143 research outputs found

    Opportunities for the digital transformation of the banana sector supply chain based on software with artificial intelligence

    Get PDF
    Artificial intelligence offers great opportunities for the supply chain, being this a competitive advantage for today’s changing market. This article aims to identify the impacts and opportunities that artificial intelligence software can offer to facilitate the operation and improve the performance of the supply chain in the banana sector in Colombia. The work methodology consists of six steps in which a total of 72 investigations were obtained. The sources of information were four databases. As a main conclusion, the supply chain of the banana sector has everything necessary for intelligent software based solutions to be implemented in order to achieve adaptation, flexibility and sensitivity to the context and domain of execution

    Enhancement on the modified artificial bee colony algorithm to optimize the vehicle routing problem with time windows

    Get PDF
    The vehicle routing problem with time windows (VRPTW) is a non-deterministictime hard (NP-hard) with combinatorial optimization problem (COP). The Artificial Bee Colony (ABC) is a popular swarm intelligence algorithm for COP. In this study, existing Modified ABC (MABC) algorithm is revised to solve the VRPTW. While MABC has been reported to be successful, it does have some drawbacks, including a lack of neighbourhood structure selection during the intensification process, a lack of knowledge in population initialization, and occasional stops proceeding the global optimum. This study proposes an enhanced Modified ABC (E-MABC) algorithm which includes (i) N-MABC that overcomes the shortage of neighborhood selection by exchanging the neighborhood structure between two different routes in the solution; (ii) MABC-ACS that solves the issues of knowledge absence in MABC population initialization by incorporating ant colony system heuristics, and (iii) PMABC which addresses the occasional stops proceeding to the global optimum by introducing perturbation that accepts an abandoned solution and jumps out of a local optimum. The proposed algorithm was evaluated using benchmark datasets comprising 56 VRPTW instances and 56 Pickup and Delivery Problems with Time Windows (PDPTW). The performance has been measured using the travelled distance (TD) and the number of deployed vehicles (NV). The results showed that the proposed E-MABC has lower TD and NV than the benchmarked MABC and other algorithms. The E-MABC algorithm is better than the MABC by 96.62%, MOLNS by 87.5%, GAPSO by 53.57%, MODLEM by 76.78%, and RRGA by 42.85% in terms of TD. Additionally, the E-MABC algorithm is better than the MABC by 42.85%, MOLNS by 17.85%, GA-PSO and RRGA by 28.57%, and MODLEN by 46.42% in terms of NV. This indicates that the proposed E-MABC algorithm is promising and effective for the VRPTW and PDPTW, and thus can compete in other routing problems and COPs

    Multiobjective overtaking maneuver planning of autonomous ground vehicles

    Get PDF
    This paper proposes a computational trajectory optimization framework for solving the problem of multi-objective automatic parking motion planning. Constrained automatic parking maneuver problem is usually difficult to solve because of some practical limitations and requirements. This problem becomes more challenging when multiple objectives are required to be optimized simultaneously. The designed approach employs a swarm intelligent algorithm to produce the trade-off front along the objective space. In order to enhance the local search ability of the algorithm, a gradient operation is utilized to update the solution. In addition, since the evolutionary process tends to be sensitive with respect to the flight control parameters, a novel adaptive parameter controller is designed and incorporated in the algorithm framework such that the proposed method can dynamically balance the exploitation and exploration. The performance of using the designed multi-objective strategy is validated and analyzed by performing a number of simulation and experimental studies. The results indicate that the present approach can provide reliable solutions and it can outperform other existing approaches investigated in this paper

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    Oportunidades para la transformación digital de la cadena de suministro del sector bananero basado en software con inteligencia artificial

    Get PDF
    Artificial intelligence offers great opportunities for the supply chain, making it a competitive advantage for today's changing market. This paper aims to identify the impacts and opportunities that artificial intelligence software can offer to supply chain in the Colombian banana sector to facilitate the operation and improve the performance. The searching method consists of six steps getting 72 investigations finally. The sources of information were four databases. The main conclusion is the supply chain of the banana sector has everything for implementation of solutions based on intelligent software in order to achieve adaptation, flexibility and context awarenes and execution domain.La inteligencia artificial ofrece grandes oportunidades para la cadena de suministro, siendo esto una ventaja competitiva para el mercado cambiante de hoy en día. Este artículo tiene como objetivo identificar los impactos y oportunidades que puede ofrecer el software con inteligencia artificial para facilitar la operación y mejorar el desempeño de la cadena de suministro en el sector bananero de Colombia. La metodología de trabajo consta de seis pasos en donde se obtuvo un total de 72 investigaciones. Las fuentes de información fueron cuatro bases de datos. Como conclusión principal, la cadena de suministro del sector bananero tiene todo lo necesario para que se implementen soluciones basadas en software inteligente con el fin de lograr una adaptación, flexibilidad y sensibilidad al contexto y dominio de ejecución.   Artificial intelligence offers great opportunities for the supply chain, making it a competitive advantage for today's changing market. This paper aims to identify the impacts and opportunities that artificial intelligence software can offer to supply chain in the Colombian banana sector to facilitate the operation and improve the performance. The searching method consists of six steps getting 72 investigations finally. The sources of information were four databases. The main conclusion is the supply chain of the banana sector has everything for implementation of solutions based on intelligent software in order to achieve adaptation, flexibility and context awarenes and execution domain

    The Threat of Plant Toxins and Bioterrorism: A Review

    Get PDF
    The intentional use of highly pathogenic microorganisms, such as bacteria, viruses or their toxins, to spread mass-scale diseases that destabilize populations (with motivations of religious or ideological belief, monetary implications, or political decisions) is defined as bioterrorism. Although the success of a bioterrorism attack is not very realistic due to technical constraints, it is not unlikely and the threat of such an attack is higher than ever before. It is now a fact that the capability to create panic has allured terrorists for the use of biological agents (BAs) to cause terror attacks. In the era of biotechnology and nanotechnology, accessibility in terms of price and availability has spread fast, with new sophisticated BAs often being produced and used. Moreover, there are some BAs that are becoming increasingly important, such as toxins produced by bacteria (e.g., Botulinum toxin, BTX), or Enterotoxyn type B, also known as Staphylococcal Enterotoxin B (SEB)) and extractions from plants. The most increasing records are with regards to the extraction / production of ricin, abrin, modeccin, viscumin and volkensin, which are the most lethal plant toxins known to humans, even in low amounts. Moreover, ricin was also developed as an aerosol biological warfare agent (BWA) by the US and its allies during World War II, but was never used. Nowadays, there are increasing records that show how easy it can be to extract plant toxins and transform them into biological weapon agents (BWAs), regardless of the scale of the group of individuals

    A Hybrid Ant Lion Optimizer (ALO) Algorithm for Construction Site Layout Optimization

    Get PDF
    A well-planned layout will contribute to saving time and site congestion as well as minimize travel distance, material handling effort, and operational cost. However, most of developed mathematical optimization procedures only work for small-scale problems and often falls into either local or global optima which do not guarantee the further convergence. Therefore, this study is motivated to propose a Hybrid Ant Lion Optimizer (ALO) algorithm inspired by ant lions’ predatory behavior, combining optimization techniques and heuristic methods to overcome a limitation of previous research. The validation has demonstrated that the proposed algorithm is able to provide very competitive results in terms of improved exploration, local optima avoidance, exploitation, and convergence. The hybrid ALO algorithm also finds superior optimal solutions for the majority of site layout problems employed, showing that this algorithm has merits in solving constrained problems with diverse search spaces. The optimal results obtained for the site layout optimization demonstrate the applicability of the proposed algorithm in solving real problems with unknown search spaces as well

    Mapping the knowledge domains of emerging advanced technologies in the management of prefabricated construction

    Get PDF
    Emerging advanced technologies (EAT) have been regarded as significant technological innovations which can greatly improve the transforming construction industry. Given that research on EAT related to the management of prefabricated construction (MPC) has not yet been conducted, various researchers require a state-of-the-art summary of EAT research and implementation in the MPC field. The purpose of this paper is to provide a systematic literature review by analysing the selected 526 related publications in peer-reviewed leading journals during 2009–2020. Through a thorough review of selected papers from the state-of-the-art academic journals in the construction industry, EAT is recognised as the key area affecting the development of the MPC discipline. This study has value in offering original insights to summarise the advanced status quo of this field, helping subsequent researchers gain an in-depth understanding of the underlying structure of this field and allowing them to continue future research directions

    Synthesizing multi-layer perceptron network with ant lion biogeography-based dragonfly algorithm evolutionary strategy invasive weed and league champion optimization hybrid algorithms in predicting heating load in residential buildings

    Get PDF
    The significance of accurate heating load (HL) approximation is the primary motivation of this research to distinguish the most efficient predictive model among several neural-metaheuristic models. The proposed models are formulated through synthesizing a multi-layer perceptron network (MLP) with ant lion optimization (ALO), biogeography-based optimization (BBO), the dragonfly algorithm (DA), evolutionary strategy (ES), invasive weed optimization (IWO), and league champion optimization (LCA) hybrid algorithms. Each ensemble is optimized in terms of the operating population. Accordingly, the ALO-MLP, BBO-MLP, DA-MLP, ES-MLP, IWO-MLP, and LCA-MLP presented their best performance for population sizes of 350, 400, 200, 500, 50, and 300, respectively. The comparison was carried out by implementing a ranking system. Based on the obtained overall scores (OSs), the BBO (OS = 36) featured as the most capable optimization technique, followed by ALO (OS = 27) and ES (OS = 20). Due to the efficient performance of these algorithms, the corresponding MLPs can be promising substitutes for traditional methods used for HL analysis

    Computational Frameworks for Multi-Robot Cooperative 3D Printing and Planning

    Get PDF
    This dissertation proposes a novel cooperative 3D printing (C3DP) approach for multi-robot additive manufacturing (AM) and presents scheduling and planning strategies that enable multi-robot cooperation in the manufacturing environment. C3DP is the first step towards achieving the overarching goal of swarm manufacturing (SM). SM is a paradigm for distributed manufacturing that envisions networks of micro-factories, each of which employs thousands of mobile robots that can manufacture different products on demand. SM breaks down the complicated supply chain used to deliver a product from a large production facility from one part of the world to another. Instead, it establishes a network of geographically distributed micro-factories that can manufacture the product at a smaller scale without increasing the cost. In C3DP, many printhead-carrying mobile robots work together to print a single part cooperatively. While it holds the promise to mitigate issues associated with gantry-based 3D printers, such as lack of scalability in print size and print speed, its realization is challenging because existing studies in the relevant literature do not address the fundamental issues in C3DP that stem from the amalgamation of the mobile nature of the robots, and continuous nature of the manufacturing tasks. To address this challenge, this dissertation asks two fundamental research questions: RQ1) How can the traditional 3D printing process be transformed to enable multi-robot cooperative AM? RQ2) How can cooperative manufacturing planning be realized in the presence of inherent uncertainties in AM and constraints that are dynamic in both space and time? To answer RQ1, we discretize the process of 3D printing into multiple stages. These stages include chunking (dividing a part into smaller chunks), scheduling (assigning chunks to robots and generating print sequences), and path and motion planning. To test the viability of the approach, we conducted a study on the tensile strength of chunk-based parts to examine their mechanical integrity. The study demonstrates that the chunk-based part can be as strong as the conventionally 3D-printed part. Next, we present different computational frameworks to address scheduling issues in C3DP. These include the development of 1) the world-first working strategy for C3DP, 2) a framework for automatic print schedule generation, evaluation, and validation, and 3) a resource-constrained scheduling approach for C3DP that uses a meta-heuristic approach such as a modified Genetic Algorithm (MGA) and a new algorithm that uses a constraint-satisficing approach to obtain collision-free print schedules for C3DP. To answer RQ2, a multi-robot decentralized approach based on a simple set of rules is used to plan for C3DP. The approach is resilient to uncertainties such as variation in printing times and can even outperform the centralized approach that uses MGA with a conflict-based search for large-scale problems. By answering these two fundamental questions, the central objective of the research project to establish computational frameworks to enable multi-robot cooperative manufacturing was achieved. The search for answers to the RQs led to the development of novel concepts that can be used not only in C3DP, but many other manufacturing tasks, in general, requiring cooperation among multiple robots
    • …
    corecore