1,782 research outputs found

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Specification Languages for Preserving Consistency between Models of Different Languages

    Get PDF
    In dieser Dissertation stellen wir drei Sprachen für die Entwicklung von Werkzeugen vor, welche Systemrepräsentationen während der Softwareentwicklung konsistent halten. Bei der Entwicklung komplexer informationstechnischer Systeme ist es üblich, mehrere Programmiersprachen und Modellierungssprachen zu nutzen. Dabei werden Teile des Systems mit unterschiedlichen Sprachen konstruiert und dargestellt, um verschiedene Entwurfs- und Entwicklungstätigkeiten zu unterstützen. Die übergreifende Struktur eines Systems wird beispielsweise oft mit Hilfe einer Architekturbeschreibungssprache dargestellt. Für die Spezifikation des detaillierten Verhaltens einzelner Systemteile ist hingegen eine zustandsbasierte Modellierungssprache oder eine Allzweckprogrammiersprache geeigneter. Da die Systemteile und Entwicklungstätigkeiten in Beziehung zueinander stehen, enthalten diese Repräsentationen oftmals auch redundante Informationen. Solche partiell redundanten Repräsentationen werden meist nicht statisch genutzt, sondern evolvieren während der Systementwicklung, was zu Inkonsistenzen und damit zu fehlerhaften Entwürfen und Implementierungen führen kann. Daher sind konsistente Systemrepräsentationen entscheidend für die Entwicklung solcher Systeme. Es gibt verschiedene Ansätze, die konsistente Systemrepräsentationen dadurch erreichen, dass Inkonsistenzen vermieden werden. So ist es beispielsweise möglich, eine zentrale, redundanzfreie Repräsentation zu erstellen, welche alle Informationen enthält, um alle anderen Repräsentationen daraus projizieren zu können. Es ist jedoch nicht immer praktikabel solch eine redundanzfreie Repräsentation und editierbare Projektionen zu erstellen, insbesondere wenn existierende Sprachen und Editoren unterstützt werden müssen. Eine weitere Möglichkeit zur Umgehung von Inkonsistenzen besteht darin Änderungen einzelner Informationen nur an einer eindeutigen Quellrepräsentation zuzulassen, sodass alle anderen Repräsentationen diese Information nur lesen können. Dadurch können solche Informationen in allen lesend zugreifenden Repräsentationen immer überschrieben werden, jedoch müssen dazu alle editierbaren Repräsentationsbereiche komplett voneinander getrennt werden. Falls inkonsistente Repräsentationen während der Systementwicklung nicht völlig vermieden werden können, müssen Entwickler oder Werkzeuge aktiv die Konsistenz erhalten, wenn Repräsentationen modifiziert werden. Die manuelle Konsistenthaltung ist jedoch eine zeitaufwändige und fehleranfällige Tätigkeit. Daher werden in Forschungseinrichtungen und in der Industrie Konsistenthaltungswerkzeuge entwickelt, die teilautomatisiert Modelle während der Systementwicklung aktualisieren. Solche speziellen Software-Entwicklungswerkzeuge können mit Allzweckprogrammiersprachen und mit dedizierten Konsistenthaltungssprachen entwickelt werden. In dieser Dissertation haben wir vier bedeutende Herausforderungen identifiziert, die momentan nur unzureichend von Sprachen zur Entwicklung von Konsistenthaltungswerkzeugen adressiert werden. Erstens kombinieren diese Sprachen spezifische Unterstützung zur Konsistenthaltung nicht mit der Ausdrucksmächtigkeit und Flexibilität etablierter Allzweckprogrammiersprachen. Daher sind Entwickler entweder auf ausgewiesene Anwendungsfälle beschränkt, oder sie müssen wiederholt Lösungen für generische Konsistenthaltungsprobleme entwickeln. Zweitens unterstützen diese Sprachen entweder lösungs- oder problemorientierte Programmierparadigmen, sodass Entwickler gezwungen sind, Erhaltungsinstruktionen auch in Fällen anzugeben, in denen Konsistenzdeklarationen ausreichend wären. Drittens abstrahieren diese Sprachen nicht von genügend Konsistenthaltungsdetails, wodurch Entwickler explizit beispielsweise Erhaltungsrichtungen, Änderungstypen oder Übereinstimmungsprobleme berücksichtigen müssen. Viertens führen diese Sprachen zu Erhaltungsverhalten, das oft vom konkreten Anwendungsfall losgelöst zu sein scheint, wenn Interpreter und Übersetzer Code ausführen oder erzeugen, der zur Realisierung einer spezifischen Konsistenzspezifikation nicht benötigt wird. Um diese Probleme aktueller Ansätze zu adressieren, leistet diese Dissertation die folgenden Beiträge: Erstens stellen wir eine Sammlung und Klassifizierung von Herausforderungen der Konsistenthaltung vor. Dabei diskutieren wir beispielsweise, welche Herausforderungen nicht bereits adressiert werden sollten, wenn Konsistenz spezifiziert wird, sondern erst wenn sie durchgesetzt wird. Zweitens führen wir einen Ansatz zur Erhaltung von Konsistenz gemäß abstrakter Spezifikationen ein und formalisieren ihn mengentheoretisch. Diese Formalisierung ist unabhängig davon wie Konsistenzdurchsetzungen letztendlich realisiert werden. Mit dem vorgestellten Ansatz wird Konsistenz immer anhand von beobachteten Editieroperationen bewahrt, um bekannte Probleme zur Berechnung von Übereinstimmungen und Differenzen zu vermeiden. Schließlich stellen wir drei neue Sprachen zur Entwicklung von Werkzeugen vor, die den vorgestellten, spezifikationsgeleiteten Ansatz verfolgen und welche wir im Folgenden kurz erläutern. Wir präsentieren eine imperative Sprache, die verwendet werden kann, um präzise zu spezifizieren, wie Modelle in Reaktion auf spezifische Änderungen aktualisiert werden müssen, um Konsistenz in eine Richtung zu erhalten. Diese Reaktionssprache stellt Lösungen für häufige Probleme bereit, wie beispielsweise die Identifizierung und das Abrufen geänderter oder korrespondierender Modellelemente. Außerdem erreicht sie eine uneingeschränkte Ausdrucksmächtigkeit, indem sie Entwicklern ermöglicht, auf eine Allzweckprogrammiersprache zurückzugreifen. Eine zweite, bidirektionale Sprache für abstrakte Abbildungen kann für Fälle verwendet werden, in denen verschiedene Änderungsoperationen nicht unterschieden werden müssen und außerdem die Erhaltungsrichtung nicht immer eine Rolle spielt. Mit dieser Abbildungssprache können Entwickler Bedingungen deklarieren, die ausdrücken, wann Modellelemente als konsistent zueinander angesehen werden sollen, ohne sich um Details der Überprüfung oder Durchsetzung von Konsistenz bemühen zu müssen. Dazu leitet der Übersetzer automatisch Durchsetzungscode aus Überprüfungen ab und bidirektionalisiert Bedingungen, die für eine Richtung der Konsistenthaltung spezifiziert wurden. Diese Bidirektionalisierung basiert auf einer erweiterbaren Menge von komponierbaren, operatorspezifischen Invertierern, die verbreitete Round-trip-Anforderungen erfüllen. Infolgedessen können Entwickler häufig vorkommende Konsistenzanforderungen konzise ausdrücken und müssen keinen Quelltext für verschiedene Konsistenthaltungsrichtungen, Änderungstypen oder Eigenschaften von Modellelementen wiederholen. Eine dritte, normative Sprache kann verwendet werden, um die vorherigen Sprachen mit parametrisierbaren Konsistenzinvarianten zu ergänzen. Diese Invariantensprache übernimmt Operatoren und Iteratoren für Elementsammlungen von der Object Constraint Language (OCL). Außerdem nimmt sie Entwicklern das Schreiben von Quelltext zur Suche nach invariantenverletzenden Elementen ab, da Abfragen, welche diese Aufgaben übernehmen, automatisch anhand von Invariantenparametern abgeleitet werden. Die drei Sprachen können in Kombination und einzeln verwendet werden. Sie ermöglichen es Entwicklern, Konsistenz unter Verwendung verschiedener Programmierparadigmen und Sprachabstraktionen zu spezifizieren. Wir stellen auch prototypische Übersetzer und Editoren für die drei Konsistenzspezifikationssprachen vor, welche auf dem Vitruvius-Rahmenwerk für Multi-Sichten-Modellierung basieren. Mit diesem Rahmenwerk werden Änderungen in textuellen und graphischen Editoren automatisch beobachtet, um Reaktionen auszulösen, Abbildungen durchzusetzen und Invarianten zu überprüfen. Dies geschieht indem der von unseren Übersetzern erzeugte Java-Code ausgeführt wird. Außerdem haben wir für alle Sprachen, die in dieser Dissertation vorgestellt werden, folgende theoretischen und praktischen Eigenschaften evaluiert: Vollständigkeit, Korrektheit, Anwendbarkeit, und Nutzen. So zeigen wir, dass die Sprachen ihre vorgesehenen Einsatzbereiche vollständig abdecken und analysieren ihre Berechnungsvollständigkeit. Außerdem diskutieren wir die Korrektheit jeder einzelnen Sprache sowie die Korrektheit einzelner Sprachmerkmale. Die operatorspezifischen Invertierer, die wir zur Bidirektionalisierung von Abbildungsbedingungen entwickelt haben, erfüllen beispielsweise immer das neu eingeführte Konzept bestmöglich erzogener Round-trips. Dieses basiert auf dem bewährten Konzept wohlerzogener Transformationen und garantiert, dass übliche Round-trip-Gesetze erfüllt werden, wann immer dies möglich ist. Wir veranschaulichen die praktische Anwendbarkeit mit Fallstudien, in denen Konsistenz erfolgreich mit Hilfe von Werkzeugen erhalten wurde, die in den von uns vorgestellten Sprachen geschrieben wurden. Zum Schluss diskutieren wir den potenziellen Nutzen unserer Sprachen und vergleichen beispielsweise Konsistenthaltungswerkzeuge die in zwei Fallstudien realisiert wurden. Die Werkzeuge, die mit der Reaktionssprache entwickelt wurden, benötigen zwischen 33% und 71% weniger Zeilen Quelltext als funktional gleichwertige Werkzeuge, die mit in Java oder dem Java-Dialekt Xtend entwickelt wurden

    User-centric product derivation in software product lines

    Get PDF
    Software Product Line (SPL) engineering aims at achieving efficient development of software products in a specific domain. New products are obtained via a process which entails creating a new configuration specifying the desired product’s features. This configuration must necessarily conform to a variability model, that describes the scope of the SPL, or else it is not viable. To ensure this, configuration tools are used that do not allow invalid configurations to be expressed. A different concern, however, is making sure that a product addresses the stakeholders’ needs as best as possible. The stakeholders may not be experts on the domain, so they may have unrealistic expectations. Also, the scope of the SPL is determined not only by the domain but also by limitations of the development platforms. It is therefore possible that the desired set of features goes beyond what is possible to currently create with the SPL. This means that configuration tools should provide support not only for creating valid products, but also for improving satisfaction of user concerns. We address this goal by providing a user-centric configuration process that offers suggestions during the configuration process, based on the use of soft constraints, and identifying and explaining potential conflicts that may arise. Suggestions help mitigating stakeholder uncertainty and poor domain knowledge, by helping them address well known and desirable domain-related concerns. On the other hand, automated conflict identification and explanation helps the stakeholders to understand the trade-offs required for realizing their vision, allowing informed resolution of conflicts. Additionally, we propose a prototype-based approach to configuration, that addresses the order-dependency issues by allowing the complete (or partial) specification of the features in a single step. A subsequent resolution process will then identify possible repairs, or trade-offs, that may be required for viabilization

    Semi-Automatische Deduktion von Feature-Lokalisierung während der Softwareentwicklung: Masterarbeit

    Get PDF
    Despite extensive research on software product lines in the last decades, ad-hoc clone-and-own development is still the dominant way for introducing variability to software systems. Therefore, the same issues for which software product lines were developed in the first place are still imminent in clone-and-own development: Fixing bugs consistently throughout clones and avoiding duplicate implementation effort is extremely diffcult as similarities and differences between variants are unknown. In order to remedy this, we enhance clone-and-own development with techniques from product-line engineering for targeted variant synchronisation such that domain knowledge can be integrated stepwise and without obligation. Contrary to retroactive feature mapping recovery (e.g., mining) techniques, we infer feature-to-code mappings directly during software development when concrete domain knowledge is present. In this thesis, we focus on the first step towards targeted synchronisation between variants: the recording of feature mappings. By letting developers specify on which feature they are working on, we derive feature mappings directly during software development. We ensure syntactic validity of feature mappings and variant synchronisation by implementing disciplined annotations through abstract syntax trees. To bridge the mismatch between change classification in the implementation and abstract layer, we synthesise semantic edits on abstract syntax trees. We show that our derivation can be used to reproduce variability-related real-world code changes and compare it to the feature mapping derivation of the projectional variation control system VTS by Stanciulescu et al.Trotz umfangreicher Forschung zu Software-Produktlinien in den letzten Jahrzehnten ist Clone-and-Own immer noch der dominierende Ansatz zur Einführung von Variabilität in Softwaresystemen. Daher stehen bei Clone-and-Own immer noch die gleichen Probleme im Vordergrund, für die Software-Produktlinien überhaupt erst entwickelt wurden: Die konsistente Behebung von Fehlern in allen Klonen und die Vermeidung von doppeltem Implementierungsaufwand sind äußerst schwierig, da Ähnlichkeiten und Unterschiede zwischen den Varianten unbekannt sind. Um hier Abhilfe zu schaffen, erweitern wir die Clone-and-Own-Entwicklung mit Techniken aus der Produktlinien-Entwicklung zur gezielten Synchronisierung von Varianten, sodass Entwickler ihr Domänenwissen schrittweise und unverbindlich integrieren können. Im Gegensatz zu nachträglich arbeitenden Feature-Mapping-Recovery- oder auch Mining-Techniken, leiten wir Zuordungen von Features zu Quellcode direkt während der Softwareentwicklung ab, wenn konkretes Domänenwissen vorhanden ist. In dieser Arbeit entwickeln wir den ersten Schritt zur gezielten Synchronisation von Varianten: die Aufzeichnung von Feature-Mappings. Indem Entwickler spezifizieren an welchem Feature sie arbeiten, leiten wir Feature-Mappings direkt während der Softwareentwicklung ab. Wir stellen die syntaktische Korrektheit von Feature-Mappings und der Synchronisation von Varianten sicher, indem wir disziplinierte Annotationen mithilfe von abstrakten Syntaxbäumen implementieren. Um die Diskrepanz der Klassifizierung von Änderungen zwischen der Implementierungs- und der Abstraktionsschicht zu überbrücken, synthetisieren wir Semantic Edits auf abstrakten Syntaxbäumen. Wir zeigen, dass unsere Ableitung von Feature-Mappings in der Lage ist reale Codeänderungen zu reproduzieren und vergleichen sie mit der Feature-Mapping-Ableitung des Variationskontrollsystems VTS von Stanciulescu et al

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache
    corecore