2,407 research outputs found

    A linear regression based cost function for WSN localization

    Get PDF
    Localization with Wireless Sensor Networks (WSN) creates new opportunities for location-based consumer communication applications. There is a great need for cost functions of maximum likelihood localization algorithms that are not only accurate but also lack local minima. In this paper we present Linear Regression based Cost Function for Localization (LiReCoFuL), a new cost function based on regression tools that fulfills these requirements. With empirical test results on a real-life test bed, we show that our cost function outperforms the accuracy of a minimum mean square error cost function. Furthermore we show that LiReCoFuL is as accurate as relative location estimation error cost functions and has very few local extremes

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance

    Investigation of Wireless Channel Asymmetry in Indoor Environments

    Full text link
    Asymmetry is unquestionably an important characteristic of the wireless propagation channel, which needs to be accurately modeled for wireless and mobile communications, 5G networks, and associated applications such as indoor/outdoor localization. This paper reports on the potential causes of propagation asymmetry. Practical channel measurements at Khalifa University premises proved that wireless channels are asymmetric in realistic scenarios. Some important conclusions and recommendation are also summarized.Comment: Accepted in IEEE International Symposium on Antennas and Propagation (APS17), San Diego, California, 9-14 Jul. 2017. arXiv admin note: substantial text overlap with arXiv:1704.0687

    inTrack: High Precision Tracking of Mobile Sensor Nodes

    Get PDF
    Radio-interferometric ranging is a novel technique that allows for fine-grained node localization in networks of inexpensive COTS nodes. In this paper, we show that the approach can also be applied to precision tracking of mobile sensor nodes. We introduce inTrack, a cooperative tracking system based on radio-interferometry that features high accuracy, long range and low-power operation. The system utilizes a set of nodes placed at known locations to track a mobile sensor. We analyze how target speed and measurement errors affect the accuracy of the computed locations. To demonstrate the feasibility of our approach, we describe our prototype implementation using Berkeley motes. We evaluate the system using data from both simulations and field tests

    A cloud-assisted design for autonomous driving

    Get PDF
    This paper presents Carcel, a cloud-assisted system for autonomous driving. Carcel enables the cloud to have access to sensor data from autonomous vehicles as well as the roadside infrastructure. The cloud assists autonomous vehicles that use this system to avoid obstacles such as pedestrians and other vehicles that may not be directly detected by sensors on the vehicle. Further, Carcel enables vehicles to plan efficient paths that account for unexpected events such as road-work or accidents. We evaluate a preliminary prototype of Carcel on a state-of-the-art autonomous driving system in an outdoor testbed including an autonomous golf car and six iRobot Create robots. Results show that Carcel reduces the average time vehicles need to detect obstacles such as pedestrians by 4.6x compared to today's systems that do not have access to the cloud.Smart.fmNational Science Foundation (U.S.
    • …
    corecore