
Jorge Miguel Sousa Barreiros

M.Sc.

User-centric Product Derivation
in Software Product Lines

Dissertação para obtenção do Grau de Doutor em
Informática

Orientadora : Professora Doutora Ana Maria Diniz Moreira,
Professora Associada, Universidade Nova de Lisboa

Júri:

Presidente: Prof. Dr. Nuno Manuel Robalo Correia

Arguentes: Prof. Dr. Alexander Egyed

Prof. Dr. João Carlos Pascoal Faria

Vogais: Prof. Dr. João Miguel Fernandes

Prof. Dr. António Rito Silva

Prof. Dr. João Baptista da Silva Araújo Junior

Prof.a Dra. Ana Maria Diniz Moreira

setembro, 2015

User-centric Product Derivation
in Software Product Lines

Copyright © Jorge Miguel Sousa Barreiros, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o di-
reito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação
através de exemplares impressos reproduzidos em papel ou de forma digital, ou
por qualquer outro meio conhecido ou que venha a ser inventado, e de a divul-
gar através de repositórios científicos e de admitir a sua cópia e distribuição com
objectivos educacionais ou de investigação, não comerciais, desde que seja dado
crédito ao autor e editor.

Para o Diogo, Joana e Nanda.

Agradecimentos

A obtenção do grau de Doutor é uma tarefa exigente, só tornada possível com
a ajuda daqueles que nos são próximos. Por isso, é devido um agradecimento a
todos os que me apoiaram nesta tarefa.

Não posso deixar de mencionar, em primeiro lugar, o Diogo e a Joana. Muito
do tempo gasto neste trabalho foi-vos diretamente roubado. Por isso, ele é, em
parte, tanto vosso como meu. Outra palavra especial vai para a Nanda, que foi a
minha âncora ao longo destes anos. Estes agradecimentos especiais estendem-se
a toda a minha família. Muito obrigado a todos!

Este trabalho também não teria sido possível sem a ajuda inestimável da minha
orientadora, que alia, numa combinação rara e feliz, qualidades científicas, profis-
sionais e humanas excecionais. Foi um verdadeiro privilégio trabalhar sob a sua
supervisão. Muito obrigado pela sua disponibilidade, tempo, atenção e apoio
incansável!

O meu apreço dirige-se também a todos aqueles que, de uma forma ou de
outra, me ajudaram ao longo destes anos. São demasiados para enumerar, mas
não fica esquecida a ajuda dos meus colegas de trabalho e do grupo de investi-
gação, de todos aqueles que participaram nas minhas experiências de validação,
e de todos os que contribuíram com observações, sugestões e críticas. Muito obri-
gado e um enorme abraço coletivo a todos!

Varias instituições contribuíram também de forma fundamental para o sucesso
deste trabalho, tais como o Instituto Politécnico de Coimbra, o Instituto Supe-
rior de Engenharia de Coimbra, o Departamento de Informática da Faculdade de
Ciências e Tecnologia da Universidade Nova de Lisboa, o Centro de Informática
e Tecnologias da Informação e o NOVA LINCS. Não posso tampouco esquecer
o apoio prestado pela Fundação para a Ciência e Tecnologia, consubstanciado

através das bolsas SFRH/BD/38808/2007 e SFRH/PROTEC/49834/2009. A to-
das estas instituições, e aos seus responsáveis, os meus sinceros agradecimentos.

Obrigado a todos!
Jorge

This work has been partially supported by the Portuguese Science and Technol-
ogy Foundation, through grants SFRH/BD/38808/2007 and SFRH/PROTEC/
49834/2009.

Abstract

Software Product Line (SPL) engineering aims at achieving efficient development
of software products in a specific domain. New products are obtained via a pro-
cess which entails creating a new configuration specifying the desired product’s
features. This configuration must necessarily conform to a variability model, that
describes the scope of the SPL, or else it is not viable. To ensure this, configuration
tools are used that do not allow invalid configurations to be expressed.

A different concern, however, is making sure that a product addresses the
stakeholders’ needs as best as possible. The stakeholders may not be experts on
the domain, so they may have unrealistic expectations. Also, the scope of the SPL
is determined not only by the domain but also by limitations of the development
platforms. It is therefore possible that the desired set of features goes beyond
what is possible to currently create with the SPL. This means that configuration
tools should provide support not only for creating valid products, but also for
improving satisfaction of user concerns.

We address this goal by providing a user-centric configuration process that
offers suggestions during the configuration process, based on the use of soft con-
straints, and identifying and explaining potential conflicts that may arise. Sug-
gestions help mitigating stakeholder uncertainty and poor domain knowledge,
by helping them address well known and desirable domain-related concerns. On
the other hand, automated conflict identification and explanation helps the stake-
holders to understand the trade-offs required for realizing their vision, allowing
informed resolution of conflicts.

Additionally, we propose a prototype-based approach to configuration, that
addresses the order-dependency issues by allowing the complete (or partial) spec-
ification of the features in a single step. A subsequent resolution process will then
identify possible repairs, or trade-offs, that may be required for viabilization.

i

ii

Keywords: Software Product Lines, Feature Modeling, Product Derivation, Con-
figuration Support, Soft Constraints

Resumo

O objectivo da engenharia de Linhas de Produtos de Software (do inglês Software
Product Lines, ou SPL) tem como objetivo o desenvolvimento eficiente de produ-
tos de software para um domínio específico. Produtos novos são obtidos através
de um processo que obriga à criação de uma nova configuração, que descreve
as características (em inglês, features) que devem ser integradas no produto. Esta
configuração deve necessariamente estar de acordo com um modelo de variabili-
dade, que descreve o âmbito do SPL. Caso contrário, a configuração é inválida e
não pode ser produzida. Sendo assim, para assegurar a viabilidade do produto,
as ferramentas de configuração não permitem a especificação de configurações
inválidas.

Uma questão distinta, no entanto, é assegurar que o produto que está a ser cri-
ado serve os interesses dos utilizadores (stakeholders, em inglês) tão bem quanto
possível. Os utilizadores não são necessariamente peritos no domínio, pelo que
podem ter expectativas irrealistas. Para além disso, o âmbito do SPL é determi-
nado não só pelo domínio em questão, mas também pelas limitações das platafor-
mas de desenvolvimento. É por isso possível que um cliente deseje um produto
que inclua um conjunto inadmissível de características. Isto significa que, para
além de se preocupar com questões de validade, as ferramentas de configuração
deverão também oferecer apoio direcionado para promover a satisfação dos uti-
lizadores. Este apoio deve ajudá-los a fazer os compromissos necessários, de
forma a obter uma solução exequível que satisfaz as suas necessidades tão bem
quanto possível.

Propomos atingir este objetivo através de um processo de configuração cen-
trado no utilizador, que oferece sugestões de configuração, e também identi-
fica e explica eventuais conflitos. As sugestões ajudam a mitigar a falta de co-
nhecimentos ou incerteza do utilizador, ajudando-o a atingir uma solução com

iii

iv

propriedades desejáveis. Por outro lado, a identificação e explicação automa-
tizada de conflitos ajuda o utilizador a melhor compreender os compromissos
necessários para realizar a sua visão. Este apoio ao processo de configuração é
conseguido através do uso de restrições suaves (em inglês, soft constraints), para
representar informação de variabilidade e restrições do utilizador.

Propomos também uma abordagem de configuração baseada em prototipagem,
que ajuda a ultrapassar a dependência do resultado final em relação à ordem
de configuração das características. Esta abordagem permite realizar a especifi-
cação completa (or parcial) da configuração de várias características num único
passo. Isto pode resultar numa configuração inválida, pelo que um processo sub-
sequente irá identificar ações de reparação possíveis, que viabilizam da configu-
ração pretendida.

Palavras-chave: Linhas de Produtos de Software, Modelação de Características,
Derivação de Produtos, Suporte de Configuração, Restrições Suaves

Contents

1 Introduction 1
1.1 Objectives and Challenges . 2
1.2 Research Methodology . 6
1.3 Proposed Solution . 7

1.3.1 Configuration Advisor and Soft Constraints 7
1.3.2 Prototype-based Configuration Approach 9
1.3.3 Earlier Work . 9

1.4 Evaluation . 10
1.5 Contributions . 11
1.6 Structure of the Document . 11

2 Feature Modeling and Product Derivation 13
2.1 Software Product Lines . 13
2.2 Feature Models . 15

2.2.1 Boolean Logic Representation of Feature Models 18
2.2.2 Feature Model Configuration 19

2.3 Iterative Configuration of Feature Models 20
2.4 Assisting the Decision Process . 23

3 Boolean Soft Constraints 25
3.1 Soft Constraints in Feature Modeling 25
3.2 Boolean Soft Constraints in Feature Models 26
3.3 Normative Semantics . 28

3.3.1 On Impossibility Functions 31
3.3.2 Annotation of a Feature Model with Normative Soft Con-

straints . 34

v

vi CONTENTS

3.4 Annotational Semantics . 34
3.5 Conclusions . 35

4 Soft Constraints in Domain Engineering 37
4.1 Domain-related Soft Constraints . 37
4.2 Prototypical Applications . 40

4.2.1 Soft Constraint Annotation Patterns 40
4.2.2 Optional Selection Suggestion 40
4.2.3 Reversed Constraint Suggestion 41
4.2.4 Group Selection Suggestion 42
4.2.5 Soft Constraints and Feature Model Evolution 43

4.3 Suspicious Soft Constraint Interactions 45
4.3.1 Suspicious Interaction Classification 46
4.3.2 Identification of Suspicious Interactions 48

4.4 Conclusions . 52

5 Enhanced Configuration Support 55
5.1 Enhanced Support Overview . 55

5.1.1 Configuration Suggestions 56
5.1.2 Conflict Identification and Explanation 57

5.2 Algorithms for Configuration Advice and Conflict Analysis 60
5.3 Tool Description . 63
5.4 Conclusions . 66

6 Prototype-Based Configuration 69
6.1 Prototype-based vs. Iterative Configuration 70
6.2 Configuration Repair Overview . 75
6.3 Configuration Repair Based on Cover Information 76

6.3.1 Cover and Literal Minimization 77
6.3.2 Feature Model Partioning for Efficient Cover Computation . 77
6.3.3 Configuration Repair Using Cover Information 80
6.3.4 Performance and Optimality 83
6.3.5 Selection Criteria . 84
6.3.6 Repair of Partitioned Feature Models 84

6.4 Presentation of Potential Repairs . 87
6.5 Tool Description . 88
6.6 Conclusions . 90

CONTENTS vii

7 Validation 93
7.1 Identification of Suspicious Interactions 94

7.1.1 Experiment Objectives and Goals 94
7.1.2 Data Set Construction and Constraint Injection 95
7.1.3 Unsatisfiable and Untriggerable Soft Constraint Identifica-

tion Experiment . 99
7.1.4 Contradictory Soft Constraint Identification Experiment . . 100

7.2 Configuration Repair Testing . 103
7.2.1 Experiment Objectives and Goals 103
7.2.2 Partitioning and Cover computation 105
7.2.3 Repairing Random Invalid Configurations 109
7.2.4 Problem Decomposition . 114

7.3 Empirical Testing of Enhanced Configuration Support 115
7.3.1 Experiment Design . 115
7.3.2 Data Analysis and Hypothesis 117
7.3.3 Experiment Realization . 119
7.3.4 Statistical Analysis of Results 119
7.3.5 User Feedback . 121

7.4 Results Discussion . 124
7.4.1 Identification of Suspicious Interactions 124
7.4.2 Configuration Repair Testing 125
7.4.3 Empirical Testing of Enhanced Configuration Support . . . 127

7.5 Threats to Validity . 128

8 Conclusions and Future Work 131
8.1 Research Questions Revisited . 131

8.1.1 How to leverage the use soft constraints in SPL develop-
ment to achieve this goal? . 132

8.1.2 How to provide enhanced configuration support? 133
8.1.3 How to represent the user’s idealized configuration? 135
8.1.4 How effective is enhanced configuration support? 137
8.1.5 How efficient is enhanced configuration support? 137

8.2 Past, Present, and Future . 138
8.2.1 The Past . 138
8.2.2 The Present . 140
8.2.3 The Future . 141

Appendices 155

viii CONTENTS

A Earlier Work 157
A.1 Graphical Representation of Configuration Knowledge 157
A.2 Reusable Model Slices . 162

A.2.1 Overview . 162
A.2.2 Wildcards . 163
A.2.3 Default values . 163
A.2.4 Operations . 163
A.2.5 Instantiation . 164

B Box and Whiskers Plots 167
B.1 Box and Whiskers Plots . 167

C Validation Results 171

D GQM Document 179

E Experiment Test Cases 183

List of Figures

1.1 From stakeholder wishes to an implementable configuration 3
1.2 Configuration advisor . 8

2.1 Feature tree elements . 17
2.2 Mobile phone feature model . 18
2.3 Example of BDD and its use for configuration purposes. 21
2.4 Feature model for configuration example 21

3.1 Normative soft constraints example (the key describes the con-
densed variable notation used in the text) 30

3.2 Complex Normative Constraint Example 32

4.1 Feature model describing vehicles configuration 39
4.2 Example of Optional Selection Suggestion 41
4.3 Example of Reverse Constraint Suggestion 42
4.4 Example of Group Selection Suggestion 43
4.5 Evolving a feature model via soft constraints 44
4.6 Restructuring the feature tree via soft constraints 45
4.7 Unsatisfiable soft constraint example 46
4.8 Contradictory soft constraints . 46
4.9 Untriggerable soft constraint Example 47

5.1 Enhanced configuration support example 58
5.2 Features conflicted due to multiple constraints 59
5.3 Configurator tool packages . 64
5.4 Configurator tool - Experiment test case 65

6.1 Feature model and idealized configuration 71

ix

x LIST OF FIGURES

6.2 Order-dependent outcome in iterative configuration 72
6.3 Prototype configuration . 72
6.4 Configuration repair example . 75
6.5 Feature model decomposition example 78
6.6 Feature model decomposition example - Step 1 78
6.7 Feature model decomposition example - Step 2 79
6.8 Feature model decomposition example - Step 3 80
6.9 Feature model for example of repair extraction from cover terms . . 81
6.10 Invalid configuration . 82
6.11 Configuration repair tool in action 89

7.1 Analysis time per constraint . 101
7.2 Analysis time per feature model . 102
7.3 Percentage of contradictory pairs . 104
7.4 Analysis time for all contradictions with one specific constraint [ms] 105
7.5 Analysis time of a pair of constraints [ms] 106
7.6 Ratio between the number of terms after partitioning and before

partitioning (TP/TF) (outliers not represented) 108
7.7 Time required for execution of partitioning algorithm 110
7.8 Time to find first repair (ms). Outliers not represented. 112
7.9 Academic and industrial experience of participants (some partici-

pants are not represented as they chose not to provide the corre-
sponding optional information). 120

7.10 Self-assessment of participant competence 120
7.11 Feedback results, describing participant perception of efficiency

and effectiveness gains, as well as helpfulness of trade-off infor-
mation. 122

A.1 Media application example . 157
A.2 Configuration module . 158
A.3 Association describing configuration flow and cardinality constraints159
A.4 Composition example . 159
A.5 Specialization example . 160
A.6 Association describing constraint only, without any configuration

flow. 160
A.7 n-Ary association to represent complex constraint 161
A.8 Representing alternative implementations with specializations. . . 161
A.9 Example of aspectual model slice . 162

LIST OF FIGURES xi

A.10 Resulting MATA transformations . 166

B.1 Box and whiskers plot example . 168

xii LIST OF FIGURES

List of Tables

2.1 Feature model transformation into Boolean propositional logic . . . 18
2.2 Feature model transformation example 19

3.1 Boolean soft constraints . 27
3.2 Normative constraint example results 30

7.1 Feature models included in input data set. 96
7.2 Injection results . 99
7.3 Aggregated results for unsatisfiable and untriggerable soft con-

straint identification . 100
7.4 Extract of the results for largest models 107
7.5 Partitioning - Outlier cases . 109
7.6 Repair of random configurations — excerpt of full results 111
7.7 Extract from repair results — Finding repairs for invalid configu-

rations that preserve selected features 113
7.8 Problem decomposition of repairs of random configurations. 114
7.9 Feature models selected for test cases 117
7.10 Statistics for self-assessment of participant competence 121
7.11 Agregated feedback results . 122

C.1 Results for soft constraint injection 172
C.2 Results for identification of untriggerable and unsatisfiable soft

constraints . 173
C.3 Results for identification of contradictory pairs of soft constraints . 174
C.4 Partitioning and cover extraction results 175
C.5 Repair results - Finding repairs that minimize Hamming distance

from random invalid configurations. 176

xiii

xiv LIST OF TABLES

C.6 Repair results - Finding repairs for invalid configurations preserv-
ing selected features. 177

List of Algorithms

1 Suggestion computation . 60
2 Active feature computation . 61
3 Analize inconsistency . 62

4 Partition feature tree . 79
5 Computing a candidate repair from a specific term 82
6 Computing all candidate repairs . 83

7 Soft constraint injection algorithm . 98

xv

xvi LIST OF ALGORITHMS

Glossary

Application Engineering: In software product line engineering [Cle01, PBL05],
it is the process by which a customized product is developed by creating a valid
configuration of features, composing reusable core assets and developing what-
ever application-specific assets may be required. This process is conducted by the
Application Engineer.

Configuration: In software product line engineering [Cle01, PBL05], it is a set
of selected and deselected features [KKL+98]. If a configuration conforms to the
feature model, it is said to be valid, otherwise it is invalid. A partial configuration
is one not yet complete, hence including open features (that are not yet selected
or deselected). A valid configuration corresponds to one of the specific products
that may be created by the software product line.

Constraint: A feature model may include constraints, represented either graph-
ically or textually [KKL+98, Bat05]. Typically, these are hard constraints, that
must be upheld in all valid products. Alternatively, some constraints may be soft
[BM11, BDNRG10]. Soft constraints represent preferential configuration options
and, unlike hard constraints, do not necessarily impair validity of a configuration
if not satisfied.

Domain Engineering: In software product line engineering [Cle01, PBL05], do-
main engineering is the process by which the development platform is developed
and maintained. The domain engineer defines the scope of the software product
line by defining the variability model. He is also responsible for creating and
maintaining the reusable core assets.

xvii

xviii GLOSSARY

Feature: Features are composable artefacts that modularize modifications of un-
derlying structures (program, architecture, requirements or other software devel-
opment artefacts) satisfying some stakeholder’s needs. They are usually aligned
with a user-visible aspect or characteristic of the domain [KKL+98, CHE05, Cle01,
PBL05, Bat06].

Feature Model: Feature models, introduced in [KKL+98], identify valid prod-
uct configurations by using an hierarchic feature tree describing optional and
mandatory features, as well as feature groups. They can be annotated with addi-
tional constraints, represented graphically (e.g., linking dependent features with
a dependency arrow) or by textual annotations. Feature models are frequently
used in software product line engineering for identifying valid configurations
corresponding to feasible products, or variants [KLD02, Cle01].

Software Product Line: Software product line engineering can be defined as a
paradigm to develop software applications using platforms and mass customiza-
tion [Cle01, PBL05]. A platform is, in this context, a software infrastructure that
allows new software products to be efficiently developed and produced. Mass
customization entails efficient tailoring and development of the software prod-
ucts according to individualized client needs.

User: In this work, user refers to the role of whoever creates a configuration,
using appropriate tool support. Typically, such responsibility lies with the ap-
plication engineer on behalf of the stakeholder, however, we also envision the
possibility of direct stakeholder action.

1
Introduction

Software users’ needs and desires change continuously. Unless specific provi-
sions are made, keeping up with these evolving demands can entail considerable
development efforts. Addressing evolution in a timely way with reasonable ef-
fort is a major goal in Software Engineering. To achieve this, Software Product
Line (SPL) engineering has been proposed [Cle01, PBL05, KLD02]. SPLs leverage
planned reuse of development artifacts to allow for the timely development of
alternative software products in a specific domain, in response to evolving users’
wishes.

Customized new products are created by a configuration process, which en-
tails selecting the features to include and then composing the associated artefacts.
Typically, not all combinations of features are viable: a description of common-
ality and variability, usually in the form of a feature model [KCH+90], describes
valid configuration choices. The configuration process can be supported by au-
tomated tools providing services such as configuration completion and choice
propagation. These techniques ensure feasibility by allowing only valid products
to be created.

However, little support is provided for helping the developer creating a prod-
uct best meeting stakeholders’ needs. This is not a trivial task due to poten-
tial misalignments between stakeholders’ desires and the capabilities of the SPL,
manifested as restrictions on the admissible features that can integrate a product.
Also, conflicting stakeholder wishes may exist. For example, if the intended con-
figuration is specified by multiple stakeholders, conflicting specifications may be

1

2 CHAPTER 1. INTRODUCTION

created. Alternatively, even a single stakeholder may specify an invalid configu-
ration if he does not have a clear comprehension of the domain or the limitations
of the SPL. These conflicts need to be resolved somehow before an actual product
can be created.

The issue is, then, finding ways to facilitate the creation of products that are
the best possible match to the stakeholders’ desires. This is a complex problem
that can be approached from different perspectives, such as SPL evolution (how
to evolve the SPL to better accomodate user wishes), requirement engineering
(how to elicit and model volatile and evolving user requirements), architecture
definition (how to create a flexible architecture that efficiently supports all the re-
quired variability and allows evolution), product preview and visualization tech-
niques (how to provide feedback to the user so he has a clearer understanding
of the product being created). Addressing such a diverse range of issues within
the context of a single work is not feasible. For the sake of focusing our efforts,
our approach is then concerned with providing mechanisms that assist the stake-
holder (or a domain engineer on his behalf) during the product configuration
process, attempting to ensure that the desired and actual configuration are as
close as possible. While ideally these configurations would be identical, this is
not always the case. The former can be perceived as a manifestation of the stake-
holder’s desires, while the latter is a representation of a feasible product. In this
way, dissimilarities correspond to required trade-offs or compromises.

The remainder of this chapter is structured as follows. Section 1.1 presents the
objectives and challenges faced by our work. Section 1.2 discusses our research
methodology, while Section 1.3 provides an overview of our proposed solution.
Section 1.4 concerns our approach to validate our results, and our contributions
are enumerated in Section 1.5. Section 1.6 presents the structure of this thesis.

1.1 Objectives and Challenges

Although SPLs reduce the time required to create variant products, an important
question is to determine the features of the product that best match the stake-
holder’s intention within the constraints of the variability model. Feature models
have originally been proposed to represent a decomposition of system function-
alities from a user’s perspective [KCH+90]. Within this paradigm, users’ desires
can then be naturally represented as a specific configuration of features that sat-
isfies their needs and expectations. However, preferences and desires are depen-
dent on users’ volition and do not necessarily conform to the constraints of the

1.1. OBJECTIVES AND CHALLENGES 3

Figure 1.1: From stakeholder wishes to an implementable configuration

variability model of the the SPL. If the intended configuration is interpreted as
an additional constraint applied to the feature model, then it may be the case that
the product specification becomes overconstrained, making the users’ intended
configuration unfeasible. So, in the general case, it cannot be ensured that all
features may be selected according to the preferred users’ choices.

Figure 1.1 presents our model of the process that culminates with the cre-
ation of a viable configuration corresponding to stakeholders’ wishes. As illus-
trated, an implementable configuration is obtained only after a process where the
stakeholders’ wishes are first codified into an idealized configuration1 (in a pro-
cess we designate as ideation), which is then subsequently transformed into an
implementable configuration (that is, one that is viable, according to the variability
model) by the realization process2.

Stakeholders do not necessarily have all the domain knowledge required to
understand all the complexities and intricacies that impact on the feasibility of
their desired product. This means that the idealized configuration may be un-
feasible. For example, the stakeholder may wish a product that includes incom-
patible features. These features may be incompatible due to technicalities that
are well outside his field of expertise. Alternatively, it may be a business-level
decision from the SPL owner not to provide certain combinations of features, re-
gardless of technical viability.

Conversely, stakeholders may also be unaware of some viable functionalities

1Whether or not such an artifact actually materializes or exists only as a mental construction in
the stakeholders’ (or application engineers’) mind is irrelevant to our discussion. Most frequently,
SPL literature does not acknowledge this distinction and assumes that the implementable config-
uration corresponds to a direct manifestation of stakeholders’ intentions.

2Although for simplicity sake we represent ideation and realization as sequential processes
whose outputs are complete configurations, it is also possible to consider the same processes
being applied iteratively over the time to partial configurations incrementally growing to com-
pleteness.

4 CHAPTER 1. INTRODUCTION

that would be of their interest. These would not be included in the idealized
configuration due to obliviousness, and therefore it would be sub-optimal. An
example of a sub-optimality would be one where the stakeholder creates a con-
figuration that does not fully exploit the potential of the system in ways that
would be beneficial to him due to lack of domain expertise, like not including
security enhancing features in a distributed multi-user system. Other example of
sub-optimal idealization may happen when the stakeholder attempts to create a
feasible idealized configuration, but has outdated knowledge of the SPL capabil-
ities. He may, for instance, be unaware of new features that have been recently
introduced, or of constraints that have been lifted. In this case, idealization may
be polluted by ungrounded concerns of feasibility, as the stakeholder will ab-
stain from using new features, or voluntarily force himself to respect obsolete
constraints that no longer actually apply.

This means that any idealized configuration may be both unfeasible and sub-
optimal. That is, the output of the ideation process (the idealized configuration)
may not accurately reflect the stakeholder’s wishes, and it may also be invalid. If
the idealized configuration is not valid, the ensuing realization process will trans-
form it into a configuration that is actually implementable. The realization pro-
cess involves sanitizing inconsistencies in the idealized configuration to obtain a
new valid configuration, that is as "close" as possible to the idealized configura-
tion.

The intermediation of an application engineer (the role of the developer in
charge of creating a specific product, see Section 2.1), does not make these dif-
ficulties disappear: although the application engineer is most likely fairly con-
versant with the variability model and the possibilities and boundaries of the
SPL, resolution of incompatibilities is a challenging problem that ultimately re-
quires stakeholder intervention. Taking advantage of untapped possibilities is
also problematic, as the application engineer would have to discern if some of the
unsolicited functionalities would actually be of use or interesting for the stake-
holder (again stakeholder intervention would still be ultimately required). In
this way, for convenience we henceforth refer only to the stakeholder (or simply
"user" for convenience) as having an active role during the configuration process,
with the understanding that the application engineer might also play a more or
less significant part in the process.

While the stakeholder may have a deep knowledge of the domain of interest
and the capabilities of the SPL, this is hardly the case in all scenarios. Since the
problems we are addressing are exacerbated by the lack of domain knowledge, it

1.1. OBJECTIVES AND CHALLENGES 5

is important that our approach does not presume that the stakeholder is a domain
expert. We must therefore seek ways to overcome these challenges without overly
relying on stakeholder’s expertise.

These problems may be summarized in two points:

• The idealized configuration may be sub-optimal. This means that it does
not reflect the stakeholders wishes as accurately as possible.

• The idealized configuration may be unfeasible. It is necessary to deviate
from the idealized configurations, and trade-off decisions are most likely
necessary.

Sub-optimality is related to deviation from preferential configuration options,
while unfeasability can be traced to overconstrainment. Soft constraints are a
prime candidate for representing both preferencial and overconstrained configu-
rations, and will therefore play a significant role in our solutions.

Assuming a relatively uninformed stakeholder is in question, these issues can
be synthesized into the following main research question

How to support the derivation of software products
in SPL that best conform to stakeholders’ goals?

which can be sub-divided into the following questions

1. How to leverage the use soft constraints in SPL development to achieve
this goal?

(a) How to use soft constraints in the domain engineering step?

i. How can suspicious soft constraint interactions be efficiently iden-
tified and reported to the domain engineer?

ii. How common are these interactions?

(b) How to use soft constraints in the application engineering step?

2. How to provide enhanced configuration support?

3. How to allow users to model, and inform the system, their idealized con-
figuration, so that automated support can be given?

(a) How to handle possibly overconstrained and invalid idealizations?

6 CHAPTER 1. INTRODUCTION

(b) How to properly address the large number of potential trade-offs that
may be possible, without overwhelming the user with a very large
number of alternative possibilities?

4. How effective is enhanced configuration support?

5. How efficient is enhanced configuration support?

These research questions are revisited and discussed in the light of the content of
the next chapters in Section 8.1.

1.2 Research Methodology

Our approach was based on the Technology Research method [SS07]. This method
entails the production of new or improved technological artefacts to address a
specific need. These artefacts are then demonstrated to be suitable for their pur-
spose. The main steps of this process are:

1. Problem Analysis. Where the researcher identifies the potential need for
new or improved technological artefacts. Based on the literature review
and the analysis of existing approaches for SPL, we identified the problems
and challenges discussed in Section 1.1.

2. Innovation. Where the researcher explains how to make an artifact that sat-
isfies the needs identified in the problem analysis step, and creates it. After
having identified the main problem areas, we began identifying some possi-
ble ways of addressing them. This resulted in the publication of some early
work (Section 1.3.3). Feedback from review and presentation was used to
further develop our approach, finally resulting in the solutions presented in
Sections 1.3.1 and 1.3.2 and described throughout chapters 3 to 6. Prototype
tools were created to support the validation efforts.

3. Validation. Where the researcher demonstrates that the artifacts created in
the previous step address the needs. We conducted a validation process, in-
volving prototype tools, data from public repositories, automated test case
generation and empirical testing, described in Chapter 7.

1.3. PROPOSED SOLUTION 7

1.3 Proposed Solution

Our solution addresses the research questions highlighted in Section 1.1. The first
sub-question (question 1) is concerned with helping the user to derive the max-
imum benefit from the SPL capabilities by ensuring his idealized configuration
is not sub-optimal, that is, it does not miss out on potentially interesting features
and configuration possibilities he might not be aware of. The next sub-questions
(questions 2 and 3) are concerned with ensuring that the realization process facili-
tates the creation of an implementable configuration that is close to the idealized,
while ensuring the stakeholder understands the trade-offs required for validity
sake and makes informed decisions. Research questions 4 and 5 make it clear that
the proposed solution is expected to provide efficiency and effectiveness gains.

Our approach addresses these problems during the realization step (cf. Fig 1.1).
Although the idealized configuration is already decided at this point (or at least
part of it is: at minimum, the stakeholder must have decided to select or deselect
just a single feature), during the realization phase it is possible to provide feed-
back that allows the user to retroactively change and adapt the idealized configu-
ration if necessary. We present two alternatives, suited for different configuration
approaches. One of these alternatives is based on a configuration advisor and
soft constraints, represented in Figure 1.2, while the other is a prototype-based
configuration approach.

Earlier work developed by the authors proposed a graphical representation of
configuration knowledge [BM09b], supported by an associated aspect-oriented
modelling approach [BM09c].

1.3.1 Configuration Advisor and Soft Constraints

The configuration advisor works in tandem with an incremental or staged con-
figurator [CHE04] , which allows the user to specify the implementable config-
uration incrementally, propagating these choices as required to ensure validity
is preserved. During each step, the advisor may provide feedback to the stake-
holder. He may then disregard this advice or act upon it and update the ideal-
ized configuration accordingly. This feedback is provided within the context of
the feature model and is based on the partial implementable configuration, do-
main information and a representation of the idealized configuration. The latter
two are optional, but at least one must be available so that advice can actually be
generated.

8 CHAPTER 1. INTRODUCTION

Figure 1.2: Configuration advisor

In a staged configuration approach, the implemented configuration will incre-
mentally grow step-by-step. At each one of these steps, advice may be generated
that is dependent on earlier choices made by the user. This advice is concerned
only with the unspecified portion of the implemented configuration. That is, the
advisor may suggest that some yet open (unspecified) feature should be selected.
However, it will never advise changing the selection status of a feature that is
already (de)selected.

Domain information, if available, is used to provide configuration suggestions
that may cause the user to change his original intentions, that is, his intended
configuration, to better take advantage of SPL capabilities. Referring to the dis-
cussion in Section 1.1, it is used to avoid or reduce sub-optimality. If an explicit
representation of the idealized configuration exists, it may be provided to the ad-
visor. The main purpose of this will be to use advisor feedback to identify and
guide the stakeholder through potential trade-offs that must be made to realize
an invalid idealized configuration.

One important question is determining what is the representation of idealized
configuration and relevant domain information. The idealized selection state of
each feature can then be represented by a soft constraint applied to the the fea-
ture model suggesting, but not requiring, selection (or deselection) of the feature
[BM12]. Soft constraints represent desired or common properties that should, but
must not, be held by the configured product. Straightforward application of this
principle will result in a set of soft constraints, one for each (de)selected feature
in the idealized configuration. Soft constraints are more suited for representing
the idealized configuration than hard constraints, since the necessary realization

1.3. PROPOSED SOLUTION 9

process may prevent satisfaction of idealized preferences.
As a modeling tool, soft constraints can also be used to represent domain spe-

cific information. For example, a soft constraint may be used to indicate that two
features are commonly jointly selected, or that at least one of a certain set of fea-
tures is usually selected. Using a similar modeling approach for both user prefer-
ences and domain information allows an unified reasoning approach to address
all cases.

1.3.2 Prototype-based Configuration Approach

While the advice-based approach is suitable for a staged configuration environ-
ment, our prototype-based approach follows a different strategy. In this case,
a representation of a complete or partial idealized configuration (the prototype)
must be provided by the stakeholder. The system will then proceed to automat-
ically identify and list what changes and trade-offs are necessary to ensure the
prototype becomes viable (thereby transforming it into an implementable config-
uration). These changes are presented to the stakeholder, who then has the re-
sponsibility of selecting his preferred resolution among all possible alternatives.
Like the advise-based strategy described in the previous section, protoype-based
configuration ensures that the stakeholder is guided during the realization pro-
cess. By finding and presenting to the stakeholder all possible alternative ways in
which the prototype may be changed into a viable configuration, in accordance
to an optimization criteria (usually the smallest distance from prototype to its
realization in terms of Hamming distance [Ham50]), the developer is provided
with a complete and fairly exhaustive list of alternative changes. By selecting
and applying one of those alternatives, the stakeholder is implicitly resolving the
trade-off as stipulated by the option he choses.

At the core of this approach, we find our cover-based configuration repair al-
gorithm [BM14a], which is able to efficiently compute a large number of alterna-
tive optimal repairs and present a condensed list of partitioned repair alternatives
of manageable size to the user.

1.3.3 Earlier Work

Earlier work proposed to address the complexity of the configuration process by
using a graphical method for describing configuration parameters dependencies
and flow [BM09b]. This approach is centered on the use of configuration mod-
ules, which describe parameterizable implementation artefacts such as aspectual

10 CHAPTER 1. INTRODUCTION

model components or source code files. This model describes how configuration
information impacts the selection and configuration of features and their imple-
mentation artefacts. It provides the graphical tools akin to a template-based ap-
proach to configuration and implementation [CE00] by representing associations
and specializations. However, it is not specific to any programming language or
implementation technique. Additional capabilities are also provided such as the
representation of complex configuration dependencies via n-ary associations or
support for specifying the enumeration of parameter lists. The capabilities of this
representation technique can be observed in section A.1 of the appendices, where
an example of one such model representing the configuration of a multimedia
product is presented and described.

Another early work we developed proposes an aspect-oriented modeling tech-
nique [BM09c]. It was designed to complement and support the work in [BM09b],
by offering generic configurable aspects that can be instanced, using a simple
language, into concrete MATA aspects [WJE+09], capable of advising correctly
diverse base models. See appendix A.2 for an overview of the proposed tech-
nique.

1.4 Evaluation

We conduct a series of experiments to assess our work. Two types of experi-
ments are used: runtime testing of our algorithms and empirical testing with
users. The former allows us to identify and analyse the performance of our al-
gorithms, while the latter provides real user feedback concerning the perceived
advantages of our proposed techniques. All these evaluation efforts are based
on the use of real (non-synthetic) feature models retrieved from a public repos-
itory [MBC09]. This lends a level of representativity and independence that is
most welcome. However, on accordance to our proposal, these models must be
extended to include some additional information. For the most part, rather than
relying on manual annotation, we decided to resort to automated annotation,
following certain guidelines to ensure a minimum level of plausibleness is main-
tained. Runtime testing of our techniques is based on these annotated models.
These tests allow us to observe the performance profile of the algorithms and de-
termine whether or not they are suitable for tool integration. We also use these
tests to identify the prevalence of certain potential anomalies that are detected
and identified by our algorithms. Empirical testing with users replicates a pro-
cess of creating a configuration based on specific user preferences, and allows

1.5. CONTRIBUTIONS 11

actual human feedback to be considered for assessing the potential advantages
of our work, in terms of efficiency and effectiveness of the configuration pro-
cess. To conduct this experiment, we first identified the main objectives using a
GQM document. Then, test cases were created and our prototype tool adapted
to automatically submit test results. An online form was also made available for
receiving user feedback. After a few adjustments based on an initial trial run
feedback, several experiment sessions were conducted in two different locations.
The experiment results were then subjected to statistical analysis.

1.5 Contributions

The main contributions of this work are:

1. Proposing and discussing the use of soft constraints throughout the SPL life-
cycle, from domain analysis to product configuration [BM11, BM12] (Chap-
ters 3 and 4).

2. Identifying and describing certain types of potentially anomalous soft con-
straint interactions, specifically unsatifiable, untriggerable and contradic-
tory soft constraints [BM12] (Chapter 4).

3. Providing mechanisms for automatically identifying and reporting these
potentially anomalous interactions [BM12] (Chapter 4).

4. Proposing an algorithm that leverages soft constraints to offer enhanced
support during the configuration step, allowing increased satisfaction rates
and better comprehension of required trade-offs [BM13, BM14b] (Chapter
5).

5. Devising a novel configuration repair mechanism, with very high perfor-
mance and especially well suited for repairing multiple invalid configura-
tions for the same feature model [BM14a] (Chapter 6).

1.6 Structure of the Document

The remainder of this document is structured as follows:

• Chapter 2, Feature Modeling and Product Derivation. In this chapter, we
present fundamental concepts of Software Product Lines, feature model-
ing and product derivation, that are relevant for the discussion of ensuing
chapters.

12 CHAPTER 1. INTRODUCTION

• Chapter 3, Soft Constraints in Feature Modeling. In this chapter, we define
our soft constraint model. Two different semantic categories of soft con-
straints are identified, and we discuss the suitability of each such category
for our purposes.

• Chapter 4, Soft Constraints in Domain Modeling. In this chapter, we iden-
tify prototypical applications of soft constraints in the domain engineering
step. These involve primarily the representation of domain information, but
are also of use in feature model evolution.

• Chapter 5, Enhanced Configuration Support. In this chapter, we present
our enhanced configuration support techniques based in soft constraints.
We describe our advice generation and conflict detection algorithms, which
are integrated into a incremental configurator to provide an enhanced con-
figuration experience, and present our prototype configurator tool.

• Chapter 6, Prototype-based Configuration. In this chapter, we present a
generalization of iterative configuration that allows the stakeholder to con-
figure more than one feature simultaneously. Each such configuration step
is then followed by an additional step where possible inconsistencies are
detected and repaired.

• Chapter 7, Validation. In this chapter, we present the validation results.
Results are based in publicly available feature models from online reposi-
tories. We have conducted tests to assess the runtime performance of our
algorithms, and an empirical test was also conducted.

• Chapter 8, Conclusions. In this chapter, we conclude our work by revis-
iting and discussing the research questions in the light of the information
garnered in earlier chapters. We also offer an overview of the current status
of the work, present its evolution, and provide suggestions for future work.

2
Feature Modeling and Product

Derivation

Since their introduction over 20 years ago [KCH+90], feature models have been
recurrently used to represent variability in Software Product Line engineering
[Cle01, PBL05, WL99, Par76]. Therefore, to clarify the context of our work and es-
tablish technical bases, we present an overview of SPL engineering (Section 2.1).
Several variant feature models are also described, as well as the formalization and
graphical representation of Boolean feature models (Section 2.2). Product deriva-
tion entails creating a configuration that conforms to the feature model (Section
2.3). This configuration determines the properties of the product, and as such is a
manifestation of the stakeholder’s goals. Some techniques have been described to
support the stakeholder in identifying the configuration that best satisfies those
goals (Section 2.4).

No original contributions can be found in this chapter, as its purpose is estab-
lishing the required background for understanding later chapters.

2.1 Software Product Lines

One century ago, the adoption of assembly lines and pipelined manufacturing in
the automotive industry heralded a new age in industrial manufacturing. It was
a significant paradigm shift that eschewed earlier approaches in the search of

13

14 CHAPTER 2. FEATURE MODELING AND PRODUCT DERIVATION

higher labor efficiency and productivity. Dramatic improvements were immedi-
ately observed, such as a nine-fold decrease in the time required to fully assemble
a vehicle (from 12h30m down to 1h30m) [Hou85]. Since assembly lines excel at
efficient production of high volumes of identical parts, product conceptualization
and design also evolved accordingly. Improved tooling and production processes
allowed finer precision and the creation of interconnectable, normalized and in-
terchangeable parts. Consequently, rather than relying on custom-made compo-
nents tailored specifically for a single specific product, the same parts were now
being applied in the construction of a large number of different products [Hou85].
As a consequence, design and production efforts began focusing on product fam-
ilies or lines rather than individual products.

The significant benefits obtained from the application of product line devel-
opment in industrial manufacturing inspired the search for similar solutions in
other domains. Software Product Line (SPL) engineering attempts to leverage the
same principles to achieve similar benefits in software development. According
to Pohl [PBL05], it can be defined as a paradigm to develop software applications
using platforms and mass customization. A platform is, in this context, a software
infrastructure that allows new software products to be efficiently developed and
produced. Mass customization entails efficient tailoring and development of the
software products according to individual client needs. To address both aspects,
SPL engineering branches into two interdependent but separated processes. The
first one, known as Domain Engineering, is responsible for establishing and main-
taining the platforms, while the second process, Application Engineering, concerns
derivation of the actual products, using the platforms, according to customized
requirements of clients.

In the Domain Engineering step, many types of reusable software artifacts can
be produced (code, models, documentation, tests, etc.). These assets are created
with the specific purpose of supporting the efficient creation of software products
within a specific domain. A very important result of the Domain Engineering
activity is a model describing the variability and commonality of the realizable
products. This variability model1 implicitly defines the scope of the product line,
that is, the full range of products that are meant to be produced by it. Typically,
feature models (Section 2.2) are used to represent variability [KCH+90, KCH+92,
KLD02, CE00].

1Although both commonality and variability are represented in this model, we will follow the
common practice of designating it as a variability model only, for brevity sake.

2.2. FEATURE MODELS 15

Application Engineering entails creating new products according to the spe-
cific requirements of the clients. This is achieved by taking advantage of the plat-
form developed in the Domain Engineering step. The process involves creating
a new product configuration (Section 2.2.2), which describes, in conformity with
the variability model, the features of the desired product. This configuration is
the basis for the selection and ensuing composition of the reusable assets in or-
der to create the new product. Although ideally no additional development ef-
fort should be required, it may be necessary to address specific functionalities
or properties that are not directly achievable via composition of the reusable as-
sets. The Application Engineer must then create the application assets containing
application-specific content. Still, the platform is expected to provide the means
for efficiently creating the product, so additional product development effort be-
yond configuration and composition of the base assets should be reduced. Appli-
cation Engineering provides crucial feedback to Domain Engineering in the form
of suggestions to develop support for new features. This process tends to migrate
application assets into the core domain assets, so that they can be reused if nec-
essary in new products or newer versions of the same product. In this way, the
scope of the SPL evolves to accompany the needs of the clients.

2.2 Feature Models

Feature models are frequently used in SPL development for identifying configu-
rations corresponding to products, or variants, that can be created by an applica-
tion engineer using the SPL [KLD02, Cle01]. Indeed, feature models identify valid
product configurations by using a feature tree annotated with additional domain
constraints. These can be represented graphically (e.g., linking dependent fea-
tures with a dependency arrow) or by textual annotations. In a SPL, products
are characterized by the features they include. Typically, a feature modularizes
an increment in functionality [KCH+90, Bat06], although non-functional features
may also be considered [KKL+98]. The presence of some features may be re-
quired in all products generated by the SPL, while the inclusion of other features
may be optionally determined according to the specific needs of the client. Ad-
ditional constraints, depending on the domain, must also be respected to ensure
feasibility of the product. Feature models are visual representations of such com-
monality and variability in SPLs. They define the scope of the SPL by describing
what products (that is, specific configurations of features) are admissible.

16 CHAPTER 2. FEATURE MODELING AND PRODUCT DERIVATION

Basic feature models have been first described by Kang et. al in the Fea-
ture Oriented Domain Analysis (FODA) report [KCH+90]. An hierarchical tree
model is used to represent mandatory, optional, and alternative relations be-
tween features and their children. Additional constraints specifying crosstree
dependencies can also be used, specifying the need for mutual exclusion or in-
clusion between pairs of features. Later works allowed the generalization of
constraints to arbitrary boolean propositions [Bat05]. Basic feature models have
found widespread acceptance since their introduction, having been used in the
context of generative programming [CE00], feature-oriented programming [Bat06],
software factories [GSCK04] and model driven development [TBD07].

Extension and generalizations of basic feature models have been proposed.
Cardinality-based feature models generalize feature models by allowing varying
degrees of multiplicity when describing feature dependencies [CHE05, RBSP02].
These allow a feature to be selected multiple times, rather than being just in-
cluded or excluded from a product. Feature cardinality is an interval [m,n] that
describes the number of times a child feature may be selected if its parent is also
selected, where m is the lower bound and n the upper bound. For example, an
optional feature in the FODA model can be described as having cardinality [0, 1],
while a mandatory feature can be described using the cardinality range [1, 1].
Similarly, group cardinality dictates the number of children features that must
be selected in each alternative group.

In extended (or attributed, or advanced) feature models, features include at-
tributes that provide additional information [KKL+98, Bat05, BBRC06, BTRC05,
SRI03]. These attributes are not restricted to boolean values, and represent impor-
tant qualities such as cost or performance metrics, thereby allowing constraints of
increased complexity to be expressed. Some configuration description languages
originating from the operating systems domain such as kconfig [ZC] or CDL
[VD01] allow the textual representation of extended feature model-like struc-
tures, although options like embedded script coding can go beyond the scope
of what is representable in feature models.

Since they were originally introduced, feature models have found applica-
tions in many different domains such as telecom systems [GFD98, LKL02], tem-
plate libraries [CE00], web services [RF03, LMN08], networking protocols [BB02],
home automation [MRP+07], context-aware and mobile systems [MAW11] and
embedded systems [CBUE02, LSPS05, Beu01]. A detailed survey of feature model
variants and their formalization can be found in [SHTB06], while a literature re-
view of automated analysis and reasoning can be found in [BSRC10].

2.2. FEATURE MODELS 17

A

B

(a) Optional feature

A

B

(b) Mandatory feature

A

B C

(c) Or-Group

A

B C

(d) Alternative group

Figure 2.1: Feature tree elements

Regardless of the specific type of feature model being considered, the chal-
lenges outlined in Chapter 1 are always relevant. Nevertheless, a specific type
of feature model must be considered when devising the required configuration
support algorithms. Due to their widespread acceptance and use, our work is
therefore based on basic feature models. Whenever we refer to feature models, in
the sequel, we refer to basic feature models unless otherwise noted.

Figure 2.1 describes the graphical elements commonly used to construct fea-
ture models. In Figure 2.1a, feature A is represented as having an optional sub-
feature B, whereas in Figure 2.1b the subfeature is mandatory. Figure 2.1c and
Figure 2.1d represent groups of features, known as OR-groups or Alternative-
groups. Constraints can be represented graphically or textually. Well-known
transformations, described in [Bat05, CW07], can be used to convert feature trees
into Boolean logic expressions. A feature model expression is obtained by con-
joining the feature tree expression with the domain constraints.

An example of a feature model can be found in Figure 2.2 (adapted from
[BSRC10]), where "Sound", "Keyboard" and "Screen" are mandatory subfeatures
of the root feature node "Phone", while "MP3Player" and "Camera" are optional
subfeatures. "Polyphonic" and "Monophonic" are mandatory and alternative sub-
features of the "Sound" feature, and "Monochromatic" and "Color" are alternative
subfeatures of the "Screen" feature. The requires arrow represents a domain con-
straint describing that selection of the "Camera" feature implies the selection of
the "Color" feature.

18 CHAPTER 2. FEATURE MODELING AND PRODUCT DERIVATION

Phone

MP3Player Sound

Polyphonic Monophonic

Keyboard Screen

Monochromatic Color

Camera

requires

Figure 2.2: Mobile phone feature model

2.2.1 Boolean Logic Representation of Feature Models

Feature models can be represented using Boolean propositional logic. Each fea-
ture is represented as a variable in the proposition and a set of well-known trans-
formations is applied [Bat05, CW07] to obtain a Boolean proposition expression
based on the topology of the feature tree and constraints. This expression will
evaluate to> (true) for all valid configurations and⊥ (false) for all invalid config-
urations. The transformations are represented in Table 2.1. The feature model ex-

Table 2.1: Feature model transformation into Boolean propositional logic

Feature Model Element Expression

root >

A

B

B ⇒ A

A

B

B ⇔ A

A

B C D

A⇔ (B ∨ C ∨D)

A

B C D

B ⇔ (A ∧ ¬C ∧ ¬D)∧
C ⇔ (A ∧ ¬B ∧ ¬D)∧
D ⇔ (A ∧ ¬B ∧ ¬C)

2.2. FEATURE MODELS 19

pression is obtained by conjoining the expressions obtained from aplication of the
transformations in Table 2.1 with all domain constraints. While the root feature
can be modeled as>, it is convenient sometimes to ignore this to achieve homoge-
nous treatment of all features (e.g., in feature model composition or refactoring,
the root feature may change, so it can be convenient to have all features explicitly
represented in the feature model expression). In this case, an additional Boolean
variable corresponding to the root will appear in the feature model expression.
However, this variable should be necessarily selected (most likely automatically)
at the start of a new configuration process, to ensure that a void configuration
is not deemed valid. Table 2.2 presents an example of the transformation of a
feature model into an equivalent Boolean proposition.

Table 2.2: Feature model transformation example

Feature Model Transformation Root-preserving
transformation

A

B C D

E F

(> ⇔ B)∧
(C ⇒ >)∧
(D ⇒ >)∧

(D ⇔ (E ∨ F))

(A⇔ B)∧
(C ⇒ A)∧
(D ⇒ A)∧

(D ⇔ (E ∨ F))

2.2.2 Feature Model Configuration

A configuration represents a specific product by describing the selected/deselected
state of each available feature. A configuration is said to be valid if it conforms
to the feature model structure and satisfies all (hard) constraints. Conformance is
achieved by any configuration where:

• The root of the feature tree is selected

• All parents of selected subfeatures are selected

• All mandatory children of selected features are selected

• Exactly one subfeature is selected in each alternative group whose parent
feature is selected

• One or more subfeatures are selected in each or-group whose parent feature
is selected

20 CHAPTER 2. FEATURE MODELING AND PRODUCT DERIVATION

• All domain constraints are satisfied

Useful feature models should always be consistent: a consistent feature model
allows at least one valid configuration. An example of a valid configuration for
the feature model in Figure 2.2 is:

• Selected Features=[Phone, Sound, Keyboard, Screen, Camera, Polyphonic,
Color]

• Deselected Features=[MP3Player, Monophonic, Monochromatic]

A partial configuration is one where not all features are selected or deselected.
Those features are said to be open.

2.3 Iterative Configuration of Feature Models

Iterative (or interactive, or staged) configuration of feature models is a process by
which the Application Engineer creates a new product configuration by chosing
to select or deselect a single open feature, in an iterative process, until all fea-
tures are either selected or deselected [vdS04, Jan08, Bat05, CHE05]. Automated
support for this process ensures that the choices are adequately propagated so
that a valid configuration will always be obtained. To achieve this, common and
dead features are automatically identified. The former are features that are al-
ways selected in all valid configurations including the current partial configura-
tion. Conversely, the latter are features that are always deselected in the same
configuration. By automatically selecting common features and deselecting dead
features after each configuration action of the user, configurators ensure that a
valid solution is always obtained, as long as the feature model is not void. Both
Binary Decision Diagrams (BDD) [Bry86, vdS04] and satisfiability (SAT) analysis
[Jan08, Bat05] have been used for configuration of feature models.

BDD-based configurators identify common and dead features by verifying if
nodes are always selected or deselected in all possible paths from the root down
to the > leaf node.

The BDD of an expression f(x0, x1, . . . , xi, . . .) is created by selecting some
variable xi and recursively obtaining two BDD sub-trees corresponding to the
evaluation of f(x0, x1, . . . , xi, . . .) for xi = > and xi = ⊥. Additional optimiza-
tions, such as merging identical subtrees, are also performed to improve compact-
ness of the tree. The size of a BDD is dependent on the order by which variables
are recursively selected at each node. Although creation of optimal BDDs is an
NP-hard problem [BW96], efficient heuristics are known [EFD05].

2.3. ITERATIVE CONFIGURATION OF FEATURE MODELS 21

An example is provided in Figure 2.3. On the left side of the figure, a BDD

Figure 2.3: Example of BDD and its use for configuration purposes.

corresponding to the expression of the feature model in Figure 2.4 is shown (refer
to the figure for the variable identification key). Starting from the top and pro-

Mobile Development

Other Android Java C++

excludesexcludes

Key: o=Other a=Android j=Java c=C++

Figure 2.4: Feature model for configuration example

ceeding downwards according to the values assigned to the variables "a", "o", "j"
and "c", a path is created running down from the root to one of the leaf nodes
corresponding to the value of the function for that variable assignment. Dashed
paths arcs do not lead to a > evaluation so they may not be transversed in a path
from root to >, in the context of a configuration process. The right side of the
figure displays the use of the BDD when the feature "c" has just been selected.
This action makes the path from "c" to > unavailable, which in turn means that
no path exists from root to > that uses the arc going from "j" down to "c". All
such paths must now transverse the arc going from node "j" to node >. This arc
corresponds to "j"=⊥, so "j" is identified as a dead feature that must be deselected.

SAT analysis can be used to determine dead or common features by assessing

22 CHAPTER 2. FEATURE MODELING AND PRODUCT DERIVATION

the satisfiability of certain expressions. For example, given the feature model ex-
pression F (a, o, j, c), if F (a, o, j, c) ∧ a is not satisfiable then "a" is a dead feature.
Conversely, if ¬ SAT(F (a, o, j, c) ∧ ¬a), then a is a common feature. Since SAT-
solvers can typically provide a variable assignment that satisfies the expression
under analysis (if it is found to be satisfiable), then multiple results can be ob-
tained with a single pass of SAT analysis. For example, if a variable "x" is selected
in such an assignment, then the same assignment also satisfies F (. . .) ∧ x.

Referring to the same scenario that is described in example in Figure 2.3, after
selection of "c", the possible configurations can be described by F (a, o, j, c) ∧ c.
The configurator will proceed by trying to identify common and dead features in
the remaining unassigned variables (also referred to as open features). Beginning,
for example, with feature "a", it will evaluate SAT(F (a, o, j, c)∧ c∧a) to verify if it
is dead. However, this expression is satisfiable by the assignment {j=⊥,o=⊥,c=>,
a=>}, so that is not the case. Since j=⊥ in that expression, the same result also
satisfies F (a, o, j, c) ∧ c ∧ a ∧ ¬j and, consequently F (a, o, j, c) ∧ c ∧ ¬j, so "j" can
be found NOT to be common by the same result. Similar analysis can be made
for "o". So, in a single pass of the SAT solver, the configurator is able to deter-
mine that "a" is not dead, "j" is not common, and "o" is not common. Next, a new
pass of the SAT solver would be used to assess if "a" is common, by computing
SAT(F (a, o, j, c)∧ c∧¬a). The satisfying assignment {a=⊥, o=>, j=⊥, c=>} would
be found, from which it could be further determined that "a" is not common, "o"
is not dead (and also that "j" is not common, though that is already established).
"o" and "a" have already been found not to be neither dead nor common, so all
that is left is to verify if "j" is dead. In fact, F (a, o, j, c) ∧ c ∧ j is not satisfiable,
so "j" is indeed a dead feature, and can be deselected automatically. Other ap-
proaches to configuration can also be found in the literature. Knowledge-based
configuration is an area of artificial intelligence where techniques such as expert
systems or constraint programming are used for configuration purposes [Stu97].
The approach entails creating a knowledge base by a Knowledge Engineer, that
is then processed using one of the referred techniques. Configuration knowledge
bases are often built using rules-based approach [BOBS89] or domain-specific on-
thologies [STMS98, FFJ01], rather than relying specifically on feature models as is
our case. In this case, the knowledge base plays a role similar to that of the fea-
ture model, in that it is expected to describe valid configurations (or the actions
required to achieve a valid configuration, in the case of rule-based systems).

2.4. ASSISTING THE DECISION PROCESS 23

2.4 Assisting the Decision Process

Regardless of the configuration technique used, the aim of the previous approaches
is to steer the user into creating valid configurations. This is understandable, as
all approaches are primarily based on information that describes only what valid
configurations are. A different matter is helping the user to make decisions in
the presence of multiple valid alternatives. Recommendator systems play such
a role, and are used for advising a user who is selecting one product from a set
of pre-existing alternatives [FJN+13, JZFF10, RRSK11], using both historical data
and domain-related heuristics. However, they do not address the issue of vari-
able configuration of products, as they are concerned only with orienting the user
in choosing one option from among a set of pre-existing solutions. The proba-
bilistic feature models framework, described in [CSW08], is capable of orienting
the user, during the configuration process, towards solutions that are correlated,
from a frequency perspective, to the current partial configuration. While this is a
most useful capability, dependencies between features that are not strictly related
to frequency data are not easily addressed.

Some approaches are based on identifying a configuration that is optimal ac-
cording to some criteria [NBD14, BDNRG10]. These approaches suggest a com-
plete configuration to the stakeholder, rather than providing suggestions during
the configuration process. Typically, only one "ideal" configuration is identified
even if multiple alternatives exist. No stakeholder input is sought when consider-
ing what to do when multiple alternative and mutually exclusive configurations
exist. In [NBD14], support is offered for the ideation step (see Chapter 1) by iden-
tifying desirable features, according to a goal model describing user’s intentions
and wishes, by performing semantic analysis of feature model documentation.
All this takes place before the actual configuration (i.e., the realization step), and
there is no concern about validity. So, according to our model presented in Fig-
ure 1.1, this work supports construction of the idealized configuration. It does
not consider potential conflicts, since feature model constraints are not taken into
account. This approach complements ours, since in our work we offer support
during the ensuing realization process, by identifying required trade-offs neces-
sary for ensuring validity and providing suggestions that might have not been
considered during the original ideation process. In [BDNRG10], fuzzy reasoning
is used to determine the configuration that maximizes the number of satisfied
fuzzy soft constraints. No consideration is made on the existence of alternative
optimal configurations or potential trade-offs.

24 CHAPTER 2. FEATURE MODELING AND PRODUCT DERIVATION

The C20 configurator is presented in [NE13]. It is based on decision mod-
els, that describe questions, possible answers, constraints and relevancy relations
between those questions. The configurator supports the decision-making pro-
cess, by guiding the user so that the number of questions to be answered is op-
timized via an heuristic process [NE11], but allows the user to deviate and ex-
plore inconsistent solutions, which must be fixed later in the configuration pro-
cess. Although we do not attempt to minimize the number of required config-
uration actions, this work addresses other concerns similar to our own, such as
configuration-order issues and inconsistency handling, but there are some out-
standing differences. In C20, soft constraints are not considered, so no domain-
related advice is provided that helps addressing sub-optimal ideations. Choices
are therefore always immediately propagated according to constraints and rel-
evancy relations. These choices may be later changed by the user, entering an
inconsistent state, that must be necessarily fixed in the sequel. We provide advice
to the user that steers towards satisfaction of soft constraints and preemptively
identifies choices that must be made to avoid conflicting features, but do not pro-
pose the automated change of already configured features: either the conflict is
inevitable or the user has deliberately decided to go against the configuration
advice at an earlier point. Rather than allowing the configuration to enter an in-
consistent state, we allow for inconsistent specifications to be handled by upfront
modeling of user goals as a set of (possibly inconsistent) soft constraints, or by
resorting to prototype-based configuration (see Chapter 6), where a complete (or
partially complete) configuration can be specified as a single configuration step,
which is then repaired if necessary to ensure validity is preserved.

Explanation-providing systems focus on identifying minimal sets of changes
required for satisfying an overconstrained specification [Jun04, Rei87]. These ap-
proaches are primarily based on the identification of minimal unsatisfiable cores.
A minimal unsatisfiable core of a Boolean proposition in conjunctive normal form
is a set of minimal dimension including the clauses that cannot be successfully
satisfied (e.g., ¬A∧¬B∧(A∨B)). While many approaches for computing minimal
unsatisfiable cores exist [LS04], identification of the minimum (globally optimal)
unsatisfiable core can be challenging. It can also be hard for a stakeholder to trace
back clause expressions to domain constraints and feature tree structure.

3
Boolean Soft Constraints

A part of our proposed solution is the configuration advisor that offers additional
support to the stakeholder during the configuration process. As illustrated in Fig-
ure 1.2, this advisor requires the use of soft constraints (SC) to represent domain
information or stakeholders’ requirements. This chapter discusses different types
of soft constraints applied to feature models, and investigates which semantics
are most suitable for the purposes of our work.

We begin by presenting related work concerned with the use of soft con-
straints in feature modeling (Section 3.1). Our original contributions discussed
here are the Boolean soft constraints for feature models, the categorization of
their semantics as normative or annotational (Section 3.2), and the description of
a framework enabling the use of normative constraints in feature models (Section
3.3). The role of annotational semantics is also discussed (Section 3.4). The use of
soft constraints in feature modeling relates with research question 1, while using
soft constraints to model overconstrained scenarios relates to research question
3a.

3.1 Soft Constraints in Feature Modeling

Soft constraints have been largely ignored in SPL development until recent years.
Early efforts include [RP03], where a fuzzy logic description of costumer profiles

25

26 CHAPTER 3. BOOLEAN SOFT CONSTRAINTS

and domain constraints is added to feature models. "Encourages" and "discour-
ages" constraints have been proposed for feature models in [WSO07]. However,
these are used only to generate graphical decorations of the feature model: no
precise semantics have been provided, precluding automated analysis and rea-
soning as described in our work.

In [CSW08], Czarnecki et al. describe probabilistic feature models. In these,
features can be related by a probability space (PSPACE) that describes probabil-
ities of combined selection of features. This can be used to generate advice for
steering the user into commonly selected feature configurations. Probabilistic
feature models are well suited for representing the outcome of a feature min-
ing process, by accurately representing observed frequencies. However, it can
be challenging to represent domain information that is not directly related to fre-
quency information (e.g., a suggestion to select a newly introduced feature).

In [BDNRG10], Bagheri et al. describe the use of fuzzy-based soft constraints
to model stakeholder’s preferred configurations. A reasoning algorithm iden-
tifies the optimal configuration that maximizes constraint satisfaction. This ap-
proach differs from ours because it is concerned only with maximal constraint
satisfaction. It does not address the question of trade-off identification and ex-
planation nor is it concerned with the exploration of multiple alternative optimal
solutions.

3.2 Boolean Soft Constraints in Feature Models

As a first step towards discussing the use of SCs in feature models, we first fo-
cused our efforts in addressing the nature of soft constraints and explored possi-
ble alternative semantics [BM11]. From early on, we decided to focus our efforts
on Boolean soft constraints, even though fuzzy logic is more commonly consid-
ered in the context of handling uncertainty and soft goals. This decision is based
on the following considerations:

1. Standard feature models can be readily formalized as Boolean expressions
[Bat05]. By using the same formalism, we can leverage a large body of re-
search and tools already available.

2. The hard or soft nature of constraints is not directly related to the specific
logic formalism that is used, but with the mandatory or optional nature of
constraint satisfaction.

3.2. BOOLEAN SOFT CONSTRAINTS IN FEATURE MODELS 27

3. The consequences and impact on results of the parametrization of a fuzzy-
logic approach (e.g., fuzzification/defuzzification, selection of fuzzy opera-
tors, etc.) may prove to be challenging to anticipate.

4. Other works [RP03, BDNRG10] had already begun exploring fuzzy-based
approaches, so by exploring alternative solutions we believe a greater con-
tribution may be offered.

Boolean SCs are described in Table 3.1. They are represented by using one of
four different binary operators applied to two Boolean propositions P and Q. P
is said to be the trigger of the soft constraint, while Q is the consequence. Although
for completeness four different operators are represented, all constraints can be
rewritten using only a single operator, as indicated in the second column of the
table. Therefore, in the remaining text, we usually refer only to the first operator
(suggests).

Table 3.1: Boolean soft constraints

Soft Constraint Equivalent to
P suggests Q -
P discourages Q P suggests ¬Q
P absence-suggests Q ¬P suggests Q
P absence-discourages Q ¬P suggests ¬Q

The following criterium is used to determine satisfaction of a soft constraint

The soft constraint P suggests Q is said to be satisfied iff P ⇒ Q

A constraint is said to be triggered if its trigger P is > (true). Conversely, a
constraint is untriggered if P is ⊥ (false). A constraint is activated if Q is >, and
inactivated otherwise.

Owing to the non-mandatory nature of SCs, we began our investigation by
trying to understand possible semantics for soft constraints, when applied to fea-
ture models. Valid feature configurations comply with all hard constraints and
the feature tree structure. Within the set of all these configurations, we will typi-
cally be able to find a variable degree of SCs satisfaction, ranging, in the general
case, from complete disregard for soft constraints (no SCs are satisfied) up to full
compliance (all SCs are satisfied). Considering a colloquial interpretation of soft
constraints that prescribes them as something that "should be satisfied, if pos-
sible", one may wonder if such configurations that are not optimal in the sense
of soft constraint satisfaction should be considered admissible or acceptable (in

28 CHAPTER 3. BOOLEAN SOFT CONSTRAINTS

other words, actually valid). Depending on the answer to that question, we iden-
tified two different semantic alternatives for soft constraints in feature models:

• Normative Semantics. This is a strict interpretation of the satisfaction re-
quirement for soft constraints — if it is possible to do so without compro-
mising hard constraints, soft constraints must be satisfied.

• Annotational Semantics. Conversely, annotational semantics impose no
such requirement. All configurations conforming to the hard constraints
and feature tree are considered equally valid, albeit some may be preferable
to others.

This distinction is important because normative semantics impose additional
restrictions on the validity of the solutions. That is not the case for annotational
semantics.

3.3 Normative Semantics

A normative soft constraint must be considered when assessing the validity of
a product configuration. These constraints represent configuration information
that may potentially condition the validity of some configurations. A norma-
tive soft constraint must be satisfied if possible, but can be ignored otherwise.
The concept of "possible satisfaction" must be further clarified, since unless the
constraint is impossible to satisfy in all configurations, it is obviously possible
to change the configuration in some way that will satisfy it. Furthermore, any
changes to a configuration might have implications in the satisfiability of other
soft constraints, suggesting that a priority-based ordering of normative soft con-
straints may be required. In [BM11], we formalize the impact of normative soft
constraints of the format A(f1, . . .) suggests fm in the validity of a configuration,
where A(f1, . . .) is a Boolean proposition and fm a Boolean variable. This is
achieved by recursively adapting the feature model expression, initially obtained
by the transformations described in Section 2.2.1, to account for the introduc-
tion of each normative soft constraint, in priority order. This can be generalized
as follows. Consider the introduction of a single normative constraint A(f1, . . .)
suggests B(f1, . . .) in a feature model with expression F0(f1, . . .). The impact of
the new constraint can be represented by finding a new feature model expression
F1(f1, . . .) where

F1(f1, . . .) = F0(f1, . . .) ∧
((
A0(f1, . . .)⇒ B0(f1, . . .)

)
∨ I0(f1, . . .)

)
(3.1)

3.3. NORMATIVE SEMANTICS 29

and I0(f1, . . .) is a logic function that denotes the impossibility of satisfying the
constraintA0(f1, . . .)⇒ B0(f1, . . .), or equivalently if it is acceptable not to satisfy
it (we will describe the nature of this function and possible alternatives in the
sequel). Equation 3.1 indicates that a configuration is valid after the introduction
of the new constraint if it was previously valid and either the new constraint is
satisfied or it is impossible (or acceptable not) to satisfy it. Accordingly, the effect
in validity of the introduction of the n-th highest priority constraint Fn(f1, . . .)

can be described similarly in terms of Fn−1(f1, . . .).

Fn(f1, . . .) = Fn−1(f1, . . .)∧
((
An−1(f1, . . .)⇒ Bn−1(f1, . . .)

)
∨In−1(f1, . . .)

)
(3.2)

Different functions can be considered for assessing the possibility of changing
the configuration in order to satisfy the constraint An−1(f1, . . .) ⇒ Bn−1(f1, . . .).
Those functions reflect potential changes to the configuration and the structure of
the constraint, as well as the structure of the feature model and other constraints.
This means that typically In(f1, . . .) will be dependent on Fn(f1, . . .).

In [BM11], we consider constraints of the format A(f1, . . .) suggests fm (or
A(f1, . . .) suggests ¬fm). If such a constraint is not satisfied, one possibility for
achieving satisfaction is toggling fm. The "possibility" of satisfying a currently
unsatisfied soft constraint is therefore determined according to the following cri-
terium: a configuration that does not satisfy a constraint A(f1, . . .) suggests fm
is only valid if toggling the selection state of fm would otherwise make it in-
valid. This would happen if the resulting configuration failed to satisfy a hard
constraint, the feature tree structure or a higher priority soft constraint is not sat-
isfied when that would be possible. For formalizing this criterium, we can use
the following impossibility function

In = ¬Fn(f1, . . . ,¬fm, . . .) (3.3)

This simply states that it is not possible to achieve satisfaction of A(f1, . . .) sug-
gests fm by toggling fm if the result is an inviable configuration according to fea-
ture tree, hard constraints and higher priority SCs.

Figure 3.1 presents a feature model with two normative soft constraints: "An-
droid" suggests "Java" and "Mobile Development" discourages "C++". Other con-
straints are hard. In this example, we wish the constraint "Android" suggests

30 CHAPTER 3. BOOLEAN SOFT CONSTRAINTS

Mobile Development

Other
Android

Java
C++

suggests

discourages

excludesexcludes

Key: o=Other a=Android j=Java c=C++

Figure 3.1: Normative soft constraints example (the key describes the condensed
variable notation used in the text)

"Java" to have the highest priority. Applying equations 3.2 and 3.3, we find that1:

F0(o, a, j, c) =(¬o ∨ ¬a) ∧ (¬j ∨ ¬c)

F1(o, a, j, c) =F0(o, a, j, c) ∧
(
(a⇒ j) ∨ ¬F0(o, a,¬j, c)

)
F2(o, a, j, c) =F1(o, a, j, c) ∧

(
(> ⇒ ¬c) ∨ ¬F1(o, a, j,¬c)

)
= . . .

=a ∧ c ∧ ¬j ∧ ¬o ∨ ¬c ∧ j ∧ ¬o ∨ ¬a ∧ ¬c (3.4)

Equation (3.4) describes valid configurations that conform to the feature model
and both normative soft constraints. Results are presented in tabular form in
Table 3.2. It can be seen that configurations such as {¬a,c,¬j,¬o} or {a,¬c,¬j,¬o}
are not considered valid. In both cases, this is due to the normative constraints,
since it is possible, according to the definition in Equation 3.3, to satisfy each
constraint by toggling the configuration state of a single feature. In the first case,
"Mobile Development" discourages "C++" is not satisfied, but could be by toggling
selection of the "C++" feature, without compromising conformity to the feature
model or satisfaction of the high priority constraint. Similar considerations apply
to the latter case, with respect to the "Android" suggests "Java" constraint and
toggling of the "Java" feature.

Table 3.2: Normative constraint example results

¬j¬o ¬jo jo j¬o
¬a¬c 1 1 1 1
¬ac 0 0 0 0
ac 1 0 0 0
a¬c 0 0 0 1

1Please refer to the key in Figure 3.1 to associate variables with the corresponding features.

3.3. NORMATIVE SEMANTICS 31

One interesting case is the configuration {a,c,¬j,¬o}. It fails to satisfy both
SCs, but is nevertheless considered valid. This happens because Equation 3.3 is
obtained by considering possible changes to the configuration involving only a
single feature. However, it is not possible to make any change to a single fea-
ture in {a,c,¬j,¬o} that results in a valid configuration satisfying either one of
the constraints. This can be easily observed in the Karnaugh map [Kar53] pre-
sented in Table 3.2, where it is apparent that no valid configuration adjacent to
{a,c,¬j,¬o} exists. If one considers toggling the "Java" feature to satisfy the high
priority constraint, the resulting configuration will be invalid due to the mutual
exclusion of "Java" and "C++". On the other hand, toggling off "C++" will result
in a configuration with neither "Java" nor "C++" selected. In such a configura-
tion, the normative constraint "Android" suggests "Java" is not respected, since
it would be possible to toggle the "Java" constraint without impact on validity.
This would, however, require toggling two features ("Java" and "C++") simulta-
neously, and that option is not contemplated in Equation 3.3. This situation is due
to the relatively restrictive assumption about permissible changes to the configu-
ration that was considered when developing Equation 3.3. However, alternative
impossibility functions can be considered, allowing far more versatile changes to
be contemplated.

3.3.1 On Impossibility Functions

An impossibility function Ix(f1, . . .) can be interpreted as describing the condi-
tions under which it is considered to be acceptable NOT satisfying a certain con-
straint Ax(f1, . . .) ⇒ Bx(f1, . . .). For example, if Ix(f1, . . .) = >, then it is always
acceptable not to satisfy the constraint. Conversely, if Ix(f1, . . .) = ⊥, it is never
acceptable not to satisfity it. It becomes, in fact, a hard constraint. In between
these two extremes, alternative formulations can be created to reflect intermedi-
ate scenarios where acceptance of unsatisfied constraints is contingent on specific
conditions. Considering Fn(f1, . . .) represents the validity of a configuration in
a certain feature model with n higher priority constraints applied, then Equation
3.3 can be understood as determining that it is acceptable not to satisfy the asso-
ciated constraint only if toggling a certain feature, that would make it satisfiable,
would make the configuration otherwise invalid. It is simple to generalize this
approach to more elaborated conditions.

Any unsatisfied constraint Ax(f1, . . .) ⇒ Bx(f1, . . .) can be satisfied by any
change in one or more variables fi that either makesAx(f1, . . .) false orBx(f1, . . .)

true (or both). For example, the unsatisfied constraint a suggests b can be satisfied

32 CHAPTER 3. BOOLEAN SOFT CONSTRAINTS

either by making a = ⊥ or b = >. Consider now the model in Figure 3.2 and
a more complex constraint with Ax(f1, . . . , f12) = f5 ∧ f7 and Bx(f1, . . . , f12) =

f8 ∨ f9 applying to that model, resulting in a suggestion to use either the Eclipse
or Netbeans tools for in-house development of Android applications. Consider
now that it is deemed unacceptable failing to satisfy this constraint if any one
of the following options is possible without hindering the satisfaction of higher
priority constraints or conformity to the feature model:

1. Using the Eclipse (f8) tool.

2. Using the Netbeans (f9) tool.

3. Resorting to outsourcing (f4).

Mobile
Development

Source
f1

Outsourced
f4

In House
f5

OS
f2

iOS
f6

Android
f7

Tools
f3

Eclipse
f8

Netbeans
f9 Flash CS

f10

Unity
f11

Airplay
f12

Figure 3.2: Complex Normative Constraint Example

Each such option ensures satisfaction of the constraint by either making Ax(f1,

. . . , f12) false (option 3) or making Bx(f1, . . . , f12) true (options 1 and 2). Whether
or not an order of preference between these options exists is irrelevant for our
discussion. Also notice that not all conceptually possible options need to be in-
cluded. In this case, it would be possible to satisfy the constraint by deselecting
the "Android" feature, but that is not contemplated here. This can correspond to a
domain-related concern that maintaining use of the "Android" operating system
is more important than satisfying this soft constraint.

Looking at the feature model, it is clear that, regardless of other constraints,
the first option requires not only that the "Eclipse" (f8) feature is selected, but

3.3. NORMATIVE SEMANTICS 33

also that "Tools" (f3) is selected and all other alternative tools are deselected
(f9,. . . f12). Similar considerations apply to the second and third options. Consid-
ering Fx−1(f1, . . . , f12) represents consistency wrt the feature model and higher
priority constraints, we find that the effect of each option may then be modeled
correspondingly as:

1. O1(f1, . . .) = Fx−1(f1, f2,>, f4, f5, f6, f7,>,⊥,⊥,⊥,⊥)

2. O2(f1, . . .) = Fx−1(f1, f2,>, f4, f5, f6, f7,⊥,>,⊥,⊥,⊥)

3. O3(f1, . . .) = Fx−1(>, f2, f3,>,⊥, f6, f7, f8, f9, f10, f11, f12)

If any one of Oi(f1, . . .) evaluates to >, then the corresponding option may be
used to satisfy the constraint. The impossibility function can be derived from
these functions, when integrating the constraints via Equation 3.2. Considering

c0 = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12}

c1 = {f1, f2,>, f4, f5, f6, f7,>,⊥,⊥,⊥,⊥}

c2 = {f1, f2,>, f4, f5, f6, f7,⊥,>,⊥,⊥,⊥}

c3 = {>, f2, f3,>,⊥, f6, f7, f8, f9, f10, f11, f12}

and continuing the example, if S0 . . . Sx−1 are the expressions satisfying soft con-
straints of higher priority than Sx (with Sx(f1, f2, ...) = Ax(f1, f2, ...)⇒ Bx(f1, f2, ...)),
then Ix(f1, . . .) can be computed as:

Ix(c0) = ¬
(∨

i=1...3

(
Oi(c0) ∧

∧
j=0..x−1

(Sj(c0)⇒ Sj(ci))
))

(3.5)

Equation 3.5 can be explained as follows. The inner conjunction
∧

j=0..x−1
(Sj(c0)

⇒ Sj(ci)) iterates over all constraints with higher priority and ensures any con-
straints satisfied in the original configuration are not unsatisfied after applying
the changes corresponding to vector ci (a higher priority constraint may become
satisfied by the change, but it may not cease to be satisfied, therefore Sj(c0) ⇒
Sj(ci)). If the inner conjunction is satisfied (satisfaction of higher priority con-
straints is not hindered) and it is possible to perform the corresponding change
(Oi(c0)) then it would be possible to satisfy the constraint Sx(c0) by making the
corresponding transformation. The outer disjunction ensures this analysis is per-
formed for all possible satisfaction options. The outer negation ensures that Ix(c0)
is > only when none of the provided options is feasible.

34 CHAPTER 3. BOOLEAN SOFT CONSTRAINTS

3.3.2 Annotation of a Feature Model with Normative Soft Con-

straints

From the perspective of someone creating a feature model with soft constraints,
most of this process can be automated so that the underlying details and math-
ematics remain hidden. Other than providing the feature model, the user must
provide the following:

• The soft constraint description (e.g., "In House" and "Android" suggests "Eclipse"
or "Netbeans") and associated priority.

• Identifiying the potential options for making that constraint satisfiable. This
can be achieved simply by providing the corresponding vectors ci. These
can be constructed by selecting the features to include and exclude in an
attempt to satisfy the constraint. The former correspond to > values in ci,
while the latter correspond to ⊥. This can be as simple as typing in the
features names or selecting them on a graphical user interface.

Provided the SCs are identified and that the vectors ci are provided, eachOi(c0) =

Fx(ci) and Equation 3.5 can be derived.

3.4 Annotational Semantics

Unlike normative SCs, annotational SCs do not have bearing on the validity of
the configuration2. They are simply representations of domain knowledge and
preferred configurations, but may be unsatisfied in any conditions. In this sense,
they are "true" soft constraints in that they may be disregarded at user’s discre-
tion. The true value of annotational semantics lies in the additional information
that they bring into the model. Although they do not have a direct impact on
validity, they can be processed and analyzed by configuration tools for multiple
purposes, including offering configuration suggestions, identifying and provid-
ing information about conflicts.

While conflicting normative SCs may also exist, the resolution of that con-
flict is hard-wired into the Equation 3.2, and depends completely on the feature

2Although strictly speaking annotational soft constraints can be considered just a specific type
of normative constraints (i.e., those for which Ix(f1, . . .) = >), their satisfaction is dependent only
on feature assignment and not on other constraints. This is not the case for normative constraints
as defined by Ix(f1, . . .) 6= >. When we speak of normative constraints, we therefore generally
mean constraints of the latter form unless otherwise stated.

3.5. CONCLUSIONS 35

model, other SCs and their priority. In this sense, all necessary trade-offs (re-
lated to SC satisfaction) are resolved upfront, when satisfiying options and pri-
orities are determined for each constraint at the time of creating and annotating
the feature model. However, it may be the case that it is difficult to assign pri-
orities meaningfully upfront. For example, the relative importance and priority
of some constraints may depend on additional factors (e.g., a constraint promot-
ing a small memory footprint is more relevant for a mobile application than for
a desktop application). Also, the preferred resolution for a certain conflict may
depend completely on stakeholder preferences, thereby making it very difficult
to antecipate the best resolutions. This means that not all soft constraints may
be comfortably expressed using normative semantics (with Ix(f1, . . .) given by
Equation 3.5). Annotational semantics are a better solution if one has the in-
tention of allowing the stakeholder to explicitly decide on how to resolve each
conflict, because they allow conflicts to be explicitly identified but do not impose
any specific type of resolution.

Since our work is concerned with enabling a user-centric perspective of prod-
uct derivation, annotational soft constraints are then a better match for the type
of support we envision. In the remainder of the text, therefore, we always assume
an annotational interpretation of soft constraints, unless otherwise stated.

3.5 Conclusions

Boolean soft constraints not only allow uncertain and overconstrained user pref-
erences to be represented, but also improve domain modeling capabilities (as dis-
cussed in Chapter 4). This information can be used by our configuration advisor
(examined in Chapter 5) to provide feedback to the user during the configuration
process to better allow him to realize his vision.

We described two alternative semantics for soft constraints applied to a fea-
ture model. Normative soft constraints must be satisfied "if possible", while an-
notational soft constraints are mostly informative in their nature and can always
be disregarded. The concept of "possibility of satisfaction" is variable and can
be defined on a per-constraint basis using the framework provided in this chap-
ter. Normative soft constraints are organized in total priority order, and then
combined into an aggregated constraint that is added to the feature model. Sub-
sequent use of any standard iterative configurator (discussed in Section 2.3) is en-
sured to generate a configuration that will always satisfy the normative soft con-
straints, if possible. We also discuss specification of normative constraints from

36 CHAPTER 3. BOOLEAN SOFT CONSTRAINTS

the perspective of a domain engineer and stakeholder, and show that they can be
used without deeper understanding of the underlying mathematics and frame-
work. Resolution of conflicting normative soft constraints is implicitly achieved
upfront by the definition of the priority order and definition of satisfaction possi-
bility.

Annotational semantics are informative in nature. While they could be repre-
sented in the normative framework, configuration of such a model by an incre-
mental configurator would be no different from configuration of the non-annotated
model. Although these constraints do not directly impact the configuration pro-
cess (unlike normative constraints), they represent valuable information that can
be used for other purposes. Specifically, in our case, we use annotational soft
constraints during the configuration process to generate advice providing con-
figuration suggestions. We also identify conflicts and point out consequences of
alternative resolutions of those conflicts. The fact that these conflicts are not re-
solved upfront, as is the case with normative soft constraints, is an advantage.
Resolution of conflicts that actually manifest during configuration of a product
can be resolved by the stakeholder directly, using the provided information for
guidance and having in mind the specific context of the product being created.
For this reason, annotational semantics are more suited for the purposes of our
work.

4
Soft Constraints in Domain

Engineering

Soft constraints are used in our work to represent both domain information and
stakeholder preferences, and these fuel the configuration advisor that provides an
enhanced configuration experience to the user (see Figure 1.2). During domain
engineering, a feature model is created that accurately represents domain infor-
mation and defines the scope of the product line. It is at this time that domain-
related soft constraints are introduced and integrated into the feature model.

This chapter discusses the use of soft constraints in domain engineering (Sec-
tion 4.1), directly addressing research questions 1a and 1(a)i. Original contribu-
tions include the proposal of some prototypical patterns of application (Section
4.2) and use of soft constraints in feature model evolution, as well as the classi-
fication of suspicious soft constraint interactions and automated techniques for
detecting those (Section 4.3).

4.1 Domain-related Soft Constraints

While traditional feature models include only hard constraints, soft constraints
can be used to represent relations between the features that may be desirable
but are not mandatory. Conflicting requirements can also be represented by
soft constraints. For example, a requirement might state that "Phone models

37

38 CHAPTER 4. SOFT CONSTRAINTS IN DOMAIN ENGINEERING

equipped with cameras should have a color display", while another might state
that "Low end models with monophonic sound should also be equipped with
monochromatic screens". If "low end models" are not specifically precluded from
being equipped with cameras, an indirect conflict arises (via mutual exclusion
of monochromatic and color displays). Codifying these requirements as hard
constraints implicitly resolves the conflict by ruling out configurations with both
"Monophonic" sound and "Camera". While this may be appropriate, it is not the
only conceivable resolution of the conflict, and by choosing that option, all other
potentially interesting resolution strategies are immediately removed from con-
sideration.

Another example of such conflicts is provided by the feature model repre-
sented in Figure 4.1 (adapted from [CSW08]). In this case, a soft constraint may
indicate that vehicles destined to the US market should include automatic trans-
mission, while another soft constraint might indicate that sport vehicles are prefer-
ably configured with manual transmission. Both suggestions are correct, although
both cannot be satisfied simultaneously for a sports vehicle destined to the Amer-
ican market. Had both of these constraints been specified as hard constraints
instead, it would have been impossible to create a valid sports vehicle configura-
tion destined to the US market. This would be an example of a scenario where
the range of admissible configurations would be unnecessarily restricted by hard-
coding the conflicting knowledge into the feature model as hard constraints. An
alternative solution would involve dropping one or both constraints, but this
would be unfortunate as both provide useful configuration advice that is only
conflicting if a specific partial configuration is produced. These examples illus-
trate the usefulness of soft constraints as a modeling tool for representing certain
types of domain information.

If the developer is not initially aware of such conflicts, the implicit resolution
and restriction of the configuration space, made by hardcoding the requirements
via hard constraints, may come as an (undesirable) surprise. Conversely, if these
requirements had been codified as soft constraints, no implicit resolution of the
conflict has been made. Configuration tools may automatically identify the con-
flict, report it and explain it to the user, who will then resolve it in the way that is
more suited for the specific product configuration being created. This improved
configuration support is one of the benefits gained by including soft constraints
in feature models. Traditional interactive configuration support tools are able to
automatically propagate user choices as required to ensure validity is preserved.
These dependencies stem from the feature tree topology and hard constraints. If

4.1. DOMAIN-RELATED SOFT CONSTRAINTS 39

Car

Sport Gear

Automatic Manual

Market

US Europe Other

Hard Constraints
(either one or both of)
Sport⇒Manual
US ⇒ Automatic

Soft Constraints
(both of)

Sport suggests Manual
US suggests Auto

Figure 4.1: Feature model describing vehicles configuration

soft constraints are used, configuration hints or suggestions may be generated by
a similar process. At each point, the configurator identifies what choices must
be made to ensure soft constraint satisfaction. However, rather than automati-
cally enforcing those choices, the user is only advised to make the corresponding
choices: soft constraints are not required to be satisfied.

One important practical difference between hard and soft constraints is that
conflicting hard constraints (that is, hard constraints that cannot be simultane-
ously satisfied) can never be found in consistent feature models. This is not pos-
sible when considering hard constraints only, otherwise the feature model would
be void (would not allow any valid configuration), an anomaly that is commonly
detected by feature model editing tools [KCH+92, Bat05, CHE05, BSRC10]. How-
ever, that is not the case with soft constraints since, by definition, their satisfac-
tion is not mandatory. Conflicting soft constraints can be useful for representing
domain concerns or requirements offering contradictory configuration advice. If
soft constraints are not employed, resolution of such tensions must be hard-coded
into the feature model, typically by identifying and dropping one of the relevant
constraints or by restricting the range of admissible configurations. This may
be unfortunate, as different resolutions might be preferable for different product
configurations. By annotating the feature model with soft constraints, the option
of deferring conflict resolution to configuration time can be made, allowing it to
be done in a concrete context (i.e., knowing a partial configuration of the specific
product being created) rather than up-front based on abstract considerations that
may fail to apply in some concrete products.

40 CHAPTER 4. SOFT CONSTRAINTS IN DOMAIN ENGINEERING

4.2 Prototypical Applications

Currently, soft constraints are not commonly used in SPL development. There-
fore, it is not possible to infer typical patterns of application from pre-existing
case studies. Nevertheless, in this section, we point out some prototypical appli-
cations of soft constraints in domain engineering, that is, potential applications
and patterns, and the rationale behind them. While this aims at providing addi-
tional insight regarding SC use, it also has found immediate practical application,
since these patterns form the basis for the constraint injection algorithm used in
the validation of our work (see Chapter 7).

4.2.1 Soft Constraint Annotation Patterns

In this section, we identify a few potential patterns for application of soft con-
straints. These were first described in [BM12] to support the automated creation
of feature models annotated with SCs for testing purposes.

• Optional Selection Suggestion. A soft constraint is used to tie the configu-
ration of separated variability options. This is a straightforward application
of soft constraint semantics (Section 4.2.2).

• Reverse Constraint Suggestion. A soft constraint is used to strengthen the
relation between dependent configuration options. It is an attempt to en-
sure that features are opportunistically selected or deselected provided the
right conditions are met (Section 4.2.3).

• Group Selection Suggestion. A soft constraint is used to indicate preferen-
tial configuration options for grouped features (Section 4.2.4).

4.2.2 Optional Selection Suggestion

Overview: The pattern Optional Selection Suggestion (OSS) encompasses a broad
range of situations where domain-specific interdependencies affect the configu-
ration of optional and group children features. An OSS represents one of these
situations, by interlinking the configuration of two non-mandatory features via
a soft constraint. The OSS pattern represents domain-specific dependencies be-
tween features and as such has very generic scope. Specializations of this pattern
may be devised if domain-specific knowledge is considered.

Context: A feature model describes product variability. Different features of
the product may be configured independently, making it impossible to statically

4.2. PROTOTYPICAL APPLICATIONS 41

correlate their configuration status via hard constraints. However, some type of
domain-related dependency or preferential configuration choices can neverthe-
less be identified.

Problem: Additional domain information other than that which is captured
by the hard constraints is well understood. However, the modelling tools avail-
able to the domain engineer do not allow him to represent it. As a result, this in-
formation will either be ignored or, alternatively, be represented using ill-suited
modeling tools. As a consequence of the first option, it will be impossible to pro-
vide any type of automated support that requires that information. The second
option leads to overconstrained models, that impose unnecessary constraints in
the products being created.

Solution: By using soft constraints to represent domain-related preferential
configuration choices, that information is not lost nor modelled using unsuitable
approaches. Automated procedures such as reasoning and validation of feature
configurations become possible.

Example: Figure 4.2 illustrates the injection of an OSS into a feature model.
It suggests that if the range sensors are available, then some type of automated
driving features should be included.

Original Feature Model After injecting OSS

Vehicle

Automated
Driving

Collision
Avoidance

Lateral
Parking

Sensors

Lateral Front

requires

requires

Vehicle

Automated
Driving

Collision
Avoidance

Lateral
Parking

Sensors

Lateral Front

requires

requires

suggests

Figure 4.2: Example of Optional Selection Suggestion

4.2.3 Reversed Constraint Suggestion

Overview: The conceptual interpretation of the Reversed Constraint Suggestion
(RCS) pattern is based on the intuitive notion that, in some cases, if all the re-
quirements for a certain feature (as specified by hard constraints) are met, then it

42 CHAPTER 4. SOFT CONSTRAINTS IN DOMAIN ENGINEERING

may be sensible to opportunistically select it.
Context: The inclusion of a certain feature F requires that one or more other

features are also selected, because the latter provide some kind of support or ser-
vice required by F . Those features, however, may be included for reasons other
than supporting F . The cost, or other forces that may suggest the deselection of
F , are at least partially related to the inclusion of the required dependencies.

Problem: It can make economical sense to include the dependent feature F ,
if the required features dependencies are available. Not selecting F , in such a
context, might result in a wasted opportunity and sub-optimal or inefficient use
of available resources.

Solution: The RCS of constraint C is added to the model. It is a soft constraint
that specifies that the reversed relation should also hold, that is, RCS(A ⇒ B)
= B suggests A.

Example: In the example in Figure 4.3, a RCS is added so that inclusion of
the front range finder sensor suggests collision avoidance breaking, with the pre-
sumed rationale that this would be the way to best take advantage of the capabil-
ities of the front range sensor, if it is included.

Original Feature Model After injecting RCS

Vehicle

Automated
Driving

Collision
Avoidance

Lateral
Parking

Sensors

Lateral Front

requires

requires

Vehicle

Automated
Driving

Collision
Avoidance

Lateral
Parking

Sensors

Lateral Front

requires

requires

suggests

Figure 4.3: Example of Reverse Constraint Suggestion

4.2.4 Group Selection Suggestion

Overview: The pattern Group Selection Suggestion (GSS) is related to the prefer-
ential configuration options of grouped features.

4.2. PROTOTYPICAL APPLICATIONS 43

Context: A feature model includes a group G with subfeatures G1, G2,. . . .
Preferred choices for the subfeatures can be identified by the domain engineer.

Problem: In standard feature models, there is no specific provision for de-
scribing preferred alternatives. This makes it impossible to record, reason or ad-
vise the user according to those preferences. If the application engineer is oblivi-
ous to such preferences, suboptimal configurations may be created.

Solution: A GSS is included in the feature model to describe preferred group
options. A GSS is a soft constraint that describes preferred group configurations
of group G (e.g., GSS(G) = G suggests Gx).

Example: Figure 4.4 shows an example of injection of a GSS into a feature
model. In this case, selection of the most advanced automated driving feature
is recommended. More complex examples could include preferences contingent
on the selection status of other features (e.g., A and G suggests G1) or multiple
alternative preferences (e.g., G suggests G1 or G2)

Original Feature Model After injecting GSS

Vehicle

Automated
Driving

Collision
Avoidance

Lateral
Parking

Sensors

Lateral Front

requires

requires

Vehicle

Automated
Driving

Collision
Avoidance

Lateral
Parking

Sensors

Lateral Front

requires

requires

suggests

Figure 4.4: Example of Group Selection Suggestion

4.2.5 Soft Constraints and Feature Model Evolution

Another role of soft constraints can play in Domain Engineering is as a mech-
anism for representing the evolution of feature models. A generalization of a
feature model is a transformation that increases the number of valid products
[TBK09]. If a hard constraint is transformed into an equivalent soft constraint, a
generalization may be performed less abruptly than just plain removal1. This is

1Strictly speaking, simply replacing a hard constraint by its soft counterpart does not neces-
sarily imply that the number of products increases. This happens, for example, if the original

44 CHAPTER 4. SOFT CONSTRAINTS IN DOMAIN ENGINEERING

relevant if the original constraint contains meaningful domain information that
applies to most products, but prevents a few specific products of interest to be
created. Outright removal of the constraint, in such a situation, can be harmful
as the implicit guidance it provides during the configuration process is no longer
available. Another way of looking at the same situation is simply that the infor-
mation represented by the original hard constraint becomes, for some external
reason, better represented as a soft constraint.

Figure 4.5 presents an example where such a transformation might be applied.
In the original feature model, the "Collision Avoidance" feature requires both lat-
eral and front sensors, for improved performance. However, a front sensor is
found to be sufficient for offering useful service, and it is determined that prod-
ucts with that configuration should be allowable, even tough the original con-
figuration is still recommended. In this way, the hard constraint is relaxed and
now, even though the lateral sensor is no longer required, it is still suggested to
maximize collision avoidance performance.

Original Feature Model After transformation

Vehicle

Automated
Driving

Collision
Avoidance

Lateral
Parking

Sensors

Lateral Front

requires

requires

requires

Vehicle

Automated
Driving

Collision
Avoidance

Lateral
Parking

Sensors

Lateral Front

requires

requires

suggests

Figure 4.5: Evolving a feature model via soft constraints

The same concept can be applied to restructuring operations of the feature
tree. In this case, the underlying constraints associated with the feature tree can
be relaxed and turned into soft constraints. Figure 4.6 represents two examples

constraint is redundant (might be removed without an actual impact in product generation). In
this case, the transformation would be better classified as a refactoring. The exact nature or clas-
sification of the transformation is not relevant for our discussion.

4.3. SUSPICIOUS SOFT CONSTRAINT INTERACTIONS 45

of this application.

Original Feature Tree Transformation Resulting Feature Tree

A

B

C

B is mandatory or
optional subfeature of A.

Relaxing optional
feature C

A

B C

suggests

A

B

C

B is mandatory or
optional subfeature of A.

Relaxing mandatory
feature C

A

B C

A suggests B ⇔ C

Figure 4.6: Restructuring the feature tree via soft constraints

4.3 Suspicious Soft Constraint Interactions

Even though soft constraints, by definition, can be disregarded when consider-
ing the validity of a configuration, they represent relevant domain information
that can be be automatically processed to provide useful feedback to the Domain
Engineer, when he annotates the feature model with soft constraints. Of special
interest to the domain engineer are the interactions of the soft constraints (both
with other soft constraints and generally with the entirety of feature model) that
can plausibly be considered suspicious. It turns out that these interactions can
take different forms and colloquial designations such as "inconsistent", "invalid",
"conflicting" or "interfering" may prove vacuous if an exact meaning is not estab-
lished in this context. Therefore, we seek to determine and categorize what types
of interactions that may prove useful for the domain engineer to learn about.
These interactions are considered suspect because their purposeful and deliber-
ated use can be considered unlikely, making it advisable to alert the domain en-
gineer to their presence, so that human modeling error or unexpected results can
be averted or rectified if necessary.

46 CHAPTER 4. SOFT CONSTRAINTS IN DOMAIN ENGINEERING

4.3.1 Suspicious Interaction Classification

Perhaps the most straightforward scenario that can be classified as suspicious
corresponds to soft constraints that are not satisfied in any valid configuration,
due to the interaction of the constraint expression with the feature tree structure
and hard constraints. We designate these types of constraints as unsatisfiable. For
example, the soft constraint "A discourages B" in Figure 4.7 is unsatisfiable.

Root

A B

discourages

Figure 4.7: Unsatisfiable soft constraint example

Unsatisfiable soft constraints certainly do not invalidate any model. How-
ever, considering that a soft constraint may correspond to a desired (albeit opta-
tive) property of the domain, unsatisfiability is a testament to the impossibility
of achieving it with the current model. In this way, the domain engineer should
have a keen interest in being informed about such scenarios, so that he may assess
if some kind of revision or corrective action is required.

Nevertheless, unsatisfiable soft constraints are not the only case of interest
warranting automated detection and reporting. Some other scenarios, such as
the ones illustrated in Figure 4.8 and Figure 4.9, can be considered quite possibly
erroneous or at least very suspicious from a domain analysis perspective. How-
ever, it is worth noting that none of the constraints in this scenario are in fact
unsatisfiable (neither individually nor even when grouped). Therefore, a differ-
ent categorization is required for these scenarios.

Root

A B
suggests

discourages

Figure 4.8: Contradictory soft constraints

In Figure 4.8, both constraints can be simultaneously satisfied by any con-
figuration where feature A is not selected. However, these constraints seem to
be providing contrary advice. We designate such constraints as contradictory, as

4.3. SUSPICIOUS SOFT CONSTRAINT INTERACTIONS 47

Root

G

A B C

M

suggests

Figure 4.9: Untriggerable soft constraint Example

these cannot be satisfied if simultaneously triggered (that is, their implicant is
true). Specifically, a set of soft constraints is contradictory if simultaneous trig-
gering is possible, but simultaneous satisfaction is not. Contradictory constraints
are not necessarily inconsistent, as the example of Figure 4.8 demonstrates, be-
cause simultaneous triggering may be avoided. However, the combined effect of
these constraints is not clearly conveyed by their original formulation. Moreover,
contradictory soft constraints will allow valid (partial) configurations that cannot
be completed successfully while satisfying all soft constraints, without making
retroactive changes. For example, it is not possible to obtain, without backtrack-
ing, a valid configuration satisfying all the soft constraints from the partial con-
figuration where features Root and A are selected and feature B is still open (un-
decided). This may be frustrating for the users who will later attempt to create
configurations simultaneously satisfying those constraints. Of course, it is up to
the domain engineer to decide whether or not the obscure formulation or later
configuration issues are a concern. In this case, automated analysis identifies and
points out contradictory constraints to the domain engineer, who then has the
responsibility of deciding whether or not any corrective action is required.

Figure 4.9 presents another scenario where the formulation of the soft con-
straint can be deemed suspicious. In this case, the soft constraint seems to be
suggesting the concomitant selection of alternative features, which is obviously
impossible. This is a specific case of the scenario were the implicant and impli-
cated portions of the soft constraint cannot be satisfied simultaneously. Again,
however, the soft constraint is not inconsistent: it is in fact satisfied in all valid
configurations that do not trigger it, that is, where feature A is deselected. We
designate soft constraints that can only be satisfied in this way as untriggerable.
Specifically, a soft constraint is untriggerable if its implicant can be satisfied, but
the constraint is satisfiable in its entirety only if untriggered. Much like contra-
dictory constraints, untriggerable constraints suffer from very much the same ob-
scure formulation problem: the soft constraint in Figure 4.9 can be replaced by an

48 CHAPTER 4. SOFT CONSTRAINTS IN DOMAIN ENGINEERING

equivalent and presumably clearer representation of its effect as a suggestion to
unconditionally deselect A. However, while contradictions always involve two
or more constraints, untriggerable soft constraints can occur independently.

It is worth pointing out that, although the interactions in Figures 4.7, 4.8, and
4.9 are fairly simply to detect by casual visual inspection, similar interactions may
have a more obscure presentation in more complex feature models, making the
use of automated detection mechanisms desirable.

To summarize, the following can be considered interactions of interest that
warrant detection and identification:

• Unsatisfiable soft constraints. These cannot be satisfied in any valid con-
figuration.

• Contradictory soft constraints. These cannot be triggered simultaneously
in any valid configuration.

• Untriggerable soft constraints. These cannot be triggered in any valid con-
figuration.

4.3.2 Identification of Suspicious Interactions

In this section, we demonstrate how the suspicious interactions described in the
Section 4.3 can be detected. These algorithms can be used in a feature model
editing tool, to provide immediate feedback to the user as soft constraints are
added to a model. The purpose is only to identify the interactions: it is up to
the Domain Engineer to decide whether or not some kind of corrective action is
required.

4.3.2.1 Identifying Unsatisfiable Soft Constraints

Identifying unsatisfiable soft constraints is akin to consistency analysis in stan-
dard feature modeling2, in the sense that if the unsatisfiable soft constraint was to
be considered a hard constraint instead, then the resulting feature model would
be inconsistent (i.e., no valid configuration would exist). Accordingly, standard
consistency analysis approaches (e.g., SAT analysis) can be used to identify un-
satisfiable soft constraints. Specifically, given the valid feature model expression
F and soft constraint C with expression SC , C is unsatisfiable if:

¬ SAT(F ∧ SC) (4.1)
2We use the expression "standard feature modeling" to designate feature modeling without

recourse to soft constraints

4.3. SUSPICIOUS SOFT CONSTRAINT INTERACTIONS 49

For an example of application, lets consider the feature model of Figure 4.7.
Applying the transformations described in Section 2.2.1 to obtain the feature
model expression F , we find that

F =(A⇔ >) ∧ (B ⇔ >)

SC =(A⇒ ¬B)

and applying (4.1),

¬ SAT(F ∧ SC) = ¬ SAT((A⇔ >) ∧ (B ⇔ >) ∧ (A⇒ ¬B))

= ¬ SAT(A ∧B ∧ (A⇒ ¬B))

= ¬ SAT(A ∧B ∧ (¬A ∨ ¬B))

= ¬ SAT(⊥)

= >,

we find the constraint "A" discourages "B" to be unsatisfiable.

4.3.2.2 Identifying Contradictory Soft Constraints

A set of soft constraints is contradictory if simultaneous triggering is possible, but
simultaneous satisfaction is not. Therefore, given the feature model expression F ,
a set of n soft constraints Ci with i = 1 . . . n, then the set is contradictory if:

SAT(F ∧
n∧

i=1

T (Ci)) ∧ ¬ SAT(F ∧
n∧

i=1

(T (Ci) ∧ SCi
)) (4.2)

where T (Ci) and SCi
are the trigger and expression of Ci, respectively. This ex-

pression detects a contradiction among exactly n constraints. Other scenarios
must be addressed separatedly.

Considering the example of Figure 4.8,

F =(A⇒ >) ∧ (B ⇒ >)

=(¬A ∨ >) ∧ (¬B ∨ >)

=>

SC0 =(A⇒ ¬B)

SC1 =(A⇒ B)

T (C0) =A

T (C1) =A

50 CHAPTER 4. SOFT CONSTRAINTS IN DOMAIN ENGINEERING

we find that,

SAT(F ∧
n∧

i=1

T (Ci)) =SAT(> ∧
2∧

i=1

T (Ci))

=SAT(T (C0) ∧ T (C1))

=SAT(A ∧ A)

=SAT(A)

=> (4.3)

and also

¬ SAT(F ∧
n∧

i=1

(T (Ci) ∧ SCi
)) =¬ SAT(> ∧

2∧
i=1

(T (Ci) ∧ SCi
))

=¬ SAT((T (C0) ∧ SC0) ∧ (T (C1) ∧ SC1))

=¬ SAT((A ∧ (A⇒ ¬B)) ∧ (A ∧ (A⇒ B)))

=¬ SAT((A ∧ (¬A ∨ ¬B)) ∧ (A ∧ (¬A ∨B)))

=¬ SAT((A ∧ ¬B) ∧ (A ∧B)))

=¬ SAT(⊥)

=> (4.4)

Replacing (4.3) and (4.4) into (4.2), we find the soft constraints S0 and S1 to be
contradictory in the feature model of Figure 4.8.

4.3.2.3 Identifying Untriggerable Soft Constraints

A soft constraint is untriggerable if it can be satisfied only if not triggered. In this
way, a constraint C with expression SCi

and trigger T (C) is untriggerable if

SAT(F ∧ SC) ∧ ¬ SAT(F ∧ SC ∧ T (C)) (4.5)

Applying (4.5) to the example in Figure 4.9, we find that

F =A⇔ (G ∧ ¬B ∧ ¬C)∧

B ⇔ (G ∧ ¬A ∧ ¬C)∧

C ⇔ (G ∧ ¬A ∧ ¬B)∧

(M ⇔ >) ∧ (G⇒ >)

= . . .

4.3. SUSPICIOUS SOFT CONSTRAINT INTERACTIONS 51

=(¬A ∧ ¬B ∧ ¬C ∧ ¬G ∧M)∨

(¬A ∧ ¬B ∧ C ∧G ∧M)∨

(¬A ∧B ∧ ¬C ∧G ∧M)∨

(A ∧ ¬B ∧ ¬C ∧G ∧M) (4.6)

SC =(A⇒ B)

T (C) =A.

Knowing that

SAT(f(x, y, . . .))⇒ SAT
(
f(x, y, . . .) ∨ g(x, y, . . .)

)
(4.7)

for any f(x, y, . . .) and g(x, y, . . .), and also that

SAT
∧
i

xi = >, (4.8)

provided that xi 6= ¬xj , for all i,j, then, considering from (4.6) that F =
∨3

i=0 Pi,
where

P0 =(¬A ∧ ¬B ∧ ¬C ∧ ¬G ∧M)

P1 =(¬A ∧ ¬B ∧ C ∧G ∧M)

P2 =(¬A ∧B ∧ ¬C ∧G ∧M)

P3 =(A ∧ ¬B ∧ ¬C ∧G ∧M),

then

SAT(F ∧ SC) =SAT(F ∧ (A⇒ B))

=SAT(F ∧ ¬A ∨ F ∧B)

=SAT(
3∨

i=0

(Pi ∧ ¬A) ∨
3∨

i=0

(Pi ∧B)) (4.9)

By (4.7) and (4.9), it is enough to demonstrate SAT(Pi ∧ ¬A) or SAT(Pi ∧ B),
for some i, to demonstrate SAT(F ∧ SC). Making i = 0, we find that:

SAT(P0 ∧ ¬A)) =SAT((¬A ∧ ¬B ∧ ¬C ∧ ¬G ∧M) ∧ ¬A))

=SAT(¬A ∧ ¬B ∧ ¬C ∧ ¬G ∧M)

=> by (4.8) (4.10)

52 CHAPTER 4. SOFT CONSTRAINTS IN DOMAIN ENGINEERING

so by (4.7), (4.9) and (4.10), we conclude that

SAT(F ∧ (A⇒ B)) = > (4.11)

Also,

¬ SAT(F ∧ SC ∧ T (C)) =¬ SAT(F ∧ (A⇒ B) ∧ A)

=¬ SAT(F ∧ (¬A ∨B) ∧ A)

=¬ SAT(F ∧B ∧ A)

=¬ SAT(
3∨

i=0

(Pi ∧B ∧ A))

=¬ SAT
(
(P0 ∧B ∧ A) ∨ (P1 ∧B ∧ A)

∨ (P2 ∧B ∧ A) ∨ (P3 ∧B ∧ A)
)

=¬ SAT(⊥ ∨⊥ ∨⊥ ∨⊥)

=> (4.12)

Replacing (4.11) and (4.12) in (4.5), we find that SC is correctly identified as un-
triggerable.

4.4 Conclusions

Soft constraints offer increased modeling opportunities in domain engineering.
The information they convey cannot be comfortably represented by hard con-
straints, so, in the absence of soft constraints, it must be either left out or be
misrepresented. This has unfortunate consequences, as the missing domain in-
formation could be put into good use by serving as the basis for analysis and
reasoning about the properties of the feature model. It also could be used for
providing better support during the configuration process and validation of the
created configurations.

We have described several prototypical applications of soft constraints, by
identifying their context of application, problem being addressed and solution.
These applications relate preferential configurations options, suggest the efficient
use of available resources, and identify preferred options in feature groups. We
also illustrated the potential of soft constraints for feature model evolution. By
relaxing a hard constraint into a corresponding soft constraint, it becomes pos-
sible to evolve the product line scope to include more product variants, without
completely throwing away the information stored in a hard constraint that might

4.4. CONCLUSIONS 53

yet be somehow relevant.
We also present a categorization of suspicious soft constraint interactions.

These suspicious interactions represent scenarios that are unlikely to have been
deliberately created by the domain engineer, although no actual error is present.
We also present the mechanism for performing the automated identification of
these interactions, so that they may be reported to domain engineer, who then
must assess the situation to determine if any kind of corrective measure is re-
quired or not. This showcases the usefulness of soft constraints, as these valida-
tions are only possible due to their inclusion in the feature model.

54 CHAPTER 4. SOFT CONSTRAINTS IN DOMAIN ENGINEERING

5
Enhanced Configuration Support

Standard feature model configurators are primarily concerned with ensuring that
the user always achieves a valid configuration. This is accomplished by propa-
gating user choices as required, in a iterative process where a partial configu-
ration incrementally grows from empty up to complete. Although this ensures
that a valid solution is always obtained, it does not necessarily help the stake-
holder to achieve his vision. We propose enhanced support for the configuration
process (Section 5.1), by providing algorithms for computing configuration sug-
gestions, and conflict identification and explanation (Section 5.2), as well as a pro-
totype tool we used for test and validation purposes (Section 5.3). This chapter
provides material addressing research questions 1 (by clarifying the role of soft
constraints with respect the goal of our work), 1b (by explaining the role of soft
constraints in the configuration step), 2 (by describing enhanced configuration
support that provides configurations suggestions and trade-off analysis), and 3a
(by presenting an algorithm for detecting and explaining conflicted features in
overconstrained configurations).

5.1 Enhanced Support Overview

Our enhanced support approach [BM13, BM14b] is based on two key functional-
ities:

• Providing Configuration Suggestions, which are generated dynamically

55

56 CHAPTER 5. ENHANCED CONFIGURATION SUPPORT

during an interactive configuration process.

• Identifying and explaining conflicts, which are scenarios where the simul-
taneous satisfaction of all applicable soft constraints is not possible.

We describe these in greater detail in Sections 5.1.1 and 5.1.2, respectively.

5.1.1 Configuration Suggestions

Suggestions are provided during the iterative configuration of the feature model.
They are based on available soft constraints, which can represent either user pref-
erences or domain information. The stakeholder may decide to follow this advice,
but is free to ignore it. Nevertheless, inspection of the advice gives the stake-
holder the opportunity to revise his original intentions, if necessary, or it might
help him to decide upon a specific configuration aspect he was unsure of. Regard-
less, if he chooses to do so, he may proceed against the provided advice, but does
so knowingly. Figure 5.1a presents an example of the intended advise behavior.
Considering the partial configuration, the system can advise the user to select
the "Manual" transmission feature, and deselect the "Automatic" and "US" fea-
tures. This advice takes into consideration the current partial configuration. The
"Sports" feature is already selected, so it is necessary to select "Manual" to ensure
that the "Sports" suggests "Manual". On the other hand, selecting the "Manual"
feature entails deselection of the "Automatic" feature (and vice-versa), so "Auto-
matic" should be deselected. Finally, if "Automatic" is deselected, it is necessary
to deselect "US" to satisfy the soft constraint "US" suggests "Automatic". Therefore,
the advice generated by the system ensures that, if followed, both constraints can
be satisfied. However, this advice is not mandatory: the user may deviate from
the suggestions provided by the configurator. However, in that case, it will not be
possible to uphold all constraints. Figure 5.1b provides an example of that situa-
tion: the user has determined not to follow the advice and continues the example
of Figure 5.1a by selecting the "US" feature. At this point, it is still possible to sat-
isfy either one of the constraints, but not both. Which one gets satisfied depends
on future configuration actions. Selection of either the "Automatic" or "Manual"
feature will lead to different outcomes. It should be pointed out that, although it
is obvious that an advice to deselect "USA" in Figure 5.1b would suitably point
towards maximal constraint satisfaction, it would simply restate the previous ad-
vice given in Figure 5.1a, which has already been directly ignored by the user. To
avoid such situations, and to provide useful assistance no matter what choices
are made, this approach provides advice only for open features. The configurator

5.1. ENHANCED SUPPORT OVERVIEW 57

will never advise any change to the state of a feature that is already selected or
deselected by virtue of user action.

5.1.2 Conflict Identification and Explanation

Rather than focusing on the validity of the configuration, which is handled im-
plicitly by the iterative configuration algorithm, we just intend to identify and re-
port potential conflicts during the configuration process, in terms of the soft con-
straint satisfaction. Specifically, we seek to identify and report to the stakeholder
conflicted features. A conflicted feature is an open feature in a partial configuration
whose selection or deselection will necessarily entail not satisfying some (differ-
ent) soft constraints. For example, in Figure 5.1b, both "Automatic" and "Sports"
are conflicted features. The information provided below the feature diagram ex-
plains the reasons supporting either the selection or deselection of each conflicted
feature. A stakeholder may analyze such information before deciding what is
the best way of proceeding with the configuration process. Selection of "Auto-
matic" is necessary (and sufficient) for satisfying the "US" suggests "Automatic"
constraint, but prevents satisfaction of the other soft constraint. The converse
situation is found when selecting "Manual". Conflicted features may arise not
only due to overconstraining the model, but also by the user making choices that
disregard the impact of soft constraints. This is always a possibility that must be
considered, since soft constraint satisfaction is not mandatory. Conflicted features
represent required trade-offs that are to be decided by the stakeholder. By choos-
ing to either select or deselect a conflicted feature, the stakeholder is deciding
which constraint or constraints he deems more relevant to satisfy, in detriment of
other(s). The use of a priority-based scheme to categorize the relative importance
of the SCs could be considered, with the idea of allowing the automatic resolution
of conflicts in favour of the higher priority SCs without requiring stakeholder in-
tervention. However, obtaining the total ordering of SCs required to achieve this
is not simple, requiring great consideration and care. Some of this effort will be
wasted because some constraints may not conflict at all. Also, priorities are not
necessarily static and can depend not only on the stakeholder but also on the
specific configuration that is being considered. By deferring resolution of these
conflicts to the configuration (realization) step, we allow a specific context (prod-
uct) to be considered by the stakeholder, so that a decision can be made based on
concrete factors rather than abstract a priori considerations.

It is possible that, in some cases, multiple SCs are involved in a conflict. To
address these scenarios, a metric can be calculated that provides some direction.

58 CHAPTER 5. ENHANCED CONFIGURATION SUPPORT

Car

Sport Gear

Manual Automatic

Market

US Europe Other

suggests

suggests

(a) Configuration suggestions

Car

Sport Gear

Manual Automatic

Market

US Europe Other

suggests

suggests

Manual want to select due to "Sports" suggests "Manual"
want to deselect due to "US" suggests "Automatic"

Automatic want to select due to "US" suggests "Automatic"
want to deselect due to "Sports" suggests "Manual"

(b) Conflicted Features

Selected Select Suggestion

Deselected Deselect Suggestion

No suggestion Conflicted Feature

Figure 5.1: Enhanced configuration support example

5.1. ENHANCED SUPPORT OVERVIEW 59

Consider the example of Figure 5.2, where an additional feature and soft con-
straint has been added to the vehicle feature model presented in Figure 5.1. In
this case, there are two SCs whose satisfaction is dependent on selection of the
"Manual" feature, while a single one depends on deselection of that feature. All
else being considered equal and looking at the raw number of satisfied SCs, selec-
tion of the "Manual" feature seems to be the preferable option. If the satisfaction
of even more SCs was dependent on selection of "Manual", that recommenda-
tion could be considered even stronger. Accordingly, this type of information can
be provided to the user in the form of a metric in the range -1 to +1, where +1
corresponds to an absolute recommendation of selection and -1 an absolute rec-
ommendation to deselect, and intermediate values recommendations of milder
strength. For this purpose, given the number Ns,f of SCs that require selection of
a feature f and the number of SCs requiring its deselection (Nd,f), we compute
the metric Rf :

Rf =
Ns,f −Nd,f

Ns,f +Nd,f

(5.1)

as an auxiliary feedback to the user. In the case of a conflict caused by a balanced
number of SCs, such as the one in in Figure 5.1b, Ns,f = Nd,f and RAutomatic =

RManual = 0. No clear indication for selection or deselection is discernible. For the
example in Figure 5.2, RAutomatic = −1

3
and RManual =

1
3
, corresponding to a mild

strength suggestions to deselect "Automatic" and select "Manual", respectively.
Nevertheless, the resulting value is only a synthesis of the complete information
provided, and can be easily replaced by other metric or disregarded if necessary.

Car

Low Cost Sport Gear

Manual Automatic

Market

US Europe Other
suggests

suggests

suggests

Figure 5.2: Features conflicted due to multiple constraints

60 CHAPTER 5. ENHANCED CONFIGURATION SUPPORT

5.2 Algorithms for Configuration Advice and Conflict

Analysis

To determine configuration advice as presented in Figure 5.1a, we resort to Algo-
rithm 1. The algorithm begins (line 1) by identifying the active SCs. An active

Algorithm 1: Suggestion computation
input : Partial configuration config, feature model fm and constraints
output: Configuration suggestions

1 active← activeSoftConstraints (config,fm)
2 if (sat (fm · config · active)) then
3 selSuggestions← computeCommonFeatures(fm, active · config)

/* selSuggestions now holds features that must be selected to

ensure satisfaction of all soft constraints. */

4 deselSuggestions← computeDeadFeatures(fm, active · config)
// eval maps features to a (de)selection score

5 foreach f in selSuggestions do
6 eval [f]← 1

7 foreach f in deselSuggestions do
8 eval [f]← −1
9 return eval

10 else
11 return analyzeInconsistency ()

soft constraint is one that may still be satisfied in the partial configuration. Once
the user makes choices that render satisfaction of a SC impossible, that constraint
is in fact disregarded. No advice is ever provided to attempt the retroactive satis-
faction of the constraint after choices have been made that prevent its satisfaction,
as discussed in the previous section.

Algorithm 2 is used to compute the active soft constraints. It returns a con-
junction of the expressions that satisfy all the active soft constraints. This is
achieved by verifying the satisfiability of each soft constraint in the current con-
figuration (Algorithm 2, line 4).

After determining the active constraints, Algoritm 1 proceeds by verifying
the satisfiability of all active SCs in the current partial configuration (line 2). If
it is satisfiable, then it is possible to complete the configuration while satisfying
all SCs. In this case, the configurator computes common and dead features as
if the SCs were hard constraints (lines 3 and 4). The first must be selected so
that all SCs are satisfied, while the latter must be deselected. In this way, dead

5.2. ALGORITHMS FOR CONFIGURATION ADVICE AND CONFLICT ANALYSIS61

Algorithm 2: Active feature computation
1 Function activeSoftConstraints

input : Partial configuration config, feature model fm and constraints
output: Conjoined expressions of active soft constraints

2 active← true
3 foreach soft constraint S do
4 if (sat(S · config · fm)) then
5 active← active · S

6 return active

features correspond to an advice to deselect, while common features result in
advices to select. Advices to select are represented by associating a score of +1

to features that should be selected, and −1 to features that should be deselected
(lines 6 and 8). If, however, it is not possible to satisfy all SCs in the current partial
configuration, then a conflict exists. Line 11 calls Algorithm 3, which identifies
the conflict and collects the relevant information.

When Algorithm 3 is run, it has already been established that it is not possible
to satisfy simultaneously all active SCs (line 4 of Algorithm 1). Therefore, the
task is now to identify and provide a valid explanation for this impossibility. The
likelier scenario is that it is possible to satisfy some of the active SCs, or maybe
even most, but not all. Having this in mind, the algorithm will begin its analysis
by iterating over all k-combinations of SCs, beginning with k = 1 up to N , where
N is the number of active constraints (line 5). The algorithm will always terminate
at most when k = N , since it has already been established that the active SCs are
not simultaneously satisfiable. As soon as an explanation for the conflict is found
(line 17), the iteration can stop, so it is not necessary to fully iterate over the entire
range of k.

To provide the necessary feedback to the user, the conflicted features must
be identified. This is achieved by identifying all features that must be dead or
common to ensure satisfiability of each k−combination of constraints. A fea-
ture is identified as conflicted if it must be selected (common) to satisfy some
k−permutation of SCs, while simultaneously being required its deselection (e.g.,
being found dead) to achieve satisfaction a different. permutation (line 17). As
soon as at least one conflicted feature is found, an explanation for the conflict has
already been found. By iterating from k = 1 upwards, the algorithm will iden-
tify the simplest explanations for the conflict first (by simplest, we mean those

62 CHAPTER 5. ENHANCED CONFIGURATION SUPPORT

Algorithm 3: Analize inconsistency
1 Function analyzeInconsistency

input : Partial configuration config, feature model fm and constraints
output: Conflicted features, associated metrics and explanation.

2 done← false
3 k← 1
4 while ¬ done do
5 foreach k-combination S of active soft constraints do
6 dead← computeDeadFeatures (fm ·S,config)
7 common← computeCommonFeatures (fm · S,config)

/* associate soft constraint satisfaction to required

(de)selection of features. */

8 if not empty dead then
9 foreach feature f in dead do

10 deselect [f]← true
11 Add S to deselectionExplanation [f];

12 if not empty common then
13 foreach feature f in common do
14 select [f]← true
15 Add S to selectionExplanation [f];

16 if ¬done then
17 done← there exists f such that deselect [f] · select [f]

18 k← k + 1

19 return computeMetric(deselectionExplanation,selectionExplanation)

5.3. TOOL DESCRIPTION 63

involving the fewer number of constraints) and the corresponding conflicted fea-
tures will also be identified. The algorithm also stores information that can be
used to trace conflicted features to the relevant conflicting permutations of SCs
(lines 11 and 15). This will allow feedback like the one illustrated in Figure 5.1b,
where conflicted features are explained in terms of impact on SC satisfaction, to
be produced. Finally, in line 19, (5.1) is used to compute a feedack metric based
on the gathered information.

5.3 Tool Description

We developed a prototype tool that supports configuration of feature models an-
notated with soft constraints and provides enhanced support as described in this
section. The layered structure of the tool is presented in Figure 5.3.

• Presentation: This package includes all the user-interface components. It is
directly dependent on all domain logic.

• Logic: This package provides logic representation, evalutation and pars-
ing capabilities for other modules. It relies on the Sat4j external library for
resolving satisfiability problems.

• FeatureModeling: Provides feature model management capabilities. It re-
lies on the Logic package for Boolean logic services, on the external SPLOT
file reader library and the SoftConstraint package for representing soft con-
straints associated with the feature model.

• SoftConstraint: Provides soft constraint representation and evaluation. It
relies on the Logic package for Boolean logic services and on the Feature-
Modeling package. The latter is required as evaluation of a soft constraint
satisfaction must be considered in the context of a specific feature model.

• Configuration: Provides configuration support services. It dependends on
the FeatureModelling and SoftConstraint packages, as these provide the
required context (i.e., the involved variables, feature model and hard and
soft constraints) necessary for the configuration activity. It also relies on the
Logic package for satisfiability services.

• Project: This package provides the required services for allowing manage-
ment and persistence feature modeling, soft constraints and related config-
urations. Correspondingly, it is dependent on FeatureModeling and Con-
figuration.

64 CHAPTER 5. ENHANCED CONFIGURATION SUPPORT

Figure 5.3: Configurator tool packages

5.3. TOOL DESCRIPTION 65

Our tool was used for validation purposes, as described in Chapter 7. Figure
5.4 presents a screenshot at the start of the configuration process of one of the
experiment test cases, where a portable computer is configured, according to user
preferences represented as soft constraints. The feature tree can be seen in the left
side of the screen 1 , while on the right side, from top to bottom, we can find the
hard constraints 2 , soft constraints 3 and the explanation 5 for the currently
highlighted conflicted feature 4 . The soft constraints represent, in this case,
desired properties of the configuration (e.g., it should include an optical drive,
the optical drive should be a dvdrw and cdrw combo or a bluray drive, etc).
None of these properties are mandatory: in fact, it turns out it is impossible to
satisfy all those constraints simultaneously. The enhanced configuration support
will aid the stakeholder in understanding the conflicted features and required
trade offs so he can make the necessary decision.

1 2

3

4

5

Figure 5.4: Configurator tool - Experiment test case

A confilicted feature ("lessThanUs400") is highlighted on the feature tree 4 .
The recommendation is to deselect with strength −34%. The explanation can be

66 CHAPTER 5. ENHANCED CONFIGURATION SUPPORT

found in the bottom right panel 5 . Selecting that feature is required to satisfy the
soft constraint named "priceLowestPossible" ("price" suggests "lessThanUS400").
However, deselecting it is required to satisfy the "opticalDrive" soft constraint
("Dell_Laptop_Notebooks" suggests "dvdrwandcdrwcombo" or "bluray") and the
"OS" soft constraint ("operatingsystem" suggests "windowsvista64bit"). While it
should be fairly clear to the user that the "priceLowestPossible" soft constraint
requires selection of "lessThanUS400", the impact on the "opticalDrive" and "OS"
constraints is not so obvious since none of those constraints are directly involved
with that feature. It would be necessarily to acquire a deeper understanding of
the feature model and hard domain constraints (over 100 in this case) to reach
the same conclusions, if enhanced support was not provided. Another conflicted
feature, "mem2gb", can also be observed higher up in the feature tree. In this
case, no selection or deselection suggestion is provided (0%). Highlighting that
feature would let the user know that selection of "memory2g" is required to sat-
isfy the "memory2g" soft constraint ("memory" suggests "memory2g"), however
deselecting it would be necessary to allow satisfaction of the "opticalDrive" con-
straint. Again we can see that the impact of selection or deselection of a conflicted
feature is not always obvious or restricted to those constraints where it is directly
referred to.

5.4 Conclusions

To achieve a more user-centric configuration approach, we propose to enhance
the standard iterative configuration techniques so that configuration advice and
conflict detection and analysis are provided to the stakeholder or domain engi-
neer. Advice is provided to the user based on the soft constraint annotations
and the current partial configuration. This advice allows the domain engineer
to reconsider his planned course of action (that is, revising his idealized config-
uration) or finally deciding upon some configuration aspect that was still un-
certain. Considering that soft constraints and the advice can be ignored by the
application engineer, advice provided during the iterative process is concerned
only with configuration possibilities still yet open. The configurator will defer to
user choices and never advises undoing them, rather, it provides advice targeting
only the part of the model which is still open (not configured).

Conflict detection is based on identification of conflicted features. These are
features for which contradictory configuration options are required to satisfy
some soft constraints. Algorithms were presented to detect these scenarios and

5.4. CONCLUSIONS 67

provide the required explanations. These explanations are provided in terms of
the impact of each alternative choice in soft constraint satisfaction. The stake-
holder can make an informed decision to resolve the conflict, having a clearer
understanding of the consequences of selecting or deselecting the conflicted fea-
ture.

A prototype tool was developed, which implemented all the described algo-
rithms and provided support for conducting the validation tests.

68 CHAPTER 5. ENHANCED CONFIGURATION SUPPORT

6
Prototype-Based Configuration

Iterative configuration techniques require that the user specifies the configura-
tion status of each feature in some arbitrary order of his desire. If a stakeholder
uses this approach to specify a valid configuration in a standard iterative con-
figurator (that is, the idealized configuration he is trying to create happens to be
valid), then configuration order is not meaningful as the desired valid configura-
tion will always be attained. However, if the idealized configuration is not valid,
then it will not be achievable. The iterative configurator will propagate the con-
figuration choices in such a way that valid completion is ensured. However, the
exact configuration attained in this way is dependent on the order by which the
features are specified. This can frustrate the user, as the trade-offs required to
ensure validity are never made explicit. Rather, they are resolved implicitly ac-
cording to the configuration order that happens to be adopted. In this chapter,
we describe our prototype-based approach to configuration that seeks to address
this problem (Section 6.1). At the core of this approach, a configuration repair
technique (Section 6.2) is necessary for resolving configuration errors that may
be introduced. Our cover-based configuration repair technique (Section 6.3) ef-
ficiently computes all possible fixes and allows for a concise representation of
repair possibilities (Section 6.4). This algorithm has been implemented by our
prototype tool (Section 6.5). Original contributions include the Prototype-based
configuration approach, and a novel configuration repair algorithm. Prototype-
based configuration allows the stakeholder to provide a complete description of

69

70 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

its idealized configuration to the system, so it is concerned with addressing re-
search question 3.

6.1 Prototype-based vs. Iterative Configuration

The enhanced configuration support technique based in soft constraints, described
on Chapter 5, helps the user to create a configuration meeting his wishes, that
is, his idealized configuration. Nevertheless, it is still based on standard incre-
mental configuration, so that the configuration is created step-by-step by selec-
tion/deselection of a single feature at a time. On the other hand, prototype-based
configuration can be described as a generalization of an iterative approach to
configuration, in which more than one feature can be selected or deselected si-
multaneously in each iteration. Ultimately, in the most extreme interpretation,
the entire product can be specified in only a single iteration in which all features
would be either selected or deselected as necessary. We will henceforth consider
in the discussion that prototype-based configuration refers to this single iteration
scenario, with the understanding that partial configuration with multiple itera-
tions is also possible.

Prototype-based configuration is aligned with the idea of enabling the user to
completely describe the idealized product in its entirity, unhindered by concerns
of validity. This is often not the case when an iterative approach is taken, as
choice propagation automatically configures certain features, depending on the
partial configuration inputted so far, making it impossible for the stakeholder to
fully configure the model according to his wishes. In other words, the idealized
configuration may be invalid, but iterative configurators do not allow invalid
(partial) configurations to be represented.

Figures 6.1 and 6.2 illustrate the order-dependency problem. Figure 6.1 repre-
sents a feature model and the idealized configuration of the stakeholder, which is
invalid because the hard constraint "Custom" requires "Cabriolet" is not satisfied.
Figure 6.2 represents the resulting outcome by trying to achieve the idealized
configuration by specifying the features according to the idealized model, but in
different orders. Figure 6.2a demonstrates the outcome obtained by selecting the
"Gasoline" feature first, then the "Automatic" feature. At this point, due to auto-
matic propagation of choices, the configuration becomes complete and the "Cus-
tom" feature configuration deviates from the idealized configuration. Another
scenario is represented in Figure 6.2b, where configuration is made by selecting
"Gasoline", then "Custom". Although the configuration is not yet complete, as

6.1. PROTOTYPE-BASED VS. ITERATIVE CONFIGURATION 71

the user still must decided whether or not he prefers to have some kind of cli-
mate control (though his preferred option is no longer possible), a very different
configuration is attained, also deviating from the ideal but in other ways. It is no
surprise that the idealized configuration is not obtained in either case. This is a
manifestation of its invalidity and some type of mismatch between the idealized
and realized configurations is unavoidable. However, no help is provided to the
user to help him understand what kind of trade-offs are required or possible: for
example, what compromises would have to be made to allow for the selection of
the "Custom" feature in the first scenario? Is some configuration order "better"
than other? What trade-offs are involved? In a general case, answering ques-
tions like these requires either domain expertise (that the stakeholder might not
possess nor be willing to acquire) or time-consuming backtracking and ad-hoc ex-
perimentation. Prototype configuration avoids, or at least mitigates this issue,

Car

Fuel

Diesel Gasoline

Cabriolet Climate
Control

Manual Automatic

Rims

Stock Custom

Hard Constraints
Cabriolet excludes Automatic
Cabriolet requires Gasoline
Custom requires Cabriolet

Figure 6.1: Feature model and idealized configuration

because it does not require that features are specified one by one. While the con-
cept of prototype-based configuration is simple enough, one important hurdle is
that when (de)selecting more than one feature simultaneously, it is possible that
an invalid configuration is created. In fact, one of the reasons for the success of
iterative solutions to configuration is that they completely avoid this problem.
They achieve this by ensuring that the consequences of the (de)selection of a sin-
gle feature are automatically applied as needed to ensure validity is preserved.
This makes it impossible for the user to specify invalid configurations. Unfortu-
nately, that is not the case if two or more features are simultaneously specified, as
mutually exclusive options may be specified. This means that prototype-based

72 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

Gasoline Automatic
−−−−−−−−−−−−−−−−−−−−→

configuration order

Car

Fuel

Diesel Gasoline

Cabriolet Climate
Control

Manual Automatic

Rims

Stock Custom

(a) Selecting "Gasoline", then "Au-
tomatic"

Gasoline Custom
−−−−−−−−−−−−−−−−−−→

configuration order

Car

Fuel

Diesel Gasoline

Cabriolet Climate
Control

Manual Automatic

Rims

Stock Custom

(b) Selecting "Gasoline", then "Cus-
tom"

Figure 6.2: Order-dependent outcome in iterative configuration

configuration requires an additional step in which the configuration initially pro-
posed by the stakeholder (i.e., the prototype) is then adjusted as required to en-
sure validity. Automation must be employed to ensure that potential changes
are automatically identified and communicated to the user. In Figure 6.3, we can
see an example of prototype configuration for the same configuration and feature
model. In this case, the user has decided to specify the desired configuration sta-
tus of three features simultaneously (for the sake of the example, we chose three
features, but any number could have been chosen, from two up to the complete
configuration if so desired). These features ("Automatic", "Cabriolet", and "Cus-
tom") are all selected in the idealized configuration, but cannot be simultaneously
selected in a viable configuration. Therefore, a conflict exists and a conflict res-
olution step must be taken, where the user will resolve whatever problems may
exist in his specified prototype configuration, with the automated help of the sys-
tem. Support is provided by considering the prototype configuration to be an
invalid configuration that must be repaired to conform to the feature. The system
will analyze the configuration, identify possible repairs, and presents them to the
user so that he may chose his preferred way of resolving the inconsistency.

Prototype
Specification

Cabriolet

Automatic

Custom

Conflict
Resolution

Gasoline

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
configuration order

Figure 6.3: Prototype configuration

6.1. PROTOTYPE-BASED VS. ITERATIVE CONFIGURATION 73

In the case of Figure 6.3, the system could identify and provide to the user the
following options:

• Deselect "Automatic"

• Deselect "Cabriolet" and "Custom"

Which would give the user a clear perspective of the possible trade-offs involved
with those features. The problem of identifying the changes required to validate
an invalid configuration is not new, and is known in the literature as configura-
tion repair or diagnosis [WBS+10, XHSC12, WPX+13]. For such an approach to
be usable in the context of configuration, the following properties must be met:

1. High Performance. The configuration repair approach must be efficient
so that the user’s experience and workflow is not disrupted by excessive
runtime requirements.

2. Multiple Repairs Identification. The configuration repair approach must
be able to correctly identify variant alternative repairs, rather than a single
possibility, so that the user may determine what the best compromise is.

3. Conciseness. Although the user must be made aware of repair alternatives,
he cannot be overwhelmed by choices.

4. Applicability to Boolean feature models. To meet the feature modeling
approach used in our work.

We found that existing approaches did not meet one or more of these cri-
teria, so we have proceeded to develop our own. The configuration diagnosis
technique proposed in [WBS+10] is based on the transformation of the feature
model and configuration to be repaired into an equivalent CSP problem. Run-
time performance is improved by transforming the optimization problem into a
satisfaction problem, by considering a parameter that is a bound on the accept-
able quality of the solution. If this bound proves too tight, the process must be
repeated with a relaxed bound, until a satisfactory (but not necessarily optimal)
solution is found. The algorithm was experimentally tested with synthetic fea-
ture models of up to 5000 features. While the approach seems to scale well, it
does not discuss the analysis or presentation of multiple alternative optimal re-
pairs. Trade-offs between optimality and performance exist that can be hard to
parameterize.

74 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

Recent approaches address alternative variability models with increased ex-
pressiveness such as Kconfig or CDL [BSL+10]. In [XHSC12], the range fix ap-
proach is described, where fixes are computed for each unsatisfied constraint
including admissible ranges of variation for numeric configuration parameters.
The HS-DAG algorithm [GSW89], based on MAX-SAT techniques, is used to com-
pute consistent variable assignment sets. These are then transformed into fix
units by repeated application of a set of transformation rules until a fixed-point is
reached. This work is extended in [WPX+13] to include an adaptive strategy for
iteratively identifying preferential fix options based on previous user feedback.
The advantage is that the repair list to be considered at each moment by the user
is further reduced. A downside is that the process becomes iterative. Because
of this, the user does not have a global perspective of the impact of his choices,
and conciseness of the repair list is achieved by reintroducing the iterative ele-
ment that prototype-based configuration intends to avoid. Also, the range fix
approach is relevant for parameterized feature models, Kconfig or CDL, but is
not for Boolean feature models.

Other repair approaches have also been described in the literature. However,
they tend to have domain specific aspects that are not easily transferable to fea-
ture model configuration repair. In [NEF03], the xlinkit framework for consis-
tency management is introduced. It includes a first-order logic language for spec-
ifying domain constraints over XML documents. Inconsistencies are detected and
an n-ary link connecting the inconsistent elements is produced. A repair manager
identifies and makes available to the user all the potential repairs. Since not all
repairs are ensured to be consistent with the documents’ grammar, certain types
of repairs can be administratively prohibited so that the documents remain se-
mantically consistent after repair. Interaction between multiple constraints is also
not considered, and may require backtracking over attempted repair actions. No
analysis of runtime performance or scalability is provided. A similar approach
is applied to the repair of UML diagrams in [ELF08], where a set of domain spe-
cific fix procedures is created to ensure overall consistency is preserved. [JM11]
describes the use of MAX-SAT techniques to identify potential locations of bugs
in source code and identify repairs for certain specific categories of errors. None
of these approaches is directly applicable to feature configuration repair without
major effort or adaptation.

6.2. CONFIGURATION REPAIR OVERVIEW 75

6.2 Configuration Repair Overview

Configuration repair entails identifying the necessary changes that transform an
invalid original configuration into a valid target repaired configuration. These
changes are indications to toggle the selection status of a feature from selected
to deselected (or viceversa). A single repair may include changes to the selec-
tion state of multiple features. Since any valid configuration can be designated
as the target of the repair, there are as many repairs of a given configuration as
the number of valid configurations of the corresponding feature model. Conse-
quently, any non-trivial repair mechanism should not only identify just any one
of the potential repairs, but also conduct the optimization of some quality crite-
rion. Typical criteria include the minimization of the Hamming distance between
the original and target configurations, effectively selecting repairs that minimize
the overall number of changes to feature (de)selection. Other criteria may favor
preservation of selected (but not deselected) features, or the minimization of a
weighted sum of selected features (e.g., a total cost of product). As an example,
consider the following configuration of the feature model in Figure 6.4, adapted
from [WBS+10], with selected features "Automobile", "Brake Control Software",
"Brake Control ECU", "Non-ABS Controller" and "1 Mbits/s CAN bus", and all
other features deselected. This configuration is not valid because one of the hard

Automobile

Brake Control
Software

ABS
Controller

Non-ABS
Controller

Brake Control
ECU

250kbits/s
CAN bus

1 Mbits/s
CAN bus

requires

requires

Figure 6.4: Configuration repair example

constraints ("Non-ABS Controller" requires "250kbits/s CAN bus") is not satisfied.
The two repairs minimizing the Hamming distance [Ham50] between original
and repaired configurations are:

• Select "250kbits/s CAN bus"; Deselect "1 Mbits/s CAN bus"

76 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

• Select "ABS Controller"; Deselect "Non-ABS Controller"

However, the user may find that one of the possible repairs (such as downgrading
to a non-ABS controller) is not really desirable. This only reinforces the necessity
of considering all potential repairs. In fact, if the repair tool provides a single
repair solution, there is no warranty that the desired solution will be the one out-
putted. This problem is exacerbated as the complexity of the feature model and
number of potential repairs increase. Therefore, generally speaking, all potential
repairs should be considered. Efficient ways of identifying, accessing and pre-
senting the alternative repairs have to be considered.

6.3 Configuration Repair Based on Cover Information

Our configuration repair algorithm is based on computation of a cover of the fea-
ture model expression. A cover is a representation of a Boolean function as a
disjunction of terms (see Section 6.3.1). The algorithm involves the following
steps:

1. Feature model partitioning and cover extraction. First, the feature model is
partitioned into a set of independent trees for efficiency purposes and also
for allowing a concise representation of results. The cover is then computed
by analysis of these partitions (Section 6.3.2).

2. Repair identification (based on cover information). Possible repairs are
identified by comparative analysis of the variable assignments in the in-
valid configuration with those required for satisfying each cover term. The
algorithm is ensured to identify the optimal repair in terms of Hamming
distance, but other metrics may also be used, in which case a best-effort
attempt will be made (Sections 6.3.3-6.3.6).

3. Result presentation. The partitioning approach allows not only efficiency
gains, but it also provides a natural way for decomposing the possible re-
pairs into independent problems that can be individually resolved. This
allows a much more concise representation of the repairs, with correspond-
ing benefits fo the user. The system can also iterate efficiently through all
possible repairs, if required (Section 6.4).

The first step must be performed only once per feature model, while the latter
two must be performed once per configuration to repair (or when a new metric

6.3. CONFIGURATION REPAIR BASED ON COVER INFORMATION 77

is defined). This benefits the performance of our algorithm, since cover compu-
tation is the most computationally expensive task.

The prototype tool for configuration repair is presented in Section 6.5.

6.3.1 Cover and Literal Minimization

Our configuration repair algorithm is based on extraction of the cover of the fea-
ture model expression. While an expression in conjunctive normal form (CNF)
represents a Boolean function as a conjunction of disjunctions, a cover is a repre-
sentation of a Boolean function in the format of disjunction of terms, with a term
being a conjunction of literals (variables or their complement). Accordingly, a
cover of function f of Boolean variables xi can be represented as:

f(x1, x2, . . .) =
∨
i

Ti(x1, x2, . . .) (6.1)

Where Ti(x1, x2, . . .) is a product of some or all of xi or their complement ¬xi.
All Boolean functions can be expressed as a cover (or CNF form). For conve-
nience, we refer to any cover equivalent to a function f as an ON-cover of f . In
opposition, the OFF-cover of function f is equivalent to the complement of f .
A minimal cover has a minimal number of terms. Literal minimization ensures
that the terms do not include redundant unnecessary variables. Cover and lit-
eral minimization is a hard problem, but of critical importance in the areas such
as logic circuit design. As such, many heuristic algorithms have been proposed
throughout the years such as Karnaugh Maps [Kar53], the Quine-MCluskey al-
gorithm [Qui52, Qui55, McC56, NNCI95], and the Espresso heuristic logic mini-
mizer [Rud86]. While the former two have scalability issues and can only tackle
problems of modest dimension, the latter is the state-of-the-art in logic minimiza-
tion, and includes numerous hybrid heuristic techniques able to successfully han-
dle complex logical function minimization with virtually unlimited number of
variables. It is also capable of performing multiple-valued logic optimization.
The reader is referred to [Rud86] for additional details.

6.3.2 Feature Model Partioning for Efficient Cover Computation

A feature model may be converted to an equivalent Boolean expression accord-
ing to the transformations described in [Bat05]. Although the Espresso heuristic
logic minimizer is very efficient performance-wise, cover minimization is a very

78 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

hard problem and a strategy based on direct processing of the feature model ex-
pression is destined to failure. Therefore, we have developed an approach based
on a partitioning strategy that decomposes the feature tree into multiple indepen-
dent partitions. These partitions can be independently analyzed and the results
combined, achieving very efficient processing of large feature models. Our parti-
tioning approach includes three phases. These will be described using the feature
model in Figure 6.5 as an example.

R

M1

O2

O3

G3 G4 M2

M4

G1 G2 O1

M3

Hard Constraints
¬G1 ∨M3

Figure 6.5: Feature model decomposition example

In the first phase, illustrated in Figure 6.6, the feature tree (not model) is de-
composed into a set of multiple independent trees, using Algorithm 4.

Decomposition is recursive, but only on mandatory features. This is because
the selection state of features that descend from root along a mandatory path is
well-known (they must be selected in valid configurations). Therefore, these fea-
tures do not constrain in any way the selection of their children. In other words,
the selection state of each child of a feature with mandatory path to root can be
considered independently of the selection state of their parent (which is always
selected). In contrast, the selection state of any child of an optional feature is
conditioned by the selection state of the parent: if the parent is not selected, then

R

G1 G2

Constraints:
R

O1

M3

O2

O3

M1

G3 G4

Constraints:
M1

Figure 6.6: Feature model decomposition example - Step 1

6.3. CONFIGURATION REPAIR BASED ON COVER INFORMATION 79

Algorithm 4: Partition feature tree
1 Function partitionFeatureTree

input : Feature tree with root f
output: Partitioned feature tree

2 treeSet← []
3 foreach mandatory children m of f do
4 Add partitionFeatureTree (m) to treeSet

5 foreach optional children o of f do
6 Add subtree rooted at o to treeSet

7 foreach children group g of f do
8 Create feature tree z with root f and single child g
9 Add to z constraint requiring selection of f

10 Add z to treeSet

11 return treeSet

the children may not be selected. Therefore, it is possible to proceed recursively
and consequently ignore parent features only while traversing a mandatory path
from the root. Groups are extracted from the original tree along with the parent
feature.

After this step, the feature tree in Figure 6.5 would be decomposed into the
four sub-trees as seen in Figure 6.6. Features M2 and M4 have disappeared due to
the recursive descent of the partitioning algorithm.

In the second step, variables that were removed (disappeared) after the first
step are reintroduced into the decomposed feature tree set as a new feature tree
including only a single root node corresponding to the removed variable and a
constraint requiring its selection (see Figure 6.7). This is necessary because some
mandatory features of the original model will not be found in any one of the
decomposed trees. Although, in fact, mandatory features are sometimes prepro-
cessed out of feature models before processing to improve performance [Men09],
since they do not include any meaningful variability information, we believe this

R

G1 G2

Constraints:
R

O1

M3

O2

O3

M1

G3 G4

Constraints:
M1

M2

Constraints:
M2

M4

Constraints:
M4

Figure 6.7: Feature model decomposition example - Step 2

80 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

approach is not well suited for our problem, since a configuration may be ren-
dered invalid precisely because of failure to select a mandatory feature. If the
corresponding variables were removed, no appropriate advice could be offered
in those cases. Additionally, since selection of the root of the decomposed trees is
not implicit (unlike in the original feature model), a constraint is also added that
ensures the mandatory selection of the root R.

In the third step (illustrated in Figure 6.8), the domain of the constraints of the
original feature model is analyzed to determine if some of the decomposed trees
should be merged back into a single tree. Constraints are then added to the cor-
responding trees (that is, the tree including its domain variables). Feature trees
are merged by creating a common anonymous parent whose purpose is simply
conjoining the child feature trees. The feature tree expression of two or more
merged feature trees will be the conjunction of their individual feature tree ex-
pressions. The outcome of this process will be a set of constrained feature trees1.
These constrained feature trees are to be independently analyzed by the heuristic
logic minimizer in ensuing steps of the repair algorithm.

R

G1 G2

O1

M3

Constraints:
R

¬G1 ∧M3

O2

O3

M1

G3 G4

Constraints:
M1

M2

Constraints:
M2

M4

Constraints:
M4

Figure 6.8: Feature model decomposition example - Step 3

6.3.3 Configuration Repair Using Cover Information

A repair represents the difference between an invalid original configuration and
a valid target configuration. On the other hand, a term in a cover describes one
or more valid configurations. Therefore, given a cover and a configuration to
be repaired, it is possible to compute the repairs by calculating the difference
between each term in the cover and the original invalid configuration. As an

1Although these are remarkably similar to a feature model, there are some differences so we
use a different terminology to avoid confusion. Differences include the possibility of having op-
tional nodes at root, whose selection is not mandatory unlike in standard feature models. Also
absent from standard feature models are the anonymous nodes at the root of the merged trees.

6.3. CONFIGURATION REPAIR BASED ON COVER INFORMATION 81

example, consider a feature model in Figure 6.9, with features {A,B,C,D,E,F }
and the cover given by Equation 6.1 with

T0(A, . . . , F) = A ∧ ¬C ∧ ¬D ∧ ¬E ∧ F (6.2)

T1(A, . . . , F) = A ∧ C ∧ E ∧ F (6.3)

T2(A, . . . , F) = A ∧ C ∧D ∧ F (6.4)

The first term of the cover will be satisfied by any configuration including fea-

A

B C

D E

F

Figure 6.9: Feature model for example of repair extraction from cover terms

tures A and F , that not include features C, D, nor E. The second term is satisfied
by any configuration including A,F ,C and D, while the third term is satisfied
by inclusion of A,F ,C and E. If a configuration is valid, then it must by defi-
nition satisfy at least one of the terms, since the cover is logically equivalent to
the feature model expression. Therefore, any configuration satisfying any one (or
more) of these three terms will satisfy the cover expression and will be a valid
configuration. This means that it is possible to compute all possible repairs by
finding the changes to the current configuration that are required to satisfy each
and every one of the terms in the expression (if a single repair is sought, then it
is sufficient to find the changes that validate any single term). If open (undeter-
mined) variables still exist in the configuration, they can be safely disregarded:
we can assume these will be configured appropriately in the future to obtain a
valid configuration. This can either be enforced by the configurator (see Chapter
5), or, alternatively, the repair algorithm can be run again if subsequent configu-
ration errors arise. For example, consider the invalid configuration represented
in Figure 6.10.

• Selected {A,B,C}

• Deselected {D,E}

• open {F }

The following repairs can be identified after analysis of each term:

82 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

• Repair from first term: Deselect {C}

• Repair from second term: Select {E}

• Repair from third term: Select {D}

A

B C

D E

F

Figure 6.10: Invalid configuration

The first repair is obtained by taking the first term T0(A, . . . , F) and computing
the variation of non-open configured variables required to satisfy it. The term
is currently unsatisfied because of the selected status of C. Features A, D, and
E are properly configured, while F is open and can be assumed to be eventu-
ally configured selected as required. Therefore, the configuration can be fixed by
changing variable C to ’deselected’. The second and third repairs are obtained by
conducting a similar analysis based on the remaining terms T1 and T2. Algorithm
5 describes the process by which a term is analyzed to compute the repair for a
given configuration.

Algorithm 5: Computing a candidate repair from a specific term
1 Function generateTermRepair

input : Configuration config, term term
output: A repair of configuration config, allowing satisfaction of term

2 repairOutput← []
3 foreach conjoined element e (x) of term evaluating to false in config do

/* By definition of term, e (x)=x or e (x)= ¬ x */

4 Add x to repairOutput
/* repairOutput contains all variables that must be changed in

config to satisfy term */

5 return repairOutput

Considering a term is a conjunction, all conjoined elements that integrate it
must be satisfied to ensure satisfaction of the term. Thus, the solution identified
by the Algorithm 5 is unique and therefore optimal with respect to the minimum
number of changes required to satisfy the input term. Considering a cover is a
disjunction of terms, each repair satisfying one such term also satisfies the cover

6.3. CONFIGURATION REPAIR BASED ON COVER INFORMATION 83

itself. Therefore, we identify repairs by iterating over all terms of a cover, produc-
ing a set of candidate repairs for the cover (Algorithnm 6). Each such candidate
repair is associated with the satisfaction of a specific cover term.

Algorithm 6: Computing all candidate repairs
1 Function getCandidateRepairs

input : Configuration config, cover c
output: A set of candidate repairs

2 candidateRepairs← []
3 foreach term t in cover c do
4 Add generateTermRepair (config,t) to candidateRepairs

5 return candidateRepairs

6.3.4 Performance and Optimality

Computation of the candidate repairs, described in Section 6.3.3, requires itera-
tion over all the terms in a cover. Therefore, runtime performance of this step of
the algorithm is dependent on the total number of terms. The worst-case scenario
corresponds to a cover where all terms include all variables or their complement.
In this case, each term fully specifies the selection state of all features correspond-
ing to a single valid configuration, so there will be as many terms as possible
configurations. Computing the repairs using the approach in Section 6.3.3 would
be prohibitively expensive. However, in all likelihood that cover is not mini-
mal. Conversely, the best case scenario is obtained when a minimal cover is used,
since the least number of terms have to be analyzed. Therefore, using the mini-
mal cover for repair identification using the above process will achieve optimal
efficiency of this step.

Since candidate repairs are computed considering each term of the cover indi-
vidually, not all the repairs identified using the approach outlined above are nec-
essarily unique, orthogonal or minimal with respect to the full cover expression.
These are simply candidate repairs and must be subjected to further selection as
described later. However, it is ensured that at least one repair with minimal num-
ber of changes is in fact included among the candidate repairs. To prove this by
reductio ad absurdum, let T be the set of all terms in the cover, R(t) : t ∈ T the
repair obtained from term t with algorithm 5 and C(r) the number of configu-
ration variable changes described in repair r. Consider as an hypothesis that an
optimal repair H 6∈ T exists for which C(H) < C(R(t)) for all t ∈ T . We know

84 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

from the discussion in Section 6.3.3 that R(t) is the unique solution that speci-
fies the absolute minimum number of changes required to allow satisfaction of t.
Then, consider that all valid configurations must, by definition, satisfy the feature
model expression (and any equivalent cover). Also, a cover is a disjunction of all
t ∈ T so it is satisfied iif at least one term is also satisfied. Therefore, if H is a
valid repair it must transform the defective configuration into one that satisfies
at least one term ts ∈ T . By hypothesis, H specifies less variable changes than
those required by R(ts), that is C(H) < C(R(ts)). However, this is not possible,
because R(ts) specifies the minimum number of changes required for satisfying
ts. Therefore, the hypothesis is demonstrated to be false: there is no repair H 6∈ T
for which C(H) < C(R(t)). It is interesting to observe that, to obtain this re-
sult, optimality of the cover is not required. Therefore, cover minimization is not
required for generating minimal repairs, although it can be advantageous as it re-
duces the total number of candidate repairs that are generated. Correspondingly,
all experiments described in this work are based on minimal covers.

6.3.5 Selection Criteria

As mentioned earlier, further selection is required for identifying the most inter-
esting options among all the candidate repairs. This is achieved by specifying
some metric that identifies preferable repairs. The most common and natural
choice is perhaps the Hamming distance [Ham50] between the defective and re-
paired configurations (i.e., the number of changed variables). In this case, as
demonstrated in Section 6.3.4, optimal results are ensured. However, other met-
rics can be considered to allow for alternative repair selection strategies. In this
case, optimization is not ensured over all the configuration space, but only over
the space of the repaired configurations attainable from application of all repairs
R(t) : t ∈ T . Although global optimization is not achieved in this case, selected
repairs will be biased accordingly, allowing best effort selection of repairs with
desired properties.

6.3.6 Repair of Partitioned Feature Models

Section 6.3.3 discusses the approach for repairing using a single cover expression.
In this section, we discuss how this basic process can be used to obtain repairs for
a feature model partitioned according to the algorithm described in Section 6.3.2.

The ON-covers of the feature model partitions are first obtained using the

6.3. CONFIGURATION REPAIR BASED ON COVER INFORMATION 85

Espresso logic minimizer. This requires the initial specification of an ON- or OFF-
cover. The feature model expression obtained by the transformations described
in [Bat05] tends to be closer to clause normal- form (CNF), rather than sum-of-
products (SOP). Since obtaining the ON-cover from straightforward conversion
from CNF to SOP may result in exponential explosion of the number of terms, we
instead generate the OFF-cover instead, which can be efficiently computed by De
Morgan’s law [De 58], complementing each clause and disjoining the results.

The ON-covers of the partitions can be combined to obtain the ON-cover of
the original, non-partitioned, feature model. Terms of different partitioned trees
cannot be simplified when conjoined, due to variable independence, so the di-
rect conjunction will yield the minimal cover of the original feature model. This
means that it is sufficient for our purposes to compute the covers for each indi-
vidual partition. Rather than explicitly compute the conjunction, however, we
use an index-based system, using repair lists, to account for all possible term per-
mutations of interest that might be generated.

Considering that terms of the ON-cover of the original non-partitioned feature
model are permutations of the terms of the ON-cover of each individual partition
(these will be designated as partitioned terms in the sequel), the overall number
of terms in the minimal ON-cover of the non-partitioned feature model #TF can
then be computed as:

#TF =
∏

#Tp (6.5)

Where #Tp is the number of terms of the minimal ON-cover of partition p. Rather
than explicitly generating all these permutations, however, the process of repair
identification described in Section 6.3.3 is applied individually to each partition,
and the repair for the complete feature model is then derived from those results.
Therefore, we generate the candidate repairs for each partitioned tree by travers-
ing all partitioned terms, but not their permutations. Since the overall number of
partitioned terms #P is given by:

#P =
∑

#Tp (6.6)

Performance improvement over analysis of all terms of the original feature model
is given by:

#TF
#P

(6.7)

This is a significant factor in practice as experimental results will demonstrate.
The runtime and space performance of the algorithm is generally proportional to

86 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

#P rather than #Tp.
Repairs for the non-partitioned feature model can be obtained by considering

permutations of repairs of the individual partitions. However, the process of
repair generation described above may generate duplicate repairs. For example,
the partial configuration

• Deselected {A}

• Open {B,C}

with cover A ∧B ∨ A ∧ C will generate two identical repairs:

• Repair from first term: Select {A}

• Repair from second term: Select {A}

Duplicate solutions are disregarded in each partition before permutations are
considered, eliminating duplicated repairs and further improving algorithm per-
formance when iterating over all possible repairs. All the possible repairs for the
non-partitioned feature model may be efficiently represented as a repair list con-
taining, for each partition, the indexes of one of each term that generates a unique
repair. For example, if a model is split into two partitions, the first with a 6-term
cover and the second with a 10-term cover, then the repair list {{1,3},{1,4,5}} in-
dicates that only the terms 1 and 3 of the first partition generate unique repairs,
and similarly for terms 1, 4 and 5 of the second partition. Other terms in the same
cover would produce similar repairs and can be disregarded. The six possible
repairs of the non-partitioned model would correspond to all the permutations
of the repairs corresponding to terms {1,3} of the first partition and {1,4,5} of the
second partition. A specific repair can then be represented as an iteration list,
containing indexes of the repair list. For example, assuming 0-based indexes,
repair {1,1} corresponds to the repair obtained by combing the repair generated
from term 3 of the first partition with the repair obtained from term 4 of the sec-
ond partition. This allows efficient iteration and random access over all possible
repairs. While all repairs can be generated and iterated over with this method,
usually repairs are obtained with a specific optimization criterion in mind. A
quality criterion depending on the original term and repair (or equivalently, de-
pending on the repair and targeted configuration) can be computed in tandem
with repair generation, so minimization can be achieved by exhaustive search
over all generated repairs. If the criterion is composable according to the par-
titions found, then this also allows optimization for the non-partitioned feature

6.4. PRESENTATION OF POTENTIAL REPAIRS 87

model. For example, minimization of the Hamming distance between the original
and repaired solution can first be performed individually for each partition (and
results then combined to obtain the corresponding value for the original non-
partitioned feature model). While this is only possible if the quality assessment
metric is composable across partitions, we find that this is the case for common
and plausible quality metrics, such as the Hamming distance or any other linear
combination of weighted feature selection variables or toggle status (which al-
lows, for example, creating criteria that favor repairs preserving selected features
or similar metrics). Partitions can also be merged to allow for non-composable
metrics to be used. Nevertheless, it should be pointed out that, as discussed in
Section 6.3.3, the search space includes only each term repair generated from the
cover analysis. Therefore, minimization of the evaluation criterion is conducted
only over this space. Evaluation of the quality criterion allows further refinement
of the repair list described above, as only repairs with optimal evaluation need
to be represented. Continuing the example, if only term 1 generates an optimal
repair in partition 1, while partition 2 is optimized by the repairs of terms 1 and
5, then the repair list can be further reduced to {{1},{1,5}}, representing the two
optimal repairs of the non-partitioned feature model.

The minimal cover must be computed only once for each feature model. How-
ever, alternative criteria do not require cover recomputation. Construction of the
repair list must be conducted only once for each repair of a specific configuration
with some optimization criteria of that model. Subsequent iteration over all alter-
native repairs, or random access to specific optimal repairs, requires only proper
update of the iteration list (and derivation of the repairs associated with the re-
spective terms), making iteration over all alternative repairs extremely efficient.

6.4 Presentation of Potential Repairs

As demonstrated by the experimental results of Chapter 7, large numbers of alter-
native optimal solutions may be found by the previously described techniques.
Settling for just any single one of such solutions is sub-optimal in the sense that
the user might prefer one of the undisclosed solutions. Although an exhaustive
listing of all possibilities may be suitable for very small feature models, that is
not true in all cases, as the number of potential repairs may be in the order of
thousands, millions or even higher, for feature models of practical dimension.

We take advantage of the partitions identified by the process described in Sec-
tion 6.3.2 for decomposing the required repairs into independent problems that

88 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

should be resolved to repair the configuration. In this context, a problem corre-
sponds to a situation where a repair is required for one (or more) of the inde-
pendent partitions. Resolving one of these problems entails finding the appropri-
ate repairs for the corresponding partitions. Generically speaking, the repair of a
damaged configuration can be decomposed as the resolution of several problems.
These problems are initially created with the following process:

• One problem is created for each feature model partition corresponding to
an element of the repair list with cardinality 2 or higher.

• One additional problem is created including all the repairs associated to
elements of the repair list with cardinality 1.

The former problems correspond to repair decisions of feature model partitions
that involve the selection of one or more alternative repairs. An example would
be the mandatory selection of one of multiple features in a 1..1 cardinality group.
The latter problem is an aggregation of all "mandatory" repairs that do not have
valid optimal alternatives. An example would be the obligatory selection of
mandatory children of the root of the feature model. It is mostly of informational
nature, as the user is provided with no option other than accepting the proposed
changes, unless validity or optimality is to be sacrificed. The repairs associated to
each one of these problems can be easily obtained and iterated over by consider-
ing a repair list including only the relevant partitions. By decomposing a repair
into the resolution of multiple independent problems, the combinatory explosion
resulting from the combination of the multiple alternatives is avoided. This scales
better and is more manageable than the alternative selection from an exhaustive
list including all possible permutations.

6.5 Tool Description

We have implemented our algorithm in the Java programming language and cre-
ated a supporting tool. The API allows the user to specify a functor that will be
used to evaluate repairs. New evaluators implementing the required interface
may be easily created by the developer, allowing flexibility in defining metrics al-
ternative to default Hamming distance. Access to repairs is offered by returning
an iterator that traverses all optimal repairs. This iterator can be configured to
consider only repairs for a specified selection of partitions, enabling the problem-
based presentation outlined above. We implemented a tool based on this API to

6.5. TOOL DESCRIPTION 89

demonstrate the algorithm and conduct experiments. The user is able to load fea-
ture models in the format of the SPLOT feature model online repository, specify a
candidate configuration, partial or complete, and see the required repairs. Figure
6.11 shows our tool being applied to the home integration system (his) feature
model [KLD02].

1

2

3

4

Figure 6.11: Configuration repair tool in action

The center left box 1 displays the features of the Home Integration System
(his) feature model. The user is able to select/deselect these features at will, and
has currently selected the internet, connection, tcp, udp and flood features and
deselected the moisture sensor and fire features, as seen in the label displayed
above the feature list 2 . On the top right, the user can select one of the three
problems found 3 . Available repairs, minimizing the Hamming distance, are
presented in the bottom right box 4 . The partial configuration specified by the
user and seen on the label at the top 2 has three defects:

1. The connection feature requires one and only one of http and udp.

2. The flood feature requires the moisture sensor feature.

3. The fire feature is a mandatory child of the root.

90 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

These problems are independent and can be separately presented and resolved by
the user. It can be seen, on the top right box 3 , that the application successfully
achieves this. On the box bellow (right hand side) 4 , the application shows the
two alternative repairs available for the problem two, which is currently selected:

1. Deselect flood

2. Select moisture sensor

Repairs for each other problem, not represented in the figure, are "Deselect http"
or "Deselect udp" for the first problem and "Select fire" for the third.

6.6 Conclusions

Once the stakeholder decides upon an idealized configuration (whether it is fully
or just partially complete), it must then be realized into an actual, valid imple-
mentation. If the idealized configuration is also valid, then no compromise is
necessary and the idealized and realized configurations are identical. However,
that is not necessarily the case: the idealized configuration may be inconsistent
and some differences with respect to the realized configuration must exist. These
differences correspond to trade-offs that were necessary to achieve feasibility.
Nevertheless, alternative choices and different resolutions may be possible: the
realized configuration may be obtained by deviating from the idealized in many
different, alternative ways. Each such way represents a different form of compro-
mise, or trade-off, which may have different levels of usefulness or desirability
for the stakeholder.

Standard configuration techniques don’t address the problem of helping the
user to decide or find the best compromise. Iterative configuration approaches
require that the configuration is specified on a step-by-step basis, one feature at a
time. This allows the configurator to propagate each choice as required to ensure
validity is preserved. However, the result becomes order dependent. The stake-
holder has no explicit way of directing the solution towards a desired outcome,
or deciding upon the preferable trade-offs.

Prototype-based configuration generalizes iterative configuration to allow more
than one feature to be specified in each iteration step (it is possible to consider
even the scenario where the entire configuration is specified in a single pass).
The major advantage is that an invalid set of choices may be chosen in this way,
whereas in standard iterative approaches, invalid choices cannot be represented
at all, precluding reasoning and improved support. The point of prototype-based

6.6. CONCLUSIONS 91

configuration is that, by supplying the system with an explicit representation of
the stakeholder’s desires, it becomes possible to analyse them and provide valu-
able feedback. This allows the stakeholder to make a better and more informed
choice about the best way to proceed with the configuration (that is, what trade-
off to make).

Each iteration of prototype-configuration includes two steps. First, the in-
tended configuration is provided to the system (i.e., the prototype is specified).
Then, if the prototype is valid, no further action is required and the next config-
uration step ensues. However, if the prototype is not valid, then the system au-
tomatically identifies what are the possible changes (or repairs) that can be made
to it to ensure validity is attained. The system will actually identify the trade-offs
and the stakeholder will explicitly select the option he deems more interesting.

Identifying configuration repairs is a well-know problem with an existing
body of work. However, to be suitable to our approach, it must meet some strict
criteria that are not all met by current proposals, in terms of performance, suit-
ability for our modeling approach, capability of identifying multiple alternative
repairs and also offering a concise view of repair possibilities. We have therefore
developed a cover-based configuration repair algorithm that is well suited for our
own purposes.

Our configuration repair approach is based on the computation of the cover of
the feature model. We partition the feature model for efficiency purposes and use
state-of-the-art optimization algorithms to extract the cover. This is the most com-
putationally expensive operation, but is required only once per feature model,
rather than once per repair. After that, a set including all optimal repairs, accord-
ing to the Hamminng distance, can be computed efficiently. A repair index list
approach allows the repairs to be computed without recombining all the individ-
ual partitioned models, with high efficiency gains. Other optimization metrics
are also possible, on a best-effort basis. A prototype tool was implemented, for
demonstration and validation purposes.

92 CHAPTER 6. PROTOTYPE-BASED CONFIGURATION

7
Validation

We resorted to several different approaches for validation of our work, from au-
tomated test case generation up to empirical testing with human subjects. Test-
ing is primarily based on feature models available from the public repository
(S.P.L.O.T.)1, although to serve the purposes of our tests these were manually or
automatically augmented with soft constraints, as described in the correspond-
ing sections. Unless stated otherwise, all tests were conducted equipped with a
laptop with a 2.0GHz processor, 8 Gb RAM and the Windows 7 operating system.

Box and whisker plots are often used throughout this chapter to represent
the results2. While this type of plots is often used to compare alternative series of
data, our main purpose here is to represent the distribution of results and identify
outlier results.

We conducted tests for assessing the performance of our algorithms for detect-
ing suspicious soft constraints interactions, as well as assessing the prevalence of
these interactions (Section 7.1). The configuration repair algorithm was also simi-
larly tested (Section 7.2). We also conducted an empirical assessment of enhanced
configuration (Section 7.3).

1http://www.splot-research.org/
2The reader is referred to Appendix B for a brief presentation of the concepts and symbology

93

94 CHAPTER 7. VALIDATION

7.1 Identification of Suspicious Interactions

In Section 4.3 we defined and described the procedure for identifying potentially
anomalous interactions, specifically unsatisfiable, untriggerable and contradic-
tory soft constraints. To recapitulate;

• Unsatisfiable soft constraint. This is a soft constraint that is always unsat-
isfied, in any valid configuration.

• Untriggerable soft constraint. This is a soft constraint that may be satisfied
only if untriggered.

• Contradictory constraints. This is a set of soft constraints that cannot be
simultaneously satisfied while simultaneously triggered.

We conducted a series of tests destined to assess both the performance and preva-
lence of these interactions. This secction discusses the goals of these tests, the con-
struction of the data sets used in these experiments, as well as the soft constraint
injection algorithm. Section 7.1.3 describes the experiment conducted to assess
unsatisfiable and untriggerable soft constraints, while contradictory constraints
are addressed in Section 7.1.4.

7.1.1 Experiment Objectives and Goals

In this experiment, we seek to investigate the following issues, to address re-
search questions 1(a)i and 1(a)ii:

• What is the performance of the identification techniques? Having a clear
notion of the performance of the identification techniques is relevant when
considering their intended application. They are to be integrated into fea-
ture modeling edition tools that support annotation with soft constraints,
providing real time feedback as new soft constraints are added by the do-
main engineer to the model . Therefore, it is important that the performance
profile is consistent with this type of application. As reference values, we re-
sort to research in human-machine interface that identified some important
thresholds for response delay [Mil68, CNM83, New90, CRM91]. In particu-
lar, 0.1 [s] is the threshold for maintaining the illusion of continuous unim-
peded operation, making the user essentially oblivious to machine opera-
tion. Longer delays up to 1[s] become noticeable but are well tolerated: the
user notices that the machine is working, but finds the delay acceptable and

7.1. IDENTIFICATION OF SUSPICIOUS INTERACTIONS 95

the sense of flow is not broken. 10 [s] is the maximum time limit that still
allows the user to focus his attention on the task, however, progress indica-
tors and some means for interrupting the task should be provided. Delays
over 10 [s] are only acceptable in natural breaks in the flow of work, such as
switching to a new task.

• What is the prevalence of these suspicious interactions? Since soft con-
straints are currently not in widespread use, it can be difficult to estimate
just how often these interactions come into play without concrete tests. This
information can be combined with the performance assessment to make a
better judgement on whether or not it is advisable to include tests for spe-
cific types of interactions. For example, it might not be reasonable to in-
clude an expensive test to detect a very rare interaction. On the other hand,
it might be justifiable to test for the same interaction, in spite of its rarity, if
testing performance is very high.

7.1.2 Data Set Construction and Constraint Injection

To obtain the data set necessary for these experiments, we relied on feature mod-
els publicly available at the S.P.L.O.T. online repository [MBC09]. These were
supplied by the site users and include models from both academic and industrial
origin. Tapping into these resources provided us with a large set of non-synthetic
non-random feature models with diverse characteristics and relevant dimension.
From all models available at time of access (Feb. 2014), we decided to use all those
with 40 or more features. This resulted in selection of the models presented in Ta-
ble 7.1 to be included in our input data set. The CTCR (Cross Tree Constraint Ra-
tio) and clause density parameters found in the table are important measures for
assessing the difficulty of solving the satisfiability problem of the feature model
expression [MAK09]. CTCR is the ratio between features in constraints and to-
tal number of features, while clause density is the ratio between the number of
clauses and features.

One problem we had to overcome is that the models in the S.P.L.O.T. reposi-
tory are not annotated with soft constraints. While we could provide these anno-
tations for some models, the wide range of domains and conflict of interest ad-
vise against that option. Therefore, we decided to resort to automatic annotation.
Rather than generating completely random annotations, we used the prototyp-
ical patterns of application of soft constraints described in Section 4.2 to guide

96 CHAPTER 7. VALIDATION

Table 7.1: Feature models included in input data set.

Model Name Features Optional Groups Hard
Constr. CTRC

Clause
Density

AndroidSPL 45 8 9 5 17% 0.6
Arcade Game PL 61 5 9 34 55% 1
BankingSoftware 176 77 16 4 2% 0.8
BattleofTanks 144 15 10 0 0%
bCMS system 66 12 8 2 4% 0.7
Billing 88 45 2 59 65% 1
Car 72 10 19 21 31% 0.8
Coche_Ecologico 94 12 16 2 4% 0.5
Consolas de Videojuegos 41 2 11 5 21% 0.6
OS 40 7 7 0 0%
DATABASE_TOOLS 70 20 7 2 8% 0.3
DELL Computers 46 1 8 110 76% 2,9
Documentation_Generation 44 3 9 8 29% 0.6
DS Sample 41 0 6 0 0%
Eclipse1 - Reuso 72 40 7 1 2% 0.5
Electronic Drum 52 1 11 0 0%
Estrutura_Decisionesa 366 2 19 192 93% 0.6
E-science application 61 7 16 2 4% 0.7
Face Animator 40 8 11 17 25% 1,7
FraSCAti 63 39 2 46 57% 1,3
HIS 67 10 6 4 11% 0.5
Hotel Product Line 55 32 7 0 0%
J2EE web architecture 77 27 11 0 0%
Jogo 59 8 14 0 0%
Letovanje 43 3 13 2 6% 0.7
Linea de Experimentos 52 20 4 4 0%
Model_Transformation 88 12 25 0 0%
MFP 56 5 8 90 66% 2,4
Meeting Config 57 13 9 0 0%
Smart Home (a) 56 36 4 0 0%
Smart Home (b) 60 30 6 2 6% 0.5
SmartHome_vConejero 59 33 0 3 6% 0.8
Thread 44 15 7 0 0%
Video Player (a) 53 17 9 2 7% 0.5
Video Player (b) 71 12 5 0 0%
Webmail 81 29 7 0 0%
Web_Portal 43 17 6 6 25% 0.5
Xerox 172 1 28 0 0%
xtext 137 95 0 1 1% 0.05

a A Model for Decision-Making for Investments on Enterprise Information Systems

7.1. IDENTIFICATION OF SUSPICIOUS INTERACTIONS 97

the automatic annotation process. These patterns are the OSS (Optional Selec-
tion Sugestion), RCS (Reversed Constraint Suggestion) and GSS (Group Selec-
tion Suggestion). We believe that by generating annotations using these patterns
as guidelines, we may obtain data that is more meaningful than that obtained
from a completely random approach. Nevertheless, since soft constraints are not
in widespread use in feature modeling, it can be hard to ascertain just how repre-
sentative these patterns would be of actual usage. However, we believe that both
RCS and GSS describe perfectly plausible applications, while OSS is sufficiently
generic and non-specific to allow a multitude of different variant configurations
to be generated to be generated. Other advantage of resorting to automated test
case generation include the ability to use any and all models in the repository for
validation and testing purposes (rather than just those for which manual annota-
tion would be a viable option), allowing very large data sets to be used.

Algorithm 7 was used to annotate a given base feature model with soft con-
straints according to the RCS, GSS and OSS patterns. The density parameters
DRCS , DGSS , and DOSS control the number of soft constraints introduced. Nev-
ertheless, fluctuations may occur because duplicates may be generated, while re-
dundant soft constraints and obviously non-sensical scenarios such as the one in
Figure 4.9 are also ignored (lines 23 and 24, respectively). This makes it possible
that the actual number of soft constraints injected into the feature model is less
than the maximum Nc ∗DRCS +NG ∗DGSS +(NO +NfG)∗DOSS , where NfG is the
number of group children features, NG the number of groups, NO the number of
optional features and NC the number of hard constraints. This approach is effec-
tive and simpler than trying to always generate valid, distinct soft constraints in
sufficient number (which may very well be impossible, depending on the chosen
density parameters and structural properties of the base feature model F).

To create the test data set so that a large number of soft constraints, distributed
across multiple feature models, is obtained, we applied Algorithm 7 to all the
feature models in Table 7.1, with density parametersDRCS ,DOSS , andDGSS all set
to 1. This ensures that the injection algorithm will try to inject one RCS per each
constraint, one OSS per optional and group children, and one GSS per group,
thereby achieving a high density of soft constraints in each feature model. If an
experiment requires lower variant densities, a smaller subset of soft constraints
may be selected from among all those that are available.

The full results of the injection process can be found in Table C.1. An overview

98 CHAPTER 7. VALIDATION

Algorithm 7: Soft constraint injection algorithm
1 Function injectSoftConstraints

input : Feature model F , density parameters DRCS , DGSS , DOSS

output: Annotated feature model

2 NC ← number of constraints in F
3 NG← number of groups in F
4 NO ← number of optional features in F
5 i =0
6 while i <NC *DRCS do
7 i← i +1
8 select random constraint c from F
9 inject reverseConstraintSuggestion (c) into F

10 i =0
11 while i <NG *DGSS do
12 i← i +1
13 select random group g from F
14 inject groupSelectionSuggestion (g) into F

15 S ← optional features ∪ group children of F
16 s← S.size ()
17 i← 0
18 if s >1 then
19 while i <s *DOSS do
20 i← i +1
21 o1← random feature from S
22 o2← random feature o2 from S such that o1 6= o2
23 if ¬ o2.isAncestorOf (o1) AND
24 ¬ childrenOfSameAlternativeGroup (o1,o2) then
25 inject optionalSelectionSuggestion (o1,o2) into F

26 return F

7.1. IDENTIFICATION OF SUSPICIOUS INTERACTIONS 99

is presented in Table 7.2. A total of 1492 soft constraints were generated and in-
jected across all feature models, with an average number of 38.26 injected con-
straints per model.

Table 7.2: Injection results

Injected constraints Quantity
Total number 1492
per model 38.26

7.1.3 Unsatisfiable and Untriggerable Soft Constraint Identifica-

tion Experiment

We have conducted an experiment to analyze the procedures for identifying un-
satisfiable and untriggerable soft constraint (Equations (4.1) and (4.5) in Sections
4.3.2.2 and 4.3.2.3, respectively). These two procedures are tested in the same
experiment because, unlike contradictory soft constraints, unsatisfiable and un-
triggerable soft constraints can be identified by independent examination of each
soft constraint (while for contradictions, a set of constraints must be always in-
volved, requiring a different experimental procedure).

7.1.3.1 Results

Equations (4.1) and (4.5) were applied and we obtained the results in Table C.2
of the Appendix, summarized here in Table 7.3. Table 7.3a displays the time re-
quired for conducting the analysis. Total time was 5.4 [s], the average time per
constraint was approximately 3.5 [ms], while the average time per feature model
was 139 [ms]. Finally, Table 7.3b displays the result of the identification process:
20 soft constraints were untriggerable but none were unsatisfiable.

Figure 7.1 presents a box and whiskers plot of the execution time per con-
straint. The interquartile range (IQR), that is, the difference between the third and
first quartile is 1.52 [ms], which means that results are densely packed around the
median value of 1.55 [ms]. Seven outliers can be found in the upper range. These
outliers can be easily explained:

• The close proximity of the median with the absolute minimum value of 0
[ms] does not allow dispersion towards the left (lower) side of the distribu-
tion.

100 CHAPTER 7. VALIDATION

• External sources of measurement noise such as operating system activity
can have a significant impact due to the diminutive intervals of time being
considered here.

Table 7.3: Aggregated results for unsatisfiable and untriggerable soft constraint
identification

Running time
Total 5.4 [s]
per constraint 3.49 [ms]
per model 139.05 [ms]

(a) Performance results

Constraint type Nr. Found
Unsatisfiable 0
Untriggerable 20

(b) Identification results

Corresponding results presenting the distribution of the analysis time per feature
model can be found in Figure 7.2. The IQR is 123.5 [ms], with median 41 [ms].
Results are densely concentrated on the lower values: half of the feature models,
corresponding to the first and second quartile, are analysed under 41 [ms], while
the next 25% are done in under 151.5 [ms]. Most outliers can be explained by
virtue of being feature models with a high number of soft constraints number.

7.1.4 Contradictory Soft Constraint Identification Experiment

In this section we describe an experiment we have conducted to analyze the
procedure for identifying contradictory constraints (discussed in Section 4.3.2.2).
Contradictions always involve at least two constraints.

7.1.4.1 Results

Equation (4.2) was applied to identify contradictions between every pair of soft
constraints of each feature model in our data set. Aggregated results are pre-
sented in this section, while full results can be found in the appendices in Table
C.3. These results higlight the performance of the algorithm and help addressing
research question 1(a)i.

Another objective of our test is identifying the prevalence of suspicious inter-
actions such as contradictory soft constraints, in accordance to research question
1(a)ii. Figure 7.3 demonstrates the percentage of pairs of soft constraints that

7.1. IDENTIFICATION OF SUSPICIOUS INTERACTIONS 101

Min 0.90 IQR 1.53
Q1 1.22 Average 2.93
Q2 1.55 Low Fence 0.90
Q3 2.74 High Fence 4.47
Max 13.73 Outliers 7

Figure 7.1: Analysis time per constraint

102 CHAPTER 7. VALIDATION

Min 14 IQR 123.5
Q1 28 Average 123.3
Q2 41 Low Fence 14
Q3 151.5 High Fence 302.0
Max 573 Outliers 4

Figure 7.2: Analysis time per feature model

7.2. CONFIGURATION REPAIR TESTING 103

were found to be contradictory. In the central half of the models (second and
third quartile), this value ranged from 4.2% up to 12.8%. The three outliers are
the feature models with higher clause density.

Concerning the performance of the identification algorithm, we find that it
makes sense to relate performance to the intendedd application of our algorithm:
to be used in real time during feature model edition. In this way, the identifi-
cation procedure would be run to identify contradictions whenever a new soft
constraint was added to the model. This would have no impact on pre-existing
contradictions involving other constraints, so all that it is required in this case is to
identify contradictions in which the newly added constraint is involved. There-
fore, in Figure 7.4 we present the time required for identifying all contradictions
involving one specific constraint. This value was computed for all constraints in
each model, and the results represent the average values. It can be seen that re-
sults for the second and third quartile ranges from 7.26 to 26.10 [ms], indicating
very good performance on the average case. The highest outlier takes on aver-
age 336 [ms] per constraint, which is still compatible with real-time identification
(since the identification algorithm only runs once for each newly introduced soft
constraint). The main factor explaining the outliers is the high number of con-
straints (which increases the total number of pairs that must be analyzed).

7.2 Configuration Repair Testing

We have conducted a series of tests to assess the performance of our configuration
repair technique. These tests used the models available in the S.P.L.O.T. reposi-
tory at the time of access (Feb. 2014) with over 40 features. These tests have the
purpose of assessing the performance of the partitioning, cover computation and
repair mechanisms.

7.2.1 Experiment Objectives and Goals

The configuration repair algorithm is at the core of the prototype-based configu-
ration approach, and this experiment relates to research questions 2, 3, 4, and 5.
This have the purpose of:

• Assessing the performance of the repair mechanism. The repair algorithm
is divided into two distinct steps: an initial computation of the cover of
the feature model (executed once per feature model), and then the identi-
fication of the repairs for a given configuration (executed once per invalid

104 CHAPTER 7. VALIDATION

Min 0.5% IQR 8.6%
Q1 4.2% Average 11.5%
Q2 5.4% Low Fence 0.5%
Q3 12.8% High Fence 20.6%
Max 81.6% Outliers 3

Figure 7.3: Percentage of contradictory pairs

configuration). In this way, the performance of the repair mechanism can
be divided into two different aspects:

– Perfomance of Partitioning and Cover Computation. This is the most com-
putationally expensive operation, but it must be performed only once
per feature model.

– Performance of Repair Identification. This operation must be performed
only once per repair operation, and should be highly efficient.

The configuration repair algorithm is a crucial step of the prototype-based
approach. Therefore, investigating its performance is relevant for adressing
research question 5.

• Assessing the effectiveness of the problem-decomposition approach. The
problem-decomposition approach aims to reduce the number of alternative
choices the user is faced with when deciding how to repair an invalid op-
tions. It is therefore relevant for research question 3b.

7.2. CONFIGURATION REPAIR TESTING 105

Min 2.79 IQR 18.83
Q1 7.26 Average 37.14
Q2 11.04 Low Fence 2.79
Q3 26.10 High Fence 43.16
Max 336.42 Outliers 6

Figure 7.4: Analysis time for all contradictions with one specific constraint [ms]

Performance of the cover computation step, and also the effectiveness of the
problem-decomposition approach, depends on the effectiveness of the partition-
ing. Highly constrained models are less amenable to partitioning, so the extent
to which this is (or isn’t) a relevant factor in the type of models used in our tests
must be assessed.

Repair identification is expected to be a highly efficient operation. Even if per-
formance of the partitioning and cover computation step is found to be poor, this
may be compensated by very high repair identification performance, since the
high initial overhead will be amortized over each ensuing repair on that feature
model.

7.2.2 Partitioning and Cover computation

The partitioning and cover extraction algorithm was applied to all the feature
models included in the test. After an initial partitioning step, described in Sec-
tion 6.3.2, the cover for each partition is obtained by using the state of the art

106 CHAPTER 7. VALIDATION

Min 0.43 IQR 0.82
Q1 0.66 Average 1.34
Q2 0.79 Low Fence 0.43
Q3 1.47 High Fence 2.69
Max 5.70 Outliers 5

Figure 7.5: Analysis time of a pair of constraints [ms]

Espresso heuristic logic minimizer [Rud86]. These are the initial steps of the con-
figuration repair process, involving a fairly complex operation (cover extraction),
that however must be performed only once per feature model.

7.2.2.1 Results

Full results for the partitioning and cover extraction processes are described in
Table C.4 of the appendices. An extract from these results, including the largest
feature models, is presented here in Table 7.4. The "Partitions" column shows the
number of different partitions into which the model is broken down. The next
column displays the total "Number of terms" (TP) included in the cover descrip-
tion3. The "Partitioned Terms" (TP) column contains the total number of terms
of the covers of the the partitions. The ratio TP/TF is important for assessing the

3A cover is a disjunction of terms. Each term is a conjunction of one or more variables (or their
negation).

7.2. CONFIGURATION REPAIR TESTING 107

extent by which the number of terms to be considered is reduced by the partition-
ing process. The rightmost column displays the total time required to compute
the partition and the cover. Results are indicative of the excellent performance
of the algorithm in the overwhelming majority of the cases. Even models whose
cover includes billions of terms can be successfully analyzed in a few hundred
milliseconds, thanks to the partitioning technique. Considering that cover min-
imization is the more computationally expensive operation and that it needs to
be performed only once per feature model (and not once per repair), these results
indicate that our approach is well suited for handling the vast majority of mod-
els available in the public repository. The only instance where our approach was
not successful in obtaining a minimal cover within reasonable time (1 hour) was
with the "Decision Making" model. The partitioning algorithm was not capable
of significantly breaking down this specific model. This is because the model is
highly constrained with significant coupling between different branches of the
feature tree. This factor, combined with the high number of optional features,
makes it extremely challenging to successfully break down, process and analyze
this model.

Table 7.4: Extract of the results for largest models

Model Name Partitions
Number of

Terms
(TF)

Partitioned
Terms
(TP)

TP/TF Time [ms]

Decision Making 3 - - - -
BankingSoftware 66 32060448 321 0.00% 1747
TankWar 14 42996610800 130 0.00% 392
Billing 19 24 42 175.00% 579
Coche_ecologico 44 207360 75 0.04% 1357
xtext 25 5231304 127 0.00% 664
Xerox 49 8707129344000 144 0.00% 1404
Model_Transfor. 22 207152640 165 0.00% 599
J2EE web architecture 29 5225472 57 0.00% 901

The effectiveness of the partitioning process in reducing the number of terms
is reflected on the ratio TP/TF . Since the algorithm running time is dependent
on the number of terms, this ratio offers a clear indication of the benefits of the
partitioning approach to repair performance. Figure 7.6 presents the aggregated
results. Outliers are not represented for graphical convenience, but are discussed
in the text. It can be seen that in 75% of the cases, the number of terms is reduced
to 1.8% or below, while in 50% of the cases a reduction below 0.1% is observed.
These results account for an extremely significant improvement of the repair al-
gorithm performance.

108 CHAPTER 7. VALIDATION

Min 0.00% IQR 1.78%
Q1 0.01% Average 20.74%
Q2 0.09% Low Fence 0.00%
Q3 1.79% High Fence 2.47%
Max 320.00% Outliers 6

Figure 7.6: Ratio between the number of terms after partitioning and before par-
titioning (TP/TF) (outliers not represented)

7.2. CONFIGURATION REPAIR TESTING 109

Six outliers, found in Table 7.5, were observed. Without exception, all these
cases have comparatively low number of terms, making term compression less
relevant. Reduction in the number of terms was nevertheless achieved in all but
three cases. In two of those, the number of terms was left essentially unchanged.
This was mainly due to the highly constrained nature of these two cases, effec-
tively preventing partitioning in one case (DELL COMPUTERS) and severely im-
pairing it in the other (Arcade Game). In the latter case, although the model is
partitioned into 16 submodels, partitioning is not balanced: most of the original
model is contained in a single submodel. In the MFP test case, a three-fold in-
crease was actually observed, due to the number of partitions being superior to
the number of terms. However, the number of terms itself is residual making the
320% increase largely irrelevant.

Table 7.5: Partitioning - Outlier cases

Model Name Partitions Terms Partitioned Terms TF/TP Time [ms]
Documentation_Generation 39 560 53 9.5% 927
thread 5 15162 2534 16.7% 586
FraSCAti 14 1760 455 25.9% 396
MFP 12 5 16 320.0% 418
Arcade_Game 16 5418 5433 100.3% 3652
Dell_Computers 1 853 853 100.0% 471

Concerning the runtime performance of the partitioning algorithm, Figure 7.7
demonstrates that for the large majority of test cases, it takes less than 1 second
for the partitioning and cover extraction algorithm to execute. This is very sig-
nificant, as partitioning and cover computation is the most time intensive step of
the algorithm (that must be performed only once per feature model). The only
outlier that meaningfully deviates is "Arcade Game". This is most likely due to
lower partitioning performance (see Table 7.5) resulting in higher number of par-
titioned terms, making cover extraction a lengthier process.

7.2.3 Repairing Random Invalid Configurations

We conducted a series of experiments targeting the repair of random invalid con-
figurations. These configurations were obtained by iteratively creating random
configurations until an invalid solution was found. Solutions were generated
with a distribution of 45/45/10 percent for selected/deselected/open features,
respectively. We generated 30 such configurations for each model.

110 CHAPTER 7. VALIDATION

Min 392.65 IQR 377.24
Q1 569.18 Average 693.86
Q2 769.90 Low Fence 83.27
Q3 3652.12 High Fence 1016.71
Max 377.24 Outliers 4.00

Figure 7.7: Time required for execution of partitioning algorithm

7.2. CONFIGURATION REPAIR TESTING 111

7.2.3.1 Results

Results for an optimization criterion minimizing the Hamming distance between
the original and repaired configuration are presented in Table C.5 of the appen-
dices. An excerpt of the results is presented in Table 7.6.

Analysis of the performance of the algorithm is separated into two factors: the
time to identify the first solution (i.e., the time required for building the repair
iterator) and the time to iterate over the remaining solutions. Since the second
factor is dependent on the number of alternative repairs identified, we present
in the fourth column the time required to iterate over all identified solutions, but
only up to a maximum number of 1000 solutions. It can be seen that the repair
algorithm is extremely efficient, not only in identifying the first potential repair,
but also in iterating over other admissible solutions.

Table 7.6: Repair of random configurations — excerpt of full results

Model Name Average Number
of Repairs

Time to Find
First Repair

(ms)

Iteration over
next repairs

(max. 1k)
(ms)

BankingSoftware 43.9 3.2 0.2
TankWar 371819.6 0.5 9.5
Billing 2.3 0.6 8.5
Xerox 7166361626.9 0.4 1570.3
Arcade_Game 1.7 28.5 0.3
Coche_ecologico 75.5 0.2 1.2
xtext 26.8 0.5 0.1
Model_Transformation 104.1 0.3 1.4
J2EE web architecture 55.4 0.1 3.7

The time taken to find the first repair was 28.54 [ms] on the worst case (Arcade
Game PL). For the significant majority of cases, less than 1 [ms] is required, as can
bee seen in Figure 7.8. This confirms excellent repair identification performance
of our approach.

To explore and demonstrate the behavior of the algorithm with alternative
minimization criteria, we created an evaluator that promotes the preservation of
selected features in the repaired solution. In this case, a repair is evaluated by the
formula in Equation 7.1

D = TONtoOFF ∗K + T (7.1)

Where D is the "distance" to be minimized, TONtoOFF the number of features se-
lected in the original configuration that are toggled, from selected to deselected,

112 CHAPTER 7. VALIDATION

Min 0.06 IQR 0.39
Q1 0.10 Average 1.64
Q2 0.18 Low Fence 0.06
Q3 0.49 High Fence 0.56
Max 28.54 Outliers 6

Figure 7.8: Time to find first repair (ms). Outliers not represented.

7.2. CONFIGURATION REPAIR TESTING 113

in the repaired configuration, K a large number (greater than the total number
of features of the model) and T the total number of features toggled from the
original to the repaired configuration. This metric ensures that preferred repairs
will be those that preserve the most features originally selected in the configura-
tion, with secondary optimization of Hamming distance. Results can be found in
Table C.6 in the appendices, and a short extract can be found here in Table 7.7.
It can be observed that performance is not affected by the alternative nature of
the evaluator and that results have been modulated by the introduction of a new
selection criteria.

Table 7.7: Extract from repair results — Finding repairs for invalid configurations
that preserve selected features

Model Name Average Number
of Repairs

Time First
[ms]

Iteration
over next
(max. 1k)

[ms]
BankingSoftware 65.33 0.81 0.02
BattleofTanks 647985.20 0.27 5.49
Billing 1.50 0.23 0.05
Coche_ecologico 28.50 0.33 0.09
xtext 1.00 0.40 0.02
Xerox 20.77 0.33 60.58
Model_Transformation 34.90 0.24 0.58
J2EE web architecture 3.33 0.15 0.05

The single repair identified for the xtext model can be understood by virtue of
the specific characteristics of this model. It is poorly constrained, and also does
not include any groups. Therefore, invalid solutions arise because of violations
of the feature tree structure only: children features are selected while their par-
ent is not. Possible solutions for such a problem could involve, if a Hamming
metric was being used, either selection of the parent or deselection of the child,
potentially allowing for multiple optimal solutions to be found. However, the
new metric used in this scenario gives preference to resolutions that preserve se-
lected features. In this way, the optimal solution is always the first one: selecting
the parent of selected features. This gives rise to the single solution shown in
Table 7.7, and further demonstrates that the new optimization metric was indeed
successfully handled by the repair algorithm.

114 CHAPTER 7. VALIDATION

7.2.4 Problem Decomposition

Results in Section 7.2.3 (and Table C.5) have highlighted the prevalence of alterna-
tive repair options in the overwhelming majority of scenarios and models. While
in some cases the number of alternative repair options is reasonably small, mak-
ing exhaustive listing a viable option, in the generic case this is not true. While
hard limits can be difficult to define, it can be stated without a doubt that in-
stances where the number of alternative repairs is in the order of thousands or
even millions cannot be handled reasonably by exhaustive listing. In practice,
lists can become cumbersome with a much lower element count. We intend to
verify the capability of our approach to reduce the number of alternative repair
options presented to the user.

7.2.4.1 Results

The purpose of problem decomposition is reducing the number of repair options
presented to the user down to a manageable size. Therefore, for relevance, we
address only results for repairs of random configurations for which the average
number of repairs is greater than 50. Results can be found in Table 7.8 , in which

Table 7.8: Problem decomposition of repairs of random configurations.

Model Name Total Repairs Problems Repairs
Problem

Compression
Dell_Computers 562 1 562.0 0.0
Coche_ecologico 4536 7 4.0 99.4
Meeting_Config 108 4 3.3 88.0
Eclipse1-Reuso 128 4 4.0 87.5
Car 10368 12 2.3 99.7
ConsolasVideojuegos 144 3 5.7 88.2
AndroidSPL 128 4 4.0 87.5
Xerox 320 3 9.3 91.3
DS Sample 6912 6 5.7 99.5
Letovanje 256 3 12.7 85.2
Electronic_Drum 248832 11 3.2 100.0
Jogo 12288 13 2.1 99.8
Model_Transformation 3888 8 3.3 99.3
his 64 6 2.0 81.3
thread 72 1 72.0 0.0
BankingSoftware 10368 7 5.1 99.7
BattleofTanks 766771200 9 11.0 100.0

we can find the model name, total number of repairs found, number of problems
into which the repairs were decomposed and compression rate achieved. The

7.3. EMPIRICAL TESTING OF ENHANCED CONFIGURATION SUPPORT 115

compression rate represents the reduction in the number of choices provided to
the user, and is computed as 100% − problems∗repairs/problem

totalrepairs
. Significant levels of

compression can be identified in all cases except for the two models that were not
decomposed in several partitions by the algorithm described in Section 6.3.2. A
significant result is that all the most problematic instances (with thousands and
even millions of alternative repairs) were successfully compressed into a set of
problems of very modest size.

7.3 Empirical Testing of Enhanced Configuration Sup-

port

We have conducted an empirical test for assessing configuration assistance based
on soft constraints. Test subjects with industrial and academic backgrounds were
invited to participate in the experiment, in which they used our prototype tool
to configure a feature model. After a short training session (45 minutes), each
user was provided with the description of four different products, corresponding
to four different feature models, including a set of desired properties to include,
if possible, in the created configurations. For each user, soft constraint-based
support was provided for creating two out of the four required configurations,
setting up in this way a baseline for contrasting assisted vs non-assisted config-
uration. After creating the configuration, the test subjects were asked to fill an
online survey.

This experiment provides important information that is relevant for research
questions 4 and 5.

7.3.1 Experiment Design

We began the design of this experiment by creating a Goal/Question/Metric doc-
ument [BCR94] (See Section D in the appendices). This helped defining the pur-
pose of the experiment and the metrics that were to be measured. In synthesis, we
aim to measure the effectiveness and efficiency improvements due to the adop-
tion of soft-constraint configuration support, using quantitative and qualitative
feedback obtained from the experiment participants. To achieve the objectives
of the experiment, we decided that a within-subject approach (a.k.a. repeated
measures or within groups design) would be the preferable choice, rather than
resorting a between-subjects approach with control group. In a within-subject

116 CHAPTER 7. VALIDATION

approach, instead of splitting the test population into groups subjected to differ-
ent treatment or tests, each individual is subjected to all variant treatments. In
the case of our test, this entails that each participant will be asked to complete the
four test cases, having support for only two of them.

The within-subject approach has the following advantages:

• Does not require a large pool of participants. Anticipating the difficulty of
finding a large number of volunteers that qualify for participation, this is a
significant advantage.

• Helps addressing population heterogeneity. Since all individuals are ex-
posed to the same tests, this helps addressing the natural variation of par-
ticipant capabilities and skills.

Major drawbacks of this approach are carryover effects from early tests. These
include fatigue (artificially driving down performance in later tests) and con-
versely learning effects (practice gained in earlier tests can improve later perfor-
mance). To address these, we applied a counterbalancing design, where the order
by which different participants take the successive tests is changed. This ensures
that carryover effects are more evenly distributed throughout the results. To find
the order by which each participant conducts the required tests, we considered
all the possible 24 permutations of test order. Each such permutation describes
the order by which one participant will conduct the test. If the number of partic-
ipants is a 24 (or a multiple of 24), then all possible orderings are contemplated.
However, if the number of participants is less than 24, than some permutations
will be left untested. One potential problem with this is that permutations are
naturally generated in an order for which variation of the rightmost elements is
higher than variation of the leftmost elements (e.g., ABCD, ABDC, ACBD, ACDB,
. . .). To avoid negative impacts in the results due to this effect, when less than 24
participants are involved, permutations are shuffled to a random order before be-
ing assigned to test participants. This achieves a more uniform distribution of the
test order.

Four test cases were created based on feature models from the S.P.L.O.T. on-
line repository [MBC09]. We selected four feature models of medium to medium-
high dimension, in domains that should be at least somewhat familiar for soft-
ware and computer engineering professionals and academics (see Table 7.9). These
test scenarios include a series of costumer constraints representing the client re-
quirements and desires for a specific product to be created. The test cases also
include a brief textual overview of the feature model. The test cases can be found

7.3. EMPIRICAL TESTING OF ENHANCED CONFIGURATION SUPPORT 117

in Appendix E. The feature model itself was not reproduced in the test case de-
scriptions, as it could be observed and interacted via the prototype tool during
the experiment.

Table 7.9: Feature models selected for test cases

Model Name Features Optional Groups Hard
Constr. CTRC

Clause
Density

DELL Computers 46 1 8 110 76% 2.9
Experiment Environ. 35 0 6 20 80% 0.7
OW2-FraSCAti-1.4 63 39 2 46 57% 1.3
Web_Portal 43 17 6 6 25% 0.5

A 45 minute presentation was created where the concepts of feature model-
ing and standard and enhanced configuration support were presented. The var-
ious options of our prototype tool were also demonstrated, and the participants
were offered the opportunity of experimenting hands-on with a test scenario.
The prototype tool was fully automated to ensure that navigation and progres-
sion through the training and test cases was done automatically and in the correct
order depending on the identification numbers assigned to each participant. Re-
sults were also automatically collected and submitted with no user intervention,
so that human error during data collection and experimental set-up is minimized
and disruption or distraction from testing activities is minimized.

A few test trials were conducted to assess duration of the experiment, phras-
ing and clarity of the questions and case descriptions and suitability of the train-
ing material. This initial feedback resulted in minor adjustments before the first
experiments were conducted.

7.3.2 Data Analysis and Hypothesis

Some participants are generically faster/more efficient than others, and the num-
ber of constraints and dimension is not the same for all the test cases. To address
this heterogenity, we focus our analysis on the relative performance and improve-
ment that each participant experienced. Therefore, we normalized results in each
test case to the 0-100% scale, where 0% and 100% correspond the the minimum
and maximum observed value in all participants for that test case. This normal-
ization is applied to both configuration time and number of satisfied constraints.
The overall performance of each participant, with and without enhanced con-
figuration support, is then measured as the sum of its normalized results in the

118 CHAPTER 7. VALIDATION

individual tests. Therefore, for each test case t, the performance of each individ-
ual participant p is given by

ST,p,t =
Tp,t −minx Tx,t

maxx Tx,t −minx Tx,t
(7.2)

and
SC,p,t =

Cp,t −minxCx,t

maxxCx,t −minxCx,t

(7.3)

where ST,p,t is the normalized time performance of participant p for test case t,
Tp,t is the time taken by participant p to complete the test case t, and minx Tx,t

and maxx Tx,t represent respectively the minimum and maximum times of com-
pletion, measured over all participants. SC,p,t is, correspondingly, the normalized
constraint satisfaction value, Cp,t the total number of constraints satisfied in test
t by participant p, while the minimum and maximum values are computed iden-
tically to 7.2, mutatis mutandi. The performance of each individual can then be
aggregated into 4 statistics:

PWO
T,p =

∑
i 6∈ENHp

ST,p,i (7.4)

P ENH
T,p =

∑
i∈ENHp

ST,p,i (7.5)

PWO
C,p =

∑
i 6∈ENHp

SC,p,i (7.6)

P ENH
C,p =

∑
i∈ENHp

SC,p,i, (7.7)

where ENHp is the set of test cases for which participant p benefited from en-
hanced configuration support. PWO

T,p and PWO
C,p measure the time and constraint

satisfaction performance without enhanced support, respectively, while P ENH
T,p and

P ENH
C,p are the corresponding values with enhanced configuration support pro-

vided. Lower values are of P ENH
T,p and PWO

T,p correspond to faster configuration
times, while higher values of P ENH

C,p and PWO
C,p correspond to better constraint sat-

isfaction ratios. The following hypothesis are then to be verified:

7.3. EMPIRICAL TESTING OF ENHANCED CONFIGURATION SUPPORT 119

Hypothesis 1
Enhanced configuration support reduces the time required to create the

configuration.

P ENH
T,p < PWO

T,p

Hypothesis 2
The constraint satisfaction performance improves when enhanced

configuration is provided.

P ENH
C,p > PWO

C,p

7.3.3 Experiment Realization

Senior researchers, Ph.D. students and other research partners and collaborators
from two higher education institutions participated in the experiment. In spite
of strong academic presence, some of the participants have reported significant
professional experience, as can be seen in table 7.9.

Due to scheduling difficulties, it was not possible to conduct all tests in a sin-
gle session. Three sessions were conducted: one at the FCT/UNL site and two
at ISEC/IPC. Participants were asked to bring their own laptops so a variety of
hardware platforms and operating systems was used. Overall, 13 people partic-
ipated and submitted their results. Participants were asked to self-assess their
competence in three areas of expertise related to this work, in increasing order of
specificity,

• Software Engineering

• Feature Modeling

• Feature Model Configuration

Results of this self-assessment are represented in Figure 7.10. Results demon-
strate fairly high self-reported Software Engineering competences, while reported
competence is lower for the other topics (see Table 7.10).

7.3.4 Statistical Analysis of Results

For the purposes of statistical analysis, the results of two participants were ex-
cluded:

120 CHAPTER 7. VALIDATION

Figure 7.9: Academic and industrial experience of participants (some participants
are not represented as they chose not to provide the corresponding optional in-
formation).

Figure 7.10: Self-assessment of participant competence

7.3. EMPIRICAL TESTING OF ENHANCED CONFIGURATION SUPPORT 121

Table 7.10: Statistics for self-assessment of participant competence

Skill Average 95% Confidence Interval
Low High

Soft. Eng. 4.31 3.93 4.69
Feat. Model 3.00 2.18 3.82
Config 2.92 2.16 3.68

• In one case, the participant only realized the availability of one important
functionality of the prototype tool (deselecting a feature) halfway through
the experience, negating the possibility of establishing an accurate baseline
for his performance with respect to later tests.

• In a second case, for reasons that were not disclosed in the feedback form,
the participant did not manage or did not wish to complete the configura-
tion in the scenarios without enhanced support.

The test results are analyzed statistically so that the relevant hypothesis (or the
corresponding null hypothesis) can be demonstrated. Considering the within-
subject approach followed in this experiment, we analyzed the results using the
paired samples T-test.

Enhanced configuration support was found to have a statistically significant
impact in the effectiveness score from (M = 1.26, σ = 0.74) to (M = 1.92, σ =

0, 18), with t(10) = −2.568, p = 0.028 (M is the mean value, while σ is the standard
deviation). The significance level p is below 0.05, so these results indicate that
enhanced configuration support does indeed impact favourably the effectiveness
of the configuration process: users are able to satisfy more soft constraints when
enhanced support is available.

On the other hand, we found that no such improvement could be observed
with respect to configuration time. No improvement was observed when chang-
ing from standard (M = 0.860, σ = 0, 369) to enhanced configuration support
(M = 0.868, σ = 0, 400), with t(10) = −0.048 and p = 0, 963. No significant
statistical difference is found between the results, and so no impact of enhanced
configuration, positive or negative, can be inferred.

7.3.5 User Feedback

7.3.5.1 Perceived benefits and improvements

Participants were asked to indicate their perceived usefulness of enhanced con-
figuration support. To do this, participants were asked three questions for each

122 CHAPTER 7. VALIDATION

case where enhanced support was provided to them:

• Do you feel enhanced configuration support helped you complete your task
faster?

• Do you feel it helped you complete your task better (by satisfying more user
preferences)?

• Do you feel it helped you understand the required trade-offs, if these ex-
isted?

These questions help gauging the perception of participants regarding effi-
ciency and effectiveness gains, as well as comprehension of the required trade-
offs. Results are presented in Figure 7.11, while summary statistics can be found
in Table 7.11.

Figure 7.11: Feedback results, describing participant perception of efficiency and
effectiveness gains, as well as helpfulness of trade-off information.

Table 7.11: Agregated feedback results

Improvement Average Confidence Interval (95%)
Low High

Reducing time 4,29 4,05 4,52
Satisfying constraints 4,11 3,80 4,41
Help understanding trade-offs 3,78 3,39 4,19

7.3. EMPIRICAL TESTING OF ENHANCED CONFIGURATION SUPPORT 123

It can be seen that results are predominantly positive, with time saving being
the most praised improvement, followed in order by effectiveness improvements
and trade-off understanding.

7.3.5.2 Observations

Participants were asked to provide additional observations and commentaries.
Some comments addressed usability issues such as lack of tooltips, search capa-
bilities or button ordering. These issues can be attributed to the prototype nature
of the tool. Although an undo capability was offered, one participant mentioned
that more flexible configuration edition capabilities, such as the capability of mak-
ing pinpoint changes, would have been very useful. Naturally, this is not gener-
ically possible due to the effects of user choice propagation, but it does point an
interesting area to address in the future.

Specific comments with respect to the core issues in test addressed the trade-
off information and suggestion presentation. Some users wished that "more in-
formation" was made available so that suggestions and trade-offs could be better
understood, although specifics were generally not provided, other than a general
desire to have a better understanding of the evolution and closure of the config-
uration space. Other comments also pointed out that the solution was useful and
made it very simple to achieve the stated goals in each case.

One particularly useful comment pointed out that a better understanding of
the domain had been achieved in the test cases without enhanced configuration
support, simply due to the fact that additional effort had been made to better un-
derstand the feature model and its constraints in order to achieve the goals. While
this may seem contrary to our purposes, that is in fact not the case: one premise
of our approach is to facilitate configuration without requiring deep knowledge
of the domain. It stands to reason that in the test cases without support that
this knowledge must be more deeply understood to achieve the same or similar
results.

Other participants pointed out that even though the configurator suggestions
had been ultimately followed, this had not prevented additional exploration of
other alternative configurations, due to curiosity or the desire to observe the ef-
fects of other choices. This is an interesting point, which may help explaining
some of the results.

124 CHAPTER 7. VALIDATION

7.4 Results Discussion

7.4.1 Identification of Suspicious Interactions

Performance data obtained for the detection of unsatisfiable and untriggerable
soft constraints was found to be in the range of a fewms only for all the cases (see
Figure 7.1). This allows these techniques to be applied in the detection of these
potential anomalies in real time, during feature model edition and annotation.
This result can be considered according to expectations. Our identification pro-
cedures for both contradictions and untriggerable constraints are based on SAT
analysis [Coo71]. Even though SAT analysis is known to be an NP-Complete
problem [Coo71, GJ90], modern SAT-solvers have been found to be usually ef-
fective at handling the Boolean propositions generated by feature model analysis
[MAK09]. We found that it is also that case in this particular instance. This can
easily be explained, as manipulation of the feature model expression is minimal
(conjoining with triggers and/or a single additional constraint), so there would
be little reason to believe high efficiency would be lost.

Concerning the prevalence of these type of constraints, it was found to be low.
In fact, unsatisfiable constraints were never found in our test scenarios, while un-
triggerable constraints can be very uncommon. We find that this relatively small
prevalence agrees with the exceptional nature of these suspicious modeling sce-
narios. Considering that constraints are injected according to usage patterns con-
sistent with manual annotation, it would in fact be surprising if we had found
that a substantial percentage were potentially anomalous. If soft constraints are
included in the feature model through normal Domain Modeling activity (or by
a process that attempts to replicate that activity, which is our case), it can be ex-
pected that the number of dubious annotations is kept small, as, in practice, mod-
elers can be expected to get things right more often than not. Since unsatisfibility
or untriggerability depends on a single soft constraint, it should be relatively sim-
ple for the domain engineer to identify and avoid obvious cases of unsatisfiable
or untriggerable constraints, such as the ones in Figures 4.7 and 4.9. We explic-
itly avoid introducing in our tests these types of constraints (e.g., the test in line
24 of Algorithm 7), in an effort to address only annotations that could genuinely
arise from sensible manual annotations made by from the domain engineer. This
means that any unsatisfiability or untriggerability will likely arise from subtler in-
teractions between the single soft constraint and hard domain constraints, in the
context of the feature tree, making them relatively rare occurrences. Conversely,

7.4. RESULTS DISCUSSION 125

if completely random and unchecked annotations were used instead, bizarre and
unlikely constraints such as f discourages f or g discourages root (both untrigger-
able constraints) could easily be generated and artificially drive up the number
of anomalies.

These factors certainly contributed in no small way, to the absence of unsatis-
fiable constraints from the results. Still, our approach only attempts to replicate
manual annotation of models, but other scenarios such as product line refactoring
or evolution may prove to be more conductive to the appearance of unsatisfiable
or untriggerable constraints. It would be the case, for example, of a previously
optional feature, that is also coincidentally the trigger of an untriggerable con-
straint, being transformed into mandatory in a new version of the feature model.
In that case, the untriggerable constraint would become unsatisfiable.

Regardless of low prevalence, identification of these suspicious situations is
very efficient, so there would be virtually nothing to be gained, performance-
wise, by ignoring real-time detection of either untriggerable or unsatisfiable soft
constraints in feature modeling editing tools.

Detection of contradictory pairs of soft constraints was likewise found to be
efficient. This type of analysis needs to be conducted when a new soft constraint
is added to the model, so that all contradictory pairs involving it are detected.
Even the worst execution times found (just slightly over 0.5s), corresponding to
contradiction detection in high CTCR models with a large number of soft con-
straints, are compatible with online operation in feature model editing tools (see
Figure 7.4), so contradictory pair detection can be applied in feature model edit-
ing tools supporting soft constraints. This is fortunate, as results demonstrated
that contradictory pairs of soft constraints are relatively common (see Figure 7.3).
Clause density seems to be the predominant factor contributing to higher preva-
lence of contradictions. This is understandable, as a relatively high number of
clauses (with respect to the number of features) may increase the chances that the
introduction of a new soft constraint will intertwine the effects of two otherwise
independent constraints.

7.4.2 Configuration Repair Testing

Although one single very and heavily cross-constrained model could not be suc-
cessfully partitioned and handled by our algorithm, this was the single excep-
tion and we believe that it does not affect the validity and usefulness of our cur-
rent approach, although this issue should be considered as a strong motivator

126 CHAPTER 7. VALIDATION

of future work. The test data used in our experiments includes the largest non-
synthetic models available in the online repository. These include many exam-
ples that have been used independently as the unique or main case study for
the validation of other works, such as the Smart House or Web Portal examples
[MBC08, MRP+07], among others. The algorithm reveals very high performance,
especially when considering iteration over alternative optimal repairs of a single
configuration. Another case where algorithm performance stands out concerns
repairs of multiple invalid configurations over the same feature model, as the
most expensive operation needs to be performed only once per feature model.
This is true even if an alternative selection criterion is used for each repair. This
flexibility is unparalleled in other works we are aware of. Results for our experi-
ments have consistently demonstrated the prevalence of multiple alternative op-
timal repairs, across the entire range of experiences, highlighting the usefulness
of our problem-decomposition approach. The problem-decomposition approach
has demonstrated the capability of compressing an exhaustive list of potential
repairs (with the number of elements ranging from thousand to millions) into
a manageable set of choices of modest dimension. Limitations of our approach
include reduced capability of partitioning highly constrained feature models. In
these instances, the consequences of poor partitioning include reduced scalability
of the cover computation technique, and limited possibilities of decomposition of
repairs into independent problems.

We found that, for most cases considered in this study, feature models can be
effectively decomposed by our partitioning algorithm. A few highly constrained
models are an exception to this. The extend to which this is problematic depends
on other characteristics such as the model dimension.

The cover for the partitioned feature models can be computed efficiently, with
the sole exception being the largest and more heavily constrained model. This ex-
ception can be explained by the poor partitioning achieved on that specific model.
Nevertheless, other poorly partitioned models of more modest size where han-
dled with reasonable efficiency, albeit comparatively lower with respect to other
cases. In this way, it appears that the combined effect of large dimension and
heavy constrainment is necessary for significantly impairing cover computation
efficiency.

Repairs for an invalid configuration can be computed efficiently. Results in
Table C.5 strongly demonstrate very high performance when computing repairs:
not only when identifying a first possible repair, but also when iterating over all
other potential alternatives.

7.4. RESULTS DISCUSSION 127

The problem-based decomposition is effective in reducing the number of re-
pair options presented to the user. Considering it is strongly based on the par-
titioning of the feature model, it is bound to be less effective in those cases for
which partitioning is less successful, such as the "DELL Computers" (see Table
7.8). Nevertheless, we found that a relevant reduction of the large repair lists
could be achieved in all other models.

7.4.3 Empirical Testing of Enhanced Configuration Support

Our empirical experiments provided us with insights concerning our enhanced
configuration support technique. The main goal of these tests was assessing ef-
ficiency and effectiveness gains. We expected to observe benefits in terms of the
time required for creating the configuration, as well as improvements regard-
ing soft constraint satisfaction rate. Additional qualitative feedback also helped
better assessing our proposal. After conducting a statistical analysis of the col-
lected data, benefits in terms of effectiveness were clearly apparent (more soft
constraints were satisfied). However, similar benefits could not be observed in
terms of efficiency. A possible explanation for this phenomenon, based on user
feedback and observation of user behavior during the experience, is that at least
some participants, regardless of the availability of configuration suggestions, did
not refrain from exploring alternative configuration options, out of curiosity and
the desire to explore the configuration space, even if ultimately the suggestions
ended up being followed. This explanation also helps addressing an apparent
inconsistency between qualitative and quantitative results: while no quantita-
tive efficiency benefit was found, positive impact on efficiency (configuration
time) was indicated in participant’s feedback as being the factor that most gained
from enhanced support. This is consistent with a scenario where the test partic-
ipant rapidly identifies a good solution using the provided suggestions (thereby
gaining the perception of enhanced efficiency), but then takes additional time ex-
ploring potential alternatives (nullifying the actual efficiency gains). Qualitative
feedback was generically positive (see Figure 7.11), although some observations
pointed out some difficulty interpreting the trade-off information. It was also
pointed out that the configuration cases without enhanced support required bet-
ter understanding of the feature model and constraints to achieve similar results.

Concerning the hypothesis in test, hypothesis 1 - Enhanced configuration sup-
port reduces the time required to create the configuration, could not be verified in the
results. However, a statistically significant improvement in results was found,

128 CHAPTER 7. VALIDATION

confirming hypothesis 2 - The constraint satisfaction performance improves when en-
hanced configuration is provided.

7.5 Threats to Validity

In this section, we address several potential threats to the validity of our work.

• Unrealistic Variability Model. The first threat, common to different aspects
of our work is restriction to variability modeling based on Boolean feature
models. Other variability models such as Kconfig [ZC] and CDL [VD01] are
preferably adopted in domains such as system software and have higher ex-
pressiveness. Nevertheless, Boolean feature models have a significant and
relevant presence in SPL research and practice (via academic and commer-
cial tool support). Extension to other variability models may be considered
in future work.

• Representativity of Test Cases. Another related, but distinct threat to the
validity of our work is concerned with the level of representativity of the
test cases (feature models) considered in our experiments. It might be ar-
gued that the community-provided models of the S.P.L.O.T. repository do
not have real world representativity and are improperly biased towards the
low-end of the dimension, CTCR and/or clause density rate. Similar con-
cerns have led to a certain trend where highly constrained models with very
high feature count are artificially generated and chosen for testing purposes,
rather than hand-crafted models. While this approach is certainly appro-
priate for assessing scalability, and while it is also true that in the operat-
ing systems domain model complexity may be significant, recent industrial
surveys [BRN+13, BNR+14] have reported that feature models in actual use
were found to be very lightly constrained or completely unconstrained, and
thereby comparable to, or simpler than, those considered in our study.

• Representativity of Soft Constraint Use. Concerning our suspicious inter-
actions detection, one potential threat is the representativeness of injected
constraints. We address this by making sure that our soft constraint injec-
tion mechanism is based on plausible uses of soft constraints, and simpler
cases of obviously degenerated constraints are explicitly avoided.

• Scalability of Configuration Repair. Another threat is scalability of our
configuration repair approach. In this work, it is limited by cover optimiza-
tion scalability and limited capability for partitioning the feature model.

7.5. THREATS TO VALIDITY 129

This is partially mitigated by the fact that these factors impact mainly the
cover-computation step of our approach, which needs to be run only once
per feature model, but not subsequent repair generation. Also, this proved
problematic with only the largest and most constrained model available in
the repository. Nevertheless, this is an area for improvement. Ongoing
and future work is focused on improving scalability by exploring the use
of non-optimal covers, which does not compromise optimality of the gen-
erated repairs, by adopting a more aggressive partitioning strategy.

• Reduced number of Participants in Empirical Study. A threat to our em-
pirical test is the relatively low number of participants. This concern is
mitigated by the adoption of an within-subject approach, which has higher
statistical power than an alternative between-group approach. In fact, we
found that the experiment results provide statistically significant data demon-
strating effectiveness improvements.

130 CHAPTER 7. VALIDATION

8
Conclusions and Future Work

We begin the concluding chapter by revisiting the research questions in Section
8.1 and discuss them in the context of the content of earlier chapters. We proceed
by presenting an overview of the evolution of this work (Section 8.2), from earlier
inception efforts, and ensuing evolution leading up to the current thesis, and then
beyond by proposing future research explorations derived from this line of work.

8.1 Research Questions Revisited

In Section 1.1 we presented the main research and detailed the research questions.
The main research question,

How to support the derivation of software products
in SPL that best conform to stakeholders’ goals?

is decomposed in five sub-questions. The combined answers to these sub-questions
globally address the main question, so we revisit them individually and discuss
them in the next sections.

131

132 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1.1 How to leverage the use soft constraints in SPL develop-

ment to achieve this goal?

Soft constraints can be introduced in the SPL lifecycle in both the domain engi-
neering step or application engineering step. They are used to provide config-
uration suggestions and conflict detection and explanation. Further details are
discussed in the following sub-sections.

8.1.1.1 How can soft constraints be used in Domain Engineering?

A configuration idealized by the stakeholder may be sub-optimal if other con-
figurations exist that might better address his needs (see Section 1.1 and Figure
1.1). Sub-optimality may be caused by poor domain knowledge or undereval-
uation of the SPL possibilities. Soft constraints can be added to the variability
model during domain engineering, that identify preferential or desirable proper-
ties of the configuration. This allows suggestions to be provided later during the
configuration process (see Chapter 5) that help the stakeholder to overcome these
difficulties. We pointed out in Section 4.1 that those preferential or desirable prop-
erties cannot be comfortably represented with standard hard constraints, which
in effect leads either to improper modelling or even outright disregard of that
information.

Having established the motivation for using soft constraints in domain mod-
eling, we then identified three prototypical soft constraint application patterns in
feature modeling (Section 4.2). We also point out in Section 4.2.5 that soft con-
straints can play a role in feature model evolution.

8.1.1.2 How can suspicious soft constraint interactions be efficiently identi-
fied and reported to the Domain Engineer?

In Section 4.3, we identified several types of suspicious soft constraint interac-
tions. While these are not necessarilly errors, it is doubtful that they are inten-
tionally introduced by way of deliberated modeling action from the Domain En-
gineer. Therefore, it is useful to identify and report these interactions, so that
the Domain Engineer can determine if any corrective action is required. We pre-
sented the identification procedures in Section 4.3, and conducted tests (Section
7.1) that demonstrated efficient performance compatible with real time operation
in feature model editing tools.

8.1. RESEARCH QUESTIONS REVISITED 133

8.1.1.3 How common are these interactions?

Results in Section 7.1, obtained for publicly available feature models annotated
with soft constraints injected according to usage patterns described Section 4.2,
demonstrated variable degrees of prevalence. No unsatisfiable soft constraints
were found, while untriggerable soft constraints were relatively uncommon. Con-
tradictory constraints, on the other hand, were found to be relatively common.
Although suspicious interactions are, globally, fairly uncommon, they can be very
efficiently detected, and little performance gains are obtained by disregarding au-
tomated suspicious interaction detection.

8.1.1.4 How to use soft constraints in the application engineering step?

Stakeholders’ preferences do not necessarily conform to the feature model. For
example, he may wish a product that includes features that are actually mutu-
ally exclusive. Also, while the stakeholder may have clear goals in mind, these
may not necessarily translate into a single unique configuration. Therefore, he
might have difficulty in pinpointing the exact configuration that best addresses
those goals. An example would be the stakeholder desiring to include at least one
among a certain set of optional features. Also, if the system is very complex, the
internal consistency of the combined user preferences itself may be put into ques-
tion. For example, the stakeholder may wish for web server support for at most
one communication protocol for ease of management and security sake, while
also requiring FTP support for file transfer and HTTP support for web hosting
capabilities. By using soft constraints to represent stakeholders’ preferences in
the above scenarios, it becomes possible to represent the conflicting, inconsistent
and incomplete specifications described in these scenarios.

Automated support, based on soft constraints, is thereby made possible. It
provides configuration suggestions during application engineering. Conflicts are
also identified, reported and explained to the user, providing him with improved
understanding of the alternative trade-off possibilities and their consequences
(see Chapter 5).

8.1.2 How to provide enhanced configuration support?

The role of enhanced configuration support, in our work, is to facilitate the trans-
formation of potentially invalid idealized configurations into realizable, valid
configurations that are the best possible match to stakeholder’s needs. A parallel
concern is also helping the stakeholder to take the maximum possible advantage

134 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

of the possibilities of the SPL, by making sure that his idealized configuration is
not sub-optimal, in the sense that another configuration exists that might better
satisfy his needs.

One approach to offer enhanced configuration support is to leverage infor-
mation from soft constraints. These can represent either domain properties or
stakeholder’s requirements. Available soft constraints are analyzed for two pur-
poses.

The first is concerned with generating configuration suggestions, which steer
the user towards configurations having desirable domain properties and that
conform to his requirements. This helps addressing the issue of sub-optimality, as
the suggestions provide to the user the opportunity to achieve desirable domain-
related properties, that might not have been given due consideration previously.

On the other hand, the enhanced configurator is also capable of identifying
conflicts and providing relevant feedback to the user. These conflicts are gen-
erated when simultaneous satisfaction of certain soft constraints is not possible,
but alternative satisfaction is. In this case, it is up to the stakeholder to determine
what is the preferable way of resolving the conflict. It bears mentioning that,
while some constraints may be conflicting in all configurations, it is possible that a
conflict manifests only in the presence of a certain partial configurations. Conflict
resolution becomes then a context-dependent activity, in contrast with up-front
anticipated resolution, in which the stakeholder may chose alternative resolu-
tions for similar conflicts depending on specific product being created. For exam-
ple, a soft constraint promoting parsimonious usage of memory resources may be
more relevant in a mobile application than in a desktop application. Conflicts are
identified and explained to the user via conflicted features, that is, open features
whose configuration (either to a selected or deselected state) will be key for deter-
mining which conflicted soft constraints will be satisfied. An explanation is pro-
vided by indicating which constraints require selection of the conflicted feature,
and which constraints require deselection. By using soft constraint satisfaction as
the basis for conflict explanation, feedback is provided using high level concepts
related to the requirements or domain properties, making it more accessible and
understandable than alternatives such as unsatisfiable Boolean cores. Automatic
identification and explanation of conflicts is key for assisting the user in achieving
a viable configuration when the idealized configuration is invalid, while under-
standing the required trade-offs and respective consequences, in terms of feature
selection.

Another strategy for aiding the stakeholder during the configuration process

8.1. RESEARCH QUESTIONS REVISITED 135

is removing the barriers that impose step-wise specification of the configuration.
The main problem with a step-wise specification approach, common in standard
iterative configurators, is that the outcome becomes order dependent in overcon-
strained cases, due to choice propagation aiming to ensure a valid configuration
is achieved. This can frustrate the user, as automated propagation of choices can
result in implicit resolutions of trade-offs that may not be aligned with user’s
expectations. This may imply that backtracking becomes necessary, so that alter-
native configuration orders can be experimented with and alternative points of
the configuration space explored. Although soft constraints mitigate this prob-
lem by providing additional orientation via suggestions and conflict explanation,
the order dependency nevertheless persists. Prototype-based configuration, de-
scribed in Chapter 6, generalizes iterative configuration to allow any number of
features to be specified in a single iteration. Ultimately, the entire product may be
specified in a single step. This obviates order-dependency issues impacting those
features that are simultaneously specified. However, a subsequent resolution step
becomes then necessary, because it may happen that the features are specified in
a such a way it that does not correspond to any valid configuration. The reso-
lution step analyses the proposed configuration, identifies defects and proposes
possible solutions to the user. The resolution step is based on our cover-based
configuration repair algorithm (Section 6.3). A key feature of this algorithm is a
partitioning approach that allows a concise list of problems and possible repairs
to be presented to the user, rather than an exhaustive list of every possible repair
that might prove unwieldy, due to its dimension.

8.1.3 How to represent the user’s idealized configuration?

Research question 3 asks "How to allow users to model, and inform the system,
their idealized configuration, so that automated support can be given?". One im-
portant characteristic of idealized configurations is that they do not necessarily
conform to the structure feature model or to the domain constraints. This pre-
cludes specification via the normal use of a standard iterative configurator, as
these prevent, by design, invalid configurations from being inputted. We address
this issue by using soft constraints to specify the idealized configuration of the
stakeholder, fueling our enhanced configurator so that configuration suggestions
and conflict analysis may be performed. However, another alternative is relying
on the prototype-based configuration approach, which allows the stakeholder to
introduce a complete (or partial) idealized configuration. This configuration is

136 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

subsequently analyzed so that, if needed, the required feedback, detailing possi-
ble alternative configuration repairs required to make it viable, is provided.

8.1.3.1 How to handle possibly overconstrained and invalid idealizations?

The mechanisms we propose offer support so that an overconstrained and in-
valid idealization can be realized, in such a way that the required changes have
the smallest impact in terms of satisfaction of user’s needs. By inputting a set of
soft constraints describing the overconstrained or invalid configuration, overcon-
strainment will result in some those constraints failing to be satisfied. The conflict
analysis mechanism will then identify conflicted features, that is, features whose
selection status will determine which soft constraints will be alternatively satis-
fied. This allows the stakeholder to understand the consequences of selecting or
deselecting that feature, so that he can understand the required trade off, in terms
of soft constraint satisfaction.

The prototype-based approach can helps the stakeholder in this regard by an-
alyzing the provided configuration, and identifying the valid configurations that
are as close as possible to the idealized. A set of repair actions is identified that,
when applied, will transform the current configuration into one of the closest
valid configurations.

While the soft-constraint based approach provides explicit identification of
conflicts requiring trade-offs, who must each be addressed separatedly by the
stakeholder, the prototype-based approach follows a more global approach by
trying to identify the closest viable alternatives.

8.1.3.2 How to address the large number of potential trade-offs?

Reasearch question 3b asks "How to properly address the large number of poten-
tial trade-offs that may be possible, without overwhelming the user with a very
large number of alternative possibilities?".

Soft-constraint based support works in tandem with an iterative configurator.
This means that, given features that are specified one at a time in each iteration,
conflicts will manifest only gradually depending on the specific partial configu-
ration that has been inputted so far. While many potential conflicts may exist, the
stakeholder is confronted only with those that are actually relevant to the config-
uration being created.

If a prototype-based approach is allowed, then many features can be simul-
taneously specified in each single iteration. It is possible to take this approach
to the ultimate consequences and specify the product in its entirety in a single

8.1. RESEARCH QUESTIONS REVISITED 137

pass. In this case, the assumption is that the stakeholder is interested in realizing
the configuration by finding a valid configuration that is "as close as possible" to
the provided idealized configuration. Even with this assumption, which by itself
prunes a lot of alternative possibilities, many different alternative repairs, with
equal value, may be found (Section 7.2.3). To reduce the total number of alterna-
tives presented to the user, we resort to a partitioning approach, that decomposes
the repairs into actions required to address a certain number of problems (Sec-
tion 6.4). Results in Section 7.2.4 demonstrate that significant improvements can
be obtained in cases for which thousands or even millions of alternative repairs
existed.

8.1.4 How effective is enhanced configuration support?

Effectiveness of enhanced configuration support is supported by both qualitative
and quantitative results. In Section 7.3.5, user feedback shows that test partici-
pants considered that enhanced support helped them achieve higher constraint
satisfaction ratios and better understand the erquired trade-offs. This is in ac-
cordance to the quantitative results of the experiment analyzed in Section 7.3.4,
where a statistically significant improvement could be observed, in terms of con-
straint satisfaction.

8.1.5 How efficient is enhanced configuration support?

We ran several tests to assess the runtime efficiency of the proposed techniques
(sections 7.1 and 7.2). Our suspicious interaction detection algorithms, described
in Section 4.3, were found to be highly efficient. Our configuration repair algo-
rithm, descibed in Chapter 6, also demonstrated its ability to efficiently partition
the feature model and indentify possible repairs. High performance is further
highlighted by the fact that the most computationally expensive operation must
be performed only once per feature model, rather than once per repair.

We also attempted to demonstrate gains of efficiency in terms of time required
by the configurator to create the configuration according to a set of desired prop-
erties. Results were not conclusive. Although qualitative data indicated that effi-
ciency gains were one of the most highly praised benefits perceived by test par-
ticipants (Section 7.3.5), no statistically significant improvement could be found
in our statistical analysis in Section 7.3.4. In our discussion of results, we provide
a possible explanation for this discrepancy.

138 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Past, Present, and Future

8.2.1 The Past

The foundations of this work began with the start of Ph.D. work in late 2007.
The initial proposal was based on the study of feature/aspect interactions and
some collateral derivations of that central theme [BM07, BM09a]. Although a
grant was obtained that financed tuition fees in the initial year, no leave from ser-
vice was obtained, so Ph.D. work and research was conducted in parallel with
full time teaching (12 hours of lecturing/week) and also organizational respon-
sabilities at Instituto Politécnico de Coimbra. Notwithstanding the institutional
goodwill and support of my employers, this accumulation remained mostly a
constant throughout the entire duration of this work, with exception of a a single
year (2009), when the original Ph.D. grant was replaced by a PROTEC grant, that
offered a 50% reduction in lecturing schedule. Alas, the PROTEC program ended
as abruptly as it started one year later.

Initial efforts in the first year tried to address the identification and resolu-
tion of order-dependency loops in the composition of software development as-
sets. Subsequent ideas aimed at addressing composition order issues in aspect-
oriented approaches. By interpreting an aspect as a statement of a property that
was to be held in the final weaved target, it became possible to analyze whether
or not a stable "steady state" composition was achieved, where the properties as-
sociated with each aspect were respected. Unfortunately, these ideas never really
took off and developed beyond conceptualization efforts.

By 2009, attendance of tutorials concerning configuration knowledge man-
agement in SPL at the "Generative and Transformational Techniques in Software
Engineering" (GTTSE) summer school, inspired the two earliest publications. In
[BM09b], we proposed to address the complexity of configuration process by us-
ing a graphical method for describing configuration parameters dependencies
and flow. This approach is centered on the use of configuration modules, which
describe parameterizable implementation artefacts such as aspectual model com-
ponents or source code files. This model describes how configuration informa-
tion impacts the selection and configuration of features and their implementation
artefacts. It provides the graphical tools akin to a template-based approach to
configuration and implementation [CE00] by representing associations and spe-
cializations. However, it is not specific to any programming language or im-
plementation technique. Additional capabilities are also provided such as the

8.2. PAST, PRESENT, AND FUTURE 139

representation of complex configuration dependencies via n-ary associations or
support for specifying the enumeration of parameter lists. The capabilities of this
representation technique can be observed in section A.1 of the appendices, where
an example of one such model representing the configuration of a multimedia
product is presented and described.

Another early work by the authors proposed an aspect-oriented modeling
technique [BM09c]. It was designed to complement and support the work in
[BM09b], by offering generic configurable aspects that can be instanced, using a
simple language, into concrete MATA aspects [WJE+09], capable of advising cor-
rectly diverse base models (see appendix A.2 for an overview of the proposed
technique).

Although these were a promising start, further developments did not mate-
rialize and by the year 2010, we shifted our attention towards other topics that
would later become a more central part of this work. We began considering the
interesting potential of introducing soft constraints into the product line develop-
ment cycle, and our initial exploration of that topic [BM11], in which the nature
and semantics of Boolean soft constraints were discussed, was well received, gar-
nering recognition in the form of a Best-Paper Award and the publication of an
extended journal version in [BM12]. This further encouraged us to explore this
line of research, and, as a natural consequence, the enhanced configuration sup-
port algorithms were first outlined in [BM13] and then later further extended and
improved on [BM14b].

A different, but related line of research was however motivated, in the mean
time, by simple exchanges with my advisor and research partners at UNL. A very
simple question that often came up in discussion was the lack of provisions for
simple freeform editing of existing configurations. Why wasn’t it possible to sim-
ply change some features from selected to deselected, and vice-versa? It turns
out, of course, that such a simple functionality is not so simple at all due to va-
lidity issues. However, it’s certainly welcome from the perspective of the user,
so it fit quite well with the ongoing line of research. We investigated existing
approaches in the literature concerned with the reparation of invalid configura-
tions, and quickly found that, while some previous work existed, some important
properties were not addressed by existing solutions. So, we focused our efforts
into developing a novel high performance configuration repair approach better
suited for our specific needs [BM14a]. This algorithm also allowed overcoming

140 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

order dependency issues that are inherent to iterative configuration with step-
wise specification of features, by enabling Prototype-based configuration to be-
come a reality. Validation efforts with empirical experiments began in late 2014
and were completed by early 2015, with the remainder of the 2015 up to August
being occupied with thesis writing. Simultaneously, other efforts are also under-
way, as described in Section 8.2.2.

8.2.2 The Present

Currently, some of the content of this work is undergoing preparation for journal
publication. [BM15a] is an extended version of [BM14b], featuring an extended
description of the algorithms found in Chapter 5 and including the results of the
empirical assessment found in Chapter 7.

Other parts of this work are also amenable to additional publication. Con-
tent of Chapter 3, concerning the use of normative soft constraints, such as the
generalized generalized impossibility function framework, generalizes and goes
significantly beyond that which can be found in the original reference [BM11].

While the performance of the cover-based repair approach has been well es-
tablished, additional empirical testing of the prototype-based configuration is
also a possibility for the near future. This experiment would aim at evaluating
perceived benefits, from the perspective of the user, offered by freeform specifi-
cation and edition of a feature model configuration, powered by our cover-based
repair algorithm. Publication of said results in a paper offering an extended dis-
cussion of prototype-based configuration and said results would naturally ensue
[BM15c].

In summary, three new publications, with the following envisaged titles, are
under preparation:

1. Journal paper. "Enhanced Configuration Support for Software Product Lines"
[BM15a].

2. Conference paper. "Handling Exceptions to Constraints in Feature Models"
[BM15b].

3. Journal/conference paper. "Prototype-based Product Derivation" [BM15c].

8.2. PAST, PRESENT, AND FUTURE 141

8.2.3 The Future

Once the short term projects, described in Section 8.2.2, are completed, new in-
vestigation possibilities, derived from or complementing this work, can be con-
sidered.

One possibility that suggests itself is broadening the range of applicable vari-
ability modeling techniques. While the current work is concerned with Boolean
feature models, other modeling tools such as enhanced feature models, or alterna-
tive modeling approaches like CDL or Kconfig may be additionally considered.
This entails additional challenges, including the handling of non-boolean con-
straints specified over numeric or textual data. Possible techniques that can be
considered for application are constraint programming or multivalued-logic.

Another option for extending the scope of the work consists of leveraging
historical configuration information as a potential source of additional configu-
ration suggestions. This approach can work in tandem with other configuration
techniques described here to further improve the configuration experience. To
achieve this goal, techniques such as case-based reasoning might be employed.
Recommendator systems are a related technology that also provide suggestions
to their users using a mixture of domain and historical data sources, so explo-
ration of similar approaches might be considered.

Other options for complementing this research include exploring other ap-
proaches for providing a user-centric product derivation experience. One such
possibility includes advanced product preview techniques, which would address
the problem of generating a product preview from the partial configurations gen-
erated during the configuration process. Having such previews available during
all iterations of the configuration process would be useful, however construct-
ing them for models with complex variability might be challenging, since only
a fractional portion of the product features may be determined at a given time.
The possibility of using available previews as a fundamental driver of the con-
figuration system is an interesting possibility to consider. In this case, configura-
tion could be achieved by progressively navigating through a tree of increasingly
complete previews, dynamically generated at each point to indicate into what
possibilities the current configuration might branch out.

142 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

[Bat05] Don S Batory. Feature Models, Grammars, and Propositional For-
mulas. In J Henk Obbink and Klaus Pohl, editors, Proceedings of the
9th International Conference on Software Product Lines, volume 3714 of
Lecture Notes in Computer Science, pages 7–20, Rennes, France, 2005.
Springer.

[Bat06] Don Batory. A tutorial on feature oriented programming and the
ahead tool suite. In Ralf Lämmel, João Saraiva, and Joost Visser, ed-
itors, Generative and Transformational Techniques in Software Engineer-
ing, volume 4143 of Lecture Notes in Computer Science, pages 3–35.
Springer Berlin Heidelberg, 2006.

[BB02] Michel Barbeau and Francis Bordeleau. A protocol stack develop-
ment tool using generative programming. In Don Batory, Charles
Consel, and Walid Taha, editors, Generative Programming and Compo-
nent Engineering, volume 2487 of Lecture Notes in Computer Science,
pages 93–109. Springer Berlin Heidelberg, 2002.

[BBRC06] Don Batory, David Benavides, and Antonio Ruiz-Cortes. Auto-
mated analysis of feature models: Challenges ahead. Commun.
ACM, 49(12):45–47, December 2006.

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The
goal question metric approach. In Encyclopedia of Software Engineer-
ing. Wiley, 1994.

[BDNRG10] Ebrahim Bagheri, Tommaso Di Noia, Azzurra Ragone, and Dragan
Gasevic. Configuring software product line feature models based
on stakeholders’ soft and hard requirements. In Proceedings of the

143

144 BIBLIOGRAPHY

14th International Conference on Software Product Lines: Going Beyond,
SPLC’10, pages 16–31, Berlin, Heidelberg, 2010. Springer-Verlag.

[Beu01] Danilo Beuche. Feature Based Composition of an Embedded Oper-
ating System Family. In Proceedings of the ECOOP 2001 Workshop on
Feature Interaction in Composed Systems (FICS 2001), Budapest, Hun-
gary, June 18-22, 2001, pages 55–60, January 2001.

[BM07] Jorge Barreiros and Ana Moreira. Aspect interaction management
with meta-aspects and advice cardinality. In Aspects, Dependencies,
and Interactions Workshop, as part of the 21st European Conference on
Object Oriented Programming, 2007.

[BM09a] Jorge Barreiros and Ana Moreira. Managing features and aspect in-
teractions in software product lines. In Kenneth Boness, João M. Fer-
nandes, Jon G. Hall, Ricardo Jorge Machado, and Roy Oberhauser,
editors, SEDES Doctoral Symposium at the Fourth International Confer-
ence on Software Engineering Advances, ICSEA 2009, 20-25 September
2009, Porto, Portugal, pages 506–511. IEEE Computer Society, 2009.

[BM09b] Jorge Barreiros and Ana Moreira. A model-based representation
of configuration knowledge. In Proceedings of the First International
Workshop on Feature-Oriented Software Development, FOSD ’09, pages
43–48, New York, NY, USA, 2009. ACM.

[BM09c] Jorge Barreiros and Ana Moreira. Reusable Model Slices. In As-
pect Oriented Modeling Workshop @ ACM/IEEE 12th International Con-
ference on Model Driven Engineering Languages and Systems, Denver,
Colorado, 2009.

[BM11] Jorge Barreiros and Ana Moreira. Soft Constraints in Feature Mod-
els. In Proceedings of the Sixth International Conference on Software En-
gineering Advances, pages 136–141. Xpert Publishing Services, 2011.

[BM12] Jorge Barreiros and Ana Moreira. Soft Constraints in Feature Mod-
els: An Experimental Assessment. International Journal On Advances
in Software, 5(3):252–262, 2012.

[BM13] Jorge Barreiros and Ana Moreira. Configuration support for fea-
ture models with soft constraints. In Sung Y. Shin and José Carlos
Maldonado, editors, Proceedings of the 28th Annual ACM Symposium

BIBLIOGRAPHY 145

on Applied Computing, SAC ’13, Coimbra, Portugal, March 18-22, 2013,
pages 1307–1308. ACM, 2013.

[BM14a] Jorge Barreiros and Ana Moreira. A cover-based approach for con-
figuration repair. In Stefania Gnesi, Alessandro Fantechi, Patrick
Heymans, Julia Rubin, Krzysztof Czarnecki, and Deepak Dhun-
gana, editors, 18th International Software Product Line Conference,
SPLC ’14, Florence, Italy, September 15-19, 2014, pages 157–166. ACM,
2014.

[BM14b] Jorge Barreiros and Ana Moreira. Flexible modeling and product
derivation in software product lines. In Marek Reformat, editor, The
26th International Conference on Software Engineering and Knowledge
Engineering, Hyatt Regency, Vancouver, BC, Canada, July 1-3, 2013.,
pages 67–70. Knowledge Systems Institute Graduate School, 2014.

[BM15a] Jorge Barreiros and Ana Moreira. Enhanced configuration support
for software product lines. (in preparation), 2015.

[BM15b] Jorge Barreiros and Ana Moreira. Handling exceptions to con-
straints in feature models. (in preparation), 2015.

[BM15c] Jorge Barreiros and Ana Moreira. Prototype-based product deriva-
tion. (in preparation), 2015.

[BNR+14] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne Atlee, Krzysztof
Czarnecki, and Andrzej Wasowski. Three cases of feature-based
variability modeling in industry. In Juergen Dingel, Wolfram
Schulte, Isidro Ramos, Silvia Abrahão, and Emilio Insfran, editors,
Model-Driven Engineering Languages and Systems, volume 8767 of Lec-
ture Notes in Computer Science, pages 302–319. Springer International
Publishing, 2014.

[BOBS89] Virginia E. Barker, Dennis E. O’Connor, Judith Bachant, and Elliot
Soloway. Expert systems for configuration at digital: Xcon and be-
yond. Communications of the ACM, 32(3):298–318, March 1989.

[BRN+13] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne Atlee, Martin
Becker, Krzysztof Czarnecki, and Andrzej Wasowski. A survey
of variability modeling in industrial practice. In Proceedings of the

146 BIBLIOGRAPHY

Seventh International Workshop on Variability Modelling of Software-
intensive Systems, VaMoS ’13, pages 7:1–7:8, New York, NY, USA,
2013. ACM.

[Bry86] Randal Bryant. Graph-based algorithms for boolean function ma-
nipulation. Computers, IEEE Transactions on, C-35(8):677–691, Aug
1986.

[BSL+10] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and
Krzysztof Czarnecki. Variability modeling in the real. In Proceedings
of the IEEE/ACM international conference on Automated software engi-
neering - ASE ’10, page 73, New York, New York, USA, 2010. ACM
Press.

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Auto-
mated analysis of feature models 20 years later: A literature review.
Inf. Syst., 35(6):615–636, September 2010.

[BTRC05] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Using
constraint programming to reason on feature models. In Seventeenth
International Conference on Software Engineering and Knowledge Engi-
neering, 2005.

[BW96] Beate Bollig and Ingo Wegener. Improving the variable ordering of
obdds is np-complete. IEEE Trans. Comput., 45(9):993–1002, Septem-
ber 1996.

[CBUE02] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich
Eisenecker. Generative programming for embedded software: An
industrial experience report. In Don Batory, Charles Consel, and
Walid Taha, editors, Generative Programming and Component Engi-
neering, volume 2487 of Lecture Notes in Computer Science, pages 156–
172. Springer Berlin Heidelberg, 2002.

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley Professional, 2000.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich W Eisenecker.
Staged Configuration Using Feature Models. In Robert L Nord, ed-
itor, Proceedings of the 8th International Conference on Software Product
Lines, volume 3154 of Lecture Notes in Computer Science, pages 266–
283. Springer, 2004.

BIBLIOGRAPHY 147

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formal-
izing cardinality-based feature models and their specialization. In
Software Process: Improvement and Practice, page 2005, 2005.

[Cle01] Paul Clements. Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, 3rd edition, 2001.

[CNM83] Stuart K. Card, Allen Newell, and Thomas P. Moran. The Psychology
of Human-Computer Interaction. L. Erlbaum Associates Inc., Hills-
dale, NJ, USA, 1983.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[CRM91] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. The
information visualizer, an information workspace. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’91, pages 181–186, New York, NY, USA, 1991. ACM.

[CSW08] Krzysztof Czarnecki, Steven She, and Andrzej Wasowski. Sample
Spaces and Feature Models: There and Back Again. In Proceedings
of the 12th International Conference on Software Product Lines, pages
22–31. IEEE Computer Society, 2008.

[CW07] Krzysztof Czarnecki and Andrzej Wasowski. Feature Diagrams and
Logics: There and Back Again. In Proceedings of the 11th International
Conference on Software Product Lines, pages 23–34. IEEE Computer
Society, 2007.

[De 58] Augustus De Morgan. On the syllogism, no. iii, and on logic in
general. Transactions of the Cambridge Philosophical Society, 10, 1858.

[EFD05] Rudiger Ebendt, Görschwin Fey, and Rolf Drechsler. Advanced BDD
optimization. Springer-Verlag US, 2005.

[ELF08] Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein. Gen-
erating and Evaluating Choices for Fixing Inconsistencies in UML
Design Models. In 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, pages 99–108. IEEE, September
2008.

148 BIBLIOGRAPHY

[FFJ01] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach. Con-
ceptual modeling for configuration of mass-customizable products.
Artificial Intelligence in Engineering, 15(2):165 – 176, 2001.

[FJN+13] Alexander Felfernig, Michael Jeran, Gerald Ninaus, Florian Rein-
frank, and Stefan Reiterer. Toward the next generation of rec-
ommender systems: Applications and research challenges. In
George A. Tsihrintzis, Maria Virvou, and Lakhmi C. Jain, editors,
Multimedia Services in Intelligent Environments, volume 24 of Smart
Innovation, Systems and Technologies, pages 81–98. Springer Interna-
tional Publishing, 2013.

[GFD98] Martin L. Griss, John Favaro, and Massimo D’Alessandro. Integrat-
ing feature modeling with the RSEB. In Proceedings. Fifth Interna-
tional Conference on Software Reuse (Cat. No.98TB100203), pages 76–
85. IEEE Comput. Soc, 1998.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1990.

[GSCK04] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software
Factories: Assembling Applications with Patterns, Models, Frameworks,
and Tools. Wiley, 2004.

[GSW89] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. A cor-
rection to the algorithm in reiter’s theory of diagnosis. Artificial In-
telligence, 41(1):79–88, November 1989.

[Ham50] Richard W. Hamming. Error detecting and error correcting codes.
The Bell System Technical Journal, XXIX(2), 1950.

[Hou85] David Hounshell. From the American System to Mass Production,
1800-1932: The Development of Manufacturing Technology in the United
States. ACLS Humanities E-Book. Johns Hopkins University Press,
1985.

[Jan08] Mikolas Janota. Do SAT Solvers Make Good Configurators? In Pro-
ceedings of the 12th International Conference on Software Product Lines,
pages 191–195, 2008.

BIBLIOGRAPHY 149

[JM11] Manu Jose and Rupak Majumdar. Cause clue clauses: Error Local-
ization using Maximum Satisfiability. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and implementa-
tion - PLDI ’11, page 437, New York, New York, USA, 2011. ACM
Press.

[Jun04] Ulrich Junker. Quickxplain: Preferred explanations and relaxations
for over-constrained problems. In Proceedings of the 19th National
Conference on Artifical Intelligence, AAAI’04, pages 167–172. AAAI
Press, 2004.

[JZFF10] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Ger-
hard Friedrich. Recommender Systems: An Introduction. Cambridge
University Press, 2010.

[Kar53] Maurice Karnaugh. The map method for synthesis of combinational
logic circuits. Transactions of the American Institute of Electrical Engi-
neers, Part I: Communication and Electronics, 72(5):593–599, 1953.

[KCH+90] Kyo C. Kang, Sholom Cohen, James Hess, William Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, 1990.

[KCH+92] Kyo C. Kang, Sholom G. Cohen, Robert R. Holibaugh, James M.
Perry, and A. Spencer Peterson. A Reuse-Based Software Develop-
ment Methodology (CMU/SEI-92-SR-004). Technical report, Soft-
ware Engineering Institute, 1992.

[KKL+98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin,
and Moonhang Huh. Form: A feature-oriented reuse method with
domain-specific reference architectures. Ann. Softw. Eng., 5:143–168,
January 1998.

[KLD02] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. Feature-oriented
product line engineering. IEEE Software, 19(4):58–65, July 2002.

[LKL02] Kwanwoo Lee, Kyo C. Kang, and Jaejoon Lee. Concepts and guide-
lines of feature modeling for product line software engineering. In
Proceedings of the 7th International Conference on Software Reuse: Meth-
ods, Techniques, and Tools, ICSR-7, pages 62–77, London, UK, UK,
2002. Springer-Verlag.

150 BIBLIOGRAPHY

[LMN08] Jaejoon Lee, Dirk Muthig, and Matthias Naab. An Approach for
Developing Service Oriented Product Lines. In 2008 12th Interna-
tional Software Product Line Conference, pages 275–284. IEEE, Septem-
ber 2008.

[LS04] Inês Lynce and João Silva. On computing minimum unsatisfiable
cores. In SAT 2004 - The Seventh International Conference on Theory
and Applications of Satisfiability Testing, 2004.

[LSPS05] Daniel Lohmann, Wolfgang Schröder-Preikschat, and Olaf
Spinczyk. Functional and non-functional properties in a fam-
ily of embedded operating systems. In 10th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems (WORDS
2005. IEEE Computer Society, 2005.

[MAK09] Marcílio Mendonça, Andrzej Wasowski, and Krzysztof Czarnecki.
SAT-based analysis of feature models is easy. In Proceedings of the
13th International Software Product Line Conference, pages 231–240.
ACM Press, 2009.

[MAW11] Fabiana G. Marinho, Rossana M.C. Andrade, and Cláudia Werner. A
Verification Mechanism of Feature Models for Mobile and Context-
Aware Software Product Lines. In 2011 Fifth Brazilian Symposium
on Software Components, Architectures and Reuse, pages 1–10. IEEE,
September 2011.

[MBC08] Marcílio Mendonça, Thiago Bartolomei, and Donald Cowan.
Decision-making coordination in collaborative product configura-
tion. In 23rd Annual ACM Symposium on Applied Computing, 2008.

[MBC09] Marcílio Mendonça, Moises Branco, and Donald Cowan. S.P.L.O.T -
Software Product Lines Online Tools. In Proceeding of the 24th ACM
SIGPLAN conference companion on Object oriented programming sys-
tems languages and applications - OOPSLA ’09, page 761, New York,
New York, USA, October 2009. ACM Press.

[McC56] E.J. McCluskey. Minimization of boolean functions. Bell System Tech-
nical Journal, The, 35(6):1417–1444, Nov 1956.

[Men09] Marcílio Mendonça. Efficient Reasoning Techniques for Large Scale Fea-
ture Models by. PhD thesis, 2009.

BIBLIOGRAPHY 151

[Mil68] Robert B. Miller. Response time in man-computer conversational
transactions. In Proceedings of the December 9-11, 1968, Fall Joint Com-
puter Conference, Part I, AFIPS ’68 (Fall, part I), pages 267–277, New
York, NY, USA, 1968. ACM.

[MRP+07] João P. Morganho, Hugo Pimentão, Rita Ribeiro, Christoph Pohl,
Andreas Rummler, and Ludger Schwanninger, Christa Fiege. De-
scription of feasible industrial case studies. Technical report, AM-
PLE Project - Aspect-Oriented, Model-Driven, Product Line Engi-
neering, 2007.

[NBD14] Mahdi Noorian, Ebrahim Bagheri, and Weichang Du. From inten-
tions to decisions: Understanding stakeholders’ objectives in soft-
ware product line configuration. In Marek Reformat, editor, The 26th
International Conference on Software Engineering and Knowledge Engi-
neering, Hyatt Regency, Vancouver, BC, Canada, July 1-3, 2013., pages
671–677. Knowledge Systems Institute Graduate School, 2014.

[NE11] Alexander Nöhrer and Alexander Egyed. Optimizing user guidance
during decision-making. In 14th International Conference (SPLC), Mu-
nich, Germany, 2011.

[NE13] Alexander Nöhrer and Alexander Egyed. C2o configurator: a tool
for guided decision-making. Journal of Automated Software Engineer-
ing (JASE), 20(2), 2013.

[NEF03] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein.
Consistency Management with Repair Actions. In Proceedings of the
25th International Conference on Software Engineering, number Xml,
pages 455–464. IEEE Computer Society, 2003.

[New90] Allen Newell. Unified Theories of Cognition. Harvard University
Press, Cambridge, MA, USA, 1990.

[NNCI95] Victor P. Nelson, H. Troy Nagle, Bill D. Carroll, and David Irwin.
Digital Logic Circuit Analysis and Design. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1995.

[Par76] David L. Parnas. On the Design and Development of Program Fam-
ilies. IEEE Transactions on Software Engineering, SE-2(1):1–9, March
1976.

152 BIBLIOGRAPHY

[PBL05] Klaus Pohl, Günter Böckle, and Frank J. Linden. Software Product
Line Engineering - Foundations, Principles and Techniques. Springer
Berlin Heidelberg, 2005.

[Qui52] Willard V. Quine. The problem of simplifying truth functions. The
American Mathematical Monthly, 59(8):pp. 521–531, 1952.

[Qui55] Willard V. Quine. A way to simplify truth functions. The American
Mathematical Monthly, 62(9):pp. 627–631, 1955.

[RBSP02] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow.
Extending feature diagrams with uml multiplicities. In Integrated
Design and Process Technology, 2002.

[Rei87] Raymond Reiter. A theory of diagnosis from first principles. Artif.
Intell., 32(1):57–95, April 1987.

[RF03] Silva Robak and Bogdan Franczyk. Modeling web services vari-
ability with feature diagrams. In Akmal B. Chaudhri, Mario Jeckle,
Erhard Rahm, and Rainer Unland, editors, Web, Web-Services, and
Database Systems, volume 2593 of Lecture Notes in Computer Science,
pages 120–128. Springer Berlin Heidelberg, 2003.

[RP03] Silva Robak and Andrzej Pieczynski. Employing fuzzy logic in fea-
ture diagrams to model variability in software product-lines. In
10th IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems, pages 305–311, 2003.

[RRSK11] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul Kantor, edi-
tors. Recommender Systems Handbook. Springer, 2011.

[Rud86] Richard L. Rudell. Multiple-Valued Logic Minimization for PLA
Synthesis. Report UCB/ERL M86-65, University of California
Berkeley, 1986.

[SHTB06] Pierre Y. Schobbens, Patrick Heymans, Jean-Christophe Trigaux,
and Yves Bontemps. Feature Diagrams: A Survey and a Formal
Semantics. In 14th IEEE International Requirements Engineering Con-
ference (RE’06), pages 139–148. IEEE, September 2006.

[SRI03] Detlef Streitferdt, Matthias Riebisch, and Technische Universität Il-
menau. Details of formalized relations in feature models using ocl.

BIBLIOGRAPHY 153

In In Proceedings of 10th IEEE International Conference on Engineering
of Computer-Based Systems (ECBS 2003, pages 297–304, 2003.

[SS07] Ida Solheim and Ketil Stølen. Technology Research Explained. Tech-
nical Report SINTEF A313, SINTEF, 2007.

[STMS98] Timo Soininen, Juha Tiihonen, Tomi Männistö, and Reijo Sulonen.
Towards a general ontology of configuration. Artif. Intell. Eng. Des.
Anal. Manuf., 12(4):357–372, September 1998.

[Stu97] Markus Stumptner. An overview of knowledge-based configura-
tion. AI Communications, 10(2):111–125, April 1997.

[TBD07] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature Oriented
Model Driven Development: A Case Study for Portlets. In 29th In-
ternational Conference on Software Engineering (ICSE’07), pages 44–53.
IEEE, May 2007.

[TBK09] Thomas Thüm, Don S. Batory, and Christian Kästner. Reasoning
about edits to feature models. In 31st International Conference on Soft-
ware Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Pro-
ceedings, pages 254–264. IEEE, 2009.

[Tuk77] John Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[VD01] Bart Veer and John Dallaway. The eCos Component Writer’s Guide.
http://ecos.sourceware.org/ecos/docs-latest/cdl-guide/cdl-
guide.html, 2001.

[vdS04] Tijs van der Storm. Variability and Component Composition. In
Software Reuse: Methods, Techniques, and Tools: 8th International Con-
ference, ICSR 2004, Madrid, 2004.

[WBS+10] Jules White, David Benavides, Douglas Schmidt, Pablo Trinidad,
Brian Dougherty, and Antonio Ruiz-Cortés. Automated diagno-
sis of feature model configurations. Journal of Systems and Software,
83(7):1094–1107, July 2010.

[WJE+09] Jon Whittle, Praveen Jayaraman, Ahmed Elkhodary, Ana Moreira,
and João Araújo. Mata: A unified approach for composing uml
aspect models based on graph transformation. In Shmuel Katz,
Harold Ossher, Robert France, and Jean-Marc Jézéquel, editors,

154 BIBLIOGRAPHY

Transactions on Aspect-Oriented Software Development VI, volume 5560
of Lecture Notes in Computer Science, pages 191–237. Springer Berlin
Heidelberg, 2009.

[WL99] David M. Weiss and Chi Tau Robert Lai. Software Product-line En-
gineering: A Family-based Software Development Process. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[WPX+13] Bo Wang, Leonardo Passos, Yingfei Xiong, Krzysztof Czarnecki,
Haiyan Zhao, and Wei Zhang. SmartFixer : Fixing Software Con-
figurations based on Self-adaptive Priorities. In Proceedings of the
17th International Software Product Line Conference, pages 82–90, 2013.

[WSO07] Hiroshi Wada, Junichi Suzuki, and Katsuya Oba. A Feature Mod-
eling Support for Non-Functional Constraints in Service Oriented
Architecture. In IEEE International Conference on Services Computing
(SCC 2007), pages 187–195. IEEE, 2007.

[XHSC12] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czar-
necki. Generating range fixes for software configuration. In Proceed-
ings of the 34th International Conference on Software Engineering, pages
58–68. IEEE Press, 2012.

[ZC] Roman Zippel and Contributors. kconfig language definition.
https://www.kernel.org/doc/Documentation/kbuild/kconfig-
language.txt.

Appendices

155

A
Earlier Work

A.1 Graphical Representation of Configuration Knowl-

edge

In this section, we provide an illustrative example of application of the model-
based representation of configuration knowledge described in [BM09b]. Con-
sider the feature model represented in Figure A.1. The following configuration
knowledge should be considered:

1. The "Send Photo" feature is dependent on the inclusion of the "Photo" fea-
ture (this information is not, for some reason, codified in the feature model).

2. If both "Photo" and "Video media options are selected then an additional
menu must be included to allow for the user to switch between both media
types. If only one media is present, no such functionality is required.

Mobile Media

Media

Photo Video

Management

Send Photo Sorting

Screen Size

128x148 240x320

Figure A.1: Media application example

157

158 APPENDIX A. EARLIER WORK

Figure A.2: Configuration module

3. For achieving acceptable performance, a 3rd party video decoder must be
used in systems with higher resolution. In lower resolution systems, an
in-house solution was found to be acceptable and is to be used instead, to
reduce royalty costs.

Connfiguration of the feature model entails selecting one of the alternative screen
sizes, selecting which media options will be available, and whether the send
photo or sorting services are required. This can be represented in our model
with the following configuration module (CM) shown in Figure A.2: Each CM may
correspond to a feature of the model, but that is not always the case as shown
bellow. A CM may include a set of parameters. In this case, the "Mobile Media"
CM parameters are "Media", "Send Photo", "Sorting", and "Screensize". These
parameters are specified by the user to describe the desired configuration. For
example, (Media="Photo,Video", SendPhoto="true", Sorting="false", and Screen-
Size="128x148"). As shown, parameters may contain single or multiple values.
Specifying the parameters for this CM will instantiate it and trigger the inclusion
of the mobileMedia.java source code file into the project.

Our model allows describing the propagation of configuration information
through the CMs. These associations describe both the flow of configuration data
and cardinality constraints that must be respected when instancing the CMs. Fig-
ure A.3 describes how configuration from the "Mobile Media" CM is to be prop-
agated to the Media CM. The arrow indicates how the configuration information
flows, and "*" represents iteration. "|MediaType=|Media*" indicates that the Me-
diaType parameter (of "Media" CM) will successively assume each one of the val-
ues of "Media" parameter of the "Mobile Media" CM (rather than being assigned
the same list of values which would be achieved by the straightforward "|Medi-
aType=|Media"). This will cause the Media CM to be instantiated twice: once for
"MediaType=Photo" and yet again for "MediaType=Video".

Composition can be used as a shorthand notation for indicating that similarly

A.1. GRAPHICAL REPRESENTATION OF CONFIGURATION KNOWLEDGE159

Figure A.3: Association describing configuration flow and cardinality constraints

Figure A.4: Composition example

named parameters on either side of the association should be set to the same
value. A guard can also be used to indicate under what circumstances an associ-
ated CM should also be instanced. This is illustrated in Figure A.4.

A specialization of a configuration module is a specific implementation of that
configuration module that is to be used whenever a specific value or set of values
is used in the parameters (Figure A.5).

Figure A.6 takes advantage of the specialized configuration of "Media" to rep-
resent the constraint requiring "Photo" if "Send" service is selected.

Figure A.7 illustrates the use of n-ary associations to describe the inclusion of
an anonymous CM that ensures that the source code file containing the required
menu is built into the application.

Finally, Figure A.8 wraps up our example by using specializations to describe
the variable implementation depending on selected resolution.

160 APPENDIX A. EARLIER WORK

Figure A.5: Specialization example

Figure A.6: Association describing constraint only, without any configuration
flow.

A.1. GRAPHICAL REPRESENTATION OF CONFIGURATION KNOWLEDGE161

Figure A.7: n-Ary association to represent complex constraint

Figure A.8: Representing alternative implementations with specializations.

162 APPENDIX A. EARLIER WORK

Figure A.9: Example of aspectual model slice
.

A.2 Reusable Model Slices

A.2.1 Overview

This section provides a brief illustration of the Resusable Model Slices (RMS)
aspect-oriented modelling technique described in [BM09c]. The main objective of
this approach is providing configurable aspectual models (the model slices), that
can be tailored to apply to different base models. It is well suited to implement
the model-based configuration representation described in Section A.1. Figure
A.9 provides an example of an aspectual model slice, whose contents are fully
explained over the next subsections. This model slice describes the buffering of
an operation’s results: it is named "Buffering", has a structural and behavioral de-
scription in two separated containers (using class and sequence diagram slices,
respectively). This model slice is generalized by parameters corresponding to
generic variables ClassName, opName, opPar and opRet. To create a con-
crete model slice, an instance of a RMS should be constructed by supplying the
required parameters. An instance of RMS is a MATA aspectual model pattern

A.2. REUSABLE MODEL SLICES 163

[WJE+09] specifically tailored for making the changes specified via the configu-
ration. Configuration is accomplished by a very simple language. An instance is
defined as:

RMSidentifier(Parameter1, Parameter2,...)

For example, to create concrete model slices that add buffering to operation
getPerson(name:String,age:Integer):Person from class Factory, an
instance of the Buffering RMS could be created like this (parameter are specified
in the same order as declared in the RMS):

Buffering (Factory, getPerson, "name:String,

age:Integer",Person)

A.2.2 Wildcards

The special symbol "|_" may be used to represent "any matching element". When
used within the generalized transformations, the same symbol should be inter-
preted as "don’t care". For example, to create concrete model slices that add
buffering to any operation getPerson that returns a Person, regardless of the
containing class or operation arguments, one could create the following instance:

Buffering(|_,getPerson,|_,Person)

A.2.3 Default values

Parameters may be given default values. In Figure A.9, parameters opPar and
opRet have the "|_" special symbol (any matching element) as the default value.
This means that any such parameter will be assigned that value unless otherwise
specified. For example, in Figure A.9, both the opPar and opRet parameters
have the "|_" default value. Taking this into consideration, concrete model slices
that add buffering to any operation f in class Test, regardless of parameters or
return type might be obtained by instancing the "Buffering" RMS as:

Buffering (Test,f)

A.2.4 Operations

A special syntax was created for conveniently manipulating and generalizing op-
erations within the generalized transformations. An operation is represented as

164 APPENDIX A. EARLIER WORK

|(StringLiteral)(NonTerminalTokenList)

where Stringliteral is a description of the desired operation, using con-
crete syntax as desired. Within this description, string tokens may be used to
describe non-terminal generic symbols that are to be considered variable model
elements. These are explicitly identified in the non-terminal token list, to distin-
guish them from the literal symbols. As an example:

|(getPerson(personKey):Person)(personKey)

This pattern will match any operation with name getPerson that returns a
Person and has a single parameter of any type. The personKey token is identi-
fied as being a non-terminal token, being bound to whatever the actual parameter
is. For example, this pattern will match both:

getPerson(Integer):Person

getPerson(String):Person

with personKey being bound to Integer and String, respectively. If an * is
appended to a non-terminal token identifier, then it will match any list of opera-
tion parameters, including a void list. The next example will match any operation
with the corresponding name and return type, regardless of the number or type
of parameters:

|(getPerson(personKey):Person)(personKey*)

If the actual parameter list is not referred to elsewhere in the RMS, then the pre-
vious example could be rewritten as:

|(getPerson(|_*):Person)()

A.2.5 Instantiation

A RMS is instanced by replacing all provided template parameters in the generic
MATA models as appropriate. If some generic variables remain undefined in
the model (or are set to "don’t care") then these will be matched against the base
model. All matching parameter bindings are identified and each such binding
will be used to create an alternate transformation. As such, in a single RMS in-
stance, each generic transformation may originate multiple transformations. As
an example, the instance:

Buffering(|_,getPerson,|_,Person)

A.2. REUSABLE MODEL SLICES 165

will generate multiple parameter bindings to match any class that has a getPerson
operation with Person return type. If this operation is overloaded in some
classes, then additional parameter bindings will be used to reflect that as well.
The MATA transformations thus generated will be then applied to the base model.
Dependencies and conflicts between these individual transformations will be han-
dled as usual by the MATA framework. As an example, the instance:

Buffering(Sale, computeTax,"",Money)

would result in the concrete MATA transformations illustrated in Figure A.10.

166 APPENDIX A. EARLIER WORK

Figure A.10: Resulting MATA transformations

B
Box and Whiskers Plots

B.1 Box and Whiskers Plots

Most of our results are presented using box and whiskers plots, devised by Tukey
[Tuk77] in the 1970’s. They offer a compact summary of the distribution of a data
set. In these plots, a box is always used to represent the first, second and third
quartiles of the data (Q1,Q2,Q3). Q2 corresponds to the median. The dimension
of the box (Q3-Q1) represents the interquartile range (IQR), a statistical measure
of the dispersion of the data. It is a robust measure, unlike others such as stan-
dard deviation or variance, who can be greatly affected by outliers. Whiskers are
line segments placed above and below the box, whose extremities (known as the
fences) can be associated with different statistics. We follow Tukey’s approach of
using the high and low fences to denote the highest datum belowQ3+3/2IQR and
the lowest datum above Q1 − 3/2IQR, respectively. Values outside these ranges
are considered outliers. Outliers are represented explicitly using dot markers
above/below the whiskers. White or open dots are used for normal outliers,
while black dots are used for extreme outliers (values above Q3 +3IQR or below
Q1 − 3IQR). We also identify the mean of the data with an ’x’ marker. Figure B.1
shows an example of a box and whiskers plot. Two data series are represented
side by side. The IQR for both series is represented by the height of the boxes: 45
for the left-side series and 20.5 for the other. This information can be perceived
from the boxplot at a glance. The top and bottom of the boxes correspond to

167

168 APPENDIX B. BOX AND WHISKERS PLOTS

Figure B.1: Box and whiskers plot example

the third and first quartile (Q3 and Q1), respectively, whilst the box divider in-
dicates the median values (Q2), 47 and 24. The series on the left side of the plot
has average 58.20, while the other series as an average of 37.53. These values are
marked with ’x’. Although the mark is labeled with the actual average value, we
generally avoid doing so to avoid visual pollution of the chart.

The whiskers extend up from the top of the boxes, up to the highest datum still
within 1.5IQR distance of Q3. Conversely, they also extend down to the lowest
datum still within 1.5IQR of Q1. This offers a clear picture of the symmetry of
the distribution (or lack thereof) around the median. In this case, it is apparent
that both series are skewed towards the highest values. The whisker limits also
represent the range beyond which datum are classified as outliers. These are
shown plotted above both whisker lines. The values marked with a clear circle
are normal outliers, while the value marked with a black dot is an extreme outlier
(because it is further than 3IQR away from Q3). Outliers are sometimes labelled
with an identification and explanation of that particular result.

Outliers represent "interesting" data in that it falls outside the expected range.
Outliers can occur by chance alone, especially if the population is very large,
but they are often indicative of either measurement problems or low kurtosis
("peakedness"). The first case suggests removal of the offending points from the

B.1. BOX AND WHISKERS PLOTS 169

data set, while the second suggests that additional insight should be sought.

170 APPENDIX B. BOX AND WHISKERS PLOTS

C
Validation Results

171

172 APPENDIX C. VALIDATION RESULTS

Table C.1: Results for soft constraint injection

Model Name Nr. of Constraints Injected
AndroidSPL 21
Arcade Game PL 48
bCMS system 22
Billing 105
Car Selection 50
Consolas de Videojuegos 18
OS 14
DATABASE_TOOLS 28
DELL Computers 119
Documentation_Generation 20
DS Sample 6
Electronic Drum 12
E-science application 25
HIS 20
Hotel Product Line 38
J2EE web architecture 38
Letovanje 18
Linea de Experimentos 28
Meshing Tool Generator 36
Model_Transformation 37
FraSCAti 87
MFP 81
Meeting Config 22
Printers 29
Eclipse1 - Reuso 45
Smart Home 40
Smart Home v2.2 38
SmartHome_vConejero 36
Jogo 22
Thread 19
Video Player (a) 27
Video Player (b) 17
Web_Portal 29
xtext 94
Coche ecologico 94
Webmail 81
BankingSoftware 176
Estrutura_Decisiones 366
BattleofTanks 144

173

Table C.2: Results for identification of untriggerable and unsatisfiable soft con-
straints

Model
Unsat.

Constraints
Untrigger.
Constraints

Total
Time
(ms)

Average
Time

(per constr.)
(ms)

AndroidSPL 0 0 28 1,33
Arcade Game PL 0 0 373 7,94
bCMS system 0 0 195 13,00
Billing 0 9 485 4,62
Car 0 0 303 6,06
Consolas de Videojuegos 0 0 22 1,22
OS 0 0 15 1,07
DATABASE_TOOLS 0 0 39 1,50
DELL Computers 0 0 605 5,08
Documentation_Generation 0 0 25 1,25
DS Sample 0 0 15 2,50
Electronic Drum 0 0 24 2,00
E-science application 0 1 47 1,88
HIS 0 1 38 1,90
Hotel Product Line 0 0 55 1,45
J2EE web architecture 0 0 61 1,65
Letovanje 0 0 25 1,39
Linea de Experimentos 0 0 27 1,50
Face Animator 0 2 59 1,64
Model_Transformation 0 0 81 2,25
FraSCAti 0 0 230 2,64
MFP 0 2 199 2,46
Meeting Config 0 0 33 1,50
Xerox 0 0 212 7,31
Eclipse1 - Reuso 0 1 59 1,31
Smart Home (a) 0 0 46 1,21
Smart Home (b) 0 0 38 1,00
SmartHome_vConejero 0 2 58 1,61
Jogo 0 0 36 1,64
Thread 0 0 9 1,29
Video Player (a) 0 0 31 1,15
Video Player (b) 0 0 25 1,47
Web_Portal 0 0 34 1,17
xtext 0 1 288 3,06
Coche_ecologico 0 0 362 12,07
Webmail 0 0 138 3,94
BankingSoftware 0 1 573 6,10
Estrutura_Decisiones 0 0 302 13,73
BattleofTanks 0 0 228 10,36

174 APPENDIX C. VALIDATION RESULTS

Table C.3: Results for identification of contradictory pairs of soft constraints

Feature Model Soft Constraints SC Pairs Contradictions Time [ms]
AndroidSPL 21 210 17 167
Arcade Game PL 48 1128 9 3451
bCMS system 22 231 27 251
Billing 105 5460 913 15311
Car Selection 50 1225 79 2158
Consolas de Videojuegos 18 153 3 104
OS 14 91 12 39
DATABASE_TOOLS 28 378 19 266
DELL Computers 119 7021 5727 40034
Documentation_Generation 20 190 9 107
DS Sample 6 15 3 20
Electronic Drum 12 66 3 52
E-science application 25 300 17 357
HIS 20 190 6 176
Hotel Product Line 38 703 29 383
J2EE web architecture 38 703 31 761
Letovanje 18 153 27 111
Linea de Experimentos 28 378 12 230
Face Animator 36 630 165 434
Model_Transformation 37 666 11 1012
FraSCAti 87 3741 177 7894
MFP 81 3240 1605 9594
Meeting Config 22 231 18 178
Xerox 29 406 2 1093
Eclipse1 - Reuso 45 990 114 1005
Smart Home (a) 40 780 40 478
Smart Home (b) 38 703 33 456
SmartHome_vConejero 36 630 130 397
Jogo 22 231 8 243
Thread 19 171 30 99
Video Player (a) 27 351 15 262
Video Player (b) 17 136 3 101
Web_Portal 29 406 43 204
xtext 94 4371 291 14732

175

Table C.4: Partitioning and cover extraction results

Model Name Partitions Number
of Terms

Partitioned Terms Time (ms)

Arcade_Game 16 5418 5433 3652
Dell_Computers 1 853 853 471
Coche_ecologico 44 207360 75 1357
Meeting_Config 26 138240 51 673
xtext 25 5231304 127 664
Eclipse1-Reuso 7 990000 99 220
Car 16 10777536 72 559
Smart_Home (a) 18 583680 60 530
MFP 12 5 16 418
Smart_Home (b) 20 23232 149 632
ConsolasVideojuegos 4 79200 112 722
OS 10 8400 31 416
Video_Player (a) 19 50400 43 516
FaceAnimator 10 8640 44 259
AndroidSPL 14 2304 57 324
FraSCAti 14 1760 455 396
Xerox 49 8707129344000 144 1404
bCMS_system 37 3072 54 893
J2EE web architecture 29 5225472 57 901
DS Sample 6 6912 34 220
Letovanje 4 12456 186 133
Hotel_Product_Line 34 2592 47 1017
database_tools 14 2177280 67 372
Electronic_Drum 16 331776 41 410
Jogo 23 184320 43 607
Video_Player (b) 28 93632 72 786
Model_Transformation 22 207152640 165 599
his 39 560 53 927
Documentation_Generation 5 15162 2534 586
thread 1 390 390 83
Web_Portal 5 14220 300 129
BankingSoftware 66 32060448 321 1747
BattleofTanks 14 42996610800 130 392
Billing 19 24 42 579
Estructura Decisiones 3 - - -

176 APPENDIX C. VALIDATION RESULTS

Table C.5: Repair results - Finding repairs that minimize Hamming distance from
random invalid configurations.

Model Name Average Number
of Repairs Time First[ms] Iteration over

next (max. 1k)[ms]
Arcade_Game 1.70 28.54 0.33
Dell_Computers 19.63 5.19 0.85
Coche_ecologico 75.53 0.18 1.22
Meeting_Config 35.93 0.12 0.22
xtext 26.77 0.53 0.14
Eclipse1-Reuso 30.47 0.19 0.32
Car 912.80 0.14 0.10
Smart_Home (a) 6.77 0.12 0.25
MFP 1.60 0.09 0.34
Smart_Home (b) 5.27 0.30 3.49
ConsolasVideojuegos 25.03 0.19 0.35
OS 17.83 0.06 0.31
Video_Player (a) 2.80 0.09 1.99
FaceAnimator 6.10 0.10 12.26
AndroidSPL 8.00 0.11 0.14
FraSCAti 4.73 3.61 0.08
Xerox 7166361626.90 0.36 1570.29
bCMS_system 9.00 0.18 0.04
J2EE web architecture 55.40 0.11 3.75
DS Sample 305.07 0.10 4.26
Letovanje 22.93 0.48 0.05
Hotel_Product_Line 11.57 0.08 0.40
database_tools 6.47 0.15 0.31
Electronic_Drum 2918.00 0.07 0.15
Jogo 1062.27 0.09 4.80
Video_Player (b) 22.20 0.16 0.06
Model_Transformation 104.07 0.31 1.41
his 8.23 0.13 0.33
Documentation_Generation 10.53 8.68 3.42
thread 7.33 1.96 0.88
Web_Portal 5.17 0.51 0.55
BankingSoftware 43.87 3.23 0.16
BattleofTanks 371819.60 0.46 9.51
Billing 2.33 0.56 8.50

177

Table C.6: Repair results - Finding repairs for invalid configurations preserving
selected features.

Model Name Average Number
of Repairs

Time First
[ms]

Iteration
over next
(max. 1k)

[ms]
Arcade_Game 1.10 9.33 0.07
Dell_Computers 6.73 1.72 0.14
Coche_ecologico 28.50 0.33 0.09
Meeting_Config 6.47 0.19 0.02
xtext 1.00 0.40 0.02
Eclipse1-Reuso 5.00 0.23 0.03
Car 40545.60 0.31 0.03
Smart_Home (a) 1.27 0.17 0.05
MFP 1.03 0.13 0.08
Smart_Home (b) 1.43 0.23 0.09
ConsolasVideojuegos 13.43 0.14 0.07
OS 3.20 0.08 0.07
Video_Player (a) 1.67 0.11 0.30
FaceAnimator 2.83 0.11 0.73
AndroidSPL 105.93 0.72 0.04
FraSCAti 1.90 0.70 0.30
Xerox 20.77 0.33 60.58
bCMS_system 3.30 0.16 0.02
Experimento 1.00 0.14 0.95
J2EE web architecture 3.33 0.15 0.05
DS Sample 76.53 0.13 33.77
Letovanje 10.23 0.27 0.02
Hotel_Product_Line 4.30 0.14 0.09
database_tools 2.97 0.16 0.02
Electronic_Drum 131.73 0.11 1.36
Jogo 20.60 0.12 1.76
Video_Player (b) 1.00 0.15 0.02
Model_Transformation 34.90 0.24 0.58
his 28.93 0.19 0.08
Documentation_Generation 3.33 2.87 1.34
thread 3.63 0.73 0.02
Web_Portal 29.20 0.33 1.05
BankingSoftware 65.33 0.81 0.02
BattleofTanks 647985.20 0.27 5.49
Billing 1.50 0.23 0.05

178 APPENDIX C. VALIDATION RESULTS

D
GQM Document

179

Goal
Purpose

Issue
Object (process)

Viewpoint

Evaluate
the effectiveness and efficiency and
of enhanced configuration support
from the perspective of the application
engineer / developer

Question (Q1) What is the efficiency of the standard
configuration process?

Metrics
M1 Configuration time (without support)

Question (Q2) What is the efficiency of the enhanced
configuration process?

Metrics
M2 Configuration time (with support)

Question (Q3) What is the effectiveness of the standard
configuration process?

Metrics
M3 Constraint satisfaction rate (without support)

Question (Q4) What is the effectiveness of the enhanced
configuration process?

Metrics
M4 Constraint satisfaction rate (with support)

Question (Q5) Does the efficiency of the configuration
process improve?

Metrics
M5 M2/M1
M6 Subjective evaluation of developer

Question (Q6) Does the effectiveness of the configuration
process improve?

Metrics
M7 M12/M11
M8 Subjective evaluation of developer

Question (Q7) Does configuration support help
understanding the required trade offs?

Metrics
M9 Subjective evaluation of developer

M1 – Configuration Time is measured from the time the user begins a configuration task

without support, up until the moment where it ends. The configuration task begins when the

user opens the corresponding feature model, and ends when the user marks the configuration

as done (advancing to the next configuration).

M2 – Similar to M1, for configuration tasks with soft constraint support.

M3 – The ratio of satisfied soft constraints without support.

 M4 – The ratio of satisfied soft constraints with support.

M5 – The ratio of the configuration times, with and without support.

M6 – The test subject is asked if he feels configuration support helped him achieve complete

the configuration faster. The answer is provided in a 5 point discrete scale.

M5 – The ratio of the configuration efficiency, with and without support.

M8 – The test subject is asked if he feels configuration support helped him achieve complete

the configuration more efficiently. The answer is provided in a 5 point discrete scale.

M9 – The test subject is asked if he feels configuration support helped him better understand

potential trade‐offs. The answer is provided in a 5 point discrete scale.

182 APPENDIX D. GQM DOCUMENT

E
Experiment Test Cases

183

Scenario Name: Web Portal

Description:

This feature model describes possible configurations of a web server, allowing specification of

supported protocols, security features and additional services .

You are requested to create a configuration following these recommendations, if possible (it

may be impossible to simultaneously satisfy all these constraints):

 We wish to support the lowest possible number of protocols.

 Performance should be in the range of miliseconds or seconds (Ms or Sec features)

 Logging of server operations would be desirable

 Secure data transfer (Data_Transfer feature) is also considered an useful feature to

include.

Scenario Name: fraSCAti

Description:

The OW2 FraSCAti Software Product Line (SPL) allows users to build highly "à la carte",

configurable and extensible Service Component Architecture (SCA) runtime platforms

according to both their application requirements and target system constraints. This feature

model is a compact representation of all OW2 FraSCAti features and their constraints, which

captures all possible OW2 FraSCAti configurations. Each OW2 FraSCAti feature is a distinctive

user‐visible plugin of the OW2 FraSCAti SPL (e.g. Web Service binding support, BPEL

implementation support, a Java compiler used).

You are requested to create a configuration following these recommendations, if possible (it

may be impossible to simultaneously satisfy all these constraints):

To keep things as simple as possible:

 Support the lowest possible number of metamodels.

 No additional implementations other than the mandatory Composite and Java

(Implementation_Composite and Implementation_Java) should be included. The fewer

the better.

 No additional Bindings other than the mandatory SCA binding (Binding_SCA feature)

should be included.

 Each and every single one of these features is desired: JMX, BindingFactory, FScript,

RemoteManagement, Explorer.

Scenario Name: DELL LAPTOP/NOTEBOOK

Description:

This feature model describes a manufacturer’s line of computers. It represents possible

combinations of hardware and software features, such as operating system, hard drive

capacity or type of processor.

You are requested to create a configuration following these recommendations, if possible (it

may be impossible to simultaneously satisfy all these constraints):

 The final product should include an optical drive, preferably either a bluraydisc or a

combined dvd rw /cd rw drive.

 Lowest possible price

 Hard drive should be of no less than 160Gb

 Operating System should be Windows Vista 64

 Intel Atom or Intel Celeron processor

 Lowest possible weight

 Include 2 or 3 Gb of memory, but preferably 2Gb. No less than 2Gb.

Scenario Name: EXPERIMENTAL ENVIRONMENT

Description:

This feature model describes an experimental hardware environment, with various possible

configurations of operating system and installed software.

You are requested to create a configuration following these recommendations, if possible (it

may be impossible to simultaneously satisfy all these constraints):

 The system should include at least one of Tomcat or Apache2 servers.

 Support should be provided for the highest possible number of programming

languages.

 Operating system should be Fedora, Redhat or Ubuntu

 Database should be only one of CouchDB, MongoDB or Riak

 The maven utility should be included

	Introduction
	Objectives and Challenges
	Research Methodology
	Proposed Solution
	Configuration Advisor and Soft Constraints
	Prototype-based Configuration Approach
	Earlier Work

	Evaluation
	Contributions
	Structure of the Document

	Feature Modeling and Product Derivation
	Software Product Lines
	Feature Models
	Boolean Logic Representation of Feature Models
	Feature Model Configuration

	Iterative Configuration of Feature Models
	Assisting the Decision Process

	Boolean Soft Constraints
	Soft Constraints in Feature Modeling
	Boolean Soft Constraints in Feature Models
	Normative Semantics
	On Impossibility Functions
	Annotation of a Feature Model with Normative Soft Constraints

	Annotational Semantics
	Conclusions

	Soft Constraints in Domain Engineering
	Domain-related Soft Constraints
	Prototypical Applications
	Soft Constraint Annotation Patterns
	Optional Selection Suggestion
	Reversed Constraint Suggestion
	Group Selection Suggestion
	Soft Constraints and Feature Model Evolution

	Suspicious Soft Constraint Interactions
	Suspicious Interaction Classification
	Identification of Suspicious Interactions

	Conclusions

	Enhanced Configuration Support
	Enhanced Support Overview
	Configuration Suggestions
	Conflict Identification and Explanation

	Algorithms for Configuration Advice and Conflict Analysis
	Tool Description
	Conclusions

	Prototype-Based Configuration
	Prototype-based vs. Iterative Configuration
	Configuration Repair Overview
	Configuration Repair Based on Cover Information
	Cover and Literal Minimization
	Feature Model Partioning for Efficient Cover Computation
	Configuration Repair Using Cover Information
	Performance and Optimality
	Selection Criteria
	Repair of Partitioned Feature Models

	Presentation of Potential Repairs
	Tool Description
	Conclusions

	Validation
	Identification of Suspicious Interactions
	Experiment Objectives and Goals
	Data Set Construction and Constraint Injection
	Unsatisfiable and Untriggerable Soft Constraint Identification Experiment
	Contradictory Soft Constraint Identification Experiment

	Configuration Repair Testing
	Experiment Objectives and Goals
	Partitioning and Cover computation
	Repairing Random Invalid Configurations
	Problem Decomposition

	Empirical Testing of Enhanced Configuration Support
	Experiment Design
	Data Analysis and Hypothesis
	Experiment Realization
	Statistical Analysis of Results
	User Feedback

	Results Discussion
	Identification of Suspicious Interactions
	Configuration Repair Testing
	Empirical Testing of Enhanced Configuration Support

	Threats to Validity

	Conclusions and Future Work
	Research Questions Revisited
	How to leverage the use soft constraints in SPL development to achieve this goal?
	How to provide enhanced configuration support?
	How to represent the user's idealized configuration?
	How effective is enhanced configuration support?
	How efficient is enhanced configuration support?

	Past, Present, and Future
	The Past
	The Present
	The Future

	Appendices
	Earlier Work
	Graphical Representation of Configuration Knowledge
	Reusable Model Slices
	Overview
	Wildcards
	Default values
	Operations
	Instantiation

	Box and Whiskers Plots
	Box and Whiskers Plots

	Validation Results
	GQM Document
	Experiment Test Cases

