5,800 research outputs found

    Resource Control for Synchronous Cooperative Threads

    Get PDF
    We develop new methods to statically bound the resources needed for the execution of systems of concurrent, interactive threads. Our study is concerned with a \emph{synchronous} model of interaction based on cooperative threads whose execution proceeds in synchronous rounds called instants. Our contribution is a system of compositional static analyses to guarantee that each instant terminates and to bound the size of the values computed by the system as a function of the size of its parameters at the beginning of the instant. Our method generalises an approach designed for first-order functional languages that relies on a combination of standard termination techniques for term rewriting systems and an analysis of the size of the computed values based on the notion of quasi-interpretation. We show that these two methods can be combined to obtain an explicit polynomial bound on the resources needed for the execution of the system during an instant. As a second contribution, we introduce a virtual machine and a related bytecode thus producing a precise description of the resources needed for the execution of a system. In this context, we present a suitable control flow analysis that allows to formulte the static analyses for resource control at byte code level

    Reactive concurrent programming revisited

    Get PDF
    In this note we revisit the so-called reactive programming style, which evolves from the synchronous programming model of the Esterel language by weakening the assumption that the absence of an event can be detected instantaneously. We review some research directions that have been explored since the emergence of the reactive model ten years ago. We shall also outline some questions that remain to be investigated

    Complexity Information Flow in a Multi-threaded Imperative Language

    Get PDF
    We propose a type system to analyze the time consumed by multi-threaded imperative programs with a shared global memory, which delineates a class of safe multi-threaded programs. We demonstrate that a safe multi-threaded program runs in polynomial time if (i) it is strongly terminating wrt a non-deterministic scheduling policy or (ii) it terminates wrt a deterministic and quiet scheduling policy. As a consequence, we also characterize the set of polynomial time functions. The type system presented is based on the fundamental notion of data tiering, which is central in implicit computational complexity. It regulates the information flow in a computation. This aspect is interesting in that the type system bears a resemblance to typed based information flow analysis and notions of non-interference. As far as we know, this is the first characterization by a type system of polynomial time multi-threaded programs

    A Formal, Resource Consumption-Preserving Translation of Actors to Haskell

    Get PDF
    We present a formal translation of an actor-based language with cooperative scheduling to the functional language Haskell. The translation is proven correct with respect to a formal semantics of the source language and a high-level operational semantics of the target, i.e. a subset of Haskell. The main correctness theorem is expressed in terms of a simulation relation between the operational semantics of actor programs and their translation. This allows us to then prove that the resource consumption is preserved over this translation, as we establish an equivalence of the cost of the original and Haskell-translated execution traces.Comment: Pre-proceedings paper presented at the 26th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, Scotland UK, 6-8 September 2016 (arXiv:1608.02534

    libcppa - Designing an Actor Semantic for C++11

    Full text link
    Parallel hardware makes concurrency mandatory for efficient program execution. However, writing concurrent software is both challenging and error-prone. C++11 provides standard facilities for multiprogramming, such as atomic operations with acquire/release semantics and RAII mutex locking, but these primitives remain too low-level. Using them both correctly and efficiently still requires expert knowledge and hand-crafting. The actor model replaces implicit communication by sharing with an explicit message passing mechanism. It applies to concurrency as well as distribution, and a lightweight actor model implementation that schedules all actors in a properly pre-dimensioned thread pool can outperform equivalent thread-based applications. However, the actor model did not enter the domain of native programming languages yet besides vendor-specific island solutions. With the open source library libcppa, we want to combine the ability to build reliable and distributed systems provided by the actor model with the performance and resource-efficiency of C++11.Comment: 10 page

    Feasible reactivity in a synchronous pi-calculus

    Get PDF
    Reactivity is an essential property of a synchronous program. Informally, it guarantees that at each instant the program fed with an input will `react' producing an output. In the present work, we consider a refined property that we call ` feasible reactivity'. Beyond reactivity, this property guarantees that at each instant both the size of the program and its reaction time are bounded by a polynomial in the size of the parameters at the beginning of the computation and the size of the largest input. We propose a method to annotate programs and we develop related static analysis techniques that guarantee feasible reactivity for programs expressed in the S-pi-calculus. The latter is a synchronous version of the pi-calculus based on the SL synchronous programming model

    Safe Reactive Programming: The FunLoft Proposal

    Get PDF
    We propose a multicore-ready programming language based on a two-level shared memory model. Concurrency units are schedulers and threads which are dispatched on available cores in a preemptive way. Each scheduler is in charge of its own portion of the memory. At runtime, several threads may link to a common scheduler. In this case, they enter a cooperative mode, evolve in synchronous rounds, and are granted access to the scheduler memory. At the opposite, an autonomous thread runs at its own pace but has access only to a local memory. The language ensures that programs are free of memory leaks, that code between two cooperation points is atomic, and that rounds are fair and always terminate (no run-time error nor divergence)

    Formalisation of FunLoft

    Get PDF
    We formalise a thread-based concurrent language which makes resource control possible. Concurrency is based on a two-level model: threads are executed cooperatively when linked to a scheduler, and unlinked threads and schedulers are executed preemptively, under the control of the OS. We present a type and effect system to enforce a logical separation of the memory which ensures that (1) when running in preemptive mode, threads do not interfere with other threads; (2) threads linked to a scheduler do not interfere with threads linked to another scheduler. Thus, we get a concurrency model in which well-typed programs are free from data-races. The type system also insures that well-typed programs are bounded in memory and in their use of the CPU. Detection of termination of recursive functions and stratification of references in memory are techniques used to get these properties
    • …
    corecore