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Abstract 
 

  

 

This work aims to characterize Indium-Gallium-Zinc-Oxide nanoparticles (IGZOnp) as a 

resistive switching matrix in metal-insulator-metal (MIM) structures for memristor application. 

IGZOnp was produced by low cost solution-based process and deposited by spin-coating 

technique. Several top and bottom electrodes combinations, including IZO, Pt, Au, Ti, Ag were 

investigated to evaluate memory performance, yield and switching properties. The effect of 

ambient and annealing temperature using 350 ºC and 200 ºC was also analysed in order to get 

more insight into resistive switching mechanism. 

The Ag/IGZOnp/Ti memristor structure annealed at 200 ºC exhibits the best results with 

a large yield. The device shows a self-compliant bipolar resistive switching behavior. The 

switching event is achieved by the set/reset voltages of -1 V/+1 V respectively with an operating 

window of 10, and it can be programmed for more than 100 endurance cycles. The retention 

time of on and off-states is up to 104 s. The obtained results suggest that Ag/IGZOnp/Ti 

structure could be applied in system on a panel (SoP) as a viable device. 

 

Keywords: IGZO nanoparticles, solution-base, bipolar resistive switching, Valence 

Change Memory, self-compliant. 
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Resumo 

 

  

 

Este trabalho visa à caracterização de nanopartículas de óxido de índio-gálio-zinco 

(IGZOnp) como uma matriz de comutação numa estrutura metal-isolante-metal (MIM), para 

aplicações como memristores. As IGZOnp foram produzidas por processos químicos de baixo 

custo e depositados por técnica de spin-coating. Para avaliar a performance das memórias, 

foram investigados os rendimentos e propriedades de comutação para vários tipos de 

elétrodos inferiores e superiores incluindo combinações de IZO, Pt, Au, Ti, Ag. O efeito 

ambiente e temperaturas de recozimento utilizando de 350 ºC a 200 ºC, foi também analisada 

de modo a obter mais informações sobre o mecanismo de comutação resistivo.  

O memristor com a estruturas de Ag/IGZOnp/Ti recozidos a 200 ºC exibem os melhores 

resultados com um elevado rendimento. O dispositivo revela um comportamento de 

comutação resistiva bipolar de self-compliant. A operação de comutação é atingida por 

tensões de set/reset de -1 V/+1 V respetivamente com uma janela de operação de 10, e pode 

ser programada por mais de 100 ciclos de resistência. O tempo de retenção no estado on e 

off chegam aos 104 s. Os resultados obtidos sugerem que a estrutura de Ag/IGZOnp/Ti pode 

ser aplicada em system on a panel (SoP) como um dispositivo viável. 

 

Palavras-chave: Nanopartículas de IGZO, à base de solução, RRAM, comutação 

resistiva bipolar, Valence Change Memory, self-compliance. 
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1. Motivation and objectives 

Resistive Random Access Memories (RRAM) development has received a lot of attention 

by the scientific community in the past few years. Until now the most reliable and efficient 

technology for storage information was based on floating gate devices build on silicon technology, 

like flash drives and solid state drives (SSD). Therefore, due to Moore’s law limitations there are 

a necessity to look for alternative architectures and new types of memories. 

To suppress this problem and increase the speed and performance, keeping the same 

evolution rhythm, several types of non-volatile memories (NVM) have been developed. From 

which RRAM received a huge highlight as it consists a two terminal device with metal-insulator-

metal (MIM) structure, allowing ultra-large-scale-integration (ULSI) densities. Other advantages 

like faster switching, low-operation voltage and longer storage time, support the idea that the 

future of storage devices rely on RRAM. This would generate the control of an enormous market, 

which involves all consumer electronic products from computing technology to health care. 

Furthermore, it would expand even more the internet of things (IoT) advent, becoming clear the 

huge economic motivation to create such devices. 

Furthermore, it is important to notice the growing interest in flexible, printable and 

transparent electronics subject, which promises a huge impact on society. Therefore, it is 

propitious a compatibility from these new memories devices with this kind of technologies. Since 

Indium Gallium Zinc Oxide (IGZO) is one of the most efficient and investigated material regarding 

those topics, it will be studied in this master thesis. Adding the peculiarity of being solution based, 

obtained through hydrothermal process in nanoparticles form, which will act as switching layer in 

RRAM. 

The main objective of this work focus on development, analysis and optimization of a non-

volatile RRAM in a simple device configuration like MIM structure where solution based IGZO 

nanoparticles (IGZOnp) acts as insulator layer, normally used as semiconductor. In order to 

achieve a solid study over this devices, several steps were taken, such as: 

 RRAM fabrication with different types of metal and transparent conductive oxide 

electrodes and consequent study over conductive mechanism. 

 Temperature, solvents presence and vacuum influence on device performance 

and yield. 

 Transition from bipolar to unipolar. 

 Current Compliance influence. 

  

All devices will be characterized with aim to record: set voltage, reset voltage, minimum 

read voltage, operation window. Being also submitted to retention and endurance tests.  

Additionally, a comparative report to a MIM-double layer device produced at Universität 

Darmstadt will be performed and discussed. 
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2. Introduction 

2.1. Non-volatile memory device 

Memories devices are categorized into two: volatile and non-volatile. In volatile memories 

with which is possible to achieve fast operations, although there is a need to refresh periodically 

the storage cell, retaining the information which fades when the power supply is turned off. Static 

random access memory (SRAM) and dynamic random access memory (DRAM) are good 

examples. Non-volatile Memory (NVM) devices do not lose the information even after removing 

the power supply, however they operate slowed than volatile memories. Memories such as 

magnetic tapes, floppy disks, optical disks and flash memories are types of NVM [1], [2].  

Motivated by silicon technology limitations, mainly the feature sizes, the scientific 

community have research and developed new types of NVM where the most relevant can be 

present as: (1) magnetic (MRAM), (2) phase change (PCM-RAM, PCRAM or PRAM), (3) 

ferroelectric (FeRAM) and (4) resistive (RRAM) random access memories [1].  

2.2. Resistive Random Access Memories 

From all the emerging NVM referred, RRAM stands out as the most promising one. This 

fact is supported by its simple capacitor-like structure, composed by two electrodes and an 

insulator or semiconducting layer arranged between the electrodes. It is commonly known as MIM 

structure capable to be used as a cross point structure, allowing ultra-high density without using 

access devices. Adding the possibility of being compatible with silicon technology and the 

advantages of fast operations, low power consumption and simple fabrication process, it is easy 

to perceive a future for RRAM as a cheap universal memory technology [1], [3]–[5].  

As it is explicit in the name, Resistive RAM include memories that store information by 

changing the MIM cell resistance. This behavior is controlled by applying different voltages at the 

device terminals. Usually a RRAM memory cell can have two resistive states: high-resistance 

state (HRS) (or low-conductive state LCS) and a low-resistance state (LRS) (or high-conductive 

state HCS), representing a logic value “0” or “1” respectively. In this case the cell is called single 

level cell (SLC). There are also memories cell that can achieve more than two resistive states 

being designated by multilevel cell (MLC) [1], [6]–[8].  

2.2.1. RRAM classification 

RRAM can be classified in two categories depending on the switching mechanism. If the 

cell changes its resistance by cation motion is often designated as electrochemical metallization 

memory (ECM), atomic switch, or conductive bridge RAM (CBRAM). The second category relies 

on anionic-based device where the switching process is driven by oxygen ion motion (or oxygen 

vacancy, VO) these devices are called valence change memory (VCM) or oxide-based RAM 

(OxRAM) [1], [9]. There are also reports where both mechanism work together to improve the 

device performance [10]. 

 Electrochemical metallization system 

In this system a MIM cell is compose of two different electrodes: an electrochemical active 

metal, such as Ag, Cu, or Ni, and an electrochemically inert, where Au, Pt, Ir, W, can be used as 
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counter electrode (CE). Also, the thin film sandwiched between these two metals should allow a 

MZ+ ion conduction [9], [11].  

To occur the set mechanism, i.e. switch the cell resistance from HRS to LRS, three steps 

must be considered: (1) over a bias at AE (active electrode), takes place a metal anodic 

dissolution which generates metal cations (MZ+) and equivalent number of electron (Z+) in the 

following equation 𝑀 → 𝑀𝑍+ + 𝑍𝑒−; (2) MZ+ migration through the electrolyte/insulator layer by an 

electric field; (3) active metal reduction and electrocrystallization at CE, forming a filament, which 

preferentially grows from CE to AE, in the following equation 𝑀𝑍+ + 𝑍𝑒− → 𝑀 [1], [5], [9]. A metal 

filament formation can also occur from AE to CE in specific cases where selenides and sulfides 

are used as insulator materials, due to a MZ+ smaller diffusion coefficient [9], [11]. 

When the filament reaches the AE the cell resistance switch from HRS to LRS, since 

electrons can move freely across the bridge. In order to recover the HRS it is usually applied a 

sufficient opposite voltage bias which beyond an electronic current in the filament, will create an 

electrochemical current responsible for the filament dissolution. It is also important to retain that 

switching speed is mainly driven by kinetics from the previous (1) and (3) steps [1], [5], [9].  

 Valence change system 

In contrast to ECM which are cation based systems, valence change system is 

characterized by oxygen vacancies (VO) migration, created though anions movements. Generally, 

oxides are the most common switching media for these devices, such as TiOx [12], [13], NiOx  

[14], [15] , HfOx [16], [17] , TaOx [18], [19]. It is possible to divide VCM in two groups: (1) interface- 

and (2) filament-type.  

Interface-type definition comes from the entire cell area involvement in the switching 

behavior, since the LRS is inversely proportional to the cell area. This type of device is generally 

composed by a metal-oxide ohmic contact and on the other electrode a metal-oxide schottky 

contact which allows RS behavior. The switching mechanism takes place when a negative voltage 

is applied to the electrode with schottky barrier on the oxide, which leads to an VO accumulation. 

With the end of VO from the opposite electrode, a higher electric field will result in a VO depleted 

zone beneath the VO-rich interface layer, leading to a HRS. Applying a positive voltage to metal-

oxide schottky barrier will cause a reverse process resulting in a LRS  [4], [5], [9], [20].  

Regarding filament-type VCM, the mechanism behind resistive switching depends on 

formation and rupture of conductive filaments in the switching layer. For this reason, there is no 

or a very weak dependency between the resistance at LRS and cell area. It is possible to use p-

type or n-type semiconductors to achieve the filament formation, since both can present abundant 

cation vacancies and anion vacancies, respectively  [4], [5], [9], [20].  

If the switching layer is composed of a p-type semiconductor, then the filament formation 

happens through a positive bias application at the top electrode (TE) which causes an oxygen ion 

migration from near crystal defects, such as VO and grain boundaries, to the TE and accumulating 

in its vicinity, resulting in abundant cation vacancies, Figure 2.1 (b). Consequently, some of these 

vacancies can develop into nuclei that will grow preferentially due to effectively electrical field 

concentration and act as anode extension. This leads to a full filament formation which causes 

the device enter in a LRS, Figure 2.1 (c). When a negative bias voltage is applied to the TE a 

Joule heat phenomenon causes oxygen ions mobility acceleration which will migrate toward the 

CE and be stored in interface switching layer/CE or CE grain boundaries. Subsequently, this 
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process will reduce the cation vacancies concentration in conductive filament (CF) resulting in its 

rupture, near the cathode, switching the device from LRS to HRS, Figure 2.1 (d) [4], [5], [9], [20]. 

In the case of n-type switching layer, as it has many VO, when a positive bias is applied to 

the TE, these VO will migrate towards the CE and accumulate in its vicinity Figure 2.1 (f). This will 

form a nuclei of n-type semiconducting CFs which will grow and act as a cathode extension. The 

completion of this process will lead to a change in resistance state from HRS to LRS. Since this 

type of filament grows from the cathode to the anode, the thinner part will be located at the anode, 

Figure 2.1 (g). This part is easily ruptured by a negative bias over the TE, as the bias leads to a 

localized Joule heating resulting in a significant mobility acceleration of VO towards the TE 

conducted by the electrical field. At the TE these VO will be eliminated by the presence of stored 

oxygen. Again, the filament disruption leads to a switching mechanism from LRS to HRS, Figure 

2.1 (h) [4], [5], [9], [20].  

 

Figure 2.1– (a-d) Schematic of a VCM in p-type semiconductor, (a) mobile oxygen ions randomly distributed, 
(b) nucleation and cation vacancy filament growth from anode to cathode, (c) CF achieving LRS, (d) CF 
rupture achieving HRS. (e-h) Schematic of a VCM in n-type semiconductor, (e) VOs randomly distributed, (f) 
nucleation and VOs CF formation from cathode to anode, (g) CF achieving LRS, (h) CF rupture achieving 
HRS [9]. 

2.3. Memristor 

Memristor corresponds to the fourth basic circuit element, aside of (1) resistor, (2) capacitor 

and (3) inductor, predicted by Professor Leon Chua in 1971 [21], due to the studied symmetry 

between all this devices. It consists in a nanodevice capable of recording the voltage or current 

applied to itself [1], [21], [22]. Its behavior can be described by the equation (2.1) where the 

electrical charge is related to the magnetic flux.   

 d( ) d( ) (memristance)M q     (2.1) 
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With its hysteretic behavior is possible to use the described device as a nonvolatile 

memory. In fact, is particularly useful because it can store and process multilevel resistance 

values as well as analog values. [5] 

Although the memristor has been theorized in the 70s, only in 2008 was announced the 

first memristor fabrication, by HP Lab. This device consisted in a MIM structure, where “M” is Pt 

and the “I” a TiO2 thin film. The mechanism behind the memory cell is explained by the switching 

from low conductivity to high conductivity. This event can happen due to TiO2 stoichiometry, an 

exact 2:1 ratio of oxygen to titanium, shows an insulator characteristic though a conductive 

phenomenon takes place if the TiO2 loses some oxygen resulting in an oxygen-deficient titanium 

oxide (TiO2-x) [1], [22].  

To achieve the described process, it is necessary a positive voltage bias applied to the top 

electrode, resulting in a doping front movement, i. e. the oxygens move towards the insulator part 

leaving a doped region behind, which consequently causes a cell resistance drop. If a negative 

bias is provided to the TE, then the oxygens will move toward TiO2-x zone generating TiO2 and so 

increasing the overall resistance, as it is shown in Figure 2.2 [1], [22]. 

 
Figure 2.2 - Diagram of a coupled variable-resistor model for a memristor where V is voltmeter and A an 
ammeter, with the respective equivalent simplified circuit, resulting in a RONwID and ROFFwID series [22]. 

The resulting I-V characteristics can be seen in Figure 2.3 where (a) represents the 

predicted memristor behaviour by Strukov et. al. [22] and a real memristor result from a Pt-TiO2-

x-Pt achieved by Stewart et. al. [23].  

 
Figure 2.3 - Linear I-V characteristics of a TiO2 memristor device: (a) Simulation plotting voltage stimulus 
(blue) and corresponding change in the normalized state variable w/D (red) versus time and resultant I-V 
characteristic; (b) experimental I-V characteristic of a Pt/TiO2-x/Pt [22], [23]. 

2.4. RRAM operations 

As it is expressed previously, low and high resistance states, so-called “LRS” and “HRS” 

can be achieved by different voltage bias applications. There are two basic operations can be 

considered: set and reset. It is called a set process when the cell passes from HRS to LRS, and 
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reset when the cell shifts from LRS to HRS. The RRAM are categorized in two operation types: 

unipolar resistive switching and bipolar resistive switching [1], [22]. 

Unipolar behavior occurs when the switching procedure does not depend on the polarity of 

the applied programming voltage. Also, set process should have a certain current compliance 

(C.C.) to prevent the definitive short circuit of the cell. Reset voltage is always below the set 

voltage and do not need any kind of C.C. because it occurs at higher currents, Figure 2.4 (a) [1], 

[22].  

Contrary to the previous operation, bipolar switching take place with a set voltage polarity 

different from the reset voltage polarity. The set process need C.C., and the reset do not need it, 

for the same reason as before, Figure 2.4 (b) [1], [5]. 

 

Figure 2.4 – Schematic of I-V linear curves for (a) unipolar behavior and (b) bipolar behavior. C.C represent 
the current compliance required to protect the memory cell from break down, during set process. 

2.5. IGZO as a RRAM switching layer 

IGZO is one of the most studied and well documented oxide materials for TFTs applications 

since it can present high mobility, allowing also high flexibility, high transparency and is 

compatible with low-temperature fabrication process. With this characteristics, it is easy to 

conclude that is an optimal material to applied in systems on a panel (SoP)  [24], [25]   

The study over IGZO memory devices for a compatible usage in SoP did not start with 

resistive memories, instead the first device with an IGZO layer was a floating gate type memory 

develop in 2008 by Huaxiang Yin at. al. [26]. Only in 2010 start to appear developments on IGZO 

based RRAM with studies over bipolar behavior in full transparent devices [27], [28], unipolar 

behavior [19] and electrode influence [29]. In the following years more studies where made with 

this oxide, analyzing filament nature [30], achieving flexible devices [31], and more reports on the 

ways to improve this type of RRAM  [8], [32]–[34]. 

Inspired on previous IGZO solution based TFT (Thin Film Transistor), Moon-Seok Kim and 

his team developed IGZO solution based RRAM [35]. However, the obtained results did not 

exceed one order of magnitude regarding the operation window. Moreover, Wei Hu [36] and his 

group were able to acquire a RRAM device by low temperature process, in this case, a 

photochemical solution deposition, resulting in uniform performance as well as a stable 

distribution of LRS and HRS. State of the art on a-IGZO RRAM devices (sputtered and solution-

based) are shown in Table 7.1 in Annex A. 

Until now there are no reports on IGZO nanoparticles applied to RRAM and for this reason 

opportunity arise to demonstrate the performance of these devices with such material produced 

with low-cost processes.  
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3. Materials and Methods 

In order to produce IGZO nanoparticle switching layer in a Resistive Radom Access 

Memory (RRAM) it was used a process developed by Santos et. al. [37], proven to work as 

semiconductor layer in electrolyte-gated transistors. However, in the present work it will be studied 

as an insulator layer in the same way as a-IGZO RRAM. Thus, to optimize the yield and 

performance some parameters were analysed such as annealing temperature and consequent 

presence of ethylene glycol. Also, an a-IGZO RRAM was produced for comparison with the 

obtained results. 

3.1. IGZO Nanoparticles Preparation and characterization 

IGZO nanoparticles were prepared with gallium nitrate hydrate (Ga(NO3)3)∙xH2O, Sigma-

Aldrich, 99,9%), indium acetate (In(CH3COO)3, Sigma-Aldrich, 99,99%) and zinc acetate 

(Zn(CH3COO)3∙2H2O, Sigma-Aldrich, 99%) precursors in a molar ratio 3:6:2, respectively. The 

mixture was dissolved in 2-methoxyethanol (6 ml, Sigma-Aldrich, 99,5%) and ethanolamine (0.2 

mL, Fluka, 98%) as a cation reductor was added to the solution before left stirring at 50 ºC for 1 

h. The final solution was transferred to a 23 mL of PTFE (polytetrafluoroethylene) chamber, set 

inside a stainless steel autoclave (4745 general purpose vessel, Parr) and placed in an oven 

(L3/11/B170, Nabertherm) at 180 °C for 24 h. The resulted products were collected by 

centrifugation at 4000 rpm for 5 min (F140, Focus instruments) and dispersed in ethanol (20 mL). 

Structural and morphological characterization of IGZO nanoparticles was performed by 

scanning electron microscopy (SEM, Carl Zeiss AURIGA) equipped with energy-dispersive X-ray 

spectroscopy (EDS), where a sacrificial layer of carbon has been previously deposited (quorum 

q150t es). EDS was used to determine the average atomic weigh from 10 samples, Annex B.    

Fourier Transformed Infra-Red (FTIR, Thermo Nicolet 6700 Spectrometer) spectroscopy 

data was recorded using an Attenuated Total Reflectance (ATR) sampling accessory (Smart iTR) 

equipped with a single bounced diamond crystal (4500 to 525 cm -1). These results can be 

consulted in, Annex C. Optical band gap was performed in Perkin Elmer lambda 950 UV/VIS/NIR 

spectrophotometer resulting in 3.74 eV, Annex D. 

The nanoparticles were deposited on a silicon substrate for the x-ray diffraction (XRD) 

measurements being scanned in the 5-65º 2θ range with a step 0.033º in a PANalytical’s X’Pert 

PRO MRD diffractometer with CuKα radiation, Annex E. The IGZO thin film surface roughness 

was analysed by atomic force microscopy (AFM) in a commercial microscope, Asylum research 

MFP-3D, on IZO thin film and examined in data analysis software (Gwyddion). Dynamic light 

scattering (DLS) technique using W130i Avid Nano, was employed to record the nanoparticles 

hydrodynamic diameter, Annex F. 

3.2. IGZO Thin Film Deposition and Characterization  

To deposit the nanoparticles is necessary to create an ink, for that, ethylene glycol (Carlo 

Erba, 95,5%) was mixed with the nanoparticle dispersion in a 0.4:1.6 proportion, respectively, and 

left stirring for 24 h. Then was sonicated for 2 min and filtered with a 0.45 m porous diameter 

filter (Sartorius CA). The deposition process was performed by spin coating 4 layers at 2000 rpm 

during 35 s and dried at 100 ºC for 1 min between each layer. The annealing process was made 
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after the fourth deposition at 350 ºC and 200 ºC for 1 h. Notice that the IGZO ink was deposited 

on different substrate materials depending on the device construction under study.     

Moreover, IGZO inks were characterized by differential scanning calorimetry and 

thermogravimetry (DSC-TG, model STA 449 F3 Jupiter, Netzsch) with the solution in air with a 

heat ramp of 5 ºC/min starting from room temperature up to 550 ºC. These results can be 

consulted in annex G. 

3.3. RRAM assembly and characterization 

Metal-insulator-metal (MIM) structures were fabricated by depositing different types of 

bottom electrodes on glass substrates (1737, Corning). In this case, (1) titanium (6 nm) and gold 

(60 nm); (2) titanium (6 nm) and platinum (60 nm); and (3) titanium (60 nm) were deposited by e-

beam evaporation (homemade apparatus). Also, it was used an IZO (indium zinc oxide, 140 nm) 

layer deposited by radio frequency (13.56 MHz) magnetron sputtering (homemade apparatus), 

using a ceramic oxide target of In2O3:ZnO (89.3:10.7 weight fraction, Super Conductor Materials, 

Inc., 99.99%) at room temperature in the presence of a mixture of argon (20 sccm) and oxygen 

(0.4 sccm) at a deposition pressure of 2 × 10−3 Pa with a r.f. power of 75 W and a target−substrate 

distance of 15 cm [38].  

Secondly, IGZO ink was deposited by spin coating process, previously described. 

Additionally, the devices for comparison made of a-IGZO switching layer were sputtered onto 

bottom electrodes using a IGZO (2:1:2) commercial ceramic target (LTS Chemical, Inc.) by a r.f. 

magnetron sputtering (AJA 1300-F system), without intentional substrate heating for 13 min and 

30 s, under an air flow of 14 sccm and oxygen of 0.5 sccm, final pressure of 0.3 Pa, and a power 

of 100 W to achieve 30 nm thickness [39]. 

Finally, the top electrode (TE) deposition was executed in the same way as the bottom 

electrodes (BE), where (1) silver (60 nm); (2) titanium (6 nm) and gold (60 nm); and (3) titanium 

(60 nm) were used in different substrates. The final structure can be visualized in Annex H. 

3.4. Electrical IGZO RRAM characterization 

IGZO RRAM electrical characterization was performed using a semiconductor 

characterization system (Keithley 4200SCS). These two terminal devices were connected to 

source measure unit (SMU) onto top and bottom electrode with the objectives to investigate: (1) 

set voltage, (2) reset voltage, (3) operation window, (4) retention time and (5) endurance. 

Set voltage is executed applying positive sweep voltage on TE, with a fixed C.C. Starting 

always with 0 V to +1 V and going back to 0 V. The C.C. should be the smallest possible to 

achieve low power consumption [40], between 1 µA to 10 mA range. 

 The reset voltage is performed also applying negative voltage sweep on TE, stating from 

0 V to -1 V back to 0 V, without C.C. In case the reset process does not occur the voltage is 

increased. In some cases, the polarization for set and reset follow an opposite polarization, i. e. 

set is performed with negative voltages and reset is performed with positive voltage.    

The I-V characteristics was always performed without delay time. Retention times test for 

both ON/OFF states where performed under a +0.1 V or -0.1 V constant voltage bias and the 

corresponding current value was recorded every 60 s.  
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4. Results and discussion  

This chapter addresses all the electrical characterizations of various IGZO RRAM types 

and configuration, where two structures will be taken as standard devices: (1) Ti/IGZOnp/Ti (from 

top contact to bottom contact) and (2) Ag/IGZOnp/Ti associated behaviours. Both standard 

memories present an area of 1.96x10-4 cm2, were annealed at 350 ºC, and analysed in air at room 

temperature (RT). We note that some variations in structure or and the fabrication parameters 

may occur during the work in order to achieve a more complete study based on IGZO RRAM.     

4.1. Memory cell activation 

4.1.1. Forming 

A forming step is required for the activation of the switching property, regardless the type 

of RRAM in the case of presenting a filament behavior [9]. This forming step corresponds to the 

first set process applied to the device. For this phenomenon to occurs a larger electrical field is 

required than the consecutives set processes. The cell will be formed from pristine state to low 

resistive state (LRS) by formation of the nanoscale filament. Then the on-state can be erased to 

high resistive state (HRS) by application of voltage bias at the opposite polarity. 

Thenceforth, set and reset processes only occur in the weakest filament location within a 

small area, explaining the low voltage operation, after the first cycle [9]. Also, the forming is always 

performed with C.C. to avoid a filament overgrowth which otherwise could provoke a short circuit. 

Figure 4.1 identify the typical (a) unipolar and (b) bipolar behavior with the formation step in linear 

plot. 

 

Figure 4.1 – Linear I-V (a) unipolar and (b) bipolar behaviours with typical forming steps (blue). The numbers 
indicate the occurrence order for (1) forming, (2) reset and (3) set, respectively. 

Figure 4.2 depicts two typical and distinct forming behaviours obtained for bipolar 

mechanism (a) Ti/IGZOnp/Ti and (b) Ag/IGZOnp/Ti, along this work. Figure 4.2 (a) present a 

similar mechanism to the one already represented in Figure 4.1 (b) considered to be a usual 

electroforming step and set/reset process for TI/IGZOnp/Ti devices. We note that for symmetric 

structure with both inert electrodes (Ti) the electroforming can be executed applying positive or 

negative polarization. 

On the other hand, Figure 4.2 (b) shows a curious mechanism where the electroforming 

can be performed for lower C.C. than the consecutive cycles. Also, this forming step does not 

achieve the high conductive state (HCS), instead it only defines the low conductive state LCS, 

supported by the fact that arrow 3 is more compatible with arrow 6 than the HCS (set process 
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after arrow 6). Any reset attempt to achieve the same resistance as the one in pristine state is 

impossible even for higher reset voltages. By other words, the consecutive reset (arrows 4 and 

5) is enable to drop the HCS to a conductive state equivalent to the pristine state. This effect limits 

the operating window to 10 or 102 in the best cases. Moreover, the electroforming polarization 

has a preferential polarization in order to occur, this fact is commonly seen in Conductive Bridge 

Random Access Memory (CBRAM) since one side has an active electrode which diffuses through 

the insulator matrix. The true mechanism will be explained in later sections. 

 
Figure 4.2 - I-V characteristics containing forming and first cycle for (a) Ti/IGZOnp/Ti and (b) Ag/IGZOnp/Ti, 
depicting two distinct bipolar behaviours.  

4.1.2. Pre-forming 

There is also a mechanism identified as pre-forming where the pristine state is in LRS 

instead of HRS, meaning that the cell has a filament formed before any electrical field application. 

It is speculated that such filament is created during annealing or deposition processes, and can 

rely on top electrode diffusion and/or vacancies defects within the switching layer due to 

temperature and/or lower thickness. However, the pre-formed state should be reset to LCS 

satisfying the memory criteria, i. e., should be able to operate normally regarding endurance 

cycles and retentions.   

Since this phenomenon takes place during fabrication it is impossible to control and it may 

appear in different current states. As it starts with LRS a reset process with extra electrical field 

is needed, compared to the consecutive reset processes, in order to disrupt the filament and 

converting the cell into a working device.  

Figure 4.3 represents a typical pre-forming behaviour where the first step (1) is a reset 

process performed with negative voltage, -7.35 V, and a current value of 67 mA. Meaning that a 

high power is required to activate the cell. Furthermore, in order to achieve to memory 

performance a forming step of 4.73 V was needed.  

Consequent set and reset cycles show a usual bipolar behaviour, between -2 and 2 V, 

highlighting that even after two non-ideal and stochastic process (pre-forming and forming) 

resistance switching can be occurred.  

It is unknown for the author if there is any report over the pre-forming subject, since the 

memory performance can be drastically affected after the pre-form reset. One may also think it is 

a short circuit due to the similarities. In fact, pre-forming is an undesirable characteristic 

considering the need of a high electrical field in order to rupture the pre-existing filament(s). 
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Figure 4.3 - I-V characteristics of Au/Ti/IGZOnp/Ti annealed at 200 ºC, showing a pre-forming and 
consecutive forming mechanism. The depicted arrows (1-6) demonstrate the orientation in which the 
memory is operated. 

4.1.3. Free forming 

  Finally, there are reports where RRAM do not need electroforming, i. e. present a forming 

free mechanism [28], [34]. From a practical point of view forming free is an interesting feature 

since allows lower operation power by eliminating the forming step. Consequently, resulting in a 

more stable resistive switching [7], [41], [42], theoretically causing lager endurance. 
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Figure 4.4 - I-V characteristic of Ag/IGZOnp/Ti annealed at 350 ºC showing a free forming behaviour. 

In this work, it was possible to achieve a forming free memory with the Ag/IGZOnp/Ti device 

annealed at 350 ºC, depicted in Figure 4.4. Forming free behavior is discerned by looking at the 
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similarity in the first two set cycles. Since both first and second set cycles follow the same LCS 

(arrow 1) preforming the set in a very similar voltage, 1.5 V and 1.1 V respectively. 

It is suggested that the reason for a forming free behavior in IGZOnp solution based 

memories rely on specific IGZOnp thickness, consequent number of nanoparticles in a certain 

volume as well as number of defects after annealing.  Nevertheless, the appearance of forming 

free memories where rare and only occur for Ag/IGZOnp/Ti. 

4.2. Electrical characterization of standard IGZOnp memristors  

4.2.1. IGZO nanoparticles RRAM with inert electrodes 

In order to IGZO nanoparticles act as a switching layer in an valence change memory 

(VCM) device it is necessary to be sandwiched by two inert electrodes, hence a Ti/IGZOnp/Ti 

structure annealed at 350 ºC was fabricated. The correspondent electrical characterization is 

depicted in Figure 4.5, where (a) represents an endurance test over 100 cycles in sweep voltage 

mode. Set process is performed at 1.25 V in the first cycle, with a tendency to increase along the 

number of cycles. Reset process occurs between -0.8 V and -1.5 V.  

 

 
Figure 4.5 - (a) Typical I-V characteristic of Ti/IGZOnp/Ti annealed at 350 ºC over 100 cycles and respective, 
set and reset voltages indicated by a deep blue arrow, represent the respective value for each process in 
the first cycle. (b) Endurance characteristics at read voltage of 0.1 V at room temperature. (c) Typical 
retention characteristics read at -0.1 V at RT. 
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Arrows 1 to 4 represent the counterclockwise hysteresis direction. In fact, the hysteresis 

could be made with a clockwise direction (not shown) since this structure is a symmetric and 

operated as oxide based RAM (OxRAM). The respective electroforming process is already shown 

in Figure 4.2 (a) occurring at 3.5 V with 1 mA C.C. 

Figure 4.5 (b) represents the alternated conductive value read with 0.1 V after each set and 

reset process that should correspond to HCS and LCS respectively. It is possible to distinguish 

two different levels with a ON/OFF ratio of one order of magnitude despite the unstable behavior. 

Notice that from cycle 52 to 72 the memory stopped working. This issue could rely on insufficient 

applied power for those cycles. Yet it regains the memory ability in the consecutive operations.  

Figure 4.5 (c) is referent to a typical retention test executed over 104 s, being visible a 

stable behavior for both HCS and LCS.  

4.2.2. IGZO nanoparticles RRAM with active electrode 

It is expected that a metal-insulator-metal (MIM) structure including IGZO nanoparticles with 

an active electrode on top acts as a CBRAM, in the same way that an a-IGZO sputtered memory 

in the same conditions does [8]. 

 

 

Figure 4.6 – (a) Typical I-V characteristic of Ag/IGZOnp/Ti annealed at 350 ºC over 100 cycles and 

respective, set and reset voltages indicated by a deep blue arrow, represent the respective value for each 

process in the first cycle. (b) Endurance characteristics at read voltage of -0.1 V at RT. (c) Typical retention 

characteristics read at -0.1 V at RT. 
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In order to show a conductive bridge mechanism, IGZO nanoparticle layer need to behave 

as an amorphous thin film acting as a matrix for fast ion transport [5]. Although this layer takes an 

important role in the overall switching mechanism, the main focus is given to the active electrode, 

since it will drift through the IGZOnp matrix creating a filament. However, the true mechanism 

behind the switching operation is reveled to be different from the expected ECM behavior, which 

will be discussed in later sections.  

Figure 4.6 (a) depicts a 100 cycles endurance test in sweep voltage mode applied to 

Ag/IGZOnp/Ti device annealed at 350 ºC. Set process is performed at -1.35 V approximately and 

reset occurs at 1.95 V. The represented arrows (1-4) demonstrate the hysteresis direction needed 

in order to have a working memory, as it was described in section 4.1.1, further details will be 

discussed in the conduction mechanism section (section 4.3.2). Respective cell activation is 

similar to the one represented in Figure 4.2 (b), however the first C.C. value is 0.5 mA instead of 

10 µA.  

It is possible to see in Figure 4.6 (b) that the analysed device endured for 100 cycles with 

a more stable behaviour than the OxRAM studied in section 4.2.1. Furthermore, the ON/OFF ratio 

is fixed with a 10 value during the endurance test. 

Figure 4.6 (c) demonstrate a stable behavior during the retention test over 104 s. 

4.3. Conduction mechanisms 

4.3.1. Ti/IGZOnp/Ti devices 

Until this point it was referred that memories with both inert contacts and an oxide as 

switching layer acted as a VCM. In this section we present the conduction mechanism of the 

Ti/IGZOnp/Ti devices. 
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Figure 4.7 - I-V characteristics of Ti/IGZOnp/Ti structure plotted in log-log scale, showing a SCLC 

mechanism. 
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In order to determine the conductive mechanism is necessary to plot the first set I-V 

characteristics in a log-log scale, as it is represented in Figure 4.7, and analyse the respective 

fittings to determine the carrier transport. At LCS the curve reveals a linear ohmic behavior since 

it presents an approximate slope of 1, from 0 to 0.4 V. An ohmic behavior is characterized by the 

mobile electrons movement in the conduction band [27], and holes in the valence band. It can 

also suggest that the density of thermally generated free carriers inside the switching layer is 

larger than the injected carriers [43]. 

From 0.4 V to 1.15 V the curved can be fitted with a slope of 2, which is in accordance to 

Child’s square law (I ∝ V2), where the current becomes dominated by injected electrons. 

Consequently, injected electrons can be divided into two groups, one will occupy the traps and 

the other will act as free electrons. When all the traps are filled with electrons, than the last region 

is reached in accordance to steep increase region (I ∝ Vn, n>2) allowing the shift between LCS to 

HCS [44].  

The referred three regions: (1) ohmic, (2) Child's law and (3) steep increase, belong to 

space-charge-limited conduction (SCLC) mechanism, as represented on Figure 4.8 where the 

traps in bulk are the key factor to the switching operation [8]. These results are in agreement with 

the ones obtained by similar a-IGZO memories sandwiched by inert electrodes [28], [36]. 

 

Figure 4.8 - Schematic of SCLC mechanism composed by (1) ohmic region, (2) Child’s law region and Steep 

Increase region. 

On the other hand, HCS only shows ohmic behaviour, indicating the presence of highly 

conductive paths during the switching event [34]. Furthermore, the difference between the ON 

and OFF state suggests a confined effect in the HCS rather than homogenously distributed [8].        

The filament nature can only be determined by fitting a I-T characteristic at HCS and 

support from X-ray photoelectron spectroscopy (XPS) as well as High Resolution Transmission 

electron microscopy (HRTEM). Those tests were not performed due to time and/or equipment 

restrictions. As the previous mechanisms for LCS and HCS matches with studies already made 

[28], [36] it is expected that the nature of the filaments are similar to oxygen vacancies.  

4.3.2. Ag/IGZOnp/Ti devices 

Notice that Ag/IGZOnp/Ti devices operate with set process in negative voltage and reset 

with positive voltage, shown in Figure 4.6 (a). Which is the opposite of Ti/IGZOnp/Ti memories 

and Ag/a-IGZO memories [8]. This phenomenon suggests that instead of Ag filament the 

switching mechanism is effectuated with VO. Supported by the fact that Ag needs positive voltage 

application to turn into Ag+ and diffuse. On the other hand, VO migration do not need a specific 

polarization since the switching mechanism occurs in the IGZOnp layer instead of an electrode.  
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The previous notion of a dominant VO switching mechanism can be explained by the test 

depicted in Figure 4.9. In Figure 4.9 (a) set and reset process occurs with positive and negative 

voltage sweep application, respectively (arrows 1-4), as expected from a usual voltage application 

in case of VCM or ECM mechanisms. Consequently, if a positive voltage is applied to the memory, 

it gets a second reset (arrows 5, 6 Figure 4.9 (a)) instead of a set process. In turn, if a negative 

voltage is then applied a set process (arrows 7, 8, Figure 4.9 (b)) is followed by a reset process 

(arrows 9, 10, Figure 4.9 (b)).  

Thus, it is noticeable a preferential VCM mechanism with preferential set at negative 

voltage and reset at positive voltage. Excluding any ECM mechanism occurrence. 

 

Figure 4.9 - I-V characteristic of Ag/IGZOnp/Ti device showing a swift to a preferential set process with 

negative voltage aplication on AE. 

Regarding the conductive mechanisms both set with positive and negative voltages present 

a SCLC behaviour, depicted in Figure 4.10, as reported by previous works [8], [28]. 

 

Figure 4.10 - I-V characteristics of Ag/IGZOnp/Ti structure plotted in log-log scale, showing a SCLC 

mechanism in both (a) ECM and (b) VCM regime. 

Furthermore, oxygen vacancies conducting filaments (CF) are formed at higher voltages in 

the range of 0.2 V to 1 V than metallic CF approximately in the range of 1 to 1.5 V [45]. In addition, 

conventional CBRAM devices show larger ON/OFF ratios compared to OxRAMs. Here, the LCS 

and HCS are maintained with an ON/OFF ratio of slightly more than one order of magnitude 

Ag/IGZOnp/Ti devices which is desirable for practical application [46]. We note that the  Ag/IGZO  

form a Schottky contact as already known in literatures [46], [47] leading to difficult forming 

process at the positive polarity.  
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Combining the above results, we suggest that VCM is the responsible resistive switching 

mechanism.  

4.4. Air and Vacuum influence 

Air and vacuum influence were tested for OxRAM devices with the Ti/IGZOnp/Au/Ti 

configuration since these memories are not passivated. Furthermore, there are reports showing 

an atmospheric impact on the device performance, mostly over VCMs [28], [48], [49]. 

In this case, all devices present an area of 3.3x10-3 cm2 and were annealed at 350 ºC, the 

analysis under vacuum were performed with a pressure of 3.33x10-4 mBar. 

Taking into account that spin coating process can influence the thickness along the 

substrate and consequently the devices performance, exactly half of the devices were analysed 

under air (rows 1 to 3) and vacuum conditions (rows 4 to 6) of the same substrate, shown in 

Annex I. 

Based on the overall results provided by the working devices in Annex I, it is difficult to 

assume an existence of atmospheric influence, since it is impossible to make a statistical analysis 

with a 19% yield associated with very different RS results. This low yield equally achieved in both 

air and vacuum devices can be explained by a non-uniform nanoparticle coating, which conceded 

different thicknesses in the nanoparticle layer over the substrate.  

Nevertheless, it is depicted in Figure 4.11 the best results for each case, (a) air and (b) 

vacuum. From the data shown in Table 4.1 it is possible to confirm that C.C. under vacuum 

conditions can be one order of magnitude lower than in air conditions. Meaning that the power 

consumption will be also one order of magnitude lower.  

 

Figure 4.11– I-V characteristics of Ti/IGZOnp/Au/Ti first and second cycle (a) under air and (b) vacuum. 

Table 4.1 - Electrical characteristics for the devices depicted in Figure 4.11. 

 C. C. Forming Set 
Voltage 

Reset 
Voltage 

Read 
Voltage 

Operating 
Window 

Air 3 mA 1.45 V 0.5 V -0.35 V 0.1 V 10 

Vacuum 0.5 mA 4.25 V 0.8 V -0.8 V 0.1 V 10 
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This fact can be supported by a larger initial resistance which allows a formation process 

for smaller C.C. but for higher voltages. In the other hand, because the device working in vacuum 

shows higher resistance at pristine state compared to the working device in air, it needs a larger 

C.C. in order to show a significant operation widow (≥10). 

Also, notice that Figure 4.11 (a) presents a low forming voltage compared to those in Annex 

A, allowing reduced damage from the forming process. 

Nonetheless, there is no difference between the all working Ti/IGZOnp/Au/Ti memories in 

relation to the operating window at 0.1 V read voltage. 

4.5. Effect of annealing temperature 

The devices were also produced with an annealing temperatures of 200 ºC to be compared 

with the previous 350 ºC annealed Ti/IGZOnp/Ti and Ag/IGZOnp/Ti structures. Lower process 

temperatures can unlock advantages since the fabrication process is cheaper and can be possible 

to integrate the memories on flexible substrates.   

This test will also indicate if there is some influence regarding the ethylene glycol present 

in the IGZOnp layer, since 200 ºC is an insufficient temperature to degradate the ethylene glycol 

(annex G) [37]. As previously in this section all devices present the same dimension of 1.96x10-4 

cm2
. 

4.5.1. Ti/IGZOnp/Ti annealed at 200 ºC 

Figure 4.12 (a) depicts a Ti/IGZOnp/Ti structure annealed at 200 ºC over 100 cycles as an 

endurance test, in sweep voltage mode. Set process occurs with positive voltage between 0.8 

and 1.3 V and reset voltage appears for -1 to -1.5 V. The hysteresis direction is represented by 

the arrows (1-6), in a counterclockwise direction as usual, however it can be performed in the 

opposite direction due to the use of inert electrodes in both sides of IGZOnp, in the same manner 

as the previous Ti/IGZOnp/Ti annealed at 350 ºC.  

Respective cell activation was already presented in Figure 4.3 as a pre-forming mechanism 

with a consecutive forming appearing at 4.73 V applying 1 mA C.C.  

 

Figure 4.12 – (a) I-V characteristic of Au/Ti/IGZOnp/Ti annealed at 200 ºC over 100 cycles and respective, 

set and reset voltages indicated in blue represent the minimum value for each process; (b) endurance 

characteristics at read voltage of 0.1 V. 
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Figure 4.12 (b) represents the correspondent conductive value read at 0.1 V after each set 

and reset, equivalent to LCS and HCS respectively. It is possible to confirm an ON/OFF ratio > 

10 until the 40th cycle, after which both LCS and HCS start to gradually degrade, also shown in 

Figure 4.12 (a) by the set and reset shift to higher values. This phenomenon can be explained by 

the performance drop due to overpower during pre-forming reset and consecutive forming, as 

seen in Figure 4.3. 

From a subtract with 36 devices only two were working and both of them with pre-forming 

state. The rest of the devices were short circuited leading to the conclusion that IGZOnp thickness 

was too thin and/or there were to many pre-formed filaments for the reaching to hard breakdown. 

Due to the low yield no retention test was performed. 

Conductive mechanism depicted in Figure 7.9 is in accordance with the SCLC as expected, 

Annex J.  

4.5.2. Ag/IGZOnp/Ti annealed at 200 ºC 

I-V characteristic in Figure 4.13 (a) depicts an endurance test in sweep voltage mode over 

100 cycles to a Ag/IGZOnp/Ti structure annealed at 200 ºC. Set is performed with negative 

polarization occurring between -1.15 V and -0.6 V. Reset is obtained with positive voltage in an 

interval of 0.9 V to 1.45 V. In this memory the hysteresis as to be the one represented by the 

arrows (1-4) due to the cell asymmetry. Otherwise set process would not occur as described in 

Section 4.3.2.  

 

 

Figure 4.13 – (a) I-V characteristic of Ag/IGZOnp/Ti annealed at 200 ºC over 100 cycles and respective, set 

and reset voltages indicated in blue represent the value for each process in the first cycle; (b) endurance 

characteristics at read voltage of -0.1 V; and (c) retention characteristics read with a constant applied -0.1 V 

during 104 s. 
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In order to activate the cell a forming step was needed. Respective cell activation was 

already depicted in Figure 4.2 (b). 

Figure 4.13 (b) shows the read values obtained during the endurance test. The operating 

window is more than one order of magnitude. Although there is a decreasing trend in ON/OFF 

ratio throughout the endurance test, the last cycles present a turning point in the previous trend 

suggesting a possible increase in further cycles.    

Moreover,  Figure 4.13 (c) depicts a retention characteristic executed for over 104 s in both 

HCS and LCS. The resistance state of the off-state shows a tendency to decrease even more in 

favour of higher on/off ratio. Suggesting a viable retention time superior to 104 since the HCS/LCS 

ratio is increased with time. Thus, this data supports a viable retention mechanism as the ratio is 

larger than 10 with a tendency to increase. 

4.6. Ti/IGZOnp/Ti and Ag/IGZOnp/Ti performance comparison 

At this point it is possible to evaluate the performance of both Ti/IGZOnp/Ti and 

Ag/IGZOnp/Ti and its respective temperature influence. In order to help visualizing all the results, 

the recorded values were depicted in Table 4.2. Notice that only the best devices for each 

structure with corresponding annealing temperature are included in the table. Also, the set and 

reset values are relative to the first cycle. It is important to refer that yield performance was 

calculated for devices showing stable and reliable ON/OFF states for approximately 5 cycles, due 

to time restrictions.  

Table 4.2 - Performance comparison between Ti/IGZOnp/Ti and Ag/IGZOnp/Ti for 350 ºC and 200 ºC 

annealing temperatures (in red and green the worst and best resuls per line, respectively)  

 Ti/IGZOnp/Ti Ag/IGZOnp/Ti 

Annealing Temperature 350 ºC 200 ºC 350 ºC 200 ºC 

Yield 20% 6% 64% 68% 

C.C. in Forming 1 mA 1 mA 0.5 mA 10 µA 

Forming +3.5 V +4.7 V -1.85 V -1.45 V 

C.C. 1 mA 1 mA 5 mA 1 mA 

Set Voltage +1.25 V +2.25 V -1.35 V -0.95 V 

Reset Voltage -0.8 V -2.5 V +1.95 V +1 V 

Read Voltage +0.1 V +0.1 V -0.1 V -0.1 V 

Operating Window <10 <10 10 10 

Retention 104 s - 104 s 104 s 

Endurance 80/100 10 100 100 

 

Regarding the yield, it is clear that devices with silver as top contact have a higher 

probability to work relatively to the ones with Ti on both electrodes. It is suggested that yield can 

be affected due to fabrication issues, mainly because spin coating can introduce thicker zones 
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than others in the same substrate. In Ti/IGZOnp/Ti devices there is also a possibility of an 

oxidation-reduction mechanism during the switching cycles in both electrodes may influence on 

device performance. 

In the electroforming step the best results belong to Ag/IGZOnp/Ti devices where both C.C. 

and voltage is lower than Ti/IGZOnp/Ti. Ag/IGZOnp/Ti devices show higher resistivity prior the 

electroforming step. Therefore, lower compliance is sufficient to reach reliable resistive switching. 

The lower compliance is desirable for low consumption and potential risk of permanent 

breakdown. It leads to higher amount of endurance cycles.     

Overall, it is perceived that Ag/IGZOnp/Ti annealed at 200 ºC devices present the best 

performance, low set and rest voltage, larger operating window for a low read voltage of -0.1 V, 

and stable endurance and retention.  

4.7. Annealing temperature effect in IGZOnp films  

In order to perceive what makes Ag/IGZOnp/Ti annealed at 200 ºC better than at 350 ºC, 

surface morphology analysis was performed on IGZOnp films, using AFM technique.   

 

 

Figure 4.14 - Morphological characterization by AFM deflection images of 1 × 1 μm2 IGZOnp on Ti annealed 

at (a) 350 ºC and (b) 200 ºC. Respective nanoparticles radius size distribution measured with Gwyddion 

software of IGZOnp on Ti annealed at (c) 350 ºC and (d) 200 ºC, the insert corresponds to the respective 

phase images. 
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From the Figure 4.14 is possible to perceive a small roughness, small nanoparticles size 

with good distribution as well as larger number of nanoparticles, in IGZOnp annealed at 200ºC. 

Supporting a notion of better film uniformity. The origin of a better film quality could rely not only 

on the lower temperature process but also on the ethylene glycol present in the film that prevents 

nanoparticles sintering by coating them. 

4.8. Bipolar to unipolar transition 

It is known that a memory can turn its behavior from bipolar to unipolar when a lager current 

compliance [50] or a larger voltage magnitude [36] is applied or also, if the memory has a 

symmetric structure it should present such behaviour [51].  

In this case, as Ag/IGZOnp/Ti/Au annealed at 200 ºC showed the larger yield it was viable 

to test the transition between bipolar to unipolar. Figure 4.15 supports the fact that it is possible 

to obtain a unipolar behavior since (b)(unipolar) resulted from the same device in (a)(bipolar).  

However, it is difficult to achieve such transition since set and reset processes occurs for 

similar voltages in absolute value ( -0.85V to -1.3 V and 0.55V to 1.3V, respectively). Where 

normally to achieve unipolar for higher voltages in set process are needed, relatively to reset.   

The bipolar to unipolar transition was only possible in a specific case where after 

approximately 40 endurance cycles the memory stopped working (not shown) since the last reset 

process lead to a LCS with a resistance similar to the one in pristine state. The equivalent state 

can be visible in Figure 4.15 where (a) starts in 1 with a current of 0.1 µA and (b) starts in 1 at 0.1 

nA. This fact allowed the set voltage to be at -2 V (arrow 2) and a reset voltage at -1.6 V (arrow 

5), completing a unipolar cycle. No forming step was required even with the resistance value 

equivalent to pristine state.  

 

Figure 4.15 - Ag/IGZOnp/Ti cell I-V characteristics in (a) bipolar behaviour and (b) unipolar behaviour from 

the same device. 

Although the unipolar mechanism is depicted in Figure 4.15 (b), not all Ag/IGZOnp/Ti 

memories function as such. As it is described before, only in the case of achieving a similar 

resistive state as the pristine it is possible to perform the device under unipolar mechanism. 

Moreover, this unipolar mechanism is unstable since only endures for 2 cycles, after which 

become bipolar. Given these points, Ag/IGZOnp/Ti memories work in stable mode as bipolar 

mechanism and it is very improbable to be subjected to thermal disruption [5] since the unipolar 

mechanism is unlikely to be achieved. 
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4.9. Current compliance influence  

Current compliance can assume an important role regarding the future overall 

performance. In fact, as it was described in the last section, the C.C. for larger values can turn 

the device from bipolar to unipolar, which can reduce the device performance and endurance. 

Thus, it is significant to perform a study where is possible to identify the tuned C.C. which will 

allow the best endurance. 

In order to study the most indicated current compliance to be applied at Ag/IGZOnp/Ti/Au 

annealed at 200 ºC, different devices were subjected to distinct CC values: 5 mA (b), 3 mA (c), 1 

mA (d) and without C.C. (a) throughout an endurance test of 100 cycles at room temperature, as 

it is depicted in Figure 4.16. The insets in Figure 4.16 correspond to endurance characteristics of 

each respective I-V characteristics. 

All I-V characteristics were made with the orientation illustrated in Figure 4.16 (a) 

represented by the arrows. Also, the forming process is not showed although it was needed a 

C.C. of 10 µA and -2 V to create a filament as it is shown in Figure 4.2. 

 

 

Figure 4.16 - Typical behaviour of Ag/IGZOnp/Ti/Au annealed at 200 ºC, subjected to 100 cycles with no 

C.C. (a) or distinct current compliances values: 5 mA (b), 3 mA (c) and 1 mA (d); and respective endurance 

characteristics (small inserted graphic).  

Figure 4.16 shows that device switches between on and off states without the application 

of C.C. as already reported by different authors [7], [18], [52], [53]. 
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In fact, a self-compliant memory can substantially simplify the circuit design for RRAM since 

allows one-resistor (1R) configuration being a good alternative to a one-transistor one-resistor 

(1T1R) configuration [54], and also can protect the cell from current overshoots during resistive 

switching cycles [7], [41], [42]. This fact is not supported by the depicted data in (a) since the reset 

ability was gradually lost in the firsts cycles which is due to a possible overpowered device. 

Self-compliant mechanism could rely on small TiO2 thickness layer, created during 

annealing process which acts as a series resistance, Annex K. Same mechanism was described 

by Maikap et. al. [54] for interfacial oxygen-rich TaOx. 

A better performance may be achieved with less positive and negative voltage in reset and 

set process since -2 V and 1.5 V can be enough for the device operation, as it is represented in 

Figure 4.16 (b). Notice that although it starts with a 5 mA C.C. the set voltage decreases and it 

loses the need of C.C. (see cycle 100). Even if the endurance characteristic shows an irregular 

stability, regarding the LCS, and it stops to reset at cycle number 23, this device presents the 

ability to recover the memory mechanism, can be seen at cycle number 60. 

For Figure 4.16 (c) it is possible to confirm that 3 mA of C.C. are insufficient to reach a self-

compliant mechanism. Moreover, it presents a 103 operating window even though the LCS is 

unstable. At cycle number 53 it suffers a possible internal breakdown preventing new set process. 

However, increasing the C.C. and voltage set can allow a memory recovery (not shown).  

Despite the fact that all Ag/IGZOnp/Ti annealed at 200 ºC can show a self-compliant 

mechanism at approximately 4 mA, it is possible to conclude in Figure 4.16 (d) that 1 mA of C.C. 

is the best option to operate these memristors since was the only device which endured over 100 

cycles with a stable difference ON/OFF ratio. This can be supported by a previous notion that 

providing low power (1 mA) prevents extensive cell damage, although it decreases the operating 

window. 

As these memristors show different LCS depending on the applied C.C. it is possible that 

there is a multilevel state mechanism, yet no further tests were made.  

4.10.  Electrode material Influence 

With the intention to evaluate the IGZOnp performance and its correspondent dependence 

on the electrode material various solution based structures were fabricated. Thus, in this section 

it is presented a brief summary of the collected data regarding the first cycles of: (1) 

Ag/IGZOnp/IZO, (2) Au/Ti/IGZOnp/Pt/Ti and (3) Ti/IGZOnp/IZO; with the two different annealing 

temperatures of 350 ºC and 200 ºC, as it is shown in Table 4.3. 

It is important to refer that the collected data is taken from substrates with 25 devices each 

and three different diameters: 1.69 mm, 0.89 mm and 0.37 mm. Moreover, the subtracts maps is 

shown Annex L.  

The reason for different devices sizes is explained by a possible area dependence 

regarding the HCS and LCS, meaning a non-filamentary conductive mechanism. Nevertheless, 

this fact cannot be proven due to the low yields and because the spin coating process can create 

zones with different thicknesses. 

Table 4.3 is filled with a yield percentage as an approximated value to the unity, the C.C. 

is relative to the smallest value which allows a set process to occur, the set and reset values are 
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attributed for the largest voltage recorded during the first cycles, finally the read voltage is selected 

for the smallest value responsible to obtain a largest operating window possible in a tradeoff way. 

All the values from C.C., set voltage, reset voltage, read voltage and operating window are 

selected from the best memory in the subtract, also no forming values were recorded. 

Table 4.3 - Comparison values of the first cycles from different devices using (1) Ag/IGZOnp/IZO, (2) 

Au/Ti/IGZOnp/Pt/Ti and (3) Ti/IGZOnp/IZO structures. 

Structure Au/Ti/IGZOnp/Pt/Ti Ti/IGZOnp/IZO Ag/IGZOnp/IZO 

Annealing temperature 350 ºC 200 ºC 350 ºC 200 ºC 350 ºC 200 ºC 

Yield 4 % 4 % 12 % 50 % 24 % 12 % 

Current compliance 1 mA 5 µA 10 µA 10 µA 0.5 mA 0.5 mA 

Set voltage +1.15 V +2.05 V -1.5 V +2.2 V -1.35 V -1.75 V 

Reset voltage -1.3 V -0.55 V +0.2 V -1.9 V +1.2 V +1.5 V 

Read voltage +0.04 V +0.04 -0.1 V +0.04 V -0.1 V -0.1 V 

Operating Window 10
2
 10

4
 10

3
 10

3
 10

2
 10

2
 

Observing all the devices at Table 4.3 it is possible to conclude that using a larger annealing 

temperature can reduce the set and reset voltages. This fact could rely on the possible ethylene 

glycol presence which prevents easy filament formation. Yet the used C.C. in Au/IGZOnp/Pt/Ti 

annealed at 350 ºC is three orders of magnitude higher than Au/IGZOnp/Pt/Ti annealed at 200 

ºC meaning a much higher power consumption, also the device annealed at 200 ºC shows an 

operating window of 104. 

Furthermore, Au/IGZOnp/Pt/Ti show the lowest read voltage in this work, which can be 

assure by the lowest resistance of top and bottom electrodes. Allowing a HCS permanence for 

values closer to 0V. It is important to refer that the low yield in platinum devices can be associated 

with a small Ti thickness causing a Pt detachment of the substrate, during the fabrication process. 

Consecutively, leading to a disruptor in more than 80% of the memory cells. Another advantage 

of annealing devices at 200 ºC is the fact that can grant a high yield visible in Ti/IGZOnp/IZO 

devices. 

Comparing these results to the devices at Table 4.2 is possible to analyse a contradiction 

over the set/reset voltages for 350 ºC and 200 ºC of annealing temperature since Table 4.3 shows 

a trend for lower voltages at higher temperature. In other hand a larger yield is verified in both 

tables for lower annealing temperature. Again, memories with Ag/IGZOnp presented a negative 

formation suggesting a dominant VCM mechanism. 

Is important to notice that although the results presented on Table 4.3 are better in 

comparison to Table 4.2 regarding C.C., read voltage and operating window. More studies need 

to be performed. Nevertheless, the main objective in this work was focus on the display 

parameters and not on endurance and retention evaluation.  
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4.11.  Performance of sputtered a-IGZO memories 

The Au/Ti/a-IGZO/Ti device structure was fabricated to match the previous solution based 

OxRAM for a more approximated comparison.  

Figure 4.17 (a) shows endurance test performed over 100 cycles in sweep voltage mode at 

RT, being the set done with positive voltage and the reset with negative voltage, as it is 

represented by the arrows (1-7). Also, there is no preferential orientation regarding the set and 

reset, since the device presents a symmetric structure. 

Notice that Figure 4.17 (a) device does not show any formation step, in other words it is a 

forming-free memory. This advantage in a-IGZO memories has already been studied and is 

explained by the abundant pre-existing oxygen-related defects controlled during a-IGZO 

sputtering deposition [34]. Thus it is possible to conclude that the proposed deposition parameters 

in terms of elements ratio and oxygen flow allow a forming-free a-IGZO OxRAM.  

Another interesting fact about this device is the low C.C. of 10 µA compared to those in the 

state of the art a-IGZO memories contributing to a larger endurance. Regarding the set voltage, 

the firsts cycles appeared to be around 3 V although it gradually tends to lower values closer to 1 

V in later cycles. In opposition, the reset voltage tends to start with a very fixed reset voltage of -

0.4V for 80 cycles and then starting to descend for lower values.  

It is possible to predict that both set and reset values are somehow correlated. However, it 

needs further study to reach to the most stable IGZO RRAM device. Figure 4.17 (b) confirms that 

the memory is robust and it still works after 100 cycles in sweep voltage with a very good retention 

result. 

 

Figure 4.17 -(a) I-V characteristics of Au/Ti/a-IGZO/Ti device over 100 cycles and respective (b) endurance 

characteristics. 

One may observe that after the set process in Figure 4.17 (a) a very straight line is 

represented (arrow 3) maintaining the C.C. value until it reaches 0 V. This fact is due to sudden 

filament formation responsible for decreasing the internal device resistance to a point beyond the 

C.C.. The corresponding conductive value is reveled at negative voltage (arrow 4). Consequently, 

giving a 104 ON/OFF ratio, shown in Figure 4.17 (b).   

Because a very stable HCS is maintained even for voltages closer to 0 V, is theoretically 

possible to reduce the read voltage to half without changing considerably the HCS/LCS ratio.  
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In comparison to previous IGZOnp memories it is possible to identify a different behavior from 

a-IGZO which work as RRAM instead of memristors. suggesting that memristors are only 

achieved by nanoparticles in combination with Ti.  

4.12. Pt/Al2O3/Cu2O/ITO CBRAM 

It was possible to obtain a peculiar Pt/Al2O3/Cu2O/ITO memory made at Universität 

Darmstadt, where alumina layer is deposited by Atomic Layer Deposition (ALD). In fact, it was 

reported by Deuermeier et. al. [55] that a Cu2O reduction takes place when a ALD layer is 

deposited on top, originating a thin Cu layer between Cu2O and Al2O3. Thus Cu can be used as 

an active electrode, able to migrate through the alumina layer, acting as a CBRAM.  

 

 

Figure 4.18 - (a) Pt/Al2O3/Cu2O/ITO I-V characteristic performed over 100 cycles, consequent (b) 

endurance characteristic with read voltage 0.1 V and (c) retention characteristic at RT with 0.1 V of read 

voltage during 104 seconds. 

Figure 4.18 (a) depicts 100 cycles of an I-V characteristic in sweep voltage mode at RT. 

Before the first cycle it was needed a forming step for -6 V (not shown). Set and reset were 

performed with negative and positive voltage respectively with the direction represented from 
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arrows 1 to 6. The set with negative polarization is explained by the presence of Cu2O/Cu on the 

bottom electrode, which will cause a Cu migration though the cell acting as a CBRAM.  

The graph in Figure 4.18 (b) is obtained by a 0.1 V read voltage and it is visible that the 

memory worked during 100 cycles, however there was an instable behavior regarding the LCS 

and HCS with variations of three orders and two orders of magnitude, respectively. Moreover, it 

is possible to distinguish two different LCS yet they do not make this memory a MLC since it is 

an uncontrolled mechanism. Nevertheless, the medium value of the closest LCS with the HCS 

allows more than an operating window of 10, meaning it is a reliable memory. 

Figure 4.18 (c) shows a very stable behavior in both HCS and LCS regarding the retention 

time over 104 seconds at room temperature allowing an ON/OFF ratio of 105.  

All these results were consistent among the Pt/Al2O3/Cu2O/ITO devices. 
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5. Conclusion and Future Perspectives  

5.1. Final conclusions 

In this work resistive switching memory potential of solution-based IGZOnp was fabricated 

and analysed. 

Two memory structures were studied: Ti/IGZOnp/Ti and Ag/IGZOnp/Ti both annealed at 350 

ºC. Those structures showed a memristor bipolar resistance switching mechanism. Retention 

times up to 104 s were observed for both memories. With exception of retention time in 

Ti/IGZOnp/Ti, the operation window for endurance tests and retention test in Ag/IGZOnp/Ti is one 

order of magnitude, for a read voltage of 0.1V. We showed that Ag/IGZOnp/Ti memories can 

withstand for more than 100 endurance cycles and Ti/IGZOnp/Ti devices can perform very well 

up to 80% of the cycles, demonstrating a self-healing mechanism. Conduction mechanism of the 

ON state is space-charge-limited conduction (SCLC). It suggests a switching mechanism based 

on oxygen vacancies, consistent to memories with a-IGZO. 

Air and vacuum influence was studied, showing that devices work in both environments. 

However, no solid conclusion was taken since each device has its own IGZOnp thickness, and 

this could be the most significant parameter for the operation voltages. 

Optimizing the process, we decreased the annealing temperature to 200 ºC for both devices 

structures: Ti/IGZOnp/Ti and Ag/IGZOnp/Ti. AFM analysis suggested that IGZOnp/Ti layers were 

more uniform and presented lower roughness in the case of 200 ºC of annealing temperature 

supporting a better behaviour in devices annealed at that temperature. 

Ti/IGZOnp/Ti depicted low yield associated with an undesirable pre-forming phenomenon, 

which is explained by low thickness during fabrication. On the other hand, Ag/IGZOnp/Ti devices 

showed the best performance since the operation window was larger than one order of 

magnitude, retention time up to 104 s, more than 100 endurance cycles set and reset voltages of 

-1V/+1V for a current compliance of 1 mA.   

Bipolar to unipolar transition was verified to be difficult to achieve with Ag/IGZOnp/Ti devices 

annealed at 200 ºC due to polarization symmetry in set/reset and also the need to operate with a 

resistance at LCS similar to the one at pristine state.  

Current compliance study was performed for Ag/IGZOnp/Ti devices annealed at 200 ºC by 

1mA, 3 mA, 5 mA and 10 mA compliance application. Applying 1 mA current compliance results 

into a long-lasting memory. Self-compliant mechanism was verified and its occurrence was noted 

between 3 mA and 10 mA. This phenomenon could be explained by series resistance afforded 

by a thin layer of TiOX during the annealing process, protecting the device.  

  Other structures including: Ag/IGZOnp/IZO, Au/Ti/IGZOnp/Pt/Ti and Ti/IGZOnp/IZO were 

fabricated with the objective to obtain a basic analysis, to be compared with previous data. For 

these three devices annealing temperature of 350 ºC was determinant to achieve lower operation 

voltages.  

To best the best of our knowledge, this is the first work that shows a memristor device based 

on IGZOnp fabricating with a low cost solution processing under annealing temperatures of 200 

ºC. We believe that this device has a potential to be integrated in SoP technology. 
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5.2. Future perspectives 

Although a lot was investigated regarding IGZOnp memristors and the results appear to be 

very promising for a solution-based device. In order to improve the switching performance, and a 

better understanding of physics behind the mechanism, some investigations and experiments are 

recommended. Thus, it is essential to perform XPS, HRTEM and I-T characteristics. 

Electrical characterization using fast pulses to program devices (forming, write and erase 

processes) could also be useful since they provide an insight over the switching speeds and 

guaranty a last-longing device since the thermal component is eliminated, and consequently 

increasing the device endurance.    

In order to increase the performance, it is suggested that a narrow approach to thickness 

should be done, including an ink-jet printing technique instead of spin coating. Ink jet should also 

allow to standardize the devices and diminish the size which theoretically will improve the yield. 

Furthermore, a full transparent and flexible device could also be achieved by producing 

IGZOnp memories with transparent conductive oxides, like IZO and ITO. 

With a full optimized device is expected that IGZOnp memristors should take a role in SoP 

as a viable memory organized as a passive or active matrix, and to be integrated with TFT that 

used the same material and/or production methods.  

Devices based on Au-Ti/a-IGZO (ratio: 2:1:2)/Ti structure were also fabricated through the 

physical sputtering process as a sample of semiconductor switching matrix memory (OxRAM). In 

addition, we tested and analysed memory devices based on Al2O3, dielectric based device as a 

Conductive Bridge Random Access Memory (CBRAM). 

Uniform memory performance was observed for a-IGZO memristors, and the memory window 

was much higher than IGZOnps devices. However, set voltage fluctuation was observed. Further 

study on different ratio of fabricating a-IGZO is recommended.  

Moreover, CBRAM device also shows endurable resistive switching with a large window of 

on/off ratio. Although, it shows a non-controllable multi current levels. It can be related to the soft 

breakdown of dielectric which needs to be occurred at well-defined voltage to activate the memory 

cell. 
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7. Annexes  

Annex A 

Table 7.1 – a-IGZO RRAM state of the art. 

 2010 [27] 2010 [19] 2010 [29] 2011 [31] 2013 [32] 2014 [34] 2015 [8] 2016 [28] 2014 [36] 

Structure 
ITO/a-

IGZO/ITO 
Pt,Au,Al/a-
IGZO/Pt/Ti 

Ti/a-
IGZO/TiN 

Pt/a-
IGZO/TiN 

Cu/a-
IGZO/Cu 

TiN/Ti/IGZO/
Pt 

Ag/a-
IGZO/Pt 

Ag/SiO2/IGZO/
Pt/Ti 

IZO/IGZO/ITO Pt/IGZO/Pt 

Ratio 
In:Ga:ZnO 

1:1:1 1:1:2 1:1:1 - - 2:2:1 1:1:2 - 1:1:1 

Process Sputtered PLD Sputtered Sputtered Sputtering Sputtered Sputtered Sputtered 
Photochemical 

solution 
deposition 

Thickness 100 nm 100 nm 30 nm 60 nm 40 nm 30 nm 40 nm 25 nm  

Dimensions 7.8x10-3 cm2 - 0.64-64 µm2 
7.8x10-3 

cm2 
3.1x10-3 cm2 

7.1x10-3 
cm2 

7.8x10-3 cm2 4.2x10-3 cm2 7.1x10-3 cm2 

Operation 
type 

bipolar unipolar bipolar unipolar unipolar bipolar bipolar bipolar bipolar 
Unipolar and 

bipolar 

Set Voltage -1.5 V 3 - 4 V +0.6 V > +3 V +1.5 V +2.5 V +0.8 V +0.75 V +0.83 V +2 V 

Reset Voltage + 3.5 V 0.4 V - 1 V + 1 V +0.5 V -1.5 V -1 V 
MLC: -0.45 V, -
0.65 V, -0.85 V 

-0.76 V -1 V 

Forming 
Voltage 

- 6.14 V 
+ 6.4 V 
(With 

0.1mA CC) 
- - 6 V - + 2.5 V Forming free +9 V 

Read Voltage -0.2 V - +0.1 V +0.1 V - +0.3 V -0.1 V -0.1 V - +0.2 V 

Current 
Compliance 

10 mA 10 mA 1 mA 1 mA 3 mA 10 mA 10 mA 
0.1, 1 and 10 

mA 
10 mA 10 mA 

Retention 
104 s @ 

90ºC 
- - - - - 

104 s 
@RT 

104 s @ 85ºC 104 s @ 85ºC 104 s 

Endurance 100 cycles - 100 cycles 150 cycles 1000 cycles - 100 cycles 106 100 cycles 

Window 102 - 102 102 102 – 103 10 102 104 103 10 
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Annex B 

IGZO nanoparticles morphological characterization through SEM visualization (Figure 7.1 

(a,b)) and energy-dispersive X-ray spectroscopy (EDS)  for chemical composition analysis (Figure 

7.1 (c-f)).  

 

 

Figure 7.1- (a,b) SEM images of the small nanoparticles agglomerates with different magnifications; (c-f) 

EDS elements mapping; and (g) atomic percentages calculated as an average of 10 different samples of 

IGZO (coloured) and respective  percentages before synthesis (blank). 

From SEM images it is visible small nanoparticles agglomerates with a consistent size in 

the order of 2 m [37].  Moreover, a uniform cation distribution is discernible in the element 

mapping (Figure 7.1 (c-f)). EDS demonstrate a 3:1:1 atomic ratio in In:Ga:Zn, instead of 7:2:1 

used as initial precursors proportion. This can be explained by a mass percentage loss during the 

manufacturing process.  

  

(g) 
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Annex C 

FTIR-ATR spectra of IGZO nanoparticles, (Figure 7.2) after solvent evaporation at different 

temperatures for one hour. At 80 ºC is expected the ethanol evaporation remaining 2-

metoxyethanol, ethanolamine and water, this effect is confirmed by a band at OH region (around 

3350 cm-1 and 2500 cm-1) and bands bellow 1800 cm-1. Consecutive higher temperatures 

depicted a band decrease along the spectra, as expected. Notice that for 200 ºC occurs a total 

water evaporation and a partial evaporation of 2-metoxyethanol and ethanolamine. At 350 ºC any 

2-metoxyethanol and ethanolamine can be detected represented by a flat spectra. 

 

Figure 7.2 - FTIR-ATR spectra of IGZO nanoparticles after solvent evaporation at 80 ºC, 200ºC and 350ºC.  

 

 

 

 

 

Annex D 

In order to determine the IGZO nanoparticle optical band gap, Tauc’s plot was used, 

recurring to the equation (7.1): 

    A( )nh h Eg       (7.1) 

Where corresponds to the absorption coefficient, h  is the photon energy, A is a 

constant and n depends on the type of optical transition. In this case 2n  meaning an indirect 

allowed transition occurrence. From the linear fit in Figure 7.3 was possible to determine the 

optical band gap with 3.74 eV, which is a similar value to the one obtained by Santos et. al. [37]. 
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Figure 7.3 - Tauc’s plot for IGZOnp dispersed in ethanol. 

 

 

 

Annex E 

XRD measurements of the IGZO nanoparticles thin film were performed at different 

annealing temperatures where it is possible to confirm the presence of the a-IGZO structure up 

to 350 ºC. The IGZO crystallization at 900 ºC was performed in order to identify the type of 

structure produced by this method where it is visible the presence of the three different oxides, 

as Figure 7.4. 

 

Figure 7.4 - XRD diffractograms of IGZO nanoparticles obtained after annealing at 350 ºC, IGZO 

nanoparticles after annealing at 900 ºC, and reference ICDD diffractograms of h-ZnO, m-Ga2O3 and c-In2O3 

used for identification (file numbers 05−0664, 41−1103, and 06−0416, respectively). 
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Annex F 

DLS measurements were performed with IGZO inks in different production steps to analyse 

the nanoparticle size distribution, Figure 7.5. Ideally the sonication step should lower the 

nanoparticle size distribution, however it is noticeable a rise in the size which can be explained 

by the nanoparticles impact causing agglomerations throughout the process. Though, after 

filtration the medium size becomes the same as before sonication. The hydrodynamic diameter 

is found around 100-300 nm which do not correspond to SEM (Annex B) and AFM (Figure 4.14) 

measurements. This is expected since the analysis is performed in the dispersions giving 

information on the inorganic core along with the solvent layer attached to the particle as it moves 

under the influence of Brownian motion [37].  

 

Figure 7.5 - DLS size distribution of IGZO ink before sonication, after sonication and after filtration. 

 

 

 

 

 

 

Annex G 

Thermal analysis of the prepared IGZO inks by DSC-TG experiment demonstrates that the 

ethanol ebullition occurs around 75 ºC and ethylene glycol degradation at 150 ºC, Figure 7.6. With 

this measurement was also possible to determine that 8.7% nanoparticles weight are loss during 

the filtering process with a 0.45 µm filter. Meaning that the IGZO ink has 5.4% in weight of 

nanoparticles after filtration. The increase in the heat flow after 300 ºC is an equipment 

misreading, since there is no weight loss at that temperature or beyond. 
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Figure 7.6 - DSC-TG results performed in air from ambient temperature to 500 ºC for filtered and not 

filtered IGZO inks. 

Annex H 

 

Figure 7.7 – Typical substract with 6x6 device matrix with layer identification, and respective device 

representation (right). 
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Annex I 

Ti/IGZOnp/Au/Ti subtract map containing 36 devices each with 3.3x10-3 cm2 of the titanium 

top contact. From row 1 to 3 I-V characteristic was made in air atmosphere and from row 4 to 6 I-

V characteristic was made in vacuum ambient with 3.33x10-4 mBar.  

 

Figure 7.8 - Ti/IGZOnp/Au/Ti subtract map which shows the first cycle. Bipolar working devices (green); 

non stable devices (black); short circuits (red), devices not analysed (blank graphics).   

The devices represented with a black I-V characteristics shown a non-stable behavior since 

only tolerate the first cycle (with forming) and so no further conclusions can be taken. Notice that 

some of the devices short circuited in a reset attempt evidencing a very sensitive RS. It is 

speculated that it can be explained by a small IGZOnp layer thickness which instead of causing 

a filament disruption, produce an opposite larger filament short circuiting the device.  
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Annex J 

Conductive mechanism of Au/Ti/IGZO/Ti device annealed at 200 ºC.  
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Figure 7.9 - I-V characteristics of Au/Ti/IGZOnp/Ti structure plotted in log-log scale to evaluate the 

conduction mechanism. 

Annex K 

Table 7. 2 - Approximated resistance values for each electrode used in IGZO memory devices. 

Metal contact Gold Platinum Silver IZO Titanium 

Titanium after annealing 

(200 and 350 ºC) 

Resistance [Ω] 1 2 1 500 2 200 

 

The increase in Ti resistance after annealing can be associated to the Ti oxidation, and 

consequent TiO2 thin layer formation.  
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Annex L 

 

Figure 7.10 - I-V characteristics of Au/Ti/IGZOnp/Pt/Ti annealed at (a) 350 ºC with 1.68 mm and (b) 200 ºC 

with 0.89 mm. 

 

Figure 7.11 - I-V characteristics map of Ti/IGZO/IZO structures annealed at 350 ºC in green the bipolar 

memories and in black no memory behaviour displayed. The column in green represents the diameter used 

for the memories in the same row. The respective C.C. value for each device is displayed in the y axis.  
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Figure 7.12 - I-V characteristics map of Ti/IGZO/IZO structures annealed at 250 ºC in green the bipolar 

memories and in black no memory behaviour displayed. The column in green represents the diameter used 

for the memories in the same row. The respective C.C. value for each device is displayed in the y axis. Blank 

graphic represents devices that were not analysed. 

 

Figure 7.13 - I-V characteristics map of Ag/IGZO/IZO structures annealed at 300 ºC in green the bipolar 

memories, in black no memory behaviour displayed, in red short circuited devices. The column in green 

represents the diameter used for the memories in the same row. The respective C.C. value for each device 

is displayed in the y axis. Blank graphic represents devices that were not analysed. 
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Figure 7. 14 - I-V characteristics map of Ag/IGZO/IZO structures annealed at 350 ºC in green the bipolar 

memories, in black no memory behaviour displayed, in light orange identifies a two regime memory1. The 

column in green represents the diameter used for the memories in the same row. The respective C.C. value 

for each device is displayed in the y axis. Blank graphic represents devices that were not analysed. 

                                                           
1 It is identified a two regime memory since cell activation was performed with negative 
polarization, and the consequent positive voltage application revelled a set process instead of a 
reset, suggesting a silver filament formation. No more cycles were effectuated in order to identify 
the dominant conductive mechanism.   


