21 research outputs found

    Some Consideration on Shielding Effectiveness Testing by means of the Nested Reverberation Chambers

    Get PDF
    This paper evaluates the effects of test fixture isolation when using nested mode-stir chambers for conducting electromagnetic shielding measurements. The nested chamber technique is used by both government and industry to evaluate the electromagnetic attenuating properties of materials as varied as infrared sensor windows to the composites used in the hulls of new ships, EM-protection of human as well as devices. Numerical simulation by means of CST and FEKO software of different nested chambers arrangements were done. Some preliminary test measurements of designed and manufactured the small reverberation chamber were done and compare with the numerical simulation results

    Small reverberation chambers for radio frequency emission measurements: a radio astronomy feasibility study

    Get PDF
    To use a Reverberation Chamber (RC) below the Lowest Usable Frequency, this thesis applies: multiple receiving antennas; multiple EUT positions; and a modified validation procedure. Emission measurements are then possible down to the first cavity resonance. The design is based on theory and simulations, and validated by on a prototype. The longer measurement times, compare to conventional RCs are acceptable where sensitivity is of concern, e.g. in radio astronomy or defence applications

    Efficient Computation of Cable Electromagnetic Compatibility Problems with Parametric Uncertainty

    Get PDF
    Cables are heavily used to transmit power and signals in various systems. However, due to the susceptibility of cable to conducted and radiated emissions, unintended response could be provoked in the cable, and therefore, degrade the system operation. This is referred to as the cable electromagnetic compatibility (EMC) problems. Deterministic simulations based on the nominal values of system variables are usually performed to predict the possible malfunction. However, the variables characterising the cable system are naturally random due to, e.g. manufacturing tolerance. As a result of the systemic uncertainty, the induced interference in the cable also becomes a random observable. Therefore, the statistical description of the cable interference is a more reasonable outcome for assessing the system risk. Accordingly, stochastic approaches are needed to produce the required statistical outcome. The conventional statistical approach to quantify the uncertainty of the system response is the Monte-Carlo (MC) method. However, the computational cost of the MC method could become overly expensive when dealing with a large number of random variables. Thus, the cable EMC problems in large platforms with multiple uncertainty sources cannot be efficiently solved using the MC method. Clearly, an efficient statistical approach needs to be sought to solve the challenging cable EMC problems in the real world. Very recently, the stochastic reduced order model (SROM) method was proposed in the field of mechanical engineering, and is known to have merits such as the non-intrusiveness feature and superior efficiency. Therefore, the potential of applying the SROM method for cable EMC problems is very promising, and thoroughly investigated in this thesis. This thesis presents a comprehensive study of the cable EMC problems. The contributions of this thesis are mainly twofold, comprising the investigation of cable interference caused by: (1) the conducted emission (mainly at intra-system level), and (2) the radiated emission when exposed to incident electromagnetic fields. In the case of parametric uncertainty, the statistical analysis of the induced interference is efficiently performed using the SROM method. Specifically, the first main contribution of this thesis is dedicated to the study of crosstalk phenomenon, i.e., the inference induced to a wire by nearby wires in the cable. A parametric study is performed to investigate the effect (i.e., by increasing or decreasing) of the cable configurational changes on the crosstalk variation. The result can also be used to suggest factors causing excessive crosstalk. Under the cable parametric uncertainty, the statistics of crosstalk is successfully predicted using the SROM method. The efficiency of the statistical analysis using the SROM method and its ease of implementation are clearly demonstrated, compared to the conventional MC method and another state-of-the-art statistical approach referred to as the stochastic collocation (SC) method. The sensitivity of crosstalk to different cable variables is efficiently quantified using the SROM method, and then ranked. With this ranking, the feasibility of reducing the complexity of stochastic EMC problems by ignoring weak parametric uncertainties is explored. The second significant contribution of this thesis is the efficient uncertainty quantification of the interference in the cable caused by random electromagnetic field illumination. The most complex scenario where the incident electromagnetic wave is assumed to be fully random is chosen for investigation. As a response to the random illumination, the statistics of the interference (i.e., the induced current) in the cable is efficiently obtained using the SROM method. The computational cost of the SROM method is shown to be significantly reduced by orders of magnitude, compared to those of the MC and SC methods. The result demonstrates the potential of the SROM method for the general problems of the cable system response to the random radiation field. Overall, the research presented in this thesis has successfully advanced the uncertainty propagation techniques for EMC problems, especially in the case of the cable interference. Based on the performance discussion, this thesis has also provided an in-depth knowledge about the merits and disadvantages of different stochastic methods, which helps EMC engineers perform the efficient statistical analysis for their specific problems

    Physical layer limitations on 4G MIMO handset Systems

    Get PDF

    人体・多重波相互作用影響下におけるウェアラブルアンテナのOver-The-Air設計方法論

    Get PDF
    富山大学・富理工博甲第120号・李鯤・2017/03/23富山大学201

    Innovative Composite Materials for Sound Absorption and Insulation

    Get PDF
    Materials with sound-absorbing or sound-insulating properties have been rapidly evolving in recent years for several reasons. On one side, there is the ever-increasing awareness of the adverse effects that noise and lack of acoustic comfort may have on human health. On the other, the availability of more sophisticated fabrication techniques, calculation methods, and new materials, has stimulated researchers and, more and more frequently, industry to develop customized materials with improved properties.This book collects contributions from different researchers covering several topics. A group of papers investigated the use of 3D printing to obtain perforated panels with extended frequency response, as well as to ideally design an optimized cell distribution to print (when fabrication techniques will make it possible) a porous material with a broader sound absorption. The role of the geometrical and microstructural properties of granular molecular sieves is investigated by another paper. A second group of papers focused its attention on the use of natural or recycled components to create a skeleton of porous materials with good sound-absorbing properties and low environmental impact. Cigarette butts, recycled textile waste, and almond skins have been investigated by different authors.Finally, the last batch of papers included a review of sound insulation properties of innovative concretes and two research papers focussing on a numerical and experimental analysis of wood plastic composite (WPC) panels and on the potential of semi-active solutions employing compressible constrained layer damping (CCLD)

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Actual service life prediction of building components

    Get PDF
    corecore