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Chapter 1

Introduction

1.1 Towards Continuous Delivery

1.1.1 Introduction

Software evolves all the time. In a world where software is getting more and more
intertwined with our daily lives, constant availability and maintenance becomes more
and more important. Additionally, the constant threat of malware (viruses, worms etc.)
requires the frequent repair and adaptation of software that may have been deployed to
many users. Especially in the context of “software as a service”, the frequent modifi-
cation and repair of software systems presents new opportunities and challenges.

Of course, for such fast-changing software to have any real benefit, the changes
to the software will have to be propagated to the actual users of the system. After a
feature has been added to a software product, the new version has to be delivered to the
users of the system. This thesis is concerned with the technical and conceptual aspects
of this process which is usually called the update process [96]. The notion ofsoftware
deliveryis part of that process. It is defined as transferring changes made to a software
product at the vendor side to the customer side where they can be deployed.

Recently, the notion of “software as a service” (SaaS) has raised considerable in-
terest. In this case the larger part of the software is operational at the vendor side.
Customers use the software over the Internet, often through a web interface. One of
the advantages of SaaS from the point of view of software delivery, is that this process
can be completely managed by the vendor. Moreover, upgrading a fixed number of
instances of in-house deployments is enough to make new features and bug fixes avail-
able to all users at once. An example of this is Google Mail (GMail). This software
product is continuously evolved without users having to download and install explicit
updates. They only notice feature enhancement and quality improvement. However,
there are also challenges. If for instance the software service is realized by a server part
on the one hand (running at the vendor side) and a client part on the other (installed by
the customer), updates to either of them have to ensure that the other does not break.
In other words the server and client deployments co-evolve [47]. This kind of setup is
exemplified by Google Earth which can be used to “browse” the earth. The maps and
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satellite images are hosted and served by Google. However, the user accesses these im-
ages through a user interface client that has to be downloaded and installed separately.
The impact of service orientation and software evolution on society requires further re-
search on the question how to keep the customer side synchronized to the vendor side.
The work in this thesis can be seen in that perspective.

This thesis in particular looks at the problem of automating software delivery in the
context of heterogeneous, semi-large to large component-based product lines [107,108]
with an emphasis on open source software (OSS). The emphasis on OSS entails that we
abstract from certain organizational boundaries and process aspects that are common
in industrial settings. Examples of these aspects include formal code reviewing, quality
assurance, release planning, etc.

Heterogeneity of a software product means that the product is developed using
multiple programming languages and/or platforms. A component-based product line
then consists of a set of independently evolving software components reused across
different variants of the product.

Heterogeneity of a software product adds to the complexity of the software delivery
problem. Different programming languages may require different configuration, build,
integration, and deployment solutions. This means that automation of delivery in such
a setting requires abstract models of how a software product is structured. In this thesis
we abstract from programming language and platform specific details, and present our
solutions in mostly generic terms.

Ideally software delivery should be performed in a continuous fashion, hence the
theme of this thesis: “continuous delivery”. Continuous delivery is motivated by the
fact that a shorter feedback loop between vendor and customer increases the quality and
functionality of the product. We discuss the (historical) roots of continuous delivery in
more detail below.

Our approach to continuous delivery does not imply that the updates areactually
delivered to end users of a software product. However, if updatescan be delivered
continuously, there is always the possibility to deliver them in a less frequent fashion.
Nevertheless, different groups within a software development organization may benefit
from the ability to be flexible in this respect. For instance, our technology does not
prohibit schemes where, for example, end users receive updates every month, whereas
beta testers receive them every week. Developers themselves could update truly con-
tinuously to immediately evaluate the result of the changes they made. This thesis
presents technological enablers for the practice of continuous delivery; how the actual
process of release and update is organized is considered to be an orthogonal aspect.

The research covers three aspects, corresponding to the three parts of this thesis.
These aspects are considered to be enablers for the update process: configuration, inte-
gration and delivery. Configuration consists of customizing a software product family
by selecting the desired set of features and components. This way vendors are able to
satisfy the requirements of a diverse customer base. Integration is defined as putting
independently evolving software components together in order to obtain a complete,
working software system. Finally, software delivery consists of transferring new ver-
sions of the product to its users.
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1.1.2 Motivation

Introduction

A recent issue ofACM Queuewas dedicated to the importance of automatic updates
as a critical competitive advantage for software vendors [43]. One of the open prob-
lems discussed in that issue concerned the automatic updating of component-based or
otherwise composite systems. Since software products nowadays are oftensystems of
systemsand not just a singularprogram, release, delivery and deployment processes
are more complex, time-consuming and error-prone. In this section we give a high
level description of the software update process and motivate the need for automation.

The Software Update Process

Software deliveryis defined as transferring software from a vendor to a customer. Soft-
ware updating usually means that an existing customer configuration isupdatedto a
new version of the product. Delivery, however, also includes the transfer of a software
product that has not been installed by the user previously.

During the evolution of a software system, usually not all subsequent versions are
delivered. Only versions that exhibit sufficient levels of quality or feature completeness
are usually made available to customers. This process is calledreleasing. Releasing
consists of selecting the appropriate versions of software components that together
make up a working, high-quality product that is ready to be exposed to end-users.

Before a software product is released it often is built from scratch and thoroughly
tested.Building a software product consists of compiling all the sources and linking
them into one or more libraries and/or executables. The testing process then makes
sure the current state of the product meets the requirements and exhibits certain quality
attributes (e.g., reliability, efficiency, etc.).

Figure 1.1 gives a graphical overview of this process. On the right a customer is
shown that has installed version 1.0 of a certain software product. This installation
is subsequently updated to versions 1.1 and 1.2. The enhancements in quality and
functionality are indicated by triangles (deltas). The left-hand side of the figure shows
the vendor perspective: for each release (indicated by the boxes in the middle) the
sources go through a process of building, testing and releasing before the actual release
packages are made available.

Obviously, the figure does not show the whole picture. It does not show, for in-
stance, how the software product is structured, nor does it show how the build, test and
release processes are affected by this structure. For instance, if a software product con-
sists of a number of subsystems that evolve at individual paces, building, testing and
releasing new versions can be quite time-consuming and error-prone. Furthermore, the
figure only lists three subsequent releases of a single product and how each of these
releases is delivered to a single user. In realistic settings, however, there are probably
more versions, more productvariantsand more customers. Additionally, the acquisi-
tion of a software product may involve a process of tailoring and customization, which
leads to the situation that different customers have installed different instances of the
same release. Below we will discuss the dilemmas and trade-offs that come into play
if the delivery and update processes have to deal with such multiplicities.
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Figure 1.1: Graphical overview of the software update process

Many, Many, Many...

Software products are no longer developed as monolithic systems. Many software
products consist of a host of subsystems, third-party components, tools, plug-ins, ad-
dons, etc. Some components of the system may be developed in house in one pro-
gramming language whereas another component is licensed from a third-party and is
developed in a different programming language. Software development has become in-
creasingly complex. Similarly, a product often has dependencies on additional software
at the user’s site apart from the core services of the operating system. These problems
are especially severe in the context of product software where many customers have to
be served with new versions of the product [54], and where software has many external
dependencies, such as web servers, database servers, virtual machines etc.

For instance, a content management system (CMS) often has to integrate with some
kind of database server such as MySQL or Microsoft SQL Server at the customer side.
Updates to the CMS might require or break certain versions of the database server that
the customer acquired from a different vendor. Additionally, the CMS may support
different database servers. Thus, different customers can have different software en-
vironments which complicates the update process even more so. Finally, since each
customer has her specific configuration, customization and setup data, the update pro-
cess must take care not to overwrite or invalidate such stateful information. In other
words, updates should be backwards compatible with respect to state, or be able to
migrate existing configuration data to the new version.

Different parts, originating from different parties, delivered in multiple configura-
tions to many different customers who possibly maintain diverse environments. In this
thesis we restrict ourselves to delivery from a single vendor. We note however that
our delivery model can easily be extended to support multiple vendors via a process of
intermediateintegration. In addition to these structural multiplicities, we assume that
software systems are increasingly developed using multiple technologies, i.e. systems
are increasingly heterogeneous. Different programming languages and different plat-
forms are used to develop such system of systems. The CMS is a case in point: parts of
it may have been written in, for instance, PHP, C, SQL, HTML, Javascript and so on.
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For the remaining of this thesis we therefore make no assumptions on how a certain
component is implemented.

In this thesis we thus restrict ourselves to the setting of component-based develop-
ment. This means that a product family consists of a set of components interrelated
using a certain notion of composition. This leads to dependency graphs where each
node represents a component and the edges represent dependencies. A product variant
is represented by a root in such a graph. We then identify the following dimensions
that complicate the process of software delivery and hence require the automation of
this process:

• Multiple components, subsystems or parts: each part may have its own evolution
history and development life-cycle and may thus be released as a separate entity.

• Multiple versions or revisions: every part evolves and as a consequence every
part exists in multiple (sequential) versions; different components may evolve at
a different pace.

• Multiple compositions: the architecture of a system may change so that different
versions of components may have to be composed in different ways.

• Multiple product variants: different parts may be shared among different in-
stances of a product family; the release of a new version of one part may induce
a new release of certain variants.

• Multiple configurations: released products may be customized in different ways
before they are delivered to customers.

• Multiple installations: different customers may have different versions and/or
variants installed; the update process must take a heterogeneous customer base
into account.

The multiplicity of components, versions, compositions, variants, configurations and
installations makes the software delivery process increasingly complex. This is shown
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as the software delivery complexity tower in Figure 1.2. Starting from the lower left-
hand corner, the fact that a software product is actually a composition of components is
the first additional layer of complexity. Moving upwards, each layer adds a complexity
dimension to the layer below.

Themorewe factor our software product in individual components in order to foster
reuse, control complexity and reduce maintenance effort, themoreversions there will
be. Themoreversions there are, themoredifferent ways of composition and integration
there are since the architecture of the system evolves as well. Similarly, if we want to
servemorecustomers, we will have to support the updating ofmoreinstallations, which
in turn requires updatingmorevariants and configurations.

In other words, the goal of continuous delivery in the context of component-based
software product lines leads to a large configuration space that clearly cannot be man-
aged without automation: selecting the right versions of the right components after
every change for every product variant, then building each variant, publishing a release
for each variant and finally delivering the new versions of the appropriate variants to
the corresponding customers can be a daunting task indeed. And this does not even
consider constructing efficient incremental update packages from one version to an-
other.

1.2 Related Research Areas in Software Engineering

Software engineering is about the efficient design and construction of software. Our
work can be positioned at the intersection of several sub disciplines of software engi-
neering: software configuration management (SCM), build management, component-
based software engineering (CBSE), product line engineering (PLE) and software re-
lease management (SRM). Below we present short surveys of each field.

1.2.1 Software Configuration Management

An important aspect of large-scale software development is the fact that such soft-
ware is not developed by one individual programmer but by teams of programmers. In
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order to increase productivity, development efforts are parallelized. However, teams
must coordinate their activity because they have the shared goal of delivering a quality
software product. This is where Software Configuration Management (SCM) comes
in [35,64,12,4,13,23]. SCM is defined as the set of practices, tools and techniques to
enable multiple (teams of) programmers to work at the same time on the same software
without getting in each other’s way.

SCM is used to manage the evolution of large, complex software products. The
pinnacle of SCM is that it should at all times be known what the state of the system is.
For instance, most version control systems (VCS) maintain accurate version histories
for the different source files that make up a software system in development. Every
change to the sources leads to a new version. At every stage in the development cycle
the system can be identified using a version identifier. Although this example might
seem simplistic, the identification of the system under development enables accurate
tracking of progress and quality.

Dart [23] distinguishes two essential aspects of SCM: the process aspect and the
team aspect. Figure 1.3 displays these two sides of the medal1. The team side of SCM
has to do with how (teams of) programmers evolve a software system and how these
activities are traced throughout the life-cycle. In order to trace development activity an
SCM system should be knowledgeable about the parts of the system (components), how
these parts are interrelated (structure) and how these parts are developed (construction).
In this case construction includes how particular components are built from sources.

The team aspect binds construction, components, and structure together in the fea-
ture that any SCM system provides, namely the creation of private workspaces. To iso-
late programming activity of a single programmer, a local copy is made for the sources
the programmer will be working on. The programmer makes the required changes and
checks them in afterward. Which files will be in the workspace and how the program-
mer can change, build and test this particular part of the software system derives from
how the system is structured.

The other side to SCM is the process view, which is about auditing, accounting
and controlling the evolution of the system. Of prime importance here, is traceability.
Traceability requires that both the software system and the system state can be repro-
duced for each moment in the system’s history. This might, for instance, include source
files and documentation, as well as information on what changes have been applied in
a certain version, and which programmer was responsible for them. Auditing is about
validating the completeness and consistency of the software product. The accounting
part of the process is concerned with generated statistics and general status reports,
for instance, on which milestones have been reached, which change requests are still
open, or how many bugs have been fixed during a certain period of time. Finally, con-
trolling the process of software development is about bug tracking, prioritizing change
requests, and assigning tasks.

Our work on Integration, Part III, can be seen as an extension of SCM. In order to
be able to release and deliver compositions of components we must ensure that releases
are properly versioned. Without the ability to trace a release back to the sources, it is
impossible to reproduce any problems found in the field. In particular, the Software

1This picture is derived from [23].
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Knowledge Base (SKB) that is maintained by the Sisyphus Continuous Integration and
Release system can be seen as an additional layer of versioning on top (or in addition
to) ordinary SCM systems, such as Subversion [19] or ClearCase [10].

1.2.2 Component-Based Software Engineering

Advocates of component-based software engineering propose that a software system
is decomposed into individual, reusablecomponents. These components differ from
ordinary modules in that they have an independent software life-cycle; that is, they are
units of versioning, acquisition, third-party composition and deployment [87].

Components are not to be confused with objects although many component models,
such as COM [84], presuppose object-oriented programming languages. In particular,
components differ from objects in that they maintain no state at runtime and compo-
nents do not inherit from each other.

Components may have explicitly specified context-dependencies. These may in-
clude the services provided by other components. Of course, a component can be re-
quired again by other components; composition thus has a recursive nature. The speci-
fication of dependencies is parametrized in the concrete implementation of the required
functionality. In other words, if a componentA has the explicitly specified dependency
on componentB (i.e. A requires B), “B” really refers to some abstract interface that
is providedby some, as yet unidentified, component. There may be multiple (versions
of) components implementing the interface required byA.

Parametrized dependencies enable variation because multiple component may im-
plement the same interface. This means that a client component requiring the services
declared in that interface can be composed with different components implementing
this very same interface. More generally speaking, the use of provides and requires
interface enables the replacement of concrete component implementations without af-
fecting the operation of clients. This also benefits the smooth evolution of components
because they can be upgraded independently (which is essential when component orig-
inate from different vendors).

The primary case-study used to validate our work, the ASF+SDF Meta-Environ-
ment [92], is developed in the style of package-based development [27]. This means
that every source component has an abstract build interface—based on the GNU auto-
tools [1]—and explicitly specifies its dependencies. Although no distinction is made
between provides and requiresinterfaces—due to the heterogeneity of the components—
the Meta-Environment can still be called a component-based product line. Every com-
ponent can be released separately or as a closure. Certain components are used outside
the scope of the Meta-Environment itself and are composed by third parties.

In this work, software components and their dependencies are first-class concepts
during integration. The Sisyphus system (described in Chapter 8) inspects the source
trees of the components in order to determine what their dependencies are (they are
specified in a dedicated file). This knowledge is exploited to release closures for sub-
systems of the Meta-Environment as well as the Meta-Environment itself.
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1.2.3 Product Line Engineering

In product line engineering [106,77] the focus is on exploiting reuse and variability to
develop different variants of a product using a shared code base. Often this involves
component orientation [108] but this is not necessarily so. The notion of variability
plays a crucial role here. Variability basically entails that a software product can be
changed before delivery without having to change its source code. Product variants are
instantiated byconfiguringthe product line.

Product line engineering as a research field is closely related to domain engineer-
ing. One of the seminal papers in this field by Kanget al. [57] introduced a graphical
notation for describing and analyzing variability: feature diagrams. Feature diagrams
concisely capture commonality and variability in a certain problem domain. Such anal-
yses can steer the software engineering process by indicating opportunities for reuse.

The first two chapters of this thesis view feature diagrams (in a textual form, called
Feature Description Language) as a way of specifying configuration interfaces. Fea-
ture descriptions are given a formal, logic based semantics in order to check the consis-
tency of such descriptions and to check whether feature selections (“configurations”)
are valid with respect to the description.

The first of the two chapters,Variability and Component Compositionmoreover,
links feature descriptions to models of composition. This is motivated by the fact that
selection of certain features may influence composition if components themselves are
units of variation (e.g., one interface may be implemented by several components).

The second chapter,Generic Feature-Based Compositiontakes a more generic ap-
proach to feature models and composition. Any software artifact is considered to be
a component that has dependencies on other components. A technique is proposed
that maps every valid feature selection to certain selection of artifacts. This bridge
between problem space (the domain of features and requirements) and solution space
entities (i.e. components, files, programs etc.) can be checked for consistency using
the semantics of Chapter 2.

1.2.4 Release, Delivery and Deployment

Research on release, delivery and deployment has only recently taken off [96, 45, 46,
97, 98, 18, 33, 31, 55]. Generally speaking,releasemeans making a particular piece
of software available to its users. Deployment in general is about getting a piece of
software to its users, installing it and activating it. Deployment thus may include trans-
ferring the software from the vendor to the user; however, in our work this falls under
the heading of delivery.

Figure 1.4 shows an overview of the deployment life cycle2. The arrows indicate
ordering constraints on the constituting process. The deployment life cycle of a soft-
ware component starts when it is released. After it has been released it can installed
by users. Then, finally is has to be activated and the software is ready to be used. Of
course, a software component that is activated can de-activated, and subsequently be
de-installed. Similarly, a software vendor may withdraw a release from support which
is called retiring a release or terminating a product. While the software is installed

2This is a simplified version of the deployment activity diagram in [18].
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Figure 1.4: Software deployment life cycle

and/or activated the software can be updated (this may require de-activation) and cus-
tomized. Customization in this context means any kind of tailoring, adapting, or chang-
ing, performed at the user’s site. The processes of software delivery are enclosed by a
larger rectangular area; it covers (parts of) releasing, installing, and updating a software
product.

The focus of this thesis corresponds to the enclosed area in Figure 1.4. This thesis,
however, is not concerned with the process of installation and activation per se. Al-
though Part III of this thesis touches upon deployment issues, it does not describe a
comprehensive approach to deployment. Our approach of binary change set composi-
tion described in Chapter 7 basically stops after the new version of a software product
has been transferred to a user; what happens after that is up to the development organi-
zation of the product.

1.2.5 Continuous Delivery

Continuous delivery can be traced back to pioneering work by Harlan Mills, Tom Gilb
and others in the seventies and eighties [75, 41, 40, 6]. Their work presents an alterna-
tive to the water-fall software process called evolutionary delivery. It can be described
as an incremental and iterative mode of development where aworking programis de-
livered to actual end-users from the very beginning, in very small, incremental steps.
Note the emphasis on “working program”. This means that it is not a prototype version
of the end product that is delivered; the end-product exists from the very first incre-
ment. Keeping the current version working is a constant goal since that is the way
that developers learn best about how their efforts live up to the requirements of the
customer.

Tom Gilb’s evolutionary delivery has had a strong influence on agile approaches to
software development such as Extreme Programming (XP) [9]. In the introduction of
Extreme Programming, Kent Beck explains that XP originated from looking at all the
things that improve the quality of programming and then for each of those practices
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turning the knob to ten. Two of those practices are of primary concern in the context
of this thesis:

• Focus on small and frequent releases. This is motivated by two reasons: first user
feedback is both more immediate and more accurate so development activity will
not diverge too much from the customer’s requirements. Second, updating to a
small new release is less invasive and easier to revert in case of errors than large
updates.

• Continuously integrate changes to the system, i.e. commit changes to the version
control system (VCS) as fine-grained as possible and subsequently build and test
the complete system. If the build fails, fixing it has top priority.

Both practices focus on shortening the feedback loop. In other words, however small a
certain change to the software system may be, the time between commit and feedback
should be as short as possible. This concerns on the one hand the feedback generated
by automated builds and tests, and on the other hand the feedback generated by users
(e.g. bug reports, crash reports etc.).

Postponing the integration and/or release increases the risk that different changes
(even if committed to entirely different parts of the system) will interact, causing pos-
sible problems to be increasingly hard to track down and fix. In the presence of parallel
development the complexity penalty of interacting changes is exponential, i.e postpon-
ing integration is exponentially more expensive in the long run than doing it right away.
Another way of putting this is that “big bang integration” (all changes at once) leads to
“integration hell”3.

Our focus on continuous delivery can furthermore be put in the context of the re-
cently proposed paradigm ofcontinuous coordination. Redmileset al. [83] claim that
in a world where software development activities are increasingly globalized there is
a need for collaboration infrastructures that create more awareness among geograph-
ically dispersed team developers. Moreover, such distributed development infrastruc-
tures should provide flexible ways of continuously integrating the produced artifacts.
Continuous delivery extends this loop of continuous coordination with actual users.

The primary assumption that permeates this thesis is that continuous delivery is a
desirable ideal. If we can deliver after every change, we can deliver any time we want.
We set the bar high. This platonic goal effectively disposes of the question as towhat
(which version and/or changes) will be delivered andwhen(weekly, monthly, yearly);
we basically assume that we delivereverything, andas soon as possible. Neverthe-
less, our work does not preclude any formal release process that is based on explicit
selection of versions of configurations, but instead sees such processes as additional
infrastructure on top of the techniques that are presented here.

3Seehttp://c2.com/xp/IntegrationHell.html for more information.

http://c2.com/xp/IntegrationHell.html
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1.3 Research Perspective

1.3.1 Goals and Requirements

The primary objective of this thesis is automating continuous delivery of component-
based software. The requirements for realizing this goal can be understood by “reason-
ing backwards” from a running application back to the sources that were used to build
it. Consider a prototypical customer who plans to acquire a certain piece of software.
What are the typical steps she undertakes?

Assuming that the software package our prototypical customer is about to acquire
is offered on the Web, the first step probably involves selecting the desired version
and variant of the product. As an example, the product might be available in a light
version, a professional version, and a server version, and possibly she has to choose the
appropriate platform too. If the desired variant has been selected, the site could provide
the customer with some configuration options, for instance in order to enable or disable
certain features or add-ons that may make a difference in the final price. After this she
may pay for the software using her credit card.

If an appropriate version of the product is chosen and the configuration and pay-
ment processes have been completed successfully, our customer is redirected to a
download link to transfer the software to her computer on which she can then unpack
and install the software.

Now assume that the vendor in question would provide an automatic update feature
to upgrade the software every time a new release is published on the vendor’s site.
Assume moreover that the vendor implements this feature in such a way that every
day new versions get published and the customers of the software can upgrade every
single day by downloading and automatically installing new versions. What would the
technical and customer requirements be for such a scenario?

Incremental Updates

First of all, the update process must be efficient so as to not annoy the customer too
much with long download or redeployment times. Furthermore, the updates must not
break the correct operation of the new version nor of any other software. This means
that updates are insulated; they should not affect anything apart from the installed prod-
uct version they are applied to. If the updateshouldfail, which should be prevented
at all cost, roll-back to the state previous to the update should be quick and painless.
Thus, continuous delivery from the perspective of the customer should ideally be com-
pletely invisible apart from the improved functionality or quality. If applying updates
is slow and brittle, there is no sense in delivering them continuously since they are an
impediment for customer satisfaction.

From the customer perspective, continuous delivery should be fast and safe. How
does this influence the software development, release and delivery processes of the
vendor? A direct corollary of the customer requirements is the requirement that de-
livery should be implemented efficiently and safely. One way to efficiently implement
updates is to applyincrementalupdates. Incremental updates work by transferring only
the difference between the old and the new configuration. This is a great band-width
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saver, especially for companies with large customer bases. Note also that this gives
the “undo” update for free since the changes between old and new can be reversed, i.e.
undo is “upgrading” (downgrading) from new to old.

Traceability

So incremental updates are the first technical requirement. Secondly, we observe that
in order to update a customer configuration in an incremental fashion, the vendor must
relate the exact version of the customer to the (newer) released versions on the web-
site. Without knowingwhat versionis installed at the customer’s site, it is not possible
to incrementally update the old configuration to the new configuration, because it is
impossible to compute the difference between the two. More specifically, this means
that accurate traceability links must be maintained. Additionally, not only must the
vendor know the exact version of the installed product, but also which variant (pro,
light, Windows, Linux etc.) and which configuration parameters were used for this
particular installation. In other words, the vendor must maintain an accuratebill of
materials(BOM) for every release and for every download/installation. The concept
of bill of materialsoriginates from the manufacturing industry and is defined as a doc-
ument describing how a certain product is made [70]. BOMs should accurately capture
the identity of the customer configuration including and most importantly its version.
BOMs can be realized either through meta-data within the software product or through
a vendor-site knowledge-base that maintains the update history of a particular customer.

As an aside, such traceability is also essential in linking customer feedback to the
sources that made up that particular installation. For instance, if a customer files a
bug report, it is of no use to the developers if they do not know in which version
and configuration the bug surfaced, especially because there may be many different
versions and configurations in the field. Without the exact version and configuration
information it is hardly possible to accurately reproduce the bug which is a primary
requirement for fixing it.

Automatic Release

A third technical requirement is that releasing a new version should be automatic. Re-
call that we assume that the vendor in the example implements continuous delivery.
Therefore, in principle, after every change to the sources that has been approved for
release, a new release package should be put on line so that customers can benefit from
the improvements to the product. Clearly, performing a release after every change
manually is a very time-consuming and error-prone process; it clearly does not scale.
A tool is therefore required that monitors the changes approved by quality assurance
(QA) and prepare a new release package for each of those changes, as soon and quickly
as possible. Obviously to satisfy the second requirement—traceability—these releases
should be versioned and configurable in such a way that installations can be linked to
the originating sources.
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Consistent Configuration

Finally, the vendor should ensure that the configuration of products by customers is
done consistently. Customers should be able to make consistent feature selections or
customizations. Moreover, if a customer makes a valid feature selection, the desired
product instantiation should be created automatically, i.e. without human intervention
from the side of the vendor. This means that the vendor must ensure that every valid
configuration of the configuration interface corresponds to a valid product instantiation,
and that the appropriate binding of variation points in the software takes place. For
instance, the selection of certain features might cause certain values to be set in a
configuration file in the release of the product. Every abstract feature selected by the
customer should have a consequence for the package that is finally obtained by the
customer. A specification of the set of enabled features, should also appear as part
of the release notes in the BOM of the product. This fourth requirement—automatic
configuration—is again motivated by the fact that if continuous delivery is the goal,
manual intermediate binding steps when configuring a product do not scale.

Automatic Composition

Until now we have looked only from the outside at the problem of continuous delivery
in the sense that we did not make any assumptions about the software development
process employed by our example software vendor. We will now complicate the picture
by making some assumptions about the software development process of the vendor.
We will adapt the requirements where needed along the way.

Let’s assume that the vendor is a proponent of component-based development [87].
This basically entails that the source base of the vendor is divided in a number of inde-
pendently evolving components. Each component has its own life-cycle, which means
that the version history of a component is independent from other components. Nev-
ertheless, a component is hardly ever deployed in isolation. Components often require
other components to operate correctly. These are thedependenciesof a component.

The dependencies among components lead to composition graphs where the nodes
of the graph are the components and the edges the dependencies. We assume that com-
position graphs are acyclic. We further assume that every product variant corresponds
to a component in this graph and that such a variant is released and delivered as a
composition of the component itself including all its (transitive) dependencies. Thus,
every product variant is identified with its closure. In theory, every component in the
composition graph represents a product (one can take the closure of any component in
the graph), but obviously not all components representusefulproducts.

As an example of how component orientation is leveraged for the delivery of prod-
uct variants, consider Figure 1.5. The nodes of the graph represent software com-
ponents and the directed edges are the dependencies between components. So, for
instance, componentA has dependencies onB andC. On the other hand, components
C andD have no dependencies (calledbottomcomponents).

The decomposition of a software system in separate components is primarily of in-
terest to the vendor of the system. Component orientation create opportunities for reuse
and variation. For instance, in the example of Figure 1.5, the componentsA, B andC
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Figure 1.5: “Pro” and “light” product variants implemented using components

are reused (shared) among both the “light” and “pro” version. This kind of reuse is an
enabler for product diversification which can be used to better satisfy market demands.
From the process perspective, component orientation has additional benefits. The inde-
pendent life-cycle of each component leverages parallel development. Different teams
may work on different components without getting in each others way too much.

From the customer perspective, however, the fact that a software system is devel-
oped in a component-based fashion is completely uninteresting. Customers are inter-
ested in a working, quality software product that keeps on working at all times. The
fact that our hypothetical products are delivered as closures is invisible to the customer
and that should stay that way. Decomposition is a solution space concern and therefore
only relevant for software developers, not for customers.

Hiding component structure from customers creates an additional requirement for
continuous delivery, namely that products are released as compositions of components,
or closures. Product variants are then represented by a top-level component, i.e. com-
ponents that are not required by any other component (no incoming edges in the graph).

Figure 1.5 displays a “pro” variant and a “light” variant of the product. Both vari-
ants are identified by the two top-level components respectively. The light variant
will be released as the closure of theLight component, i.e. it will be released as the
composition of{Light,A,B,C}. On the other hand, the “pro” variant contains extra
functionality, in this case implemented by the extra componentD. If the “pro” variant
is delivered, its release package consists of{Pro,A,B,C,D}.

The fact that every component represents, in essence, a software package that can
released, delivered and deployed, leads to the requirement that the configuration of
product variants (components in this case) should be fully recursive and compositional.
In other words, thelocusof configuration moves from the product level (configuration
of the whole) to the level of individual components (a similar level of configurability
can be observed in the KOALA component model [108]). If our prototypical customer is
selecting the desired features for a certain product (variant) she is actually configuring
a set of components. Consequently, the relation between composition (i.e. dependen-
cies) and configuration (selection of features) should be clear. The configuration of the
whole product isderivedfrom the configuration of the sets of components that are in
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the closure that represents the product. The other way round, the set of components that
will end up in the closure may be dependent on the features the customer has selected.
This is discussed in more detail in Chapter 2.

Summary of Requirements

The primary requirements for continuous delivery in the context of component-based
development can now be summarized as follows:

1. Release packages should consist of compositions of components and be pub-
lished automatically after every validated change.

2. It should be possible to trace compositions delivered to customers, back to the
component sources that were used to create them.

3. Customers should be able to consistently configure compositions of components
without further human intervention. Nevertheless, interfaces for configuration
are to be specified on the level of components.

4. Transferring new releases to customers should be efficient and scalable.

We will now formulate the research questions that follow from these requirements.

1.3.2 Research Questions

The general research question addressed in this thesis is as follows:

General Research QuestionCan we automate the release of application
updates in order to realize continuous delivery? This question is asked in
the context of heterogeneous component-based software product lines.

We attempt to answer this question by proposing techniques that satisfy the require-
ments identified above in order to enable the automation of the larger part of the config-
uration, integration, release and delivery phases of the software deployment life-cycle.
More specifically, the techniques described in this thesis aim to answer the following
questions:

Configuration The first step in automating delivery is automating the configuration
of the product. This leads to the following two subsidiary research questions:

Q.1 Can we formally ensure consistent configuration of components and their com-
positions?

Q.2 Can abstract configurations be mapped to compositions of sets of software com-
ponents at the programming level?

These questions are addressed in Part II.



1.3 Research Perspective 19

Integration Integration consists of combining sets of components and see if they
form a consistent whole; it is a precondition for releasing a product. In relation to our
general research question this leads to the following research questions:

Q.3 Can the practice of continuous integration be extended to a practice of continuous
release and delivery?

Q.4 Can we increase the frequency of delivery in the context of such a continuous
release practice?

Delivery After a software product has been released, it has to be delivered efficiently
to the end users. This leads to our final research question:

Q.5 Can we realize the delivery of release packages in an efficient way?

The questions on integration and delivery are addressed in Part III; the techniques
proposed there all have been prototyped as part of the Sisyphus continuous integration
and release system. The techniques proposed in Part II have been prototyped outside
that context.

1.3.3 Summary of Contributions

The techniques developed represent stepping stones towards the goal of continuous
delivery. Any form of continuous delivery, and especially in the context of component-
based product lines, requires automation since implementing continuous delivery man-
ually is clearly no viable alternative. The contributions of this thesis can be summarized
as follows:

• Formalization of composite configuration interfaces and how to check their con-
sistency. Consistency checking is performed using Binary Decision Diagrams
(BDDs) [16], a scalable technique used in model-checking. This is described in
Chapter 2 which has been previously published as: “Variability and Component
Composition”, in:Proceedings of the 8th International Conference on Software
Reuse (ICSR-8), LNCS 3107, Springer, 2004 [99]4.

• A consistent mapping of configuration interfaces to arbitrary software compo-
nents (i.e. files) structured as dependency graphs. This is described in Chapter 3.
We extend the checking algorithms of Chapter 2 and generalize the notion of
component composition. This chapter has been published as “Generic Feature-
Based Composition”, in:Proceedings of the Workshop on Software Composition
(SC’07), LNCS, Springer, 2007 (to appear) [102].

• A technique for incremental and continuous release of component-based systems
realized in the Sisyphus prototype. Sisyphus integrates and releases component-
based products after every change. The tool maintains accurate BOMs, thus en-
abling the automatic derivation of incremental updates. Sisyphus is described in
Chapter 4. This work has been published as “Continuous Release and Upgrade

4The original publications by Springer are available athttp://www.springerlink.com .

http://www.springerlink.com
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of Component-Based Software”, in:Proceedings of the 12th International Work-
shop on Software Configuration Management (SCM-12), Lisbon, 2005 [100].

• The application of backtracking to incremental continuous integration in order
to maximize opportunity for delivery. This is achieved by reusing earlier inte-
gration results in case of a failed build. Thus, build failure is no impediment to
release and delivery of a working version. Backtracking is implemented as part
of Sisyphus and is described in Chapter 5.

• Build penalty as a metric for ranking system integration strategies in order to re-
duce integration cost in the context of C/C++ based systems with explicit inter-
faces. Build penalty was validated in an industrial case-study at Philips Medical
Systems. The metric and the results of the case-study are covered in Chapter 6.
An earlier version of this chapter is under submission for publication as “Tech-
niques for Incremental System Integration” This chapter is joint work with René
Krikhaar and Frank Schophuizen.

• Binary change set composition as a technique for efficiently and consistently
updating composite customer installations over the Internet. This lightweight
approach to application upgrade can be easily implemented into any applica-
tion thus leading to self-updating installations. Binary change set composition
is presented in-depth in Chapter 7. This chapter has been published as “Bi-
nary Change-Set Composition”, in:Proceedings of the 10th International ACM
SIGSOFT Symposium on Component-Based Software Engineering (CBSE’07),
LNCS 4608, Springer, 2007 [101].

Continuous release, backtracking integration and binary change set composition
have been prototyped as part of the Sisyphus continuous integration and release tool [103].
Sisyphus is currently in use to automatically build and release the ASF+SDF Meta-
Environment [92] in a continuous fashion. The implementation of Sisyphus is dis-
cussed and evaluated in Chapter 8. An extended abstract on the Sisyphus tool imple-
mentation has been published as “The Sisyphus Continuous Integration System”, in:
Proceedings of the 11th European Conference on Software Maintenance and Reengi-
neering (CSMR’07), Tool track, IEEE, 2007 [103].
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Chapter 2

Variability and Component
Composition

Abstract Automating configuration requires that users cannot make in-
consistent feature selections which is a requirement for automated de-
livery. However, in component-based product populations, how product
variants are configured, is to be described at the component level in order
to be able to benefit from a product family approach: every component
may be released as an individual product. As a consequence, configura-
tion interferes with how components can be composed. We describe how
the resulting complexity can be managed automatically. The concepts and
techniques presented are first steps toward automated management of vari-
ability for continuous delivery.

This paper has been previously published as: T. van der Storm, Variabil-
ity and Component Composition, inProceedings of the 8th International
Conference on Software Reuse (ICSR-8), LNCS 3107, Springer, 2004 [99].

2.1 Introduction

Variability [106] is often considered at the level of one software product. In a product
family approach different variants of one product are derived from a set of core assets.
However, in component-based productpopulations[108] there is no single product:
each individual component may represent a certain software product (obtained through
component composition).

To let this kind of software products benefit from the product family approach, we
present formal component descriptions to express component variability. To manage
the ensuing complexity of configuration and component composition, we present tech-
niques to verify the consistency of these descriptions, so that the conditions for correct
component composition are guaranteed.
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This chapter is structured as follows. In Sect. 2.2 we first discuss component-based
product populations and why variability at the component-level is needed. Secondly,
we propose a Software Knowledge Base (SKB) concept to provide some context to our
work. We describe the requirements for a SKB and which kind of facts it is supposed to
store. Section 2.3 is devoted to exploring the interaction of component-level variability
with context dependencies. Section 2.4 presents the domain specific language CDL
for the description of components with support for component-level variability. CDL
will serve as a vehicle for the technical exposition of Sect. 2.5. The techniques in
that section implement the consistency requirements that were identified in Sect. 2.2.
Finally, we provide some concluding remarks and our future work.

2.2 Towards Automated Management of Variability

2.2.1 Why Component Variability?

Software components are units of independent production, acquisition, and deploy-
ment [87]. In a product family approach, different variants of one system are derived
by combining components in different ways. In a component-based product popula-
tion the notion ofonesystem is absent. Many, if not all, components are released as
individual products. To be able to gain from the product family approach in terms of
reuse, variability must be interpreted as a component-level concept. This is motivated
by two reasons:

• In component-based product populations no distinction is made between com-
ponent and product.

• Components as unit of variation are not enough to realize all kinds of conceivable
variability.

An example may further clarify why component variability is useful in product pop-
ulations. Consider a component for representing syntax trees, calledTree . Tree
has a number of features that can optionally be enabled. For instance, the component
can be optimized according to specific requirements. If small memory footprint is a
requirement,Tree can be configured to employ hash-consing to share equal subtrees.
Following good design practices, this feature is factored out in a separate component,
Sharing , which can be reused for objects other than syntax trees. Similarly, there is a
componentTraversal which implements generic algorithms for traversing tree-like
data structures. Another feature might be the logging of debug information.

The first point to note, is that the componentsTraversal and Sharing are
products in their own right since they can be used outside the scope ofTree . Nev-
ertheless they are required for the operation ofTree depending on which variant of
Tree is selected. Also, bothTraversal andSharing may have variable features
in the very same way.

The second reason for component variability is that not all features ofTree can be
factored out in component units. For example, the optional logging feature is strictly
local toTree and cannot be bound by composition.
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The example shows that the variability of a component may have a close relation
to component dependencies, and that each component may represent a whole family of
(sub)systems.

2.2.2 The Software Knowledge Base

The techniques presented in this chapter are embedded in the context of an effort to
automate component-based software delivery for product families, using a Software
Knowledge Base (SKB). This SKB should enable the web-based configuration, deliv-
ery and upgrading of software. Since each customer may have her own specific set of
requirements, the notion of variability plays a crucial role here.

The SKB is supposed to contain all relevant facts about all software components
available in the population and the dependencies between them. Since we want to keep
the possibility that components be configured before delivery, the SKB is required to
represent their variability. To raise the level of automation we want to explore the
possibility of generating configuration related artifacts from the SKB:

Configurators Since customers have to configure the product they acquire, some kind
of user interface is needed as a means of communication between customer and
SKB. The output of a configurator is a selection of features.

Suites To effectively deliver product instantiations to customers, the SKB is used to
bundle a configured component together with all its dependencies in a configu-
ration suite that is suitable for deployment. The configuration suite represents an
abstraction of component composition.

Crucial to the realization of these goals is the consistency of the delivered configura-
tions. Since components are composed into configuration suites before delivery, it is
necessary to characterize the relation between component variability and dependencies.

2.3 Degrees of Component Variability

A component may depend on other components. Such a client component requires the
presence of another component or some variant thereof. A precondition for correct
composition of components is that a dependent component supports the features that
are required by the client component. Figure 2.1 depicts three possibilities of relating
component variability and composition.

The first case is when there is no variability at all. A componentCa requires compo-
nentsC1, ...,Cn. The component dependenciesC1, ...,Cn should just be present some-
how for the correct operation ofCa. The resulting system is the composition ofCa

andC1, ...,Cn, and all component dependencies that are transitively reachable from
C1, ...,Cn.

Figure 2.1 (b) and (c) show the case that all components haveconfiguration in-
terfacesin the form of feature diagrams [57] (the triangles). These feature diagrams
express the components’ variability. The stacked boxes indicate that a component can
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Figure 2.1: Degrees of component variability

be instantiated to different variants. The shaded triangles indicate thatCb andCc de-
pend on specificvariantsof C1, ...,Cn. Features that remain to be selected by customers
thus are local to the chosen top component (Cb resp.Cc).

The component dependencies ofCb are still fixed. For componentCc however, the
component dependencies have become variable themselves: they depend on the selec-
tion of features described in the configuration interface ofCc. This allows components
to be the units of variation. A consequence might be, for example, that when a client
enables featurea, Cc requires componentA. However, if featureb would have been
enabled,Cc would depend onB. The set of constituent components of the resulting
system may differ, according to the selected variant ofCc.

When composingCa into a configuration suite, componentsC1, ...,Cn just have to
be included. Components with variability, however, should be assembled into a suite
guided by a valid selection of features declared by the top component (the component
initially selected by the customer). Clients, both customers and requiring components,
must select sets of features that are consistent with the feature diagram of the requested
component.

How to establish these conditions automatically is deferred until after Sect. 2.4,
where we introduce a domain specific language for describing components with vari-
ability.

2.4 Component Description Language

To formally evaluate component composition in the presence of variability, a language
is needed to express the component variability described in Sect. 2.3. For this, a
Component Description Language (CDL) is presented. This language was designed
primarily for the sake of exposition; the techniques presented here could just as well be
used in the context of existing languages. The language will serve as a vehicle for the
evaluation of the situation in Fig. 2.1 (c), that is: component dependencies may depend
themselves on feature selections.
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component description〈“aterm-java”, “1.3.2”〉
features

ATerm : all(Nature, Sharing, Export, visitors?)
Nature :one-of(native, pure)
Sharing :one-of(nosharing, sharing)
Export : more-of(sharedtext, text)
sharedtextrequires sharing

requires
when sharing{
〈“shared-objects”, “1.3”〉 with fasthash

}
when visitors {
〈“JJTraveler”, “0.4.2”〉

}

Figure 2.2: Description ofaterm-java

For the sake of illustration, we use the ATERM library as an example component.
The ATERM library is a generic library for a tree like data structure, called Annotated
Term (ATerm). It is used to represent (abstract) syntax trees in the ASF+SDF Meta-
Environment [60], and it in many ways resembles the aforementionedTree compo-
nent. The library exists in both Java and C implementations. We have elicited some
variable features from the Java implementation. The component description for the
Java version is listed in Fig. 2.2.

A component description is identified by a name (aterm-java ) and a version
(1.3.2 ). Next to the identification part, CDL descriptions consist of two sections: the
features section and the requires section.

The features section has a syntax similar to Feature Description Language (FDL)
as introduced in [105]. FDL is used since it is easier to automatically manipulate than
visual diagrams due to its textual nature. The features section contains definitions
of composite features starting with uppercase letters. Composite features obtain their
meaning from feature expressions that indicate how sub-features are composed into
composite features. Atomic features can not be decomposed and start with a lowercase
letter.

The ATERM component exists in two implementations: a native one (implemented
using the Java Native Interface, JNI), and a pure one (implemented in plain Java). The
composite featureNature makes this choice explicit to clients of this component. The
feature obtains its meaning from the expressionone-of(native, pure) . It indi-
cates that eithernative or pure may be selected for the variable featureNature ,
but not both. Bothnative andpure are atomic features. Other variable features
of the ATERM-library are the use of maximal sub-term sharing (Sharing ) and an in-
clusive choice of some export formats (Export ). Additional constraints can be used
to reduce the feature space. For example, thesharedtext feature enables the seri-
alization of ATERMs, so that ATERMs can be written on file while retaining maximal
sharing. Obviously, this feature requires thesharing feature. Therefore, the features
section contains the constraint thatsharedtext cannot be enabled without enabling
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sharing .
The requires section contains component dependencies. A novel aspect of CDL is

that these dependencies may be guarded by atomic features to state that they fire when a
particular feature is enabled. These dependencies areconditionaldependencies. They
enable the specification of variable features for which components themselves are the
unit of variation.

As an example, consider the conditional dependency on theshared-objects
component which implements maximal sub-term sharing for tree-like objects. If the
sharing feature is enabled, the ATERM component requires theshared-objects
component. As a result, it will be included in the configuration suite. Note that ele-
ments of the requires section refer tovariantsof the required components. This means
that component dependencies are configured in the same way as customers would con-
figure a component. Configuration occurs by way of passing a list of atomic features
to the required component. In the example this happens for theshared-objects
dependency, where the variant containing optimized hash functions is chosen.

2.5 Guaranteeing Consistency

Since a configuration interface is formulated in FDL, we need a way to represent FDL
feature descriptions in the SKB. Our prototype SKB is based on the calculus of binary
relations, following [73]. The next paragraphs are therefore devoted to describing how
feature diagrams can be translated to relations, and how querying can be applied to
check configurations and obtain the required set of dependencies.

2.5.1 Transformation to Relations

The first step proceeds through three intermediate steps. First of all, the feature defini-
tions in the features section are inlined. This is achieved by replacing every reference
to a composite feature with its definition, starting at the top of the diagram. For our
example configuration interface, the result is the following feature expression:

all(one-of(native, pure), one-of(nosharing, sharing),
more-of(sharedtext, text),visitors?)

The second transformation maps this feature expression and additional constraints to a
logical proposition, by applying the following correspondences:

all ( f1, ..., fn) 7→
V

i∈{1,...,n} fi
more-of ( f1, ..., fn) 7→

W
i∈{1,...,n} fi

one-of ( f1, ..., fn) 7→
W

i∈{1,...,n}( fi ∧¬(
W

j∈{1,..,i−1,i+1,...,n} f j))

Optional features reduce to> since they are always independent of other features.
Atomic features are mapped to logical variables with the same name. Finally, arequires
constraint is translated to an implication. By applying these mappings to the inlined
feature expression, one obtains the following formula.

((native∧¬pure)∨ (pure∧¬native))∧ ((nosharing∧¬sharing)∨
(sharing∧¬nosharing))∧ (sharedtext∨ text)∧ (sharedtext→ sharing)
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Figure 2.3: BDD foraterm-java

Checking the consistency of the feature diagram now amounts to obtainingsatisfia-
bility for this logical sentence. To achieve this, the formula is transformed to a Binary
Decision Diagram (BDD) [16]. BDDs are logical expressions ITE(ϕ,ψ,ξ) represent-
ing if-then-else constructs. Using standard techniques from modelchecking any logical
expression can be transformed into an expression consisting only of if-then-else con-
structs. If common subexpressions of this if-then-else expression are shared we obtain
a directed acyclic graph which can easily be embedded in the relational paradigm. The
BDD for theaterm-java component is depicted in Fig. 2.3.

2.5.2 Querying the SKB

Now that we have described how feature diagrams are transformed to a form suitable
for storing in the SKB, we turn our attention to the next step: the querying of the SKB
for checking feature selections and obtaining valid configurations.

The SKB is supposed to represent all kinds of software knowledge in order to
better assess the possibilities for software delivery. For instance, if the SKB would
store successor relations between versions of components, one can derive the set of
possible update paths from one composition of components with a certain version,
to another component. Similarly, this chapter aims to supplant such knowledge with
configuration knowledge. The SKB is thus queried to answer questions like “Is this
set of feature compatible with this component’s configuration interface” or “Is this
component configurable at all?”.

The BDD graph consists of nodes labeled by guards. Each node has two outgoing
edges, corresponding to the boolean value a particular node obtains for a certain as-
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signment. All paths from the root to> represent minimal assignments that satisfy the
original formula.

A selection of atomic features corresponds to a partial truth-assignment. This as-
signment maps for each selected feature the corresponding guard to 1 (true). Letϕ
be the BDD derived from the feature diagram for which we want to check the consis-
tency of the selection, then the meaning of a selection is defined as:{a1, ...,an} 7→S

i∈{1,...,n} [ai/1] whenai ∈ ϕ. In other words, a selection of features maps to a truth
assignment mapping the guards corresponding to the feature to true. Checking whether
this assignment can be part of a valuation amounts to finding a path in the BDD from
the root to> containing the edges corresponding to the assignment. If there is no such
path, the enabled features are incorrect. If there is such a path, but some other features
must be enabled too, the result is the set of possible alternatives to extend the assign-
ment to a valuation. The queries posted against the SKB use a special built-in query
that generates all paths in a BDD. The resulting set of paths is then filtered according
to the selection of features that has to be checked. The answer will be one of:

• {{ f1, ..., fn},{g1, ...,gm}, ...}: a set of possible extensions of the selection, indi-
cating an incomplete selection

• {{}}: one empty extension, indicating a correct selection

• {}: no possible extension, indicating incorrect selection

If the set of features was correct, the SKB is queried to obtain the set of configured
dependencies that follow from the feature selection.

Take for example the selection of features{pure ,sharedtext ,visitors }.
The associated assignment is[pure/1][sharedtext/1]. There is one path to> in the
BDD that contains this assignment, so there is a valuation for this selection of features.
Furthermore, it implies that the selection is not complete: part of the path is the truth
assignment ofsharing , so it has to be added to the set of selected features. Finally,
as a consequence of the feature selection, both the JJTraveler and SharedObjects com-
ponent must be included in the configuration suite.

2.6 Discussion

2.6.1 Related Work

CDL is a domain specific language for expressing component level variability and de-
pendencies. The language combines features previously seen in isolation in other areas
of research. These include: package based software development, module interconnec-
tion languages (MILs), and product configuration.

First of all, the work reported here can be seen as a continuation of package based
software development [27]. In package based software development software is com-
ponentized in packages which have explicit dependencies and configuration interfaces.
These configuration interfaces declare lists of options that can be passed to the build
processes of the component. Composition of components is achieved through source
tree composition. There is no support for packages themselves being units of variation.
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A component description in CDL can be interpreted as a package definition in which
the configuration interface is replaced by a feature description. The link between fea-
ture models and source packages is further explored in [104]. However, variability is
described external to component descriptions, on the level of the composition.

Secondly, CDL is a kind of module interconnection language (MIL). Although the
management of variability has never been the center of attention in the context of MILs,
CDL complies with two of the main concepts of MILs [81]:

• The ability to perform static type-checking at an intermodule level of description.

• The ability to control different versions and families of a system.

Static type-checking of CDL component compositions is achieved by model checking
of FDL. Using dependencies and feature descriptions, CDL naturally allows control
over different versions and families of a system. Variability in traditional MILs boils
down to letting more than one module implement the same module interface. So mod-
ules are the primary unit of variation. In addition, CDL descriptions express variability
without committing beforehand to a unit of variation.

We know of one other instance of applying BDDs to configuration problems. In
[86] algorithms are presented to achieve interactive configuration. The configuration
language consists of boolean sentences which have to be satisfied for configuration.
The focus of the article is that customers can interactively configure products and get
immediate feedback about their (valid or invalid) choices. Techniques from partial
evaluation and binary decision diagrams are combined to obtain efficient configuration
algorithms.

2.6.2 Contribution

Our contribution is threefold. First, we have discussed variability at the component
level to enable the product family approach in component-based product populations.
We have characterized how component variability can be related to composition, and
presented a formal language for the evaluation of this.

Secondly, we have demonstrated how feature descriptions can be transformed to
BDDs, thereby proving the feasibility of a suggestion mentioned in the future work
of [105]. Using BDDs there is no need to generate the exponentially large configuration
space to check the consistency of feature descriptions and to verify user requirements.

Finally we have indicated how BDDs can be stored in a relational SKB which was
our starting point for automated software delivery and generation of configurations.

The techniques presented in this chapter have been implemented in an experimental
relational expression evaluator, called RSCRIPT. Experiments revealed that checking
feature selections through relational queries is perhaps not the most efficient method.
Nevertheless, the representation of feature descriptions is now seamlessly integrated
with the representation of other software facts (such as, for example, the versions of
the components).
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2.6.3 Future Work

Future work will primarily be geared towards validating the approach outlined in this
chapter. We will use the ASF+SDF Meta-Environment [60] as a case-study. The
ASF+SDF Meta-Environment is a component-based environment to define syntax and
semantics of (programming) languages. Although the Meta-Environment was origi-
nally targeted for the combination of ASF (Algebraic Specification Formalism) and
SDF (Syntax Definition Formalism), directions are currently explored to parameterize
the architecture in order to reuse the generic components (e.g., the user interface, parser
generator, editor) for other specification formalisms [94]. Furthermore, the constituent
components of the Meta-Environment are all released separately. Thus we could say
that the development of the Meta-Environment is evolving from a component-based
system towards a component-based product population. To manage the ensuing com-
plexity of variability and dependency interaction we will use (a probably extended
version of) CDL to describe each component and its variable dependencies.

In addition to the validation of CDL in practice, we will investigate whether we
could extend CDL to make it more expressive. For example, in this chapter we have
assumed that component dependencies should be fully configured by their clients. A
component client refers to a variant of the required component. One can imagine that
it might be valuable to let component clients inherit the variability of their dependen-
cies. The communication between client component and dependent component thus
becomes two-way: clients restrict the variability of their dependencies, which in turn
add variability to their clients. Developers are free to determine which choices cus-
tomers can make, and which are made for them.

The fact that client components refer to variants of their dependencies induces a
difference in binding time between user configuration and configuration during com-
position [32]. The difference could be made a parameter of CDL by tagging atomic
features with a time attribute. Such a time attribute indicates the moment in the devel-
opment and/or deployment process the feature is allowed to become active. Since all
moments are ordered in a sequence, partial evaluation can be used to partially configure
the configuration interfaces. Every step effects the binding of some variation points to
variants, but may leave other features unbound. In this way one could, for example,
discriminate features that should be bound by conditional compilation from features
that are bound at activation time (e.g., via command-line options).

Acknowledgments Paul Klint, Gerco Ballintijn and Jurgen Vinju provided helpful
comments on earlier versions of this chapter.



Chapter 3

Generic Feature-Based
Composition

Abstract In this chapter we propose a technique to consistently derive
product instances from a set of software artifacts that can be configured
in multiple ways. Feature descriptions are used to formally describe the
configuration space in terms of the problem domain. By mapping features
to one or more solution space artifacts and checking the consistency of
this mapping, valid configurations are guaranteed to correspond to valid
product instances. The approach is simple, generic and it alleviates the
time-consuming process of instantiating product variants by hand. As such
this a crucial step to achieve continuous delivery.

This chapter has been published previously as: T. van der Storm, Generic
feature-Based composition, inProceedings of the Workshop on Software
Composition (SC’07), LNCS, Springer, 2007 (to appear) [102].

3.1 Introduction

In product line engineering, automatic configuration of product line instances still re-
mains a challenge [7]. Product configuration consists of selecting the required features
and subsequently instantiating a software product from a set of implementation arti-
facts. Because features capture elements of the problem domain, automatic product
composition requires the explicit mapping of features to elements of the solution do-
main. From a feature model we can then generate tool support to drive the configuration
process.

However, successful configuration requires consistent specifications. For instance,
a feature specification can be inconsistent if selecting one feature would require another
feature that excludes the feature itself. Because of the possibly exponential size of the
configuration space, maintaining consistency manually is no option.
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We investigate how to bridge the “white-board distance” between problem space
and solution space [62] by combining both domains in a single formalism based on
feature descriptions [105]. White-board distance pertains to the different levels of ab-
straction in describing problem domain on the one hand, and solution domain on the
other hand. In this chapter, feature descriptions are used to formally describe the con-
figuration space in terms of the problem domain. The solution domain is modeled by a
dependency graph between artifacts.

By mapping features to one or more solution space artifacts, configurations result-
ing from the configuration task map to compositions in the solution domain. Thus it
becomes possible to derive a configuration user interface from the feature model to
automatically instantiate valid product line variants.

3.1.1 Problem-Solution Space Impedance Mismatch

The motivation for feature-based software composition is based on the following ob-
servations: solution space artifacts are unsuitable candidates for reasoning about the
configurability in a product line. Configuration in terms of the problem domain, how-
ever, must stand in a meaningful relation to those very artifacts if it should be generally
useful. Let’s discuss each observation in turn.

First, if software artifacts can be composed or configured in different ways to pro-
duce different product variants it is often desirable to have a high-level view on which
compositions are actually meaningful product instances. That is, theconfiguration
spaceshould be described at a high level of abstraction. If such configuration spaces
are expressed in terms of problem space concepts, it is easier to choose which vari-
ant a particular consumer of the software actually needs. Finally, such a model should
preferably be a formal model in order to prevent inconsistencies and configuration mis-
takes.

The second observation concerns the value of relating the configuration model to
the solution space. The mental gap between problem space and solution space com-
plicates keeping the configuration model consistent with the artifacts. Every time one
or more artifacts change, the configuration model may become invalid. Synchroniz-
ing both realms without any form of tool support is a time-consuming and error-prone
process. In addition, even if the configuration model is used to guide the configuration
task, there is the possibility of inconsistencies in both the models and their interplay.

From these observations follows that in order to reduce the effort of configuring
product lines and subsequently instantiating product variants, tool support is needed
that helps detecting inconsistencies and automates the manual, error-prone task of col-
lecting the artifacts for every configuration. This leads to the requirements for realizing
automatic software composition based on features.

• The configuration interface should be specified in a language that allowsformal
consistency checking. If a configuration interface is consistent then this means
there are valid configurations. Only valid configurations must be used to instan-
tiate products. Such configurations can be mapped to elements of the solution
domain.
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• A model is needed that relates features to artifacts in the solution space, so that
if a certain feature is selected, all relevant artifacts are collected in the final prod-
uct. Such a mapping should respect the (semantic) relations that exist between
the artifacts. For the mapping to be applicable in heterogeneous settings, no
assumptions should be made about programming language or software develop-
ment methodology.

3.1.2 Related Work

This work is directly inspired by the technique proposed in [29]. In that position paper
feature diagrams are compared to grammars, and parsing is used to check the consis-
tency of feature diagrams. Features are mapped to software packages. Based on the
selection of features and the dependencies between packages, the product variant is
derived. Our approach generalizes this technique on two accounts: first we allow ar-
bitrary constraints between features, and not only structural ones that can be verified
by parsing. Second, in our approachcombinationsof features are mapped to artifacts,
allowing more control over which artifact is required when.

There is related work on feature oriented programming that provides features with
a direct solution space semantics. For instance, in AHEAD [8] features form elements
in an algebra that can be synthesized into software components. Although this leaves
open the choice of programming language it assumes that it is class-based. Czarnecki
describes a method of mapping features to model elements in a model driven architec-
ture (MDA) setting [22]. By “superimposing”all variants on top of UML models, a
product can be instantiated by selectively disabling variation points.

An even more fine grained approach is presented in [80] where features become
first-class citizens of the programming language. Finally, a direct mapping of features
to a component role model is described in [51].

These approaches all, one way or the other, merge the problem domain and the
solution domain in a single software development paradigm. In our approach we keep
both domains separate and instead relate them through an explicit modeling step. Thus
our approach does not enforce any programming language, methodology or architec-
ture beforehand, but instead focuses on the possibility of automatic configuration and
flexibility.

Checking feature diagrams for consistency is an active area of research [105, 17,
69] but the level of formality varies. The problem is that checking the consistency is
equivalent to propositional satisfiability, and therefore it is often practically infeasible.
Our approach is based on BDDs [99], a proven technique from model checking, which
often makes the exponential configuration space practically manageable.

3.1.3 Contributions

The contributions of this chapter can be summarized as follows:

• Using an example we analyze the challenges of bridging the gap between prob-
lem space and solution space. We identify the requirements for the explicit and
controlled mapping of features to software artifacts.
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Figure 3.1: Problem space of a small example visualized as a feature diagram

• We propose a formal model that allows both worlds to be bridged in order to
achieve (solution space) composition based on (problem space) configuration.
Instances of the model are checked for consistency using scalable techniques
widely used in model-checking.

• The model is unique in that it does not dictate programming language, is inde-
pendent of software development methodology or architectural style, and does
not require up-front design, provided that the solution domain supports an appro-
priate composition mechanism. Since no up-front design is needed, the approach
can be adopted late in the development process or in the context of legacy soft-
ware.

Organization of this chapter In the following section, Sect. 3.2, feature diagrams [57]
are introduced as a model for the configuration space of product lines. Feature diagrams
are commonly used to elicit commonality and variability of software systems during
domain analysis [106]. They can be formally analyzed so they are a viable option for
the first requirement.

Next, in Sect. 3.2.3 we present an abstract model of the solution space. Because we
aim for a generic solution, this model is extremely simple: it is based on the generic
notion ofdependency. Thus, the solution space is modeled by a dependency graph be-
tween artifacts. Artifacts include any kind of file that shapes the final software product.
This includes source files, build files, property files, locale files etc.

Then, in Sect. 3.3 we discuss how feature diagrams and dependency graphs should
be related in order to allow automatic composition. The formalization of feature di-
agrams is described in Sect. 3.3.2, thus enabling the application of model-checking
techniques for the detection of inconsistencies. How both models are combined is de-
scribed in Sect. 3.4. This combined model is then used to derive product instances.
Finally we present some conclusions and provide directions for future work.
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3.2 Problem and Solution Space Models

3.2.1 Introduction

To be able to reason about the interaction between problem space an solution space,
models are required that accurately represent the domains in a sufficiently formal way.
In this section we introduce feature diagrams as a model for the problem space, and
dependency graphs for the solution space.

3.2.2 Problem Space: Feature Diagrams

Figure 3.1 shows a graphical model of a small example’s problem space using feature
diagrams [57]. Feature diagrams have been used to elicit commonality and variabil-
ity in domain engineering. A feature diagram can be seen as a specification of the
configuration space of a product line.

In this example, the top feature, Tree, represents the application, in this case a small
application for transforming tree-structured documents, such as parse trees. The Tree
feature is further divided in two sub features: Factory and Visitors. The Visitors feature
is optional (indicated by the open bullet), but if it is chosen, a choice must be made
between the top-down or bottom-up alternatives of the Strategy feature and optionally
there is the choice of enabling logging support when traversing trees. Finally, the
left sub-feature of Tree, named Factory, captures a mandatory choice between two,
mutually exclusive, implementations of trees: one based on lists and the other based on
arrays.

Often these diagrams are extended with arbitrary constraints between features. For
instance one could state that the array featurerequiresthe logging feature. Such con-
straints make visually reasoning about the consistency of feature selection with respect
to a feature diagram much harder. In order to automate such reasoning a semantics is
needed. Many approaches exist, see e.g. [69,11,14]. In earlier work we interpreted the
configuration problem as satisfiability problem and we will use that approach here too
(cf. Chapter 2).The description consistency checking of feature diagrams is deferred to
Sect. 3.3.2.

3.2.3 Solution Space: Implementation Artifacts

The implementation of the example application consists of a number of Java classes and
AspectJ files [58]. Figure 3.2 shows a tentative design in UML. The implementation
of the transformation product line is divided over two components: a tree component
and visitors component. Within the tree component the Abstract Factory design pattern
is employed to facilitate the choice among list- and array-based trees. In addition to
the choice between different implementations, trees can optionally be enhanced with
a Visitable interface by weaving an aspect. This enables that clients of the tree
component are able to traverse the trees by using the visitors component. So weaving
in the Visitability aspect causes a dependency on the visitors component.
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Figure 3.2: UML view of an example product line

3.2.4 Artifact Dependency Graphs

What is a suitable model of the solution space? In this chapter we take a an abstract
stance and model the solution space by a directed acyclic dependency graph. In a
dependency graph nodes represent artifacts and the edges represent dependencies be-
tween them. These dependencies may be specified explicitly or induced by the seman-
tics of the source. As an example of the latter: a Java class file has a dependency on
the class file of its superclass. Another example are aspects that depend on the classes
they will be weaved into. For the example the dependencies are shown in Fig. 3.3.
The figure shows dependencies of three kinds: subtype dependency (e.g. between
list.Tree and Tree), aspect dependency (between Visitability and Tree), collaboration
dependency (between Visitor and Strategy).

Dependency graphs are consistent, provided that the dependency relation conforms
to the semantics of the artifacts involved and provided that every node in the graph has
a corresponding artifact. A set of artifacts is consistent with respect to a dependency
graph if it is closed under the dependency relation induced by that graph.

A nice property of these graphs is that, in theory, every node in it represents a valid
product variant (albeit a useless one most of the time). If we, for instance, take the
Visitability node as an example, then we could release this ‘product’ by composing
every artifact reachable from the Visitability node. So, similar to the problem space
of the previous section, the solution space is also a kind of configuration space. It
concisely captures the possibilities of delivery.
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Figure 3.3: Solution space model of the example: dependency graph between artifacts
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Figure 3.4: Partial mapping of features to artifacts

3.3 Mapping Features to Artifacts

3.3.1 Introduction

Now that the problem space is modeled by a feature diagram and the solution space by
a dependency graph how can we bridge the gap between them? Intuitively one can map
each feature of the feature diagram to one or more artifacts in the dependency graph.
Such an approach is graphically depicted in Fig. 3.4.

The figure shows the feature diagram together with the dependency graph of the
previous section. Arrows from features to the artifacts indicate which artifact should
be included if a feature is selected. For instance, if the top-down strategy is chosen
to visit trees, then the TopDown implementation will be delivered together with all its
dependencies (i.e. the Strategy interface). Note that the feature mapping is incom-
plete: selecting the Visitors feature includes the Visitability aspect, but it is unspecified
which concrete implementation (list.Visitability or array.Visitability) should be used.
The graphical depiction thus is too weak to express the fact that ifbotharray/list and
Visitors is chosen, both the array.Visitability/list.Visitability and Visitability artifacts
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Features Logic
feature boolean formula
atomic and composite featuresatoms
configurability satisfiability
configuration valuation
validity of a configuration satisfaction

Table 3.1: Feature descriptions as boolean formulas

Tree : all(Factory, Visitors?)
Factory : one-of(list, array)
Visitors : all(Strategy, logging?)
Strategy : one-of(top-down, bottom-up)

Figure 3.5: Textual FDL feature description of the example

are required. In Sect. 3.4 this problem will be addressed by expressing mapping as
constraints between features and artifacts.

3.3.2 Feature Diagram Semantics

This section describes how feature diagrams can be checked for consistency. We take
a logic based approach that exploits the correspondence between feature diagrams and
propositional logic (see Table 3.1). Since graphical formalisms are less practical for
building tool support, we use a textual version of feature diagrams, called Feature De-
scription Language (FDL) [105]. The textual analog of feature diagram in Fig. 3.1 is
displayed in Fig. 3.5. Composite features start with an upper-case letter whereas atomic
features start in lower-case. Composing features is specified using connectives, such
as, all (mandatory),one-of (alternative),? (optional), andmore-of (non-exclusive
choice). In addition to representing the feature diagram, FDL allows arbitrary con-
straints between features.

For instance, in the example one could declare the constraint “arrayrequires log-
ging”. This constraint has the straightforward meaning that selecting the array feature
should involve selecting the logging feature. Because of these and other kinds of con-
straints a formal semantics of feature diagrams is needed, because constraints may
introduce inconsistencies not visible in the diagram, and they may cause the invalidity
of certain configurations, which is also not easily discerned in the diagram.

3.3.3 Configuration Consistency

The primary consistency requirement is internal consistency of the feature description.
An inconsistent feature description cannot be configured, and thus it would not be pos-
sible to instantiate the corresponding product. An example of an inconsistent feature
description would be the following:
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A : all(b, c)
b excludesc

Feature b excludes feature c, but they are defined to be mandatory for A. This is a
contradiction ifA represents the product. Using the correspondence between feature
descriptions and boolean formulas (cf. Table 3.1), we can check the consistency of a
description by solving the satisfiability problem of the corresponding formula.

Configuration spaces of larger product lines quickly grow to exponential size and
the problem of satisfiability is NP-complete. It is therefore essential that scalable tech-
niques are employed for the verification and validation of feature descriptions and fea-
ture selections respectively. Elsewhere, we have described a method to check the log-
ical consistency requirements of component-based feature diagrams [99]. That tech-
nique is based on translating component descriptions to logical formulas called binary
decision diagrams (BDDs) [16]. BDDs are logical if-then-else expressions in which
common subexpressions are shared; they are frequently used in model-checking ap-
plications because they often represent large search spaces in a feasible way. Any
propositional formula can be translated to a BDD. A BDD that is different from falsum
(⊥) means that the formula is satisfiable.

A slightly different mapping is used here to obtain the satisfiability result. The
boolean formula derived from the example feature description is as follows:

(Tree→ Factory) ∧
(Factory→ ((list ∧ ¬array) ∨ (¬list ∧ array))) ∧
(Visitors→ Strategy) ∧
(Strategy→ ((top-down∧ ¬bottom-up) ∨ (¬top-down∧ bottom-up))))

Note how all feature names become logical atoms in the translation. Feature definitions
of the formName: Expressionbecome implications, just like “requires” constraints.
The translation of the connectives is straightforward. Such a boolean formula can be
converted to a BDD using standard techniques (see for instance [42] for an elegant
approach).

The resulting BDD can be displayed as a directed graph where each node represents
an atom and has two outcoming edges corresponding to the two branches of the if-then-
else expression. Figure 3.6 shows the BDD for the Visitors feature both as a graph
and if-then-else expression. As one can see from the paths in the graph, selecting the
Visitors feature means enabling the Strategy feature. This in turn induces a choice
between the top-down and bottom-up features. Note that the optional logging feature
is absent from the BDD because it is not constrained by any of the other variables.

3.4 Selection and Composition of Artifacts

3.4.1 Introduction

If a feature description is found to be consistent, it can be used to generate a config-
uration user interface. Using this user interface, an application engineer would select
features declared in the feature description. Selections are then checked for validity
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Figure 3.6: BDD for the Visitors feature

using the BDD. The selection of features, called the configuration, is then used to in-
stantiate the product. Sets of selected features correspond to a sets of artifacts. Let’s
call these the (configuration) induced artifacts. The induced artifacts form the initial
composition of the product. Then, every artifact that is reachable from any of the in-
duced artifacts in the dependency graph, is added to the composition.

3.4.2 Configuration and Selection

In Sect. 3.3 we indicated that mapping single features to sets of artifacts was not strong
enough to respect certain constraints among the artifacts. The example was that the
concrete Visitability aspects (array.Visitability and list.Visitability) were not selected
if the Visitors feature were only mapped to the abstract aspect Visitability. To account
for this problem we extend the logical framework introduced in Sect. 3.3.2 with con-
straints between features and artifacts. Thus, mappings become requires constraints
(implications) that allow us to include artifacts when certaincombinationsof features
are selected. The complete mapping of the example would then be specified as dis-
played in Fig. 3.7.

The constraints in the figure – basically a conjunction of implications – are added
to the feature description. Using the process described in the previous section, this
hybrid ‘feature’ description is translated to a BDD. The set of required artifacts can
then be found by partially evaluating the BDD with the selection of features. This
results in a, possibly partial, truth-assignment for the atoms representing artifacts. Any
artifact atom that gets assigned> will be included in the composition together with the
artifacts reachable from it in the dependency graph. Every artifact that gets assigned⊥
will not be included. Finally, any artifact that did not get an implied assignment may
or may not be included, but at least is not required by the selection of features.
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list and Visitors requires list.Visitability
arrayand Visitors requires array.Visitability
list requires list.TreeFactory
arrayrequires array.TreeFactory
top-downrequires TopDown
bottom-uprequires BottomUp
loggingrequires Logging

Figure 3.7: Mapping features to artifacts

Tree

array
list
array, top-down
list, top-down
array, bottom-up
list, bottom-up
array, top-down, logging
list, top-down, logging
array, bottom-up, logging
list, bottom-up, logging

Visitors

top-down
bottom-up
top-down, logging
bottom-up, loggin

Table 3.2: Deliverable configurations per component

Table 3.2 shows all possible configurations for the example product line. The con-
figuration are identified by the set of selected atomic features as used in the feature
diagram. The set of artifacts included in the distribution follows directly from each
configuration. The table shows that even this very small product line already exposes
14 product variants.

3.4.3 Composition Methods

In the previous subsection we described how the combination of problem space feature
models can be linked to solution space dependency graphs. For every valid configura-
tion of the feature description we can derive the artifacts that should be included in the
final composition. However, how to enact the composition was left unspecified. Here
we discuss several options for composing the artifacts according to the dependency
graph.

In the case of the example composing the Java source files entails collecting them
in a directory an compiling the source files usingjavac and AspectJ. However, this
presumes that the artifacts are actually Java source files, which may be a too fine gran-
ularity. Next we describe three approaches to composition that support different levels
of granularity:

• Source tree Composition [26]
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• Generation of a build scripts [108]

• Container-based dependency injection [38]

Source Tree Composition Source tree composition is based onsource packages.
Source packages contain source code and have an abstract build interface. Each source
package explicitly declares which other packages it requires during build, deployment
and/or operation. The source trees contained in these packages can be composed to
obtain a composite package. This package has a build interface that is used to build the
composition by building all sub-packages in the right order with the right configuration
parameters.

Applying this to our configuration approach this would mean that artifacts would
correspond to source packages. Every valid selection of features would map to a set
of root packages. From these root packages all transitively required packages can be
found and subsequently be composed into a composite package, ready for distribution.

Build Script Generation An approach taken in the KOALA framework [108] is sim-
ilar to source tree composition but works at the level of C-files. In KOALA a distinc-
tion is made betweenrequires interfaces (specifying dependencies of a component)
andprovidesinterfaces (declaring the function that a component has to offer). The
composition algorithm of KOALA takes these interfaces and the component definitions
(describing part-of hierarchies) and subsequently generates aMakefile that specifies
how a particular composition should be built.

Again, this could be naturally applied in our context of dependency graphs. The
artifacts would be represented by the interfaces and the providing components. The
dependency graph then follows from the requires interfaces.

Dependency Injection Another approach to creating the composition based on fea-
ture selections would consist of generating configuration files (or configuration code)
for a dependency injection container implementation [38]. Dependency injection is a
object-oriented design principle that states that every class should only reference inter-
faces in its code. Concrete implementations of these interfaces are then “injected” into
a class via the constructor or via setter methods. How component classes are connected
together (“wiring”) is specified separately from the components.

In the case of Java components, we could easily derive the dependencies of those
clasess by looking at the interface parameters of their constructors and setters. More-
over, we can statically derive which classes implement those interfaces (which also in-
duces a dependency). Features would then be linked to these implementation classes.
Based on the dependencies between the interfaces and classes one could then generate
the wiring code.
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3.5 Conclusions

3.5.1 Discussion: Maintaining the Mapping

Since problem space and solution space are structured differently, bridging the two
may induce a high maintenance penalty if changes in either of the two invalidate the
mapping. It is therefore important that the mapping of feature to artifacts is explicit,
but not tangled.

The mapping of features to artifacts presented in this chapter allows the automatic
derivation of product instances based on dependency graphs, but the mapping itself
must be maintained by hand. Maintaining the dependency relation manually is no
option since it continually co-evolves with the code base itself, but often these relations
can be derived from artifacts automatically (e.g., by static analysis).

It is precisely the separation of feature models and dependency graphs makes main-
taining the mapping manageable if the dependency graphs are available automatically.
For certain nodes in the graph we can compute the transitive closure, yielding all arti-
facts transitively required from the initial set of nodes. This means that a feature has
to be mapped only to theessential(root) artifact; all other artifacts follow from the
dependency graph.

Additionally, changes in the dependencies between artifacts (as follows from the
code base) have less severe consequences on such mappings. On other words, the
coevolution between feature model and mapping on the one hand, and the code base
on the other is much less severe. This reduces the cost of keeping problem space and
solution space in sync.

3.5.2 Conclusion & Future Work

The relation between problem space and solution space in the presence of variabil-
ity poses both conceptual and technical challenges. We have shown that both worlds
can be brought together by importing solution space artifacts into the domain of fea-
ture descriptions. By modeling the relations among software artifacts explicitly and
interpreting the mapping of combinations of features to artifacts as constraints on the
hybrid configuration space, we obtain a coherent formalism that can be used for gen-
erating configuration user interfaces. On the technical level we have proposed the use
BDDs to make automatic consistency checking of feature descriptions and mapping
feasible in practice. Configurations are input to the composition process which takes
into account the complex dependencies between software artifacts.

This work, however, is by no means finished. The formal model, as discussed in
this chapter, is still immature and needs to be investigated in more detail. More anal-
yses could be useful. For instance, one would like to know which configurations a
certain artifact participates in order to better assess the impact of certain modifications
to the code-base. Another direction we will explore is the implementation of a fea-
ture evolution environement that would help in maintaining feature models and their
relation to the solution space.

A case-study must be performed to see how the approach would work in practice.
This would involve building a tool set that allows the interactive editing, checking and
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testing of feature descriptions, which are subsequently fed into a product configurator,
similar to the CML2 tool used for the Linux kernel [82]. The Linux kernel itself would
provide a suitable case to test our approach.
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Chapter 4

Continuous Release and
Upgrade of Component-Based
Software

Abstract In this chapter we show how under certain assumptions, the
release and delivery of software updates can be automated in the context
of component-based systems. These updates allow features or fixes to be
delivered in a continuous fashion. Furthermore, user feedback is more ac-
curate, thus enabling quicker response to defects encountered in the field.
Based on a formal product model we extend the process of continuous
integration to enable the agile and automatic release of software compo-
nents. From such releases traceable and incremental updates are derived.

We have validated our solution with the prototype tool Sisyphus that com-
putes and delivers updates for a component-based software system devel-
oped at CWI.

This chapter has been published previously as: T. van der Storm, Continu-
ous Release and Upgrade of Component-Based Software, inProceedings
of the 12th International Workshop on Software Configuration Manage-
ment (SCM-12), Lisbon, 2005 [100].

4.1 Introduction

Software vendors are interested in delivering bug-free software to their customers as
soon as possible. Recently,ACM Queuedevoted an issue to update management. This
can be seen as a sign of an increased awareness that software updates can be a major
competitive advantage. Moreover, the editorial of the issue [43], raised the question
of how to deliver updates in a component-based fashion. This way, users only get the
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features they require and they do not have to engage in obtaining large, monolithic,
destabilizing updates.

We present and analyse a technique to automatically produce updates for component-
based systems from build and testing processes. Based on knowledge extracted from
these processes and formal reasoning it is possible to generate incremental updates.

Updates are produced on a per-component basis. They contain fine-grained bills of
materials, recording version information and dependency information. Users are free to
choose whether they accept an upgrade or not within the bounds of consistency. They
can be up-to-date at any time without additional overhead from development. More-
over, continuous upgrading enables continuous user feedback, allowing development
to respond more quickly to software bugs.

The contributions of this chapter are:

• An analysis of the technical aspects of component-based release and update man-
agement.

• The formalisation of this problem domain using the relational calculus. The
result is a formal, versioned product model [34].

• The design of a continuous release and update system based on this formalisation

The organisation of this chapter is as follows. In Section 4.2 we will elaborate on
the problem domain. The concepts of continuous release and upgrade are motivated
and we give an overview of our solution. Section 4.3 presents the formalisation of
continuous integration and continuous release in the form of a versioned product model.
It will be used in the subsequent section to derive continuous updates (Section 4.4).
Section 4.5 discusses the prototype tool that we have developed to validate the product
model in practice. In Section 4.6 we discuss links to related work. Finally, we present
a conclusion and list directions for future work in Section 4.7.

4.2 Problem Statement

4.2.1 Motivation

Component-based releasing presumes that a component can be released only if its de-
pendencies are released [98]. Often, the version number of a released component and
its dependencies are specified in some file (such as an RPM spec file [5]). If a compo-
nent is released, the declaration of its version number is updated, as well as the declara-
tion of its dependencies, since such dependencies always refer to released components
as well. This makes component-based releasing a recursive process.

There is a substantial cost associated with this way of releasing. The more often a
dependent component is released, the more often components depending on it should
be released to take advantage of the additional quality of functionality contained in it.
Furthermore, on every release of a dependency, all components that use it should be
integration tested with it, before they can be released themselves.

We have observed that in practice the tendency is to not release components in
a component-based way, but instead release all components at once when the largest
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composition is scheduled to be released. So instead of releasing each component in-
dependently, as suggested by the independent evolution history of each component,
there implicitly exists a practice of big-bang releasing (which inherits all the perils of
big-bang integration1).

One could argue, that such big-bang releases go against the philosophy of component-
based development. If all components are released at once as part of a whole (the sys-
tem or application), then it is unlikely that there ever are two components that depend
on different versions of the same component. Version numbers of released components
can thus be considered to be only informative annotations that help users in interpreting
the status of a release. They have no distinguishing power, but nevertheless produce a
lot of overhead when a release is brought out.

So we face a dilemma: either we release each component separately and release
costs go up (due to the recursive nature of component-based releasing). Or we release
all components at once, which is error-prone and tends to be carried out much less
frequently.

Our aim in this chapter is to explore a technical solution to arrive at a feasible
compromise. This means that we sacrifice the ability to maintain different versions
of a component in parallel, for a more agile, less error-prone release process. The
assumption of one relevant version, the current one, allows us to automate the release
process by a continuous integration system. Every time a component changes it is
integratedand released. From these releases we are then able to compute incremental
updates.

4.2.2 Solution Overview

The basic architecture of our solution is depicted in Fig. 4.1. We assume the presence
of a version control system (VCS). This system is polled for changes by the continuous
release system. Every time there is a change, it builds and tests the components that are
affected by the change. As such the continuous release process subsumes continuous
integration [39]. In this chapter, we mean by “integration” the process of building and
testing a set of related components.

Every component revision that passes integration is released. Its version is simply
its revision number in the version control system. The dependencies of a released
component are also released revisions. The system explicitly keeps track of against
which revisions of its declared dependencies it passed the integration. This knowledge
is stored in a release knowledge base (RKB). Note that integrated component revisions

1Seehttp://c2.com/cgi/wiki?IntegrationHell for a discussion.

http://c2.com/cgi/wiki?IntegrationHell
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could pass through one or more quality assurance stages before they are delivered to
users. Such policies can easily be superimposed on the continuous release system
described in this chapter.

The RKB is queried by the update server to compute updates from releases. Such
updates are incremental relative to a certain user configuration. The updates are then
delivered to users over the internet.

4.3 Continuous Release

4.3.1 Component Model

Our formalisation is based on the calculus of binary relations [88]. This means that
essential concepts are modelled as sets and relations between these sets. Reasoning is
applied by evaluating standard set operations and relational operations.

We will now present the sets and relations that model the evolution and depen-
dencies of a set of components. In the second part of this section we will present the
continuous release algorithm that takes this versioned product model as input. As a
reference, the complete model is displayed in a UML like notation in Fig. 4.2.

The most basic set is the set of componentsComponent. It contains an element
for each component that is developed by a certain organisation or team. Note that we
abstract from the fact that this set is not stable over time; new components may be
created and existing components may be retired.

To model the evolution of each component we give component revisions the fol-
lowing type:

Revision⊆ Component×N

This set contains tuples〈C, i〉 whereC represents a component andi is arevision iden-
tifier. What such an identifier looks like depends on the Version Control System (VCS)
that is used to store the sources of the components. For instance, in the case of CVS this
will be a date identifying the moment in time that the last commit occurred on the mod-
ule containing the component’s sources. If Subversion is used, however, this identifier
will be a plain integer identifying the revision of one whole source tree. To abstract
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from implementation details we will use natural numbers as revision identifiers. A
tuple〈C, i〉 is called a “(component) revision”.

A revision records the state of a component. It identifies the sources of a component
during a period of time. Since it is necessary to know when a certain component has
changed, and we want to abstract from the specific form of revision identifiers, we
model the history of a component explicitly. This is done using the relationHistory,
which records the revision a component has at a certain moment in time:

History ⊆ Time×Revision

This relation is used to determine the state of a set of components at a certain moment
in time; it is a total function from moments in time to revisions. By taking the image of
this relation for a certain time, we get for each component inComponent the revision
it had at that time.

Components may have dependencies which may evolve because they are part of the
component. We assume that the dependencies are specified in a designated file within
the source tree of a component. As a consequence, whenever this file is changed (e.g.,
a dependency is added), then, by implication, the component as a whole changes.

The dependencies in the dependency file do not contain version information. If
they would, then, every time a dependency component changes, the declaration of
this dependency would have to be changed; this is not feasible in practice. Moreover,
since the package file is part of the source tree of a component, such changes quickly
ripple through the complete set of components, increasing the effort to keep versioned
dependencies in sync.

The dependency relation that can be derived from the dependency files is a relation
between component revisions and components:

Requires⊆ Revision×Component

Requires hasRevision as its domain, since dependencies are part of the evolution his-
tory of a component; they may change between revisions. For a single revision, how-
ever, the set of dependencies is always the same.

The final relation that is needed, is a relation between revisions, denoting the actual
dependency graph at certain moment in time. It can be computed fromRequires and
History. It relates a moment in time and two revisions:

Depends⊆ Time× (Revision×Revision)

A tuple〈t,〈Ai ,B j〉〉 ∈Depends means that at point in timet, the dependency ofAi onB
referred toB j ; that is:〈Ai ,B〉 ∈ Requires and〈t,B j〉 ∈ History. We further assume that
no cyclic dependencies exist. This means thatDepends[t] represents a directed acyclic
graph for allt ∈ Time.

4.3.2 Towards Continuous Release

A continuous integration system polls the version control system for recent commits
and if something has changed, builds all components that are affected by it. After each
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Algorithm 1 Continuous Integration
1: procedure INTEGRATECONTINUOUSLY

2: i := 0
3: loop
4: deps:= Depends[now]
5: changed:= carrier(deps) \ range(Attempt)
6: if changed6= {} then
7: todo:= deps−1∗[changed]
8: order := reverse(topsort(deps)) ∩ todo
9: INTEGRATEMANY (i, order, deps)

10: i := i + 1
11: end if
12: end loop
13: end procedure

integration, the system usually generates a website containing results and statistics. In
this section we formalise and extend the concept of continuous integration to obtain a
continuous release system.

The continuous release system operates by populating three relations. The first two
are relations between a number identifying an integration attempt and a component
revision:

Attempt⊆ N×Revision

Success⊆ Attempt

Elements inSuccess indicate successful integrations of component revisions, whereas
Attempt records attempts at integration that may have failed. Note thatSuccess is
included inAttempt.

The second relation records how a component was integrated:

Integration⊆ Success×Success

Integration is a dependency relation between successful integrations. A tuple in this
relation 〈〈i, r〉,〈 j,s〉〉 means that revisionr was successfully integrated in iterationi
againsts, which, at the time ofi was a dependency ofr. Revisions was successfully
integrated in iterationj ≤ i. The fact thatj ≤ i conveys the intuition that a component
can never be integrated against dependencies that have been integrated later. However,
it is possible that a previous integration of a dependency can be reused. Consider the
situation that there are two component revisionsA andA′ which both depend onB in
iterationsi and i + 1. First A is integrated against the successful integration ofB in
iteration i. Then, in iterationi + 1, we only have to integrateA′ becauseB did not
change in betweeni andi +1. This means that the integration ofB in iterationi can be
reused.

We will now present the algorithms to computeSuccess, Attempt andIntegration.
In these algorithms all capitalised variables are considered to be global; perhaps it is
most intuitive to view them as part of a persistent database, the RKB.
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Algorithm 2 Integrate components
1: procedure INTEGRATEMANY (i, order, deps)
2: for each r in order do
3: D := {〈i,d〉 ∈ Attempt | d ∈ deps[r],¬∃〈 j,d〉 ∈ Attempt : j > i}
4: if D⊆ Success then
5: if INTEGRATEONE(r, D) = success then
6: Success := Success∪{〈i, r〉}
7: Integration := Integration∪ ({〈i, r〉}×D)
8: end if
9: end if

10: Attempt := Attempt∪{〈i, r〉}
11: end for
12: end procedure

Algorithm 1 displays the top-level continuous integration algorithm in pseudo-
code. Since continuous integration is assumed to run forever, the main part of the
procedure is a single infinite loop.

The first part of the loop is concerned with determining what has changed. We
first determine the dependency graph at the current moment in time. This is done by
taking the (right) image of relationDepends for the current moment of time (indicated
by now). The variabledepsrepresents the current dependency graph; it is a relation
between component revisions. Then, to compute the set of changed components in
changed, all component revisions occurring in the dependency graph for which inte-
gration previously has been attempted, are filtered out at line 5. Recall thatAttempt is
a relation between integers (integration identifiers) and revisions. Therefore, taking the
range ofAttempt gives us all revisions that have successfully or unsuccessfully been
integrated before.

If no component has changed in between the previous iteration and the current one,
all nodes in the current dependency graph (deps) will be in the range ofAttempt. As a
consequencechangedwill be empty, and nothing has to be done. If a change in some
component did occur, we are left with all revisions for which integration never has been
attempted before.

If the setchangedis non-empty, we determine the set of component revisions that
have to be (re)integrated at line 7. The setchangedcontains all revisions that have
changed themselves, but all current revisions that depend on the revisions inchanged
should be integrated again as well. These so-calledco-dependenciesare computed by
taking the image ofchangedon the transitive-reflexive closure of the inverse depen-
dency graph. Inverting the dependency graph gives the co-dependency relation. Com-
puting the transitive-reflexive closure of this relation and taking the image ofchanged
gives all component revisions that (transitively) depend on a revision inchangedin-
cluding the revisions inchangedthemselves. The settodo thus contains all revisions
that have to be rebuilt.

The order of integrating the component revisions intodois determined by the topo-
logical sort of the dependency graphdeps. For any directed acyclic graph the topolog-
ical sort (topsort in the algorithm) gives a partial order on the nodes of the graph such
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that, if there is an edge〈x,y〉, thenx will come beforey. Since dependencies should be
integrated before the revisions that depends on them, the order produced by topsort is
reversed.

The topological order of the dependency graph contains all revisions participating
in it. Since we only have to integrate the ones intodo, the order is (list) intersected with
it. So, at line 8, the listorder contains each revision intodo in the proper integration
order.

Finally, at line 9, the functionINTEGRATEMANY is invoked which performs the
actual integration of each revision inorder. After INTEGRATEMANY finishes, the
iteration counteri is incremented.

The procedureINTEGRATEMANY , displayed as Alg. 2, receives the current itera-
tion i, the ordered list of revisions to be integrated and the current dependency graph.
The procedure loops over each consecutive revisionr in order, and tries to integrater
with the most recently attempted integrations of the dependencies ofr. These depen-
dencies are computed fromdepsat line 3. There may be multiple integration attempts
for these dependencies, so we take the ones with the highesti, that is: from the most
recent iteration.

At line 4 the actual integration of a single revision starts, but only if the setD is con-
tained inSuccess, since it is useless to start the integration if some of the dependencies
failed to integrate. If there are successful integrations of all dependencies, the function
INTEGRATEONE takes care for the actual integration (i.e. build, smoke, test etc.). We
don’t show the definition ofINTEGRATEONE since it is specific to one’s build setup
(e.g. build tools, programming language, platform, searchpaths etc.). If the integration
of r turns out to be successful, the relationsSuccess andIntegration are updated.

4.3.3 A Sample Run

To illustrate how the algorithm works, and what kind of information is recorded in
Integration, let’s consider an example. Assume there are three components,A,B,C.
The dependencies are so thatA depends onB andC, andB depends onC. Assume
further that these dependencies do not evolve.

Figure 4.3 shows six iterations ofINTEGRATECONTINUOUSLY, indicated by the
vertical swimlanes. In the figure, a dashed circle means that a component has evolved
in between swimlanes, and therefore needs to be integrated. Shaded circles and dashed
arrows indicate that the integration of a revision has failed.

So, in the first iteration, the current revisions ofA, B, andC have to be integrated,
since there is no earlier integration. In the second iteration, however, componentC has
changed intoC′, and bothA andB have remained the same. SinceA andB depend on
C′, both have to be reintegrated.

The third iteration introduces a change inA. Since no component depends onA′ at
this point, onlyA′ has to be reintegrated. In this case, the integrations ofB andC in the
previous iteration are reused.

Then, between the third and the fourth iterationB evolves intoB′. SinceA′ depends
on B′, it should be reintegrated, but still the earlier integration ofC′ can be reused. In
the next iterationB′ evolves intoB′′. Again,A′ should be reintegrated, but now it fails.
The trigger of the failure is inB′ or in the interaction ofB′ andC′. We cannot be sure
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Figure 4.3: Six iterations of integration

that the bug that triggered the failure is in the changed componentB′′. It might be so,
that a valid change inB′′ might produce a bug inA′ due to unexpected interaction with
C′. Therefore, only complete integrations can be reused.

Finally, in the last iteration, it was found out that the bug was inA′, due to an invalid
assumption. This has been fixed, and nowA′′ successfully integrates withB′′ andC′.

4.4 Continuous Upgrade

4.4.1 Release Packages

In this section we will describe how to derive incremental updates from the setsSuccess
andIntegration. Every element〈i, r〉 ∈ Success represents arelease iof revisionr. The
set of revisions that go into an update derived from a release, therelease package, is
defined as:

package(s) = range(Integration∗[s])

This function returns the bill of materials for a releases∈ Success.
As an example, consider Fig. 4.4. It shows the two release packages for component

A′. They differ in the choice between revisionsB and B′. Since a release package
contains accurate revision information it is possible to compare a release package to
an installed configuration and compute the difference between the current state (user
configuration) and the desired state (a release package).

If ugrades are to be delivered automatically they have to satisfy a number of proper-
ties. We will discuss each property in turn and assert that the release packages derived
from the RKB satisfy it.

Correctness Releases should contain software that is correct according to some cri-
terion. In this chapter we used integration testing as a criterion. It can be seen from
the algorithmINTEGRATEMANY that only successfully integrated components are re-
leased.
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Figure 4.4: Two release packages forA′

Completeness A component release should contain all updates of its dependencies if
they are required according to the correctness criterion. In our component model, the
source tree of each component contains a special file explicitly declaring the dependen-
cies of that component. If a dependency is missed, the integration of the component
will fail. Therefore, every release will referenceall of its released dependencies in
Integration.

Traceability It should be possible to relate a release to what is installed at the user’s
site in a precise way. It is for this reason that release version numbers are equated with
revision numbers. Thus, every installed release can be traced back to the sources it
was built from. Tracing release to source code enables the derivation of incremental
updates.

Determinism Updating a component should be unambiguous; this means that they
can be applied without user intervention. This implies that there cannot be two revi-
sions of the same component in one release package. More formally, this can be stated
as a knowledge base invariant. First, let:

components(s) = domain(package(s))

The invariant that should be maintained now reads:

∀s∈ Success : |package(s)|= |components(s)|

We have empirically verified that our continuous release algorithm preserves this in-
variant. Proving this is left as future work.

4.4.2 Deriving Updates

The basic use case for updating a component is as follows. The sofware vendor adver-
tises to its customers that a new release of a product is available [53]. Depending on
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certain considerations (e.g. added features, criticality, licensing etc.) the customer can
decide to update to this new release. This generally means downloading a package or
a patch associated to the release and installing it.

In our setting, a release of a product is identified by a successful integration of a
top component. There may be multiple releases for a single revisionr due to the evo-
lution of dependencies ofr. The user can decide to obtain the new release based on
the changes that a component (or one of its dependencies) has gone through. So, a re-
lease of an application component is best described by the changes in all its (transitive)
dependencies.

To update a user installation one has to find a suitable release. If we start with the
set of all releases (Success), we can apply a number of constraints to reduce this set to
(eventually) a singleton that fits the requirements of a user.

For instance, assume the user has installed the release identified by the first iteration
in Fig. 4.3. This entails that she has component revisionsA, B, andC installed at her
site.

The set of all releases is{1,2,3,4,5,6}. The following kinds of constraints express
policy decisions that guide the search for a suitable release.

• State constraints: newer or older than some date or version. In the example:
“newer thanA”. This leaves us with:{3,4,5,6}.

• Update constraints: never remove, or patch, or a add, a certain (set of) compo-
nent(s). For example: “preserve theA component”. The set reduces to:{3,4,6}.

• Trade-offs: conservative or progressive updates, minimizing bandwidth and max-
imizing up-to-dateness respectively. If the conservative update is chosen, release
3 will be used,—otherwise 6.

If release 3 is used, only the patch betweenC andC′ has to be transferred and
applied. On the other hand, if release 6 is chosen, patches fromB to B′′ andA to A′′

have to be deployed as well.

4.5 Implementation

We have validated our formalisation of continuous release in the context the ASF+SDF

Meta-Environment [95], developed within our group SEN1 at CWI. The Meta-Envi-
ronment is a software system for the definition of programming languages and generic
software transformations. It consists of around 25 components, implemented in C,
Java and several domain specific languages. The validation was done by implementing
a prototype tool called Sisyphus. It is implemented in Ruby2 and consists of approxi-
mately 1000 source lines of code, including the SQL schema for the RKB.

In the first stage Sisyphus polls the CVS repository for changes. If the repository
has changed since the last iteration, it computes theDepends relation based on the
current state of the repository. This relation is stored in a SQLite3 database.

2www.ruby-lang.org
3www.sqlite.org

www.ruby-lang.org
www.sqlite.org
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The second stage consists of running the algorithm described in Sect. 4.3. Every
component that needs integration is built and tested. Updates to the relationsAttempt,
Succes andIntegration are stored in the database.

We let Sisyphus reproduce a part of the build history of a sub-component of the
ASF+SDF Meta-Environment: a generic pretty-printer calledpandora . This tool
consists of eight components that are maintained in our group. The approximate size
of pandora including its dependencies is≈190 KLOC. The Sisyphus system inte-
grated the components on a weekly basis over the period of one year (2004). From the
database we were then able to generate a graphical depiction of all release packages.
In the future we plan to deploy the Sisyphus system to build and release the complete
ASF+SDF Meta-Environement.

A snapshot of the generated graph is depicted in Fig. 4.5. The graph is similar to
Fig. 4.3, only it abstracts from version information. Shown are three integration itera-
tions, 22, 23, and 24. In each column, the bottom component designates the minimum
changeset inbetween iterations.

Iteration 22 shows a complete integration of all components, triggered by a change
in the bottom componentaterm . In iteration 23 we see that onlypt-support
and components that depend on it have been rebuilt, reusing the integration ofer-
ror-support , tide-support , toolbuslib andaterm .

The third iteration (24) reuses some of these component integrations, namely:
tide-support , toolbuslib andaterm . The integration of componenterror-
support is not reused because it evolved in between iteration 23 and 24. Note that the
integration ofpt-support from iteration 23 cannot be reused here since it depends
on the changed componenterror-support .

4.6 Related Work

4.6.1 Update Management

Our work clearly belongs to the area of update management. For an overview of ex-
isting tools and techniques we refer to [53]. Our approach differs from the techniques
surveyed in that paper, mainly in the way how component releases and the updates
derived from them are linked to a continuous integration process.

The software deployment system Nix [31] also automatically produces updates for
components. This system uses cryptographic hashes onall inputs (including compilers,
operating system, processor architecture etc.) to the build process to identify the state
of a component. In fact this is more aggressive than our approach, since we only use
revision identifiers.

Another difference is that Nix is a generic deployment system similar to Debian’s
Advanced Package Tool [85], Redhat’s RPM [5] and the Gentoo/BSD ports [79, 109]
systems. This means that it works best if all software is deployed using it. Our approach
does not prohibit that different deployment models peacefully coexist, although not
across compositions.

Updates produced by Nix are always non-destructive. This means that an update
will never break installed components by overwriting a dependency. A consequence of
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Figure 4.5: Three weekly releases of thepandora pretty printing component in 2004

this is that the deployment model is more invasive. Our updates are always destructive,
and therefore the reasoning needed to guarantee the preservation of certain properties
of the user configuration is more complex. Nevertheless, this makes the deployment
of updates simpler since no side-by-side installation of different versions of the same
component is needed.

4.6.2 Relation Calculus

The relational calculus [88] has been used in the context of program understanding
(e.g. [61, 66]), analysis of software architecture [50, 36], and configuration manage-
ment [65, 15]. However, we think that use of the relational calculus for the formalisa-
tion of continuous integration and release is novel.

Our approach is closest to Bertrand Meyer’s proposal to use the calculus for a soft-
ware knowledge base (SKB). In [73] he proposes to store relations among program-
ming artifacts (e.g., sources, functions) in an SKB to support the software process.
Many of the relations he considers can be derived by analyzing software artifacts. Our
approach differs in that respect that only a minimum of artifacts have to be analyzed:
the dependencies between components that are specified somewhere. Another distinc-
tion is that our SKB is populated by a software program. Apart from the specification
of dependencies, no intervention from development is needed.
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4.7 Conclusion and Future Work

Proper update management can be a serious advantage of software vendors over their
comptetitors. In this chapter we have analysed how to successfully and quickly produce
and deploy such updates, without incurring additional overhead for development or
release managers.

We have analysed technical aspects of continuous integration in a setting of component-
based development. This formalisation is the starting point for continously releasing
components and deriving updates from it that are guaranteed to have passed integration
testing.

Finally we have developed a prototype tool to validate the approach against the
component repository of a medium-sized software system, the ASF+SDF Meta-Environment.
It proved that the releases produced are correct with respect to the integration predicate.

As future work we will consider making our approach more expressive and flexible,
by adding dimensions of complexity. First, the approach discussed in this chapter
assumes that all components are developed in-house. It would be interesting to be able
to transparently deal with third-party components, especially in the context of open
source software.

Another interesting direction concerns the notion of variability. Software compo-
nents that expose variability can be configured in different ways according to differ-
ent requirements [99]. The question is how this interacts with automatic component
releases. The configuration space may be very large, and the integration process must
take the binding variation points into account. Adding variation to our approach would,
however, enable the delivery of updates for product families.

Finally, in many cases it is desirable that different users or departments use different
kinds of releases. One could imagine discerning different levels of release, such as
alpha, beta, testing, stable etc. Such stages could direct component revisions through an
organisation, starting with development, and ending with actual users. We conjecture
that our formalisation and method of formalisation are good starting points for more
elaborate component life cycle management.



Chapter 5

Backtracking Continuous
Integration

Abstract Failing integration builds are show stoppers and hence an im-
pediment to continuous delivery. Development activity is stalled because
developers have to wait with integrating new changes until the problem
is fixed and a successful build has been run. We show how backtrack-
ing can be used to mitigate the impact of build failures in the context of
component-based software development. This way, even in the face of
failure, development may continue and a working version is always avail-
able and release opportunities are increased.

5.1 Introduction

Continuous integration [39] has been heralded as a best practice of software develop-
ment. After every change to the sources the complete system is built from scratch and
the tests are run. If any of the tests fail, all effort is directed at fixing the problem
in order to obtain a working version of the system. If the build fails, development is
stalled. Continuous integration has therefore been called the “heartbeat of software”.
If it stops, you can’t ship.

In this chapter, I describe a continuous integration scheme in component-based
development settings. In this scheme I assume that integration is defined as building
the source of a component against the (build artifacts of) its dependencies. Integrating
the whole application then means building the topmost component in the dependency
hierarchy.

The scheme employs two features to improve the feedback obtained from it. First,
instead of building the complete system on every change, only the components that
have affecting changes are rebuilt, and previous build results are reused otherwise [100].
Components are integrated in an incremental fashion, similar to the way the Unix tool
MAKE can be used to selectively recompile files [37]. It turns out that due to the amount



64 Backtracking Continuous Integration

of build sharing, the feedback is much quicker on average. As a result developers are
can respond more quickly to problems encountered during integration.

The second feature, the primary focus of this chapter, is backtracking. If the build
of a component has failed, it would make no sense to build any client components.
Normally this would stall integration until the problem is fixed and the breaking com-
ponent has been rebuilt. To prevent this from occurring, components that normally
would depend on a broken component build, are built usingearlier build results of
the very same component. This way some measure of being completely up-to-date is
traded for increased build feedback. In the end,anybuild is better than no build at all.

Contributions The contributions of this chapter can be summarized as follows:

1. I present a formalization of incremental continuous integration in the context of
component-based development.

2. The formalization of incremental continuous integration is extended with two
forms of backtracking, dubbed “simple backtracking” and “true backtracking”;
both approaches are compared and I present and efficient algorithm for the latter.

3. Simple backtracking has been validated in practice; this has resulted in empirical
data supporting its viability to improve continous integration.

Both build sharing and backtracking have been implemented as part of the continous in-
tegration and release system Sisyphus [103]. Sisyphus was used to validate the scheme
in the setting of the ASF+SDF Meta-Environment [92], which is a language engineer-
ing workbench consisting of around 60 heterogeneous components. The results in this
chapter derive from that case study.

5.2 Background

5.2.1 Component-Based Development

In component-based software configuration management (SCM) the sources of a soft-
ware system are divided over individual components in the version control system
(VCS). That is, the system is composed of different source trees that have indepen-
dent evolution histories. The prime example of this approach to SCM is the Unified
Change Management as implemented in IBM Rational’s ClearCase [10].

Independent versioning of components promotes parallelism in development activ-
ity. Development on a component is more or less isolated from the rest of the system.
Having a good architecture thus creates opportunities for reduced time to market. At
the same time the traditional advantages of component-based software development
apply: complexity is reduced, reuse and variation is stimulated.

Whereas most component models (e.g., COM [84]) separate the notions of interface
and implementation, in this chapter I assume a more liberal notion: a component is
considered to be just a logically coupled set of source files that has its own version
history. Practically this means that a component is often represented as a directory
entry in a VCS such as, for example, Subversion [19].
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Components are often inter-related through dependency relations. In the presence
of interfaces these are often specified as “provides” and “requires” interfaces. For in-
stance, one component may implement a certain interface and is then said to provide
it to client components. Client components may specify a dependency on such inter-
faces (i.e. they may require it). Hence, interfaces represent the “contractual window”
between two components.

The intermediate step of interfaces introduces a level of indirection between two
implementation components which is advantageous from the versioning perspective.
This can be seen as follows: every time a component changes (i.e., a new version is
produced), this has no impact on client codeunlessthe provided interface changes in
a backwards incompatible way. The evolution of two inter-dependent components is
decoupled through the interface concept itself. Of course, this is only successful in
practice if interfaces are sufficiently stable.

In some situations however, the notion of interface does not apply because it is too
tightly bound to the implementation domain, i.e., platform and programming language.
In heterogeneous systems the interface concepts simply does not apply. In this chap-
ter, therefore, I simplify the provides/requires model of dependencies and discard the
notion of interfaces. Components, i.e., implementation units (source trees), have de-
pendencies on other components without the intermediary interface concept. In other
words, components are allowed to require other components in order to be correctly
built and/or deployed.

Such dependencies are specified without version identifier because that would in-
troduce strong coupling between the client and the dependency component. As soon
as the latter changes, the former is out of date. Keeping such dependency relations
synchronized can be a true maintenance nightmare. We therefore let components ref-
erence their dependencies by name without version information. So, in a way, there
still is some form of interface, albeit an empty one, which is thenameof the required
component.

However, it now becomes increasingly difficult to select configurations of compo-
nents that make up consistent versions of a system. Any version of a component is a
suitable candidate to satisfy the requirements of the client component that declares a
dependency on its name. The configuration space has become exponentially large since
we now havecompletedecoupling between the evolution histories of components.

This is where continuous integration comes in. Instead of explicitly searching the
configuration space for the “right” configuration, we let an automated build system
construct “bleeding edge” configurations as frequent and quick as possible. This means
that always a working version is available without additional maintenance of selecting
the right versions of the right components and doing the integration by hand.

5.2.2 Continuous Integration

Continuous integration proper originates from the Extreme Programming (XP) soft-
ware development methodology [9]. There, the process of continuous integration also
includes the continuous checking in of changes, however small they may be. Current
usage of the term, however, most often refers to the process of building the complete
system every time changes have been committed, whichever the frequency they oc-
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cur in. As such it can be seen as a heavier instance of daily or nightly integration
builds [71].

The goal of continuous integration is to know theglobal effects oflocal changes
as soon as possible. Integration bugs are hard to track down because they originate
from the interaction between (changes to) different subsystems, so they are hard to
test for on a subsystem level. Post-poning integration makes things even worse: the
interaction between changes increases very fast making integration bugs exponentially
harder to find. It is therefore important that integration builds are executed quickly
enough. As Martin Fowler states: ”The whole point of Continuous Integration is to
provide rapid feedback.” [39] Failing builds, of course, are the main impediment to
such rapid feedback if they are not fixed timely.

The word “integration” has yet another common meaning: that of putting parts
together to obtain a coherent, meaningful whole. This overlaps partly with the integra-
tion of changes, but has additional force in the context of component-based software
that is partioned in separate entities that have to be integrated at build time, deploy-
ment time or runtime. Indeed, any software product that has been broken up in parts
to reduce complexity, increase time to market and promote reuse has be integrated at
some time. It is better to do this quick and often, because the “very act of partioning
the system introduces development process problems because interactive components
are more complex than single entities” [75].

Component-based softwaredevelopmentaffects continous integration along both
axes of the word integration. In component-based software development thesources
of a product are partitioned in independently versioned components. This means that
“change integration” (check in) can be highly parallelized since every component has
its own development line. This increased parallellism poses even higher demands on
continous integration. Furthermore, integration builds not only test the new changes,
but also thecompositionof the different components (possibly containing those changes)
to obtain a complete system.

5.2.3 Motivation: Continuous Release

The goal of backtracking continuous integration is to mitigate the effect of build fail-
ures in order to have a working version at all times and at the same time increase
feedback for developers. Always having a working version of the system is a key re-
quirement for continuousrelease, which entails making the software available after
every change.

Releasing in this context means making the software available to a certain group
of users. For instance, it might not be desirable to continuously release to actual end-
users. However, it may be very benificial to release the software after every change
to beta-testers or to the developers themselves (who want to see the effect of their
changes).

Continuous release is motivated along the same line as the reason for continuous
integration: early discovery of defects and a shortened feedback loop. Continuous
release, however, requires automation of release and therefore the automation of inte-
gration.
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In order to extend the process of continuous integration to continuous release, I
distinguish the following goals:

• Feedback:a build (successful or not) is always better than no build. If there are
changes to a component, the system should find a way to integrate them, even if
builds of certain dependencies may have failed.

• Currency: the continuous integration system should always attempt to build the
latest version of the software. Builds should be maximally up-to-date.

• Traceability: accuratebills of materials(BOMs) [70] should be maintained for
the sake of tracing releases to the sources that were used to build them.

• Purity: the integration of components should bepure1, i.e., the set of builds that
transitively participate in an integration build should not involve multiple ver-
sions of the same component; this is a requirement for the derivation of release
packages.

• Efficiency: the continuous integration system should perform no duplicate work.
This means that previous build results should be reused if possible.

Not all of these goals can be achieved at once. For instance, we will see that there is a
trade-off between maximal up-to-dateness and maximal feedback.

5.3 Overview

5.3.1 Introduction

Before I a describe incremental continuous integration and the two kinds of backtrack-
ing, I first introduce some preliminary assumptions. First of all, it is assumed that the
dependencies of a component can be derived from the sources, for instance by analyz-
ing a specific file that lists them explicitly. Since the specification of dependencies thus
is part of the sources of a component, a change in the dependencies induces a change
of the component. This allows for smooth evolution of a system’s architecture.

In the context of our case-study the dependencies are specified inpkgconfig
files [48]. For instance, the pretty-print subsystem of the ASF+SDF Meta-Environment
corresponds to thepandora component [93]. Itspkgconfig file is shown below
(slightly abridged for clarity):

Name: pandora
Requires: asc-support,aterm,pt-support,toolbuslib

The first line in the file declares the identity of this component, in this casepandora .
The second line lists the required dependencies. Note that these dependencies do not
have version identifiers attached. Requiring this would surely introduce a large main-
tenance penalty: on every change to one of the dependencies this files would have to
be updated. Instead, at a certain moment in time the continuous integration system

1In Chapter 4 this was referred to as “homogeneous”.
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Figure 5.1: Incremental integration example

will take a snapshot of the repository and bind each unversioned dependency to the
versions of those required components at that very moment in time. In other words, for
all components thelatestrevision is taken.

Taking a snapshot of the repository results in a set ofsource treeswhich capture
the state of every component at the moment of the snapshot. These source trees are
related in a dependency graph that results from the requirements as specified within
those source trees at the moment of the snapshot. The snapshot is now input to the
continuous integration process.

5.3.2 Build Sharing

Now it is time to describe incremental continuous integration based on the snapshots
introduced above. As an example, consider a small component-based application con-
sisting of three components: App (the application) , DB (a database server) and FS (a
file system library). The App component requires both DB and FS, whereas DB only
requires FS; FS has no dependencies whatsoever. Of course, every build of a compo-
nent has an implicit dependency on the build environment (e.g. compilers, build tools
etc.). This dependency however, we assume, is managed by the continuous integration
system itself.

Figure 5.1 shows four integration cycles, corresponding to each column. In the first
iteration, all components have been successfully built (indicated by solid boxes and
arrows). The arrows indicate the dependency relation in the snapshot at the time of
integration.

In the second iteration, the App component has changed since the first iteration, but
there are no changes in DB and FS. Instead of building all components from scratch—
which would mean a waste of valuable resources—the incremental continuous integra-
tion system reuses the build results (e.g., binaries, libraries etc.) from earlier integra-
tions for the dependencies of App. This is indicated by the arrows going from App
1.1 to DB 1.0 and FS 1.0. In other words, the builds of DB 1.0 and FS 1.0 are shared
between the consecutive builds App, versions 1.0 and 1.1 respectively.

However, suppose that a build fails. This is shown in integration 3. Changes have
been committed to both FS and DB, so all components require a build. In the case of
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Figure 5.2: Incremental integration with simple backtracking

App arebuild is required of version 1.1 in order to take the changes of DB and FS into
account. So it is very well possible that a single component source tree will be built
many times because of changes in dependencies.

Suppose that the build of DB 1.1 fails, however. This has been indicated by the
dashed box around DB 1.1. This state of affairs prohibits a build of App 1.1 because
one cannot build against failed dependencies. Builds that will not be attempted because
of this reason are called “not tried”. In the figure this is indicated by dashed boxes with
rounded corners. Clearly, “not tried” builds are to be avoided since we lose feedback.
In the example no feedback is generated, for instance, on how the changes in FS affect
App 1.1.

Finally, in the fourth cycle (column 4), again there are changes in DB (hopefully
to fix the previous build) and in FS. However, now the build of FS 1.2 fails. As a
consequence there is neither feedback on the changes in DB itself nor on the integration
of changes in DB 1.2 with App 1.1. Again, feedback is less than optimal and, moreover,
we still can only release App 1.1 with DB 1.0 and FS 1.0, and we can release FS 1.1
as a stand-alone component. I will now describe how a simple form of backtracking
improves this situation slightly.

5.3.3 Simple Backtracking

In incremental continuous integration builds to satisfy component dependencies are
always searched for within the current snapshot. For instance, in Figure 5.1, during
the second integration the continuous integration system find builds for DB 1.0 and FS
1.0 to satisfy the dependencies of App 1.1, since both DB and FS have not changed
since; both DB 1.0 and FS 1.0 are in the snapshot of cycle 2. In the next two cycles
the current snapshot contains DB 1.1 and FS 1.1, and DB 1.2 and FS 1.2 respectively.
However, in cycle 3 the build of DB 1.1 has failed, and in cycle 4, the build of FS 1.2
has failed. Hence it is not possible to build App 1.1 in either of the two cycles.

Figure 5.2 shows the application of simple bactracking. This means that, if there is
a failed build in any of the dependencies of a component, say App, in the current cycle
(with source trees in the current snapshot), the continuous integration goes back in time
to find the first successful build of the component in question (in this case App), checks
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Figure 5.3: Incremental integration with true backtracking

if the requirements are still the same—does App still require both DB and FS?—and if
so, uses the set of builds that were used back then.

To illustrate this, consider Figure 5.2. In cycle 3, there are failed dependencies for
App 1.1. The most recent successful build of App with the same requirements, is the
build of cycle 2. However, using that set of dependencies (DB 1.0 and FS 1.0) does not
achieve anything: we would be merelyduplicating the build of cycle 2 because App
has not changed in between cycles 2 and 3. This is indicated by the absence of a box
around App 1.1 in cycle 3. Note that this is a different outcome than “not tried”, since
with “not tried” builds we always lose something, either feedback or currency, and this
is not the case here.

Another important detail here is that we cannot just use DB 1.0 and FS 1.1 for
building App 1.1 in cycle 3, since that would lead to an impure build: DB 1.0 uses FS
1.0 whereas App 1.1 would have used FS 1.1. This means there are two versions (1.0
and 1.1) of the same component (FS) in the closure of App 1.1.

Simple backtracking shows its value in the fourth cycle: there is a change in DB,
and there is a successful most recent build, the build of DB 1.0 in the first cycle. Using
simple backtracking, at least DB 1.2 can be built. We do not get feedback on the
integration of DB 1.2 and FS 1.1 but it is better than nothing at all. Although in this
case, it seems trivial to just use the build of FS 1.1 for building DB 1.2, this is deceiving.
When the dependency graph is more complex one cannot just take the most recent
successful builds of dependencies without ensuring the result will be pure. This is
exactly what true backtracking achieves, which I will discuss next.

5.3.4 True Backtracking

Simple backtracking involves searching for earlier successful builds of the component
that should be built now. True backtracking adapts this search by search for sets of
successfully built required components such that a purity of integration is ensured.
Figure 5.3 shows the example scenario with true backtracking enabled.

The figure only differs from Figure 5.2 in the fourth cycle. Cycle 3 remains the
same because using the most recent set of successful dependency builds that maintain
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purity (DB 1.0 and FS 1.0) again would entail duplicating the App build of cycle 2. It
is still impossible to use DB 1.0 and FS 1.1 because it would violate purity.

In the cycle 4 however, the new version DB (1.2) can now be built. The set of most
recent successful dependency builds is{FS 1.1} and this set does not violate purity
from the perspective of DB 1.2. Furthermore, App 1.1 can now also be built:{DB 1.2,
FS 1.1} maintains purity.

Note that in both Figure 5.2 and Figure 5.3 all “not trieds” have disappeared. How-
ever, true backtracking presents the following advantages over simple backtracking:

• We were able to build DB 1.2 against FS 1.1 instead of FS 1.0, hence with true
backtracking the build of DB 1.2 is more on the bleeding edge.

• It was possible to build App 1.1 against DB 1.2 and FS 1.1, hence we obtain one
additional release opportunity for component App.

In addition, the simple backtracking suffers from the fact that it only works if de-
pendencies have not changed in between integrations. In that case, the probability of
finding an earlier build with the same set of requirements is rather low.

In the following section I will present a light-weight formalization of incremental
continuous integration and the two forms of backtracking. The formalization extends
and modifies the formalization presented in Chapter 4.

5.4 Formalization

5.4.1 Preliminaries

In order to reason about integration I introduce a lightweight formal model of compo-
nents, revisions and builds in this section. It is instructive to see the relations and sets
that make up the model as asoftware knowledge base(SKB) [73] that can be queried
and updated. The SKB is required for implementing build sharing, backtracking and to
automatically derive pure releases.

To be able to build a component, a source tree is needed for every component. To
reflect this relation explicitly I introduce the relationstatethat bijectively maps com-
ponents (names) to source trees (revisions) according to some criterion (for instance,
by taking thecurrentrevision of each component). It has the following type:

State⊆ Components×Revisions

In practice, a revisionr ∈ Revisionsis often represented as a tuple of a source
location (e.g. a path or URL) together with a version identifier.

Source trees may declare dependencies on components. This is modeled by the
relationRequires:

Requires⊆ Revisions×Components

Note that the domain and range of this relation are not the same. The idea is that
dependencies on components may change inbetween revisions. For instance, source
treeT may require the componentsA andB, but the following revisionT ′ might only
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requireA. Moreover, the range of the relation is unversioned for another reason. If
Requireswould have been a relation fromRevisionsto Revisionsthis would mean that
it would have to be updated on every change to a component that is depended byT.
In the current situation, the requires relation can be maintainedwithin the source trees
themselves.

A snapshot maps every path to a tree according to some criterion, that is, it fixates
a certain version for each component. The definition makes use of theStaterelation
introduced above.

Snapshot= Requires◦State

Snapshotis a dependency graph betweenRevisionsand is the starting point for integra-
tion. This means that subsets of carrier(Snapshot) will be built in an appropriate order.
The results are stored in a relationBuilds:

Builds⊆ State×N

This set is partitioned in two subsetsSuccessandFailure, resp. containing the success-
ful builds and the failed ones. A build relates a tree to a build number, because a single
tree can be built many times, possibly using different dependencies. Which builds of
dependencies actually were used is recorded in theIntegrationrelation:

Integration⊆ Builds×Builds

Again, Integrationis a dependency graph but this time between builds.
For any successful integration we require that the set of builds that participated in

the integration ispure. Purity of a set of buildsB is defined as:

pure?(B)≡ |B|= |domain(domain(B))|

Note that a setB contains tuples of the form〈〈c, r〉, i〉, so that domain(B)⊆ State, and
hence domain(domain(B)) ⊆ Components. In other words, a set of buildsB is pure if
there are no two builds and/or revisions for the same component contained inB.
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Algorithm 3 Template for component-based integration
1: procedure INTEGRATE(i, Snapshot)
2: order← topological-sort(Snapshot)
3: for t ∈ order do
4: w← workingset(t)
5: if w is undefined then . “Not tried”
6: Failed← Failed∪{〈t, i〉}
7: continue
8: end if
9: if build?(t,w) then

10: b← execute-build(i, t,w)
11: Builds← Builds∪{b}
12: Integration← Integration∪ ({b}×w)
13: end if
14: end for
15: end procedure

As an example of impurity of integration, consider Figure 5.4. The figure shows the
integration of a componentA against the integrations of its dependencies. During the
integration ofB, however, a different version of componentC was used: two versions of
C are reachable fromA, hence, this constitutes an impure integration. The algorithms
presented here ensure thatIntegrationis pure for every build. Formally this means:

∀b∈ Builds: pure?(Integration∗[b])

This invariant was introduced in [100]. It ensures that theIntegrationrelation can be
used to derivecompositionsfor every build which is what is delivered to users. If
Integrationwould not have been pure composition would be ambiguous: it could occur
that two builds used different versions for the same dependency,—which one should
be in the composition? This invariant is used in Subsection 5.4.4 where backtracking
is added to integration.

5.4.2 Schematic Integration Algorithm

Now that I have introduced the preliminary definitions, I present a schematic version
of an algorithm for continuous integration in component-based development setting;
it is shown in pseudo-code in Algorithm 3. The input to the build algorithm is the
Snapshot, i.e. a relation betweenRevisionsand a number that identifies the build cycle.
Since snapshots are directed, acyclic graphs (DAGs) they have a topological order. The
topological order consist of a list of vertices in the DAG, such that every dependency
of vertexN comesbefore N. The topological order of the snapshot is stored in variable
order on line 2.

Then, for each revision/source treet in order (line 3) we obtain aworkingsetfor
t (line 4). Workingsets consist of builds (∈ Success) that will be used to satisfy the
requirements oft (i.e. Requires[t]). The definition of workingset is a parameter of
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this algorithm, as it captures the nature of backtracking. For now, we just assume that
it returns a valid (i.e. pure) set of builds compatible to the requirements oft, if any.
Below I will present three versions of the function, corresponding to the cases of no
backtracking, simple backtracking and finally true backtracking.

If the function workingset is undefined (i.e. there are no valid workingsets) the
algorithm continues with the next source tree inorder. In this case the build oft is “not
tried”. Otherwise,w will be used in buildi of t.

As Figure 5.2 and 5.3 showed, rebuilding a component using earlier dependencies
occasionally amounts to duplicating earlier builds of that same component. Thebuild
criterion prevents this from occurring:

build?(t,w)≡ ¬∃b∈ Builds: tree(b) = t ∧ Integration+[b] = Integration∗[w]

This function takes a treet and a workingsetw and searchesBuildsfor an earlier build
of t. If such a build is found, theIntegrationrelation is used to check whether the same
(transitive) dependencies were used the algorithm is about to use now viaw. If the two
closures are the same, buildingt againstw would mean duplicating an earlier build,
and no build is required.

If, on the other hand, a buildis required according to the build criterion,t is built
against workingsetw by the function execute-build on line 10. This function returns
a new build entityb which is either failed or successful. The following lines update
the software knowledge-base. First,b is added toBuilds2, thenIntegrationis extended
with tuples linkingb to each build inw since this captures howt has been built.

5.4.3 Incremental Continuous Integration

In this subsection I explain how the model just introduced, can be used to do continuous
integration in an incremental fashion. This is done by presenting an implementation of
the workingset function referenced in Algorithm 3. Without backtracking, this function
can specified as follows:

workingset(t) = w

where

w = {〈t ′, i〉 ∈ Builds| t ′ ∈ T,¬∃〈t ′, j〉 ∈ Builds: j > i}
w⊆ Success

For every revision (required byt) in the current snapshot, the working set contains the
most recent build that has been successful. So, the set of workingsets is defined as the
edge of the set of dependencies oft in the current snapshot if all builds are successful.

A valid workingset should contain successful builds foreverycomponent in the
setRequires[t]. Because of topological order, every dependency oft has an element
in Builds. This means, in turn, that the workingset contains the (globally) most recent
build for those dependencies. However, if it contains a failed build, it makes no sense to
proceed with buildingt. In that caset is added to theFailure part ofBuilds(see line 6

2This entails thatb is either added toSuccessor Failed.
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of Algorithm 3). This kind of failure—failure because dependencies have failed—is
labeled with “not tried”. It is precisely these kinds of failures that backtracking is
designed to mitigate.

If we turn our attention to Figure 5.1, we observe that the only valid working sets
in each cycle (indicated by subscripts) are as follows:

workingset1(〈FS,1.0〉) = {}
workingset1(〈DB,1.0〉) = {〈〈FS,1.0〉,1〉}
workingset1(〈App,1.0〉) = {〈〈DB,1.0〉,1〉,〈〈FS,1.0〉,1〉}
workingset2(〈App,1.1〉) = {〈〈DB,1.0〉,1〉,〈〈FS,1.0〉,1〉}
workingset3(〈FS,1.1〉) = {}
workingset3(〈DB,1.1〉) = {〈〈FS,1.1〉,2〉}

The working sets are presented in the order of building, as follows from the the topo-
logical order between component revisions and the integration cycles.

5.4.4 Backtracking Incremental Continuous Integration

In the previous section dependencies were resolved by taken the latests builds out of
Builds whether they had failed or not. In this section I change the dependency reso-
lution algorithm in order to find the latestsuccessfulset of dependencies that lead to
consistent (i.e. pure) integration. In the following I discuss two ways of backtracking:
simple backtracking and true backtracking.

Formalization of Simple Backtracking

The simplest approach to find such a set is to look at earlier builds of the same com-
ponent we are resolving the dependencies for. If an earlier successful build exists, then
that build used successful dependencies. Since all built artifacts can be reproduced at
all times, the dependencies of that earlier build could be used.

In this case the workingset is computed as follows:

workingset(t) = w

where

t = 〈c,v〉, t ′ = 〈c,v′〉,〈t ′, i〉 ∈ Success,

¬∃〈〈c,v′′〉, j〉 ∈ Success: j > i,

w = Integration[t ′],Requires[t ′] = Requires[t]

In other words, the set of successful builds is searched for the most recent buildt ′ of the
component oft (i.e. c). For this build the working set is retrieved from theIntegration
relation. Because the requirements oft may have changed sincet ′—requirements dec-
larations are part of the source tree—we explicitly require thatt andt ′ have the same
requirements.

By induction on the sequencing of builds (i.e. in time and topological ordering of
build) we know that the workingsetw is pure because build〈t ′, i〉 is, and thereforew
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can be used to buildt. As a consequence purity ofIntegration is maintained. If no
workingsetw is found, the build oft still fails with “not tried”.

Simple backtracking has been implemented as part of the Sisyphus continuous in-
tegration system [103]. How actual continuous integration performance is affected by
this strategy is discussed in Section 5.5.

Formalization of True Backtracking

Let’s state the problem more precisely. Assume we are building a source treet. The
objective is to find the most recent set of successful buildsD for resolving the declared
dependencies oft. Normally the dependencies used will be the builds forSnapshot[t],
as they have been built already due to the topological order. But since these builds may
have failed this requirement is weakened, that is, we are looking forany most recent
set of successful builds for each component inRequires[t] such that buildingt against
D is pure.

If the builds for the dependent trees in the current snapshotdid actually succeed,
the following algorithm will select these builds asD nevertheless. Thus, if all builds
succeed, no currency is lost with respect to the normal dependency resolution algo-
rithm.

Next I will present a formal version of selecting the most recent setD that can be
used to build a treet. It operates by computing all combinations of successful builds
for each of the components inRequires[t] and then selecting the newest combination.
Formally, this reads:

workingsets(t) = ∏
c∈Requires[t]

{〈〈c,v〉, i〉 ∈ Success}

The function workingsets returns all workingset candidates thatcouldbe used for build-
ing source treet. However, this could contain invalid permutations that would cause
the build oft to become impure.

If we consider Figure 5.3 again, it can be seen that this algorithm returns the fol-
lowing sets of workingsets in the fourth integration cycle for component revision App
1.1:

workingsets4(〈App,1.1〉) = {
{〈〈DB,1.0〉,1〉,〈〈FS,1.0〉,1〉},
{〈〈DB,1.0〉,1〉,〈〈FS,1.1〉,3〉},
{〈〈DB,1.2〉,4〉,〈〈FS,1.0〉,1〉},
{〈〈DB,1.2〉,4〉,〈〈FS,1.1〉,3〉}
}

The second and third workingsets lead to impure integrations of App 1.1. This is a
consequence of the fact that the FS version in those workingets (resp. 1.1 and 1.0) are
not the versions that have been used in the builds of DB. Therefore, App 1.1 cannot
be built using those workingsets. To fix the problem, theIntegrationrelation is used
to filter out the workingsets leading to impurity. This leads to the final version of
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workingset which implements true backtracking:

workingset(t) = w

where

w∈ workingsets(t),
pure?(Integration∗[w]),
w is most recent

Whether one workingset is more recent than another can be determined as follows.
Since builds inBuilds are totally ordered (in time), subsetsw⊆ Builds can be sorted
such that builds that are more recent come up front. Whether one working set is newer
than another is determined by defining a lexicographic order on the sorted workingsets.
In the example above it then follows that workingset{〈〈DB,1.2〉,4〉,〈〈FS,1.1〉,3〉} is
the most recent one.

Efficient Implementation

The generalized product used to find all permutations that could serve as a working
set is very expensive. The number of workingsets increases very fast so this is no
feasible way of implementation. In this subsection I describe an algorithm to generate
all workingsets incrementally. By ordering builds in decreasing temporal order, only
the workingsets have to be generated that come before the one that will be used.

The algorithm is displayed in Algorithm 4. The functionWORKINGSET takes a
source treet and incrementally searches for a valid working set in order to build it. It
does this by maintaining acursor that indicates the start of a search window over the
set of successful builds (Success). Builds are ordered in time so thatSuccess0 is the
first build maintained by the system, andSuccess|Success|−1 is the last build. The cursor
is moved from the last build downwards towards the first one in the outer loop (line 3)
of the algorithm.

In the body of the loop the variabletodois initialized with the components we have
to find builds for, i.e., the components required byt (line 4). Additionally, the current
workingsetw is initialized to be empty and a cursorwithin the window will be 0 (i).

The inner loop (line 5) iterates over every successful build in the current search
window as long astodo is non-empty. A successful build is retrieved by indexing
Successon cursor− i. If this index is below zero, however, we have exhaustively
searched throughSuccesswithout finding a suitable workingset, so we fail by returning
the empty set (line 6). Otherwise,b will contain the ith build in the current search
window (starting atcursor). If the component of this buildb (c) is in todo, it is added
to the current workingsetw andc is removed fromtodo. Upon normal loop exit,todois
empty andw represents a workingset candidate. If the extent ofw throughIntegrationis
pure, the workingset candidate is valid andw is returned as the result ofWORKINGSET

(line 17). Because the search window is moved downwards, we postulate thatif a
workingset is found, it will be the most recent one. Otherwise, ifw is not valid, the
search window is moved down one position and the outer loop starts anew.
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Algorithm 4 Incremental search for the latest working set
1: function WORKINGSET(t)
2: cursor← |Success|−1
3: loop
4: w← /0; i← 0; todo← Requires[t]
5: while todo 6= /0 do
6: if cursor− i < 0 then return nil
7: end if
8: b← Successcursor−i

9: c← component(tree(b))
10: if c∈ todothen
11: w← w∪{b}
12: todo← todo\{c}
13: end if
14: i← i +1
15: end while
16: if pure?(Integration∗[w]) then
17: return w
18: end if
19: cursor← cursor−1
20: end loop
21: end function

5.5 Evaluation

I have validated the simple form of backtracking in the context of the Sisyphus contin-
uous integration and release system [103]. True backtracking has been implemented
just recently and as a consequence no interesting data is available yet. However, the
implementation of simple backtracking has delivered fruitful results.

To evaluate simple backtracking, I have compared build statistics derived from the
database maintained by Sisyphus over two consecutive periods of 32 weeks. During
this period Sisyphus continuously integrated the ASF+SDF Meta-Environment [92].
The Meta-Environment is an integrated development environment for developing source
code analysis and transformation tools. It consists of around 60 components and is im-
plemented in Java, C, and several domain specific languages. Figure 5.5 shows an
example integration graph of a subsystem of the Meta-Environment, calledpandora .
The nodes represent successful builds, and the edges represent dependencies between
those builds. The clusterering of nodes indicate build cycles. The figure shows that
certain builds are used across build cycles.

General statistics about the two periods of time are collected in Table 5.1. In this
table I have counted the number of revisions, the number of successful builds, the
number of failed build and the number “not tried” builds. The total number of builds
is shown as well. Although in the period that simple backtracking was enabled, the
number of component revisions was one third fewer than in the previous period, the
number of failed builds has decreased by roughly 43% and the number of “not tried”
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Figure 5.5: Integration graph of thepandora subsystem of the ASF+SDF Meta-
Environment

No backtracking Simple backtracking

#Revisions 1497 1025
#Success 11565 9391
#Failure 1074 507
#“Not tried” 4499 1163
#Builds 17138 11061

Table 5.1: Build statistics over two consecutive periods of time of 32 weeks
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Figure 5.6: Build results without backtracking

builds has decreased even stronger, by around 74%. These absolute numbers suggest
that on average the build feedback has improved considerably.

The amount of not tried builds per component is dependent on the component ar-
chitecture of the system and how the architecture evolves. For instance, a component
that has no dependencies will never be “not tried”. The consequence of this is that “not
tried”-ness has a cumulative effect if there is no backtracking. If a component build
fails, everycomponent requiring that build, transitively, will be assigned the status of
“not tried”. Clearly there is considerable gain if this can be avoided.

To show the propagating effect of build failures I have plotted the number of re-
visions, successes, failures, “not trieds” and builds per component to see how these
numbers relate to the position of a component in the dependency graph. The plot for
the first period—no backtracking—is shown in Figure 5.6. The X-axis of this plot rep-
resents the different components of the Meta-Environment. They are sorted according
to the total number of builds. This way of ordering components is a raw estimate of
position in the dependency graph. If this dependency graph would have been stable,
this ordering corresponds to the topological sort of the graph. However, components
are added and removed, and dependency relations may change in between integration
cycles. It would therefore make no sense to use the topological sort. A similar plot for
the second period of time, with simple backtracking enabled, is displayed in Figure 5.7.

If we compare the two figures, what stands out the most is that the number of
builds (total, success, failed and “not tried”) in the period without backtracking grows
much steeper than in the period of backtracking if the components are higher up in
the dependency graph. A second observation is the relative largeand growingdistance
between the number of total and successful builds. This is precisely the cumulative
effect of build failures.
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Figure 5.7: Build results with simple backtracking

In the period with simple backtracking, however, as displayed in Figure 5.7, the
build figures grow much slower and the distance between the total number of builds and
the number of successful builds is more or less constant. In addition, the line indicated
“not tried” builds is almost flat. This means that even the simple form of backtracking
almost completely eliminates the problem of build failure as an impediment to deliv-
ery. These results do not say anything about whether the actual integrations are optimal
with respect to up-to-dateness. Still, changes could be missed in an integration. Un-
fortunately it is not possible to use the currently available revision history to simulate
the operation of true backtracking because development activity itself is dependent on
the results published by the continuous integration. In other words, one would need a
model of how the software would evolve if true backtracking had been enabled in the
continuous integration system. The construction of such a model is complicated by the
fact that it is very hard to quantify how the behaviour of software developers is affected
by backtracking continuous integration. Future work will have to show whether true
backtracking is optimal in this respect.

5.6 Related Work & Conclusion

5.6.1 Related Work

Continuous integration has received very little attention from the research community;
we only know of Dolstra [30], who describes the use of the deployment system Nix as
a continuous integration system with similar goals as Sisyphus. Additionally, Lippert
et al. [67] describe the implementation of a continuous integration system as means
for realizing thepracticeof continuous integration. The lack of attention is surprising
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since there exists a host of continuous integration systems, both commercial and freely
available. For an overview the interested reader is referred to:

http://damagecontrol.codehaus.org/
Continuous+Integration+Server+Feature+Matrix

Unfortunately no empirical data on the assumed merit of continuous integration seems
to be available as of today although it is widely considered to be a best practice [9,39,
71].

Incremental building, or selective recompilation, goes back to Make [37] and has
been researched quite vigorously; see e.g. [49,65,15,44]. This work, however, mostly
considers dependencies on the level of files. Determining whether a file requires recom-
pilation mostly involves checking timestamps of cryptographic hashes. In this work,
however, we compare actual revisions of version control system (VCS) to a database
storing accurate bills of materials (BOMs) [70] of all past builds.

Build optimization is another area of related work. Caching build [89], distributing
builds [78] and build paralellization [3], header restructuring [25,110] and precompila-
tion [111] mostly optimize towards minimizing resource consumption. In this chapter
I try to optimize towards improved feedback and maximum release opportunity. Of
course, both goals are not mutually exclusive.

5.6.2 Conclusion

The subject of this chapter is to improve automatic continuous integration in component-
based development settings in order to maximize feedback and maximize release op-
portunity. I introduced an algorithm for incremental continuous integration and sub-
sequently extended it with “simple backtracking” and “true backtracking” to make the
integration process more resilient with respect to build failures. Finally I discussed
some empirical results that were obtained from a running implementation of simple
backtracking. These results show that even the simple backtracking algorithm almost
completely neutralizes the cumulative effect of build failures. Future work will have to
show how true backtracking improves this situation. The true backtracking algorithm
is still highly experimental and will require further study in order to positively claim
that it behaves as expected. Additionally, it is not clear what the worst-case complexity
of the algorithm is. Finally, we will generalize the binding of component requirements
to source trees. Currently, this binding was implicit: every component has a single des-
ignated source location. However, if components have multiple development branches,
this means that builds are executed for a single branch per component only. By making
binding of components to source locations a first-class concept, the continuous integra-
tion system could integrate different compositions with different branch organizations.

http://damagecontrol.codehaus.org/
Continuous+Integration+Server+Feature+Matrix


Chapter 6

Techniques for Incremental
System Integration

Abstract Decomposing a system in smaller subsystems that have inde-
pendent evolution histories, while beneficial for time-to-market and com-
plexity control, complicates incremental system integration. Subsystem
teams may use different versions of interfaces of required dependencies
for maintaining, building and testing a subsystem; these differences in
assumptions surface during integration as version conflicts. We present
techniques for understanding such conflicts in and describe how they can
be used to prevent additional effort to resolve them. Our techniques rep-
resent first steps towards explicitly managing subsystem dependency and
interface compatibility as first-class software configuration management
concepts.

This chapter is joint work with Reńe Krikhaar and Frank Schophuizen.

6.1 Introduction

Developing a large complex system by decomposing the system in smaller parts such as
components or subsystems is beneficial both for complexity control and time to market.
Different development teams work on different parts, so that changes are localized. The
gain in productivity comes from an increase in parallelism between teams.

There is, however, a downside to this mode of development. Each subsystem
evolves more or less isolated from the rest of the system, but often has dependencies
on different parts of the system. For instance, to build and test the subsystem, at least
the interfaces of its dependencies are required.

The independence of subsystem development activities, while beneficial for time-
to-market, has an impact on the effort of integration. Putting all subsystems together
to form the final system is not straightforward because of the different assumptions
subsystems have been built with. One subsystem could have been built using a different
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version of a dependency than the version used by another subsystem. Such version
conflicts are common and are an impediment to frequent and efficient integration.

In this chapter we investigate the costs of incremental system integration for C/C++
based systems in the setting of component-based Software Configuration Management
(SCM). We assume that subsystem builds are executed by individual teams and that
system integration takes these builds as a starting point to compose the whole system.
Conflicts are resolved by rebuilding subsystems in order to normalize the set of inter-
faces that is used. By analyzing the build results of various versions of subsystems and
the process of incremental integration, we derive the space of possibilities of resolving
conflicts this way. Based on this solution space we can assess the relative cost of differ-
ent rebuild strategies using thebuild penaltymetric. This metric represents the impact
of each of the elements in the solution space, expressed in the number of subsystem
rebuilds that are required.

The build penalty is then detailed using another metric, theparsed lines of code
(PLOC). The PLOC metric can be correlated to the actual time a subsystem takes to
build. This way a more accurate estimation of the cost of a particular resolution strategy
is obtained.

Finally we discuss how interface compatibility can be exploited to achieve even
less required rebuilds in case of conflict.

Contributions The contributions of this chapter can be summarized as follows:

• We define the notion ofBill of Materials (BOM) [70] in the field of software
engineering. We show how this notion plays a steering role during the integration
phase of the software construction process. This concept proves crucial in the
formalization of the build penalty and PLOC metrics.

• The build penalty metric is applied in a case-study at Philips Medical Systems.
The results show that for a number of past integrations the effort involved has
been less than optimal.

• We speculate on how SCM systems could be extended to support incremental
integration by explicitly managing subsystem dependency and interface compat-
ibility.

Organization of this chapter This chapter is organized as follows. In Section 6.2
we introduce preliminary terminology derived from the Unified Change Management
methodology [10]. We also describe the incremental integration process at our indus-
trial partner Philips Medical Systems and how integration conflicts are dealt with there.

Then, in Section 6.3 the concepts of integration and integration conflict are formal-
ized using with theBOM concept. Using the definition ofBOM we define the build
penalty metric in and We explain how this metric is used to find an efficient integration
strategy.

In Section 6.4 we discuss the interface compatibility and subsystem dependency
as a first-class SCM citizen. Furthermore, we refine the definition of build penalty to
take interface compatibility into account in and conjecture that this is beneficial for
incremental system integration without inducing extra costs.
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Our work is strongly positioned in the field of build management and SCM. We
discuss related work in more detail in Section 6.5. Finally we present a conclusion and
some directions for future work.

6.2 Component-Based Integration

6.2.1 Introduction

The defining characteristics of software components proper is that they are units of
composition, versioning and replacement [87]. Examples of components are shared
libraries (DLLs), .NET assemblies [72], COM components [84] or even executables.
Many of the traditional arguments (e.g. reuse and variation, complexity control, third-
party acquisition and deployment) for component-orientation apply equally well in the
SCM context. The SCM perspective, however, emphasizes an additional argument:
factoring a system in separate components creates opportunities for increased paral-
lelism in software development activities. Teams can be more independent and changes
are more localized, which in turn may prevent complicated merge processes.

In the following we highlight the software configuration management aspect of
components. We will use terminology adapted from the Unified Change Management
(UCM) methodology as used in IBM Rational ClearCase [10]. The following defini-
tions are relevant to this chapter: subsystem, component, interface and body.

A subsystemis an architectural building block of a software system. Subsystems
are implicitly versioned in their constituent parts, its components. A subsystem is thus
a logical clustering of components. Acomponentis versioned group of files. In UCM
a component corresponds to a directory in a versioned object base (VOB). Components
havebaselinesidentifying particular versions of the component. Note that this defini-
tion differs from the common notion of component as in Szyperskiet al. [87]. Phys-
ically, however, a subsystem may represent a component in that sense (e.g., a COM
component or DLL). There are two kinds of component: bodies and interfaces. An
interfaceis a component consisting of only interface files (e.g. IDL headers).Bodies,
on the other hand, are components containing implementation sources of a subsystem.
The elements defined in a body are exported through the interface. In our context, a
subsystem consists of a body component and an interface component, and is versioned
through their respective baselines.

Although these definitions are taken from the UCM approach to SCM, there are
other manifestations of the same concepts. For instance, a single C source file could
also be seen as an instance of a Body with the corresponding header file as Interface.
Therefore, these definitions provide a more or less generic framework for thinking
about system integration. Next, we describe the integration process at Philips Medical
Systems; this can be seen as a template for large-scale component-based integration of
C/C++ systems.
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Figure 6.1: Integration work flow

6.2.2 Integration of Subsystems in Practice

Integration is the process of putting all subsystems together to test the complete system.
That subsystems have been locally built using different configurations of body and
interface baselines becomes visible during this process: some subsystems should be
rebuilt to make sure that each subsystem uses the same versions of interfaces every
other subsystem uses.

Rebuilding a subsystem induces a (time) cost. Build time in general may not be
an issue. Before a product release is put out, in most cases a complete rebuild of all
subsystems is required anyway. But doing integrationfrequentlywithin a project is
widely considered to be a best practice [39]. Integration should be executed as often as
possible, in order to find bugs originating from the interaction between subsystems as
quickly as possible. Postponing integration may result in those bugs to be very hard to
track down and fix. Therefore, to increase the frequency of integration, it is important
that the costs be minimal.

At Philips Medical Systems subsystems are builtlocally by individual teams and
the resulting binaries are input to the integration process. The integration process,
displayed in Figure 6.1, then unfolds as follows:

Announce The system integrator announces (e.g., by email) to the teams which in-
terface baselines are “recommended”. Teams then build their subsystem against
those set of baselines.

Deliver The results of subsystem builds are delivered to a shared location. These
include a designated file (theBOM) that records how subsystems have been built
and the binaries that have been produced. In our case, the binaries correspond to
an MSI file that is used by the Microsoft tool “Windows Installer” [74].

Collect The integrator collects the MSIs and associatedBOMs. TheBOMs together
form a SYSTEM BOM. Note that nosystem buildis performed during this phase.
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Figure 6.2: Integration conflicts

The MSI files represent components that can be independently deployed; linking
occurs at runtime.

Resolve SYSTEM BOMs may contain conflicts; these are reviewed by a (weekly) meet-
ing in the “war room”. There, it can be decided that a conflict is not a problem
(due to compatibility of interfaces), or that some subsystems have to be rebuilt.

Approve After conflicts have been resolved, the set of (possibly new) MSI files is
approved and is ready to go to testing.

In this chapter we assume that integration isincremental. This means that if a team
does not deliver in the current integration cycle, the build results (BOM and MSI) of the
previous integration cycle are used. In the following we will take a closer look at the
“Resolve” step and describe the nature of version conflict.

6.2.3 Integration Conflicts

Figure 6.2 visually depicts the “Collect” and “Resolve” phases in the integration pro-
cess. On the left threeBOMs are depicted (in UML-like notation) for three subsystems,
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App, DB and FS. For instance, on the bottom left-hand side of the figure, aBOM of sub-
system App is shown: it has been built against interfaces v1 and v2 of subsystem DB
and FS respectively. TheBOM relation is indicated using dashed arrows. For clarity,
the versions of the body baselines are not shown.

EachBOM consists of a body baseline coupled with a number of interface baselines
that were used in the subsystem build in this cycle. The integrator collects theseBOMs
to form a SYSTEM BOM, displayed in the middle of the figure. Some used interface
baselines become bound to implementations that were built using the same (exported)
interface baseline. For instance, the App subsystem used baseline v1 of the DB inter-
face, which was also used during the build of the body of DB. So the requirements of
App are matched to the current implementation body of DB via interface baseline DB
v1. Similarly the dependency of DB on FS is bound via interface baseline FS v1.

However, both App and DB used different baselines for the FS interface, v2 and
v1 respectively and no implementation is found for the dependency of App because
FS has been built against v1 of its interface whereas App used v2. This constitutes a
baseline conflict that has to be resolved before the system can go into testing.

The right-hand part of the figure will be discussed in Subsection 6.2.5.

6.2.4 Causes of Integration Conflicts

Before describing the possibilities of dealing with integration conflicts in detail, it is in-
structive to look at the causes of these conflicts: parallel development and local builds.

IFS

FS_v2

FS_v1

IDB

DB_v1

FS_v1

DB

DB_v1

DB_v1; FS_v2

App

App_v1

Figure 6.3: Causes of integration conflicts

To take inspiration from the UCM model once more, consider Figure 6.3. The
figure shows four development lines (called streams) for two interface components and
two body components from the subsystems of Figure 6.2. The top-level triangles are
called thefoundationof the stream. The foundation is the root of a code line, although
it may derive from another code line (branching). The trapezoids below the foundation
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indicate baselines for the component in question.
In UCM the foundation can contain references to read-only orsharedbaselines.

In the figure we see that both App and DB have references to interface baselines in
their foundation. For instance, the body baseline Appv1 is configured with interface
baselines of DB and FS, and DBv1 is configured with an interface baseline of FS. The
configuration of streams using baselines in the foundation follows the dependencies
between subsystems.

From the figure it becomes clear how integration conflicts come about: streams
are configured with different baselines for the same interface. In the example we have
App being configured with v2 of the FS interface, whereas DB uses v1. The existence
of these different configurations is a direct consequence of increased parallelism and
independence among subsystem development activities.

Streams can be reconfigured (calledrebasing) to start using newer interface base-
lines. This is exactly what is supposed to happen during the announcement phase
of the integration process. The system integrator broadcasts the set of recommended
baselines, and all teams are supposed to rebase their streams accordingly.

So, how is it possible that integration conflicts surface in the collection phase of the
integration process? There are two simple reasons for this:

• The announcement of recommended baselines is a manual process. The recom-
mended baselines are announced by email or personally. The rebasing to this
new set of baselines is also manual. So there is some risk of human error.

• Even if all teams rebase to the right set of baselines, a team might not deliver
build results during the current integration cycle. In this case build results from
the previous cycle are used. These builds often have been executed against a
different set of baselines.

It is tempting to solve these problems by automating the rebasing of streams and forcing
every team to always deliver new builds. However, this goes against the spirit of the
relative autonomy each team has, and may have consequences the team itself is in
the position to assess best. Imposing the stream configuration “from above” is a move
away from decentralized component-based development. Moreover, forcing subsystem
builds every cycle, even when there are no interesting changes, will consume valuable
time of the team members and constitutes a move from incremental integration to big
bang integration. Precisely the ability to reuse previous build results saves a lot of time.
We therefore take conflicts as a given and then try to minimize their impact.

6.2.5 Resolving Conflicts

To illustrate the ways of resolving a conflict, let’s again turn our attention to Figure 6.2.
The right-hand side of the figure shows the possibilities for resolving the conflict. There
are two options to choose from, as highlighted by the question mark. First, the upper
resolution shows that baseline v1 is chosen of baseline v2 of the FS interface. This
means that possibly App should be rebuilt, this time using interface baseline v1. The
second (lower) option shows the alternative choice: v1 is dropped and v2, the newer
baseline, is chosen. Although it seems natural to always choose the newer alternative
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in a conflict, there may be external considerations that make this choice less desirable.
For instance, when choosing v2 in the example, both App and DB should be rebuilt.

Both choices are valid, depending on the circumstances. If the changes between
v1 and v2 of the FS interface are important or if they are compatible – we come back
to this in Section 6.4 –, one would probably choose v2 and request a rebuild of both
App and DB. However, if the changes are minor, and successful integration is more
important, it might be wise to minimize build time and choose v1.

We have experienced that the way such conflicts are resolved are implicit, ad hoc
and inefficient. Basically, two strategies are applied. The first, and most obvious,
solution is to rebuild every subsystem that is in conflict against the newest baselines
in the SYSTEM BOM. This boils down to reinitiating the integration cycle, by again
requesting rebuilds of certain systems with certain baselines. Once again, MSIs and
BOMs are collected, and the SYSTEM BOM is reviewed.

The second strategy may be followed during the review meeting in the war room.
During that meeting, the participants may decide that a conflict is not a real problem
because interface changes are backwards compatible. For instance, referring to the
example of Figure 6.2, this might mean that v2 of the FS interface is backwards com-
patible with v1, so that, as a consequence, neither FS nor DB have to be rebuilt.

Both strategies have a negative impact on incremental system integration. Just
rebuilding all bodies in conflict is a waste of resources that can be prevented. On the
other hand, the war room decision that two baselines are compatible is a violation of
basic SCM principles: the decision is informal, untraced and resides solely in the heads
of the employees involved. There should be a formal record of the rationale(s) for such
decisions. Automation provides such rationale.

6.2.6 Solution Overview

Frequent incremental integration is an important practice, but so is parallel develop-
ment. In our approach, we take conflicts for granted, but attempt to minimize their
impact by finding the minimal cost resolution strategy.

Our solution is twofold. The first component of our approach consists of formaliz-
ing the build cost (in number of rebuilds and approximate time) in order to assess the
impact of conflict resolution. This gives use the “cheapest” way of proceeding with the
integration process in case of conflict, by computing the minimum set of rebuilds. This
is discussed in detail in Subsection 6.3.4.

Secondly, the notion of compatibility can be used to prevent rebuilds entirely. This
notion, however, should be an explicit SCM citizen in order to leave no ambiguity with
respect to what system configurations enter testing. Interface compatibility is explored
in Section 6.4 where we tentatively refine the notion of build penalty to take interface
compatibility into account.
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6.3 Towards Automating Integration

6.3.1 Introduction

In this section we will formalize the notion ofBill of Materials [70] in the field of soft-
ware engineering. We show how this notion plays a steering role during the integration
phase of the software construction process. We will use a relational approach to for-
malization, which entails that the entities of interest are modeled by sets and relations
between those sets. Common operations on binary relations include, domain, range
and right image, where the right image of a relationR for a setX – denoted byR[X]
– gives all elements of the range ofR that have a corresponding elementx∈ X in the
domain ofR. Finally, some standard set operations we use include cardinality (|X|) and
set product (X×Y). The formalization enables automated reasoning and computation
with the concepts involved.

6.3.2 Bill of Materials

First, some preliminary concepts have to be formalized. A subsystem is identified by
name and has an interface and a body. The set of all interfaces is calledI and the set of
bodies is designated byB. Interfaces and bodies are versioned in baselinesiv,bv which
are contained in the baseline setsIV ,BV respectively. Two possibly different baselines
for the same interface (body) are denoted byiv (bv) andiw (bw).

Subsystem bodies are built in a context that consists of interface baselines for each
subsystem that is required including the interface exported by the body itself. This set
of interfaces will be used to satisfy dependencies during builds. If such a build is suc-
cessful, this results in aBOM; it records the version of the subsystem body and which
versions of imported interfaces were used. FormallyBOMs are defined as follows:

bom⊆ BV × IV such that|domain(bom)|= 1 (6.1)

Thus, aBOM can be seen as a relation that relates asingle body baseline of a cer-
tain subsystem to a number of interface baselines, hence the side condition. The set
range(bom) are the imported interfaces used in that particular build ofbv; it includes a
baseline for the interface exported bybv.

BOMs capture closures. That is, alltransitivelyimported interfaces should be listed
in a BOM. For BOMs to be a proper identification mechanism for builds,all inputs to
a build must be part of it. If an interface file (e.g., a header) itself includes another
interface, this second file also contributes to the end-result of the build. ABOM thus
should identify both the version of the sources of the body, as well as the versions of
transitively imported interfaces.

In the example of Figure 6.2, there are threeBOMs represented by the following
relations:

bomFS = {〈FS, IFSv1〉}
bomDB = {〈DB, IFSv1〉,〈DB, IDBv1〉}
bomApp = {〈App, IFSv2〉,〈App, IDBv1〉,〈App, IApp〉}



92 Techniques for Incremental System Integration

TheBOMs can be used to identify certain builds: if twoBOMs are equal, the correspond-
ing builds are equal, and consequently the corresponding binaries are equal. This can
be seen as an additional level of versioning on top of the versioning facilities offered
by the SCM system.

6.3.3 Integration

The dependencies of a subsystem areparameterized dependencies[87]. This means
that a subsystem body is only allowed to depend on interfaces; the implementation of
these interfaces is a parameter. There may be multiple implementations for the same
interface. Putting a system together thus means that every interface baseline used in
a BOM must be matched to some body that exports that interface. This process is
integrationproper, which we describe next.

The starting point for integration is a set ofBOMs, since only subsystems that have
successfully been built can be integrated. The objective is to select a set ofBOMs such
that there is aBOM for every subsystem, and that every dependency is satisfied. Such
a selection is called a SYSTEM BOM. In the ideal situation any referenced interface
baseline in the dependency section of aBOM is bound to an implementation via another
BOM in the system, but because of independent development of subsystems this may
not always be the case. For instance, in Figure 6.2, the dependency of App on FS
cannot be bound, because the body of FS has been built using a different version of the
interface of FS.

The SYSTEM BOM is defined as follows:

sysBom⊆ BV × IV such that|domain(sysBom)|= |B| (6.2)

Thus, a SYSTEM BOM is created by taking the union of all theBOMs under considera-
tion. Every body in the system has a baseline representative in the SYSTEM BOM. Note
that it is possible that|range(sysBom)| 6= |I |. In other words, some interfaces have mul-
tiple baseline representatives in the SYSTEM BOM. If this is the case then the SYSTEM

BOM contains conflicts that should be resolved. In the following we assumesysBomto
designate the SYSTEM BOM under consideration.

In the context of the examplesysBom= bomApp∪bomDB ∪bomFS. Note that the
domain of this relation has the same size as the set of subsystems (App, DB, and FS)
but that the range is larger than the set of interfaces. Therefore, this SYSTEM BOM

contains a conflict. As mentioned before, there is more than one way to resolve it, so
we will now describe how to select a single solution that has minimal cost in terms of
build resources.

6.3.4 Resolving Conflicts

We introduce the build penalty metric to measure the cost of conflict resolution. Con-
flict resolution consists of selecting asingle interface baseline for each interface, so
that every imported interface can be bound to a body that exports that interface. This
is formalized below.

Formally, we define a conflictCi to be a set of baselines for the same interface
i present in the SYSTEM BOM. We defer the discussion of the influence of interface
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compatibility to Section 6.4 and for now assume that the interface baselines in a conflict
are incompatible. A conflict can then be resolved by choosing a single baseline from
the alternatives in the conflict. A global solution amounts to choosing a single baseline
for every conflict in the SYSTEM BOM. There may be more than one global solution.

Derive the set of conflicts from a SYSTEM BOM as follows:

∀i ∈ I : Ci = {iv ∈ range(sysBom)} (6.3)

If interface i is not in conflict, then|Ci | = 1. If the set of conflicts is not a singleton,
then the elements in it are alternatives for resolving all conflicts at once. In our example
there is only one conflict, between the two interface baselines of the FS subsystem:

CIFS = {IFSv1, IFSv2}

Conflicts introduce choice between interface baselines. The set of all possible solutions
can be computed by:

Solutions= ∏
i∈I

Ci (6.4)

A solution S∈ Solutionsis a n-tuple (n = |I |) which corresponds to a selection of
interfaces where each interface in the selection belongs to exactly oneCi ; below we
interpret a solutionSas a set. The number of alternatives equals∏i∈I |Ci |. The solution
space in the example is the following ternary relation:

{〈IFSv1, IDBv1, IApp〉,〈IFSv2, IDBv1, IApp〉}

The elements of such solution spaces can be sorted according to build penalty which
yields the configuration(s) that costs least to construct. This is described next.

6.3.5 Minimum Build Penalty

Take an arbitrary solutionSwhich contains baselines for every interface in the system.
Build penalty corresponds to what has to be rebuilt as a consequence of choosing a
certain solution. The rebuild criterion for a bodybv and solutionS is defined as:

rebuild?(bv,S) = sysBom[bv] 6⊆ S (6.5)

That is, the used interfaces in the build ofbv should be part of the solution, and other-
wise it should be rebuilt. Using the rebuild criterion we can now the define the set of
bodies that require a rebuild:

rebuilds(S) = {bv ∈ domain(sysBom) | rebuild?(bv,S)} (6.6)

Then the build penalty is defined as the number of rebuilds required:

build-penalty(S) = |rebuilds(S)| (6.7)

The set of solutions can now be sorted in ascending order according the associated
build penalty. At the top of the resulting list will be the optimal choices for resolving
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the integration conflicts. If there is more than one optimal solution, one can reduce
this set to a singleton, by taking the “newest” solution. This is done by summing the
versions and/or timestamps of the baselines in the solutions and then comparing them.

To turn our attention once more to the example of Figure 6.2, we can assign a build
penalty to all elements of the solution space. In this case, the first solution, the one
containing IFS v1 has a build penalty of 1; only App has to be rebuilt. The second
solution, where both DB and FS have to be rebuilt has a penalty of 2. Thus, the latter
is less optimal with respect to integration effort.

Note however that the second solution may be preferable because it is more “on
the bleeding edge” that the first solution, since it includes changes between v1 and v2
of IFS. If these changes turn out to be compatible the build penalty metric should take
this into account and select the second solution in favor of the first one. We elaborate
on this in Section 6.4.

6.3.6 Evaluation

In order the evaluate the concept of minimal build penalty, we have computed it for 86
system integrations at a business unit of Philips Medical Systems and compared it to
the build penalty induced by taking the newest baseline for every interface in conflict,
the “newest” strategy.

The results are shown Figure 6.4. The plot shows that the minimum build penalty is
consistently below or equal to the “newest” build penalty. The difference between the
penalty of the “newest” strategy and the minimal strategy equals the number of builds
that would have been saved if the minimal strategy had been chosen.

6.3.7 Parsed Lines of Code (PLOC)

Build penalty abstracts over the real, wall-clock time that a subsystem build takes.
However, it could occur that rebuilding three subsystems actually takes less time that
rebuilding one or two. It is therefore beneficial to also know the actual time it takes
to build a subsystem in order to make a better decision when resolving integration
conflicts.

For C-like languages, we define the Parsed Lines Of Code (PLOC) metric to capture
the number of lines to be processed when all include files are textually expanded in the
source file without counting duplicate includes. The total number of lines is calculated
by considering all files needed to compile a unit, i.e. both source file and included files
(whether flagged or not by preprocessor statements). This is a worst case estimate of
lines of code to be interpreted by the compiler after preprocessing the source file.

It is clear that the PLOC count can be an order of magnitude larger than the normal
LOC count. Also, slight changes in the import structure of a subsystem can have major
consequences for PLOC whereas they are almost invisible in a simple LOC count. The
order of magnitude in which the PLOC is larger than the LOC is more or less constant
in time. Experience at Philips Medical Systems shows that the PLOC metric is a better
measure to estimate build time and related research corroborates this [110].

In the context of this chapter, a compilation unit corresponds to aBOM. Recall
that BOMs link a certain subsystem body with the set of interface baselines that were
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(transitively) imported during a build (Definition 6.1). The PLOC metric can now be
defined as:

PLOC(bv) = LOC(bv)+ ∑
iv∈sysBom[bv]

LOC(iv) (6.8)

For a certain body it estimates the number of lines that have to be recompiled should
this body have to be rebuilt. Note that in case of a rebuild, different baselines of the
interface dependencies (different fromsysBom[bv]) will be used. However, sinceBOMs
record transitive imports, we can be sure that the PLOC count based on the old situation
will not deviate much from the situation during the rebuild. To be completely accurate
the PLOC count could be computed from build context of therebuild of the body
corresponding to the chosen solution.

6.3.8 PLOC Build Penalty

The build penalty, in terms of PLOC to be recompiled, after changing a single file is
the sum of the PLOC of the compilation units in which the file participates. Per file
that should be rebuild we can calculate the build penalty in terms of PLOC. This gives
us the combination of build-penalty and PLOC, the ploc-build-penalty:

ploc-build-penalty(S) = ∑
bv∈rebuilds(S)

PLOC(bv) (6.9)

This function sums the PLOC counts for every subsystem body that should be rebuilt
according toS. It can now be used to rank the solutions in the solution space, in
a similar way that build-penalty was used to rank solutions. We have, however, not
validated this in practice.

6.3.9 Evolutionary PLOC

Another interesting aspect of PLOC is to calculate the effect of the system’s total PLOC
on a per file basis. In case a file is changed in the version management system, it will
result in a number of files (client code) that will have to be rebuilt to accommodate and
test the changes.Each such file can be ranked according to the build penalty. A header
file with a high build penalty (in terms of PLOC to be recompiled) is interesting to
analyze. In case the file is often changed, as can be derived from the SCM system, one
may consider to reduce the PLOC of this file, by splitting up.

As an example, at Philips Medical System there used to be a file in the software of a
medical system containing many data definitions that had remained there just because
of historical reasons. Inspection lead us to conclude that this file could be easily split
up in seven parts. The generic part did not change that often, all other parts changed
now and then but had a close relationship with the related subsystem. It resulted in
a much lower PLOC count which on average turned out to be beneficial for the build
time.

PLOC could be used to spot such refactoring opportunities. Especially if the PLOC
metric is multiplied with the frequency of change of a certain subsystem. Then, we
conjecture, this is probably a subsystem that has high coupling and weak cohesion.
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This is another reason that understanding the dependencies and the impact of build
time is important.

6.4 Discussion: Compatibility

6.4.1 Introduction

In the previous section we introduced metrics to better assess the cost of resolving base-
line conflicts during integration. The cost of integration is reduced because the met-
rics indicated when the additional work involved in resolving conflicts was minimal.
However, building and testing still remains expensive in terms of time and man-power.
Therefore, we would like to minimize the build penalty even more, by preventing builds
altogether. This can be achieved by consideringinterface compatibilityas a first-class
SCM citizen. Explicit knowledge of the stability of interfaces can be used to make
integration more efficient.

We can allow some flexibility by establishing interface compatibility. For instance,
in the case of COM [84] IDL-interfaces, the notion of binary compatibility of two in-
terface baselinesiv andiw entails that a body built against the required interfaceiv, will
work correctly at runtime with a body providingiw. So, if we can syntactically derive
this compatibility relation, it can be used to weaken the rebuild criterion, thereby re-
quiring fewer rebuilds as a result of conflicts. We consider the construction of a tool that
derives the binary compatibility relation as future work. However, the consequences
for build penalty are discussed below.

6.4.2 Compatibility as SCM Relation

In traditional version models for SCM a distinction is made between version space and
product space [20]. These two spaces correspond to the temporal versioning (successor
relation between revisions) and spatial versioning (branch and merge relations between
code lines). Component orientation in SCM adds another relation, thedependencyor
userelation. In the presence of first-class interfaces this relation has two aspects: im-
port relations and export relations, which both can be derived from theBOMs discussed
in Section 6.3. Normally, import and export relations are unversioned. For instance, in
the case of imports,#include directives normally do not specify the precise version
of the included header file. Which version is used is a function of the build process.

The notion of compatibility adds a level of flexibility to the integration process. To
fully appreciate this, consider Figure 6.5. It shows three code lines, one for an interface
X, one for the corresponding body, and one for a bodyY that uses the interfaceX. The
circles represent body and interface baselines.

The figure shows the normal product space and version space relations commonly
found in any SCM system. However, the import, export and compatibility relations
are shown as well. The solid arrows depict import relations and the dashed arrows are
export relations, both derived fromBOMs. The dotted clusterings indicate compatibility
classes. For instance, the clustering of baseline 1.1 and 1.2 of interfaceX means that
1.2 (the successor of 1.1) is (backwards) compatible with 1.1.
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Managing the compatibility relation explicitly as part of the general SCM frame-
work, weakens the constraints on integration. Not only interfaces occurring in aBOM

of a body are allowed to contribute to the integrated system, but also the ones that are
compatible with them. Visually this means that one is allowed to redirect import arcs
forward in time within its compatibility class, and redirect export arcs backwards in
time within its compatibility class.

For instance, in Figure 6.5, bodyY with version 1.1 has been built against baseline
1.1 of interfaceX. But the nearest body ofX (1.1) has been built using baseline 1.2 (of
interfaceX). Because version 1.2 of interfaceX is backwards compatible to version
1.1, the system can be composed using bodyX version 1.1 without rebuilding bodyY.
Note that both version 1.2 and 1.1 of interfaceX are eligible, because also the export
arc from bodyX 1.1 can be moved backwards.

On the other hand, version 1.8 of bodyY uses version 1.3 of interfaceX but there is
no possibility of moving the import arc forward in time within the same compatibility
class. Also, no export arc from bodyX can be moved backwards to arrive at the same
baseline. This probably means that either bodyY will have to be rebuilt against version
1.2 of interfaceX, or that bodyX 1.1 has to be rebuilt using 1.3 of interfaceX.

The figure also depicts a temporary branch. As can be seen from clustering of base-
lines, the branch introduces an incompatible change in interfaceX. However, after the
branch is merged to the main line again, the new baseline on the mainline is backwards
compatible with baseline 2.2 of interfaceX on the branch. Although both bodyY 1.15
and bodyX 1.18 used version 1.4 of interfaceX during their builds, the import arc orig-
inating from 1.15 can be moved forward, and the export arc from 1.18 can be moved
backward. This may be of value from a larger perspective when more subsystems play
a role. From what the figure shows, the build penalty in this case is zero. TheBOMs of
other subsystems still may require one of the arrows to be redirected, and, consequently
either bodyY 1.15 or bodyX 1.18 may have to be rebuilt.

6.4.3 Requirements of SCM Systems

In order to automate much of the reasoning described in the discussion of the example
of Figure 6.5, SCM systems should be extended to record dependency and compatibil-
ity information in addition to the traditional historic version information. We briefly
list the requirements here:

• Interfaces and bodies must be first-class and distinguished entities in the version
control system. Without the distinction the notion of parametric dependencies
breaks down.

• It should be possible to configure the system with a compatibility criterion be-
tween interface baselines for the language of the domain (e.g. COM IDL). This
serves as an oracle for the system to derive the compatibility classes of Fig-
ure 6.5.

• Systems should record which bodies export and/or import which interfaces as a
result of successful builds and/or a syntactic analysis (that is through a use/define
analysis and applying). This way the solid and dashed arrows of the figure are
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maintained as part of the repository and can be subject to (historic) automated
analysis.

If these requirements are satisfied and the required dependency and compatibility re-
lations are readily available from the SCM system, this knowledge can be used to
automatically reduce the set of required rebuilds if conflicts should occur. Below we
tentatively describe how the build penalty approach is adapted to support this.

6.4.4 Weakening the Rebuild Criterion

We define a relation between interface baselines belonging to the same interfaceivv iw
(“baselinew of interfacei is compatible with baselinev”) that captures compatibility
between two concrete interfaces such thatiw can be substituted whereveriv is used.
This relation is reflexive and transitive. The definition ofv can be extended to a relation
between sets of interfaces as follows:

IV v I ′V ≡ ∀iv ∈ IV : ∃i′w ∈ I ′V : ivv i′w (6.10)

Note thatIV ⊆ I ′V impliesIV v I ′V . This definition of compatibility is then used to adapt
the rebuild criterion of Definition 6.5 as follows:

rebuild?(bv,S) = sysBom[bv] 6v S (6.11)

A baselinebv is only rebuilt if there are no interface baselines in the current solution
that are compatible with the ones it has been built against.

6.5 Conclusions

6.5.1 Related Work

Our work belongs to the area of build-management, as part of SCM. SCM in component-
based settings has received some attention (see e.g., [21,107]), however, the perspective
of incremental system integration is largely missing.

The notion of build-level components is discussed in [28]. There, a lightweight
process for improving the build architecture of component-based software systems is
described. This kind of refactorings improve the process of incremental system inte-
gration, but leaves out the versioning and traceability aspect.

In [110] the authors discuss how to improve build performance by removing false
code dependencies in large industrial C/C++ projects. The authors perform just-in-time
header restructurings before compilation starts in order to reduce the LOC that needs
to be processed by the compiler. The PLOC metric was used to spot opportunities
for similar refactorings. Again, the traceability and version aspect are not discussed,
whereas we think these are essential for system integration.

The notion of Bills of Materials is well-known in manufacturing [70] but we are
aware of only few references in the context of software engineering [34]. Although
software production has been viewed as a branch of manufacturing [15], the notion
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of a softwareBOM remains implicit in many discussions of software configuration
management [4].

Our approach of formalizing the concept of Bill of Materials is inspired by rela-
tional approaches to build formalization [65] and architecture analysis [63].

Such an approach is also taken in the incremental continuous integration system
Sisyphus [100,103]. The Sisyphus system maintains a database recording the transitive
dependencies used during component builds. Integration results are thus fully traceable
to sets of component baselines.

That the build process requires a separate architectural view for understanding the
system in itself and how the system is constructed was recognized in [91]. How a
system is constructed follows from the build process. In this chapter we used theBOM

concept as a formal means for understanding and improving this process. We discussed
how our build architecture view could benefit from explicitly managing interface com-
patibility, which in turn is related to architecture-aware SCM [76].

6.5.2 Conclusion

The ever-increasing complexity of software and the pressure for time-to-market re-
quire a divide-and-conquer approach to software development which is exemplified in
component-based software development. However, the consequences for incremental
system integration are not well understood. In this chapter we showed the importance
of the concept ofBOM, both for understanding and improving the integration process.
The formalization enables a rigorous impact analysis of version conflicts amongBOMs.
We analyzed the build process in an industrial environment using the build penalty met-
ric and the more fine-grained PLOC metric.

On the other hand, explicit knowledge of the architecture of a system can improve
the integration process. We proposed how interface compatibility can be managed as a
first-class SCM concept in order to fully exploit such architectural knowledge.

In recent years, both industry and research have put much effort in defining methods
for developing software product lines. The relation to SCM, however, has not received
enough attention in this research. In our opinion SCM can empower software product
line development by providing the right means to support it, both conceptual and tech-
nical (see [64]). We consider the closer investigation of dependency and compatibility
relations in the context of SCM as future work. New means or extensions of traditional
versioning and branching relations could, we conjecture, significantly improve SCM
practice in the context of multi-project, multi-component product lines.



102 Techniques for Incremental System Integration



Chapter 7

Binary Change Set Composition

Abstract Continuous delivery requires efficient and safe transfer of up-
dates to users. However, in the context of component-based software,
updating user configurations in lightweight, efficient, safe and platform
independent manner still remain a challenge. Most existing deployment
systems that achieve this goal have to control the complete software en-
vironment of the user which is a barrier to adoption for both software
consumers and producers. Binary change set composition is a technique
to deliver incremental, binary updates for component-based software sys-
tems in an efficient and non-intrusive way. This way application updates
can be delivered more frequently, with minimal additional overhead for
users and without sacrificing the benefits of component-based software
development.

This chapter has been previously published as: T. van der Storm, Bi-
nary Change Set Composition, inProceedings of the 10th International
ACM SIGSOFT Symposium on Component-Based Software Engineering
(CBSE’07), LNCS 4608, Springer, 2007 [101].

7.1 Introduction

An important goal in software engineering is to deliver quality to users frequently and
efficiently. Allowing users of your software to easily take advantage of new func-
tionality or quality improvements can be a serious competitive advantage. This insight
seems to be widely accepted [43]. Software vendors are enhancing their software prod-
ucts with an automatic update feature to allow customers to upgrade their installation
with a single push of a button. This prevents customers from having to engage in the
error-prone and time consuming task of deploying new versions of a software prod-
uct. However, such functionality is often proprietary and specific to a certain vendor or
product, thereby limiting understanding and broader adoption of this important part of
the software process.
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The aim of this chapter is to maximize the agility of software delivery without
sacrificing the requirement that applications are developed as part of a component-
based product line. While it may not be beneficial to force the user environment to be
component-based, it certainly can be for the development environment. One would like
to develop software in a component-based fashion, and at the same time allow users to
transparently deploy an application as a whole.

If certain actions are tedious, error-prone or just too expensive, they tend to be
performed less frequently. If the effort to package a software product in such a way
that it is ready for deployment is too high, releases will be put out less frequently.
Similarly, if deploying a new release is a time consuming activity with a high risk of
failure, the user probably will not upgrade every day. Therefore, if we want to optimize
software delivery this can be achieved by, on the one hand, reducing the cost of release,
and on the other hand, by reducing the cost of deployment.

How would one optimize both release and deployment in a platform and program-
ming language independent way, when many products composed of multiple shared
components have to be released and deployed efficiently? In this chapter I present
a technique, calledbinary change set composition, which provides an answer to this
question. Using this technique, applications are updated by transferringbinarychange
sets (patches). These change sets are computed from the compositional structure of
application releases. It can be used to implement lightweight incremental application
upgrade in a fully generic and platform independent way. The resulting binary up-
grades are incremental, making the upgrade process highly efficient.

Contributions The contributions of this chapter are summarized as follows:

1. A formal analysis of automatic component-based release and delivery.

2. The design of a lightweight, efficient, safe and platform independent method for
application upgrade.

3. The implementation of this method on top of Subversion.

Organization This chapter is organized as follows. Section 7.2 provides some back-
ground to the problem of application upgrade by identifying the requirements and dis-
cussing related work. Section 7.3 forms the technical heart of this chapter. I describe
how to automatically produce releases and deliver updates in an incremental fashion.
The implementation of the resulting concepts is then discussed in Section 7.4. Then, in
Section 7.5, I evaluate the approach by setting it out against the requirements identified
in Section 7.2. Finally, I present a conclusion and list opportunities for future work.

7.2 Background

7.2.1 Requirements for Application Upgrade

Application upgrade consists of replacing a piece of software that has previously been
installed by a user. The aim of an upgrade for the user is to be able to take advantage
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of repaired defects, increased quality or new functionality. The business motivation
for this is that customer satisfaction is increased. To achieve this goal, the primary re-
quirement is that upgradessucceed. Nevertheless, there are additional requirements for
application upgrade. In the paragraphs below I discuss four requirements:lightweight-
ness, efficiency, genericityandsafety.

For an software deployment method to be lightweight, means that (future) users of a
software product should not be required to change their environment to accomodate the
method of deployment of the product. Reasoning along the same lines, the method of
creating deployable release should not force a development organization to completely
change their development processes. Furthermore, the effort to create a release on the
one hand, and the effort to apply an upgrade on the other hand, should require minimum
effort.

Efficiency is the second requirement. If the aim is to optimize software delivery,
both release and upgrade should be implemented efficiently. If deploying an upgrade
takes too much time or consumes too much bandwidth, users will tend to postpone
the possibly crucial update. Again, also the development side gains by efficiency: the
storage requirements for maintaining releases may soon become unwieldy, if they are
put out frequently.

To ease the adoption of a release and deployment method, it should not be con-
strained by choice of programming language, operating system or any other platform
dependency. In other words, the third requirements isgenericity. It mostly serves the
development side, but obviously has consequences for users: if they are on the wrong
platform they cannot deploy the application they might desire.

The final and fourth requirement serves primarily users: safety of upgrades. De-
ployment is hard. If it should occur that an upgrade fails, the user must be able to undo
the consequences quickly and safely. Or at least the consequences of failure should be
local.

7.2.2 Related Work

Related work exists in two areas: update management and release management,—both
areas belong to the wide ranging field of software deployment. In this field, update
management has a more user oriented perspective and concerns itself with the question
how new releases are correctly and efficiently consumed by users. Release manage-
ment, on the other hand, takes a more development-oriented viewpoint. It addresses
the question of how to prepare software that is to be delivered to the user.

In the following I will discuss how existing update and release tools for component-
based software deployment live up to the requirements identified in Section 7.2.1.

Research on software deployment has mostly focused on combining both the user
and development perspectives. One example is the Software Dock [45], which is a
distributed architecture that supports the full software deployment life cycle. Field
docks provide an interface to the user’s site. These docks connect to release docks at
producer sites using a wide area event service. While the software dock can be used to
deploy any kind of software system, and thus satisfies the genericity requirement, the
description of each release in the Deployable Software Description (DSD) language
presents significant overhead. Moreover, the Software Dock is particularly good at
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deploying components from different, possibly distributed origins, which is outside
the scope of this chapter. The same can be said of the Software Release Manager
(SRM) [98].

Deployment tools that primarily address the user perspective fall in the category of
software product updaters [53]. This category can be further subdivided into monolithic
product updaters and component-based product updaters. Whereas product updaters in
general do not make assumptions on the structure of the software product they are
updating, component (or package) deployment tools are explicitly component-based.

JPloy [68] is a tool that gives users more control over which components are de-
ployed. The question is, however, whether users are actually interested in how appli-
cations are composed. In that sense, JPloy may not be a good match for application
deployment in the strict sense.

Package deployment tools can be further categorized as based on source packages
or binary packages. A typical example of source-based package deployment tools is the
FreeBSD ports system [79]. Such systems require users to download source archives
that are subsequently built on the user’s machine. Source tree composition [26] is
another approach that works by composing component source distributions into a so-
calledbundle. The tool performing this task, called AutoBundle, constructs a com-
posite build interface that allows users to transparently build the composition. Source-
based deployment, however, is relatively time-consuming and thus fails to satisfy the
efficiency requirement.

Binary package deployment tools do, however, satisfy the efficiency requirement.
They include Debian’s Advanced Package Tool (APT) [85], the Redhat Package Man-
ager (RPM) [5], and more recently AutoPackage [2]. These tools download binary
packages that are precompiled for the user’s platform. Both APT and RPM are tied
to specific Linux distributions (Debian/Ubuntu and Redhat/SuSe respectively) whereas
autopackage can be used across distributions. Nevertheless AutoPackage only works
under Linux. Although these deployment tools are independent of programming lan-
guage, they are not generic with respect to the operating system.

The deployment system Nix [31] supports both source and binary deployment of
packages in such a way that it is transparent to the user. If no binary package is found
it falls back to source deployment. It features a store for non-destructively installing
packages that are identified by unique hashes. This allows side-by-side installation
of different versions of the same package. Nix is the only deployment tool that is
completely safe because its non-destructive deployment model guarantees that existing
dependencies are never broken because of an update. Furthermore, it is portable across
different flavors of Unix and does not require root access (which is the case for all
package deployment tools except AutoPackage).

One problem in general with package deployment tools is that they are invasive
with respect to the environment of the user. For instance, the value of these tools is
maximum whenall software is managed by it. This explains why most such tools
are so intertwined with operating system distributions, but it is a clear violation of the
lightweightness requirement.

While some systems, such as Nix, AutoPackage and JPloy, can be used next to
the ‘native’ deployment system, they still have to be able to manage all dependencies
in addition to the component that the user actually wants to install. In the worst case
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this means that a complete dependency tree of packages is duplicated, because the user
deployed her application with a deployment tool different from the standard one. Note
that this is actually unavoidable if the user has no root access. Note also that the user
is at least required to install the deployment system itself, which in turn may not be an
easy task.

7.2.3 Overview of the Approach

The motivations for component-based development are manyfold and well-known.
Factoring the functionality of an application in separate components, creates oppor-
tunities for reuse,—both within a single product or across multiple products [87]. A
distinguising feature of component-based development is the fact that components have
their own life-cycle, both within a product and across products. This means that compo-
nents are evolved, released, acquired and deployed independently, by different parties
and at different moments in time.

In this chapter components are interpreted as groupings of files that can be ver-
sioned as a whole. Components, however, often are not stand-alone applications. This
means that a component may require the presence of other components to function
correctly. Such dependencies may be bound either at build-time or at runtime. Appli-
cations are then derived by binding these dependencies to implementation components,
either at build-time, load-time or even runtime.

In the following I assume a very liberal notion of dependency, and consequently
of composition. When one component requires another component it is left unspec-
ified what the concrete relation between the two components amounts to. Abstract
dependencies thus cover both build-time and runtime dependencies. Under this inter-
pretation, composition is loosely defined as merging all files of all related components
into a single directory or archive.

When a component has been built, some of the resulting object files will contribute
to the composed application. This set of files is called the (component) distribution. To
distribute an application to users, the relevant component distributions are composed
before release, resulting in a single application distribution. Thus, an application is
identified with a certain root node in the component dependency graph and its distribu-
tion consists of the transitive-reflexive closure of the dependencies below the root.

In the next section I will present a technique to efficiently create and deliver such
application releases, calledbinary change set composition. We will see that continuous
integration of component-based software extends naturally to a process of automatic
continuous release. A component will only be built if it has changed or if one of its
dependencies has changed. If a component has been built it is released automatically.
The results of a build are stored persistently so that components higher up in the de-
pendency graph may reuse previous builds from components lower in the dependency
graph.

Apart from the files belonging to a single component, the composition of these sets
of files is also stored. The space requirements for this can quickly become unwieldy,
therefore these application distributions are stored differentially. Differential storage
works by saving the changes between files. Instead of composing sets of files, one
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Figure 7.1: Incremental integration

can now compose sets of change sets. In addition to storing many releases efficiently,
binary change set composition yields an efficient way of updating user installations.

7.3 Binary Change Set Composition

7.3.1 Incremental Integration

Tools like makeoptimize software builds because it only updates targets when they
are out of date. It is possible to lift this paradigm from the level of files to the level
of components. Hence, a component is only built if it is out of date with respect to
some saved state, or when one of its dependencies is out of date. If built artifacts are
stored persistently they can be reused. Sharing of builds is particularly valuable when
a software product is continuously integrated [39]. Traditionally continuous integra-
tion is defined as a process where developers continuously integrate small changes to
main development branch in the source control system. Then, after every change, the
complete application is automatically built from scratch and automated tests are run. A
naive apporach to building large systems from scratch, however, may not scale.

Consider an example that derives from three real-world components,toolbus, tool-
buslib andaterm. The Toolbus is a middleware component that allows components
(“tools”) to communicate using a centralized software bus. Tools implemented in C
use thetoolbuslibcomponent for this. Using the Toolbus, tools exchange data in a
tree-like exchange format called Annotated Terms (ATerms) this datastructure is im-
plemented by theatermcomponent. Obviously,toolbusrequires both the connection
and the exchange format libraries, whereas the connection library only requires the ex-
change format. All three components are used with the ASF+SDF Meta-Environment,
a component-based application for language development [95].

Figure 7.1 shows four build iterations. The dashed boxes indicate changes in that
particular component. In the first iteration every component has been built. At the time
of the second iteration, however, only the top-level toolbus component has changed, so
it is built again but this time reusing the previous builds oftoolbuslibandaterm. Simi-
larly, in the third iteration there has been a change in thetoolbuslibcomponent. Since
toolbusdepends ontoolbusliba new build is triggered for bothtoolbuslibandtoolbus.
Finally, in the last iteration changes have been committed to theatermcomponent and
as a result all components are rebuilt.
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An implementation of incremental continuous integration, called Sisyphus, has
been described in [100]. This system works as follows. Every time a commit to the
source control system occurs, Sisyphus checks out all components. It does this by
starting with a root component, and reading a special file contained in the source tree
that describes the dependencies of this component. This process is repeated for each
of the dependencies. Meanwhile, if the current version of a component has not been
built before, or one of its dependencies has been built in the current iteration, a build is
triggered. Results are stored in a database that serves as saved state.

7.3.2 Build and Release Model

The build and release model presented in this section can be seen as the data model
of a database for tracing change, build and release processes. Additional details can
be found in [100]. The state of a component at a certain moment in time is identified
with its version obtained from the source control system. Each version may have been
built multiple times. The model records for every build of a component version which
builds were used as dependencies. A set of built artifacts is associated to each build.
Finally, a release is simply the labeling of a certain build; the set of releases is a subset
of the set of builds.

In the context of this chapter two sets are important:Build, the set that repre-
sents component builds, andUse defined as a binary relation between builds (i.e.
Use⊆ Build×Build). This dependency relation derives from explicitly specified re-
quires interfacewithin the source tree of each component. At build-time the required
components are bound the source trees of those components,at that moment in time.
Thus, the integration process takes thelatestrevision of each component. Building a
component then results in a set of built artifacts (libraries, executables etc), given by
the function files(aBuild).

The extent of a build is defined as the set of builds that have participated in a build.
It is computed by taking right image of a buildb in the transitive-reflexive closure of
the Use relation: extent(b) = Use∗[b]. The extent of a build thus contains all builds
that will make up an application release. The set of files that will be part of a release
is derived from the set of files that each component in the extent contributes. This is
discussed in the next section.

7.3.3 Prefix Composition

When a component has been built some of the resulting object files will contribute to
the composed application. The set of files that is distributed to the user is called the
application distribution, and it is composed of component distributions.

Figure 7.2 shows how the files contributed by each component to the toolbus ap-
plication are taken together to form a single application distribution. On the left is
shown that all installable files of each component first end up in a component specific
directory,—in the example this could have been the result of issuingmake install. To
release thetoolbusas an application, these sets of files and directories are merged,
resulting in a single application distribution, as shown on the right.
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I call this way of composing components “installation prefix composition” since the
component directories on the left correspond to directory prefixes passed to./configure
using the command line option--prefix. Such configuration scripts are generated by
AutoConf [1], a tool to configure build processes that is widely used in open source
projects. Among other things, it instructsmake installto install files to a Unix directory
hierarchy below the prefix. Prefix composition thus constitutes merging directories
containing built artifacts.

Since components are composed by merging sets of files and directories we must
ensure that no component overwrites files of another component. Formally, this reads:

∀b∈ Builds:
\

b′∈extent(b)

files(b′) = /0

In other words, this ensures that making a distribution is compositional. Instead of
explicitly creating a global application distribution one can compose individual com-
ponent distributions to achieve the same effect. What the property effectively states is
that building a component, viewed as a function, distributes over composition.

There is one technicality which has to be taken care of: the distributed files should
be relocatable. Because builds happen at the developer’s site one must ensure that no
(implicit) dependencies on the build environment are bound at build time. For instance,
if a Unix executable is linked to a dynamic library that happens to be present at build
time, then this library should also be present on the user’s machine,—even on the same
location. Since we do not want to require that users should reproduce the complete
build environment, care must be taken to avoid such “imported” dependencies. I elab-
orate on this problem in Section 7.4.3.

7.3.4 Change Set Delivery

If the compositionality property holds the composition is defined by collecting all files
that are in the extent of a build:

files∗(b) =
[

b′∈extent(b)

files(b′)
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Upgrade Change set delivered to user

0→ 1 {∆0
1bin/toolbus}

1→ 2 {∆1
2bin/toolbus,∆0

2lib/libtoolbus.a}
2→ 3 {−bin/atdiff}

Table 7.1: Change set delivery

The function files∗ computes the set of files that eventually has to be distributed to
users. An update tool could transfer these files for every build that is released to the
users of the application. If a user already has installed a certain release, the tool could
just transfer the difference between the installed release and the new release. LetF1,2 =
files∗(b1,2). Then, the change set between two releasesb1 andb2 is defined as:

{∆(F1∩F2),+(F2\F1),−(F1\F2)}

Change sets have three parts. The first part, indicated by∆ contains binary patches to
update files that are in both releases. The second and third part add and remove the
files that are absent in the first or second release respectively.

If we turn our attention once again to Figure 7.2, we see on the right the composed
prefix for thetoolbusapplication. Let’s assume that this is the initial release that a
typical user has installed. In the meantime, development continues and the system
goes through three more release cycles, as displayed in Figure 7.1. The sequence of
change sets transferred to our user, assuming she upgrades to every release, is listed in
Table 7.1.

The second iteration only contains changes to thetoolbuscomponent itself. Since
the only installable file in this component isbin/toolbus, a patch is sent over updating
this file at the user’s site. In the next iteration there is a change intoolbusliband as
a consequencetoolbushas been rebuilt. Updating to this release involves transferring
patches for bothbin/toolbusandlib/libtoolbus.a. There must have been a change in the
bin/toolbussincelibtoolbus.ais statically linked. In the final iteration the changes were
in theatermcomponent. However, this time neithertoolbuslibnor toolbusare affected
by it—even though they have been rebuilt—because the change involved the removal
of a target: thebin/atdiff program appears to be no longer needed. Neithertoolbus,
nor toolbuslibreferenced this executable, hence there was no change in any of the built
files with respect to the previous release. As a result, the change set only contains the
delete action forbin/atdiff. Note that these change sets can be easily reverted in order
to support downgrades.

7.3.5 Change Set Composition

Until now we have assumed that every application release was completely available
and the change sets were only used to optimize the update process. From the use of
change sets to update user installations, naturally follows the use of change sets for
storing releases. Figure 7.3 shows how this can be accomplished.
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Figure 7.3: Change set composition

Once again, the three integration iterations are shown. In the first iteration, only the
toolbushad changed and had to be rebuilt. This resulted in an updated filebin/toolbus.
The figure shows that we only have to store the difference between the updated file and
the file of the previous iteration. Note that initial builds ofatermandtoolbuslib(from
iteration 0) are stored as change sets that just add files.

The second iteration involves a change intoolbuslib; again, patches fortoolbus
and toolbuslib are stored. However, in the third iteration, the change in theaterm
component did not affect any files intoolbusor toolbuslib, so no change sets need to
be stored for these components. But if users should be able to update their installation
of the toolbus application, still the toolbus should be released. So there really are four
toolbus releases in total, but the last one only contains changes originating fromaterm.

I will now describe how this scheme of binary change set composition can be im-
plemented on top of Subversion.

7.4 Implementation using Subversion

7.4.1 Composition by Shallow Copying

Subversion [19] is a source control system that is gaining popularity over the widely
used Concurrent Version System (CVS). Subversion adds many features that were
missing in CVS, such as versioning of directories and a unified approach to branch-
ing and tagging. Precisely these features prove to be crucial in the implementation of
binary change set composition on top of Subversion.

Next, I will describe how Subversion repositories can be used as release repositories
that allow the incremental delivery of updates to users. The release process consists
of committing the component distributions to a Subversion repository, and then use
branching to identify component releases. Such component-release branches are the
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Figure 7.4: Composition by shallow copying

unit of composition, which is also implemented by branching.
The crucial feature of Subversion that makes this work efficiently, is that branching

is implemented by shallow copying. So, for instance a branch is created for some
repository location—file or directory—by copying the tree to another location. At
the new location, Subversion records areferenceto the source of the copy operation.
The copy operation is a constant-space operation and therefore a very efficient way to
implement sharing.

Figure 7.4 shows a snapshot of a Subversion repository containingatermandtool-
buslib releases based on the change set graph displayed in Figure 7.3. For the sake of
presentation releases of thetoolbushave been omitted. On the left we see the Sub-
version tree foraterm, and on the left the tree fortoolbuslib. The trees have subtrees
indicatedlatest, componentandcomposition. The latesttree is where component dis-
tributions are stored. The rounded boxes contain the change sets from Figure 7.3. The
componenttree and thecompositiontree contain shallow copies of versions of the latest
tree; these are the releases proper. Solid arrows indicate copy relations the context of a
single component,—dotted arrows indicate cross component copying (i.e. composition
relations).

After every build the changes in the distributions are commited to thelatest tree.
The state of thelatest tree at that time is then copied to a branch identifying this par-
ticular build; such branches are created by copying the files from latest to a separate
directory undercomponent. Note that since the change set fortoolbuslibin iteration 3
was empty,toolbuslibrelease 3 is created from the state of the latest tree at iteration 2.

The tree belowcompositioncontains releases for compositions. This works by,
instead of just copying the files belonging to a single build, copying the files in the
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extent of the build. In the example, this means that, next to the files contained in
toolbuslibreleases also the files inatermreleases are copied. If we comparetoolbuslib
composition 0 and 3, one can see in the figure that composition 0 is composed with
release 0 ofaterm, whereas composition 3 is composed with release 3 ofaterm, exactly
as in Figure 7.3.

7.4.2 Upgrade is Workspace Switch

Assuming the proper access rights are in place, the Subversion repository can be made
publicly accessible for users. A user can nowcheck outthe desired subtree ofcompo-
sitions; this can easily be performed by a bootstrap script if it is the initial installation.
She then obtains the composed prefix of the application.

Now that the user has installed the application by checking out a repository loca-
tion, it is equally easy to down- or upgrade to a different version. Since the subtrees of
thecompositiontree contain all subsequent releases of the application, and the user has
checked out one of them, up- and downgrading is achieved by updating the user’s local
copy of the composed prefix to another release branch. Subversion provides the com-
mandsvn switchfor this. Subversion will take care of adding, removing or patching
where necessary.

Note that the sharing achieved in the repository also has an effect on how local
checkouts are updated. For instance, recall that the third release oftoolbusin the ex-
ample involved the removal ofbin/atdiff. If we assume that the user has installed the
second release, and decides to upgrade, the only action that takes place at the user site is
the removal ofbin/atdiff, since the third release of bothtoolbusandtoolbuslibcontain
the same change sets as second release of both these components.

7.4.3 Techniques for Relocatability

Installed application releases are ready to use with the exception of one technicality
that was mentioned before, which is: relocation. Since the released files may contain
references to locations on the build server at the side of development, these references
become stale as soon as the users installed them. We therefore require that applications
distributed this way should be binary relocatable. There are a number of ways to ensure
that distributions are relocatable. Some of these are briefly discussed below.

There are ways to discover dynamically what the locations are of libraries and/or
executables that are required at runtime. For instance, AutoPackage [2] provides a
(Linux-only) library that can be queried at runtime to obtain ‘your’ location at runtime.
Since the files contributed by each component are composed into a single directory
hierarchy, dependencies can be found relative to the obtained location.

Another approach is to use wrapper scripts. As part of the deployment of an ap-
plication a script could be generated that invokes the deployed application. This script
would then set appropriate environment variables (e.g. PATH or LDLIBRARY PATH
on Unix) or pass the location of the composed prefix on the commandline.

Finally, we could use string rewriting to effectively relocate unrelocatable files
just after deployment. This amounts to replacing build time paths with their runtime
counter-parts in every file. Special care must be taken in the case of binary files, since
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it is very easy to destroy their integrity. This technique, however, has been applied
successfully.

7.5 Evaluation

7.5.1 Experimental Validation

A prototype implementation has been developed as part of the Sisyphus integration
framework [103]. It has been used to deliver updates for a semi-large component-based
system, consisting of around 30 components: the ASF+SDF Meta-Environment [92].
All built artifacts were put under Subversion, as described in the previous section.
As expected, the repository did not grow exponentially, although all 40 component
compositions were stored multiple times.

The ASF+SDF Meta-Environment is released and delivered using source tree com-
position [26]. This entails that every component has an abstract build interface based
on AutConf. The prefixes passed using--prefixduring build are known at the time of
deployment so could be substituted quite safely. In order to keep binary files consistent,
the prefixes passed to the build interface were supplanted with superfluous ‘/’ charac-
ters to ensure enough space for the subtituted (user) path. This trick has not posed any
problem as of yet, probably because package-based development requires that every
dependency is always passed explicitly to the AutoConf generated./configurescript.

A small Ruby script served as update tool. It queries the repository, listing all
available releases. If you select one, the tree is checked out to a certain directory. After
relocation the Meta-Environment is ready to use. Before any upgrade or downgrade
however, the tool undoes the relocation to prevent Subversion from seeing them as
“local modifications”.

7.5.2 Release Management Requirements

The subject of lightweight application upgrade belongs to the field of software release
management. In [98], the authors list a number of requirements for effective release
management in the context of component-based software. I discuss each of them briefly
here and show that our approach satisfies them appropriately.

Dependencies should be explicit and easily recordedIncremental continuous integra-
tion of components presumes that dependencies are declared as meta data within
the source tree of the component. Thus, this requirement is satisfied.

Releases should be kept consistentThis requirement entails that releases are immutable.
The incremental continuous integration approach discussed in this chapter guar-
antees this.

The scope of the release should be controllableScope determines who is allowed to
obtain a software release. The release repository presented in this chapter enables
the use of any access control mechanism that is provided by Subversion.
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A history of retrievals should be kept Although I do not address this requirement di-
rectly, if the Subversion release repository is served over HTTP using Apache, it
is easily implemented by consulting Apache’s access logs.

With respect to release management the implementation of change set composition
using Subversion has one apparent weakness. Since Subversion does not allow cross-
repository branching it would be hard to compose application releases using third-party
components. However, this can be circumvented by using the Subversion dump utility
that exports sections of a repository on file. Such a file can then be transferred to a
different repository.

7.5.3 Update Management Requirements

In Section 7.1 I listed the requirements for application upgrade from the user perspec-
tive. Let’s discuss each of them in turn to evaluate whether application upgrade using
Subversion satsifies them.

Lightweightness No invasive software deployment tool has to be installed to receive
updates: only a Subversion client is required. Since, many language bindings
exist for Subversion, self-updating functionality can be easily integrated within
the application itself.

Genericity Change set composition works with files of any kind; there is no program-
ming language dependency. Moreover, Subversion is portable across many plat-
forms, thereby imposing no constraints on the development or user environment.

Safety The Subversionswitchcommand is used for both upgrade and downgrade. A
failed upgrade can thus be quickly rolled back. Another contribution to safety
is the fact that Subversion repository modifications are atomic, meaning that
the application user is shielded from inconsistent intermediate states, and that
releases put out in parallel do not interfere.

Efficiency Efficiency is achieved on two accounts. First the use of Subversion as deliv-
ery protocol ensures that an upgrade involves the transfer of just the differences
between the old version and the new version. Secondly, while the unit of delivery
is a full application, only the files per component are effectively stored, and even
these are stored differentially.

Although all requirements are fulfilled satisfactory, the primary weakness of binary
change set composition remains the fact that distributed files have to be relocatable.
Solving this problem is left as future work.

7.6 Conclusion and Future Work

In this chapter I have discussed the requirements that have to be fulfilled so that applica-
tion upgrade is a burden neither for the development side, nor for the user side. Related
work in the area of software release management did not live up to these requirements.
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The binary change set composition technique does live up to these requirements, and
can be used to deliver new application releases accurately, frequently and quickly. The
implementation on top of Subversion shows that the approach is feasible and may serve
as a low impact adoption path.

However, ample opportunities for future work remain. First of all, the relocatability
requirement of distributed files should be investigated. For instance, so-called applica-
tion bundles on Mac OS X are always relocatable and would be perfect candidates for
being updated using the techniques of this chapter. Further research will have to point
out if the notion of relocatable application bundles can be ported to other platforms. On
the other had, I would like to investigate whether it is possible to make the binding of
dependencies a first-class citizen in the model. For instance, one could envision a kind
of service where components register themselves in order for them to be found by other
components. This subject is closely related to the notion of dependency injection [38].

Another direction of future work concerns the integration of deployment function-
ality with the released application itself. Nowadays, many applications contain func-
tionality to check for new updates. If they are available they are installed and the
application is restarted. It would be interesting if using the approach of this chapter
one could design such “update buttons” in a reusable and generic way. Similarly, it
should be investigated how such self-updating applications could be enhanced with
functionality for reporting bugs or other kinds of feedback.
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Chapter 8

The Sisyphus Continuous
Integration and Release System

Abstract Continuous integration and release requires special attention to
the requirements of platform independence, configurability and traceabil-
ity. This chapter describes how the implementation Sisyphus lives up to
these requirements in the context of component-based development. We
describe the high-level architecture of Sisyphus, how Sisyphus is config-
ured and how traceability is maintained. Finally, we provide some details
about the user interface of Sisyphus and about third-party software that
has been used to keep the size of Sisyphus minimal.

8.1 Introduction

The Sisyphus continuous integration and release system can be used to automatically
build and release component-based systems. As such it helps extending the practice of
continuous integration [39] into a practice of continuous release. Sisyphus will monitor
a set of source repositories and after every change to any of the sources it will build
and release the complete system.

Whereas implementing a continuous integration system proper may not seem like
a very big deal, the addition of automatic release facilities adds to the complexity of
this task. Not only should the software product be built after every change, it should
also be released. Apart from creating installable packages for each build and making
them available to users, releasing entails that accurate links to the sources must be
maintained. This calls for explicit management of meta-data describing exactly what
went into a build and hence what is contained in a release package.

In this chapter we describe how such release facilities and the associated meta-data
management has been implemented in Sisyphus. We highlight some of its distinguish-
ing features and discuss design decisions that have lead to the current state of the sys-
tem. This chapter is organized as follows. First, in Section 8.2 we will identify the
technical requirements for a continuous release system, specifically in the context of
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heterogeneous component-based systems. Second, in Section 8.3, we give an archi-
tectural overview of the system. This section will primarily focus on the distributed
nature of the implementation of Sisyphus. One important feature of any build system
is how it can be configured for use in a specific software development environment.
This is elaborated upon in Section 8.4. Then, since Sisyphus is not only a build system
but a release system too, it must ensure traceability of the released artifacts. For this
Sisyphus maintains a database recording accurate meta data describing the contents of
each release. The data model of the database is described in Section 8.5. Finally, we
discuss details of the implementation Section 8.6 and present conclusions and future
work in Section 8.8.

8.2 Functional Requirements

The functional requirements for a continuous integration and release system for component-
based, heterogeneous software are discussed in this section. They can be summarized
as follows:

• Component-based: components and dependencies are first-class. Every compo-
nent is released together with all its transitive dependencies.

• Platform independent: the integration and release system should run on as many
platforms as possible. As a consequence, no proprietary tools, libraries or proto-
cols should be used in its implementation.

• Configurable: in order to be as widely applicable as possible, the system should
be configurable. More specifically, this means that the system should be inde-
pendent of the programming language(s) and build tools used in a project.

• Traceable: as mentioned above, it should at all times be possible to trace deliv-
ered releases back to the sources used to build the product.

Below we elaborate on each of the requirements and indicate how the implementation
of Sisyphus realizes them.

8.2.1 Component-Based

One of the primary requirements for Sisyphus has been that it allows the integration
and release of component-based systems. This means that components are represented
by independently evolving sets of source files (called source trees), often residing in
separate entries in the version control system (VCS) or even in different VCSs.

Components have explicit sets of dependencies. In the context of Sisyphus these
are specified in a dedicated file within the source tree of the component based on the
open source utilitypkgconfig [48]. A small excerpt is shown below:

Name: pandora
Version: 1.4
Requires: asc-support,aterm,pt-support,toolbuslib
Maintainers=developer@cwi.nl
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This file, which resides in the top-level source directory of the component, identifies
this source tree as belonging to thepandora component on the first line. The second
line declares that if this component is formally released it will receive 1.4 as informative
version number. This number is not used for identification but serves to indicate a
level of maturity to the actual users of this component. The following line lists the
components it requires. Note the absence of version numbers here: which versions
are used for these dependencies follows from the version control system at the time of
integration. The presence of this file is one of the few assumptions Sisyphus makes.

Integration and release of a software product in this setting means integrating and
releasing each component individually as well as together with its dependencies. More
specifically, a component should be built against its dependencies to test whether a
component can be compiled using the interfaces of the dependencies, and it should be
releasedincludingits dependencies to obtain a complete, working software system; i.e.
releasing a software system consists of publishing the transitive closure the dependen-
cies of a software component.

8.2.2 Platform Independent

The requirement of platform independence entails that no technology specific to a cer-
tain platform should be used in the implementation of the continuous integration and
release system. This requirement affects both the back-end and front-end sides of Sisy-
phus. The back-end lives at the vendor site; it consists of tooling to continuously build
and release software. When portability of the product is a concern, it can be essential
that the integration and release is done on multiple platforms at the same time. This
entails that the back end should be portable across these platforms as well. The Sisy-
phus back-end is implemented in the programming language Ruby1 which is portable
across many platforms.

Similarly, the front-end should be accessible from any platform the product is re-
leased for. Hence its implementation should impose no constraints on the platform
of eligible users. In the context of Sisyphus we have chosen for a dynamic web ap-
plication as a front-end which can be accessed from anywhere on any platform. The
front-end is discussed in more detail in Section 8.6.

8.2.3 Configurable

Configurability means that the system can be tailored for application in different set-
tings. More specifically it entails that the system is parametrized in aspects that may
differ across vendors or products. For instance, the system should not be tied to one
specific programming language since different vendors may make different choices
in this area. Moreover, in component-based settings, different components may have
been implemented in different languages. This leads to heterogeneous, component-
based software. If such software should be built and released automatically, clearly
a continuous integration and release system must not make any assumptions on the

1Seehttp://www.ruby-lang.org .

http://www.ruby-lang.org
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programming languages that are used. The same holds for other elements of the devel-
opment environment, such as the kinds of build tools (e.g. Make [37]) that are used.

Sisyphus accommodates this requirement by being parametrized in what consti-
tutes a build. What kind of commands are executed in order to build a component
is fully configurable. The configuration interface of Sisyphus furthermore allows the
configuration of platform dependent dependent variables separate from the variables
that applies to all platforms. The configuration of Sisyphus is discussed in more detail
in Section 8.4.

8.2.4 Traceable

The final and most essential requirement for a continuous release system is that release
packages (as well as user installations) can be traced back to the sources that were used
to construct a particular version of the product. In other words, releases produced by
system must be accompanied by accuratebills of materials(BOMs) [70]. BOMs are
common in manufacturing and are equally important in software engineering. A BOM
exactly describes what parts or components went into a certain product (release). In
the context of component-based software release this boils down to explicitly manag-
ing which versions of which components were used to construct a particular release.
Additionally it requires an identification of platform (consisting of, e.g., operating sys-
tem, hardware class etc.) and the tools used to create the release (e.g., compilers, build
tools etc.).

In theory, one would like every software artifact that contributes to the end-product
to be included in the BOM. We note that the Nix deployment system [31] actually
achieves this level of preciseness in identifying software releases. However, this comes
at the cost of having to explicitly manage (build and release)everysoftware artifact that
may contribute to the end-result, including compilers and additional tools. In Sisyphus
we have taken an approach that is much more light-weight so it is less intrusive to
the development, build and test environment. Tracing the configuration of Sisyphus is
discussed in Section 8.4. The general data model underlying the release database is
described in Section 8.5.

8.3 Architectural Overview

8.3.1 Introduction

The Sisyphus system consists of a back-end and a front-end. Figure 8.1 shows a high-
level overview of the system. The back-end handles the continuous integration and
release of software products developed in a component-based fashion. Input to the
back-end are the sources of the product and a description of the development envi-
ronment (e.g., compilers, build tools, etc.). Both the sources and the definition of the
environment can be changed by the developers on the vendor side. If a change is made,
the back-end integrates the changes and makes a release available through the front-
end. Both customers and testers are then able to obtain new releases via the front-end
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Figure 8.1: Overview of the Sisyphus system

and provide feedback to the developers. Below we will discuss in more detail how the
back-end and front-end are deployed.

8.3.2 Deployment Architecture

To introduce the Sisyphus system in more detail we present the deployment architec-
ture in Figure 8.2 using a UML-like deployment diagram. The nodes represent inde-
pendently running subsystems (“servers”, or “active objects”). The arrows between
the nodes can be read as “has access to”. The nodes that have been encircled are the
proper parts of the Sisyphus implementation. The lower half of each node shows how
the component has been implemented. For instance, the Sisyphus builder (on the left)
is implemented in the programming language Ruby. The front end (the encircled node
at the right), consisting of a web application is constructed in Ruby as well and uses
the Web frameworkRuby on Rails2. An Apache web server servers as a proxy to the
Ruby on Railsweb application.

The left hand side of the figure shows the “builder” side. During operation there
may be multiple Sisyphus builders (indicated by an asterisk). Each builder runs in-
dependently on individual hosts in a network of computers. This allows the software
product to be built on different platforms. Each builder monitors one or more source
repositories (also indicated by the asterisk in the upper right corner).

The middle of the figure represents the stateful parts of Sisyphus. It consists of a
database, a configuration repository and a file server. The database contains the bills
of materials for each build. The data model of this database is discussed in more detail

2Seehttp://www.rubyonrails.com .

http://www.rubyonrails.com
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Figure 8.2: Deployment architecture of Sisyphus

below, in Section 8.5. Each builder has access to this database (through TCP/IP) to
check whether a certain component has to be built or not. If so, the builders executes
the build and stores the results in the database. These results can then be retrieved
from the database via the front-end. Build and release artifacts (e.g., binaries, release
packages etc.) are uploaded to the file server component. Every bill of materials in the
database corresponds to a location on the file server. This allows the front-end to link
every release to the files belonging to it.

Currently this file server is based on NFS. However, we prototyped the use of Sub-
version for this part of the architecture as well. This is covered in Chapter 7. Currently
however, the implementation of the binary change set technique is in pre-alpha stage
and thus is not part of the production version of Sisyphus.

The configuration repository serves a special purpose. Sisyphus builders access
this repository to find out in which repository components reside and to find out what
commands have to be executed in order to actually build a software component. Addi-
tionally, the configuration repository may contain host-specific information about, for
instance, the location of certain compilers or the presumed value of certain environ-
ment variables. In other words, the configuration repository contains the knowledge
that Sisyphus builders require for finding, building and releasing a software compo-
nent.

The configuration of the Sisyphus builders is fully versioned using a Subversion
repository. This is an essential feature, since the configuration parameters that were
used during a component build are part of the bill of materials stored in the database.
This makes changes in the configuration to be accurately traceable. Without this two
builds executed using different compilers would not be distinguishable in the database.
As a side effect, changes in the configuration will trigger a new build. Even if there are
no changes in the sources, it is still possible that a component will be built because, for
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Figure 8.3: The basic Sisyphus scenario

instance, the changes in the configuration require the use of a new compiler. The bills of
materials in the database record links to the exact version numbers of the configuration
files that were used during a build.

In addition, the Subversion repository provides developers with a transparent way
of accessing and updating this configuration information. Configuration files can be
checked out, modified, and checked in again. In the next build cycle, each Sisyphus
builder will use the new configuration information. The configuration model is dis-
cussed in more detail in Section 8.4.

The database populated by independently running Sisyphus builders is accessed
from the outside world through a web interface. This front-end web application, called
“Web of Sisyphus”, presents a read only view of the database. Both the builders and
the web front-end ensure that the database only grows monotonically. In other words:
nothing iseverdeleted from the database. As a side-effect, this ensures that releases
are immutable. Developers may investigate the causes of build failures by inspecting
log files. Users may download release packages associated to successful component
builds.

8.3.3 Dynamics

We will now consider the basic scenario implemented by Sisyphus. Figure 8.3 shows
a message-sequence chart to illustrate the dynamics of Sisyphus.

Sisyphus builders run in cycles. In other words, at a fixed interval in time a builder
initiates a new integration cycle. The figure shows one such cycle. The initiative is with
the Sisyphus builder which starts the cycle by requesting its configuration data from
the configuration repository. This moment in time is fixed att. The next step involves
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requesting the state of the sources at timet with respect to the configuration obtained
earlier. The configuration data include which components this builder should integrate
and where they are to be found. The state returned by querying the source repositories
(only one is shown in the diagram) is thus parametrized in the configuration applicable
to thisbuilder.

Then the database is queried to find out what has to be done with respect to the
state of the sources. The builder subsequently obtains a work assignment. This work
assignment may be empty if there have been no changes to the sources and/or configu-
ration files in between the time of the previous cycle andt. Any work done by a builder
is always relative to what has been stored in the database as being completed. The
database also stores what has been done by which builder, under which configuration.
If the configuration data forthis builder has changed since the last cycle, this means
that components may have to be built, even though there are no changes to the sources.

The computation of a work assignment with respect to the database and the config-
uration captures the core algorithms of backtracking and incrementality, as discussed
in Chapters 4 and 5. The notion of work assignment captureswhathas to be built and
released (which components), andhow(in which order, with which dependencies).

If there is any work to be done, the builder performs the necessary build and release
steps. Finally the results are stored in the database (e.g., success/failure of the build,
log files etc.) and build and release artifacts (if any) are uploaded to the file server. If a
component has build-time dependencies then the build artifacts of those dependencies
are retrieved from the file server in order to be passed into the build. If there is no more
work left to do, the builder then goes to sleep until it is time for the next cycle.

8.4 Build Configuration

As mentioned in the architectural overview, Sisyphus’s configuration is accessed through
a Subversion repository. What does this mean? Simply said, it means that dedicated
configuration files are stored in a Subversion repository and the versions of this files
form the identification used in the bill of materials that accompanies releases. The
database stores these version numbers as part of the identity of builds and releases. In
this section we describe the configuration model obeyed by the files in the configuration
repository.

The configuration of Sisyphus is divided in two parts: global configuration and
per host configuration. The global configuration parameters applies to all Sisyphus
builders, whereas the per builder configuration contains customizations and overrides
specific to a single builders. We will discuss each part in turn.

8.4.1 Global Configuration

The global configuration of Sisyphus consists of the definition of build actions (called
the “script”) and locations of components. The script is a list of build actions identified
by name. The locations of components are specified by mapping repository locations
to component names.
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Currently Sisyphus only supports Subversion repositories, but different types can
be easily added. The configuration file for specifying source locations already caters
for this. This file,sources.yml is specified in YAML3 format, which is easy to deal
with for both humans and computers. The following listing is a small example:

-
type: subversion
protocol: svn+ssh
location: svn.cwi.nl
components:

- aterm
- toolbus
- toolbuslib

The dashes are list constructors and the colons indicate mappings. The source config-
uration thus consists of list of repositories, each repository is a map containing con-
figuration parameters one of which consists of the list of components residing in the
repository. The components listed in this files are the ones that Sisyphus builders know
about. For instance, if a component, say toolbuslib, requires the component aterm as a
dependency, the builder performs a reverse look-up in in this mapping in order to find
the location of aterm.

The script is also specified in YAML and consists of a mapping of build actions to
shell script templates. An example build action could for instance be “configure” or
“test”. The configure action could capture the invocation of configure script generated
by AutoConf [1]; a tool commonly used in open source projects to instantiate Make-
files. The “test” action then could be configured to invoke “make check” in the top-level
directory of the checkout of a certain component to compile and test the component.

Build actions are mapped to shell script templates. These templates may contain
embedded Ruby code4 to access certain internal values provided by the builder. For
instance, the “configure” build action in the setting that Sisyphus is used, could have
been specified as follows:

configure: ./configure --prefix=<%=install_dir%> \
<%deps.each do |d|%>

--with-<%=d.name%>=<%=install_dir%> \
<%end%>

The text between<%and %> is Ruby code that will be executed to instantiate this
template. This template accesses two variables of the builder:install dir anddeps.
The first variable contains the directory where compiled binaries should be put; this
variable is configured per builder (see below). The second variable, deps, contains the
dependencies for the current component. The template uses this variable to construct
command line flags of the form--with- d=install dir for each dependencyd. These
flags allow the configure script to instantiate Makefiles in such a way that libraries and
header files are found by the C compiler. In this case the files of all dependencies

3Seehttp://www.yaml.org .
4Using the template language Embedded Ruby (ERB); contained in Ruby’s standard library.

http://www.yaml.org
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are to be found below the directoryinstall dir. These action templates are instantiated
and subsequently executed by the builder. The result of the execution of the complete
sequence of actions constitutes a component build.

8.4.2 Per Builder Configuration

In addition to the global configuration of all builders, some configuration parameters
are specific to a builder; this is done usingprofiles. This may have to do with certain
paths that have to be different on different hosts or other platform differences. Simple
platform dependencies can be ironed out using theenvironmententry in the profile. The
environment consists of a shell script that is prepended beforeeverybuild action before
the action is executed. This way, for instance, the search path (PATH) for executables
can be adapted just before a build action gets executed. Although the build actions
are the same across platforms, the tools that will be used to execute the build action
obviously are not.

Two other important builder specific configuration parameters concern the location
of the working directory (thebuild dir) and the location where to put built artifacts (the
install dir). These are both configured through the profile. Profiles are again YAML
files in the configuration repository identified using a name. This name is passed on
the commandline to a builder so that it knows the profile it should use.

Finally, profiles contain a fake variable, called theworld version. This number can
be incremented to trigger a rebuild of everything for a certain builder. Sometimes the
build environment changes in a way that is not visible in either the sources or the profile
configuration parameters. Using the world version one can prevent a Sisyphus builder
from assuming that “nothing has changed” whereas the developers might know better.

8.5 Data Model

In earlier chapters (notably Chapter 4, 5 and 7) we presented formal versions of the
data model underlying the Sisyphus approach to continuous release. In this section
we take a more implementation oriented view point. The data model as it is currently
implemented is shown in Figure 8.4. The nodes in this figure represent classes that
are mapped to tables in the database. Similarly, the arrows indicated both associations
and foreign key constraints; they can be read as “has many” (due to the multiplicity
indication “*”). The self-referential relation “use (a dependency relation) on Item is
implemented using an intermediate table which is not shown.

Both the builder and the front-end use the object-relational mapping (ORM) that is
provided by theRuby on RailscomponentActiveRecord. The diagram in Figure 8.4
is automatically derived from this mapping. Below we will speak of classes, but keep
in mind that these are mapped to tables in the Sisyphus database using the ORM. The
database itself is specified using an SQL schema.

The central class in the data model is called Item: it captures component integra-
tions and releases. Every component build that has been attempted is represented by
an object in this class. The fields progress, success, and released indicate the status of
the build. If progress is true, the build is currently executing. If success is true, this
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Figure 8.4: Data model of the current implementation of Sisyphus
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build has completed and is a viable release candidate. If released is true, this build is
formally released using the informativeversion of the associated revision. Through the
use relation the set of used dependencies can be retrieved. This allows the construction
of closuresfor a certain build: a collection of the build artifacts of the component in
question including the artifacts of all transitively reachable dependencies.

Apart from Session (which captures build cycles), all other classes (Revision, Com-
ponent, Platform, Host, Config and Profile) contribute to the identity of an Item. In
other words, they are (indirectly) part of Item’s primary key. The Revision class cap-
tures the state of a component (which is identified just by name in class Component) at
a particular moment in time: it has a revision number that derives from the version con-
trol system. Additionally it contains ChangeLog excerpt to indicate what has changed
since the previous version. The informativeversion field has the version number de-
clared in thepkgconfig file. For instance, for thepandora component described
above, this would have been 1.4.

Builds executed on different hosts and this may imply that two builds have been
executed on different platforms. Builds different platforms should be distinguished.
Therefore, the Host is part of the primary key of Item and Host has a foreign key on
Platform. The Platform class captures differences in hardware and OS. Note that cur-
rently two builds executed on different hosts are distinguished while they may have
exactly the same platform. In this sense, build identification is slightly more conserva-
tive than needed.

The Config class captures the source, script and profile configuration (and thus
builder identity) discussed in the previous section. The version fields correspond to
versions of the corresponding files in the configuration repository.

8.6 Details About the Implementation

In the previous sections we described the general architecture of Sisyphus and de-
scribed underlying configuration and data model of the current implementation used
by both the back-end and the front-end. The core algorithms used by the back-end (the
builders) are discussed in detail in Chapters 4 and 5. In this section we focus on some
technical details of the implementation. We will briefly discuss the front-end, discuss
the size of the system and provide some pointers to additional resources.

8.6.1 Front-End: Web Of Sisyphus

The front-end of Sisyphus consists of a web application implemented using the web
development frameworkRuby on Rails(RoR). RoR provides default scaffolding for
Model-View-Controller (MVC) paradigm web applications. This means that it pro-
vides Model classes (the Object Relational Mapping subsystem ActiveRecord), Con-
roller classes (ActiveController), and a way to construct views. For the latter we used
the default technique, which consists of embedding Ruby code in HTML files (Em-
bedded Ruby, ERB). ActiveRecord was used to map the formal models of the earlier
chapters to database tables; after a few iterations this resulted in the data model of
Figure 8.4. In RoR the URLs a user accesses are mapped to methods of controller
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Figure 8.5: Main page of theWeb of Sisyphus. The right three columns in the middle
section represent the hosts that have running Sisyphus builders. Each row corresponds
to a component and lists the outcome of the most recent build. The side-bar on the right
shows the most recently performed builds globally; this information is also provided
as an RSS feed
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Figure 8.6: Build and release page of theasfsdf-meta component. All actions
actions (ten in total) have succeeded, therefore this build represents a valid release
candidate. The bottom three links of the “Build Information” section can be used to
obtain the release
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Figure 8.7: Failed build of theasf component. In this case the “check” action has
failed. The “Dependencies” section at the bottom lists the dependencies (the table) that
were used during this build. The two links give access to a graphical representation of
this build’s bill of materials (see Figure 8.8)
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classes. Within these methods the models can be accessed. On completion of a method
the framework instantiates the template corresponding to the method, and returns the
result to the browser. The HTML templates were styled using a stock open source style
sheet called Gila5.

RoR supports Ajax out of the box. Ajax is a new paradigm for developing web
applications based on JavaScript. Using Ajax one can send requests to the server in the
background and update fragments of a page in the browser without having to do a full
page refresh. The Sisyphus main page is dynamically updated this way when a builder
is executing a build, thus leading to a “real time” view on build activity.

To get an impression of the front-end of the Web of Sisyphus, Figures8.5, 8.6,
8.7 show three screen shots of the main page of Sisyphus and two release pages of
the ASF+SDF Meta-Environment [92] and theasf component respectively. The main
page of Sisyphus (Figure 8.5) shows the state of each hosts running a Sisyphus builder.
The release pages show all information related to a single build. For instance, for the
Meta-Environment (Figure 8.6), it shows that the current revision of the component
corresponding to the Meta-Environment has revision 22311. Below the revision num-
ber, some details are shown on this particular build: the date and time of the build cycle
(called “session” here), the host the build was performed on and the versions of the files
that configure the build process: the profile for host specific configuration, the list of
source locations managed by Sisyphus and the script (discussed in Section 8.4.

The last three lines of the section “Build information” show three release packages
for the Meta-Environment: the distribution (a source package of only this component,
i.e. a source package ofasfsdf-meta ), the bundle (a composite source package con-
taining the closure of this component) [26], and a binary install script for immediately
installing the Meta-Environment on Linux.

The lower part of the page shows the links for each of the build actions that have
been performed during the build of this component. In this case, all build actions have
been completed successfully.

The screen shot of Figure 8.7 shows the release page for a failed build. At the
bottom links that can be clicked to find dependency information: which builds were
used during this build and how has this build itselfbeenused. Additionally there is a
link for showing the dependency graph of this build. This in essence captures the bill
of materials. An example is shown in Figure 8.8. The figure shows the bill of materials
for the failed build of theasf subsystem of the ASF+SDF Meta-Environment. The
nodes in the graph represent builds, the edges capture the “use” relation between builds.
Clustering of nodes indicates the sessions.

As can be seen from labels of the clusters, the build ofasf was executed in the
session (build cycle) of 12th of June 2007, starting at 9:20. However, the dependencies
originate from earlier sessions, notably, from one day earlier. The most recent build of
the bottom component,meta-autotools , is from May 30th. This means that this
component has not received any changes since that day.

5Found onhttp://www.oswd.org .

http://www.oswd.org
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Figure 8.8: Build dependency graph of thepandora component
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Subsystem Language SLOC

Back-end Ruby 4866
ORM Ruby 168
Front-end Ruby 1096
Templates HTML 1049
DB Schema SQL 122

Table 8.1: Sizes of different parts of Sisyphus

8.6.2 The Size of Sisyphus

The implementation of Sisyphus exploits a number of third-party software packages:
ActiveRecord (ORM), RoR (Web Framework), Gila (style sheet), PostgreSQL (database),
YAML (configuration file parser), Subversion (configuration repository), and Apache
(Web server). This surely has a impact on the size of the implementation. Table 8.1
shows the sizes of the different parts of Sisyphus in source lines of code (SLOC), i.e.
without counting empty or commented lines.

The table shows the figures for Sisyphus’ back-end (the builder subsystem), the
ORM, which is shared among the back-end and the front-end, the front-end, the HTML
templates and finally the SQL schema. The back-end is most interesting: the code in
it contains the core algorithms described in previous chapters and interfacing with the
build environment and the file server. Accessing the database has been made com-
pletely transparent by the ORM.

The front-end deals with serving release packages and presenting build results
stored in database in an informative way. The complete bill of materials can be in-
spected as well as the logs resulting from each build action. Apart from the just dis-
playing such results, the front-end generates dependency graphs using the graph visu-
alization tool GraphViz6. An example of this is displayed in Figure 8.8.

8.7 Related Work

8.7.1 Similar Tools

Many continuous integration tools exist both open source and commercial. For an
overview of many systems, the reader is referred to:

http://damagecontrol.codehaus.org/Continuous+Integration+
Server+Feature+Matrix

This page consists of a feature matrix for each of the systems. A system-by-system
comparison with Sisyphus is outside the scope of this chapter. However, we note that
the use of a database to store bill of materials, versioning configuration parameters,
incremental builds and backtracking are distinguishing features for Sisyphus. Below

6Seehttp://www.graphviz.org .

http://damagecontrol.codehaus.org/Continuous+Integration+Server+Feature+Matrix
http://damagecontrol.codehaus.org/Continuous+Integration+Server+Feature+Matrix
http://www.graphviz.org
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we compare Sisyphus to some (research) tools in the domain of release, delivery and
deployment.

The Nix [30] deployment system is also used for continuous integration and release
in an incremental fashion. However, the focus of Nix is on deployment and requires all
software dependencies, including compilers, to be managed by Nix. This way tool ver-
sioning and tracing is obtained for free. In Sisyphus versioned configuration files are
used to capture changes in the environment. Sisyphus and Nix both perform well on
automating integration and release, as well as performing these processes incremen-
tally. The Software Dock [45] and Software Release Manager [97] however, do not
perform automatic integration and require explicit release version numbers and depen-
dency specification before it automatically creates a release. On the other hand, these
tools are better at dealing with distributed release repositories.

Software delivery and deployment tools can be broadly divided in two categories:
those that are explicitly component-based and those that are not [53]. In the comparison
of Sisyphus to related systems from the perspective of delivery and deployment we only
consider component-based tools. These include Nix, the Software Dock, JPloy [68],
the package managersà la APT/RPM [85,5], and the source deployment systems sim-
ilar to FreeBSD’s Ports system [79,109,24].

Unlike most other tools, the Sisyphus approach to delivery is most light-weight. In
the current prototype the delivered application has to be extended to include Subversion
client support. The user does not have to install any additional infrastructure, unlike is
the case with all the other tools. Moreover Nix, APT/RPM and Ports are particularly
heavy weight since they work best under the assumption thatall software is managed
by these respective systems.

The Nix system excels at maximally sharing of dependencies while at the same
time ensuring safety and side-by-side installation. Sisyphus takes the opposite route
for attaining safety: not sharing anything and implementing a flexible (and fast) undo
feature. Not supporting side-by-side installation is only a problem if such components
are shared among different closures representing different end-userapplicationswhich
is our focus anyway; there is no deployment time sharing. Not sharing is also followed
by approaches used in Mac OS X (application bundles) and Linux deployment tools
like AutoPackage [2] and Klik [59]. These approaches may waste certain amounts of
disk space but lead to considerably simpler models of deployment.

JPloy also ensures that different versions of the same components do not interfere
and hence satisfies the safety requirement. It is, however, bound to the Java language
and platform. Finally, Ports like systems also allow side-by-side installation, but these
systems only delivery source code packages which can be too time consuming for
continuous delivery7.

To conclude this section we state that Sisyphus can be described as component-
based continuous integration system maintaining accurate bills of materials in order to
automate the practice of release. It emphasizes simplicity, genericitiy and traceability:
it requires a source repository, dependency meta-data and build templates,—nothing
more. Inevitably, simplicity comes at the cost of something else. In this case this is
not being able to select specific versions (although this could be super imposed) and

7As an aside, both Sisyphus and Nix deliver source-based releases too.
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assuming a rather simplistic deployment model. Nevertheless, we think that Sisyphus
fills in the following niche: automating the release of complex user applications that
are released as a whole, where no heavy, formal release processes are required. We
have experienced that the low risk, low overhead approach of Sisyphus is quite useful
in such a setting.

8.7.2 Discussion

One of the design goals of Sisyphus was to minimize the additional maintenance that is
required to achieve automation. This, for instance, precluded versioning of dependency
relations since keeping these synchronized can be a true maintenance headache. In
the Sisyphus approach this is not required. Only unversioned dependencies have to
be written in a dedicated file among the sources of each component. Such files only
change when the architecture changes.

Another design goal, which has been achieved quite satisfactory, is that Sisyphus
would be platform independent. In principle, Sisyphus is completely independent of
programming language, operating system, build tools and version control systems.
This means that it has a low barrier to adoption.

A distinctive feature of Sisyphus is backtracking. Experience shows that this fea-
ture is essential for improved build feedback; this is corroborated by comments of
programmers, who do not have to wait until somebody else has fixed the build failure.

Finally, we think that Sisyphus is sufficiently light-weight for implementing con-
tinuous delivery to many users. The technique of binary change set composition can
be used for efficiently self-updating applications, without requiring any additional ef-
fort from users apart from installing the first release. This can be clear advantage over
other, more intrusive, deployment systems, such as Nix.

Automatic release means automatic version selection; especially in the presence of
backtracking this may lead to a impression of lack of control. It is not always easy
to assess the contents of a release. More tooling is required to, for instance, clearly
visualize the differences between two releases in order to improve feedback value for
the programmers. Additionally, automatic derivation of release notes from developer
change logs has not received enough attention.

Another problem with automatic version selection is that it is not possible to spec-
ify manually which set of revisions of componentsshouldbe released (and this may
sometimes be required). Sisyphus only builds and releases the bleeding edge; however,
Sisyphus attempts to releaseas many as possible. The same holds for binding requires
interfaces to source trees: the revisions of sourceat the time of buildingare the ones
that will be used.

A disadvantage of Sisyphus, related to binding of dependencies, is that there is no
support for branches. Currently only one code line per component will be built and
released. This is discussed in more detail below where we survey directions for future
work.

Sisyphus does not support the configuration interfaces of Part II, and hence the
releases that Sisyphus publishes are not statically configurable. However, these con-
figuration interfaces present almost insurmountable problems from the perspective of
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traceability and updating. It is not in general possible to deal with change in configu-
ration interface; for instance, how would feature selections be automatically migrated
to satisfy a new feature description?

Finally, communication between Sisyphus and users is uni-directional (from Sisy-
phus to users). For collecting usage statistics and problem reports this communication
must be bidirectional. Currently, Sisyphus’ integration with issue-tracking software
is particularly weak, whereas there are obvious opportunities and benefits here, for
instance, for automatically reproducing a release based on the exact release version
attached to a bug report. The Pheme knowledge distribution framework could be ex-
ploited for feeding user data back into the Sisyphus database [52].

8.8 Conclusion & Future Work

In this chapter we have introduced the design of the Sisyphus Continuous Integration
and Release system. We posed that a continuous integration and release system should
be platform independent, highly configurable and produce traceable release packages.
These technical requirements were evaluated in the context of Sisyphus.

We then discussed different aspects of the implementation of the system, such as the
deployment architecture, its dynamic execution model, how the system is configured
and the internal data model used to produce traceable release packages. Finally, we
described the front-end part of Sisyphus called “Web of Sisyphus” and presented some
details about the size of Sisyphus and the use of third-party software.

We have compared the Sisyphus to similar tools and discussed its advantages and
disadvantages. Below we discuss some directions for future work. These directions
particularly concern the future of the Sisyphus system and include the addition of
integration support on branches and support for distributed component repositories.
Distributed component repositories enable the use of multiple Sisyphus instances as
integration and release hubs in so-called software supply networks (SSNs) [56].

8.8.1 Future Work 1: Branch Support

The Sisyphus tool does not address the SCM facet of change isolation: branching.
Components are implicitly assumed to correspond to a single code line. There is no
support for branching. Branching means that development activities can be divided
over separate evolution lines of the same sources. For instance, bug fixing could be
performed on a different branch than the development of new features. Thus these
two kinds of development activities can be parallelized. Once in a while the bug fixes
can then be merged from the bug fix branch to the feature development branch. Be-
cause Sisyphus currently does not manage branches, there is only continuous integra-
tion feedback on one branch, the “trunk” of main line of a component.

In order to allow multi-branch continuous integration (and hence release) we aim to
investigate the notion of dependency injection [38] to make the binding of components
(for instance in dependency specifications) to actual source locations a first-class citi-
zen. With this kind ofsource tree dependency injection, one could integrate different
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compositions of components in different ways. This would also allow more flexibil-
ity in using branches as a way for implementing variations. For instance, one could
say that two branches belonging to the same component, in a way, both implement the
same interface. That is, if a certain source tree has a dependency on a componentC,
there may be multiple implementations of this “interface”C. Initial research on this
has started, and it turns out the specifications of binding of source trees to compo-
nent names are similar to object-oriented classes. This object-oriented nature promotes
sharing of common substructures which alleviates the maintenance overhead of keep-
ing system description and branch organization in sync. Ultimately this could lead to a
fully object-oriented and versionable description language forsystems of systems.

8.8.2 Future Work 2: Federated Integration

Another aspect missing from Sisyphus is that component sources may originate from
different organizations: the distribution concern. In order to support distributed com-
ponent sources, the Sisyphus continuous integration system would run on many sites,
thus leading to a network of communicating Sisyphus instances. To achieve this, the
following requirements need further research:

• Knowledge sharing: replication and distribution of the database; a certain in-
stance of Sisyphus may have to know about the build results of another instance
in order to successfully a execute a build.

• Artifact sharing: similarly, the actual build artifacts (binaries) must be made
available across the network of instances.

• Security: authentication, authorization and licensing need to be taken care of
since sources and releases may have different, configurable levels of propriety.

• Identity: components, revisions, release numbers should be globally unique.
Some form of name spacing will be required. Another possibility would be the
use of cryptographic hashes, as is used in the Nix system [31].

• Topology: is the network of Sisyphus instances ordered in a hierarchy, for in-
stance, following the dependencies of components, or is the network structured
as decentralized peer-to-peer network? How does an instance know (or find out)
where releases of a certain required component are found?

Our work on efficient delivery in Chapter 7 could be leveraged to share artifacts across
the different instances of Sisyphus.
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Chapter 9

Summary and Conclusions

In the Introduction we introduced posed the following research question:

General Research QuestionCan we automate the release of application
updates in order to realize continuous delivery? This question is asked in
the context of heterogeneous component-based software product lines.

More specifically this thesis addressed this question by elaborating on three central
enablers for continuous delivery: techniques for automating configuration, integration
and delivery in the context of heterogeneous component-based product lines. Below
we summarize each part and present conclusions on how specific research questions
have been addressed.

9.1 Configuration

Automating Consistent Configuration Continuous delivery requires that users can
configure released product variants according to their specific needs, without human
intervention from the vendor side. To realize this in the context of component-based
development we addressed the following research question:

Q.1 Can we formally ensure consistent configuration of components and their com-
positions?

Configuration consists of selecting the desired set of features for a certain software
component and subsequently instantiating it. In order to automate configuration our
techniques must satisfy the following subsidiary requirements:

• Configuration interfaces must be specified abstractly and formally so that auto-
matic tool-support can be leveraged for checking such interfaces and validating
selections of features.

• For every valid set of features, selected by an application engineer or a user, the
required product variant must be instantiated. In other words: features must map
to solution space variation points that will have to be automatically bound after
the configuration task has completed.
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In the context of this thesis these requirements have to be realized in the setting of
component-based product lines. Since every component theoretically represents a
product in its own, the configuration interfaces are specified at the level of the com-
ponent. This raises the question as to how the consistency of configuration interfaces
relates to the compositional structure of the product variant eventually delivered to the
requesting user. Additionally it is not clear how the selection of certain features in-
fluences the configuration of dependency components or even the composition of the
components itself.

Chapter 2 introduced a formalization of component-level configuration interfaces.
These configuration interfaces, based on a textual variant of feature diagrams [105],
were given an logic-based semantics which provides the means for automatically en-
suring that users only make consistent selections of features. The configuration in-
terfaces were then related to component dependencies in such a way that consistent
configuration did not violate the dependency relations between individual components.

Software configuration interfaces often capture exponentially large configuration
spaces. This makes scalable techniques for checking such interface asine qua non
for continuous delivery. The techniques of Chapter 2 exploit Binary Decision Dia-
grams (BDDs) [16] in order to make such large search spaces manageable. BDDs
are very well researched and are heavily used in model-checking. In the context of
model-checking they are applied at (state) spaces much larger than are required for
configuration. Hence, BDDs provide a viable way for implementing the consistency
checking of configuration interfaces.

Automating Product Instantiation If customers can configure product variants in
a consistent fashion without any manual vendor intervention, it is then necessary that
the actual configuration is enacted in the artifacts of the product variant itself. In other
words, the selected features have to becomebound. This is the subject of the second
chapter in this thesis, Chapter 3. The specific research question for this chapter is:

Q.2 Can abstract configurations be mapped to compositions of sets of software com-
ponents at the programming level?

Binding in this case is enacted through mapping selected features to certain software
artifacts (e.g., libraries, executables, classes etc.) and then using the dependencies
between those artifacts to determine the set of artifacts that constitutes the completely
configured system.

The model introduced in Chapter 2 is generalized in Chapter 3 in which sets of con-
figuration interfaces, in the form of feature descriptions, are mapped to arbitrary soft-
ware artifacts which obey some kind of, implementation defined, dependency graph.
As a consequence, selecting a feature thus always induces the inclusion of certain soft-
ware artifacts including their transitive dependencies.

The mapping of features to artifacts is specified by the vendor beforehand and al-
lows complex combinations of features and artifacts. For instance, it is possible to
specify thatiff featurea andb are enabled, then both artifactsX andY are to be in-
cluded. However, if onlya is selected, then the only artifact should beZ. Arbitrarily
complex combinations are possible. At the same time, the model-checking techniques
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of Chapter 2 can still be used to ensure that feature selection is done consistently and
to verify that every valid configuration leads to a valid artifact composition.

9.2 Integration & Delivery

The chapters in the first part of this thesis addressed automatic configuration and in-
stantiation of component-based product populations. The second part, however, leaves
configuration for what it is and adds the dimension of time. Software is in constant
evolution, and from the perspective of continuous delivery this entails that there should
be a way to continuously release these new versions. This part focused on two aspects.
First, techniques are presented for extending the practice of continuous integration to
a practice of continuous release. Secondly, we investigated how this can be done effi-
ciently. The contributions in these two areas are summarized below.

From Continuous Integration to Continuous Release If a software product is to be
delivered to users in a continuous fashion this software product has to be made avail-
able to users first. This process is calledrelease. The second part of this thesis deals
with this process in the context of component-based development. The first research
question addressed is:

Q.3 Can the practice of continuous integration be extended to a practice of continuous
release and delivery?

Continuous integration entails that a software system is built and tested from scratch,
after every change to the sources. Most continuous integration systems (e.g., CruiseC-
ontrol [90]) merely publish the results of this process in the form of a web site. Ex-
tending this process to a process of continuous release, however, leads to additional
requirements. Software releases should exhibit two important properties: they should
be immutable and they should be traceable. The first property states that a release
should never change after it is made available to users. One can only createnewre-
leases. The second property requires that releases can always be traced back to the
originating sources. This is important for accurately diagnosing problems encountered
in the field. Without traceability no bug could reliably be reproduced.

Chapter 4 introduces the basic model underlying the Sisyphus continuous integra-
tion and release tool [103] and its implementation has been discussed in more detail
in Chapter 8. Sisyphus automatically creates releases that satisfy the aforementioned
properties. Moreover, it achieves this in the context of component-based development.
Releases are identified with integration builds in a layer on top of the version control
system. The identity of the release derives from the identity of all the sources of all the
components that participated in the corresponding integration build. As a consequence,
a change in the sources always induces a new release. Release information (bill of ma-
terials) are maintained in a database so that any released configuration can accurately
be reproduced.

The different parts of a software product during development have to be put to-
gether before release. This process is calledintegrationand is crucial for the release
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and delivery of component-based systems. Since we aim for continuous delivery, a
practice of continuous integration [39] is of particular value here.

Continuous integration consists of building (i.e. compiling, linking, etc.) and
testing (automated unit and integration tests) the complete system, ideally after ev-
ery change to the sources. This is a process that can be easily automated, and many
continuous integration tools exist that perform this task1.

If an integration fails, it should be top priority to “fix the build”, because without a
successfully integrated system, you have no “working version”, and hence you cannot
ship. Continuous integration is about rapid feedback on the evolving state of a software
system. It provides a kind of serialization of changes so that every change is integrated
in isolation. Postponing integration leads to those changes to interact in unpredictable
ways thus creating a situation of “integration hell” where strange bugs start to sur-
face that originate from theinteractionbetween subsystems and are consequently very
hard to track down. Because of the imperative of serializing changes, the development
process stalls if the build fails. Changes queue up without developers obtaining any
feedback, hence heading for integration hell.

Sisyphus operates by monitoring a set of (Subversion) repositories. Every time
there is a change to one of the components managed by any of the repositories, the
component in question is built and tested. If the build succeeds, Sisyphus proceeds by
building all components that depend on the changed component. This way, Sisyphus
implementsincrementalcontinuous integration and this saves a lot of time. Only com-
ponents affected by a change in a repository are rebuilt, otherwise earlier build results
(binaries, libraries etc.) are reused and thus shared among integrations.

Build sharing is shown in Figure 9.1. The figure depicts three integration cycles
(identified by the number in the upper left orner of each column). The product that is
being integrated in each of these cycles is identified with the top-level component,
pandora , which represents the pretty-printing subsystem of the ASF+SDF Meta-
Environment [93]. Thepandora component has a single dependency indicated by the
single edge going out from thepandora node. The graph in each column represents
how the components have been build in this cycle: each node represents a component
revision (revision numbers are however not shown).

The first cycle, 22, shows that all components transitively required bypandora
have been built. However, in the next cycle, number 23, there were no changes to any
of the components belowpt-support . There were, however,at leastchanges in
the pt-support component. Hence, Sisyphus only builds the components above
and includingpt-support because all those components are affected by changes
in pt-support . During the builds of those components the build results (binaries,
libraries etc.) of unaffected dependencies are reused from cycle 22. Similarly, in the
third cycle, a change did occur in the sources oferror-support : builds of lower
components are reused, higher components are rebuilt. Note that build results of the
first cycle are reusedagain in this case.

Sisyphus, however, is not only a continuous integration system but also a contin-
uous release system. The tool accurately maintains how a certain component (which

1See http://damagecontrol.codehaus.org/Continuous+Integration+Server+
Feature+Matrix for an extensive overview of systems.

http://damagecontrol.codehaus.org/Continuous+Integration+Server+Feature+Matrix
http://damagecontrol.codehaus.org/Continuous+Integration+Server+Feature+Matrix
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Figure 9.1: Three integrations of thepandora component of the ASF+SDF Meta-
Environment

version using which versions of its dependencies) has been built. In fact, Figure 9.1
has been automatically derived from Sisyphus’ database, and in effect represents the
BOMs for three subsequent releases ofpandora . The Web front-end of the tool uses
the knowledge in the database to automatically generate a release package for every
successful build that the back-end has performed, for every component and its closure.

Optimizing Continuous Integration for Delivery In order to maximize opportu-
nities for delivery, we must ensure that integration is executed efficiently (since it is
the precondition for release). Executing builds that do not lead to new releases are a
waste of valuable resources; other, relevant changes may have been checked in, in the
meantime. This requirement led to the following research question:

Q.4 Can we increase the frequency of delivery in the context of such a continuous
release practice?

In this thesis Chapters 5 and 6 address this question. In Chapter 5 the Sisyphus model
of continuous integration and release is extended with a backtracking feature that mit-
igates the effects of build failures. Normally, a build failure would stall the integration
process; it makes no sense to try and build components against dependencies the builds
of which have failed. Backtracking eliminates this propagation of failure by always
building a component to a set of successfully built dependencies (if such a set exists),
even if such a set is not the most recent one. This way some bleeding-edgeness is
traded for increased feedback and release opportunity.

The chapter introduces two forms of backtracking: simple backtracking and true
backtracking. The first form has been in operation for quite some time. Historic results
from the Sisyphus database indicate that the stalling impact of build failures has indeed
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been eliminated almost completely. However, simple backtracking is not optimal with
respect to up-to-detentes: it misses changes. True backtracking is designed to solve
this problem. However, since it has been added to Sisyphus only recently, no empirical
data is available for validation yet.

Chapter 6 explores incremental system integration strategies in the context of a
large-scale C/C++ based industrial system. In this case, the system is decomposed
in individual components with explicit interfaces. Both interfaces and components
(calledbodies) have independent version histories. A subsystem consists of both an
interface and a body and may import several interfaces; these are the dependencies of
the subsystem. A subsystem is furthermore the responsibility of a single team.

When the system goes into integration, the build results of thelocal builds of each
team are reused. However, each of these builds may have been executed under differ-
ent assumptions with respect to the versions of interfaces that have been used. One
subsystem build might have used version 1.2 of a certain interface, whereas another
build used version 1.3 of the same interface. If the individual subsystems are put to-
gether to go into testing (this constitutes integration in this case), such differences in
team assumptions surface as version conflicts. One way of resolving such conflicts is
requesting rebuilds using the right interface versions. However, such rebuilds can take
a lot of resources and effort, so simply rebuilding every subsystem that is in conflict is
not an optimal solution.

Chapter 6 introduces thebuild penaltymetric in order to compute the minimum
set of rebuilds that is required to resolve all conflicts. Moreover, it elaborates on how
existing SCM tooling can be extended to explicitly manage the notion of interface
compatibility in order to prevent rebuilds at all when two conflicting interface versions
turn out to be compatible. An empirical investigation of past integrations showed that
the application of minimal build penalty as a way for assessing integration conflicts
would have save considerable (re)build effort. Build penalty conceptually relies on a
precise formalization of bill of material (BOM), which is positioned as an important—
often implicitly used—concept in software engineering.

In addition to introducing, formalizing and evaluating build penalty, the chapter
elaborates on how the notion of interface compatibility can be made a first-class SCM
citizen in order to prevent even more rebuilds. If the changes between two interface
baselines are compatible, a version conflict does not constitute areal conflict and no
rebuild is required. We concluded by tentatively describing the requirements for ex-
tending SCM tooling with the notion of subsystem dependency and interface compati-
bility.

Efficiently Updating User Configurations The final contribution of this thesis con-
sists of an efficient technique to deliver composite releases (releases ofclosures) to
actual users. It provides an answer to the final research question:

Q.5 Can we realize the delivery of release packages in an efficient way?

The Sisyphus continuous integration and release system developed in Part III publishes
releases for every component closure after every change on a website. In order to install
such releases users still have to download and install each version manually. This is
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negative incentive for updating to the most recent version in a continuous fashion. This
problem is addressed in the last chapter of this thesis, Chapter 7.

Binary change set composition is a technique to efficiently and safely update user
configurations to new releases published by Sisyphus. For this to work, all build results
of each component build that Sisyphus executes are stored in Subversion [19]. Subver-
sion is a VCS that basically implements a versioned file system. By storing the build
results of two subsequent builds of the same component at the same location of the
versioned file system, these results are stored differentially, just like source files usu-
ally are stored by any VCS. The first advantage of this is that keeping all build artifacts
requires far less storage, because subsequent builds usually only differ just slightly.

For each component version in the closure that corresponds to a release published
by Sisyphus, the build artifacts are put in a single directory in the version file system
of Subversion byshallow copying. Copying in Subversion thus is similar to symbolic
linking in Unix: it is an atomic operation that requires only constant space. The result is
a path in the Subversion repository that “contains” (= references) all files in the closure
of a release.

For Subversion clients—programs that access Subversion repositories—there is no
difference between a shallowly copied file and an ordinary file that has been checked
in. This means that clients can check out the path (possibly over the Internet) con-
taining the files of the closure just like any other repository path. Checking out such
path thus is a way to deliver the closure to a user. The user will obtain exactly the
files belonging to the release in a single directory on the local file system. More inter-
estingly, Subversion has a feature to update such a local copy to arbitrary paths in the
repository in constant time; this feature is calledswitchinga local copy. Since every
build corresponds to a release, and every release has an associated closure, and finally
every closure is stored at a single path in a Subversion repository, users can upgrade
(and downgrade) with a single Subversion command, in constant time. Moreover, since
Subversion stores only the difference between two versions, switching a working copy
involves transferring just the change sets between two releases which makes this a very
efficient operation. Of course, users should not be required to operate Subversion, but
the interface for upgrading and downgrading has now become so simple that it can
be easily implemented as part of the software product itself, which ultimately leads to
continuously self-updating software.
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Summary

Software vendors release new versions of their products, and users install them. This
process is calledsoftware delivery. In this dissertation I present several techniques that
represent steps towards the simplification and automation of this process. The tech-
niques are presented in the context of heterogeneous, component-based software prod-
uct lines. This means that a software vendor releases multiple variants of a software
product that are based on a shared set of components. Furthermore, these components
may evolve in their own tempo and are often implemented using different programming
languages.

Automation of the software delivery process is particularly relevant when a soft-
ware vendor aims atfrequentlyreleasing new versions. Release preparation is a time
consuming and error-prone process: the software must be built from its sources in
such a way that all dependencies between different components are satisfied. The build
results should then be put together in a format such that users may install the new
version. It is clear that if there are many components, many dependencies and many
product variants, automation can lead to large cost savings.

Frequent releases complicate the process at the user’s side too. Installing a new
version can be quite an intimidating task. Moreover, manually installing a new version
every time it becomes available can be tedious and error-prone. The user process of
moving from one version to a newer one is calledsoftware updating. This process
benefits from automation too.

Thus, there are two sides to the software delivery process. On the one hand, soft-
ware vendors would like to release new versions on a frequent basis. The costs in order
to achieve this should be minimal. Users, on the other hand, would like to be able to
install such new versions without too many manual steps and without running the risk
of ending up in an inconsistent situation.

In this dissertation I assume that software vendors would like to release software in
a continuousfashion. This means that a new version is released preferably after every
change to the software. The techniques for automating the software delivery process
are motivated from this perspective. Before I discuss the specific contributions of this
thesis, it is instructive to indicate why continuous delivery is desirable in the first place.
Again, this question can be answered from two perspectives, the developer perspective
and the user perspective.

Developers constantly modify the sources of the software at certain locations (e.g.,
files). One way to find out about the global effects of such modifications, is to build
and test the software; this process is calledintegration. If the software cannot be built
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or if certain tests fail, this indicates that an error was introduced since the previous
(supposedly successful) integration. It is important that modifications are integrated as
soon as they become available. This can be seen as follows. Suppose that a developer
modifies a single module since the latest integration. This modification is subsequently
integrated and a failing build is the result. It is clear now that the cause of the failure
will probably be in that very module. This is valuable information, since it means that
developers can look in this module first in order to solve the problem. If, on the other
hand, integration takes place much later, and multiple modifications are integrated at
the same time, diagnosing the problem will be much harder. In addition to the multi-
plicity of changes that may be the cause of the problem, also theinteractionbetween
the changes can be a possible cause. Two seemingly independent modifications in
possibly distant modules may unexpectedly lead to a failing build or test. Experience
shows that such errors are very hard to track down and correct. This is the reason that
continuousintegration is abest practicein software development.

The motivation for continuous delivery is similar. Whereas continuous integration
is about the immediate feedback regarding the effect of a modification, continuous
delivery is aimed to shorten the feedback loop between users and developer. Such
feedback is exemplified bybug reportsand requests for enhancement. Immediate user
feedback can be as valuable as the feedback that the process of continuous integra-
tion provides. Feedback that is more immediate means more immediate measures and
eventually a user that is more content.

For a software vendor, being able to improve the product faster, and getting these
improvements to users in the same pace, has positive effect on the quality and function-
ality of the product. This being said, it nevertheless entails that the update from an old
version to a newer version should be as invisible as possible, since the frequent release
of versions means that the changesper release are rather small on average. It should
at all times be prevented that the effort it costs to install a new version outweighs the
actual improvement in the product.

Now that I have sketched the background of this dissertation, it is time to ask the
question what is needed in order to automate the release and update processes. In this
work I have concentrated on three aspects of the software delivery process: configura-
tion, integration and release. Below I briefly introduce each concept and describe the
contributions of this thesis in that area.

Software vendors following the product family approach to software development
do not release a single product, but a set of productvariants. Often these product vari-
ants are constructed using a shared set of software components. Configuration can then
be defined as the instantiation of the desired variant by selecting certain features of the
product. The first part of this dissertation presents techniques to ensure that no incon-
sistent features selections are made during the configuration process. This is possible
by formalizing a feature description language that is used to elicit variability in product
families. I have reformulated these feature descriptions in the context of component-
based software development and performed formal analyses on them. Finally, I discuss
how consistent feature selections can be used to derive the set of required software
artifacts to obtain the desired product variant.

In the second part I present techniques to automate and optimize the processes of
integration and release. These techniques have been implemented as part of the proto-
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type tool Sisyphus. Sisyphus performs component-based integration in an incremental
fashion in order to shorten the feedback loop between integration and developer. If a
component has not been modified since the last integration, Sisyphus will not rebuild
this component, instead it will use earlier integration results. On average this reduces
the duration of an integration cycle and as a result developers are notified of problems
much earlier.

A second technique aimed at improving the feedback provided by the integration
process is presented as “backtracking continuous integration”. This means that when
the integration of a certain component fails, but some other (dependent) component
requires the results of this component, Sisyphus searches in the integration history
of the failed component to find the most recent successful integration. As a result the
(dependent) components may still build and test successfully, even though one required
component does not pass the integration test.

Continuous integration is not the only functionality Sisyphus provides. It can also
be used for the continuous release of component-based software (for which continuous
integration is a precondition). Every release, however, should be traceable to the source
code files that were used to create it. For instance, when a user reports a problem,
the exact version of the user’s installation should be known in order to reproduce the
problem. It is therefore essential to maintain accurate records of which versions of
which files were used to create the release. Sisyphus achieves this by storing all exact
version numbers of all components in a database. Using this information it is possible
to generate release packages based on integration results.

Another reason why it is important to know the exact version a particular user has
installed, can be found in the way updates are sent over the Internet. Because we know
exactly which version will be replaced by the new version, it is possible to send the
difference between the two versions instead of the complete newer version. As a side-
effect, this speeds up the update at the user side, thus contributing to the invisibility of
the update process. In the last part of my thesis I describe how such differential updates
can be realized for applications consisting of sets of heterogeneous, binary components.
The required infrastructure at the client side can be incorporated in the application
itself. In combination with the continuous releases of Sisyphus this ultimately leads to
a form ofself-updating software.
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Samenvatting

Softwareproducenten brengen nieuwe versies uit van hun producten en gebruikers in-
stalleren ze. Dit proces wordt “uitleveren van software” (software delivery) genoemd.
Deze dissertatie presenteert een aantal technieken die kunnen helpen bij het vereen-
voudigen en automatiseren van dit proces. De technieken worden gepresenteerd in
de context van heterogene, componentgebaseerde families van softwareproducten. Dit
houdt in dat een softwareproducent meerdere varianten van een softwareproduct ont-
wikkelt, gebaseerd oṕeén verzameling gemeenschappelijke componenten die in hun
eigen tempo evolueren en mogelijk geı̈mplementeerd zijn in verschillende program-
meertalen.

Automatisering van het uitleveringsproces is met name relevant wanneer een soft-
wareproducent zich richt op hetfrequentuitleveren van nieuwe versies (releases). Het
voorbereiden van een release is een tijdrovend en foutgevoelig proces: de software
moet uit de broncode gegenereerd worden (het “bouwen” van de software) op zo’n ma-
nier dat alle afhankelijkheden van de componenten onderling opgelost zijn, en dit alles
moet worden samengevoegd in een formaat waarmee de gebruiker de nieuwe versie kan
installeren. Als er veel componenten, veel afhankelijkheden, en veel productvarianten
onderhouden worden dan is duidelijk dat automatisering een grote kostenbesparing kan
opleveren.

Ook voor de gebruiker zitten er haken en ogen aan frequente uitlevering van soft-
ware. Het installeren van een nieuwe versie is vaak geen sinecure. Bovendien is het
steeds weer handmatig installeren van nieuwe versies vervelend en foutgevoelig. Van
een oude versie overgaan op een nieuwe versie van een softwareproduct heetsoftware
updating. Ook hier is automatisering gewenst.

Er zijn dus twee kanten aan het uitleveringsproces. Aan de ene kant wil de pro-
ducent op frequente basis een nieuwe versie beschikbaar stellen. De kosten hiervan
zouden zo laag mogelijk moeten zijn. Aan de andere kant zal de gebruiker deze nieuwe
versie willen installeren zonder dat er teveel handelingen aan te pas komen en zonder
dat hij een verhoogd risico loopt dat de software niet meer werkt na de update.

In deze dissertatie ben ik uitgegaan van de wens totcontinueuitlevering; dat wil
zeggen, dat er liefst naelkewijziging in de software een nieuwe versie naar de ge-
bruiker verstuurd wordt. De technieken voor het automatiseren van het uitleveren van
software zijn vanuit dit perspectief gemotiveerd. Voordat ik echter concreet inga op de
specifieke bijdragen van dit proefschrift, is het belangrijk om eerst aan te geven waar-
om continue uitlevering eigenlijk wenselijk is. Deze vraag kun je opnieuw van twee
kanten bekijken, vanuit het perspectief van de ontwikkelaars en het perspectief van de
gebruikers.
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Ontwikkelaars brengen constant wijzigingen aan op bepaalde plaatsen in software.
Een manier om te weten te komen wat het globale effect is van die wijzigingen, is
het bouwen en testen van de software; dit proces wordtintegratiegenoemd. Als de
software niet gebouwd kan worden of wanneer bepaalde tests een negatief resultaat
geven, is dat een indicatie dat er iets mis is sinds de vorige integratie. Het is hier
essentieel dat wijzigingen geı̈ntegreerd wordenzodraze beschikbaar zijn. Dit is als
volgt in te zien. Stel dat een programmeuréén bepaalde module wijzigt sinds de laatste
integratie. Deze wijziging wordt vervolgens geı̈ntegreerd met de rest van het systeem,
en het bouwen faalt (een “failing build”). Het is nu duidelijk dat de oorzaak van dit
falen hoogstwaarschijnlijk in die betreffende module zit. Dat is waardevolle informatie,
want het betekent dat ontwikkelaars dáár als eerste kunnen kijken om het probleem
op te lossen. Als echter de integratie pas veel later plaatsvindt, en er dus nietéén
enkele wijziging gëıntegreerd wordt, is het diagnosticeren van een falende build veel
moeilijker. Niet alleen zijn er nu meerdere wijzigingen die de oorzaak kunnen zijn van
het probleem, maar ook huninteractie: twee wijzigingen in uiteenliggende modules
kunnen onverwacht tot een fout leiden. De praktijk wijst uit dat zulke fouten heel
moeilijk te vinden en te corrigeren zijn. Het is daarom dat continue integratie een “best
practice” in softwareontwikkeling is.

Voor continueuitleveringis een soortgelijk argument aan te voeren. Draait continue
integratie om de onmiddelijke terugkoppeling omtrent het effect van een wijziging,—
bij continue uitlevering gaat het om terugkoppeling die een bepaalde groep gebruikers
geeft. Hierbij valt vooral te denken aan foutrapportages (“bug reports”). Ook hier is
het waardevol om snel te vernemen van de problemen en wensen die een gebruiker
heeft. Snellere terugkoppeling betekent sneller handelen en uiteindelijk een tevredener
gebruiker.

Als de softwareproducent sneller in staat is verbeteringen door te voeren, en in
staat is die wijzigingen ook zo snel mogelijk aan de gebruiker beschikbaar te stellen,
dan heeft dit een positief effect op de kwaliteit en functionaliteit van het product. Dit
gezegd zijnde, betekent dit wel dat het updaten van een oude naar een nieuwe versie
wel zo onzichtbaar mogelijk moet zijn; frequente uitlevering van nieuwe versies houdt
namelijk ook in dat de wijzigingen per release relatief klein zijn. Dat het installeren
van een nieuwe versie meer werk kost dan de verbetering in het product rechtvaardigt,
moet ten allen tijden voorkomen worden.

Nu ik de achtergrond van deze dissertatie geschetst heb, is het tijd om de vraag te
stellen wat er nodig is om het release en update process te automatiseren. Ik heb me in
dit werk geconcentreerd op het automatiseren van drie aspecten van software delivery:
configuratie, integratie en uitlevering. Hieronder introduceer ik elk van deze begrippen
en beschrijf in het kort de bijdragen van dit werk.

In de context van een productfamilie wordt er niet slechtséén enkel product uitgele-
verd, maar verschillende productvariantengebaseerd op dezelfde verzameling compo-
nenten. Configuratie is dan gedefinieerd als het instantiëren van de wenselijke variant
door bepaalde kenmerken (features) van een softwareproduct te selecteren. Het eerste
deel van deze dissertatie behandelt technieken om te zorgen dat er in het configuratie-
proces geen inconsistente keuzes gemaakt kunnen worden. Dit is mogelijk door middel
van een formalizering van featurebeschrijvingen die gebruikt worden om configuratie-
ruimtes van productfamilies inzichtelijk te maken. Ik heb deze featurebeschrijvingen
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geherformuleerd in de context van componentgeoriënteerde softwareontwikkeling en
daar formele analyses op losgelaten. Tenslotte behandel ik hoe op basis van een be-
paalde selectie van features een productvariant afgeleid kan worden.

In het tweede deel komen technieken aan bod om de integratie- en uitleverings-
processen te automatiseren en optimalizeren. Deze technieken zijn onderdeel van het
prototype systeem Sisyphus. Met als doel de terugkoppelingslus tussen integratie en
ontwikkelaar te verkorten, voert Sisyphus de integratie incrementeel uit: als een com-
ponent geen wijzigingen heeft dan worden eerdere integratieresultaten opnieuw ge-
bruikt. Hierdoor duurt een integratiecyclus door de bank genomen minder lang, met
als gevolg dat ontwikkelaars eerder de effecten van hun wijzigingen kunnen waarne-
men.

Een tweede techniek die de informatieve waarde van integratie vergroot presenteer
ik onder de naambacktracking(letterlijk “terugtreden”). Dit betekent dat wanneer de
integratie van een bepaalde component mislukt, maar deze resultaten nodig zijn voor
de integratie van een ander component, Sisyphus op zoek gaat naar de in het verleden
meest recent geslaagde integratie van de vereiste component. Dit betekent dat ondanks
het feit datéén bepaalde component niet door de integratie heen komt, dit geen reden
hoeft te zijn dat wijzigingen in een andere (daarvan afhankelijke) componentóók niet
door integratie heen komt. Zonder backtracking zou hetüberhaupt niet mogelijk zijn
de wijzigingen in afhankelijke componenten te integreren.

Sisyphus is niet alleen een systeem voor continue integratie, het kan ook gebruikt
worden voor de continue uitlevering van componentgebaseerde softwaresystemen. Con-
tinue integratie is hier een vereiste voor. In feite zijn in Sisyphus de voordelen van
continue integratie gecombineerd met de voordelen voor continue release. Continue
integratie alleen is echter niet genoeg. Omdat een release traceerbaar moet zijn naar de
originele broncode is het belangrijk dat accurate versieinformatie bijgehouden wordt
over wat er in een release belandt. Dit is bijvoorbeeld essentieel wanneer een gebruiker
een probleem rapporteert: om het probleem te reproduceren moet bij de ontwikkelaars
bekend zijn welke versies van welke componenten bij die gebruiker geı̈nstalleerd zijn.
Dit soort meta-data wordt ook wel debill of materials (BOM) genoemd. Sisyphus
zorgt hiervoor door de integratieresultaten van alle componenten in het systeem met
exacte versienummers op te slaan in een databank. Dit maakt het mogelijk om uit de
integratieresultaten automatisch releases te genereren.

Een andere reden waarom het belangrijk is te weten welke versie reeds geı̈nstalleerd
is bij de gebruiker is de manier waarop updates verstuurd worden. Tegenwoordig ge-
beurt het updaten van software voornamelijk via het Internet. De gebruiker krijgt een
nieuwe versie van het product die vervolgens de oude versie zal vervangen. Accurate
versieinformatie maakt het mogelijk om een nieuwe versie efficiënter naar de gebruiker
te sturen, en wel door niet elke versie opnieuw, in zijn geheel, op te sturen, maar alleen
het verschil tussen de geı̈nstalleerde en de nieuwe versie. Dit is belangrijk omdat een
snelle, efficïente manier van updaten bijdraagt aan de onzichtbaarheid ervan. In het
laatste deel van mijn dissertatie beschrijf ik hoe dit eenvoudig gerealiseerd kan worden
voor applicaties bestaande uit verzamelingen van heterogene, binaire componenten. De
infrastructuur die hiervoor nodig is aan de kant van de gebruiker kan geı̈ncorporeerd
worden in de applicatie zelf. Gecombineerd met de continue uitlevering van Sisyphus
leidt dit, met minimale kosten voor zowel gebruiker als ontwikkelaar, tot een vorm van
self-updating software.
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