4,648 research outputs found

    The characterisation and automatic classification of transmission line faults

    Get PDF
    Includes bibliographical references.A country's ability to sustain and grow its industrial and commercial activities is highly dependent on a reliable electricity supply. Electrical faults on transmission lines are a cause of both interruptions to supply and voltage dips. These are the most common events impacting electricity users and also have the largest financial impact on them. This research focuses on understanding the causes of transmission line faults and developing methods to automatically identify these causes. Records of faults occurring on the South African power transmission system over a 16-year period have been collected and analysed to find statistical relationships between local climate, key design parameters of the overhead lines and the main causes of power system faults. The results characterize the performance of the South African transmission system on a probabilistic basis and illustrate differences in fault cause statistics for the summer and winter rainfall areas of South Africa and for different times of the year and day. This analysis lays a foundation for reliability analysis and fault pattern recognition taking environmental features such as local geography, climate and power system parameters into account. A key aspect of using pattern recognition techniques is selecting appropriate classifying features. Transmission line fault waveforms are characterised by instantaneous symmetrical component analysis to describe the transient and steady state fault conditions. The waveform and environmental features are used to develop single nearest neighbour classifiers to identify the underlying cause of transmission line faults. A classification accuracy of 86% is achieved using a single nearest neighbour classifier. This classification performance is found to be superior to that of decision tree, artificial neural network and naïve Bayes classifiers. The results achieved demonstrate that transmission line faults can be automatically classified according to cause

    Adaptive Multiscale Weighted Permutation Entropy for Rolling Bearing Fault Diagnosis

    Get PDF
    © 2020 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.Bearing vibration signals contain non-linear and non-stationary features due to instantaneous variations in the operation of rotating machinery. It is important to characterize and analyze the complexity change of the bearing vibration signals so that bearing health conditions can be accurately identified. Entropy measures are non-linear indicators that are applicable to the time series complexity analysis for machine fault diagnosis. In this paper, an improved entropy measure, termed Adaptive Multiscale Weighted Permutation Entropy (AMWPE), is proposed. Then, a new rolling bearing fault diagnosis method is developed based on the AMWPE and multi-class SVM. For comparison, experimental bearing data are analyzed using the AMWPE, compared with the conventional entropy measures, where a multi-class SVM is adopted for fault type classification. Moreover, the robustness of different entropy measures is further studied for the analysis of noisy signals with various Signal-to-Noise Ratios (SNRs). The experimental results have demonstrated the effectiveness of the proposed method in fault diagnosis of rolling bearing under different fault types, severity degrees, and SNR levels.Peer reviewedFinal Accepted Versio

    Enhanced Industrial Machinery Condition Monitoring Methodology based on Novelty Detection and Multi-Modal Analysis

    Get PDF
    This paper presents a condition-based monitoring methodology based on novelty detection applied to industrial machinery. The proposed approach includes both, the classical classification of multiple a priori known scenarios, and the innovative detection capability of new operating modes not previously available. The development of condition-based monitoring methodologies considering the isolation capabilities of unexpected scenarios represents, nowadays, a trending topic able to answer the demanding requirements of the future industrial processes monitoring systems. First, the method is based on the temporal segmentation of the available physical magnitudes, and the estimation of a set of time-based statistical features. Then, a double feature reduction stage based on Principal Component Analysis and Linear Discriminant Analysis is applied in order to optimize the classification and novelty detection performances. The posterior combination of a Feed-forward Neural Network and One-Class Support Vector Machine allows the proper interpretation of known and unknown operating conditions. The effectiveness of this novel condition monitoring scheme has been verified by experimental results obtained from an automotive industry machine.Postprint (published version

    Identifying harmonic attributes from online partial discharge data

    Get PDF
    Partial discharge (PD) monitoring is a key method of tracking fault progression and degradation of insulation systems. Recent research discovered that the harmonic regime experienced by the plant also affects the PD pattern, questioning the conclusions about equipment health drawn from PD data. This paper presents the design and creation of an online system for harmonic circumstance monitoring of distribution cables, using only PD data. Based on machine learning techniques, the system can assess the prevalence of the 5th and 7th harmonic orders over the monitoring period. This information is key for asset managers to draw correct conclusions about the remaining life of polymeric cable insulation, and prevent overestimation of the degradation trend

    Unbalanced load flow with hybrid wavelet transform and support vector machine based Error-Correcting Output Codes for power quality disturbances classification including wind energy

    Get PDF
    Purpose. The most common methods to designa multiclass classification consist to determine a set of binary classifiers and to combine them. In this paper support vector machine with Error-Correcting Output Codes (ECOC-SVM) classifier is proposed to classify and characterize the power qualitydisturbances such as harmonic distortion,voltage sag, and voltage swell include wind farms generator in power transmission systems. Firstly three phases unbalanced load flow analysis is executed to calculate difference electric network characteristics, levels of voltage, active and reactive power. After, discrete wavelet transform is combined with the probabilistic ECOC-SVM model to construct the classifier. Finally, the ECOC-SVM classifies and identifies the disturbance type according tothe energy deviation of the discrete wavelet transform. The proposedmethod gives satisfactory accuracy with 99.2% compared with well known methods and shows that each power quality disturbances has specific deviations from the pure sinusoidal waveform,this is good at recognizing and specifies the type of disturbance generated from the wind power generator.Наиболее распространенные методы построения мультиклассовой классификации заключаются в определении набора двоичных классификаторов и их объединении. В данной статье предложена машина опорных векторов с классификатором выходных кодов исправления ошибок(ECOC-SVM) с целью классифицировать и характеризовать такие нарушения качества электроэнергии, как гармонические искажения, падение напряжения и скачок напряжения, включая генератор ветровых электростанций в системах передачи электроэнергии. Сначала выполняется анализ потока несимметричной нагрузки трех фаз для расчета разностных характеристик электрической сети, уровней напряжения, активной и реактивной мощности. После этого дискретное вейвлет-преобразование объединяется с вероятностной моделью ECOC-SVM для построения классификатора. Наконец, ECOC-SVM классифицирует и идентифицирует тип возмущения в соответствии с отклонением энергии дискретного вейвлет-преобразования. Предложенный метод дает удовлетворительную точность 99,2% по сравнению с хорошо известными методами и показывает, что каждое нарушение качества электроэнергии имеет определенные отклонения от чисто синусоидальной формы волны, что способствует распознаванию и определению типа возмущения, генерируемого ветровым генератором

    Automated distribution network fault cause identification with advanced similarity metrics

    Get PDF
    Distribution network monitoring has the potential to improve service levels by reporting the origin of fault events and informing the nature of remedial action. To achieve this practically, intelligent systems to automatically recognize the cause of network faults could provide a data driven solution, however, these usually require a large amount of examples to learn from, making their implementation burdensome. Furthermore, the choice of input to such a system in order to make accurate classifications is not always clear. In response to this challenge, this paper contributes a means of using minimal amounts of historical fault data to infer fault cause from substation current data through a novel structural similarity metric applied to the associated power quality waveform. This approach is demonstrated along with disturbance context similarity assessment on an industrially relevant benchmark data set where it is shown to provide an improvement in classification accuracy over comparable techniques

    Detection of high impedance faul on power distribution system using probabilistic neural network

    Get PDF
    High impedance fault (HIF) is abnormal event currents on electric power distribution feeder which does not draw sufficient fault current to be detected by conventional protective devices. The waveforms of normal and HIF current signals on electric power distribution feeders are investigated and analysis the characteristic of HIF. The purpose of this study is to use a new feature which indicates HIF faults. Fast Fourier Transformation (FFT) is used to extract the feature of the fault signal and other power system events, odd harmonics frequency components of the phase currents are analyzed. The effect of capacitor banks and other events on distribution feeder harmonics is discussed. The features extracted are using to train and test the probabilistic neural network (PNN) which is used as the classifier to detect HIF from other normal event in power distribution system

    The Study of Locating Ground Faults in DC Microgrid Using Wavelet Transform

    Get PDF
    As the proliferations of distributed generation and power electronic equipment in power systems, direct current (DC) microgrid emerged and attracted more and more researchers’ attentions. Protection of DC microgrid is a big challenge and to build a well-function protection system, locating the faults accurately is a critical issue. It is easy to find the location of short circuit faults in DC microgrid. However, it is difficult to locate ground faults in DC microgrid because of the spray capacitors and the large amount of distributed resources. In this thesis, Wavelet Transform is applied to decompose the common mode currents that is collected at different sensor points in a DC microgrid and capture the characterization of every single ground fault. And based on these characterizations, a single ground fault location algorithm is proposed. MATLAB/Simulink and PLECS are used to assist in the process. Simulink is used to build the three phase source feeding the DC microgrid and PLECS is used to build the model of DC microgrid and measure the common mode current at different sensor points when a single ground fault is applied

    Initial results on fault diagnosis of DSN antenna control assemblies using pattern recognition techniques

    Get PDF
    Initial results obtained from an investigation using pattern recognition techniques for identifying fault modes in the Deep Space Network (DSN) 70 m antenna control loops are described. The overall background to the problem is described, the motivation and potential benefits of this approach are outlined. In particular, an experiment is described in which fault modes were introduced into a state-space simulation of the antenna control loops. By training a multilayer feed-forward neural network on the simulated sensor output, classification rates of over 95 percent were achieved with a false alarm rate of zero on unseen tests data. It concludes that although the neural classifier has certain practical limitations at present, it also has considerable potential for problems of this nature

    Arcing High Impedance Fault Detection Using Real Coded Genetic Algorithm

    No full text
    Safety and reliability are two of the most important aspects of electric power supply systems. Sensitivity and robustness to detect and isolate faults can influence the safety and reliability of such systems. Overcurrent relays are generally used to protect the high voltage feeders in distribution systems. Downed conductors, tree branches touching conductors, and failing insulators often cause high-impedance faults in overhead distribution systems. The levels of currents of these faults are often much smaller than detection thresholds of traditional ground fault detection devices, thus reliable detection of these high impedance faults is a real challenge. With modern signal processing techniques, special hardware and software can be used to significantly improve the reliability of detection of certain types of faults. This paper presents a new method for detecting High Impedance Faults (HIF) in distribution systems using real coded genetic algorithm (RCGA) to analyse the harmonics and phase angles of the fault current signals. The method is used to discriminate HIFs by identifying specific events that happen when a HIF occurs
    corecore