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Abstract: Localization with Wireless Sensor Networks (WSN) 

creates new opportunities for location-based consumer 

communication applications. There is a great need for cost 

functions of maximum likelihood localization algorithms that are 

not only accurate but also lack local minima. In this paper we 

present Linear Regression based Cost Function for Localization 

(LiReCoFuL), a new cost function based on regression tools that 

fulfills these requirements. With empirical test results on a real-

life test bed, we show that our cost function outperforms the 

accuracy of a minimum mean square error cost function. 

Furthermore we show that LiReCoFuL is as accurate as relative 

location estimation error cost functions and has very few local 

extremes.  

 

 

1. INTRODUCTION 

 

Researchers have already been investing a lot of effort in 

localization-aware applications [1]. Within the DEUS-project 

[2], we already implemented a next generation network and 

service by the use of T-mote Sky modules in an elderly 

surveillance localization system. In this paper, we push the 

limits further. 

Modern widely accepted methods use statistics, like 

Bayesian estimators [3, 4, 5] and maximum likelihood 

estimation [6], to improve the accuracy of the position. In 

previous work [7], we presented Linear Regression based 

Fast Localization Algorithm (LiReFLoA). This is an 

automated method to optimize and calibrate the experimental 

data before offering them to our positioning tool. This tool is 

based on elimination and controlling distance circles. In this 

paper, we use the same selection and calibration method, 

present a new maximum likelihood cost function and compare 

it with cost functions that are more traditional, like Minimum 

Mean Square Error function (MMSE) [8], Relative Location 

Estimation (RLE) [9] and Reduced Biased Relative Location 

Estimation (RBRLE) [9]. 

This paper is organized as follows: In section 2 related 

work is described. The used equipment can be found in 

section 3. Section 4 presents LiReCoFuL. In section 5 test 

results are presented and LiReCoFul is compared with other 

cost functions. Finally, in section 6 conclusions are drawn. 

 

 

2. RELATED WORK 

 

Both the Bayesian algorithm and the Maximum LikeliHood 

(MLH) algorithm are widely accepted as localization tools in 

WSN. In this paper, we concentrate on MLH. The starting 

point of a MLH algorithm is a cost function. Several cost 

functions exist: the simplest and widely used cost function is 

the Minimum Mean Square Error function (MMSE) [8]:                                     

 

 

 

where di,j is the Euclidean distance between a point j and an 

anchor i. (please recall that an anchor is a node knowing its 

own position). Furthermore ~ denotes the estimate, i.e. 

is the estimated (the most likely) position, and  is the 

estimated distance between point j in the x-y plane and 

anchor i. Although we estimate this distance with the 

Received Signal Strength Indicator (RSSI)-values of the radio 

chip and the propagation constants, the lognormal 

relationship between RSSI and distance is not a prior 

assumption.  

Thus, this cost function means that the most likely position is 

a point in the x-y plane where the sum of squared position 

errors between estimated and Euclidean distances to the 

anchors is minimal.  

Equation (1) does not take into account that the underlying 

physics dictates the relationship between the RSSI and the 

distance to be semi-logarithmic [10]. Therefore Patwari et al. 
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start with this assumption and propose the Relative Location 

Estimation (RLE) cost function [9]: 

 

                                                                                          

 

where ln stands for the natural logarithmic function. This cost 

function implies that the most likely position is a point in the 

x-y plane where the sum of squared logarithms of the squared 

quotient of the Euclidean and estimated distance is minimal. 

Since this cost function is biased (this means that the mean 

of the estimated position does not equal the Euclidean 

distance), the same authors suggest a better cost function with 

reduced bias (RBRLE) 

 

 

 

where C is calculated with the propagation parameters and the 

standard deviation on the RSSI. This standard deviation is 

estimated with the Cramer-Rao lower bound (CRLB). The 

authors of [9] notice that C ≈ 1.2 for typical channels.  

Therefore, we use this value in this paper. 

 

In section 4 we will suggest a new cost function, based on 

linear regression and probabilities around a point on the 

regression line. In the next section, our test environment is 

described. 

 

3. USED EQUIPMENT 

 

The Interdisciplinary Institute for Broadband Technology 

(IBBT) iLab.t Wireless Lab or W-iLab.t test bed is used in 

 

 

 

 

 

 

 

 

 

 

our experiment. More about this test bed can be found in 

[11]. Only the second floor is used in this paper. On figure 1, 

this floor is shown with the position of the 51 active nodes. 

The floor is rectangular shaped, but in the center of the floor, 

there are also outside walls, almost cutting the floor in two 

smaller rectangles. In this paper, we use not only the same 

selection method of best anchors but also the same calibration 

method as in our previous work [7, 12]. We swap the RSSI- 

and (logarithmic) distance axes, perform a linear regression 

and use regression properties to obtain the “well-behaving” 

and calibrated anchors. These anchors are marked with a red 

circle in figure 1. 

 

 

4. OUR COST FUNCTION 

 

The RSSI-distance plane in figure 2 presents the 

measurements for a well-behaving anchor with the regression 

line. This line reduces the mean squared errors, thus the 

measurements are close to this regression line. A point further 

away from this line will therefore result in a lower probability 

of occurrence. The distance probability distribution is shown 

for three different values of the RSSI in the third dimension 

of this plot, according to the basics of the linear regression 

technique [13]. This is also valid for other RSSI-values and 

thus a kind of “tunnel” is formed around this regression line. 

An assumption of linear regression theory is that the y-

coordinate values are normally distributed with the same 

standard deviation. Therefore the width of the tunnel remains 

constant for a  specific regression line. Having defined an 

error on distance [7] we were the first to assume a normal 

distribution on the (logarithmic) distance. Many other 

authors, including [9], assumed a normal distribution on the

 

 

 

 

 

 

 

 

 

 

Figure 1: Position of nodes on the second floor of the IBBT 

  



 
Figure 2: Linear regression and distance probability 

distribution 

 

RSSI. Since the variables are linearly correlated, both 

assumptions are equivalent. Our approach however is more 

direct, since it outputs distances rather than RSSI’s. 

Consequently, (4) is a normal distribution with zero means 

and the (unknown) standard deviation. Dividing (4) by this 

standard deviation results in a standard normal distribution.  

 

                                                          

 

For each anchor, the exact standard deviation was estimated 

by the measurements using the regression technique. Formula 

(4) divided by the standard (logarithmic distance) error (or 

half the error on distance [7]) converts the standard normal 

distribution to a t-distribution [13]. 

The most likely location is now found by maximizing our cost 

function: 

                                                                                                                                                                                                                                                                                                                                

where tpdf(t,n) denotes the Student’s T probability 

distribution function with n degrees of freedom at the t-value 

of t [13]. The anchor dependent degrees of freedom n(i) can 

also be obtained by linear regression: for each sending 

anchor, it equals the number of receivers where the RSSI is 

above the noise floor minus two. Indeed two degrees of 

freedom are lost: one for calculating the mean and one for 

calculating the standard deviation [13].  

When the Euclidean distance of a point in the x-y plane to a 

particular target equals the estimated distance, the t-value is 

zero and the t-distribution peaks. This is the case for all 

anchors. Assuming that the anchors are independent, the 

overall probability is found by multiplying the probabilities of 

the individual anchors. Therefore multiplication needs to be 

done for all points that are anchors and the cost function 

needs to be maximized. 

 

Mostly the conjugate gradient algorithm is used to find the 

extremes of the cost functions (1-3), (5) [14]. A drawback of 

this method is that it does not always converge to the wanted 

extreme of the function, or that it converges to a local 

extreme [15]. Some authors [16] therefore use this algorithm 

in combination with another coarse positioning algorithm. In 

this paper we put a grid on our building and calculate the cost 

function for each grid point. This algorithm is “safer” since it 

always finds the true extreme and allows easy visualization.  

 

 

5. RESULTS 

 

In this section, the test results of the different cost functions 

are compared. The first subsection starts with the comparison 

of the plots of the cost functions and a second follows with a 

cumulative distribution plot of the position error. 

 

5.1 Graphical comparison of the cost functions. 

 

Figure 3 plots the cost functions (1), (2), (3) and (5) on a 

0.25 m grid (for the same central target) respectively. In 

figure 1 this target is marked with a green square. This target 

is chosen randomly. Other targets have similar graphs.  

For RBRLE, a C-value of 1.2 is chosen. Please recall from 

section 2, that MMSE, RLE and RBRLE need to be 

minimized.  

For this central target, the Euclidean distances to the 

extremities of the building are large in the cost function (1). 

This results in the shape of the upper left MMSE graph in 

figure 3.  

 

  

  

 Figure 3: Comparison of the different cost functions for a 

central target 

 

Near an anchor the denominator of the ln-argument of both 

(2) an (3) is very small. When this point is not the target, the 

nominator of the ln-argument is not small. This results in 

peaks of these cost functions at the anchor locations, forcing 



the estimated position to the lower values in both the upper 

right-hand side RLE- and lower left RBRLE graphs of figure 

3. A large value of the C-value will increase these peaks more 

pronouncedly.  

Our cost function for the target can be found in the lower 

right corner of figure 3. Please recall from section 4 our cost 

function needs to be maximized. It has a large gradient 

around the maximum. It has less local maxima than other cost 

functions have local minima. This eases a real-time 

positioning algorithm based on the conjugate gradient 

method. 

 

5.2 Cumulative distribution plots of the position error. 

 

Our software now calculates the position of each of the 51 

active nodes for the different algorithms and compares the 

results with the exact positions. In figure 4, a cumulative 

distribution plot (cdfplot) of the position error is given for the 

different cost functions. The Euclidean distance between the 

exact and the calculated position presents one position error 

point in this cdfplot. 

The MMSE cost function gives the worst results. It has a 

median of 4.86 m. This can be explained by the fact that the  

Figure 4: Cdfplot of the position error for the different cost 

functions on the second floor 

 

model does not take into account the lognormal relation of the 

distance and the RSSI. The other medians are 3.23 m, 4.01 m 

and 3.23 m for the RLE, RBRLE and our cost function 

respectively. 

It can be shown that the frequency distribution of the position 

error is not a normal distribution. Therefore nonparametric 

test are performed. A Friedman test [17] rejects the null 

hypothesis that the error distributions are the same for all cost 

functions. The p-value (defined as the probability that the test 

statistic is equal to or more extreme than the one observed 

under the null hypothesis [17]) equals 0.003 or 0.3%.  

Next, 6 Wilcoxon tests [17] are done, pair wise comparing 

the position error of the cost functions. E.g. a first test 

compares the position error for MMSE and LRE (for the 

same target), a second MMSE and RBLRE, …. These tests 

confirm that RLE, RBRLE and our cost function result in 

lower position errors than MMSE. 1-tailed p-values are less 

than 0.05%, 2.9% and 0.05% respectively. The tests further 

fail to prove a difference between the position error of our 

cost function and both RLE and RBRLE. 

This subsection thus shows that the position errors of 

LiReCoFuL are comparable with those of (RB)RLE and 

definitely better than those of MMSE. 

  

5.3 Execution times. 

 

Very fast execution times are needed for real-time 

localization. At the starting point of this algorithm 

comparison, anchors are already selected and calibrated. 

Therefore those execution times are not treated here. At this 

stage, a RSSI matrix and a distance matrix are already 

calculated in Matlab. The RSSI(i,j) matrix consists of  

averaged RSSI elements reported from receiver j with 

sending node i. The distance matrix contains elements with 

the (known) distance between receiver j and sending node i. 

First, the gridpoints are calculated. In our 0.25m gridded 

building this results in a matrix of 26000 rows and two 

columns (one for the longitudinal and one for the lateral 

coordinate). A denser grid will result in larger execution 

times. Now, the position errors are calculated for each 

algorithm. On our Dell Latitude D830 position  server 

equipped with Matlab, the average time for calculating one of 

the 51 positions took 27, 45, 45 and 240 ms for the MMSE, 

RLE, RBRLE and LiReCoFuL algorithm respectively. 

Implementing the t-distribution formula [18]:  

 

instead of using the tpdf build-in Matlab function will speed 

up our algorithm, when the n(i) value does not vary between 

anchors (n(i)=n).  

Please note that (6) is differentiable. This eases the 

implemention of (5) in a conjugate gradient algorithm. We 

keep this as future work. 

 

5.4 The cost function with different scenarios. 

 

A similar test was done on the third floor of the IBBT 

building. The cdfplots can be found in figure 5. The medians 

of the position errors are 7.05, 4.19, 4.83 and 4.01 m for 

MMSE, RLE, RBRLE and LiReCoFuL respectively. This 

confirms the findings of Section 5.2. Furthermore, the 

presence of longer corridors results in higher constructive 

multipath fading and thus in somewhat higher medians for all 

algorithms. 



Figure 5: Cdfplot of the position errors for the different cost 

functions on the third floor 

 

6. CONCLUSION 

 

This paper presents a new cost function for localization 

algorithms using maximum likelihood. Our empirical tests 

show that the position errors are better than with a minimum 

mean square error cost function and equally well as with a 

relative location estimation cost function. The grid approach 

in this paper reveals that LiReCoFuL has less local maxima 

than the RLE and RBRLE cost functions have local minima. 
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