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ABSTRACT 

RESISTIVE SWITCHING CHARACTERISTICS OF 
NANOSTRUCTURED AND SOLUTION-PROCESSED COMPLEX 

OXIDE ASSEMBLIES  
 

MAY 2020 
 

ZIMU ZHOU 
 

B.S., SHANGHAI DIANJI UNIVERSITY 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Advisor: Professor Stephen S. Nonnenmann 
 

 

Miniaturization of conventional nonvolatile (NVM) memory devices is 

rapidly approaching the physical limitations of the constituent materials. An 

emerging random access memory (RAM), nanoscale resistive RAM (RRAM), has 

the potential to replace conventional nonvolatile memory and could foster novel 

type of computing due to its fast switching speed, high scalability, and low power 

consumption. RRAM, or memristors, represent a class of two terminal devices 

comprising an insulating layer, such as a metal oxide, sandwiched between two 

terminal electrodes that exhibits two or more distinct resistance states that depend 

on the history of the applied bias. While the sudden resistance reduction into a 

conductive state in metal oxide insulators has been known for almost 50 years, the 

fundamental resistive switching mechanism is a complex phenomenon that is still 

long-debated, complex process. Further improvements to existing memristor 

performance require a complete understanding of memristive properties under 

various operation conditions. Additional technical issues also remain, such as the 
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development of facile, low-cost fabrication methods as an alternative to expensive, 

ultra-high vacuum (UHV) deposition methods. 

This collection of work explores resistive switching within metal oxide-

based memristive material assemblies by analyzing the fundamental physical 

insulating material properties. Chapter 3 aims to translate the utility and simplicity 

of the highly ordered anodic aluminum oxide (AAO) template structure to 

complex, yet more functional (memristive) materials. Functional oxides 

possessing ordered, scalable nanoporous arrays and nanocapacitor arrays over a 

large area is of interest to both the fields of next-generation electronics and energy 

storing/harvesting devices. Here their switching performance will be evaluated 

using conductive atomic force microscopy (C-AFM). Chapter 4 demonstrates a 

convective self-assembly fabrication method that effectively enables the synthesis 

of a low-cost solution processed memristor comprising binary oxide and 

perovskite ABO3 nanocrystals of varying diameter. Chapter 5 systematically 

compares the influence of inter-nanoparticle distance on the threshold switching 

SET voltage of hafnium oxide (HfO2) memristors. Utilizing shorter phosphonic 

acid ligands with higher binding affinity on the nanocrystal surface enabled a 

record-low SET voltage to be achieved. Chapter 6 extends the scope to the fine 

tuning of solution processed memristors with two types of perovskites 

nanocrystals. The primary advantage of nanocrystal memristors is the ability to 

draw from additional degrees of freedom by tuning the constituent nanocrystal 

material properties. Recent advancement of solution phase techniques enables a 

high degree of controllability over the nanocrystal size and structure. Thus, this 
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work found in this dissertation aims to understand and decouple the effects of the 

geometric size and substitutional nanocrystal parameters on resistive switching.  
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 

 

1.1 Motivation and Background 

 

In 1959, Richard Feynman gave the famous lecture “ There's Plenty of Room 

at the Bottom: An Invitation to Enter a New Field of Physics” at the annual meeting 

of American Physical Society (APS).[1] He proposed manipulating and controlling 

matter “on a small scale” – atomic scale. Although the talk did not draw too much 

attention in 1960s and 1970s, researchers considered its significance in catalyzing 

the development of nanotechnology as a nascent field in 1980s and 1990s. As we 

are approaching the physical limit of Moore’s Law,[2] emerging memories show 

great promise on next-generation non-volatile memory (NVM) devices.   

Modern computer and portable electronic device processing capability is 

heavily reliant on memories. The well-known computer memory hierarchy is 

mainly comprising of three memory components: cache, main memory and 

storage memory.[3] For over three decades, the mainstream memory 

technologies are flash, dynamic random-access memory (DRAM) and static 

random-access memory (SRAM).[4] The working principles behind these 

memory technologies are all based on charge storage mechanism. With the rapid 

development of high-density and low-power-consumption memories, 

conventional charge-storage memory technologies quickly approach the limit of 

device miniaturization, when device lateral size shrinks down to 10 nm and below 
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because of the difficulty of retaining enough electrons in one single cell.[5] The 

inevitable leaking of electric charge will result in performance degradation and 

system reliability. In this context, intense researches have been focusing on 

emerging memories with low operating voltage (<1 V), long retention time (>10 

years), fast read/write speed (< ns) and most importantly, exceptional scalability 

(<10 nm).[6] 

Fortunately, there are many materials that exhibit robust hysteresis 

response to external electrical stimulation such as resistance, polarization and 

magnetization. Several types of emerging memories based on different working 

principles have been proposed to address this bottleneck.  Examples are 

ferroelectric RAM (FRAM)[7,8], magnetic RAM (MRAM)[9,10], phase-change 

RAM (PRAM)[11,12], resistance RAM (ReRAM or RRAM)[13,14], molecular 

switching memories/computing[15,16] and DNA memories.[17] Nevertheless, 

among them, FRAM, MRAM, PRAM and RRAM are typically considered as the 

emerging memories due to the current development and industrial acceptance.  

FRAM memory, well-known its extremely high endurance and low power-

consumption, stores the signal ’0’ and ‘1’ by switching ferroelectric polarization 

between two distinguishable states.[18] MRAM switches the direction of 

magnetic moment, is of great interests in more extreme working conditions such 

as military use and aerospace applications.[9] Though both FRAM and MRAM 

have been on the market for more than 10 years, they only share a small portion 

in industry due to the difficulty of down scaling.[5] PRAM, sometimes referred as 

PCRAM (Phase-Change RAM), is typically made of chalcogenide materials. Data 

storage is based on thermally induced material phase change between crystalline 
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and amorphous[19], which causes resistance and reflectivity change of the 

material.[20] RRAM, also known as memristors, got its name since it is a resistor 

which “remembers” the amount of current that last passed through by exhibiting 

different resistance states.  The concept was first proposed by Chua in 1971 as the 

fourth basic circuit element alongside capacitor, resistor and inductor since the 

behavior of memristor cannot be described my any other combinations of already 

known circuits elements.[21,22] With demonstrated lower programming voltage, 

faster read/write speed and remarkable scalability, RRAM is expected to replace 

existing NOR flash storage[6] or even NAND (NOT-AND) flash storage[23]. 

Memristor cells typically possess a metal-insulator-metal (MIM) structure 

comprising an insulating oxide sandwiched between two metal electrodes (top 

and bottom electrodes) with two or more distinct resistance states as the binary 

numbers of 0 and 1, constituting a conventional two-terminal structure devices 

with tunable electrical resistance upon external bias.[24] This reversible and 

nonvolatile resistance switching process between high resistance state (HRS) and 

low resistance state (LRS) is known as resistive switching (RS). 

 

1.2  Remaining Challenges and Goals 

 

Recent advancement in nanotechnology has enabled the current RRAM 

device scalability down to nanometer regime in last two decades. However, several 

challenges still remain to be addressed for the future high-performance devices: 

1. Conventional top-down and ultra-high vacuum (UHV) deposition 

methods can achieve atomic level control fabrication but suffer from low 
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overall productivity. Due to the expensive fabrication equipment and 

relatively small working area, these high-cost approaches have limited 

potentials in the battle of next-generation memory devices[25]. Cost-

efficient and facile fabrication methods are necessary in order to 

revolutionize the market. 

2. The development of manufacturing method of integrating memory 

devices and circuits onto flexible and soft substrate is urgently required 

for wearable or printable electronic devices.[26] The study of NVM 

devices stretchability are still largely remained blank as most 

conventional MIM structure device materials are made of brittle 

ceramics. To solve this issue, the device with robust mechanical property 

and sufficient flexibility is required. 

3. Although our technology has already achieved material atomic level 

manipulation, the precise nanometer resolution reproduction over a 

large area – mesoscale materials, is still a demanding process. The use 

of a template-based and self-ordered porous structure, anodic 

aluminum oxide (AAO), is an ideal master material for translating its 

own ordered nanostructure to those multifunctional materials which are 

difficult to pattern by traditional methods. 

 

1.3  Dissertation Outline 

 

Chapter 1 introduces the overall background, motivation and the remained 

challenges of the RRAM device. Chapter 2 presents a literature review of resistive 
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switching in detail, including classification of resistive switching and conductive 

filament formation mechanism. The most recent progress of RRAM devices, 

including the ultra-low energy consumption, fast-switching, high endurance and 

long retention devices are also reviewed. The discussion includes a thorough 

background knowledge of basic scanning probe microscopy (SPM) and modified 

variants such as conductive atomic force microscopy (C-AFM). The chapter also 

covers the current challenges and research motivations of future RRAM devices in 

the last.  

Chapter 3 reviews the current progress of different approaches to synthesize 

ordered porous multi-component complex materials over a large scale. Starting 

with a brief background and survey with anodic aluminum oxide (AAO), one of the 

most used nanoporous templates, the chapter extends the scope to the direct 

anodization of more functional transition-metal binary oxides templates. The 

focus then shifts to the recent developments of porous complex functional 

materials templates, such as carbides, nitrides and perovskites (ABO3) oxides 

fabrication utilizing AAO as master template, which would be extremely difficult 

to pattern over a large scale by conventional lithographic techniques. Highly 

ordered resistive switching HfO2 nanocapacitors and TiO2 nanoporous arrays are 

synthesized utilizing template assisted method as examples. 

Starting from Chapter 4, studies involving solution-processed memristors 

comprising quasi-0D metal oxide nanoparticles are introduced. Chapter 4 

introduces the fabrication of quasi-0D nanoparticles and solution-processed 

memristor. Two excellent previous studies regarding solution-processed 

memristor from our group have also been summarized. These pioneering studies 
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inspire my research motivations to further investigate low-cost but high-

performance memristor devices.  

Chapter 5 continues the storyline on solution-processed memristor, 

focusing on reducing RRAM device resistive switching operating voltage by 

making shorter ligand nanoparticle assemblies in order to decrease device overall 

energy consumption. A record-low switching voltage of solution-processed 

memristor has been achieved utilizing HfO2 nanoparticles capped with 2-

ethylhexyl phosphonic acid. The relationship between switching voltage and ligand 

length is also confirmed.  

Chapter 6 is a comprehensive study of the nanoparticle size effect and 

substitutional effect on RRAM device switching voltage. By comparing the 

different sizes BaZrO3 and SrZrO3 nanoparticles capped with same phosphonic 

acid ligand, the trend between resistive switching voltage and nanoparticle size has 

been observed. By comparing the same size BaZrO3 and SrZrO3 nanoparticles, the 

effect of perovskite oxides substitutional effect on resistive switching is revealed. 

Through a series of systematic comparison experiments, we propose materials 

parameters including nanoparticle size, surface defects and geometric packing 

density, which are neglected in many studies but exhibit significant effect on the 

resistive switching performance of nanocrystal assemblies. 
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CHAPTER 2 

MEMRISTOR FUNDAMENTALS 

 

2.1 Basics of Resistive Switching 

 

Resistive switching (RS) is a reversable nonvolatile phenomenon which 

changes resistance between a high resistance state (HRS) and low resistance state 

(LRS) based on the history of the applied external bias or current pulsing. This 

effect allows the fabrication of a new type of random access memory (RAM) device 

-- resistance random access memory (ReRAM or RRAM)[13], a promising 

candidate of next-generation electronic memory device competing with other new 

materials including ferroelectric random access memory (FeRAM)[27], 

magnetoresistive RAM (MRAM)[9] and phase-change RAM (PRAM)[11]. In 

resistive switching, the as-prepared memory cell usually needs to be activated by 

applying high voltage/current as initialization step (electroforming), which leads 

to the dielectric soft breakdown and results in a large decrease of the resistance. 

This electrochemical process creates a conductive path which ultimately connects 

top and bottom electrode. Subsequently, a reversible and controllable change in 

resistance between low resistance (LRS/ON state) and high resistance (HRS/OFF 

state) can be achieved by applying electric field that exceeds a threshold value 

(Vthreshold). The resistance switching from HRS to LRS is defined as ‘set process’ and 

switching from LRS to HRS is ‘reset process’. Thus, one can define four different 

resistance states of one memristor cell: 1). as-fabricated state; 2). as-electroformed 

state; 3). HRS and 4). LRS. In general, the as-fabricated state has a higher 
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resistance comparing to HRS[28] while as-electroformed state is comparable to 

LRS[29]. The operating voltage of a memristor is usually denoted as VSET and 

VRESET. Another term used to quantitively determine the performance of a 

memristor is the ON/OFF ratio defined as ROFF/RON. 

 

2.2 Classification of Resistive Switching 

 

On the basis of I-V characteristics, resistive switching behavior can be 

classified into two categories: unipolar switching (URS), bipolar switching (BRS), 

threshold switching (TS) and complementary switching (CRS).[30–33] Unipolar 

switching only depends on the amplitude of in the input (voltage/current) and has 

been found in many binary transitional oxides such as NiO[34,35], ZnO[36], 

HfO2[37] and TiO2[38]. Bipolar switching shows directional resistive switching 

depending on polarity and amplitude.[39] This type of resistive switching can also 

be observed in HfO2[37,40], TiO2[41,42] and perovskite oxides such as BaTiO3 

(BTO)[43,44], SrZrO3 (SZO)[45,46] and BaZrO3 (BZO)[47]. Unlike unipolar and 

bipolar switching, threshold switching is a reversible volatile process where upon 

the application of an applied bias generates current flow and a significant amount 

of internal Joule heating[48,49]. In fact, it is not uncommon that two or even three 

types of resistive switching behaviors coexist in one type of material. This is due to 

the conductive filament formation and rupture is largely determined by Joule 

heating induced by the electrical current.[35,41,50] Complementary resistive 

switching is a relatively new concept first proposed by Eike Linn and Rainer Waser 

in 2010.[31] A typical CRS cell is comprising of two anti-serial connected BRS 
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memory cells. By merging two resistive cells into one structure, sneak path 

problem is greatly resolved and hence the device power consumption is drastically 

reduced. In 2012, single resistive cell CRS based on tantalum oxide was reported 

by Yang et al., which is a promising candidate for large-scale crossbar resistive 

arrays[51].  

 

2.3 Resistive Switching Mechanisms 

 

The exact origin of resistive switching behavior is a long-debated issue and 

it depends on electrode material, insulator material and operating methods. Most 

resistive switching behavior can be categorized into anion migration, cation 

migration and thermochemical reaction[52]. 

Figure 2-1 (A) Typical unipolar resistive switching and (B) bipolar 
resistive switching. (C) Schematics of virgin state memristor (D). As-

formed state(E). LRS and (F). HRS 
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In anion migration type resistive switching, the charged non-stoichiometric 

ions (e.g. oxygen vacancies or oxygen ions) will migrate inside of the insulator as 

driven by external voltage. Therefore, there will be a local valence variation at the 

insulator/electrode interface due to the accumulation and redistribution of 

charged ions.[53] In n-type storage materials, the insulator already has excessive 

positive charged oxygen vacancies (VO), as illustrated in Figure 3a. The positively 

charged oxygen vacancies will move along the electrical field direction and 

accumulate at the bottom cathode/insulator interface (Figure 3b). The conductive 

filament is subsequently formed since the accumulated oxygen vacancies are 

extending to the top electrode (Figure 3c). Therefore, the formed cone shape 

conductive filament has the thinnest spot near top electrode. Most of the Joule 

heating will be generated at the thinnest part and conductive filament will rupture 

Figure 2-2 (a)-(d) Charged ion behaviors in n-type storage materials; 
(e)-(h) charged ion behaviors in p-type storage materials. 

 



 

11 

near the top electrode under reverse voltage (Figure 3d).[54] On the contrary, in 

p-type storage materials, the filament rupture region is on the opposite electrode. 

The more prevalent negatively charged oxygen ions (Figure 3e) will migrate and 

accumulate to the anode/insulator interface and thus generating cation vacancies 

nearby (Figure 3f). The accumulated cation vacancies are hole carriers in p-type 

semiconductors served as top electrode extension reaching to the bottom electrode 

(Figure 3g). Therefore, the conductive filament is breaking at the vicinity of bottom 

electrode under the reversed electrical field (Figure 3h). Anion-type memristors 

always result in a valance change within the storage materials and are categorized 

as valance change memories (VCM).[55] This type of resistive switching behavior 

is usually observed in non-stoichiometric metal oxides such as HfOx[56], 

TaOx[57,58], BaTiO3-x[59] and nitrides such as NiN[60]. 

Another category is cation-migration memristors, often referred as 

electrochemical metallization memory (ECM). In ECM cells, one side of the 

electrode is usually an electrochemically active metal such as Ag[61] and Cu[62]. 

The other electrode is electrochemically inert such as Pt and W. The redox and 

electrochemical dissolution process take place under high electrical stress. The 

produced cation ions such as Ag+ and Cu2+ migrate along electrical field direction 

to the cathode acting as conductive bridge and form conductive filament, which 

short circuits top and bottom electrode switching device from HRS to LRS. Thus, 

ECM memory is also referred as conductive bridging RAMs (CBRAMs)[63]. 

Conductive filament is ruptured because of the Joule heating induced by negative 

bias. Intensive researches have been carried out to investigate cation-migration 

resistive switching, including the use of Ag[64], Al[65], Ti[66], Zn[67] and so on. 
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Thermochemical based RRAM often exhibits unipolar and threshold 

switching behavior. In non-polar switching, the RESET process is not due to the 

retraction of migrated charged ions. The Joule heating can greatly increase the 

temperature in the conductive filament necking area and thus rupture the filament. 

Because Joule heating is induced by current, which is independent to voltage 

polarity, thermochemical reactions usually take place in non-polar switching.[13] 

Alternatively, unipolar and threshold switching can be triggered in bipolar 

switching RRAM cells by introducing higher Joule heating in the process. There 

are three common ways to control Joule heat in resistive switching process: i). 

Current compliance.[50,68] For example, Razi et al. observed transition from 

bipolar switching to threshold switching behavior in Ag/BTO/Ag by increasing the 

current compliance to 10-4 A in a 142 nm thin film structure.[68] ii). Ambient 

temperature. The thermal bi-stability of the conductive filament and also be 

observed by conducting I-V cycles in both low and high temperature.[35] iii). Metal 

electrode thickness. In addition, unipolar and threshold switching can also be 

induced by varying electrode thickness and hence controls the Joule heat 

dissipation.[34] 

 

2.4 RRAM Device Performance and Challenges 

 

The critical parameters to evaluate the performance of a RRAM device are 

endurance, stability, read/write speed, retention time and energy 

consumption.[69] Lee et at. reported a TaOx based asymmetric passive switching 

device with extremely high endurance and stability up to 1012  cycles.[32] Sub-
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nanosecond resistive switching was achieved by voltage cycling at 20 GHz on 

tantalum oxide memristor.[70] Gao group demonstrated Ag/P3HT:PCBM/ITO 

device has minimal storage degradation up to 9 months in room temperature and 

over 10 years by extrapolating the experimental data.[64] Ultra-low energy 

consumption RRAM with less than 0.1 pJ per bit and more than 5×107 cycles 

endurance has also been realized in Hf/HfOx RRAM device.[71] All of these 

amazing records were achieved within recent 10 years and each one of the 

characteristic is far superior than current FLASH memories. However, integrating 

all exciting aspects into one single system is still a challenge.  

Theoretically speaking, RRAM devices have excellent scalability since the 

minimum device active area is defined as one single conductive filament (CF). 

Depending on different resistive switching mechanisms, the area of one single CF 

is often a few atomic units.[72] However, instead of forming one main filament, 

CF-based resistive switching tends to form multiple branched filaments.[67,73] 

The thinner and weaker filaments introduce intense operational parameters 

variations such as operating/switching voltages, ON/OFF ratio and hence cause 

further device performance issues such as retention and endurance problems.[74] 

In CF-based resistive switching, the formation and rupture of CF does not depend 

on both electrodes. This phenomenon is verified by conducting I-V curves on same 

type of devices with different electrode sizes.[75] Studies focusing on conductive 

filament real-time observation have been carried out utilizing transmission 

electron microscopy (TEM) and conductive atomic force microscopy (C- 

AFM).[76–78] 
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2.5 Atomic Force Microscopy (AFM) Characterization 

 

As the miniaturization of devices goes down to nanoscale range, atomic 

force microscopy is the optimal option for memristor local characterization. An 

atomic force microscope (AFM) consists of a piezoelectric actuator, a micro-

machined probe with an extremely sharp tip (1~30 nm) at the end, a laser, a 

position sensitive, four-quadrant photodiode, and a feedback loop control system, 

as illustrated in Figure 4a.[79]  There are three common surface imaging modes: 

contact mode, tapping mode and non-contact mode. The general AFM working 

principle is to first align the laser pointing on the back side of the cantilever, so the 

laser signal is reflecting to the photodiode as input. During scanning, cantilever 

deflection (contact mode) or cantilever oscillation amplitude (tapping mode and 

non-contact mode) is set to a fixed setpoint depending on tip-sample interaction. 

The AFM probe deflection or oscillation amplitude will change as the probe scans 

the sample and encounters height variations on sample surface and hence leads 

laser point movement on photodiode due to the laser beam deflection on cantilever. 

The AFM feedback loop will constantly adjust the piezoelectric actuator height to 

keep the setpoint constant. The movement of the actuator is then recorded as 

sample microstructure dimension data. The phase and amplitude image in tapping 

and non-contact mode provides extra sample property information such as 

mechanical property and viscoelasticity.[80] 

Because of the multi-functional AFM probe, AFM provides additional 

capabilities over conventional electron microscopy techniques such as scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM). For 
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example, magnetic force microscopy (MFM) is based on AFM technique scanning 

with a magnetized probe measuring sample magnetic field gradient.[81] Because 

of the ultra-shape tip and accurate force modulation, AFM is also largely used for 

ultra-thin sample nanoindentation for sample mechanical testing.[82,83] AFM 

also has a broad variations for electric property measurement with metalized probe 

including surface potential (Kelvin-Probe Force Microscopy)[84,85], electrostatic 

force microscopy (EFM)[86,87], piezo force microscopy (PFM)[88,89] and 

conductive atomic force microscopy (C-AFM).[90–92]  

Conductive-AFM (C-AFM) uses a conductive AFM probe (metal coated or 

N-doped silicon) as a movable electrode. In Asylum Research ORCATM C-AFM 

system, AFM samples stage serves as bottom electrode and applies bias while 

conducive probe is held grounded. In C-AFM mode, AFM operates in contact mode 

while biasing sample from bottom electrode. The current flows through conductive 

probe and then passes into amplifier as current signal output as the tip scans on 

sample. The surface topography and current mapping is thereby recorded 

simultaneously. The dual gain module uses two separate standard module and is 

capable of measuring current from ~ 1pA to 10μA. The major advantage of C-AFM 

over conventional probe station is its application in many nano-scale electronics 

due to its sharp conductive tip and accurate force.[93] For example, Walker et al. 

firstly demonstrated and measured the electrical conductivity of an 10 nm Archaeal 

protein nanowire by placing the probe with 1 nN force after calibration.[92] As the 

technology advances, C-AFM is becoming one of the major characterization tools 

for RRAM nano-scale devices.[94]  
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2.6 Summary 

 

This section covered the working principles and recent progress of RRAM 

devices. Virtually all recent studies utilize costly and time-consuming conventional 

ultra-high vacuum (UHV) deposition and lithographic patterning methods. A more 

cost-effective and efficient fabrication approach necessary for RRAM to standout 

in the competition of emerging memory. In addition, the rapid development of 

wearable and printable electronics market demands a flexible but robust device 

which would be difficult to processed by traditional top-down fabrication methods. 

Two different low-cost and facile methods for fabricating unique complex oxide 

nanostructures that exhibit promising functionality, including resistive switching 

will be demonstrated in subsequent chapters: 1). Nanoporous arrays using a 

modified top-down approach inspired by the production of anodic aluminum oxide 

(AAO); and 2) nanoscale assemblies comprising solution-processed binary oxide 

and perovskite oxide nanocrystals using a blade-assisted convective assembly 

approach. 

Figure 2-3 (a) Schematics of AFM. (b) Conductive-AFM illustration. In 
Asylum Research AFM system, sample bias is applied from bottom 

electrode and conductive probe is held grounded. 
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CHAPTER 3 

PRODUCING NANOPOROUS ARRAYS WITH FUNCTIONAL 

COMPLEX OXIDES 

 

3.1 Introduction 

 

The use of template-based synthetic processes has rapidly grown over the 

last two decades due to their relative simplicity compared to expensive lithographic 

approaches and effectiveness in producing scalable 1-D and 0-D nanostructure 

arrays. Porous membranes such as anodized metal oxide templates[95–97], 

mesoporous carbon[98], zeolites[99], polymer templates[100,101] and 

nanochannel arrays on glass[102] have been employed in biomedical, 

optoelectronic, and sensing applications. The majority of templates fabricated 

comprise binary metal oxides due to their high thermal stability, mechanical 

compliance, relative abundance, and facile fabrication method. Since the alumina 

self-organized mechanism was first reported by Keller more than 60 years ago, 

anodic aluminum oxide (AAO) received immediate interest as a means to 

synthesize nanoscale structures and devices[103,104]. During a single-step 

anodization, the pores develop randomly on the oxide surface, limiting their use as 

a template. The electrochemical oxidation of transition metals, including hafnium 

(Hf)[95,105], tantalum (Ta)[106–109] and titanium (Ti)[110–112], also produce a 

porous thin film structure on their surface. Older studies that achieved ordered 

nanostructures required time/cost intensive methods such as focused ion beam 

(FIB) milling, scanning probe scraping, or hard SiC/Si3N4 molding to produce a 
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pre-pattern step on the surface[113–115]. In the mid-1990s, Masuda and Fukuda 

overcame this challenge by pioneering a two-step anodization process in an acidic 

electrolyte that produced an aluminum oxide thin film which possessed a uniform 

nanoporous internal structure[104]. Unlike conventional lithographic processes, 

this inexpensive method enables scalable formation of a periodic pore network 

over a relatively large area by adjusting parameters such as applied voltage, 

temperature, and electrolyte selection. 

Here we review the latest advances in nanoporous templates that extend 

beyond anodic aluminum oxide templates to include nanostructured complex 

materials derivatives. This review begins with a brief survey of anodic aluminum 

oxide (AAO), the most commonly used nanoporous template for 1D and 2D 

nanomaterials fabrication. The scope of nanoporous templates is then extended to 

include transition metal oxides and alloy oxides. These metallic-derived templates 

use the same AAO anodization technique but possess more inherent functionality 

than a wide-gap insulator such as alumina. In the final portion of the review the 

focus shifts to highlighting recent developments of complex compound porous 

templates requiring the use of AAO reverse templates, a nanoporous template that 

mirrors the porous network of AAO yet comprise multicomponent, functional 

materials such as carbides, nitrides, and perovskite (ABO3) oxides. 

 

3.2 Anodic Aluminum Oxide (AAO) Fabrication and Its Applications 

 

High purity aluminum (>99.99%) is first annealed in inert atmosphere at 

500°C to release internal mechanical stress. The aluminum foil is degreased in 
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organic solution and then polished to obtain a clean and defect-free surface ready 

for first anodization. Anodizing voltage, type of electrolyte and temperature are the 

key factors affecting AAO membrane feature, such as pore diameter (Dpore), 

interpore distance (Dint) and oxide layer thickness.  Amongst three most used 

electrolytes, sulfuric acid shows best results in terms of pore structure and 

distribution, oxalic acid yields pores with moderate size and regularity, phosphoric 

acid gives largest but least uniform pores.[116] After the first anodization, the 

aluminum is exposed in the mixture of chromic and phosphoric acid solution at 

50°C. This chemical etching step selectively removes oxide layer without damaging 

aluminum substrate, leaves an ordered and textured surface for second 

anodization. 

To successfully form AAO, the second anodization is usually carried out 

under the same condition as the previous step. In some special cases, mostly for 

ultrathin AAO membrane fabrication, the second anodization condition varies in 

time or operating temperature to obtain membrane in desired thickness. Nielsch 

et al. reported 10% porosity is the optimum condition for self-ordering porous 

alumina structure due to the 1.2 volume expansion rom aluminum to alumina.[117] 

In order to increase porosity, immersing template in 5 wt % phosphoric acid at 

room temperature is a common post anodization process which further enlarges 

pore size without changing interpore distance. [118–120] Also, some other groups 

demonstrated a novel method to precisely reduce pore size by atomic layer 

deposition (ALD), which is well-known for uniformity and thickness control. [121–

123] By coating Al2O3 on the template surface, pore diameter can be narrowed 

down to 5 nm without bringing impurities to the sample.[124] 
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Figure 3-1 (A) commercially available high purity aluminum foil. (b) 
Removing organic contaminants by degreasing. (c) Removing surface 

aluminum oxide by electro-polishing. (d) First anodization forms 
irregular nanoporous structure. (e) Chemically dissolve unordered 

Al2O3 leaves ordered indentation on aluminum foil. (f) Second 
anodization generates highly ordered AAO nanostructure. 

    

The AAO fabrication process enables tailoring of pore diameter (Dpore), 

interpore distance (Dint) and oxide layer thickness by controlling parameters such 

as the anodizing voltage, temperature, and electrolyte type. For a two-step 

anodization, the high purity aluminum undergoes an initial anodization step 

followed by a chemical etching step (typically with chromic/phosphoric acid) that 

selectively removes the newly formed, yet irregularly patterned aluminum oxide 

layer without damaging the aluminum substrate, resulting in an ordered and 

textured surface available for a second anodization. This textured surface creates 

accurate pore growth positions during the second anodization since pore 

nucleation preferentially occurs at surface defects. The second anodization is 

usually carried out under the same condition as the first step. The duration of this 

second anodization process will control the final thickness of the AAO membrane. 

The AAO geometric structure is also adjustable by post-anodization processing. 
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Immersing the template in dilute phosphoric acid at room temperature enlarges 

the AAO pore size without changing the interpore distance.[118–120] Conversely, 

conformal Al2O3 coatings through atomic layer deposition (ALD), a method with 

high uniformity and thickness control,[121–123] is capable of narrowing the pore 

diameter down to 5 nm.[124] For more details concerning conventional AAO 

fabrication technique and its direct applications in nanomaterials, we suggest 

reading some excellent review articles on AAO fundamental principles, techniques 

and applications.[113,125–128]   

 

3.2.1 AAO Template Assisted Fabrication of Nanodots Arrays 

 

Aluminum anodization is a cost-effective, highly-controllable, and easily 

scalable process that produces an ordered array of vertical channels that have been 

used extensively for the fabrication and synthesis of nanostructures and devices 

ranging from 0-D (nanodots, nanoislands) to 1-D (nanowires, nanotubes). 

Ultrathin AAO templates, defined as those possessing an aspect ratio (pore depth 

to pore diameter ratio) of less than 10, can be separated from its host aluminum 

substrate and transferred to second, arbitrary (functional) substrate when 

reinforced with a polymer coating such as poly (methyl methacrylate) (PMMA) or 

polystyrene (PS) that assists with mechanical compliance. 

AAO-directed fabrication of ordered 40 nm Au nanodot arrays on a silicon 

substrate were among the first templated synthetic studies conducted in the late 

1990s.[129] This method circumvented the need for costly electron beam 

lithography, which typically suffers for low throughput due to its prolonged 
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exposure time. Other metals, such as Au, Ni, Co, and Fe, have also been deposited 

on a variety of substrates using this approach.[130,131] Recent studies that 

employed ultra-low aspect ratio membranes (1:2) have extended this approach to 

achieve nanoisland diameters down to 16 nm.[132] High-density nanoisland 

arrays have also be extensively studied as an ideal architecture for functional 

oxides, which exhibit remarkably different properties than conventional bulk 

materials. 

Ultrathin AAO template is a suitable candidate for aggressive fabrication 

condition since Al2O3 is a high temperature and chemical resistant material. This 

unique advantage enables the coexistence of ferroelectricity and resistive switching 

behavior on one individually addressable nanocapacitor. Liu group fabricated 60 

nm epitaxial BiFeO3 nanodots on Nb-SrTiO3 substrate using high temperature 

pulsed laser deposition (PLD) through ultrathin AAO template.[133] Interfacial 

based resistive switching performance can be greatly enhanced by surface charge 

redistribution induced by ferroelectric switching.[134] The pioneering work of Lee 

et al. reported on the ultrathin, template-directed fabrication of a versatile 

metal/oxide/metal (M-O-M) (Pt/PZT/Pt) nanoisland nanocapacitor structure 

deposited on MgO single crystal substrate .[135] The isolated pattern localized the 

electric field distribution, minimized the effective cross-talk between structures, 

and enabled each nanocapacitor to be individually addressable , thus the array 

exhibited an extremely high storage density (176 Gb inch-2).[135] Template-

directed fabrication of nanocapacitors comprising functional materials such as 

HfO2 and Ag2S (not shown), have been used to form nanoscale memristive cells, 

which show controllable resistive switching (RS) properties suitable for 
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nonvolatile memory applications.[121] The combination of highly tunable, scalable 

templates and thin film deposition creates large arrays of M-O-M nanocapacitors, 

thus becoming one of the most precise and convenient methods in nanomaterials 

test structure fabrication. Other studies deposited cobalt ferrite oxide (CFO) 

nanodots epitaxially through ultrathin, template-directed pulsed layer deposition 

(PLD). By tuning the anodization conditions, the magnetic behavior of nanodots 

(60-300 nm diameter and 60-500 nm interpore distance) were observed via 

magnetic force microscopy (MFM), with clusters comprising smaller diameter 

nanodots exhibiting dipole-dipole interactions of opposite phase and larger 

diameter nanodots possessing opposing phases within a single structure.[136] 

Our group also successfully fabricated individually addressable functional 

metal oxides functional nanodot arrays using ultra-thin AAO template assisted 

method.  Figure 3-2 (a) shows the M-I-M nanodots arrays fabrication process. A 

piece of polystyrene (PS) reinforced ultrathin AAO membrane (100 – 200 nm, 

TopMembrane, Shenzhen China) is first transferred to a metalized substrate with 

PS side facing up.  PS is subsequently dissolved by immersing the sample in 

acetone for 30 minutes. Metal oxide material is deposited by either RF sputtering 

or atomic layer deposition (ALD). Nanocapacitor top metal electrodes can be a 

metalized probe (typically Pt) or one additional step of metal deposition to yield 

ordered arrays of nanocapacitor arrays (Figures 3-2(b) and (c)). Figures 3-2 (d) 

and (e) show the C-AFM I-V spectroscopy response of 20 nm and 100 nm diameter 

nanocapacitors, respectively. The structures display countereightwise bipolar 

switching, characteristic of filamentary - type mechanisms. Comparison of 100 nm 
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and 20 nm diameter HfO2 nanocapacitors show that smaller nanocapacitors 

become more rectifying and exhibit a greater degree of asymmetry.  

 

3.2.2 AAO Template Assisted Fabrication 1-D Nanostructures 

 

Figure 3-2 (a) and (b), schematics of AAO templated assisted 
nanocapacitor fabrication. (c) SEM image of Pt/HfO2/Pt 

nanocapacitor with partially removed AAO template. (d) and 
(e), local I-V response of 20 nm and 100 nm HfO2 

nanocapacitor respectively 
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One dimensional nanostructure such as nanorods, nanowires, and 

nanotubes demonstrate enormous potential in the fields of magnetic, electronic, 

and optoelectronic devices. Nanorods possess an aspect ratio of less than 10, while 

nanowires are defined by an extremely high aspect ratio, usually exceeding 1000. 

The high degree of controllability of AAO dimensions, including accurate control 

of nanowire length and diameter, motivates the use of AAO-template-assisted 

approaches such as electrodeposition and sol-gel as attractive alternatives to 

multistep lithographic methods. 

Examples include high density nickel (Ni) nanowires arrays , which 

exhibited an increase in magnetic coercivity with decreasing Ni nanowire diameter 

and subsequently improved magnetic hardness.[137] Each nanowire was capable 

of being switched independently, thus producing a recording density up to 155 

Mbit/mm2 for Ni nanowire array, significantly higher than the density within 

currently available hard drives (5.74 Mbit/mm2).[127] One-dimensional 

nanostructures inherently possess high surface-to-volume ratios, motivating their 

use as next generation power source electrodes and microbatteries. Freestanding 

aluminum nanorod electrode arrays were produced by template-directed 

electrodeposition,[138] which were subsequently coated with a thin layer of 

titanium dioxide (TiO2) via atomic layer deposition (ALD), which resulted in an 

increase of the overall capacity by an order of magnitude and the stability for over 

50 charge-discharge cycles.[139]  

AAO templates also assist the synthesis of low melting point metals, 

semiconductors, and functional polymers nanowires by vacuum melting and 

solution wetting[140–145] Due to its inherently porous nature and 
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biocompatibility, AAO is also widely applied in biochemical fields such as drug 

delivery, tissue engineering and biocapsules.[146–149] 

 

3.3 Transitional Metal Oxides and Alloy Templates   

 

The enhanced surface area of template-fabricated 0-D and 1-D 

nanostructures motivates their use in gas sensing,[110,150] photovoltaic,[151] and 

water splitting[108,109,152,153] applications, among others. Over the past 20 

years attempts to extend template fabrication beyond Al2O3 to construct 

nanoporous networks in other functional (binary) metal oxides have progressed 

rapidly. Since the discovery of self-organized pores within TiO2 in 1999,[154] 

advanced anodization methods have been applied to a wide variety of transition 

metals. Unlike AAO, which comprises a continuous porous network, anodic 

titanium oxide (ATO) templates consists of individual nanotubes produced by a 

one-step anodization process (Figure 3-2a).[97] Annealing the amorphous, as-

grown ATO template converts it into its crystalline anatase form, which possesses 

Figure 3-3 (a). Typical ATO nanotube arrays from Ref 3, 2008 
Wiley-VCH; (b). Pd quantum dots deposited on ATO arrays 

from Ref 64, 2012 American Chemical Society.  
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a higher charge carrier mobility.[155] ATO nanotubes possess a large surface area 

and a short diffusion pathway, and thus attracts considerable interest as anodes in 

dye-sensitized solar cells (DSSCs), which have been extensively studied as an 

energy harvester due to their excellent light to electricity conversion 

efficiency.[111,112,156–158] The photocatalytic activity can be further enhanced 

through the deposition of noble metal nanoparticles over the nanotubular 

structure surface (Figure 3-2b).[159]  

Due to the relative easiness to manipulate the oxygen concentration, TiO2 is also a 

prototypical dielectric material for memristor research to reveal filament type 

resistive switching working mechanism due to the localized drift of oxygen 

vacancies.[160] In 2009, Hewlett-Packard a flexible solution processed Al-TiO2-Al 

memristor achieved less than 10 V operating voltage (relatively low power for 

flexible and ON/OFF ratio greater than 10,000.[161] The spin-coated so gel 

method was the first attempt making flexible memristive device. Though TiO2 

based memristor does not have the best overall performance as compared to the 

newly-invented memristive structure, it is one of the first and most extensively 

studied memristive material.[162] 

Tantalum pentoxide (Ta2O5) is a high- dielectric used in a wide range of 

applications such as dielectric layers for storage capacitors,[163] implant 

coatings,[106] as well as an efficient photocatalyst for water decomposition.[164] 

Anodization and annealing processes of high purity tantalum create a facile 

fabrication route for Ta2O5 semiconductor nanotube arrays. As one of the most 

stable transition metals, Ta-based Ta2O5 can withstand ultra-high temperatures 

without compromising its microstructure. Tantalum oxide drew much attention 
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recently in emerging memory field due to its extreme high endurance of cycles and 

uniform switching.  It is reported that engineered Ta2O5/ Ta2O5-x/ TaOX exhibit 

nearly unlimited endurance of 1011 cycles at 30 ns with highly uniform switching 

of bit error rate below 10-11.[165] Kim et al. also reported a self-limited mechanism 

enhancing the uniformity of both SET and RESET resistance with Ta2O5/ TaOX  

structure.[166] .[109]  

Due to the nature of self-organization, nanoporous binary oxide templates 

result from competing chemical dissolution and electrochemical formation 

processes.[126] Use of a single type of metal limits the geometric degrees of 

freedom and thus yield a hierarchically ordered structure. As shown by the various 

examples above, materials functionality is greatly enhanced by the multi-scale 

features of the nanoporous template. Such an approach motivated exploration into 

the synthesis of multicomponent oxides by the anodization of alloys. The 

anodization of Group VB and IVB valve metal alloys has two main advantages: 1) 

Biocompatibility. Transition metal alloys have been widely studied and used for 

implants due to their superior biocompatibility and corrosion resistance compared 

to their (individual) metallic constituents.[167–169] 2) Transition metal-like 

properties. Anodization ideally maintains balance between chemical dissolution 

and oxide formation. The chemical properties of transition metals minimize two 

major problems hindering common alloy anodization: i) different dissolution rates 

of the constituent elements and ii) varying reaction rates in different alloy phases. 

This unique feature ensures the uniformity of self-organization during anodization 

of binary oxides. 
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Yasuda demonstrated excellent structural flexibility and controllability of 

alloy oxides nanotube by tuning the zirconium titanate (ZT) nanotube arrays 

morphology (Figure 3-3a).[170,171] Pure zirconia nanotubes processed by 

conventional methods possessed a nominal diameter of 50 nm and a length of 17 

µm,[172] while pure titanium oxides nanotubes possessed a nominal diameter of 

100 nm and a length of 2.5 µm.[111] When anodizing a 50:50 wt% Ti-Zr alloy in 1M 

(NH4)SO4 + 0.5 wt% NH4F solution, the oxides matrix showed significantly higher 

controllability of the structure: the pore diameter ranged from 15 to 470 nm and 

the length up to 21 µm, depending on the anodization conditions. Anodization of 

the single-phase metal alloy Ti29Nb13Ta4.6Zr in a fluoride-based electrolyte 

produced a unique two-scale pore diameter (d = 32 nm; 55 nm) within a single 

oxide porous template (Figure 3-3b).[173] Auger electron spectroscopy (AES) 

determined that the tantalum oxide composition was increased in both 32 nm and 

55 nm nanotubes in comparison with other metal oxides throughout the alloy 

oxides layer, which proves the higher chemical dissolution rate of the other metal 

oxides. This coincides with the fact that Ta2O5 has the highest chemical stability 

Figure 3-4 (a). FE-SEM image of Ti-Zr alloy arrays with ~ 90 nm 
diameter and ~ 30 nm wall thickness, reproduced with permission 
from Ref 76, 2007 Wiley-OCH; (b). Alloy nanotubes broken off at 

different height levels from Ref 79, 2006 Wiley-VCH. 
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among all other transitional metal oxides, which means it has the lowest chemical 

dissolution rate.[107] The results demonstrate even subtle changes in alloy 

chemical composition can induce large variations in oxide formation, thus 

motivating new anodization processing directions for multi-scale porous template 

fabrication.  

 

3.4 Functional Reverse Template 

 

The well-studied effects of anodization conditions on sample morphology 

and geometry enables fine tuning of pore size, pore density and channel length of 

oxide templates. Routine production of pore diameters ranging from 20 nm to 500 

nm and aspect ratios from < 10 to 1000s yield a robust, versatile platform to 

explore size effects within nanoscale materials. The preceding sections highlighted 

three primary advantages of using oxides templates. 1) Template-directed 

nanostructure deposition: Due to their highly uniform, periodic porous structure, 

oxide templates enable top-down, size-controlled fabrication of electrochemically 

deposited or sputtered/evaporated metal and metal-oxide nanostructures. 2) 

Catalyst supports: Various catalytic processes are greatly enhanced due to the 

extremely large surface area provided by oxide templates. 3) Inexpensive, facile 

fabrication. Uniform nanoscale features are easily reproduced without using 

traditional expensive lithographic techniques. Applications utilizing AAO 

templates, however, are restricted by the limited, inherent functionality of alumina 

or other binary oxides. 
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From an application standpoint, developing 2D nanoporous arrays in 

complex oxides confer functional properties that extend beyond AAO templates to 

include ferroic behavior, defect-mediated memristive switching, and 

biocompatibility, among many others.  Due to their chemical stability fabrication 

of 2D templates comprising complex oxides and noble metals must use 

conventional methods such as lithography and nanoimprinting. These expensive, 

time-consuming techniques severely hinder the development and application of 

functional oxide templates. Thus, 2D functional material template fabrication 

requires new template-assisted methods to create ordered, nanoporous arrays. The 

so-called 2D anti-dot nanostructure remains one underexplored, yet viable option 

towards achieving these nanoporous arrays. Three major anti-dot array fabrication 

methods exist: 1) direct deposition; 2) plasma etching; and 3) reverse replica 

fabrication. 

 

3.4.1 Direct Deposition: Magnetic Storage Media 

 

Direct deposition uses the engineered AAO template of a chosen geometry 

and dimensions as the substrate for conventional deposition methods such as 

sputtering, atomic layer deposition (ALD) and thermal evaporation.[174–176] 

Well-developed deposition techniques are able to control the deposition thickness 

on the Angstrom (Å) level and thus preserve the original morphology of AAO 

template.[122,177] Porous magnetic structures have been extensively studied in 

the last decade due to their potential as ultra-high density magnetic storage media 

and the rich, fundamental physics underlying their operation.[178–180] As 
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compared to individual nanodots, anti-dot arrays generally display two advantages: 

i) superparamagnetism does not exist nor hinder the data-storage unit size since 

the storage device is a continuous film;[181] and ii) coercivity and remanence can 

be controlled by varying anti-dot pore size.[182] However, most studies utilize 

inefficient traditional patterning approaches such as block co-polymer templating 

and lithography. Expensive fabrication equipment, small deposition areas, and 

relatively large feature sizes (200 nm to 400 nm) all limit use of these techniques 

in producing next-generation anti-dot device arrays.[179,180] AAO templates 

represent a viable alternative due to easily tunable pore diameters below 50 nm. 

AAO-produced magnetic 2D nanostructures have displayed a storage density of 1 

Tb in-2,[183] motivating further miniaturizing of magnetic storage components 

and creating a competitive candidate system for future high-density magnetic data 

storage devices. 

While vacuum deposition techniques can routinely produce complex oxides 

thin films with other functionalities such as resistive switching and ferroelectricity, 

deposition of ultra-thin films on AAO surfaces to produce anti-dot arrays have 

been mostly limited to magnetic metals as the deposited thin film cannot be 

separated from the AAO template. This renders alumina, an electrical insulator, as 

a poor substrate for developing modern metal-insulator-metal (MIM) structured 

nanocapacitors. 
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3.4.2 Dry Etching: Multiferroic Bismuth Ferrite Anti-Dot Arrays 

 

Combining conventional AAO-directed fabrication with top-down ion 

etching methods allows the user to separate film fabrication from morphology 

modification, resulting in a more flexible operating parameter window while 

improving thin film quality. In this process a pre-engineered through-hole AAO 

serves as a nanostructured mask (Figure 3-4 a-i) as transferred on a desired 

substrate (Figure 3-4 a-ii) comprising a functional material, either a metal or metal 

oxide. Then ordered  nanohole arrays are fabricated by conventional dry etching 

processes such as ion milling, reactive ion etching (RIE) and plasma etching 

(Figure 3-4 a-iii, iv) [126,130,184–194] Due to its high tolerance to oxygen etching 

AAO makes an ideal material for high aspect ratio etching masks. In 1999, the 

Masuda group first translated the highly ordered nanochannel structures of AAO 

into III-V semiconductors (GaAs and InP) by using reactive beam etching 

(RBE)[191] (Figure 3-4 b). Their group also used oxygen plasma etching to form 

ordered diamond sub-100 nm anti-dot arrays over 1 cm2,[188] an area which 

would be extremely time-consuming to cover by traditional lithography methods 

(Figure 3-4 c). Nanoporous diamond thin films are promising candidates for future 

high performance nanocapacitors due to high charge per unit capacitance ratios 

that exceed those of graphitic carbons.[192] 
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Tian et al. extended this method to complex oxides field by synthesizing 

BiFeO3 (BFO) anti-dot arrays.[186] Here thin layers of SrRuO3 (SRO) and BiFeO3 

(BFO) were first grown epitaxially on SrTiO3 (STO) by pulsed layer deposition 

(PLD), then an ultra-thin (aspect ratio < 8) AAO membrane was then transferred 

to the substrate as a morphology modification mask. Subsequently, the as-

prepared sample was etched by an Ar+ ion beam followed by mechanical removal 

of the AAO. Variation in the etch duration produced different ordered 

nanostructure morphologies: nanorings (5 mins), anti-dots (10 mins, Figure 3-4 

d[186]), nanochains (20 mins), and nanodots (25 mins). This efficient, precise 

approach is also exploited in the fields of advanced optoelectronic devices,[193] 

photonic bandgap waveguides,[187] and anti-reflection coatings.[194] However, 

as AAO is also removed during the etching process, its pore size is continuously 

increasing while its thickness is decreasing, thus structural controllability is always 

Figure 3-5 (a) schematics of etching method procedure. 
Reproduced with permission from Ref 30, 2014 American Chemical 

Society; (b) AFM image of GaAs nanoporous thin film with 60 nm 
diameter pores from Ref. 191, 1999 IOP Publishing; (c) SEM image 

of diamond anti-dot arrays from Ref. 188, 2000 Wiley-VCH; (d) 
Topography of anti-dot BFO arrays. Reproduced with permission 

from Ref 186, 2016 IOP Publishing. 
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an issue. Overall proper balance between the AAO mask feature size, AAO 

thickness, and final feature size in the target oxide are all critical to successful anti-

dot formation. 

 

3.4.3 Negative Replica Method 

 

A negative replica template is a secondary mold with a nanopillar surface 

structure that mirrors the original AAO tunnel structure. Polymer solutions with 

lower surface energy than aluminum oxide tend to spontaneously wet the inner 

surface of the AAO channels.[105] Thus, high performance polymers are 

frequently chosen as the secondary mold material since they can be directly 

injected into template channels to form a negative replica. The desired complex 

oxide, nitride, or carbide is subsequently deposited evenly on the negative mold 

surface which forms the duplicate of the original AAO master porous structure. 

The final template with structures identical to the AAO master is then obtained by 

selectively removing the secondary mold. Masuda formed functional replica 

membranes of Pt[104], Au[104], Ni[195], and CdS[195] by injecting PMMA as a 

sacrificial secondary mold. Nanoporous polymeric replicas can also be obtained by 

using metallic secondary molds (Figure 3-5).[196,197] The thickness of metallic 

replicas is limited by the ability to form polymer secondary replicas with high 

aspect ratios. To address this limitation one innovative study electrochemically 

deposited the mold materials to the side of AAO instead of infiltrating the 

secondary mold into the AAO channels, thus providing sufficient mechanical 
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support to keep the PMMA nanopillars upright. The resulting Ni reverse template 

achieved a high aspect ratio of 20. 

The negative replica synthetic method is amenable to processing an array of 

commercially available high-performance polymers such as poly (ether- ether-

ketone) (PEEK) and poly(tetrafluoroethylene) (PTFE), which are extremely 

difficult to modify using conventional methods.[126] Pellets of the selected 

polymer are placed on the top of AAO template and simply melted to infiltrate the 

AAO pores. As such, virtually all polymer solutions with lower surface energy than 

aluminum oxide can serve as a negative replica material using the template wetting 

method. After removing AAO, the polymeric negative replica with reverse AAO 

nanostructure (positive nanopillars) is subsequently used as a mold to fabricate 

anti-dot arrays with complex materials (Figure 3-7a). The only disadvantage of this 

method is that reverse template nanostructures will aggregate into bundles and 

lose their order (Figure 3-7 inset) when its aspect ratio exceeds 5, due to strong 

Figure 3-6 Schematics of anti-dot arrays fabrication. Starting material 
is AAO templates coated with a thin conductive layer. (1) Secondary 

mold injection. Metal secondary mold can be electro-chemically 
deposited into channels while polymer mold spontaneously covers the 

channels. (2) free standing secondary mold is obtained by selective 
etching of AAO template. (3) Polymer/metal antidot arrays are 
formed by wetting or electro-chemical deposition respectively. 
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capillary forces between nanopillars.[198] For example, Martin et al. melted PEEK 

(aspect ratio < 6) , a highly chemically stable polymer into the original, engineered 

AAO template at 390°C, then selectively dissolved the aluminum substrate and 

AAO in an acidic solution of CuCl2 and NaOH 10 wt% respectively, without 

damaging PEEK nanorod.[198] The self-standing PEEK nanorod template was 

then taken as a mold for silicon nitride (SiNx) deposition and thermally removed 

at 600°C. The resulting SiNx template perfectly preserved the original AAO 

Figure 3-7 (a) AFM image of PEEK nanorod arrays and inset PEEK 
nanorods aggregate in bundles when aspect ratio exceeds 5; (b) 

AFM image of TiO2 nanoporous template synthesized by negative 
replica method; (c) Schematics of C-AFM testing on TiO2 anti-dot 

arrays; (d) Local I-V curve obtained on TiO2 arrays displays bipolar 
resistive switching behavior. 
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template nanoporous network structure. The SiNx template displayed many 

superior properties compared to the original AAO master template, including 

greater high temperature strength, abrasive resistance, and chemical inertness. 

Our group used the negative replica method to successfully fabricate a 70 nm pore 

size through-hole continuous TiO2 anti-dot array, where TiO2 was sputtered to 

PEEK nanorod arrays to form a nanoporous structure. The PEEK template was 

subsequently thermally removed to leave a free-standing TiO2 anti-dot array 

(Figure 3-7b). The as deposited nanoporous TiO2 anti-dot arrays were attached to 

high temperature resistant conductive carbon paste as substrate to retrain its 

structure during thermal annealing process (Figure 3-7c). The nanoporous TiO2 

anti-dot array shows bipolar resistive switching under conductive AFM (Figure 3-

7d).  This method demonstrates its ability to fabricate complex and functional anti-

dot arrays and considering the advances of vacuum thin film deposition techniques 

(sputtering, ALD, PLD), extending the negative replica sequence to materials 

beyond binary oxides. 

While the fabrication of the PEEK nanomold is costly and time-consuming, 

thermal removal of the final nanoporous template is destructive. To reduce the cost 

of the precursor wetting method, Martin et al. fabricated an ordered, 120 nm 

diameter nanopillar array of poly(tetrafluoroethylene) (PTFE) that extended over 

large (cm2) areas.[199] The PTFE negative replica was subsequently immersed in 

a 10 wt.% solution of poly(vinyl alcohol) (PVA), a well-known biocompatible 

material, and then dried in vacuum to form anti-dot arrays. Since the nanomold is 

not damaged during the process, the PTFE nanomold could be directly separated 

from the anti-dot template using tweezers and reused for preparing additional 
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templates, thus increasing throughput and cost-efficiency. Preserving the original 

ordered nanoporous structure after removing the AAO master template, however, 

is still a challenging step in template-directed replica synthesis. Also, while most 

high-performance polymeric materials are chemically robust, their low thermal 

stability restricts the overall processing temperature window, which is a significant 

issue as most complex oxides require high, elevated temperatures to produce the 

desired (and often functional) phase. Thus, an additional post annealing step is 

required to functionalize the as-deposited film, which could also potentially 

damage the nanoporous network. 

Another route towards non-destructive replication transferred the AAO 

nanoporous structure to a silica (SiO2) template.[200] Here an amine-modified 

resin was injected into the AAO channels and exposed to UV light (350-400 nm) 

to form cross-linked polyacrylate nanofibers inside the pores. The nanofiber arrays 

were then gently separated from the AAO template by attaching to a piston and 

lifted with a force around 0.4 N at a rate of 0.1 mm/min. The resulting negative 

polyacrylate replica array was covered with a sol-gel to form porous silica template, 

which was finally detached from the nanofiber arrays using tweezers. The as-

prepared nanofiber arrays perfectly replicated the AAO porous structure up to an 

aspect ratio of 10; higher aspect ratio structures (~ 30) showed the tendency to 

bend and agglomerate. This issue can potentially be solved by modifying the AAO 

template morphology or using higher-strength materials as the negative replica. 

This non-destructive method enables multiple duplicate templates from a single 

AAO template by recycling both the AAO template and its negative replica, which 

greatly reduces cost and labor of the entire process. 
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3.5 Closing Remarks 

 

Due to the nature of self-organization in nanopore formation, direct 

anodization is unable to produce an ordered porous structure in complex materials 

such as carbides, nitrides, or perovskite oxides. With the help of modern 

fabrication techniques, self-ordered nanoporous templates have been utilized to 

bridge the gap between anodized templates and patterned complex materials. 20 

nm and 100 nm diameter memristive HfO2 nanocapacitors are synthesized with 

the help of ultrathin AAO template and exhibit size effect. This chapter also 

surveyed a selection of direct anodization of binary metal oxides templates and 

templated assisted fabrication of functional porous templates using methods 

ranging from ion etching to reverse template replication. As an example, TiO2 

nanoporous arrays are fabricated AAO negative replica method using PEEK as a 

mold.  The obtained ATO template showed resistive switching behavior under C-

AFM I-V measurements. Continued improvement in deposition techniques and lab 

facilities will spawn future synthetic routes towards facile fabrication of complex 

material templates with flexible dimensions to potentially serve as matrices for 

advanced nanocomposites to be filled with complementary materials pairings to 

produce enhanced electrical, electrochemical, ferroic, biological, and 

optoelectronic properties and functionality. 
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CHAPTER 4 

SOLUTION-PROCESSED MEMRISTOR 

 

 

4.1 Zero-Dimensional Nanocrystals and Functionalization 

 

Resistive switching behavior has been observed in numerous materials 

including transitional metal oxides[40,41,201], nitrides[202] and complex metal 

oxides such as perovskites[88,203]. Most MIM memristors are 1D resistive 

switching materials such as binary oxide nanowires[204,205] ,individual 

perovskite nanotubes[206] and vertically aligned carbon nanotubes[207], or 2D 

thin films[208,209], which commonly evolve expensive top-down and UHV 

fabrication techniques. These conventional fabrication approaches have limited 

potentials on next-generation device due to its expensive fabrication equipment 

and relatively small deposition area[25]. A promising alternative is the zero-

dimensional nanocrystal (NC) solution-processed technique. Zero-dimensional 

(0D) nanostructures attracted much attentions over the last decade in the field of 

resistive switching[210–212]. For example, studies demonstrated solution-

processed 10 nm Ag2Se nanoparticle RRAM[213] device shows bipolar switching 

characteristics with low power consumption (< 1.5 V) and high reliability 

(retention > 105 cycles). Simon et al. synthesized 80-150 nm TiO2 nanoparticles 

showed both bipolar switching and complementary switching behavior[214]. 

Complementary resistive switching is a newly introduced state which exhibits high 

overall resistance which effectively suppresses leakage current[31]. While in 
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contrast, conventional atomic layer deposition (ALD) grown TiO2 layer only shows 

standard bipolar switching behavior under the same condition. However, studies 

and applications addressing quasi-zero-dimensional nanostructure are still scarce, 

mainly due to difficulties of patterning ordered architectures during fabrication, 

which is a prerequisite in modern memory devices.   

 

4.2 Synthesis of Nanocrystals 

 

Metal oxides nanocrystals in this study are synthesized via a microwave-

assisted solvothermal method, which is a popular chemical synthesis approach 

producing highly homogeneous and mono-dispersed nanoparticles. Solvothermal 

method usually grows single crystal nanocrystals under high temperature in 

organic solvents such as methanol[215], 1,4 butanol[216], toluene[217] within or 

on the surface of a substance.[218] The crystalline structure formation is 

performed in a sealed steel autoclave under supercritical pressure in order to 

achieve the temperature above solvent boiling point. Solvothermal approach 

enables the high controllability over nanoparticle shape, size, interparticle distance. 

An additional thermal treatment is necessary for the final product to ensure 

nanoparticle crystallinity.[219] Solvothermal method offers better overall 

crystalline quality as compared to widely used sol-gel method due to its amorphous 

nature.[217]  
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4.3 Fabrication of Solution-processed Memristor 

 

Various fabrication techniques have been developed which allows solution-

processed multi-component patterning including dip-pen nanolithography 

(DPN)[220–222], wet stamping[223] and spin coating[224]. However, these 

techniques have the drawbacks such as long deposition times, low controllability, 

or requiring complicated setups. Kim et al. proposed a facile and high-productive 

flow coating technique, which is a dynamic self-assembly method functionalizes 

nanoparticles by patterning monodisperse, highly crystalline inorganic zero-

dimensional nanocrystals into ordered structures over large areas[225–228].  In 

the flow coating process, a razor blade is held at a fixed height (usually < 0.5 mm) 

above a rigid substrate, which is affixed and moved in a ‘stop-and-go’ motion by a 

programmable nanopositioner. The NC solution (usually a few µl) is subsequently 

injected between razor blade and substrate using a micropipette. The solution 

remains confined between razor blade and substrate due to capillary forces. 

Nanoribbon height and width dimensions are mainly determined by 

nanopositioner stopping time (td), moving distance d and substrate moving speed 

v. Flow coating technique exhibits excellent controllability over nanoparticle 

assemblies at nanometer scale heights, micrometer scale width and flexible scale 

in length (depending on blade length and solution amount), which is a perfect 

candidate for functionalizing zero-dimensional complex oxides nanoparticles. 

 

4.4 Advantages of Solution-processed Memristor 
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Solution-processed RRAM device overcomes three major limitations that 

hindering the application of conventional vacuum-deposited devices: (1) 

Complicated fabrication process. All physical deposition methods require high 

vacuum and high temperature. Most modern vacuum deposition instruments also 

require clean room working environment. (2) Low productivity. Deposition rate is 

usually low due to the nature of vacuum deposition. (3) Inflexible. the brittle and 

rigid natures of ceramic films which greatly limit their application in next-

generation devices where flexibility is required, such as wearable electronics. 

Wang et al. firstly demonstrated the resistive switching behavior in 

nanoribbons comprising solution-processed strontium titanite nanocrystal 

(STONC) linked by oleic acid ligands, which exhibits up to 104 switching on/off 

ratio (HRS resistance/LRS resistance) and no obvious retention loss after 1000 

cycles[227]. One key advantage of STONC nanoribbon is the structure can be 

release into liquid and redeposit to an arbitrary substrate without losing its original 

structure and functionality (Figure 5a). Figure 5b shows the local I-V testing on 

one bent STONC nanoribbon deposited on Pd/PET substrate. The calculated strain 

is 3% induced by placing a steel rod underneath the ribbon. The collected I-V 

curves preserve the identical response and curve fitting, indicating the same 

conduction mechanism in the process. The mechanical reliability of nanoribbon 

shows substantial promise in the application of future flexible and printable 

electronic elements[26]. 

 

4.5 The Impact of Ligands in Solution-processed Memristors 

 



 

45 

In addition, Wang et al. also investigated the effect of ligand on the 

memristive behavior by local conductive testing after annealing the nanoribbons 

at 500◦C for 2 mins. As the annealing step removed the presence of ligands, the 

HRS conductive mechanism switched from trap-assisted tunneling (TAT) to the 

behavior of Fowler-Nordheim tunneling[229]. This interesting phenomenon 

confirms that ligands play an important role of reducing current, which might be 

a breakthrough for next-generation low power consumption memory devices. 

However, there are only a few studies realized and addressed this profound ligand-

mediated interparticle effect which concluded carrier mobilities decrease with 

increasing ligand length[230,231]. 

Subsequently, another work has been done determining resistive switching 

character of nanoribbon comprising hafnia (HfO2) nanocrystals with different 

organic capping layer, oleic acid (HfO2-O), dodecanoic acid (HfO2-D) and 

undecanoic acid (HfO2-U)[226]. To better evaluate the impact of ligand length on 

switching behavior, the interparticle distances have been estimated based on 

covalent chain length: HfO2-U (1.44 nm), HfO2-D (1.57 nm) and HfO2-O (2.2 nm). 

Figure 6 presents SET and RESET voltages for three HfO2 systems. It clearly shows 

that SET voltages increase with ligand length. RESET voltages exhibit similar 

relationship but with less dependence on ligand length. Since the experimental 

condition such as AFM tip, nanocrystal type and size are kept the same, we posit 

that resistive switching operating voltage increases with ligand length.  
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4.6 Summary  

 

In summary, I reviewed the recent studies functionalizing zero-dimensional 

nanocrystals utilizing solution-processed flow coating techniques to investigate 

the resistive switching properties. Most studies that have been done are limited to 

densely packed 1D and 2D nanostructures. Whereas the investigation of resistive 

switching mechanism between nanoparticles, particularly the effect of chemical 

ligands, is still in preliminary stage. Utilizing the cost-effective flow coating 

technique, previous studies demonstrated the possibilities of reveal the 

relationship between resistive switching operating voltage and chemical ligand 

length.  However, only three types of ligands capped in one particular oxide has 

been thoroughly studied. In-depth studies such as nanoparticle surface area size 

effect and structural effects are still waiting to be explored. 
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CHAPTER 5 

PHOSPHONIC ACID LIGANDS FOR NANOCRYSTAL SURFACE 

FUNCTIONALIZATION SOLUTION-PROCESSED MEMRISTORS 

 

5.1 Introduction 

 

Surface engineering of colloidal nanocrystals (NCs) is a prerequisite for 

advanced applications such as solar cells,[232,233] thermoelectrics,[234] field 

effect transistors,[235] smart windows,[236] superconductors,[237,238] 

catalysis,[239] and memristors.[226] Modern threshold memristive devices 

garner intense research interest due to their ability to emulate synaptic responses 

in neuromorphic computing and logic gate applications.[240] Threshold switching 

is a reversible volatile process where upon the application of an applied bias 

generates current flow and a significant amount of internal Joule heating,[54] 

which once above the metal-insulator-transition,[241,242] rapidly activates the 

device and maintains a low resistance state (LRS) until the voltage is removed and 

resets to an insulating high resistance state (HRS). Threshold logic memristors 

exhibit faster switching speeds, lower power consumption, higher scalability, and 

greater 3D stackability than standard complementary metal-oxide-semiconductor 

(CMOS) circuits, thus promoting further miniaturizing for next-generation 

neuromorphic computing components that extend beyond Moore’s Law. [2,243] 

These nascent computing applications require large crossbar device arrays to 

operate, where threshold selector devices are used to suppress sneak currents 

between neighboring cells.[244] 
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5.2 Motivations 

 

Memristors typically possess a metal-insulator-metal (MIM) structure 

comprising an insulating oxide sandwiched between two metal electrodes 

fabricated by top-down, ultra-high vacuum (UHV) thin film deposition processes. 

These conventional fabrication approaches are limited due to expensive 

fabrication equipment and small deposition areas.[25]  A burgeoning alternative 

is the deposition of monodisperse, highly crystalline inorganic nanocrystals using 

solution-processed flow coating,[228] a facile and cost-effective approach which 

enables controlled formation of thin-film transistors and highly scalable 

nanostructure arrays for future flexible large-area electronics.[245] In addition, 

conductive atomic force microscopy (C-AFM) has the ability to locally interrogate 

electrical properties across length scales (a few nanometers to 100 μm) relevant to 

both individual NCs and the nanoribbon assemblies. We used c-AFM analysis to 

show that operating parameters such as set/reset voltage and LRS/HRS ratios of 

the nanoribbons inversely scale with the length of the ligand used to stabilize the 

NCs in solution.  

Recent studies demonstrated tailorable resistive switching behavior within 

individual solution-processed comprising single-crystalline strontium titanate 

nanocubes (STONCs) upon transfer from the original hard substrate to metallized 

flexible polymeric substrate.[227] Subsequent studies showed that operating 

parameters such as set/reset voltage, and LRS/HRS ratios inversely scaled with 

increasing ligand length in solution-processed hafnium oxide (HfO2) 
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nanoribbons.[226] Since lower set/reset voltage means lower data read/write 

voltage and hence leads to lower overall device energy consumption, shorter 

ligands are always desired. However, ligands shorter than dodecanoic acid result 

in unstable dispersions, thereby restraining the minimum set voltage that could be 

used to switch the ribbons of NCs.[225] In general, phosphonic acids are more 

expensive and less commercialized. We chose phosphonic acid over previously 

used carboxylic acid because phosphonic acid have a much higher binding affinity, 

which enables us to stabilize shorter ligands on nanocrystal surface. It is reported 

that long-range charge carrier mobility in nanocrystal systems is mainly nearest-

neighbor hopping, which is inversely scales with capping ligand length.[230] Here 

we expand the investigation of ligand chemistry on memristive behavior to include 

the evolution of threshold properties of HfO2 nanoribbons over a series of five 

phosphonic ligand capping layers. Use of 2-ethylhexyl phosphonic acid produces a 

high dispersible system and an ultrashort ligand length that results in a record-low 

operating voltage, thus exhibiting enormous promise for future flexible electronics 

due to reduced waste heat and lower energy consumption. 

 

5.3 Experimental Methods 

 

Here, we explored the functionalization of NCs with phosphonic acid 

derivatives 1−5 (Scheme 1) and their fabrication into memristor devices. We 
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selected novel, branched phosphonic acids (1 and 2), a versatile polyethylene 

glycol[246–248] derivative (3), yet unreported oleyl phosphonic acid (4), and a 

prototypical straight chain derivative (5). The convenient synthesis of these 

phosphonic acids is followed by surface functionalization methods that are facile, 

even for the branched substrates. Finally, using these ligands, we deposit HfO2 

NCs into ribbons of NCs by a simple flow coating process and measure their local 

memristive current−voltage response with c-AFM. 

All nanocrystal capped with five ligands fabrications, nuclear magnetic 

resonance spectroscopy (NMR), X-ray powder diffraction (XRD) and transmission 

electron microscopy (TEM) characterizations are accomplished by our 

collaborator in Columbia University, Ghent University, University of Basel. 

Ligands 1− 5 are utilized to prepare memristors based on hafnium oxide NCs. HfO2 

NCs (d = 3.75 nm, Figure 7a and 7b) are synthesized in benzyl alcohol from 

Figure 5-1 (A) TEM image of HfO2 NCs functionalized with 1. (B) TEM 
image of HfO2 NCs functionalized with 5. (C) Schematics of target 

phosphonic acid ligands. 
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hafnium (IV) tert-butoxide.[242] Flow coating technique was used to synthesize 

HfO2 nanoribbons. A 15 mm razor blade edge was aligned parallel to the Ti/Pt-

coated Si substrate at the height of 0.1-0.3 mm. 10 μL HfO2 NC solution was 

injected between razor blade and substrate using a micropipette. The solution 

remains confined between razor blade and substrate due to capillary forces. The 

substrate movement was subsequently controlled by a programmable 

nanopositioner (Burleigh Inchworm controller 8200). The parameters in the study 

were as follows: solution concentration = 1mg/ml, stopping time td = 2000 ms, 

moving distance d = 200 µm and blade speed v= 1500 µm/s. HfO2 nanoribbons 

were deposited on a silicon wafer (undoped ⟨100⟩, University Wafer Inc.) coated 

with 15 nm thick Pt thin film serves as bottom electrode. Prior to use, blades and 

substrates were washed in soap water, distilled water, isopropyl alcohol, toluene 

and blow-dried with filtered N2 gas. Nanoribbons were made by same flow coating 

Figure 5-2 (a) AFM topographic image of HfO2 nanoribbon. 
(b) AFM height profile image of HfO2 nanoribbon. (c) Optical 

microscope image of HfO2 nanoribbons. 
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technique with the height ranging from 100-200 nm and width of ~ 8 nm. All five 

types of nanoribbons with different ligands had similar geometric profile. 

The local conductive measurement was performed on an AFM (Cypher ES 

ORCA, Asylum) at room temperature. A Pt tip (25Pt400B, Rocky mountain 

Nanotechnology) with the frequency of 10 kHz was used. The bottom electrode (Pt 

thin film) was pasted by silver paint (Ted Pella) to a conductive sample holder 

connected to AFM to form an electric circuit. The sample was biased from bottom 

electrode (up to ±10 V) by AFM while the tip was kept at 0 V during testing. All 

measurements started at 0 V and followed by a positive voltage sweep through the 

set process, back through and continue through the negative voltage region. I-V 

curves were collected at positions of equivalent thickness on each ribbon at a 

sample rate of 2 kHz. 

 

5.4 Results and Analysis 

 

40 individual I-V curves were collected over four separate, individual 

nanoribbons for each type of ligand. All five nanoribbons showed threshold 

switching behavior. It should be noticed that as we gained more insights on ligand 

structure, it became obvious that ligands are not extending out as a straight chain. 

Instead, the chains are reaching out zig zag with an angle around 109◦. Therefore, 

given that the C-C bond distance is usually 140 pm, the best estimation of the chain 

length is:  

                 ligand length ≈  𝑛 × cos (
180°−109°

2
) × 140 𝑝𝑚                           (1) 
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where n is the number of atoms in the longest chain. But it is still rather 

inaccurate to direct calculate ligand length according to the atom numbers. Thus, 

instead of estimating the ligand length, we proposed to use the number of carbons 

in the longest chain of the ligand. 

As shown in Figure 9, we observed the expected trend where operating 

voltage scales with ligand size. Here, the set voltage varies from extremely high (4.4 

± 0.7 V) for ligands 4 and 5 to a -low (1.0 ± 0.3 V) for ligand 1. It was previously 

demonstrated that the minimum threshold switching voltage of 1.2 ± 0.3 V using 

the mixture of dodecanoic acid and 10-undecenoic acid as ligands adsorbed on the 

HfO2 NCs.[226] Although carboxylic acid have a reasonable high affinity for metal 

oxides[249,250], ligands shorter than dodecanoic acid results in unstable 

dispersions and thus hindering further reducing threshold switching voltage. The 

use of 2-ethylhexyl phosphonic acid ligand 1, combining a high colloidal stability 

with a compact ligand shell, results in a record-low threshold switching voltage of 

1.0 ± 0.3 V, which is promising for next-generation flexible and wearable electronic 

devices.  

Note that ligand 3 violates the trend and displays higher set voltages than 

expected for its ligand length. This may be caused by the presence of the free ligand 

(which proved difficult to remove from the nanocrystals as described above) or by 

the nature of the polyethylene glycol chain. Note that the triangular cross-section 

of the nanoribbons creates a thickness-dependence in the memristive response. 

The thickest portion of the nanoribbons is difficult to electroform using the ±10 V 

bias supply of the microscope. Therefore, we performed all conductive probe 



 

54 

measurements in thinner areas of equivalent thickness (∼80 nm) for each 

nanoribbon tested. 

 

5.5 Local Resistive Switching Thickness Dependency 

 

Since all nanoribbons have cylindrical profiles as shown in Figure 8a and 

8b, it is important to clarify that different switching voltages are not the results of 

local I-V measurements height variations. Therefore, an independent study about 

resistive switching thickness dependency on HfO2 nanoribbons has been carried 

out. I-V curve sweeps with the voltage amplitude of 4 V were done on three 

different locations on nanoribbon with relative thickness of 80 nm, 140 nm and 

200 nm as shown in Figure 9a and 9b. At 80 nm location (Figure 9c), conductive 

Figure 5-3 (A−E) I−V curve of the threshold switching ofHfO2 
nanoribbons using 1−5, respectively, as ligand. (F) Switching voltage 

in function of the ligand chain length. 
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filament was successfully formed as demonstrated by a sudden current increase 

around -1.1 V. At 140 nm location (Figure 9d), some current variations were 

Figure 5-4 Thickness dependence study of HfO2 with ligand 3. (a) 20 
μm × 20 μm AFM scan of nanoribbon and (b) sectional height image 

along the red line. (●), (▲) and (♦) indicate three local c-AFM tests 
with thin (~80 nm), medium (~140 nm) and thick (~200 nm) 

thickness. (c)-(e) are the corresponding I-V responses of the first 
voltage sweeping (±4V). The electroforming step showed 

dependence on nanoribbon vertical thickness. Ref 9. SI also has 
similar study on HfO2 nanoribbon thickness dependent 

measurement. 
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observed but clearly no strong conductive filament was constructed. At 200 nm 

location (Figure 9e), there was no current response at all as compared to the 

previous two measurements. This interesting phenomenon could be explained by 

the formation and rupture theory of conductive filament. During electrical forming 

stage, the newly created conductive filament must extend from one electrode to the 

opposite electrode. While in set/reset processes, conductive filament only ruptures 

at its thinnest area which is usually less than a few nm.[30,54] Therefore, there is 

strong thickness dependency in electro-forming step. 

 

5.6 Summary 

 

We developed a scalable synthesis of new phosphonic acid surfactant 

ligands. We subsequently showed their superiority in functionalizing nanocrystal 

surfaces. Using a flow coating technique, we fabricated nanoribbons comprising 

HfO2 nanocrystals capped with five types of phosphonic acid ligands. Threshold 

switching operating voltages of five ligands were statistically determined by c-AFM. 

2-ethylhexyl phosphonic acid leads to a record-low operating voltage in the 

resistive switching of HfO2 NC assemblies. We observed the nanoribbon operating 

voltages inversely scale with the length of the ligands. Since phosphonic acid has 

higher bind affinity, shorter ligand 1 is successfully obtained and leads to a record-

low operating voltage among all resistive switching of HfO2 nanocrystal assemblies. 

The results are consistent with the previous measurements on HfO2 nanocrystals 

stabilized by carboxylic acid ligands, which validates the performance of the 

fabrication technique and characterization method. Considering their high binding 
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affinity, we expect the synthesized ligands to be heavily used to functionalize 

surfaces, even beyond the nanocrystal field. 
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CHAPTER 6 

SOLUTION-PROCESSED MEMRISTIVE ASSEMBLIES 

COMPRISING POLYDISPERSE NANOCRYSTALS 

 

6.1 Introduction 

 

Resistive switching behavior has been observed in numerous materials 

including transitional metal oxides[40,41,201], nitrides[202] and complex metal 

oxides such as perovskites[88,203]. The majority of memristive systems, such as 

2D thin films [208,209], 1D nanowires[204,205], nanotubes [207,251], and 

nanodots utilize expensive, UHV-based fabrication approaches that require long 

deposition times. Sol-gel spin-coated ZnO thin films[36] and hydrothermally 

prepared TiO2 thin films[252] represent two examples of inexpensive, high-yield 

alternative fabrication processes reported in the last decade. More recently 

solution-processed fabrication of zero-dimensional nanocrystals (NC), have 

garnered significant research focus as materials in memristive or resistive 

switching applications [210–212]. Various fabrication techniques have previously 

been developed to enable solution-processed multi-component patterning, 

including dip-pen nanolithography[220–222], wet stamping[223], and spin 

coating[224]. These techniques, however, require complicated, time-consuming 

procedures and offer low controllability over material microstructures. Kim et al. 

proposed a facile and high-productive flow coating technique, which is a dynamic, 
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self-assembly method that patterns monodisperse, highly crystalline inorganic 

zero-dimensional nanocrystals into ordered assemblies over large areas[225–228].   

We recently demonstrated a memristive and tailorable nanoribbon 

comprising single-crystalline strontium titanate nanocubes (STONC) capped with 

oleic acid ligands.[227] The as-fabricated nanoribbons were capable of being 

transferred to a second, arbitrary substrate with a different metallized surface as a 

result of the robust mechanical properties of the nanoribbon. Motivated by 

potential ligand chemistry effects, a follow-up study showed that operating 

parameters such as set/reset voltage, and LRS/HRS ratios inversely scaled with 

increasing ligand length in solution-processed hafnium oxide (HfO2) 

nanoribbons.[226] Since lower set/reset voltage leads to lower overall device 

energy consumption, the observed trend suggested that shorter ligands were 

optimal. Subsequently, a phosphonic acid ligand library was developed to replace 

previously used carboxylic acids. Phosphonic acids possess a higher binding 

affinity which enables the functionalization of shorter ligands to decrease the 

interparticle core-core distance and increase the tunneling probability.[253][230] 

The use of 2-ethylhexyl phosphonic acid produces a high dispersible system and 

an ultrathin ligand shell that results in a record-low threshold voltage in a solution-

processed memristor, thus exhibiting enormous promise for future flexible 

electronics due to reduced waste heat and lower energy consumption. 

In this work, we extend our scope to include the study of resistive switching 

behavior in nanoribbons comprising mixtures of monodisperse and polydisperse 

barium zirconate (BaZrO3; BZO) and strontium zirconate (SrZrO3; SZO) 

perovskite nanocrystals capped with phosphonic acid ligands.  The limited number 
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of studies of resistive switching behavior within BZO and SZO have been restricted 

to thin film systems.[254–256] Jo et al. observed the transformation from bipolar 

to unipolar switching in a SrRuO3/Cr:SZO/Pt stack induced by a high substrate 

temperature caused by Joule heating.[257] Both resistive switching behavior and 

Figure 6-1 (a) and (b), TEM images of BZO-5 and SZO-9 
nanocrystals. (c) and (d), XRD analysis of BZO and SZO 

nanocrystals. (e) Schematics of flow coat process. 
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the switchable diode effect have also been reported in Ag/BaZrO3/SrRuO3 

multilayers.[47] All reported BZO and SZO systems have been grown by vacuum 

deposition techniques. Here we use a low-cost flow coating method to assemble 

BZO and SZO nanoparticles into highly ordered nanoribbons. Moreover, we 

demonstrate the impact of nanoparticle size and polydispersity, as well as A-site 

substitutional effects on resistive switching operating voltages by studying 

assemblies comprising various diameters of BZO (2.7 nm and 5 nm) and SZO (2.4 

nm and 9 nm) nanoparticles. 

 

6.2 Experimental Methods 

6.2.1 Sample Fabrication Methods 

 

Barium isopoxide, strontium isopropoxide and zirconium isopopoxide (Alfa 

Aesar, > 98%): potassium hydroxide (Sigma Aldrich, ≥85%), ethanol (Acros 

Organics, 99.5%) , toluene (>99%, Acros Organics) and 2-[2-(2-

Methoxyethoxy)ethoxy]acetic acid (Sigma Aldrich, technical) were used without 

further purification. (2-hexyldecyl) phosphonic acid (HDPA) was synthetized 

according to De Roo et al.[225]   

Double metal oxide nanocrystals with composition BaZrO3 (BZO) and 

SrZrO3 (SZO) were synthetized via a microwave-assisted solvothermal method. 

Custom bimetallic precursors are prepared from commercial individual 

isopopoxides metal sources via alcohol thermal exchange. The resulting materials 

are subjected to a thermal process in a CEM Discovery SP microwave (max. output 
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300 W) equipment. Samples are prepared by dissolving the bimetallic precursors  

(0.2 g, 0.30 mmol (BaZrOR6) and 0.31 mmol (SrZrOR6)) in a basic KOH ethanol 

solution (4 mL). The thermal process includes a plateau for 30 minutes. The main 

parameters optimized in order to obtain the desired final crystallite size are the 

base concentration and the set temperature. Recovered nanosuspensions are 

washed three times with acetone and centrifuged at 5000 rpm for 2 min. SZO 

nanopowders can then be stabilized directly in (2-hexyldecyl) phosphonic acid 

(HDPA) acid in toluene. An excess amount of ligand and the use of ultrasounds is 

Figure 6-2 (a), (c) and (e), AFM topography and profile images for 1 s 
stopping time nanoribbon, 6 s stopping time nanoribbon and 

continuous thin film and (b), (d) and (f) corresponding AFM profile 
images. (g) Optical microscope image of BZO nanoribbons. (h) Height 

and width versus stopping time of flow coat process. 
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employed in order to ensure a good dispersibility. The excess can then be removed 

by successively precipitating the particles with acetone and redispersing the solid 

in toluene. BZO on the other hand, required a pre-stabilization in other family of 

ligands (acids) and then a ligand exchange. The BZO nanocrystals are stabilized in 

2-[2-(2-Methoxyethoxy) ethoxy] acetic acid) with methanol as solvent. The 

exchange is performed by dropwise adding a solution of a HDPA-toluene solution, 

with the result of the precipitation of the particles. The solid is recovered by 

centrifugation and redispersed in toluene. Further purification is done until no 

MEEAA 1H-NMR peaks are observed. Figure 6-1 (a) and (b) present TEM images 

of 5 nm BZO and 9 nm SZO nanocrystals. 

The XRD pattern of BZO and SZO nanocrystals are shown in Figure 6-1 (c) 

and (d). All the peaks indexed are in line with cubic phase BaZrO3 and SrZrO3 

reported in Ref. 258 and 259. [258,259]Sample substrate was silicon wafer 

(University Wafer, <100>, 500 um thickness) coated with 5 nm Ti and 35 nm Pt 

by thermal evaporator (CHA SE-600) to serve as sample bottom electrode. The 

flow-coating process was conducted in a homemade setup that consists of a razor 

blade and substrate which was attached to a computer-controlled nanopositioner 

(Burleigh Inchworm controller 8200). During fabrication 3~5 L of the 

nanoparticle containing solution was injected in between the blade and the 

substrate and was confined due to capillary forces. The nanopositioner is 

programed to move in a ‘stop-and-go’ motion, where the stopping time (td), step 

size (d), and substrate moving velocity (v) dictate the overall nanoribbon 

microstructure as shown in Figure 6-1 (e). Nanopositioner motion can also be set 

with a slower moving speed and no stopping time to flow coat thin film structure. 



 

64 

The film thickness depends on the substrate moving velocity and the nanoparticle 

solution concentration. A pronounced, quasi-nanoribbon structure is formed at 

the edge of thin film due to the initial solution injection in between the blade and 

substrate.  

 

 

6.2.2 Sample Characterization Methods 

Solid state techniques used to characterize the obtained powders include: 

Powder X-Ray diffraction (PXRD, Thermo Scientific ARL XTra diffractometer 40 

kV 40 mA) using Cu Kα radiation (0.15418 nm) for crystal structure identification, 

Table 6-1 Threshold switching operating voltages of BZO and SZO 
nanocrystal assemblies. 

Table 6-2 Bipolar switching SET and RESET voltages of BZO and 
SZO nanocrystal assemblies. 
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via comparison with ICSD standards,  and Transmission Electron Microscopy 

(TEM, JEOL JEM-2000FS operated at 200 kV with Cs corrector)  for morphology 

and size distribution assessment. Solution techniques were used for the 

characterization of the solutions, which include Dynamic Light Scattering (DLS, 

Marlvern Nano ZS) with backscatter detection of 173° for solovodynamic diameter 

and Nuclear Magnetic Resonance (NMR, Bruker 300MHz Avance I Ultrashield) 

operating at 1H frequency of 500.13 MHz for solution purity check.  

The local resistive switching response was measured at room temperature 

using Asylum Research Cypher ES ORCATM conductive-AFM module. A 

conductive Rocky Mountain Nanotech 25Pt400B cantilever with an 8 N/m spring 

contact and a fundamental resonant frequency of 10 kHz was used to perform all 

topographic and conductive imaging. Conductive silver paste (TED PELLA, Inc.) 

fixed the sample bottom electrode to the conductive wired sample puck to form the 

C-AFM electrical circuit. The conductive cantilever is connected to an ORCATM 

dual-gain transimpedance amplifier and held at ground while the sample is biased 

Figure 6-3 (A) Threshold switching behavior of 2.7 nm BZO 
nanocrystal assemblies. (B) Bipolar switching behavior of SZO-2.4 

and BZO-5 mixture nanocrystal assemblies. 
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from bottom electrode during electrical testing.  Local resistive switching I-V 

curves were collected in current-voltage (I-V) spectroscopy point-mode. The bias 

applied to Pt substrate ranges from 1 V to 5 V depending on nanoribbon actual SET 

voltage at a frequency of 0.99 Hz. The cantilever deflection setpoint was held at 

0.02 V to ensure sufficient tip-sample contact without mechanically inducing 

artificially high current values.[93] 

 

6.3 Results and Analysis 

 

Figure 6-2 (a) - (d) show AFM topography images of individual nanoribbon 

with nanopositioner stopping time of one second, six seconds and their 

corresponding AFM height profile images respectively. The one second stopping 

time produced a nanoribbon width of ~ 3.6 m and 100 nm height; the six second 

stopping time produced a nanoribbon width of 16 m and 500 nm height. To 

demonstrate the versatility of flow coating process, we fabricated a BaZrO3 thin 

film using a single step size 5 mm with no stopping time (Figure 6-2 c). The average 

thickness of as-fabricated BaZrO3 thin film is 117.9 nm ± 22.1 nm. While less 

uniform, the high productive fabrication process of nanoscale thin film with length 

and width in millimeter takes less than 10 seconds. The uniformity of nanocrystal 

assemblies can be further improved by utilizing finer blade and advanced 

nanopositioner system. Figure 6-2 (g) is the optical microscope image showing 

highly ordered arrays of individual nanoribbons deposited on Ti/Pt-coated silicon 

substrate utilizing the flow-coating technique. The nanoribbon dimensions are 

well-controlled by varying the substrate stopping time, as shown in Figure 6-2 (h).  
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Interestingly, we observed threshold switching within six nanocrystal 

assembly systems and bipolar switching within four nanocrystal assembly systems 

(Table 1). The transition between bipolar switching to threshold switching can be 

explained by current induced Joule heating. Except SZO-2.4, all threshold 

switching current saturated at 10 µA under C-AFM I-V spectroscopy, which is the 

maximum detection range of Asylum Research ORCATM dual-gain cantilever 

holder (Figure 6-3a as an example). It is reported that C-AFM current density at 

tip-sample junction can be up to 109 A/cm2 since most modern C-AFM is not 

equipped with current compliance function.[94,260] We estimate that the actual 

current value in LRS is much higher than 10 µA. In bipolar switching assemblies, 

besides BZO-5, all the LRS current are all below 10 µA (Figure 6-3b). Several 

studies have proved that Joule heating will shift nonvolatile bipolar or unipolar 

switching to volatile threshold switching by I-V cycling at higher temperatures[35], 

reducing heat dissipation by decreasing metal electrode thickness[34] and 

increasing current compliance to induce higher amount of Joule heating.[261] 

Considering threshold switching exhibits much higher LRS current than bipolar 

switching. We posit that the transformation between bistable bipolar switching 

and monostable threshold switching is due to unstable conductive filament caused 

by current induced Joule heating.  

Fabricating nanoribbons comprising nanocrystals of varying diameter 

enables size-dependent studies of the resistive switching operating voltages. 

Within both BZO and SZO systems, SET voltage is inversely proportional to 

nanocrystal size. Several studies suggested that the metal oxides nanocrystal, such 

as CeO2, BaTiO3 and PbTiO3 lattice parameters will significantly increase as the 
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nanoparticle size decreases below a 

critical diameter of range from 11 to 

100 nm.[262–265] The minimum 

lattice parameter expansion within 

BZO nanocrystals was observed to be 

0.5%.[266] Therefore we posit that 

smaller BZO and SZO nanocrystals 

have higher lattice parameters than 

their larger diameter nanocrystal 

counterparts. The larger unit cell 

facilitates more structural 

fluctuations and hence leads to 

increased oxygen vacancy 

diffusion.[267] The highly active 

oxygen ions (vacancies) enhance the 

resistive switching process and t hus 

lower the switching voltage.[268] 

Figure 6-4 (a) and (b) present the 

cumulative distribution of SET 

voltage within BZO and SZO 

nanocrystal assemblies. Both small 

nanocrystal assemblies show lower 

and uniform SET voltages. SZO-9 

system shows much higher SET 

Figure 6-4 (a) and (b) Cumulative 
probability of BZO-2.7 (blue), BZO-5 
(grey) and SZO-2.4 (black) ~ 3.88 eV 
and SZO-9 (purple) SET voltages. (c) 
135 cycles I-V sweeping on BZO-2.7 

nanoribbon. 
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voltages with a wide fluctuation range from 1.64 V to 5.98 V. Figure 6–4 (c) 

presents 135 consecutive threshold switching cycles with in one BZO-2.7 

nanoribbon. Most if the selectivity remains around 103 suggests the stable 

switching behavior even without the protection of current compliance.  

Figure 6-5 (a) and (b) present Tauc plot for BZO and SZO systems where 

the linear fitting of (αhv)2 term on X-axis intercept evaluates the material direct 

band gap. Both smaller sized nanoparticles display narrower band gaps as 

compared to the larger nanoparticles possibly due to the presence of oxygen 

vacancy (VO).[269] We suspect that these VO create sub-bandgap energy levels, and 

the charge transfer transitions involving these impurity level can give rise to this 

bandgap reduction.[270] This assumption is also further supported by enhanced 

resistive switching performance such as lower SET voltage and improved switching 

parameter uniformity. These observations supported the defects-induced 

resistance behavior of smaller size particles in line with previous 

literature.[271][272]  

Variations in the switching voltages could also be attributed to changes in 

the packing efficiency for the various diameter constituent nanocrystals within the 

same nanoribbon geometry. Moreover, polydisperse systems will produce higher  

packing factors than monodisperse systems.[273]. Since the C-AFM 

measurements were conducted at an 80 nm equivalent thickness area with a tip 

radius of 35 nm, we assume the electrical field is confined in a 40 nm in radius and 

80 nm high cylindrical space. The packing density for monodisperse and 

bidisperse spheres in a cylindrical container can be expressed as:[274] 

𝐷 = 0.604 − 0.1812𝛽𝑟                                                (1) 
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𝐷1,2 = 0.791 − 4.06𝑟1 − 0.342
𝑟1

𝑟2
− 5.02𝑟2               (2) 

Where 𝛽 is the cylinder surface to volume ratio, 𝑟1 is small particle radius 

and 𝑟2 is large particle radius. Interestingly, the resistive switching SET voltage in 

both BZO and SZO systems decrease with increasing packing density as shown in 

Figure 6-5 (c) and (d). Under the same relative thickness, a higher nanoparticle 

packing density reduces the inter-particle distance. It is reasonable to assume the 

conductive filament is easier to form in more tightly packed nanocrystal assemblies. 

The switching voltage is reduced since less inter-particle carrier hopping per unit 

length is required. Varying the nanocrystal size also affects its shape, surface 

charge distribution, surface trap density and packing density[230,275]. Thus, 

quantitative correlations between nanocrystal size and resistive switching 

performance still remains tedious.  

The BZO system exhibits a lower operating voltage than the SZO system for 

the same approximate nanocrystal diameter, suggesting that additional 

contributions are occurring beyond the size effect. BZO-2.7 displayed an average 

switching voltage of 1.39 ± 0.19 V while SZO-2.4 displayed an average switching 

voltage of 1.53 ± 0.16 V, resulting in a significant statistical difference with a 

calculated p-value less than 0.0001. Site defects/vacancies usually serve as the 

mobile charge carriers to facilitate conductive filament formation.[276] While both 

systems possess the ABO3 perovskite crystal structure, studies show that BZO 

nanoparticles possess significantly more A-site vacancies as compared to SZO 

nanoparticles because the lower Ba2+ diffusion rate during synthesis results in 

fewer A-site vacancies being filled.[266,277] We assume that both BZO and SZO 
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have the same approximate B-site vacancy density as B-site vacancies in perovskite 

structures are less prevalent for two main reasons:[278] (1) B-site has high charge. 

B-site defect is not thermodynamically favored because of its high charge and 

relatively small size. (2) B-site structural stability. Compared to the 12-fold 

cuboctahedral A-site the B-site cation forms a more stable BO3 octahedral 

structure. The lower BZO operating voltage can be therefore be attributed to a 

higher charge carrier density. Barium also possesses a lower electronegativity than 

strontium ; subsequently the Ba-O bond (343 kJ/mol) is weaker than Sr-O bond 

(454 kJ/mol).[279,280] The lower strength of the Ba-O bond enhances the 

Figure 6-5 (a) and (b) Band gap estimation using Tauc plot. BZO-2.7 
(blue) ~ 3.88 eV and BZO-5 (grey) ~ 4.12 eV, SZO-2.4 (black) ~ 3.9 eV 

and SZO-9 (purple) ~ 4.36 eV. (c) and (d) Relationship between 
packing density and SET voltage within BZO and SZO systems 

respectively. 
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mobility of oxygen ions which further facilitates and enhances resistive 

switching.[281]  

 

6.4 Summary 

 

In summary, we introduced a low-cost and versatile flow coating fabrication 

approach to produce memristive nanoribbons comprising BaZrO3 and SrZrO3 

perovskite nanocrystals. We demonstrated the impact of nanocrystal size and 

polydispersity effects on resistive switching operating voltages by comparing 

different sizes BZO and SZO nanoparticle assemblies. We also studied A-site 

substitutional effect by directly comparing resistive switching SET voltages of BZO 

and SZO nanoribbons comprising same size nanoparticles. The recent 

advancement of solution processing techniques provides a low-cost and facile 

synthesis of complex functional nanocrystals with high controllability over particle 

size, inter-particle distance and material structure. We thus expect this study will 

motivate the works investigating applications on next-generation flexible 

electronics toward novel functional nanostructures which involves controlling 

material size and structural effects. In addition, the use of advanced scanning 

probe techniques to investigate multifunctional perovskite here also promotes the 

studies of materials with coupled magnetic, electric and structural order effects 

such as ferromagnetism, ferroelectricity and ferroelasticity.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE OUTLOOK 

7.1 Conclusions 

 

The dissertation topics cover ordered functional nanoporous template with 

its applications in nanoelectronics and solution-processed memristor. It first 

thoroughly reviews the state-of-the-art ordered nanoporous functional templates 

fabrication approaches starting from anodic aluminum oxide (AAO), a highly 

ordered porous membrane achieved by direct anodization. Individually 

addressable HfO2 nanocapacitor arrays with ultrahigh density were fabricated 

using AAO template. The chapter also shifts the highlight to transitional binary 

metal oxides templates and their applications, which are fabricated using same 

anodization method but exhibit more functional in many areas such as emery 

harvesting, sensors and human implants. The second half of the chapter reviews a 

series of synthetic approaches using AAO as master template of nanoporous 

membranes with complex materials including perovskites oxide and nitride, which 

are extremely difficult to pattern over a large area using conventional lithographic 

methods.  Large area memristive TiO2 nanoporous template was synthesized 

utilizing AAO negative replica method.  

After the pioneering solution-processed memristor works from our group, 

HfO2 nanoribbons with 5 phosphonic acid ligands with different lengths were 

measured using conductive AFM. Statistical results showed that resistive 

switching operating voltage scales with ligand length by collecting 40 results from 
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each type of memristor. Moreover, by conducting switching voltage thickness 

dependency studies, I also confirmed that different switching voltages were not 

caused by testing location dielectrics thickness variation.  

In the second solution-processed memristor research, two types of 

perovskites nanoparticles, BaZrO3 and SrZrO3, capped with same phosphonic acid 

ligand but in two different sizes were chosen. Material substitutional effects and 

nanoparticle size effects were considered to cause the switching voltage variations. 

By comparing same size BaZrO3 and SrZrO3 nanoparticles, BaZrO3 showed lower 

switching voltage due to possibly higher A-site defects concentration which leads 

to higher oxygen vacancy concentration. Smaller nanoparticles also exhibit lower 

switching voltage due to surface relaxation resulted higher oxygen vacancy 

mobility and higher nanoparticle packing densities which reduce overall inter-

particle charge carrier hopping energies. For the first time, 50/50 mixture 

component systems were used in solution-processed memristors to create 

variations in packing densities to examine the nanoparticle size effects.  

 

7.2 Future Work 

 

While conductive AFM demonstrates its ability to locally testing RRAM 

device resistive switching property, there is still plenty of room for further 

improvement of AFM conductive testing. C-AFM is a more practical 

characterization tool in terms of surface scanning and qualitative determination of 

conductive region over a specific area. Most commercial C-AFM does not come 

with current compliance and is able to apply voltage up to 10 V which creates a 



 

75 

huge problem for local resistive switching testing. The effective electron flowing 

area of a conductive probe, different from actual contact area, depending on a 

series of parameters such as scanning force, cantilever stiffness, apex radius and 

relative ambient humidity ranges from 1 to 700 nm2.[94] Since no commercial C-

AFM applies current limitation, current passing through probe apex can cause an 

ultra-high current density up to 109 A cm-2  in LRS.[260] This extremely high 

current is very harmful and likely to result in sample dielectric breakdown, probe 

apex local anodic oxidation, melting of the metal coating layer or even melting of 

pure Pt apex due to Joule heating.[282] For this reason, RRAM device endurance 

measurement, one of the most crucial performance testing of an electronic device, 

is extremely to carry out utilizing C-AFM. To solve this problem, C-AFM can be 

conducted in vacuum or dry nitrogen ambient. Local redox reaction can be greatly 

reduced since probe apex water meniscus at tip/sample surface is eliminated. 

External source meter with accurate control of current compliance should also be 

plugged into and override AFM circuit for current limitation purposes.    

Utilizing 0D nanoparticles, solution-processed memristors have more 

degrees of freedom in terms of electrical property tuning by varying nanoparticle 

size and capping ligand. As described in chapter 4 and chapter 5, the long-debated 

oxygen vacancy mediated charge carrier transport mechanism can be revealed by 

creating nanoparticles with different oxygen defects concentrations caused by 

nanoparticle size effect. The flow-coating fabrication technique is also a convective 

and low-cost alternative approach of patterning regular nanostructures over a 

large scale. However, the lack of microstructure control such as film roughness 

variation, still needs to be addressed since high deposition uniformity is always 
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required in integrated circuit devices. Besides, considering the revolution in 

electronic device miniature, it is important to examine the resistive switching 

uniformity under elevated working temperature since chemical ligands might be 

modified.  

After more than three decades of development, modern atomic force 

microscope is able to achieve sub-nanometer resolution easily. Other derivatives 

of AFM have also emerged such as different electrical property measurements, 

magnetic measurements, thermal measurements and force measurements. Till 

now, three major draw backs hinder the further application of this technique: (1). 

operation easiness and scanning speed. Unlike different electron microscopy 

techniques, depending on different operation modes, AFM requires much a series 

of pre-scanning preparations such as laser alignment, cantilever frequency tuning 

and other calibrations. The complicated system calibration sometime even 

requires using different samples, which often discourages low-level AFM users. (2). 

Inconsistent scanning results. Atomic force microscope characterization results 

are highly reliant on user’s experience and skill. The micro-machined probe 

empowers AFM testing in many research fields but also bring in uncertainties. For 

example, tip-sample contact resistance is a changeable factor relevant to contact 

force, apex radius and cleanness of the sample. These parameters will also change 

during measurement due to sample surface roughness variation and tip weariness. 

A more intelligent AFM controlling software is urgently needed to help users to 

make decisions. For instance, one AFM manufacturer invented True Non-

ContactTM technique which yields same resolution surface image without bringing 

tip-sample into contact. This approach greatly reduces tip apex weariness issue 
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which would be difficult to detect using conventional tapping mode AFM. (3) AFM 

scanning rate. At industrial level, critical dimension scanning electron microscopy 

(CD-SEM) is one of the most popular tools in semiconductor wafer metrological 

fields. Although as compared to SEM, AFM is not advantageous in scanning speed, 

it measures materials without material related properties (conductive and non-

conductive) and does not cause sample electron beam damage.[283] As the 

advancing of technology, latest industrial level AFM is capable of 300 mm wafer 

automated inspection.[284] 
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APPENDIX 1     

ATOMIC FORCE MICROSCPE MECHANICAL TESTING 

 

Atomic force microscope has been used to investigate nanomaterial 

mechanical properties for more than three decades. Comparing to conventional 

nanoindentation and tensile test techniques, AFM has a unique advantage over 

conventional nanoindentation techniques – micromachined probe. The fine AFM 

force control and ultra-sharp tip are able to precisely maintain an extremely 

shallow sample indentation depth during nanoindentation process. This feature 

enables the mechanical property testing of ultra-thin nanomaterials since 

conventional nanoindenter (radius ~ um) is not sensitive enough to detect the 

subtle sample deformation.   

I assume the reader is fully aware of basic AFM operation including laser 

alignment, cantilever tuning and basic tapping mode and contact mode scanning. 

Here, I will start from the point where laser is correctly aliened (SUM signal 

normal), cantilever deflection zeroed and is positioned at sample surface. Before 

every AFM mechanical testing, the most important preparations are to calibrate 

three properties: 1) deflection sensitivity; 2) spring constant; 3) tip radius/shape. 

In Asylum Research AFM system, deflection sensitivity also called InVOLS 

(Inverse Optical Lever Sensitivity). The unit of deflection sensitivity is nm/V. 

Deflection sensitivity describes the relationship between the laser movement due 

to cantilever deflection on photodiode (in volts) and actual cantilever deflection (in 

nm).[285] This is not a cantilever or photo detector specific property. It is the 

overall sensitivity of the AFM system including cantilever, photodetector, relative 
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laser spot and working environment (in air or liquid). Whereas cantilever spring 

constant is a material property which does not change with different working 

environments. Asylum Research software has a very convenient, fully automatic 

deflection sensitivity and spring constant calibration function – GetrealTM, as 

shown in Figure A-1. Click Thermal in the main tab and then click GetReal in 

thermal graph tab. A probe selection panel will pop out with a list of Asylum 

branded cantilever. If you do not find your probe on the list, simply choose the last 

option “custom rectangular probe” and input cantilever specifications from specs 

sheet on the box. The computer will do a rectangular beam dimensional modelling 

fitting according to your input. In the main tab -> Force -> Cal. Tab (Figure A-2), 

three green lights in front of Defl InvOLS, Amp InvOLS and Spring Constant 

means these three parameters have been properly tuned. However, one can also 

readjust these parameters in post data analysis process in elastic tab. The most 

precise way to calibrate tip shape and cone angle would be SEM imaging. But I 

Figure A-1 Asylum Research software thermal tuning tab. 
 



 

80 

often found that cantilever specs sheet on the box is good enough for 

nanoindentation.  

The main testing parameters for nanoindentation are force distance, scan 

rate, trigger channel and trigger point. They can be found in force -> Misc tab. 

Choose all parameters properly and then do a ‘single force’ to perform one single 

mechanical testing. After single force, open Master Force Panel in AFM Analysis 

and go to elastic tab for force curve analysis. Correctly analyzing the force curve is 

the key to extract sample mechanical property.  Figure A-3 shows a standard AFM 

force curve image. The Y-axis is force. Positive force means the force direction 

towards sample (press) and negative force means force direction towards tip 

(adhesive). The X-axis is tip sample separation. Negative value means tip-sample 

separation and positive value means sample indentation depth. Red curve is 

approaching curve, blue curve is retracting curve. Brown dashed line is the model 

fit of tip approaching movement and blue dashed line is the fit of retracting 

Figure A-2 Asylum Research software force calibration 
window. 
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movement. The task here is to adjust contact model parameters to fit the force 

curves by adjusting contact models (Hertz, DMT, JKR and Oliver-Pharr), tip 

geometry, fit regions and model assumptions. The fitted results will be shown in 

the lower right corner of elastic tab. 

 

 

 

 

 

 

 

 

Figure A-3 A typical force curve on an adhesive PDMS 
sample. 
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APPENDIX 2 

AFM VISCOELASTIC MAPPING (AM-FM) 

 

AM-FM mode is the combination of amplitude modulation and frequency 

modulation AFM. In this mode, the cantilever is simultaneously driven by two 

sources: the first mode is mechanically driven by shake piezo at fundamental 

frequency like the normal AFM, the second mode is photothermally driven by the 

secondary blue laser at a much higher frequency.[286] The major advantage of 

photothermal excitation over conventional shake piezo is it is inducing thermal 

stress and then causing cantilever oscillation directly on the cantilever beam, 

instead of shaking cantilever, which also mechanically drives cantilever holder and 

working ambient (e.g. liquid) simultaneously.[287] 

The operation of AM-FM is straightforward but tricky. To start, go to tune 

tab -> advanced, switch tune drive from piezo to blue drive to turn on the 

secondary blue laser. Move the blue laser spot position to the bottom part of the 

cantilever and tune both lasers. The first mode target amplitude is 2V, frequency 

is cantilever fundamental frequency f0. Second mode target amplitude should be 

much lower than first mode, typically 25 mV, frequency is one of the higher 

eigenmode frequencies. It should be noted that Asylum software default setting is 

second eigendmode (~ 6 × f0). One should manually adjust the upper and lower 

bounds of second mode to locate the desired eigenmode resonance frequency. 

After first round tuning, move blue laser spot around to maximize the 

Amplitude 2 on Sum and Deflection panel. You will lose some Amplitude 1 signal 

so retune both lasers after the process. Then use GetReal function to calibrate 
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cantilever spring constant and deflection sensitivity. After calibration, you should 

see two green lights in AMFM panel lever tab. After cantilever pre-engage and 

approaching, retune the tip again to make sure amplitude 1 is 2V and amplitude 2 

is 25 mV. Before scanning, click engage on sum and deflection panel to engage the 

tip. Make sure phase 1 is somewhere between 40~80° and phase 2 is slightly less 

than 90°. If phase 2 is hopping (which is quite common, especially on AC240TSA-

R3), try to use higher eigenmode. Young’s modulus mapping can only be calculated 

in repulsive 2nd mode region. One plausible for extremely unstable phase 2 is the 

second eigenmode frequency peak is very close to the integer multiplication of 

fundamental frequency f0. In other word, they are in harmonics. Two close enough 

peak can confuse second lock-in amplifier. So, the secondary cantilever is being 

driven by first and second mode simultaneously. To solve this problem, simply use 

third eigenmode, which is 17.5 times fundamental frequency. However, an extra 

tip-sample stiffness calibration is needed for third eigenmode imaging since the 

third mode cantilever spring constant is much higher. 
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APPENDIX 3 

ULTRA-THIN AAO TRANSFER 

 

For two-step anodization AAO fabrication and barrier layer removal, read 

through reference [288]. The ultrathin anodic aluminum oxide (AAO) membrane 

we bought from TopMembrane, Shenzhen is double-thorough template, 

reinforced with polystyrene, without aluminum substrate and barrier layer. Open 

the box, ultrathin AAO looks like a piece of cellophane. Be very cautious here, do 

not flip AAO membrane. Only the front side (facing up) is coated with polystyrene 

as shown in Figure A-4(a). Always keep reinforced side up! Cut a small piece of 

membrane and put it onto water. Keep polystyrene side facing up (Figure A-4c b). 

Use substrate to take the floating AAO membrane. The motion must be quick or 

there will be wrinkles (Figure A-4c). You can use flat-head tweezer to gently pull 

AAO on the size if there is wrinkle. Rinse transferred AAO with chloroform or 

toluene to remove polystyrene (Figure A-4 d). 

Figure A-1 Schematics of ultrathin AAO transfer. 
 



 

85 

BIBLIOGRAPHY 

1.  Invitation, A.; Field, N.; Feynman, R.P.; Brittanica, E. There’s Plenty of Room at 

the Bottom. Eng. Sci. Mag. 1960, XXIII. 

2.  Schaller, R.R. Moore’s Law: past , present , future. IEEE Spectr. 1997, 34, 52–59. 

3.  Aggarwal, A.; Alpern, B.; Chandra, A.K.; Snir, M. Model for Hierarchical 

Memory. Conf. Proc. Annu. ACM Symp. Theory Comput. 1987, 305–314. 

4.  Wong, H.S.P.; Salahuddin, S. Memory leads the way to better computing. Nat. 

Nanotechnol. 2015, 10, 191–194. 

5.  Meijer, G.I. MATERIALS SCIENCE: Who Wins the Nonvolatile Memory Race? 

Science (80-. ). 2008, 319, 1625–1626. 

6.  Yu, S.; Chen, P.-Y. Emerging Memory Technologies: Recent Trends and 

Prospects. IEEE Solid-State Circuits Mag. 2016, 8, 43–56. 

7.  Nakamoto, H.; Yamazaki, D.; Yamamoto, T.; Kurata, H.; Yamada, S.; Mukaida, 

K.; Ninomiya, T.; Ohkawa, T.; Masui, S.; Gotoh, K. A passive UHF RF 

identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology. IEEE 

J. Solid-State Circuits 2007, 42, 101–109. 

8.  Eshita, T.; Wang, W.; Nakamura, K.; Mihara, S.; Saito, H.; Hikosaka, Y.; Inoue, 

K.; Kawashima, S.; Yamaguchi, H.; Nomura, K. Development of ferroelectric 

RAM (FRAM) for mass production. 2014 Jt. IEEE Int. Symp. Appl. Ferroelectr. 

Int. Work. Acoust. Transduct. Mater. Devices Work. Piezoresponse Force Microsc. 

ISAF/IWATMD/PFM 2014 2014, 1–3. 

9.  Zhu, J.-G.; Zheng, Y.; Prinz, G.A. Ultrahigh density vertical magnetoresistive 

random access memory (invited). J. Appl. Phys. 2002, 87, 6668–6673. 



 

86 

10.  Dong, X.; Wu, X.; Sun, G.; Xie, Y.; Li, H.; Chen, Y. Circuit and microarchitecture 

evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory 

replacement. Proc. - Des. Autom. Conf. 2008, 554–559. 

11.  Horii, H.; Yi, J.H.; Park, J.H.; Ha, Y.H.; Baek, I.G.; Park, S.O.; Hwang, Y.N.; Lee, 

S.H.; Kim, Y.T.; Lee, K.H.; et al. A novel cell technology using N-doped GeSbTe 

films for phase change RAM. In Proceedings of the 2003 Symposium on VLSI 

Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407); Japan Soc. 

Applied Phys, 2003; Vol. 2003, pp. 177–178. 

12.  Ha, Y.H.; Yi, J.H.; Horii, H.; Park, J.H.; Joo, S.H.; Park, S.O.; Chung, U.I.; Moon, 

J.T. An Edge Contact Type Cell for Phase Change RAM Featuring Very Low 

Power Consumption. Dig. Tech. Pap. - Symp. VLSI Technol. 2003, 175–176. 

13.  Waser, R.; Dittmann, R.; Staikov, C.; Szot, K. Redox-based resistive switching 

memories nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 

2632–2663. 

14.  Wong, H.S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, 

F.T.; Tsai, M.J. Metal-oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. 

15.  Chen, Y.; Jung, G.Y.; Ohlberg, D.A.A.; Li, X.; Stewart, D.R.; Jeppesen, J.O.; 

Nielsen, K.A.; Stoddart, J.F.; Williams, R.S. Nanoscale molecular-switch crossbar 

circuits. Nanotechnology 2003, 14, 462–468. 

16.  Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G.Y.; Cheung, C.L.; Lieber, C.M. 

Carbon nanotube-based nonvolatile random access memory for molecular 

computing. Science (80-. ). 2000, 289, 94–97. 

17.  Shin, J.S.; Pierce, N.A. Rewritable memory by controllable nanopatterning of 



 

87 

DNA. Nano Lett. 2004, 4, 905–909. 

18.  Scott, J.F. Ferroelectric Memories. 2000, 246, 113–115. 

19.  Müller, G.; Happ, T.; Kund, M.; Lee, G.Y.; Nagel, N.; Sezi, R. Status and outlook 

of emerging nonvolatile memory technologies. Tech. Dig. - Int. Electron Devices 

Meet. IEDM 2004, 567–570. 

20.  Lee, S.H.; Hwang, Y.N.; Lee, S.Y.; Ryoo, K.C.; Ahn, S.J.; Koo, H.C.; Jeong, 

C.W.; Kim, Y.T.; Koh, G.H.; Jeong, G.T.; et al. Full integration and cell 

characteristics for 64Mb nonvolatile PRAM. Dig. Tech. Pap. - Symp. VLSI 

Technol. 2004, 20–21. 

21.  Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 

1971, 18, 507–519. 

22.  Wang, J.; Sun, B.; Gao, F.; Greenham, N.C. Memristive devices based on solution-

processed ZnO nanocrystals. Phys. Status Solidi Appl. Mater. Sci. 2010, 207, 484–

487. 

23.  Jung, M.; Shalf, J.; Kandemir, M. Design of a large-scale storage-class RRAM 

system. 2013, 103. 

24.  Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 

2007, 6, 833–840. 

25.  Xu, W.; Li, H.; Xu, J.-B.; Wang, L. Recent Advances of Solution-Processed Metal 

Oxide Thin-Film Transistors. ACS Appl. Mater. Interfaces 2018, acsami.7b16010. 

26.  Garcia, V.; Fusil, S.; Bouzehouane, K.; Enouz-Vedrenne, S.; Mathur, N.D.; 

Barthélémy, A.; Bibes, M. Giant tunnel electroresistance for non-destructive 

readout of ferroelectric states. Nature 2009, 460, 81–84. 



 

88 

27.  Auciello, O.; Scott, J.F. THE PHYSICS OF to save the document on your. 2016. 

28.  Jeong, D.S.; Schroeder, H.; Waser, R. Mechanism for bipolar switching in a Pt/ 

TiO2 /Pt resistive switching cell. Phys. Rev. B - Condens. Matter Mater. Phys. 

2009, 79, 1–10. 

29.  Jeong, D.S.; Thomas, R.; Katiyar, R.S.; Scott, J.F.; Kohlstedt, H.; Petraru, A.; 

Hwang, C.S. Emerging memories: Resistive switching mechanisms and current 

status. Reports Prog. Phys. 2012, 75. 

30.  Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 

28–36. 

31.  Linn, E.; Rosezin, R.; Kügeler, C.; Waser, R. Complementary resistive switches 

for passive nanocrossbar memories. Nat. Mater. 2010, 9, 403–406. 

32.  Lee, M.J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.B.; Kim, 

C.J.; Seo, D.H.; Seo, S.; et al. A fast, high-endurance and scalable non-volatile 

memory device made from asymmetric Ta2O5-xx/TaO2-xbilayer structures. Nat. 

Mater. 2011, 10, 625–630. 

33.  Ielmini, D.; Zhang, Y. Analytical model for subthreshold conduction and threshold 

switching in chalcogenide-based memory devices. J. Appl. Phys. 2007, 102. 

34.  Chang, S.H.; Chae, S.C.; Lee, S.B.; Liu, C.; Noh, T.W.; Lee, J.S.; Kahng, B.; Jang, 

J.H.; Kim, M.Y.; Kim, D.W.; et al. Effects of heat dissipation on unipolar 

resistance switching in PtNiOPt capacitors. Appl. Phys. Lett. 2008, 92, 28–31. 

35.  Chang, S.H.; Lee, J.S.; Chae, S.C.; Lee, S.B.; Liu, C.; Kahng, B.; Kim, D.W.; Noh, 

T.W. Occurrence of both unipolar memory and threshold resistance switching in a 

NiO film. Phys. Rev. Lett. 2009, 102, 1–4. 



 

89 

36.  Kim, S.; Moon, H.; Gupta, D.; Yoo, S.; Choi, Y.K. Resistive switching 

characteristics of Sol-Gel Zinc oxide films for flexible memory applications. IEEE 

Trans. Electron Devices 2009, 56, 696–699. 

37.  Walczyk, C.; Wenger, C.; Sohal, R.; Lukosius, M.; Fox, A.; Dbrowski, J.; 

Wolansky, D.; Tillack, B.; Müssig, H.J.; Schroeder, T. Pulse-induced low-power 

resistive switching in Hf O2 metal-insulator-metal diodes for nonvolatile memory 

applications. J. Appl. Phys. 2009, 105. 

38.  Strukov, D.B.; Alibart, F.; Stanley Williams, R. Thermophoresis/diffusion as a 

plausible mechanism for unipolar resistive switching in metal-oxide-metal 

memristors. Appl. Phys. A Mater. Sci. Process. 2012, 107, 509–518. 

39.  Hong, X.L.; Loy, D.J.J.; Dananjaya, P.A.; Tan, F.; Ng, C.M.; Lew, W.S. Oxide-

based RRAM materials for neuromorphic computing. J. Mater. Sci. 2018, 53, 

8720–8746. 

40.  Lin, K.L.; Hou, T.H.; Shieh, J.; Lin, J.H.; Chou, C.T.; Lee, Y.J. Electrode 

dependence of filament formation in HfO2 resistive-switching memory. J. Appl. 

Phys. 2011, 109. 

41.  Kim, K.M.; Kim, G.H.; Song, S.J.; Seok, J.Y.; Lee, M.H.; Yoon, J.H.; Hwang, 

C.S.  Electrically configurable electroforming and bipolar resistive switching in 

Pt/TiO 2 /Pt structures . Nanotechnology 2010, 21, 305203. 

42.  Kim, K.M.; Choi, B.J.; Lee, M.H.; Kim, G.H.; Song, S.J.; Seok, J.Y.; Yoon, J.H.; 

Han, S.; Hwang, C.S. A detailed understanding of the electronic bipolar resistance 

switching behavior in Pt/TiO 2 /Pt structure. Nanotechnology 2011, 22. 

43.  Park, Y.A.; Sung, K.D.; Won, C.J.; Jung, J.H.; Hur, N. Bipolar resistance 



 

90 

switching and photocurrent in a BaTiO 3-δ thin film. J. Appl. Phys. 2013, 114, 1–

6. 

44.  Ma, W.J.; Lin, S.P.; Luo, J.M.; Zhang, X.Y.; Wang, Y.; Li, Z.X.; Wang, B.; 

Zheng, Y. Highly uniform bipolar resistive switching characteristics in TiO 

2/BaTiO3/TiO2 multilayer. Appl. Phys. Lett. 2013, 103, 1–6. 

45.  Huang, J.S.; Yen, W.C.; Lin, S.M.; Lee, C.Y.; Wu, J.; Wang, Z.M.; Chin, T.S.; 

Chueh, Y.L. Amorphous zinc-doped silicon oxide (SZO) resistive switching 

memory: Manipulated bias control from selector to memristor. J. Mater. Chem. C 

2014, 2, 4401–4405. 

46.  Lin, C.C.; Tu, B.C.; Lin, C.C.; Lin, C.H.; Tseng, T.Y. Resistive switching 

mechanisms of V-doped SrZrO3 memory films. IEEE Electron Device Lett. 2006, 

27, 725–727. 

47.  Ding, Y.; Xu, X.; Bhalla, A.; Yang, X.; Chen, J.; Chen, C. Switchable diode effect 

in BaZrO3 thin films. RSC Adv. 2016, 6, 60074–60079. 

48.  Pickett, M.D.; Stanley Williams, R. Sub-100fJ and sub-nanosecond thermally 

driven threshold switching in niobium oxide crosspoint nanodevices. 

Nanotechnology 2012, 23. 

49.  Ovshinsky, S.R. Reversible Electrical Switching Phenomena in Disordered 

Structures. Phys. Rev. Lett. 1968, 21, 1450–1453. 

50.  Yuan, X.; Tang, J.; Zeng, H.; Wei, X. Abnormal coexistence of unipolar , bipolar , 

and threshold resistive switching in an Al / NiO / ITO structure. 2014, 1–5. 

51.  Yang, Y.; Sheridan, P.; Lu, W. Complementary resistive switching in tantalum 

oxide-based resistive memory devices Complementary resistive switching in 



 

91 

tantalum oxide-based resistive memory devices. 2013, 203112, 2012–2014. 

52.  Yan, Z.B.; Liu, J.M. Resistance switching memory in perovskite oxides. Ann. 

Phys. (N. Y). 2015, 358, 206–224. 

53.  Kim, K.M.; Jeong, D.S.; Hwang, C.S. Nanofilamentary resistive switching in 

binary oxide system; A review on the present status and outlook. Nanotechnology 

2011, 22. 

54.  Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random 

access memories: Materials, switching mechanisms, and performance. Mater. Sci. 

Eng. R Reports 2014, 83, 1–59. 

55.  Chen, J.Y.; Huang, C.W.; Chiu, C.H.; Huang, Y.T.; Wu, W.W. Switching Kinetic 

of VCM-Based Memristor: Evolution and Positioning of Nanofilament. Adv. 

Mater. 2015, 27, 5028–5033. 

56.  Lin, Y.S.; Zeng, F.; Tang, S.G.; Liu, H.Y.; Chen, C.; Gao, S.; Wang, Y.G.; Pan, F. 

Resistive switching mechanisms relating to oxygen vacancies migration in both 

interfaces in Ti/HfOx/Pt memory devices. J. Appl. Phys. 2013, 113. 

57.  Chen, C.; Song, C.; Yang, J.; Zeng, F.; Pan, F. Oxygen migration induced resistive 

switching effect and its thermal stability in W/TaO x/Pt structure. Appl. Phys. Lett. 

2012, 100. 

58.  Kim, S.; Choi, S.; Lu, W. Comprehensive physical model of dynamic resistive 

switching in an oxide memristor. ACS Nano 2014, 8, 2369–2376. 

59.  Heo, Y.; Kan, D.; Shimakawa, Y.; Seidel, J. Resistive switching properties of 

epitaxial BaTiO3-δthin films tuned by after-growth oxygen cooling pressure. Phys. 

Chem. Chem. Phys. 2016, 18, 197–204. 



 

92 

60.  Kim, H.D.; An, H.M.; Kim, T.G. Ultrafast resistive-switching phenomena 

observed in NiN-based ReRAM cells. IEEE Trans. Electron Devices 2012, 59, 

2302–2307. 

61.  Lee, C.B.; Kang, B.S.; Benayad, A.; Lee, M.J.; Ahn, S.E.; Kim, K.H.; Stefanovich, 

G.; Park, Y.; Yoo, I.K. Effects of metal electrodes on the resistive memory 

switching property of NiO thin films. Appl. Phys. Lett. 2008, 93. 

62.  Schindler, C.; Thermadam, S.C.P.; Waser, R.; Kozicki, M.N. Bipolar and unipolar 

resistive switching in cu-doped SiO2. IEEE Trans. Electron Devices 2007, 54, 

2762–2768. 

63.  Kund, M.; Beitel, G.; Pinnow, C.U.; Röhr, T.; Schumann, J.; Symanczyk, R.; 

Ufert, K.D.; Müller, G. Conductive bridging RAM (CBRAM): An emerging non-

volatile memory technology scalable to sub 20nm. Tech. Dig. - Int. Electron 

Devices Meet. IEDM 2005, 2005, 754–757. 

64.  Gao, S.; Zeng, F.; Chen, C.; Tang, G.; Lin, Y.; Zheng, Z.; Song, C.; Pan, F. 

Conductance quantization in a Ag filament-based polymer resistive memory. 

Nanotechnology 2013, 24. 

65.  Pearson, C.; Bowen, L.; Lee, M.W.; Fisher, A.L.; Linton, K.E.; Bryce, M.R.; 

Petty, M.C. Focused ion beam and field-emission microscopy of metallic filaments 

in memory devices based on thin films of an ambipolar organic compound 

consisting of oxadiazole, carbazole, and fluorene units. Appl. Phys. Lett. 2013, 

102. 

66.  Peng, P.; Xie, D.; Yang, Y.; Zang, Y.; Gao, X.; Zhou, C.; Feng, T.; Tian, H.; Ren, 

T.; Zhang, X. Resistive switching behavior in diamond-like carbon films grown by 



 

93 

pulsed laser deposition for resistance switching random access memory 

application. J. Appl. Phys. 2012, 111. 

67.  Wang, Z.; Griffin, P.B.; McVittie, J.; Wong, S.; McIntyre, P.C.; Nishi, Y. 

Resistive Switching Mechanism in <formula 

formulatype="inline"><tex>$\hbox{Zn}_{x}\hbox{Cd}_{1 - 

x}\hbox{S}$</tex></formula> Nonvolatile Memory Devices. IEEE Electron 

Device Lett. 2007, 28, 14–16. 

68.  Razi, P.M.; Gangineni, R.B. Compliance current and film thickness influence upon 

multi-level threshold resistive switching of amorphous BaTiO3 (am-BTO) films in 

Ag/am-BTO/Ag cross point structures. Thin Solid Film -submitted 2019, 685, 59–

65. 

69.  Presented, A.D.; Wang, J. PROBING LOCAL VACANCY-DRIVEN RESISTIVE 

SWITCHING IN METAL OXIDE NANOSTRUCTURES. 2018. 

70.  Torrezan, A.C.; Strachan, J.P.; Medeiros-Ribeiro, G.; Williams, R.S. Sub-

nanosecond switching of a tantalum oxide memristor. Nanotechnology 2011, 22. 

71.  Govoreanu, B.; Kar, G.S.; Chen, Y.Y.; Paraschiv, V.; Kubicek, S.; Fantini, A.; 

Radu, I.P.; Goux, L.; Clima, S.; Degraeve, R.; et al. 10×10nm 2 Hf/HfO x crossbar 

resistive RAM with excellent performance, reliability and low-energy operation. 

Tech. Dig. - Int. Electron Devices Meet. IEDM 2011, 31.6.1-31.6.4. 

72.  Presented, A.D.; Wang, J. PROBING LOCAL VACANCY-DRIVEN RESISTIVE 

SWITCHING IN METAL OXIDE NANOSTRUCTURES. 2018. 

73.  Huang, Y.; Luo, Y.; Shen, Z.; Yuan, G.; Zeng, H. Unipolar resistive switching of 

ZnO-single-wire memristors. Nanoscale Res. Lett. 2014, 9, 1–5. 



 

94 

74.  Akinaga, H.; Shima, H. Resistive random access memory (ReRAM) based on 

metal oxides. Proc. IEEE 2010, 98, 2237–2251. 

75.  Yan, Z.B.; Li, S.Z.; Wang, K.F.; Liu, J.M. Unipolar resistive switching effect in 

YMn1-δ O 3 thin films. Appl. Phys. Lett. 2010, 96, 1–4. 

76.  Wang, J.; Li, L.; Huyan, H.; Pan, X.; Nonnenmann, S.S. Highly Uniform Resistive 

Switching in HfO2 Films Embedded with Ordered Metal Nanoisland Arrays. Adv. 

Funct. Mater. 2019, 29, 1–11. 

77.  Kwon, D.-H.; Kim, K.M.; Jang, J.H.; Jeon, J.M.; Lee, M.H.; Kim, G.H.; Li, X.-S.; 

Park, G.-S.; Lee, B.; Han, S.; et al. Atomic structure of conducting nanofilaments 

in TiO2 resistive switching memory. Nat. Nanotechnol. 2010, 5, 148–53. 

78.  Privitera, S.; Bersuker, G.; Butcher, B.; Kalantarian, A.; Lombardo, S.; Bongiorno, 

C.; Geer, R.; Gilmer, D.C.; Kirsch, P.D. Microscopy study of the conductive 

filament in HfO2 resistive switching memory devices. Microelectron. Eng. 2013, 

109, 75–78. 

79.  Jalili, N.; Laxminarayana, K. A review of atomic force microscopy imaging 

systems: Application to molecular metrology and biological sciences. 

Mechatronics 2004, 14, 907–945. 

80.  Magonov, S.N.; Elings, V.; Whangbo, M.H. Phase imaging and stiffness in 

tapping-mode atomic force microscopy. Surf. Sci. 1997, 375. 

81.  Abelmann, L. Magnetic Force Microscopy. Encycl. Spectrosc. Spectrom. 2016, 

675–684. 

82.  Kolewe, K.W.; Zhu, J.; Mako, N.R.; Nonnenmann, S.S.; Schiffman, J.D. Bacterial 

Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) 



 

95 

Hydrogels. ACS Appl. Mater. Interfaces 2018, 10, 2275–2281. 

83.  Westra, K.L.; Thomson, D.J. The microstructure of thin films observed using 

atomic force microscopy. Thin Solid Films 1995, 257, 15–21. 

84.  Zhu, J.; Lee, J.W.; Lee, H.; Xie, L.; Pan, X.; De Souza, R.A.; Eom, C.B.; 

Nonnenmann, S.S. Probing vacancy behavior across complex oxide 

heterointerfaces. Sci. Adv. 2019, 5, 1–10. 

85.  Hensling, F.V.E.; Keeble, D.J.; Zhu, J.; Brose, S.; Xu, C.; Gunkel, F.; Danylyuk, 

S.; Nonnenmann, S.S.; Egger, W.; Dittmann, R. UV radiation enhanced oxygen 

vacancy formation caused by the PLD plasma plume. Sci. Rep. 2018, 8, 4–10. 

86.  Nonnenmann, S.S.; Kungas, R.; Vohs, J.; Bonnell, D.A. Direct in situ probe of 

electrochemical processes in operating fuel cells. ACS Nano 2013, 7, 6330–6336. 

87.  Kalinin, S. V.; Bonnell, D.A. Screening phenomena on oxide surfaces and its 

implications for local electrostatic and transport measurements. Nano Lett. 2004, 4, 

555–560. 

88.  Eom, C.-B.; Wu, D.; Gruverman, A.; Lu, H.; Folkman, C.M.; Zhuravlev, M.Y.; 

Tsymbal, E.Y.; Jang, H.W.; Felker, D.; Wang, Y.; et al. Tunneling 

Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale. Nano 

Lett. 2009, 9, 3539–3543. 

89.  Jang, H.W.; Ortiz, D.; Baek, S.H.; Folkman, C.M.; Das, R.R.; Shafer, P.; Chen, Y.; 

Nelson, C.T.; Pan, X.; Ramesh, R.; et al. Domain engineering for enhanced 

ferroelectric properties of epitaxial (001) BiFeO thin films. Adv. Mater. 2009, 21, 

817–823. 

90.  Zhu, J. Quantitative Probing of Vacancies and Ions Dynamics in. 2019. 



 

96 

91.  Wang, J.; Nonnenmann, S.S. Area-dependent electroforming and switching 

polarity reversal across TiO2/Nb:SrTiO3 oxide interfaces. J. Mater. Sci. 2017, 52, 

6469–6475. 

92.  Walker, D.J.F.; Martz, E.; Holmes, D.E.; Zhou, Z.; Nonnenmann, S.S.; Lovley, 

D.R.  The Archaellum of Methanospirillum hungatei Is Electrically Conductive . 

MBio 2019, 10, 1–6. 

93.  Hou, J.; Rouxel, B.; Qin, W.; Nonnenmann, S.S.; Bonnell, D.A. Tip loading 

effects on AFM-based transport measurements of metal-oxide interfaces. 

Nanotechnology 2013, 24. 

94.  Lanza, M.; Wong, H.S.P.; Pop, E.; Ielmini, D.; Strukov, D.; Regan, B.C.; Larcher, 

L.; Villena, M.A.; Yang, J.J.; Goux, L.; et al. Recommended Methods to Study 

Resistive Switching Devices. Adv. Electron. Mater. 2019, 5, 1–28. 

95.  Tsuchiya, H.; Schmuki, P. Self-organized high aspect ratio porous hafnium oxide 

prepared by electrochemical anodization. Electrochem. commun. 2005, 7, 49–52. 

96.  Sieber, I. V; Schmuki, P. Porous Tantalum Oxide Prepared by Electrochemical 

Anodic Oxidation. J. Electrochem. Soc. 2005, 152, C639--C644. 

97.  Su, Z.; Zhou, W. Formation mechanism of porous anodic aluminium and titanium 

oxides. Adv. Mater. 2008, 20, 3663–3667. 

98.  Wu, C.-G.; Bein, T. Conducting Carbon Wires in Ordered, Nanometer-Sized 

Channels. Science (80-. ). 1994, 266, 1013–1015. 

99.  Weitkamp, J. Zeolites and catalysis. Solid State Ionics 2000, 131, 175–188. 

100.  Deng, G.; Qiang, Z.; Lecorchick, W.; Cavicchi, K.A.; Vogt, B.D. Nanoporous 

nonwoven fibril-like morphology by cooperative self-assembly of poly(ethylene 



 

97 

oxide)- block -poly(ethyl acrylate)- block -polystyrene and phenolic resin. 

Langmuir 2014, 30, 2530–2540. 

101.  Yang, H.; Guo, L.; Wang, Z.; Yan, N.; Wang, Y. Nanoporous Films with Superior 

Resistance to Protein Adsorption by Selective Swelling of Polystyrene-block-

poly(ethylene oxide). Ind. Eng. Chem. Res. 2016, 55, 8133–8140. 

102.  Tonucci, R.J.; Justus, B.L.; Campillo,  a J.; Ford, C.E. Nanochannel array glass. 

Science (80-. ). 1992, 258, 783–785. 

103.  Keller, F.; Hunter, M.S.; Robinson, D.L. Structural Features of Oxide Coatings on 

Aluminum. J. Electrochem. Soc. 1953, 100, 411. 

104.  Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step 

replication of honeycomb str ... Science (80-. ). 1995, 268, 1466–1468. 

105.  Qiu, X.; Howe, J.Y.; Meyer, H.M.; Tuncer, E.; Paranthaman, M.P. Thermal 

stability of HfO2nanotube arrays. Appl. Surf. Sci. 2011, 257, 4075–4081. 

106.  Wang, N.; Li, H.; Wang, J.; Chen, S.; Ma, Y.; Zhang, Z. Study on the 

anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with 

tantalum oxide nanotube array films. ACS Appl. Mater. Interfaces 2012, 4, 4516–

4523. 

107.  Wei, W.; Macak, J.M.; Schmuki, P. High aspect ratio ordered nanoporous Ta2O5 

films by anodization of Ta. Electrochem. commun. 2008, 10, 428–432. 

108.  Su, Z.; Grigorescu, S.; Wang, L.; Lee, K.; Schmuki, P. Fast fabrication of Ta2O5 

nanotube arrays and their conversion to Ta3N5for efficient solar driven water 

splitting. Electrochem. commun. 2015, 50, 15–19. 

109.  Gonçalves, R. V.; Migowski, P.; Wender, H.; Eberhardt, D.; Weibel, D.E.; 



 

98 

Sonaglio, F.C.; Zapata, M.J.M.; Dupont, J.; Feil, A.F.; Teixeira, S.R. Ta 2O 5 

nanotubes obtained by anodization: Effect of thermal treatment on the 

photocatalytic activity for hydrogen production. J. Phys. Chem. C 2012, 116, 

14022–14030. 

110.  Paulose, M.; Varghese, O.K.; Mor, G.K.; Grimes, C.A.; Ong, K.G. Unprecedented 

ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 

2006, 17, 398–402. 

111.  Macák, J.M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by 

anodization of titanium. Angew. Chemie - Int. Ed. 2005, 44, 2100–2102. 

112.  Macák, J.M.; Tsuchiya, H.; Ghicov, A.; Schmuki, P. Dye-sensitized anodic 

TiO2nanotubes. Electrochem. commun. 2005, 7, 1133–1137. 

113.  Stępniowski, W.J.; Salerno, M. Fabrication of nanowires and nanotubes by anodic 

alumina template-assisted electrodeposition. In Manufacturing nanostructures; 

2014; pp. 321–357 ISBN 9781910086070. 

114.  Jaafar, M.; Navas, D.; Hernández-Vélez, M.; Baldonedo, J.L.; Vázquez, M.; 

Asenjo, A. Nanoporous alumina membrane prepared by nanoindentation and 

anodic oxidation. Surf. Sci. 2009, 603, 3155–3159. 

115.  Liu, C.Y.; Datta, A.; Wang, Y.L. Ordered anodic alumina nanochannels on 

focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 2001, 78, 

120–122. 

116.  Martín, J.; Manzano, C. V.; Martín-González, M. In-depth study of self-ordered 

porous alumina in the 140-400 nm pore diameter range. Microporous Mesoporous 

Mater. 2012, 151, 311–316. 



 

99 

117.  Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gösele, U. Self-ordering 

Regimes of Porous Alumina: The 10 Porosity Rule. Nano Lett. 2002, 2, 677–680. 

118.  Zhang, J.; Kielbasa, J.E.; Carroll, D.L. Controllable fabrication of porous alumina 

templates for nanostructures synthesis. Mater. Chem. Phys. 2010, 122, 295–300. 

119.  Wang, X.; Han, G.-R. Fabrication and characterization of anodic aluminum oxide 

template. Microelectron. Eng. 2003, 66, 166–170. 

120.  Hu, G.; Zhang, H.; Di, W.; Zhao, T. Study on Wet Etching of AAO Template. 

Carbon Nanotub. 2004, 1, 78–82. 

121.  Lyu, S.-H.; Lee, J.-S. Highly scalable resistive switching memory cells using pore-

size-controlled nanoporous alumina templates. J. Mater. Chem. 2012, 22, 1852–

1861. 

122.  Xiong, G.; Elam, J.W.; Feng, H.; Han, C.Y.; Wang, H.-H.; Iton, L.E.; Curtiss, 

L.A.; Pellin, M.J.; Kung, M.; Kung, H.; et al. Effect of atomic layer deposition 

coatings on the surface structure of anodic aluminum oxide membranes. J. Phys. 

Chem. B 2005, 109, 14059–14063. 

123.  Ritala, M.; Kukli, K.; Rahtu, A.; Raisanen, P.I.; Leskela, M.; Sajavaara, T.; 

Keinonen, J.; Schulz, M.; Packan, P.A.; Muller, D.A.; et al. Atomic layer 

deposition of oxide thin films with metal alkoxides as oxygen sources. Science 

2000, 288, 319–21. 

124.  Pellin, M.J.; Stair, P.C.; Xiong, G.; Elam, J.W.; Birrell, J.; Curtiss, L.; George, 

S.M.; Han, C.Y.; Iton, L.; Kung, H.; et al. Mesoporous catalytic membranes: 

Synthetic control of pore size and wall composition. Catal. Letters 2005, 102, 

127–130. 



 

100 

125.  Sulka, G.D.; Zaraska, L.; Stępniowski, W.J. Anodic porous alumina as a template 

for nanofabrication. Encycl. Nanosci. Nanotechnol. 2011, 11, 261–349. 

126.  Lee, W.; Park, S.-J. Porous Anodic Aluminum Oxide: Anodization and Templated 

Synthesis of Functional Nanostructures. Chem. Rev. 2014, 114, 7487–7556. 

127.  Poinern, G.E.J.; Ali, N.; Fawcett, D. Progress in nano-engineered anodic 

aluminum oxide membrane development; 2010; Vol. 4; ISBN 6189360289. 

128.  Santos, A.; Kumeria, T.; Losic, D. Nanoporous anodic aluminum oxide for 

chemical sensing and biosensors. TrAC - Trends Anal. Chem. 2013, 44, 25–38. 

129.  Masuda, H.; Satoh, M. Fabrication of gold nanodot array using anodic porous 

alumina as an evaporation mask. Japanese J. Appl. Physics, Part 2 Lett. 1996, 35. 

130.  Liang, J.; Chik, H.; Yin, A.; Xu, J. Two-dimensional lateral superlattices of 

nanostructures: Nonlithographic formation by anodic membrane template. J. Appl. 

Phys. 2002, 91, 2544–2546. 

131.  Lei, Y.; Chim, W.K. Shape and size control of regularly arrayed nanodots 

fabricated using ultrathin alumina masks. Chem. Mater. 2005, 17, 580–585. 

132.  Malinovskis, U.; Poplausks, R.; Apsite, I.; Meija, R.; Prikulis, J.; Lombardi, F.; 

Erts, D. Ultrathin anodic aluminum oxide membranes for production of dense sub-

20 nm nanoparticle arrays. J. Phys. Chem. C 2014, 118, 8685–8690. 

133.  Li, Z.; Wang, Y.; Tian, G.; Li, P.; Zhao, L.; Zhang, F.; Yao, J.; Fan, H.; Song, X.; 

Chen, D.; et al. High-density array of ferroelectric nanodots with robust and 

reversibly switchable topological domain states. Sci. Adv. 2017, 3, e1700919. 

134.  Wang, Z.J.; Bai, Y. Resistive Switching Behavior in Ferroelectric 

Heterostructures. Small 2019, 15, 1–13. 



 

101 

135.  Lee, W.; Han, H.; Lotnyk, A.; Schubert, M.A.; Senz, S.; Alexe, M.; Hesse, D.; 

Baik, S.; Gösele, U. Individually addressable epitaxial ferroelectric nanocapacitor 

arrays with near Tb inch-2 density. Nat. Nanotechnol. 2008, 3, 402–407. 

136.  Gao, X.; Liu, L.; Birajdar, B.; Ziese, M.; Lee, W.; Alexe, M.; Hesse, D. High-

density periodically ordered magnetic cobalt ferrite nanodot arrays by template-

assisted pulsed laser deposition. Adv. Funct. Mater. 2009, 19, 3450–3455. 

137.  Nielsch, K.; Wehrspohn, R.B.; Barthel, J.; Kirschner, J.; G??sele, U.; Fischer, S.F.; 

Kronm??ller, H. Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. 

Phys. Lett. 2001, 79, 1360–1362. 

138.  Perre, E.; Nyholm, L.; Gustafsson, T.; Taberna, P.L.; Simon, P.; Edström, K. 

Direct electrodeposition of aluminium nano-rods. Electrochem. commun. 2008, 10, 

1467–1470. 

139.  Cheah, S.K.; Perre, E.; Rooth, M.; Fondell, M.; Hårsta, A.; Nyholm, L.; Boman, 

M.; Gustafsson, T.; Lu, J.; Simon, P.; et al. Self-Supported three-dimensional 

nanoelectrodes for microbattery applications. Nano Lett. 2009, 9, 3230–3233. 

140.  Zhang, Z.; Sun, X.; Dresselhaus, M.S.; Ying, J.; Heremans, J. Electronic transport 

properties of single-crystal bismuth nanowire arrays. Phys. Rev. B 2000, 61, 4850–

4861. 

141.  Wu, Y.; Gu, Q.; Ding, G.; Tong, F.; Hu, Z.; Jonas, A.M. Confinement induced 

preferential orientation of crystals and enhancement of properties in ferroelectric 

polymer nanowires. ACS Macro Lett. 2013, 2, 535–538. 

142.  Dubois, J.-C. Ferroelectric polymers: Chemistry, physics, and applications. Edited 

by Hari Singh Nalwa, Marcel Dekker, New York 1995, XII, 895 pp., hardcover, 



 

102 

$225.00, ISBN 0-8247-9468-0. Adv. Mater. 1996, 8, 542–542. 

143.  Steinhart, M.; Jia, Z.; Schaper, A.K.; Wehrspohn, R.B.; Gösele, U.; Wendorff, J.H. 

Palladium nanotubes with tailored wall morphologies. Adv. Mater. 2003, 15, 706–

709. 

144.  Favier, F.; Walter, E.C.; Zach, M.P.; Benter, T.; Penner, R.M. Hydrogen sensors 

and switches from electrodeposited palladium mesowire arrays. Science 2001, 293, 

2227–2231. 

145.  Niwa, S. -i. A One-Step Conversion of Benzene to Phenol with a Palladium 

Membrane. Science (80-. ). 2002, 295, 105–107. 

146.  Md Jani, A.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: 

Advances in surface engineering and emerging applications. Prog. Mater. Sci. 

2013, 58, 636–704. 

147.  La Flamme, K.E.; Popat, K.C.; Leoni, L.; Markiewicz, E.; La Tempa, T.J.; Roman, 

B.B.; Grimes, C.A.; Desai, T.A. Biocompatibility of nanoporous alumina 

membranes for immunoisolation. Biomaterials 2007, 28, 2638–2645. 

148.  Popat, K.C.; Leary Swan, E.E.; Mukhatyar, V.; Chatvanichkul, K.I.; Mor, G.K.; 

Grimes, C.A.; Desai, T.A. Influence of nanoporous alumina membranes on long-

term osteoblast response. Biomaterials 2005, 26, 4516–4522. 

149.  Simovic, S.; Losic, D.; Vasilev, K. Controlled drug release from porous materials 

by plasma polymer deposition. Chem. Commun. (Camb). 2010, 46, 1317–9. 

150.  Lu, H.F.; Li, F.; Liu, G.; Chen, Z.-G.; Wang, D.-W.; Fang, H.-T.; Lu, G.Q.; Jiang, 

Z.H.; Cheng, H.-M. Amorphous TiO 2 nanotube arrays for low-temperature 

oxygen sensors. Nanotechnology 2008, 19, 405504. 



 

103 

151.  Yip, C.T.; Huang, H.; Zhou, L.; Xie, K.; Wang, Y.; Feng, T.; Li, J.; Tam, W.Y. 

Direct and seamless coupling of TiO2nanotube photonic crystal to dye-sensitized 

solar cell: A single-step approach. Adv. Mater. 2011, 23, 5624–5628. 

152.  Cui, H.; Zhu, G.; Xie, Y.; Zhao, W.; Yang, C.; Lin, T.; Gu, H.; Huang, F. Black 

nanostructured Nb 2 O 5 with improved solar absorption and enhanced 

photoelectrochemical water splitting. J. Mater. Chem. A 2015, 3, 11830–11837. 

153.  Baik, J.-S.; Yun, G.; Balamurugan, M.; Lee, S.K.; Kim, J.-H.; Ahn, K.-S.; Kang, 

S.H. Hydrogen Treated Niobium Oxide Nanotube Arrays for Photoelectrochemical 

Water Oxidation. J. Electrochem. Soc. 2016, 163, H1165–H1170. 

154.  Zwilling, V.; Aucouturier, M.; Darque-Ceretti, E. Anodic oxidation of titanium 

and TA6V alloy in chromic media. An electrochemical approach. Electrochim. 

Acta 1999, 45, 921–929. 

155.  Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P.E.; Lévy, F. Electrical and optical 

properties of TiO 2 anatase thin films. J. Appl. Phys. 1994, 75, 2042–2047. 

156.  Shankar, K.; Mor, G.K.; Prakasam, H.E.; Yoriya, S.; Paulose, M.; Varghese, O.K.; 

Grimes, C.A. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in 

water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 2007, 18. 

157.  O’Regan, B.; Gratzel, M. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-

Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. 

158.  Ito, S.; Ha, N.L.C.; Rothenberger, G.; Liska, P.; Comte, P.; Zakeeruddin, S.M.; 

P??chy, P.; Nazeeruddin, M.K.; Gr??tzel, M. High-efficiency (7.2%) flexible dye-

sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. 

Chem. Commun. 2006, 4004–4006. 



 

104 

159.  Ye, M.; Gong, J.; Lai, Y.; Lin, C.; Lin, Z. High-efficiency photoelectrocatalytic 

hydrogen generation enabled by palladium quantum dots-sensitized TiO 2 

nanotube arrays. J. Am. Chem. Soc. 2012, 134, 15720–15723. 

160.  Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.A.; Stewart, D.R.; Williams, R.S. 

Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. 

Nanotechnol. 2008, 3, 429–433. 

161.  Gergel-hackett, N.; Hamadani, B.; Dunlap, B.; Suehle, J.; Member, S.; Richter, C.; 

Member, S.; Hacker, C.; Gundlach, D.; Abstract, A. A Flexible Solution-Processed 

Memristor. IEEE Electron Device Lett. 2009, 30, 706–708. 

162.  Gale, E. TiO2-based memristors and ReRAM: Materials, mechanisms and models 

(a review). Semicond. Sci. Technol. 2014, 29. 

163.  Chaneliere, C.; Autran, J.L.; Devine, R.A.B.; Balland, B. Tantalum pentoxide 

(Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R Reports 

1998, 22, 269–322. 

164.  Takahara, Y.; Kondo, J.N.; Takata, T.; Lu, D.; Domen, K. Mesoporous tantalum 

oxide. 1. Characterization and photocatalytic activity for the overall water 

decomposition. Chem. Mater. 2001, 13, 1194–1199. 

165.  Kim, Y.B.; Lee, S.R.; Lee, D.; Lee, C.B.; Chang, M.; Hur, J.H.; Lee, M.J.; Park, 

G.S.; Kim, C.J.; Chung, U.I.; et al. Bi-layered RRAM with unlimited endurance 

and extremely uniform switching. Dig. Tech. Pap. - Symp. VLSI Technol. 2011, 

52–53. 

166.  Kim, K.M.; Lee, S.R.; Kim, S.; Chang, M.; Hwang, C.S. Self-Limited switching in 

Ta2 O5 /TaOx memristors exhibiting uniform multilevel changes in resistance. 



 

105 

Adv. Funct. Mater. 2015, 25, 1527–1534. 

167.  Matsuno, H.; Yokoyama, A.; Watari, F.; Uo, M.; Kawasaki, T. Biocompatibility 

and osteogenesis of refractory metal implants, titanium, hafnium, niobium, 

tantalum and rhenium. Biomaterials 2001, 22, 1253–1262. 

168.  Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. 

A243 1998, 243, 231–236. 

169.  Minagar, S.; Berndt, C.C.; Wang, J.; Ivanova, E.; Wen, C. A review of the 

application of anodization for the fabrication of nanotubes on metal implant 

surfaces. Acta Biomater. 2012, 8, 2875–2888. 

170.  Yasuda, K.; Schmuki, P.; Yasuda, B.K. Formation of Self-Organized Zirconium 

Titanate Nanotube Layers by Alloy Anodization. Adv. Mater. 2007, 19, 1757–

1760. 

171.  Yasuda, K.; Schmuki, P. Electrochemical formation of self-organized zirconium 

titanate nanotube multilayers. Electrochem. commun. 2007, 9, 615–619. 

172.  Tsuchiya, H.; MacAk, J.M.; Taveira, L.; Schmuki, P. Fabrication and 

characterization of smooth high aspect ratio zirconia nanotubes. Chem. Phys. Lett. 

2005, 410, 188–191. 

173.  Tsuchiya, H.; Macak, J.M.; Ghlcov, A.; Schmuki, P. Self-organization of anodic 

nanotubes on two size scales. Small 2006, 2, 888–891. 

174.  Rahman, M.T.; Shams, N.N.; Lai, C.H.; Fidler, J.; Suess, D. Co/Pt perpendicular 

antidot arrays with engineered feature size and magnetic properties fabricated on 

anodic aluminum oxide templates. Phys. Rev. B - Condens. Matter Mater. Phys. 

2010, 81, 1–7. 



 

106 

175.  Rahman, M.T.; Liu, X.; Morisako, A. TbFeCo perpendicular magnetic recording 

media deposited on nanohole arrays of porous alumina layer. J. Appl. Phys. 2006, 

99. 

176.  Xiao, Z.L.; Han, C.Y.; Welp, U.; Wang, H.H.; Vlasko-Vlasov, V.K.; Kwok, W.K.; 

Miller, D.J.; Hiller, J.M.; Cook, R.E.; Willing, G.A.; et al. Nickel antidot arrays on 

anodic alumina substrates. Appl. Phys. Lett. 2002, 81, 2869–2871. 

177.  Diefeng Gu, Helmut Baumgart, T.M.A.-F. and G.N. Synthesis of Nested Coaxial 

Multiple- Walled Nanotubes by Atomic Layer. ACS Nano 2010, 4, 753–758. 

178.  Chuang, V.P.; Jung, W.; Ross, C.A.; Cheng, J.Y.; Park, O.H.; Kim, H.C. 

Multilayer magnetic antidot arrays from block copolymer templates. J. Appl. Phys. 

2008, 103. 

179.  Wang, C.C.; Adeyeye, A.O.; Singh, N. Magnetic and transport properties of 

multilayer nanoscale antidot arrays. Appl. Phys. Lett. 2006, 88, 2004–2007. 

180.  Castaño, F.J.; Nielsch, K.; Ross, C.A.; Robinson, J.W.A.; Krishnan, R. Anisotropy 

and magnetotransport in ordered magnetic antidot arrays. Appl. Phys. Lett. 2004, 

85, 2872–2874. 

181.  Cowburn, R.P.; Adeyeye, A.O.; Bland, J.A.C. Magnetic switching and uniaxial 

anisotropy in lithographically defined anti-dot Permalloy arrays. J. Magn. Magn. 

Mater. 1997, 173, 193–201. 

182.  Adeyeye, A.O.; Bland, J.A.C.; Daboo, C. Magnetic properties of arrays of “holes” 

in Ni80Fe20films. Appl. Phys. Lett. 1997, 70, 3164–3166. 

183.  Rahman, M.T.; Shams, N.N.; Lai, C.H. A large-area mesoporous array of magnetic 

nanostructure with perpendicular anisotropy integrated on Si wafers. 



 

107 

Nanotechnology 2008, 19. 

184.  Zang, K.Y.; Wang, Y.D.; Wang, L.S.; Tripathy, S.; Chua, S.J.; Thompson, C. V. 

Nanoheteroepitaxy of GaN on a nanopore array of Si(111) surface. Thin Solid 

Films 2007, 515, 4505–4508. 

185.  Cheng, G.; Moskovits, M. A highly regular two-dimensional array of Au quantum 

dots deposited in a periodically nanoporous GaAs epitaxial layer. Adv. Mater. 

2002, 14, 1567–1570. 

186.  Tian, G.; Zhao, L.; Lu, Z.; Yao, J.; Fan, H.; Fan, Z.; Li, Z.; Li, P.; Chen, D.; 

Zhang, X.; et al. Fabrication of high-density BiFeO 3 nanodot and anti-nanodot 

arrays by anodic alumina template-assisted ion beam etching. Nanotechnology 

2016, 27, 485302. 

187.  Nakao, M.; Oku, S.; Tanaka, H.; Shibata, Y.; Yokoo, A.; Tamamura, T.; Masuda, 

H. Fabrication of GaAs hole array as a 2D-photonic crystal and their application to 

photonic bandgap waveguide. Opt. Quantum Electron. 2002, 34, 183–193. 

188.  Masuda, H.; Watanabe, M.; Yasui, K.; Tryk, D.; Rao, T.; Fujishima, A. 

Fabrication of a Nanostructured Diamond Honeycomb Film. Adv. Mater. 2000, 12, 

444–447. 

189.  Shingubara, S.; Okino, O.; Murakami, Y.; Sakaue, H.; Takahagi, T. Fabrication of 

nanohole array on Si using self-organized porous alumina mask. J. Vac. Sci. 

Technol. B Microelectron. Nanom. Struct. 2001, 19, 1901. 

190.  Wang, Y.D.; Chua, S.J.; Sander, M.S.; Chen, P.; Tripathy, S.; Fonstad, C.G. 

Fabrication and properties of nanoporous GaN films. Appl. Phys. Lett. 2004, 85, 

816–818. 



 

108 

191.  Nakao, M.; Oku, S.; Tamamura, T.; Yasui, K.; Masuda, H. GaAs and InP 

Nanohole Arrays Fabricated by Reactive Beam Etching Using Highly Ordered 

Alumina Membranes. Japanese J. Appied Phys. 1999, 38, 1052–1055. 

192.  Honda, K.; Rao, T.N.; Tryk, D.A.; Fujishima, A.; Watanabe, M.; Yasui, K.; 

Masuda, H. Impedance Characteristics of the Nanoporous Honeycomb Diamond 

Electrodes for Electrical Double-Layer Capacitor Applications. J. Electrochem. 

Soc. 2001, 148, A668. 

193.  Tian, L.; Ram, K.B.; Ahmad, I.; Menon, L.; Holtz, M. Optical properties of a 

nanoporous array in silicon. J. Appl. Phys. 2005, 97. 

194.  Kanamori, Y.; Hane, K.; Sai, H.; Yugami, H. 100 Nm Period Silicon 

Antireflection Structures Fabricated Using a Porous Alumina Membrane Mask. 

Appl. Phys. Lett. 2001, 78, 142–143. 

195.  Yanagishita, T.; Nishio, K.; Masuda, H. Fabrication of metal nanohole arrays with 

high aspect ratios using two-step replication of anodic porous alumina. Adv. Mater. 

2005, 17, 2241–2243. 

196.  Yanagishita, T.; Nishio, K.; Masuda, H. Polymer through-hole membrane 

fabricated by nanoimprinting using metal molds with high aspect ratios. J. Vac. 

Sci. Technol. B Microelectron. Nanom. Struct. 2007, 25, L35. 

197.  Yanagishita, T.; Nishio, K.; Masuda, H. Nanoimprinting using Ni molds prepared 

from highly ordered anodic porous alumina templates. Japanese J. Appl. Physics, 

Part 2 Lett. 2006, 45. 

198.  Haberkorn, N.; Gutmann, J.S.; Theato, P. Template-Assisted Fabrication of Free- 

Triphenylamine Derivative : Toward Ordered Bulk-Heterojunction Solar Cells. 



 

109 

ACS Nano 2009, 3, 1415–1422. 

199.  Martín, J.; Martín-González, M.; del Campo, A.; Reinosa, J.J.; Fernández, J.F. 

Ordered arrays of polymeric nanopores by using inverse nanostructured PTFE 

surfaces. Nanotechnology 2012, 23, 385305. 

200.  Grimm, S.; Giesa, R.; Sklarek, K.; Langner, A. Nondestructive Replication of Self-

Ordered Nanoporous Alumina Membranes via Cross-Linked Polyacrylate 

Nanofiber Arrays 2008. 2008. 

201.  Zhuo, V.Y.Q.; Jiang, Y.; Li, M.H.; Chua, E.K.; Zhang, Z.; Pan, J.S.; Zhao, R.; Shi, 

L.P.; Chong, T.C.; Robertson, J. Band alignment between Ta2O5and metals for 

resistive random access memory electrodes engineering. Appl. Phys. Lett. 2013, 

102, 1–6. 

202.  Kim, H.D.; An, H.M.; Lee, E.B.; Kim, T.G. Stable bipolar resistive switching 

characteristics and resistive switching mechanisms observed in aluminum nitride-

based ReRAM devices. IEEE Trans. Electron Devices 2011, 58, 3566–3573. 

203.  Wang, C.; Jin, K.J.; Xu, Z.T.; Wang, L.; Ge, C.; Lu, H. Bin; Guo, H.Z.; He, M.; 

Yang, G.Z. Switchable diode effect and ferroelectric resistive switching in 

epitaxial BiFeO3 thin films. Appl. Phys. Lett. 2011, 98. 

204.  Nagashima, K.; Yanagida, T.; Oka, K.; Taniguchi, M.; Kawai, T.; Kim, J.S.; Park, 

B.H. Resistive switching multistate nonvolatile memory effects in a single cobalt 

oxide nanowire. Nano Lett. 2010, 10, 1359–1363. 

205.  Yang, Y.; Zhang, X.; Gao, M.; Zeng, F.; Zhou, W.; Xie, S.; Pan, F. Nonvolatile 

resistive switching in single crystalline ZnO nanowires. Nanoscale 2011, 3, 1917–

1921. 



 

110 

206.  Nonnenmann, S.S.; Gallo, E.M.; Spanier, J.E. Redox-based resistive switching in 

ferroelectric perovskite nanotubes. Appl. Phys. Lett. 2010, 97, 1–4. 

207.  Ageev, O.A.; Blinov, Y.F.; Il’in, O.I.; Konoplev, B.G.; Rubashkina, M. V.; 

Smirnov, V.A.; Fedotov, A.A. Study of the resistive switching of vertically aligned 

carbon nanotubes by scanning tunneling microscopy. Phys. Solid State 2015, 57, 

825–831. 

208.  Choi, B.J.; Jeong, D.S.; Kim, S.K.; Rohde, C.; Choi, S.; Oh, J.H.; Kim, H.J.; 

Hwang, C.S.; Szot, K.; Waser, R.; et al. Resistive switching mechanism of TiO 2 

thin films grown by atomic-layer deposition. J. Appl. Phys. 2005, 98. 

209.  Muenstermann, R.; Menke, T.; Dittmann, R.; Waser, R. Coexistence of 

filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film 

memristive devices. Adv. Mater. 2010, 22, 4819–4822. 

210.  Guan, W.; Long, S.; Jia, R.; Liu, M. Nonvolatile resistive switching memory 

utilizing gold nanocrystals embedded in zirconium oxide. Appl. Phys. Lett. 2007, 

91. 

211.  Chang, W.Y.; Cheng, K.J.; Tsai, J.M.; Chen, H.J.; Chen, F.; Tsai, M.J.; Wu, T.B. 

Improvement of resistive switching characteristics in TiO2 thin films with 

embedded Pt nanocrystals. Appl. Phys. Lett. 2009, 95. 

212.  Chen, L.; Gou, H.Y.; Sun, Q.Q.; Zhou, P.; Lu, H.L.; Wang, P.F.; Ding, S.J.; 

Zhang, D. Enhancement of resistive switching characteristics in Al2O 3-Based 

RRAM with embedded ruthenium nanocrystals. IEEE Electron Device Lett. 2011, 

32, 794–796. 

213.  Jang, J.; Pan, F.; Braam, K.; Subramanian, V. Resistance switching characteristics 



 

111 

of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile 

memory applications. Adv. Mater. 2012, 24, 3573–3576. 

214.  Schmidt, D.O.; Hoffmann-Eifert, S.; Zhang, H.; La Torre, C.; Besmehn, A.; 

Noyong, M.; Waser, R.; Simon, U. Resistive Switching of Individual, Chemically 

Synthesized TiO2 Nanoparticles. Small 2015, 11, 6444–6456. 

215.  Yin, S.; Fujishiro, Y.; Wu, J.; Aki, M.; Sato, T. Synthesis and photocatalytic 

properties of fibrous titania by solvothermal reactions. J. Mater. Process. Technol. 

2003, 137, 45–48. 

216.  Kang, M. Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal 

method and the effect of H2O addition on structural stability and 

photodecomposition of methanol. J. Mol. Catal. A Chem. 2003, 197, 173–183. 

217.  Kim, C.S.; Moon, B.K.; Park, J.H.; Chung, S.T.; Son, S.M. Synthesis of 

nanocrystalline TiO2 in toluene by a solvothermal route. J. Cryst. Growth 2003, 

254, 405–410. 

218.  Charinpanitkul, T.; Faungnawakij, K.; Tanthapanichakoon, W. Review of Recent 

Research on Nanoparticle Production in Thailand. Adv. Powder Technol. 2008, 19, 

443–457. 

219.  Gupta, S.M.; Tripathi, M. A review on the synthesis of TiO 2 nanoparticles by 

solution route. Cent. Eur. J. Chem. 2012, 10, 279–294. 

220.  Shin, Y.S.; Son, J.Y.; Jo, M.H.; Shin, Y.H.; Jang, H.M. High-mobility graphene 

nanoribbons prepared using polystyrene dip-pen nanolithography. J. Am. Chem. 

Soc. 2011, 133, 5623–5625. 

221.  Piner, R.D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C.A. “Dip-Pen” Nanolithography. 



 

112 

Science (80-. ). 1999, 283, 661–663. 

222.  Hu, Q.; Jung, S.M.; Lee, H.H.; Kim, Y.S.; Choi, Y.J.; Kang, D.H.; Kim, K.B.; 

Yoon, T.S. Resistive switching characteristics of maghemite nanoparticle 

assembly. J. Phys. D. Appl. Phys. 2011, 44. 

223.  Klajn, R.; Fialkowski, M.; Bensemann, I.T.; Bitner, A.; Campbell, C.J.; Bishop, 

K.; Smoukov, S.; Grzybowski, B.A. Multicolour micropatterning of thin films of 

dry gels. Nat. Mater. 2004, 3, 729–735. 

224.  Hall, D.B.; Underhill, P.; Torkelson, J.M. Spin coating of thin and ultrathin 

polymer films. Polym. Eng. Sci. 1998, 38, 2039–2045. 

225.  De Roo, J.; Zhou, Z.; Wang, J.; Deblock, L.; Crosby, A.J.; Owen, J.S.; 

Nonnenmann, S.S. Synthesis of Phosphonic Acid Ligands for Nanocrystal Surface 

Functionalization and Solution Processed Memristors. Chem. Mater. 2018, 30, 

8034–8039. 

226.  Wang, J.; Choudhary, S.; De Roo, J.; De Keukeleere, K.; Van Driessche, I.; 

Crosby, A.J.; Nonnenmann, S.S. How Ligands Affect Resistive Switching in 

Solution-Processed HfO 2 Nanoparticle Assemblies. ACS Appl. Mater. Interfaces 

2018, acsami.7b17376. 

227.  Wang, J.; Choudhary, S.; Harrigan, W.L.; Crosby, A.J.; Kittilstved, K.R.; 

Nonnenmann, S.S. Transferable Memristive Nanoribbons Comprising Solution-

Processed Strontium Titanate Nanocubes. ACS Appl. Mater. Interfaces 2017, 9, 

10847–10854. 

228.  Kim, H.S.; Lee, C.H.; Sudeep, P.K.; Emrick, T.; Crosby, A.J. Nanoparticle stripes, 

grids, and ribbons produced by flow coating. Adv. Mater. 2010, 22, 4600–4604. 



 

113 

229.  Yu, S.; Guan, X.; Wong, H.S.P. Conduction mechanism of TiNHfO xPt resistive 

switching memory: A trap-assisted-tunneling model. Appl. Phys. Lett. 2011, 99, 

16–19. 

230.  Liu, Y.; Gibbs, M.; Puthussery, J.; Gaik, S.; Ihly, R.; Hillhouse, H.W.; Law, M. 

Dependence of carrier mobility on nanocrystal size and ligand length in pbse 

nanocrystal solids. Nano Lett. 2010, 10, 1960–1969. 

231.  Gao, Y.; Aerts, M.; Sandeep, C.S.S.; Talgorn, E.; Savenije, T.J.; Kinge, S.; 

Siebbeles, L.D.A.; Houtepen, A.J. Photoconductivity of PbSe quantum-dot solids: 

Dependence on ligand anchor group and length. ACS Nano 2012, 6, 9606–9614. 

232.  Sanehira, E.M.; Marshall, A.R.; Christians, J.A.; Harvey, S.P.; Ciesielski, P.N.; 

Wheeler, L.M.; Schulz, P.; Lin, L.Y.; Beard, M.C.; Luther, J.M. Enhanced 

mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage 

photovoltaic cells. Sci. Adv. 2017, 3. 

233.  Lan, X.; Voznyy, O.; García De Arquer, F.P.; Liu, M.; Xu, J.; Proppe, A.H.; 

Walters, G.; Fan, F.; Tan, H.; Liu, M.; et al. 10.6% Certified Colloidal Quantum 

Dot Solar Cells Via Solvent-Polarity-Engineered Halide Passivation. Nano Lett. 

2016, 16, 4630–4634. 

234.  Ibáñez, M.; Luo, Z.; Genç, A.; Piveteau, L.; Ortega, S.; Cadavid, D.; Dobrozhan, 

O.; Liu, Y.; Nachtegaal, M.; Zebarjadi, M.; et al. High-performance thermoelectric 

nanocomposites from nanocrystal building blocks. Nat. Commun. 2016, 7, 1–7. 

235.  Wang, Y.; Fedin, I.; Zhang, H.; Talapin, D. V. Direct optical lithography of 

functional inorganic nanomaterials. Science (80-. ). 2017, 357, 385–388. 

236.  Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D.J. Tunable near-infrared and 



 

114 

visible-light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 

323–326. 

237.  Rijckaert, H.; Pollefeyt, G.; Sieger, M.; Hänisch, J.; Bennewitz, J.; De Keukeleere, 

K.; De Roo, J.; Hühne, R.; Bäcker, M.; Paturi, P.; et al. Optimizing 

Nanocomposites through Nanocrystal Surface Chemistry: Superconducting 

YBa2Cu3O7 Thin Films via Low-Fluorine Metal Organic Deposition and 

Preformed Metal Oxide Nanocrystals. Chem. Mater. 2017, 29, 6104–6113. 

238.  De Keukeleere, K.; Cayado, P.; Meledin, A.; Vallès, F.; De Roo, J.; Rijckaert, H.; 

Pollefeyt, G.; Bruneel, E.; Palau, A.; Coll, M.; et al. Superconducting 

YBa2Cu3O7–δ Nanocomposites Using Preformed ZrO2 Nanocrystals: Growth 

Mechanisms and Vortex Pinning Properties. Adv. Electron. Mater. 2016, 2, 1–9. 

239.  De Roo, J.; Van Driessche, I.; Martins, J.C.; Hens, Z. Colloidal metal oxide 

nanocrystal catalysis by sustained chemically driven ligand displacement. Nat. 

Mater. 2016, 15, 517–521. 

240.  Maan, A.K.; Jayadevi, D.A.; James, A.P. A survey of memristive threshold logic 

circuits. IEEE Trans. Neural Networks Learn. Syst. 2017, 28, 1734–1746. 

241.  Slesazeck, S.; Mähne, H.; Wylezich, H.; Wachowiak, A.; Radhakrishnan, J.; 

Ascoli, A.; Tetzlaff, R.; Mikolajick, T. Physical model of threshold switching in 

NbO 2 based memristors. RSC Adv. 2015, 5, 102318–102322. 

242.  Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 2004, 28, 

265–291. 

243.  Beiu, V.; Quintana, J.M.; Avedillo, M.J. VLSI implementations of threshold logic-

a comprehensive survey. IEEE Trans. Neural Netw. 2003, 14, 1217–43. 



 

115 

244.  Midya, R.; Wang, Z.; Zhang, J.; Savel’ev, S.E.; Li, C.; Rao, M.; Jang, M.H.; Joshi, 

S.; Jiang, H.; Lin, P.; et al. Anatomy of Ag/Hafnia-Based Selectors with 

1010Nonlinearity. Adv. Mater. 2017, 29, 1–8. 

245.  Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film 

transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. 

246.  Owen, J.S.; Park, J.; Trudeau, P.E.; Alivisatos, A.P. Reaction chemistry and ligand 

exchange at cadmium-selenide nanocrystal surfaces. J. Am. Chem. Soc. 2008, 130, 

12279–12281. 

247.  Rechberger, F.; Heiligtag, F.J.; Süess, M.J.; Niederberger, M. Assembly of 

BaTiO3nanocrystals into macroscopic aerogel monoliths with high surface area. 

Angew. Chemie - Int. Ed. 2014, 53, 6823–6826. 

248.  Wei, H.; Insin, N.; Lee, J.; Han, H.S.; Cordero, J.M.; Liu, W.; Bawendi, M.G. 

Compact zwitterion-coated iron oxide nanoparticles for biological applications. 

Nano Lett. 2012, 12, 22–25. 

249.  Pujari, S.P.; Scheres, L.; Marcelis, A.T.M.; Zuilhof, H. Covalent surface 

modification of oxide surfaces. Angew. Chemie - Int. Ed. 2014, 53, 6322–6356. 

250.  De Roo, J.; Van Den Broeck, F.; De Keukeleere, K.; Martins, J.C.; Van Driessche, 

I.; Hens, Z. Unravelling the surface chemistry of metal oxide nanocrystals, the role 

of acids and bases. J. Am. Chem. Soc. 2014, 136, 9650–9657. 

251.  Nonnenmann, S.S.; Gallo, E.M.; Spanier, J.E. Redox-based resistive switching in 

ferroelectric perovskite nanotubes. Appl. Phys. Lett. 2010, 97, 1–3. 

252.  Dongale, T.D.; Shinde, S.S.; Kamat, R.K.; Rajpure, K.Y. Nanostructured TiO2 

thin film memristor using hydrothermal process. J. Alloys Compd. 2014, 593, 267–



 

116 

270. 

253.  Gilson, M.K.; Given, J.A.; Bush, B.L.; McCammon, J.A. The statistical-

thermodynamic basis for computation of binding affinities: A critical review. 

Biophys. J. 1997, 72, 1047–1069. 

254.  Lin, M.H.; Wu, M.C.; Huang, C.Y.; Lin, C.H.; Tseng, T.Y. High-speed and 

localized resistive switching characteristics of double-layer SrZrO3 memory 

devices. J. Phys. D. Appl. Phys. 2010, 43. 

255.  Guo, Z.; Zhu, L.; Zhou, J.; Sun, Z. Design principles of tuning oxygen vacancy 

diffusion in SrZrO3 for resistance random access memory. J. Mater. Chem. C 

2015, 3, 4081–4085. 

256.  Beck, A.; Bednorz, J.G.; Gerber, C.; Rossel, C.; Widmer, D. Reproducible 

switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 

2000, 77, 139–141. 

257.  Jo, Y.; Jung, K.; Kim, J.; Woo, H.; Han, J.; Kim, H.; Hong, J.; Lee, J.K.; Im, H. 

Resistance switching mode transformation in SrRuO 3 /Cr-doped SrZrO 3 /Pt 

frameworks via a thermally activated Ti out-diffusion process. Sci. Rep. 2014, 4, 

1–7. 

258.  Kumar, H.P.; Vijayakumar, C.; George, C.N.; Solomon, S.; Jose, R.; Thomas, J.K.; 

Koshy, J. Characterization and sintering of BaZrO3 nanoparticles synthesized 

through a single-step combustion process. J. Alloys Compd. 2008, 458, 528–531. 

259.  Hasegawa, S.; Sugimoto, T.; Hashimoto, T. Investigation of structural phase 

transition behavior of SrZrO3 by thermal analyses and high-temperature X-ray 

diffraction. Solid State Ionics 2010, 181, 1091–1097. 



 

117 

260.  Lanza, M.; Reguant, M.; Zou, G.; Lv, P.; Li, H.; Chin, R.; Liang, H.; Yu, D.; 

Zhang, Y.; Liu, Z.; et al. High-Performance Piezoelectric Nanogenerators Using 

Two-Dimensional Flexible Top Electrodes. Adv. Mater. Interfaces 2014, 1, 1–7. 

261.  Yang, Y.C.; Pan, F.; Zeng, F. Bipolar resistance switching in high-performance 

Cu/ZnO : MMn/Pt nonvolatile memories: Active region and influence of Joule 

heating. New J. Phys. 2010, 12. 

262.  Hailstone, R.K.; DiFrancesco, A.G.; Leong, J.G.; Allston, T.D.; Reed, K.J. A study 

of lattice expansion in CeO2 Nanoparticles by Transmission Electron Microscopy. 

J. Phys. Chem. C 2009, 113, 15155–15159. 

263.  Ishikawa, K.; Uemori, T. Surface relaxation in ferroelectric perovskites. Phys. Rev. 

B - Condens. Matter Mater. Phys. 1999, 60, 11841–11845. 

264.  Jiang, B.; Peng, J.L.; Bursill, L.A. Surface structures and dielectric response of 

ultrafine BaTiO 3 particles. Ferroelectrics 1998, 207, 445–463. 

265.  Cisneros-Morales, M.C.; Aita, C.R. The effect of nanocrystallite size in 

monoclinic HfO2 films on lattice expansion and near-edge optical absorption. 

Appl. Phys. Lett. 2010, 96, 2008–2011. 

266.  Yoko, A.; Wang, J.; Umezawa, N.; Ohno, T.; Oshima, Y. A-Site Cation Bulk and 

Surface Diffusion in A-Site-Deficient BaZrO3 and SrZrO3 Perovskites. J. Phys. 

Chem. C 2017, 121, 12220–12229. 

267.  McCauley, D.; Newnham, R.E.; Randall, C.A. Intrinsic Size Effects in a Barium 

Titanate Glass-Ceramic. J. Am. Ceram. Soc. 2005, 81, 979–987. 

268.  Nian, Y.B.; Strozier, J.; Wu, N.J.; Chen, X.; Ignatiev, A. Evidence for an oxygen 

diffusion model for the electric pulse induced resistance change effect in 



 

118 

transition-metal oxides. Phys. Rev. Lett. 2007, 98, 3–6. 

269.  Choudhury, B.; Choudhury, A. Oxygen defect dependent variation of band gap, 

Urbach energy and luminescence property of anatase, anatase-rutile mixed phase 

and of rutile phases of TiO2 nanoparticles. Phys. E Low-Dimensional Syst. 

Nanostructures 2014, 56, 364–371. 

270.  Harrigan, W.L.; Michaud, S.E.; Lehuta, K.A.; Kittilstved, K.R. Tunable Electronic 

Structure and Surface Defects in Chromium-Doped Colloidal SrTiO3-

δNanocrystals. Chem. Mater. 2016, 28, 430–433. 

271.  He, S.; Hao, A.; Qin, N.; Bao, D. Narrowing the band gap to enhance the resistive 

switching properties of Pr3+-doped ZnO thin films by Cd-ion doping. RSC Adv. 

2017, 7, 38757–38764. 

272.  Rowtu, S.; Sangani, L.D.V.; Krishna, M.G. The Role of Work Function and Band 

Gap in Resistive Switching Behaviour of ZnTe Thin Films. J. Electron. Mater. 

2018, 47, 1620–1629. 

273.  Desmond, K.W.; Weeks, E.R. Influence of particle size distribution on random 

close packing of spheres. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2014, 

90, 1–6. 

274.  Yamada, S.; Kanno, J.; Miyauchi, M. Multi-sized Sphere Packing in Containers: 

Optimization Formula for Obtaining the Highest Density with Two Different Sized 

Spheres. IPSJ Online Trans. 2011, 4, 126–133. 

275.  Mulvaney, P.; Lees, E.E.; Nice, E.C.; Nguyen, T.-L.; Clayton, A.H.A.; Rothacker, 

J.; Gunzburg, M.J.; Howlett, G.J. Experimental Determination of Quantum Dot 

Size Distributions, Ligand Packing Densities, and Bioconjugation Using 



 

119 

Analytical Ultracentrifugation. Nano Lett. 2008, 8, 2883–2890. 

276.  PAN, F.; CHEN, C.; WANG, Z.; YANG, Y.; YANG, J.; ZENG, F. Nonvolatile 

resistive switching memories-characteristics, mechanisms and challenges. Prog. 

Nat. Sci. Mater. Int. 2012, 20, 1–15. 

277.  Yoko, A.; Akizuki, M.; Oshima, Y. Formation mechanism of barium zirconate 

nanoparticles under supercritical hydrothermal synthesis. J. Nanoparticle Res. 

2014, 16, 1–9. 

278.  Peña, M.A.; Fierro, J.L.G. Chemical structures and performance of perovskite 

oxides. Chem. Rev. 2001, 101, 1981–2017. 

279.  Terki, R.; Feraoun, H.; Bertrand, G.; Aourag, H. Full potential calculation of 

structural, elastic and electronic properties of BaZrO3 and SrZrO3. Phys. Status 

Solidi Basic Res. 2005, 242, 1054–1062. 

280.  Luo, Y.R. Comprehensive handbook of chemical bond energies; CRC Press, 2007; 

ISBN 9781420007282. 

281.  Yang, F.; Zhang, H.; Li, L.; Reaney, I.M.; Sinclair, D.C. High Ionic Conductivity 

with Low Degradation in A-Site Strontium-Doped Nonstoichiometric Sodium 

Bismuth Titanate Perovskite. Chem. Mater. 2016, 28, 5269–5273. 

282.  Garcia, R.; Martinez, R. V.; Martinez, J. Nano-chemistry and scanning probe 

nanolithographies. Chem. Soc. Rev. 2006, 35, 29–38. 

283.  Miller, K. atomic force metrology applications for alternating aperture phase-shift 

masks; Todd, B. Automated atomic force metrology applications for alternating 

aperture phase-shift masks. 20th Annu. BACUS Symp. Photomask Technol. 2001, 

4186, 681. 



 

120 

284.  Zandiatashbar, A.; Kim, B.; Yoo, Y.; Lee, K.; Jo, A.; Lee, J.S.; Cho, S.-J.; Park, S. 

High-throughput automatic defect review for 300mm blank wafers with atomic 

force microscope. Metrol. Insp. Process Control Microlithogr. XXIX 2015, 9424, 

94241X. 

285.  D’Costa, N.P.; Hoh, J.H. Calibration of optical lever sensitivity for atomic force 

microscopy. Rev. Sci. Instrum. 1995, 66, 5096–5097. 

286.  Labuda, A.; Cleveland, J.; Geisse, N.; Kocun, M.; Ohler, B.; Proksch, R.; Viani, 

M.; Walters, D. Photothermal excitation for improved cantilever drive 

performance in tapping mode atomic force microscopy. Microsc. Anal. 2014, 28, 

23–27. 

287.  Labuda, A.; Hohlbauch, S.; Kocun, M.; Limpoco, F.T.; Kirchhofer, N.; Ohler, B.; 

Hurley, D. Tapping Mode AFM Imaging in Liquids with blueDrive Photothermal 

Excitation. Micros. Today 2018, 26, 12–17. 

288.  Robatjazi, H.; Bahauddin, S.M.; Macfarlan, L.H.; Fu, S.; Thomann, I. Ultrathin 

AAO Membrane as a Generic Template for Sub-100 nm Nanostructure 

Fabrication. Chem. Mater. 2016, 28, 4546–4553. 

 


	RESISTIVE SWITCHING CHARACTERISTICS OF NANOSTRUCTURED AND SOLUTION-PROCESSED COMPLEX OXIDE ASSEMBLIES
	Recommended Citation

	TITLE OF THESIS OR DISSERTATION: SIMPLE FORMAT WITH ENDNOTES AND TYPED BIBLIOGRAPHY

