. This is implemented by
iteratively “pairing” each request from a run ri of τa with one request of τb from worst
to best latency, see Figure 3.6.

1. First, the number of requests from task τb of type miss dirty (n̂md), i.e the

32

type with highest mcd, that contend with requests of τa, n
i
a, is given by:

ĉmd = min(nia, n̂
md
b). Hence the number of unpaired requests from τa is

n′ia = max(0, nia − ĉmdb) requests of τa unpaired.

2. Those n′ia requests contend with ňmc (second most impacting type) requests of
τb: č

mc = min(n′ia , ň
mc
b). This results in n′′a = max(0, n′ia − čmc) τa’s unpaired

requests.

3. Those n′′ia requests contend with n̂lhb (third most impacting type) requests of
τb: ĉ

lh = min(n′′ia , n̂
lh
b) with n′′′a = max(0, n′′ia − ĉlh) requests unpaired.

4. Finally, the n′′′ia remaining τa’s requests contend with ňshb (fourth most impacting
type) requests of τb: čsh = min(n′′′ia , ň

sh
b). With the remaining τa’s request

n′′′′ia = max(0, n′′′ia − čsh) not contending with any request of τb.

The obtained pTC contention is the result of assuming that each of these
contentions among τa and its contender τb are aligned in the worst way, causing
a contention delay as long as each τb request (see Equation (3.5)). This process is
repeated for the other potential contender tasks τc and τd. The overall pTC contention
bound is given by Equation (3.6).

∆i,pTC
τb→τa = (ĉmd × lmd) + (čmc × lmc) + (ĉlh × llh) + (čsh × lsh) (3.5)

∆i,pTC
cont = ∆i,pTC

τb→τa + ∆i,pTC
τc→τa + ∆i,pTC

τd→τa (3.6)

3.6.2 Other considerations

The fTC model has the advantage of breaking the dependence between scheduling
and WCET. In an exact model, the WCET figure to be used depends on the schedule
of tasks, which creates a circular dependence as WCET is also an input for deriving
a feasible schedule. This issue has been initially tackled by an iterative approach to
simultaneously attack WCET and scheduling [43]. With fTC the WCET estimate
is not affected by the load contender tasks put on the shared resources, and hence
it does not depend on task scheduling. However, this comes at the cost of inflated
WCET estimates.

It is worth noting that the principles of the presented model does not only apply
to the studied processor but also to other multicore processors. In order to adapt
the model, it is necessary to understand the type of events using the shared resource

33

and their duration. The quality of the results, however, depends on the PMC support
available and the accuracy it guarantees in tracking the desired events, see Figure 3.5.
As part of our current work we are extending the model to multicore processors in
other domains, e.g., automotive.

3.7 Experimental results

We first demonstrate our combined approach on a synthetic application and then
with benchmarks of the EEMBC Automotive suite [15].

3.7.1 Hardware Setup

We used an FPGA implementation of the LEON3 [14] platform, as introduced
in Section 3.3. Each core comprises separate 16KB 4-way set-associative L1 caches
for instruction and data, with write-through, no write allocate policy. The cache
hierarchy is complemented by a shared 128KB 4-way unified L2 cache, with write-back
policy. An AMBA AHB bus provides connections among private caches, the L2 and
the DRAM memory controller. In our setting, we configured the L2 to be partitioned
among cores (contention is still to be suffered on bus accesses), so each core has a
32KB direct-mapped L2.

3.7.2 MBPTA Setup

We applied MBPTA to the target program, considering 10−12 as the pWCET
exceedance probability threshold of interest. We collected 3,000 runs to meet the
representativeness requirements, as determined by the ReVS method [38]. The
obtained set of observations successfully passed the statistical independence and
identical distribution tests, prerequisites to the application of EVT, and allowed
MBPTA to converge on a pWCET distribution.

3.7.3 Synthetic application

Our synthetic application resembles an “aggressive” program uniformly accessing
the shared bus for 30% of its execution time. It consists of several functions that

34

are sequentially accessed within a loop a total of one hundred times. Each function
comprises a variable number of instructions, performing a mixture of purely arithmetic
and read/write operations.

Our empirical evaluation proceeds through two incremental steps. First, we assess
the effectiveness of software randomization in enabling MBPTA to capture intra-core
cache jitter. To that end, we execute and analyze our program in isolation (i.e., no
contention at all), in a simple single-core setup.

Second, we show how the results in isolation can be complemented with the
analysis of inter-core contention jitter. We therefore assess our analytical model,
combining cache and contention jitter, against representative execution scenarios
where all cores in the system are concurrently enabled.

Figure 3.7: Results of TASA and MBPTA on a single-core setup.

Capturing Cache Jitter. We exploited TASA to enable MBPTA to capture
the execution time variability incurred by caches. To this extent, we analyzed our
application in a single-core setup, guaranteeing complete isolation.

Figure 3.7 reports the pWCET distribution computed by MBPTA for the target
program. Observed values are upperbounded by the MBPTA projection and pWCET
result is obtained by selecting the value of the projection at the 10−12 exceedance
threshold. In this case the pWCET distribution is particularly close to the maximum
observed execution time (MOET). It is worth noting that, since plain observed values
do not provide any worst-case guarantee, it is common (though pretty unscientific)
industrial practice to resort to a fudge factor to account for unknown factors. This
factor is typically in the order of magnitude of 20% of the MOET.

Notably, the pWCET computed with MBPTA is not only much tighter than the
20% margin, but also comes with scientific reasoning.

35

Multicore Contention. The MC2 approach extends single-core pWCET
estimates by capturing the effect of inter-core contention through a contention model
based on PMCs. In order to assess the precision of our analytical model, we performed
a set of experiments on representative execution scenarios where all cores in the system
are concurrently enabled and compared against the results of our analytical (fTC and
pTC) models.

In our setting and platform, the theoretical worst-case inter-core contention
suffered by an application corresponds to the fTC scenario where all bus access
requests are triggered one cycle after the reserved slot and all other cores already
have pending requests, each one incurring the latency of a L2 dirty-miss. While
being fully time-composable, this scenario can be extremely pessimistic in practice
as it can only occur under extremely bad and rare overlapping of bus requests and
cache miss patterns.

fTC. We consider first the fTC contention model as it is used as a reference for the
pTC one. Our application, τa, is executed under two different scenarios of contention:
(1) against three stressing kernels performing loads that miss in L2 (i.e., clean misses)
and (2) against three stressing kernels performing stores in L2 overwriting data (i.e.,
dirty misses). Figure 3.8 shows the execution time of τa under the two scenarios
of contention and the bound derived with the fTC model. Values are normalized
against the MOET from baseline observations (i.e., no contention). As expected the
model is accurate when the execution conditions are matching the fTC assumptions
(i.e., worst request latencies and alignment). In practice, contenders will not generate
those overly-conflictive scenarios. The pTC model cures the pessimism coming from
the worst-case latency assumption.

N
or

m
al

iz
ed

 w
.r.

t.
ex

ec
tim

e
in

 is
ol

at
io

n

0
1
2
3
4
5
6

clean
misses

dirty
misses fTC

Figure 3.8: Execution time when c(τa)
create clean/dirty misses and fTC

W
C

ET
 @

10
e-

12
 w

.r.
t.

is
ol

at
io

n

0
1
2
3
4
5
6

fTC
-pr

ed

pT
C10

0-p
red

pT
C10

0-o
bs

pT
C80

-pr
ed

pT
C80

-ob
s

pT
C60

-pr
ed

pT
C60

-ob
s

pT
C40

-pr
ed

pT
C40

-ob
s

pT
C20

-pr
ed

pT
C20

-ob
s

Figure 3.9: Result of the pTC under
different load scenarios generated by the
contenders

pTC. To compare the accuracy of the pTC model and how it adapts to contenders’

36

load on the bus, we run our application τa against three copies of a benchmark that
performs a variable number of bus accesses depending on the configuration, which we
express as a percentage of τa accesses. Figure 3.9 compares the observed execution
times against the predictions of the pTC model. Results from applying the fTC are
included as well for the sake of comparison.

As expected, the fTC model yields pessimistic pWCET estimates. Conversely, we
observe that the pTC model computes pWCET estimates decrease in parallel with
the load put by contenders on the shared bus. Note that the difference among fTC
and pTC−100% is that the former assumes that all requests contribute the worst-case
latency (dirty misses), whereas the latter accounts for the actual type of requests of
the contenders. For any value of p, e.g., pTC − 40%, the derived pWCET@10−12

with pTC tightly upperbounds the actual observed value.

All in all this synthetic evaluation confirms that the MC2 method effectively
captures both cache and multicore contention into pWCET estimates that are
analytically reliable and tightly upperbounding the observed values.

3.7.4 EEMBC

To further evaluate our approach we applied MC2 on the EEMBC automotive
benchmarks [15]. In particular, we analyzed a2time, cacheb, idctrn, iirflt,
puwmod, and tblook on the same platform. Figure 3.10 reports, for each benchmark,
MOET in both singlecore and multicore scenarios, and the results of the fTC and
pTC models. For the pTC model contention was generated by deploying three copies
of the benchmark itself. All results are normalized with respect to the multicore
MOET.

First we observe that fTC WCET estimate are in general extremely high (∼11x).
This is explained by the fact that fTC model assumes not only the worst-case
alignment scenario but also the worst-case latencies for each contender access, which
is generally unrealistic. The pTC model, instead, provides quite good results, with
all values below 1.5x the multicore MOET.

The only pessimism in the pTC model comes from its conservative assumptions
on the alignment of requests. pTC estimates provides a good compromise between
tightness and flexibility: a further reduction in pessimism cannot be had without
exact knowledge on how bus accesses interleave, which is not flexible and typically
too difficult to derive.

37

EEMBC

Ex
ec

ut
ion

 tim
e

w.
r.t

.
m

ult
ico

re

0.0

0.5

1.0

1.5

2.0

12

a2time

9

cacheb

10

idctrn

8

iirflt

13

puwmod

12

tblook

Singlecore Multicore pTC fTC

Figure 3.10: Results of EEMBCs against 3 copies of themselves

3.8 Related work

Several approaches have been proposed to account for inter-core contention by
computing an upper bound to the delay a task or application may suffer [44]. Some
of those approaches require extending classic timing analysis framework to account
for the effect of shared resources [45], but they are generally unsustainable owing
to the entailed computational complexity. Other approaches suggest a separate
(compositional) analysis approach [46, 47, 48]. They propose a separate analysis
for contention and, frequently, rely on splitting tasks into sub-tasks or phases so
that worst-case alignment in (typically) TDMA-based arbiters can be reasonably
computed. Assuming that tasks can be split into phases allows refining the
analysis model and reducing the overall pessimism; however, this assumption is quite
application-dependent and cannot be generalized.

Moreover, the above approaches typically rely on insightful information on all the
applications in the system and a preliminary static analysis step to characterize the
pattern of memory accesses. Conversely, the contention analysis approach we rely on
limits the pessimism while at the same time making no assumption on how memory
accesses are distributed. Our model only requires support for PMCs, which is often
available (though at variable extent) in COTS platforms.

Other approaches make use of specific hardware and/or RTOS mechanisms to
enforce precomputed bounds to the maximum contention caused/suffered at run
time [49, 50]. While interesting, those approaches do rely on domain-specific and
custom run-time hardware mechanisms that are not typically available, and yield
results that are only valid under the specific task set and system configuration.

38

Our approach, instead, derives bounds on the inter-core contention that are at the
same time realistic and only partially dependent on the co-runners characteristics, as
a first step towards enabling incremental development and qualification.

The use of PMCs to model contention and derive an upper bound to multicore
contention delays has been originally introduced in [33], where the analytical model
for fTC and pTC is tailored to the NGMP platform. In this work, we readapt the
same concept to the MBPTA framework and combines the contention model in [33]
(adapted to the LEON3) with software randomization to provide holistic pWCET
bounds, accounting for both cache jitter and contention effects.

3.9 Conclusions

We have proposed MC2, a technique for COTS multilevel-cache multicores that
derives WCET estimates factoring in the jitter generated by caches and multicore
contention. To that end, each measurement fed in input to MBPTA systematically
accounts for the impact of both resources, effectively enabling MBPTA to factor
them in when deriving pWCET estimates. Our results on a COTS platform confirm
that MC2 effectively captures the impact of both multi-level cache variability and
inter-core contention in realistic WCET estimates, that tightly upperbound observed
values.

39

4. Summary

Measurement-based timing analysis is, and will continue to be, the most used
technique to address timing analysis in industry. In this work we advocate for
its probabilistic branch to tackle the challenges presented by high performance
architectures. Furthermore, measurement-based probabilistic timing analysis covers
sources of execution time variability caused by hardware and software that cannot be
fully captured by the classic MBTA approach. It is important to remark that MBPTA
application is still subject to the inputs used at analysis, i.e. MBPTA cannot predict
events that have not been captured during analysis.

We have shown that software instrumentation, used in MBTA and MBPTA,
invalidates the timing analysis if instrumentation instructions are simply removed
from the binary deployed. In fact, we will be facing a completely different binary, thus
losing those guarantees obtained during the analysis phase. The solution proposed
allows keeping valid results obtained with software instrumentation. We show that
replacing instrumentation instructions by plain nops makes everything simpler with
negligible cons.

We have also presented a technique for COTS multilevel-cache multicores to
derive reliable WCET estimates taking into account variability coming from the
cache hierarchy and variability caused by multicore contention. MBPTA considers
both sources of jitter and outputs a trustworthy pWCET estimate. Overall, we have
advanced the state of MBPTA contributing to its consolidation for future real-time
embedded systems.

40

Bibliography

[1] “Automotive Industry Drives Chip Demand.” http://www.eetimes.com/

document.asp?doc_id=1324718. Accessed: 2017-06-06.

[2] R. N. Charette, “This car runs on code,” IEEE spectrum, vol. 46, no. 3, p. 3,
2009.

[3] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al., “The worst-case
execution-time problem overview of methods and survey of tools,” ACM
Transactions on Embedded Computing Systems, vol. 7, pp. 1–53, May 2008.

[4] J. Abella, C. Hernandez, E. Quinones, F. J. Cazorla, P. R. Conmy,
M. Azkarate-askasua, J. Perez, E. Mezzetti, and T. Vardanega, “WCET
analysis methods: Pitfalls and challenges on their trustworthiness,” in Industrial
Embedded Systems (SIES), 2015 10th IEEE International Symposium on,
pp. 1–10, IEEE, 2015.

[5] L. Kosmidis, E. Quiñones, J. Abella, T. Vardanega, I. Broster, and F. J. Cazorla,
“Measurement-based probabilistic timing analysis and its impact on processor
architecture,” in Digital System Design (DSD), 2014 17th Euromicro Conference
on, pp. 401–410, IEEE, 2014.

[6] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner, “Measurement-based timing
analysis,” in ISOLA, 2008.

[7] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis,
J. Abella, E. Mezzetti, E. Quinones, and F. J. Cazorla, “Measurement-based
probabilistic timing analysis for multi-path programs,” in Real-Time Systems
(ECRTS), 2012 24th Euromicro Conference on, pp. 91–101, IEEE, 2012.

[8] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla, “A cache design for
probabilistically analysable real-time systems,” in DATE, 2013.

41

http://www.eetimes.com/document.asp?doc_id=1324718
http://www.eetimes.com/document.asp?doc_id=1324718

[9] S. Kotz and S. Nadarajah, Extreme value distributions: theory and applications.
World Scientific, 2000.

[10] http://www.gaisler.com/index.php/products/debug-tools/grmon,
Cobham Gaisler. GRMON.

[11] B. Rieder, I. Wenzel, K. Steinhammer, and P. Puschner, “Using a runtime
measurement device with measurement-based WCET analysis,” in IESS, 2007.

[12] https://www.rapitasystems.com/products/rtbx, RTBx. Rapita Systems.

[13] L. Kosmidis, J. Abella, F. Wartel, E. Quiñones, A. Colin, and F. J. Cazorla,
“Pub: Path upper-bounding for measurement-based probabilistic timing
analysis,” in Real-Time Systems (ECRTS), 2014 26th Euromicro Conference on,
pp. 276–287, IEEE, 2014.

[14] http://www.gaisler.com/index.php/products/processors/leon3, Leon3
Processor. Cobham Gaisler.

[15] J. Poovey et al., “Characterization of the EEMBC benchmark suite,” North
Carolina State University, 2007.

[16] ERA (European Railway Agency), “ERTMS - Set of specifications - 2 (ETCS
baseline 3 and GSM-R baseline 0),” 2014.

[17] S. M. Petters, “Comparison of trace generation methods for measurement based
WCET analysis,” in WCET Analysis Workshop, 2003.

[18] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner, “Measurement-based
worst-case execution time analysis,” in SEUS Workshop, 2005.

[19] A. Betts, N. Merriam, and G. Bernat, “Hybrid measurement-based WCET
analysis at the source level using object-level traces,” in WCET Analysis
Workshop, 2010.

[20] R. Kirner, P. Puschner, I. Wenzel, et al., “Measurement-based worst-case
execution time analysis using automatic test-data generation,” in SEUS
Workshop, 2004.

[21] I. Wenzel, B. Rieder, R. Kirner, and P. Puschner, “Automatic timing model
generation by CFG partitioning and model checking,” in DATE, 2005.

[22] S. Stattelmann and F. Martin, “On the use of context information for precise
measurement-based execution time estimation,” in WCET Analysis Workshop,
2010.

42

http://www.gaisler.com/index.php/products/debug-tools/grmon
https://www.rapitasystems.com/products/rtbx
http://www.gaisler.com/index.php/products/processors/leon3

[23] B. Dreyer, C. Hochberger, S. Wegener, and A. Weiss, “Precise continuous
non-intrusive measurement-based execution time estimation,” in WCET Analyis
Workshop, 2015.

[24] D. Buttle, “Real-time in the prime-time, ETAS GmbH, Germany,” in Keynote
talk at 24th Euromicro Conference on Real-Time Systems, Pisa, Italy, July, 2012.

[25] G. Edelin, “Embedded systems at THALES: the Artemis challenges for an
industrial group,” in Lecture at ARTIST Summer School, (Autrans, France),
2009.

[26] A. West, “NASA Study on Flight Software Complexity. Final Report,” tech.
rep., NASA Excellence Program, 2009.

[27] International Organization for Standardization, ISO/DIS 26262. Road Vehicles
– Functional Safety. ISO, Geneva, Switzerland, 2009.

[28] Federal Aviation Administration, Certification Authorities Software Team
(CAST), CAST-32A Multi-core Processors, 2016.

[29] F. Wartel, L. Kosmidis, A. Gogonel, A. Baldovin, Z. Stephenson, B. Triquet,
E. Quiñones, C. Lo, E. Mezzetti, I. Broster, J. Abella, L. Cucu-Grosjean,
T. Vardanega, and F. J. Cazorla, “Timing analysis of an avionics case study
on complex hardware/software platforms,” in Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, pp. 397–402, 2015.

[30] F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quiñones, J. Abella,
A. Gogonel, A. Baldovin, E. Mezzetti, L. Cucu, T. Vardanega, and F. J.
Cazorla, “Measurement-based probabilistic timing analysis: Lessons from an
integrated-modular avionics case study,” in Int. Symposium on Industrial
Embedded Systems, June 2013.

[31] C. Hernandez, J. Abella, A. Gianarro, J. Andersson, and F. J. Cazorla, “Random
modulo: A new processor cache design for real-time critical systems,” in 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June
2016.

[32] L. Kosmidis, C. Curtsinger, E. Quiñones, J. Abella, E. Berger, and F. J. Cazorla,
“Probabilistic timing analysis on conventional cache designs,” in Proceedings of
the Conference on Design, Automation and Test in Europe, DATE ’13, 2013.

[33] J. Jalle, M. Fernandez, J. Abella, J. Andersson, M. Patte, L. Fossati,
M. Zulianello, and F. J. Cazorla, “Bounding resource contention interference
in the next-generation microprocessor (ngmp),” in 8th European Congress on
Embedded Real Time Software and Systems (ERTS 2016), 2016.

43

[34] M. Fernández, R. Gioiosa, E. Quiñones, L. Fossati, M. Zulianello, and F. J.
Cazorla, “Assessing the suitability of the ngmp multi-core processor in the
space domain,” in Proceedings of the Tenth ACM International Conference on
Embedded Software, EMSOFT ’12, (New York, NY, USA), pp. 175–184, ACM,
2012.

[35] S. Law and I. Bate, “Achieving appropriate test coverage for reliable
measurement-based timing analysis,” in 2016 28th Euromicro Conference on
Real-Time Systems (ECRTS), pp. 189–199, July 2016.

[36] J. Nowotsch, M. Paulitsch, A. Henrichsen, W. Pongratz, and A. Schacht,
“Monitoring and wcet analysis in cots multi-core-soc-based mixed-criticality
systems,” in Conference on Design, Automation & Test in Europe (DATE), 2014.

[37] W. Feller, An Introduction to Probability Theory and Its Applications. John
Willer and Sons, 1968.

[38] S. Milutinovic, J. Abella, and F. J. Cazorla, “Modelling probabilistic cache
representativeness in the presence of arbitrary access patterns,” in International
Symposium on Real-Time Distributed Computing (ISORC), pp. 142–149, May
2016.

[39] L. Kosmidis, R. Vargas, D. Morales, E. Quiñones, J. Abella, and F. J. Cazorla,
“Tasa: Toolchain-agnostic static software randomisation for critical real-time
systems,” in International Conference on Computer-Aided Design, pp. 1–8, Nov
2016.

[40] L. Kosmidis, E. Quiñones, J. Abella, G. Farrall, F. Wartel, and F. J. Cazorla,
“Containing timing-related certification cost in automotive systems deploying
complex hardware,” in Proceedings of the 51st Annual Design Automation
Conference, DAC ’14, (New York, NY, USA), pp. 22:1–22:6, ACM, 2014.

[41] G. Fernandez, J. Jalle, J. Abella, E. Quiñones, T. Vardanega, and F. J. Cazorla,
“Resource usage templates and signatures for cots multicore processors,” in
Proceedings of the 52nd Annual Design Automation Conference, DAC ’15, 2015.

[42] E. Mezzetti and T. Vardanega, “A rapid cache-aware procedure positioning
optimization to favor incremental development,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 107–116, April 2013.

[43] G. Fernandez, J. Abella, E. Quiñones, L. Fossati, M. Zulianello, T. Vardanega,
and F. J. Cazorla, “Seeking time-composable partitions of tasks for cots multicore
processors,” in 2015 IEEE 18th International Symposium on Real-Time
Distributed Computing, pp. 208–217, April 2015.

44

[44] G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and F. J.
Cazorla, “Contention in multicore hardware shared resources: Understanding
of the state of the art,” in OASIcs-OpenAccess Series in Informatics, vol. 39,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[45] S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel, and
H. Falk, “A unified wcet analysis framework for multi-core platforms,” in 2012
IEEE 18th Real Time and Embedded Technology and Applications Symposium,
pp. 99–108, April 2012.

[46] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, and R. Ernst, “Reliable
performance analysis of a multicore multithreaded system-on-chip,” in 6th
international conference on Hardware/Software codesign and system synthesis,
CODES ’08, 2008.

[47] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing analysis for tdma arbitration
in resource sharing systems,” in 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS, 2010.

[48] D. Dasari, V. Nelis, and B. Akesson, “A framework for memory contention
analysis in multi-core platforms,” Real-Time Systems, vol. 52, no. 3, pp. 272–322,
2016.

[49] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero, “Hardware
support forWCET analysis of hard real-time multicore systems,” in 36th Annual
International Symposium on Computer Architecture, ISCA, 2009.

[50] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core Interference-Sensitive WCET Analysis Leveraging
Runtime Resource Capacity Enforcement,” in Euromicro Conference on
Real-Time Systems, July 2014.

45

	Introduction
	Motivation
	Contributions
	Contribution 1
	Contribution 2

	Structure of the Thesis

	Software-Instrumentation Cache Effects
	Introduction
	Background
	Problem statement
	Probe effect

	Illustrative example
	Proposal
	Functionally-neutral program (fnprog)
	Impact argument

	Instrumented program (iprog)
	WCET upper bounding

	Experimental results
	Experiment setup
	EEMBC
	Case study

	Related work
	Conclusions and future work

	Multicore and Caches
	Introduction
	Background
	MBPTA
	Software Randomization

	Platform
	Handling multicore contention and cache jitter
	Goals and challenges
	Overall process
	Detailed explanation
	Request Characteristics

	fTC contention model
	pTC contention model
	Bounding contention
	Other considerations

	Experimental results
	Hardware Setup
	MBPTA Setup
	Synthetic application
	EEMBC

	Related work
	Conclusions

	Summary
	Bibliography

