895 research outputs found

    Memristors using solution-based IGZO nanoparticles

    Get PDF
    Solution-based indium-gallium-zinc oldde (IGZO) nanoparticles deposited by spin coating have been investigated as a resistive switching layer in metal-insulator-metal structures for nonvolatile memory applications. Optimized devices show a bipolar resistive switching behavior, low programming voltages of +/- 1 V, on/off ratios higher than 10, high endurance, and a retention time of up to 104 s. The better performing devices were achieved with annealing temperatures of 200 degrees C and using asymmetric electrode materials of titanium and silver. The physics behind the improved switching properties of the devices is discussed in terms of the oxygen deficiency of IGZO. Temperature analysis of the conductance states revealed a nonmetallic filamentary conduction. The presented devices are potential candidates for the integration of memory functionality into low-cost System-on-Panel technology.National Funds through FCT - Portuguese Foundation for Science and Technology [UID/CTM/50025/2013, SFRH/BDP/99136/2013]; FEDER [POCI-01-0145-FEDER-007688]info:eu-repo/semantics/publishedVersio

    Solution-based IGZO nanoparticles memristor

    Get PDF
    This work aims to characterize Indium-Gallium-Zinc-Oxide nanoparticles (IGZOnp) as a resistive switching matrix in metal-insulator-metal (MIM) structures for memristor application. IGZOnp was produced by low cost solution-based process and deposited by spin-coating technique. Several top and bottom electrodes combinations, including IZO, Pt, Au, Ti, Ag were investigated to evaluate memory performance, yield and switching properties. The effect of ambient and annealing temperature using 350 ºC and 200 ºC was also analysed in order to get more insight into resistive switching mechanism. The Ag/IGZOnp/Ti memristor structure annealed at 200 ºC exhibits the best results with a large yield. The device shows a self-compliant bipolar resistive switching behavior. The switching event is achieved by the set/reset voltages of -1 V/+1 V respectively with an operating window of 10, and it can be programmed for more than 100 endurance cycles. The retention time of on and off-states is up to 104 s. The obtained results suggest that Ag/IGZOnp/Ti structure could be applied in system on a panel (SoP) as a viable device

    Oxide Memristive Devices

    Get PDF
    Resistive switching in metal oxide materials has recently renewed the interest of many researchers due to the many application in non-volatile memory and neuromorphic computing. A memristor or a memristive device in general, is a device behaving as nonlinear resistor with memory which depends on the amount of charges that passes through it. A novel idea of combining the physical resistive switching phenomenon and the circuit-theoretic formalism of memristors was proposed in 2008. The physical mechanism on how resistive switching occurs is still under debate. A physical understanding of the switching phenomenon is of much importance in order to tailor specific properties for memory applications. To investigate the resistive switching in oxide materials, memristive devices were fabricated starting from materials processing: low-pressure chemical vapor deposition of ZnO nanowires (NWs), low-temperature atomic layer deposition (ALD) of TiO2 thin films and micro-pulse ALD of Fe2O3 thin films. The distinct geometry of ZnO NWs makes it possible to investigate the effect of the electrode material, surface states and compliance to the memristive properties. A simpler method of fabricating TiO2-based devices was explored using low-temperature atomic layer deposition. This approach is very promising for device application using photoresist and polymeric substrates without thermal degradation during and after device fabrication. ALD of pure phase Fe2O3 thin films was demonstrated using cyclic micro-pulses. Based on the performance of the fabricated devices, the oxide materials under this study have promising properties for the next-generation memory devices
    • …
    corecore