13,680 research outputs found

    Energy efficiency and integration of urban electrical transport systems: EVS and metro-trains of two real European lines

    Get PDF
    Transport is a main source of pollutants in cities, where air quality is a major concern. New transport technologies, such as electric vehicles, and public transport modalities, such as urban railways, have arisen as solutions to this important problem. One of the main difficulties for the adoption of electric vehicles by consumers is the scarcity of a suitable charging infrastructure. The use of the railway power supplies to charge electric vehicle batteries could facilitate the deployment of charging infrastructure in cities. It would reduce the cost because of the use of an existing installation. Furthermore, electric vehicles can use braking energy from trains that was previously wasted in rheostats. This paper presents the results of a collaboration between research teams from University of Rome Sapienza and Comillas Pontifical University. In this work, two real European cases are studied: an Italian metro line and a Spanish metro line. The energy performance of these metro lines and their capacity to charge electric vehicles have been studied by means of detailed simulation tools. Their results have shown that the use of regenerated energy is 98% for short interval of trains in both cases. However, the use of regenerated energy decreases as the train intervals grow. In a daily operation, an important amount of regenerated energy is wasted in the Italian and Spanish case. Using this energy, a significant number of electric vehicles could be charged every day

    Study of resonances in 1 x 25 kV AC traction systems with external balancing equipment

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.AC traction systems are 1 × 25 or 2 × 25 kV/50 Hz single-phase, nonlinear, time-varying loads that can cause power-quality problems, such as unbalanced or distorted voltages. To reduce unbalance, external balancing equipment is usually connected to these systems, forming the Steinmetz circuit. Parallel resonances can occur in these types of circuits, exciting the harmonic emissions (below 2 kHz) of railway-adjustable speed drives. This paper studies these resonances at pantograph terminals and provides analytical expressions to determine their harmonic frequencies. The expressions are validated from several traction systems in the literature and PSCAD simulations.Postprint (author's final draft

    Assessment of energy and emissions saving solutions in urban rail-based transport systems

    Get PDF
    Global warming and climate change are indisputable theories. Since the Industrial Revolution, the mean temperature of the planet has increased by 1°C. Now, temperatures are approaching a higher stage of +1.5°C and the attention is on both CO2 emissions and energy consumption. Transportation is a major component of the environmental impact, accounting for approximately 30% of air pollution and energy consumption. Due to the rapid urbanization in the EU, with an estimated 74.3% of the population living in cities, forecasted to rise to 80% by 2050, urban mobility is dramatically increasing its relevance. Therefore, a reduction in energy consumption and pollutant emissions is a crucial factor to consider in developing urban transportation and particularly rail-based systems, able to provide energy saving transport services by improving urban environment. Several methods and techniques are under development to improve the energy performance of Light Rail Transport (LRT), which spread from different typologies of power supply to improving energy efficiency. The purpose of this paper is to start from the last developments and innovative energy sources for LRT systems. The focus is on two parts: a) trams running on Hydrogen in parallel with on board batteries with energy saving control techniques, b) potential renewable energy sources to meet power demand. The comparison is with traditional power sources and equipment (e.g. Catenary-based). The methods, based on selected indicators, are under development and test by calculations and simulations with reference to the case study of the new tramlines in the city of Brescia (Italy)

    Assessment of the worthwhileness of efficient driving in railway systems with high-receptivity power supplies

    Get PDF
    Eco-driving is one of the most important strategies for significantly reducing the energy consumption of railways with low investments. It consists of designing a way of driving a train to fulfil a target running time, consuming the minimum amount of energy. Most eco-driving energy savings come from the substitution of some braking periods with coasting periods. Nowadays, modern trains can use regenerative braking to recover the kinetic energy during deceleration phases. Therefore, if the receptivity of the railway system to regenerate energy is high, a question arises: is it worth designing eco-driving speed profiles? This paper assesses the energy benefits that eco-driving can provide in different scenarios to answer this question. Eco-driving is obtained by means of a multi-objective particle swarm optimization algorithm, combined with a detailed train simulator, to obtain realistic results. Eco-driving speed profiles are compared with a standard driving that performs the same running time. Real data from Spanish high-speed lines have been used to analyze the results in two case studies. Stretches fed by 1 × 25 kV and 2 × 25 kV AC power supply systems have been considered, as they present high receptivity to regenerate energy. Furthermore, the variations of the two most important factors that affect the regenerative energy usage have been studied: train motors efficiency ratio and catenary resistance. Results indicate that the greater the catenary resistance, the more advantageous eco-driving is. Similarly, the lower the motor efficiency, the greater the energy savings provided by efficient driving. Despite the differences observed in energy savings, the main conclusion is that eco-driving always provides significant energy savings, even in the case of the most receptive power supply network. Therefore, this paper has demonstrated that efforts in improving regenerated energy usage must not neglect the role of eco-driving in railway efficiency

    Sizing and Energy Management of a Hybrid Locomotive Based on Flywheel and Accumulators

    Get PDF
    The French National Railways Company (SNCF) is interested in the design of a hybrid locomotive based on various storage devices (accumulator, flywheel, and ultracapacitor) and fed by a diesel generator. This paper particularly deals with the integration of a flywheel device as a storage element with a reduced-power diesel generator and accumulators on the hybrid locomotive. First, a power flow model of energy-storage elements (flywheel and accumulator) is developed to achieve the design of the whole traction system. Then, two energy-management strategies based on a frequency approach are proposed. The first strategy led us to a bad exploitation of the flywheel, whereas the second strategy provides an optimal sizing of the storage device. Finally, a comparative study of the proposed structure with a flywheel and the existing structure of the locomotive (diesel generator, accumulators, and ultracapacitors) is presented

    Modeling and Detecting False Data Injection Attacks against Railway Traction Power Systems

    Get PDF
    Modern urban railways extensively use computerized sensing and control technologies to achieve safe, reliable, and well-timed operations. However, the use of these technologies may provide a convenient leverage to cyber-attackers who have bypassed the air gaps and aim at causing safety incidents and service disruptions. In this paper, we study false data injection (FDI) attacks against railways' traction power systems (TPSes). Specifically, we analyze two types of FDI attacks on the train-borne voltage, current, and position sensor measurements - which we call efficiency attack and safety attack -- that (i) maximize the system's total power consumption and (ii) mislead trains' local voltages to exceed given safety-critical thresholds, respectively. To counteract, we develop a global attack detection (GAD) system that serializes a bad data detector and a novel secondary attack detector designed based on unique TPS characteristics. With intact position data of trains, our detection system can effectively detect the FDI attacks on trains' voltage and current measurements even if the attacker has full and accurate knowledge of the TPS, attack detection, and real-time system state. In particular, the GAD system features an adaptive mechanism that ensures low false positive and negative rates in detecting the attacks under noisy system measurements. Extensive simulations driven by realistic running profiles of trains verify that a TPS setup is vulnerable to the FDI attacks, but these attacks can be detected effectively by the proposed GAD while ensuring a low false positive rate.Comment: IEEE/IFIP DSN-2016 and ACM Trans. on Cyber-Physical System

    How to make modal shift from road to rail possible in the European transport market, as aspired to in the EU Transport White Paper 2011

    Get PDF
    The total demand for freight transport in Europe has increased significantly in recent decades, but most of it has been handled by road transport. To fulfil the modal shift targets set in the EU White Paper 2011, it will be necessary to double rail’s market share from today’s 18 %, by 2050. Translating this into reality means rail will have to handle 3 to 4 times the cargo volume it does today. With this in mind, the paper develops a vision of an efficient rail freight system in 2050. Methodology To achieve the above objective, the research applies literature survey and group discussion methodology and applying a system approach. Keeping on board the EU Transport White Paper 2011 modal shift targets, as well as future freight demand and customer requirements, the current research attempts to answer the following three critical questions: -How can rail offer the quality of service that will attract customers and fulfil the targets? - How can rail offer its customers a price that is competitive with road? - How can rail offer the capacity to meet the increased demand from modal shift

    Power Quality in Electrified Transportation Systems

    Get PDF
    "Power Quality in Electrified Transportation Systems" has covered interesting horizontal topics over diversified transportation technologies, ranging from railways to electric vehicles and ships. Although the attention is chiefly focused on typical railway issues such as harmonics, resonances and reactive power flow compensation, the integration of electric vehicles plays a significant role. The book is completed by some additional significant contributions, focusing on the interpretation of Power Quality phenomena propagation in railways using the fundamentals of electromagnetic theory and on electric ships in the light of the latest standardization efforts
    corecore