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Abstract— Distribution network monitoring has the potential 

to improve service levels by reporting the origin of fault events 

and informing the nature of remedial action. To achieve this 

practically, intelligent systems to automatically recognize the 

cause of network faults could provide a data driven solution, 

however, these usually require a large amount of examples to 

learn from, making their implementation burdensome. 

Furthermore, the choice of input to such a system in order to 

make accurate classifications is not always clear. In response to 

this challenge, this paper contributes a means of using minimal 

amounts of historical fault data to infer fault cause from 

substation current data through a novel structural similarity 

metric applied to the associated power quality waveform. This 

approach is demonstrated along with disturbance context 

similarity assessment on an industrially relevant benchmark 

data set where it is shown to provide an improvement in 

classification accuracy over comparable techniques. 

Index Terms—Fault Cause Diagnostic, Waveform Similarity, 

Context Similarity, Distribution Networks 

I.  INTRODUCTION 

he increasing complexity of distribution networks 

coupled with their limited observability can prolong 

unplanned outages from faults. This is highly undesirable 

from a customer perspective, and in addition the network 

operator will receive regulatory penalties based on the 

number of customer minutes being off supply. The situation 

is further complicated through the integration of low carbon 

technologies with legacy plant. This results in new and 

previously unconsidered faults, which may have unfamiliar 

characteristics when observed operationally.  

Traditionally, fault causes were identified through manual 

analysis of weather and fault behavior [1]. The expert 

knowledge that defines this is difficult to standardize across 

cases and, as a result, fault cause identification is time-

consuming and therefore expensive to undertake. 

Additionally, the complex form faults can now take makes 

this endeavor more challenging, as the existing knowledge 

does not extend to the new fault types. High-resolution fault 

and disturbance recording equipment is increasingly being 

implemented to support fault analysis, but it compounds the 

problem further, in that the waveform level representations 

they capture are too voluminous to interpret manually.  
In response to this, recent research has considered using 

automatic classifiers: [2] has shown an application of 

knowledge-based features to accurately identify causes, 

however, the choice of an appropriate threshold still requires 

the intervention of a domain expert, which can hamper the 

scalability of this solution. Other research  proposed Artificial 

Neural Network (ANN) [3] and Fuzzy Classification [4] using 
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field context data to identify outage causes via training with 

a large amount of examples. [5] utilized One Nearest 

Neighbor (1-NN) to rank and validate the relevant contextual 

and waveform features for transmission level fault 

identification, while [1] constructed a Deep Belief Network 

(DBN) to identify fault cause. Many state of the art classifiers 

[1] [3] [4] [5] require thousands of examples to learn from 

which is time consuming and impractical. Despite the 

potential operational benefit, most utility companies would 

consider archiving curated fault data marked up with 

diagnostic labels to be beyond their usual remit. However, 

previous research [6][7][8] identified that many faults and 

failures can exhibit similar characteristics. This would be 

classed as “event similarity”.  

Event similarity could be used to automatically identify a 

recurring fault situation via patterns learned from this 

historical data [9], which can in turn be used for diagnosis and 

prognosis of recurrent incipient faults observed operationally 

[10][11]. Operational noise and variability make matching up 

events with historical equivalents difficult, necessitating 

means of similarity to be developed specifically for 

waveforms. 

To support the application of a fault cause identifier for 

practical use on distribution networks, the following 

problems need to be addressed: extensive labeled fault 

examples are not always available for training classifiers, 

therefore, this paper proposes a means of inferring fault cause 

from operational data through analyzing the most similar 

Power Quality (PQ) events on a distribution network; fault 

signatures can vary in duration and magnitude  even when 

they result from the same cause [9][12] - the proposed 

approach eschews existing pointwise means of comparison to 

deal with similar fault cases that may be misaligned; 

Extraction of relevant features as input to a classifier requires 

extensive domain knowledge to inform an optimal selection 

that can accommodate natural variability and context. This is 

time and resource intensive and even the best feature 

extraction is still going to discard part of the waveform. The 

approach proposed here uses all of the data comprising the 

waveform rather than just a representative feature. 

This solution could automatically interpret a segmented 

disturbance waveform without the need for a large set of 

exemplars to train classifiers to diagnose faults. 

Operationally, the resulting classifier can simply be 

embedded into an existing control center fault reporting 

process and propagate the predicted fault context to 

maintenance crews who in turn can approach root cause 

investigations with higher situational awareness. Synthesized 

fault data from physics based simulations may lack the 

realistic variability that operational data will exhibit, so 
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testing must be undertaken on an operational data set to 

demonstrate effectiveness. The model capability and 

performance here are demonstrated on the US Department of 

Energy (DoE) Power Quality data set [13] which contains 334 

three-phase voltage and current signals of PQ disturbances 

collected from an operational substation by the Electric 

Power Research Institute (EPRI).  

The main contributions from this research are: 1) a new 

similarity metric which can identify recurring faults; 2) a 

similarity-based means of learning and automatically 

identifying fault causes which do not require waveform 

characteristic extraction; 3) a resulting classifier which does 

not require a large number of exemplars to learn from, which 

readily permits practical implementation; 4) a demonstration 

of successful fault classification with the proposed method. 

This performance is compared with conventional classifiers 

drawn from recent literature. Greater classification accuracy 

is demonstrated through combining waveform characteristics 

with fault context. From an operational perspective, knowing 

the broad cause of a fault prior to going into the field to 

investigate would inform maintenance crews of how to equip 

themselves and how to formulate a plan for finding fault 

cause and instigating remedial action. Such fault information 

has the potential to shorten the timescales in which this 

restoration plan may be executed. An example would be in 

distinguishing an overhead line bird strike from a vehicle 

hitting a pole – the pole impact necessitates visual inspection 

to confirm cause whereas the bird strike is transient in nature 

and therefore pointless to look for – hence restoration of 

power can be immediate. In practice, this would allow the 

circumstances in which faults occurred to be automatically 

diagnosed without domain expert intervention, leading to 

shorter investigation periods, pre-emption of faults at the 

incipient stage and, overall, shorter unplanned outages.  

II.  PQ DISTURBANCE DATA 

PQ disturbance causes are multifactorial which presents 

difficulties in identifying features that represent particular 

faults [14][5]. The DoE PQ data set provides 166 expert 

labeled three-phase AC voltage and current signals sampled 

at 0.96 and 3.84 kHz [13]; one such event is shown in Fig. 1, 

which is a short-term single-phase to ground fault on both the 

voltage and current signals attributed to an overhead arrester 

failure. The amplitude shift starts at approximately 0.002s 

and ends at 0.044s with a re-closer operation, suggesting that 

the fault is probably not eliminated entirely. Fig. 1 highlights 

that the fault changes the waveform shape of more than just 

one phase and not just in terms of its magnitude or relation to 

other phase waveforms. Additionally, it also provides the 

fault waveform start time and end time down to the 

millisecond level, associated weather, fault cause and 

associated isolation equipment.  

A.  Discriminatory Features 

In prior research, statistical and signal features have been 

used to distinguish the cause of PQ disturbances [2][13]. 

Despite this, it can still be unclear which features are 

appropriate to assess fault cause especially when minimal 

exemplars are available. To illustrate the potential 

inseparability of the relative phase faults, a visualization of 

the phase distribution of the DoE PQ library signals is shown 

in Fig. 2. Absolute current magnitude is insufficient to 

describe phase faults, because the same magnitude under 

different voltage levels provides different waveform 

attributes. An appropriate and intuitive visualization for the 

relative values between phases are compositional 

techniques[14][15], which can visualize the proportion of 

current and symmetrical components taken on different 

phases as a 3-Simplex. The symmetrical components of 

current signals have been used to classify fault types 

previously[16]. The symmetrical components of current 

signals can be expressed as: 

 

𝐼𝑝 =
1

3
(𝐼𝐴 + 𝑎𝐼𝐵 + 𝑎2𝐼𝐶) (1) 

𝐼𝑛 =
1

3
(𝐼𝐴 + 𝑎2𝐼𝐵 + 𝑎𝐼𝐶 ) (2) 

𝐼𝑧 =
1

3
(𝐼𝐴 + 𝐼𝐵 + 𝐼𝐶) (3) 

where 𝐼𝑝 , 𝐼𝑛 , 𝐼𝑧  respectively represent positive, negative and 

zero sequence current, 𝐼𝐴, 𝐼𝐵 , 𝐼𝐶  represent three phase current 

and 𝑎 is defined as a phase rotation, which rotates a phasor 

vector courter clockwise by 120 degrees. The legend in Fig. 

2 separates faults according to their causes (tree, equipment, 

vehicle, animal contact, lightning strike) which are included 

in the EPRI DoE dataset. As Fig. 2 illustrates, different faults 

have a more identifiable, but still unclear, boundary that is 

dependent on their cause. The positive component is 

dominant, forcing all points into a corner of the simplex; the 

 

 
Fig. 1. Power Quality Waveforms for short term phase-earth overcurrent. 

The fault clears in 0.042 sec; overhead arrester failure; isolated by recloser; 

clear weather; happened at 5/19/2005 04:40:26.1990, Phase A 
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Fig. 2. Phase symmetrical components representation of PQ faults annotated 

with causes. This representation, although popular, offers little to distinguish 
fault by type.  
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contributions of the negative and zero component, while 

reflective of waveform asymmetry and earthing faults, are 

still insufficiently discriminative to distinguish these from 

other faults. Therefore, it is worthwhile investigating methods 

to enhance discriminatory power by using other features. 

Calculating similarity of events can meet both requirements. 

III.  PQ DISTURBANCE SIMILARITY 

The Nearest Neighbor (1-NN) classifier using Euclidean 

distance as its similarity measurement has been previously 

validated to classify fault cause with a large amount of 

training data at transmission level [5]. Here, 1-NN based on a 

new similarity measurement is proposed to identify the 

recurrent fault and retrieve associated cause behind the PQ 

disturbance events but with only a small amount of training 

data. Fig. 3 illustrates the processing stages of the proposed 

similarity-based classification model. From Fig. 3, the 

waveform processing output stages are associated with 

context obtained from fault recorders, such as isolation 

equipment operated, and weather predicates such as localized 

environmental conditions. Since faults manifest as abrupt 

noise signals rather than changes in periodicity, the noise 

from the three-phase current is extracted from the raw data 

through a pre-processing function before evaluating the 

waveform similarity between event pairs. Beyond this, the 

similarity of the associated context will be assessed through 

comparison with the context of historical events. Then a 

combined similarity measure of the waveform and the context 

will be inserted into the 1-NN to retrieve the closet historical 

event and infer the associated fault cause for reporting. The 

detailed function of these processing stages will now be 

described. 

A.  Waveform Pre-processing 

To mitigate the influence of the sinusoidal waveform on the 

similarity metric, the fault components can be extracted by 

removing the sinusoidal component. The conventional 

approach to decoupling the sinusoidal components from the 

abnormal components of the signal would be to superimpose 

faults onto the last normal cycle waveform [15], which can 

be simply expressed as:  

𝑓(𝑡) = 𝑖(𝑡) − 𝑖(𝑡 − 𝑞𝑁0∆𝑡) (1) 

where 𝑓(𝑡)  represents the fault component at time 𝑡  , 𝑞 

denotes the number of gap cycles between the last healthy 

cycle and the measured cycle. 𝑁0  denotes the number of 

samples in one cycle of current; ∆𝑡 is the time gap between 

two consecutive samples. This method utilizes the present 

measure superimposed over the last healthy cycle, which 

allows the shape of the residual fault components to be used 

to evaluate the waveform similarity. An example of the 

residual fault component is given in Fig. 4. As Fig. 4 shows, 

some faults, such as arcing, are usually triggered at the peaks 

[16]. When they initiate at peak or valley positions it affects 

the sign of the residual. To solve this, the absolute value of 

the fault components is used to evaluate the similarity 

between pairs.  

B.  Waveform Similarity Measurement 

The duration of instances of the same fault can be different. 

To eliminate the effect of this, a signal alignment technique 

is required. Dynamic Time Warping (DTW) is a dynamic 

programming based time algorithm which has been widely 

employed to calculate similarity between two signals with 

different durations [17], such as spoken word, by ignoring 

both global and local shifts in the time dimension. Assuming 

two post-processed temporal signals 𝑈 and 𝑉 with different 

duration: 

𝑈 = 𝑢1, 𝑢2 … 𝑢𝑛 … 𝑢𝑁 (2) 

𝑉 = 𝑣1, 𝑣2 … 𝑣𝑚 … 𝑣𝑀 (3) 

where 𝑁 are 𝑀are the length of the signals and 𝑁 ≠ 𝑀. To 

eliminate the effect of different durations, DTW uses a 

pairwise assessment of amplitudes as the distance between 

observations in 𝑈 with observations in 𝑉. The resulting N by 

M distance matrix is shown in Fig. 5 and provides an 

optimum path from the bottom left to the top right which is 

called the warping path, 𝑊𝑃(𝑘), traverses as:  

𝑊𝑃(𝑘) = 𝑤(1), 𝑤(2) … 𝑤(𝑘) … 𝑤(𝐾), 
max(𝑁, 𝑀) ≤ 𝐾 < 𝑁 + 𝑀 

(4) 

where 𝐾 is the length of the warping path, 𝑘 is the index of 

the warp function and 𝑤(𝑘) is an element of the warp path at 

index k. To prevent information loss during similarity 

calculation, a minimized cumulative distance warp path, 

𝐷(𝑊𝑃(𝑘)), is required. The cumulative distances warp path 

is also called the cost matrix: 

𝐶𝑘 = ∑ 𝐷𝑖𝑠𝑡(𝑤(𝑗))

𝑘

𝑗=1

 (5) 

  
Fig. 3. Processing stages for both the training and testing phase of the 

proposed automated PQ disturbance classifier. 

 
 Fig 4 Residual fault components of event 2784 and event 2932  
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𝐷(𝑊𝑃(𝑘)) = 𝑀𝑖𝑛(𝐶𝑘) (6) 

where 𝐷𝑖𝑠𝑡()  is a distance function, such as Euclidean 

distance; 𝐶𝑘  is the value of the cost function at the 𝑘 th 

element of the warping path.  

As Fig. 5 shows, the warping path starts from (1,1) and ends 

at ( 𝑁 ,  𝑀 ). A constraint requires the warping path to 

monotonically increase, so the update of the warping path is 

given as: 

𝐷(𝑊𝑃(𝑘 + 1)) = 𝐷(𝑊𝑃(𝑘))

+ min (𝐷𝑖𝑠𝑡(𝑖, 𝑗 + 1), 𝐷𝑖𝑠𝑡(𝑖
+ 1, 𝑗 + 1), 𝐷𝑖𝑠𝑡(𝑖 + 1, 𝑗)) 

(7) 

 

The minimized cumulative distance at K, 𝐷(𝑊𝑃(𝐾))
(𝑈,𝑉)

, 

represents the waveform similarity between signals 𝑈 and 𝑉. 

DTW will have a higher tolerance to phase distortion 

compared to conventional pairwise means of assessing 

similarity since it carries out the alignment prior to the 

similarity assessment. 

C.  Contextual Similarity Measurement 

With the context of the new fault extracted, contextual 

similarity can be evaluated. As Fig. 3 shows, the context can 

be extracted through time and location. This paper utilizes the 

same context data as in [3][4][20], which are a timestamp, 

local weather, isolation equipment and phase affected, as 

Table I shows. Timestamp can provide season and time of day; 

interrupting device and fault phase can be provided by 

SCADA or IED devices; weather data can be provided by a 

weather service using the specified time and location. All of 

the proposed contextual data are commonly available. 

However, context usually takes the form of a label (which can 

be a categorical value) which makes similarity measures, 

such as Euclidean distance, unsuitable. To address this, 

contextual similarity based on the Hamming distance is used 

as a measure of how closely context is associated with an 

event. Hamming distance, expressed as 𝐷𝐻 , has been used to 

measure the distance between examples that have multiple 

categories attached to them [18] :  

𝐷𝐻(𝑈,𝑉)
=

1

𝑁𝑐

∑ |𝑌𝑖(𝑈)
− 𝑌𝑖(𝑉)

|

𝑁𝑐

𝑖=1

 (8) 

where 𝑌𝑖 (𝑈)
, 𝑌𝑖 (𝑉)

 are the categories that represent the context 

of signal 𝑈  and 𝑉  respectively. 𝑁𝑐  is the number of 

contextual features. The output of the Hamming distance is a 

discrete value. Additionally, timestamp is a continuous value 

which can be discretized into daytime and season labels using 

predefined ranges, which are shown in Table I.   

D.  Combined Similarity 

Faults can manifest through their waveforms but can also be 

jointly related to the context they occur in; therefore, 

combined similarity can be a beneficial approach to indicate 

the relations between the fault being investigated and 

historical events. It is proposed that waveform similarity and 

contextual similarity are combined as follows: 

𝐶𝑜𝑚𝑏(𝑈,𝑉) =
𝐷𝐻(𝑈,𝑉)

max (𝐷𝐻
′)

∙
𝐷(𝑊𝑃(𝐾))(𝑈,𝑉)

max (𝐷(𝑊𝑃(𝐾))
′

)
 (9) 

where 𝐷𝐻
′  is the contextual similarity between historical 

events and 𝐷(𝑊𝑃(𝐾))
′

 is the corresponding waveform 

similarity. 

IV.  CASE STUDY: RECURRENT FAULT IDENTIFICATION 

In order to validate that the proposed similarity metric can be 

used to express the relationship between PQ event causes and 

their waveforms as well as the relationship between PQ event 

causes and their contextual features, the EPRI DoE Power 

Quality data set is used [13]. Data was sourced from various 

power quality monitors, digital fault recorders, 

microprocessor relays, and remote terminal units (RTUs). 

This provides 3-phase voltage and current measurements 

sampled at 0.96 kHz and 3.84 kHz for 334 power quality fault 

instances. Among these, 166 faults and disturbance records 

have been labelled by experts according to their cause, 

environmental conditions and associated failed plant. Two 

experiments are presented to highlight the practical 

effectiveness of the metric: the first experiment validates that 

the proposed waveform similarity measurement can identify 

shape-based recurrent faults. The second experiment is to 

validate that the proposed contextual similarity can identify 

recurrent faults based on context. Both experiments use the 

same pair of events, shown in Fig. 6, for comparison 

purposes; the residual fault component of these was given in 

Fig. 4. The time interval between these two events in Fig. 6. 

is more than one year, the incident report may have been 

discarded in this time, and numerous subsequent events may 

have resulted with the cause being forgotten, preventing 

TABLE I 

CONTEXTUAL FEATURES USED FOR FAULT CAUSE IDENTIFICATION [3] [4] 

[20] 

Feature Value 

Interrupting 
Device 

Recloser, Fuse, Breaker, Sectionlizer, Switch 

Weather clear weather, thunderstorm, snow, windy 

Faulted Phase A, B, C, BC, AC, AB, ABC 
Season spring, summer, fall, winter 

Day time day, night  

Day time: 6:00 am – 6:00 pm 

Spring: Mar – May; Summer: June – August; Fall: Sep – Nov; Winter: Dec - 

Feb 

 
Fig. 5. DTW cost matrix formation for two signals Y and X of duration M 

and N; the warping path is defined as the lowest cost route from cell 1,1 to N, 
M. 
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domain knowledge from facilitating fault analysis and 

therefore resolution. However, these two faults came from the 

same substation (Site 14 in the DoE set), and resulted from a 

terminator failure. The fault was interrupted by a circuit 

breaker. Consequently, the PQ waveform of these two events 

is very similar although from Fig. 6 it can be seen that event 

2932 begins half a cycle earlier than event 2784. It is quite 

common to see incipient faults, such as arc faults in 

underground cables [8], begin at different parts of the cycle, 

which would have rendered a pointwise similarity metric 

ineffective.  

A.  Shape-based Signal Similarity 

Using the two examples from Fig. 6, the signal similarity 

evaluates the waveform shape differences between two PQ 

events. Their waveform similarity is evaluated as 0.99 (with 

the maximum possible value being 1), indicating highly 

similar events which is in agreement with the actual fault 

causes. 

B.  Contextual Similarity 

The fault records contain associated information which is 

detailed in Table II. Although the gap between the two faults 

is more than one year, they occur in similar contexts, such as 

the time of day and location. The only difference is the 

season, but the associated ambient temperature on a given day 

in parts of North America may be the same in Fall, Spring or 

Winter so this could be uninformative. For this case, the 

proposed method has calculated the contextual similarity 

between the two events in Fig. 6  as 0.8. 

V.  AUTOMATED FAULT CAUSE IDENTIFICATION 

BENCHMARKS 

Using supervised classifiers to automatically identify fault 

cause [19] still requires domain knowledge to select 

appropriate input features. Previous research used two broad 

categories of features to identify fault causes in distribution 

networks: Waveform-based features [2] and contextual 

features [3] [4] [20]. The waveform-based features arise from 

field experience, for example, animal contact is likely to only 

affect a single phase owing to the nature of physical contact. 

By the same reasoning, a vehicle pole impact can result in 

multiple phases being affected through the resulting collision 

of overhead conductors. From these examples, the number of 

faulted phases can be inferred as a useful indicator of fault 

cause. The features that were chosen using domain 

knowledge then extracted from the DoE data paper are shown 

in Table III and have been previously discussed in [2]. Other 

prior work [3] [4] [20] has incorporated fault context, such as 

weather, season, faulted phase and time of day to identify the 

fault cause. Examples of this have been listed in Table I of 

Section IIIC. To demonstrate the performance benefits of the 

proposed similarity measure in a classifier, it will now be 

benchmarked on operational data against the existing 

 

 
Fig. 6. two PQ disturbance events with a similarity approaching the 

maximum value. Although the cause is the same in both cases, a pairwise 

comparison would have overlooked this due to differences in the duration 

and cycle position of fault initiation. 

 

TABLE III 

WAVEFORM CHARACTERISTICS USED FOR FAULT CAUSE IDENTIFICATION 

Symbol Equation Description 

𝑅1 
max (𝐼𝑎𝑚𝑎𝑥, 𝐼𝑏𝑚𝑎𝑥, 𝐼𝑐𝑚𝑎𝑥)

median (𝐼𝑎𝑚𝑎𝑥, 𝐼𝑏𝑚𝑎𝑥, 𝐼𝑐𝑚𝑎𝑥)
 

Ratio used in logical 

expression to infer the 
number of faulted phases 

 

𝑅2 
median (𝐼𝑎𝑚𝑎𝑥, 𝐼𝑏𝑚𝑎𝑥, 𝐼𝑐𝑚𝑎𝑥)

min (𝐼𝑎𝑚𝑎𝑥, 𝐼𝑏𝑚𝑎𝑥, 𝐼𝑐𝑚𝑎𝑥)
 

Ratio used in logical 
expression to infer the 

number of faulted phases 
 

𝐼𝑓 𝐼𝑝𝑘𝑚𝑎𝑥 − 𝐼0𝑝𝑘 

Fault current component - 

fault peak value minus 
normal operational peak value 

 

𝑛𝑓 ∑(
𝐼𝑝𝑘(𝑗)

𝐼0𝑝𝑘

> 𝑅𝑡ℎ)

𝑛

𝑗=1

 

Fault duration - cumulative 

cycles where ratio exceeds a 

threshold 𝑅𝑡ℎ 

 

𝛼𝐴𝑇𝑇 
𝐼𝑝𝑘𝑚𝑖𝑛

𝐼0𝑝𝑘

 

Fault current attenuation - the 

ratio of minimum peak three-
phase value to normal 

operational peak 

 

E Energy(wavedec(Vnorm)) 

Frequency domain energy 

percentage – wavelet 

transform to inform the 
energy contribution of 

frequency bands  

𝐼𝑎𝑚𝑎𝑥 𝐼𝑏𝑚𝑎𝑥 𝐼𝑐𝑚𝑎𝑥– maximum value of the current phase A, B, C 

𝐼𝑝𝑘𝑚𝑎𝑥- maximum value of peak point of phase current 

𝐼0𝑝𝑘- normal operation peak current: the peak current of the first cycle 

𝐼𝑝𝑘𝑚𝑖𝑛- minimum value of peak point of phase current 

 

TABLE II 
FAULT CONTEXT COMPARISON FOR A PAIR OF RECURRENT FAULTS  

Fault Fault 1 Fault 2 

Season Summer Fall 

Faulted 
Phase 

Phase C Phase C 

Day time 12:25:31 11:12:09 

Interrupting 
Device 

Breaker Breaker 

Weather Unknown Unknown 

Location Site 4, feeder 18 Site 4, feeder 18 

Contextual 
Similarity 

0.8 
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classifiers [1][3][5] with both sets of input features: 

waveform and context in order to show the benefit of using 

an advanced similarity measure over the conventional ones 

previously used.  

VI.  AUTOMATED FAULT CAUSE IDENTIFICATION 

The analysis in Section V has discussed the previous use of 

conventional inputs in fault classification, including 

waveform-based features and contextual features, and 

explained why these have been selected. However, these 

features were investigated only with a large number of 

training data and no previous work identifies an appropriate 

classifier that can work using minimal exemplars. To address 

this, this section will investigate the predictive power of 

different fault event features and performance of different 

fully automated classifiers trained on a relatively small 

number of fault examples. These will employ the proposed 

similarity-based classifier benchmarked against equivalent 

models with waveform-based features, contextual features as 

well as a combination of both. No user tunable parameters are 

required. The DoE data is labelled according to fault cause, 

which provides a means of validating the effectiveness of 

these classifiers. The low prevalence of faults coupled with 

the small number of examples simulates the realistic 

environment for fault identification. Five categories of faults 

are considered from a two year period: Tree (41 examples), 

Equipment (75), Animal (11), Vehicle (21) and Lightning 

(17). To test the classifiers with knowledge-based and 

statistical input features, leave-one-out cross validation, 

which is appropriate for validating small data sets, is used to 

understand the level of performance that might be expected 

in operational use. The classifiers tested are ANN[2], 

DBN[1], Decision Tree, Discriminant, SVM, KNN[5] and 

Ensemble methods[21][22]. Furthermore, two common 

evaluation metrics, Overall Accuracy (ACC) and F-score are 

used to evaluate the performance [5]. ACC can indicate the 

overall performance of the classifiers, but is not adequate for 

an unbalanced dataset (where the proportions of exemplars 

are unequal), whereas F-score can reflect the confusion 

matrix for every class regardless of how prevalent fault cases 

are. 

A.  Benchmark performance for feature based methodology 

Past works [2][3] used waveform-based features and 

contextual features respectively to identify fault causes in 

distribution networks. Table IV shows the performance of 

different benchmark classifiers with both feature sets as well 

as the combination of the two. Regardless of the classifier 

chosen, the rank of the accuracy metrics show that the 

contextual features perform better than waveform-based 

features alone, but worse than the combination of the two. 

These will now be described. 

    1)  Waveform Characteristics 

Although 1-NN and Bagged Tree can identify fault cause to 

a reasonable level (> 60% in Table IV), some fault classes 

with significant waveform variability (e.g. animal and 

vehicle) obtain a low F-score. Some of the fault events in the 

DoE data set manifest over several waveform occurrences. 

Although the root cause is the same, the waveform shapes can 

vary drastically. An example is given in Fig. 7. The events in 

Fig. 7 recur consecutively within a short period and they were 

both caused by animals; both occur in similar contexts but the 

waveform looks significantly different. However, through 

observing the whole dataset, the animal related faults in the 

DoE data set all occur around April to August and frequently 

occur under fair weather, which means the contextual feature 

can be a more powerful predictor than waveform on these 

TABLE IV 

COMPARISON OF CHOICE OF MODEL AND FEATURE SET FOR BENCHMARK FAULT CAUSE CLASSIFIER 

Classifier Feature Set 
F-score 

Overall Accuracy 
Tree Equipment Animal Vehicle Lightning 

ANN [3] Waveform Features [2] 18.42% 32.76% 0% 8.33% 19.27 19.27% 

Bagged Tree Waveform Features [2] 67.47% 79.49% 40% 66.67% 52.94% 69.88% 
1-NN [5] Waveform Features [2] 67.42% 66.67% 20% 60.47% 48.48% 61.44% 

ANN [3] Contextual Features [3] [4] [20] 22.86% 28.8% 10.81% 22.64% 12.77% 22.22% 

Bagged Tree Contextual Features [3] [4] [20] 78.57% 78.67% 60% 88.37% 75.68% 78.9% 

1-NN [5] Contextual Features [3] [4] [20] 65.71% 82.67% 76.19% 86.38% 63.86% 76.6% 

ANN [3] Combined Features [3] [2] 22.78% 39.62% 21.26% 21.05% 14.04% 24.09% 

DBN [1] Combined Features [3] [2] 0% 62.24% 0% 0% 0% 43.43% 
Bagged Tree Combined Features [3] [2] 77.92% 82.72% 73.68% 85% 82.35% 81.32% 

1-NN [5] Combined Features [3] [2] 80.95% 86.9% 66.67% 79.07% 83.33% 82.5% 

 

TABLE V 

COMPARISON OF CHOICE OF SIMILARITY MEASURE FOR PROPOSED FAULT CAUSE CLASSIFIER 

Classifier Similarity Measure 
F-score 

Overall Accuracy 
Tree Equipment Animal Vehicle Lightning 

1-NN  Waveform-based similarity 75% 65.73% 33.33% 52.63% 61.54% 63.86% 

1-NN  
Contextual similarity using 

Hamming distance 
69.44% 85.14% 76.19% 90.48% 65.31% 78.9% 

1-NN  Combined Similarity 89.16% 90.54% 75% 88.38% 94.12% 89.15% 

 

 
Fig. 7. Two consecutive animal fault episodes occurring less than a second 

apart; the waveform is dissimilar but context matches exactly 
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faults. Generally, the waveform characteristics alone can be 

difficult to use to generalize fault causes, especially for faults 

with significant variability.   

    2)  Contextual Features 

Compared to waveform-based classification, the use of 

contextual features alone can improve the overall accuracy by 

approximately 10% for both 1-NN (from 61.44% to 76.66%) 

and Bagged Tree (from 69.88% to 78.9%) as Table IV shows. 

Generally, contextual features are considered powerful 

predictors of fault causes [3], however, the accuracy for 

contextual features alone is not enough in practical 

implementation as Table IV shows. 

    3)  Combined Features 

Table IV shows that the existing classifiers with combined 

waveform derived inputs, augmented with features based on 

context, generally outperform the classifiers that that only 

used the individual feature sets; e.g. 1-NN, Bagged Tree and 

ANN achieve 82.5%, 81.32% and 24.09% which improve 

approximately 6%, 2% and 2% respectively. The 0% 

accuracy obtained by DBN shows it cannot work with a 

minimal number of exemplars. This shows that waveform and 

context together carries additional information to support 

accurate classification.  

B.  Performance comparison with similarity-based 

methodology 

To investigate the predictive power of the proposed similarity 

measures against conventional waveform-based features and 

contextual features, three comparison experiments are carried 

out using the highly performing 1-NN as the classification 

model. Table V shows the performance for classifiers using 

the proposed similarity measures. An overall ACC (>60%) is 

obtained using these with a 1-NN classifier. Incorporating the 

proposed similarity measure results in improvement in all 

event type classifications over an equivalent classifier in 

Table IV that used using Euclidean distance on conventional 

waveform features. Every fault class attains an F-score of 

greater than 75% and lightning strike classification accuracies 

are improved by almost 11% to 94.12%. The overall best 

classification accuracy, 89.15%, comes from using the 

combined similarity measure, which improves accuracy by 

approximately 7% over conventional combined input features 

and without the need to pre-process any waveform statistical 

features. Generally, the advanced similarity based 

methodology can be advantageous regardless of waveform or 

contextual inputs used. Fault diagnosis using combined 

similarity still can achieve higher accuracy than using either 

waveform or context alone. 

C.  Consequence of Minimal Data Support on Classifiers 

Performance 

The intended benefit of the proposed approach is that it will 

require the minimum number of examples to learn from. 

Instead of waiting to collect a large number of exemplars, 

utilities will inevitably prefer an intelligent classifier that 

works with minimal available data in order to gain value from 

monitoring as quickly as possible. As Table IV And Table V 

show, regardless of the features chosen, Neural Networks, 

including ANN and DBN, cannot classify fault cause with 

minimal support, with ANN only managing 24.09% overall 

accuracy and DBN achieving 43.43% overall accuracy, in 

both cases using the combined features. Among the other 

classifiers, Bagged Tree and 1-NN achieve the best results 

using conventional waveform and contextual features, with 

the highest accuracy achieved around 82% and 89% 

respectively. Among the five fault classes, lightning related 

faults achieved the best F-score even though the exemplar 

support is not the highest. Therefore, 1-NN using the 

proposed similarity can provide a reliable fault cause 

classification without manual intervention, knowledge of 

which can be used to expedite failure rectification.  

D.  Performance Impact of Sampling Frequency  

In practice, different sampling frequencies have been used to 

record PQ events, including 960Hz and 3840Hz [13][23]. For 

conventional fault classification, the sampling frequency can 

affect the waveform feature extraction then further affect the 

classification accuracy. To demonstrate, the best performing 

1-NN classifier from Table V were run again using input data 

with the aforementioned sampling frequencies in separate 

groups. Table VI shows the separation of these results: the 

events recorded at higher sampling frequency can achieve 

94.44% overall classification accuracy – an almost 20% gain 

which justifies the higher resolution of the data. This 

performance benefit had been obscured in Table V by the 

aggregation of both data resolutions which had led to an 

accuracy of 89.15%. 

E.  Interpretation of Fault Classification Performance 

The comparison of the classifiers and input feature sets in this 

section resulted in a range of classification accuracies. These 

can be attributed two factors: the ability of the model to form 

a sufficiently expressive decision boundary, and the ability of 

the inputs to provide discriminatory power between fault 

types. Erosion of this accuracy can be attributed to the 

heightened variability of particular fault cases. Consequently, 

waveform classification on its own is generally poor for 

animal related fault causes – it is difficult for a classifier to 

capture a general representation from the number of 

combinations of type of animal, circumstances and 

equipment affected. Vehicle impacts are similarly varied and 

lead to lower classification performance as a result: contact 

angle, size and speed of vehicle and span geometry will all 

contribute to how an overhead line pole impact manifests on 

a PQ waveform in terms of phase affected and event duration. 

In contrast, lightning related fault episodes are distinct, which 

is understandable given the unique high energy nature of the 

fault and the consistently short timescales over which strikes 

tend to occur. 

VII.  CONCLUSIONS 

Power distribution networks are featuring greater levels of 

observability given the availability of lower cost sensor and 

monitoring systems. The value of these to enhancing power 

delivery service levels can only be realized if data can be 

interpreted in an automated and repeatable manner. This 

paper has contributed a new similarity measure to identify 

recurrent faults and built a classification methodology to 

automatically identify fault causes associated with Power 

Quality events from a minimal number of exemplars. The 

TABLE VI 

COMPARISON OF WAVEFORM SAMPLING FREQUENCIES 

Sampling Frequency Overall Accuracy 

960 Hz 77.58% 

 3840 Hz 94.44% 
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highest accuracy achieved with the contributed approach is 

89.15%, using a combination of waveform and contextual 

similarity and retaining high accuracy even for low-

prevalence events. As a utility maintaining distribution 

network assets, the ability to identify the causes of 

disturbances via Power Quality waveforms is beneficial from 

both an operational and an asset management perspective. 

Widespread recognition of the causes of faults over time can 

allow maintenance for at risk assets to be planned if the 

frequency of occurrence (and possibly the time of year) is 

known. Without a means of converting fault waveforms into 

meaningful representations, this actionable insight would not 

be available. Moving towards an operational solution for the 

works contributed here, supporting research is now required 

to understand the heterogeneity of fault waveforms invoked 

by network topology, materials and design of equipment used 

(e.g. insulation in switchgear) and influence of seasonal or 

diurnal effects. It is envisaged that in order for this to be 

realized, a hardware based implementation is required to form 

the basis of a pilot study based around small scale operational 

deployment on a network with well understood issues. 

VIII.  REFERENCE 

[1] H. Liang, Y. Liu, G. Sheng, and X. Jiang, “Fault-cause 
identification method based on adaptive deep belief network and 

time – frequency characteristics of travelling wave,” IET Gener. 

Transm. Distrib., vol. 13, no. 5, pp. 724–732, 2019. 
[2] X. Qin, P. Wang, Y. Liu, L. Guo, and G. Sheng, “Research on 

Distribution Network Fault Recognition Method Based on Time-

Frequency Characteristics of Fault Waveforms,” IEEE Access, 
vol. 6, pp. 7291–7300, 2018. 

[3] L. Xu and M.-Y. Chow, “A Classification Approach for Power 

Distribution Systems Fault Cause Identification,” IEEE Trans. 
Power Syst., vol. 21, no. 1, pp. 53–60, 2006. 

[4] L. Xu, M. Chow, and L. S. Taylor, “Power Distribution Fault 

Cause Identification With Imbalanced Data Using the Data 
Mining-Based Fuzzy Classification E -Algorithm,” IEEE Trans. 

Power Syst., vol. 22, no. 1, pp. 164–171, 2007. 

[5] U. J. Minnaar, F. Nicolls, and C. T. Gaunt, “Automating 
Transmission-Line Fault Root Cause Analysis,” IEEE Trans. 

Power Deliv., vol. 31, no. 4, pp. 1692–1700, 2016. 

[6] C. L. Benner and B. D. Russell, “Feeder Interruptions Caused by 
Recurring Faults on Distribution Feeders : Faults You Don’t 

Know About,” in 2008 61st Annual Conference for Protective 

Relay Engineers, 2008, pp. 584–590. 
[7] J. A. Wischkaemper, C. L. Benner, B. D. Russell, and K. 

Manivannan, “Application of Waveform Analytics for Improved 

Situational Awareness of Electric Distribution Feeders,” IEEE 
Trans. Smart Grid, vol. 6, no. 4, pp. 2041–2049, 2015. 

[8] Transmission & Distribution Committee, Power Quality 

Subcommittee, and IEEE Working Group on Power Quality Data 
Analytics, “Electric Signatures of Power Equipment Failures,” 

2018. [Online]. Available: 

http://grouper.ieee.org/groups/td/pq/data/downloads/Signatures_E
quipment_Failures_V2018Dec.pdf. 

[9] K. Manivinnan, C. L. Benner, B. D. Russell, and J. A. 

Wischkaemper, “Automatic Identification , Clustering and 
Reporting of Recurrent Faults in Electric Distribution Feeders,” 

in Intelligent System Application to Power Systems (ISAP), 2017. 

[10] B. D. Russell and C. L. Benner, “Intelligent Systems for 
Improved Reliability and Failure Diagnosis in Distribution 

Systems,” IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 48–56, 

2010. 
[11] X. Wang, S. D. J. Mcarthur, S. M. Strachan, J. D. Kirkwood, and 

B. Paisley, “A Data Analytic Approach to Automatic Fault 
Diagnosis and Prognosis for Distribution Automation,” IEEE 

Trans. Smart Grid, vol. 9, no. 6, pp. 6265–6273, 2018. 

[12] Y. Song, W. Wang, Z. Zhang, H. Qi, and Y. Liu, “Multiple event 
analysis for large-scale power systems through cluster-based 

sparse coding,” Trans. Power Syst., vol. 32, no. 6, pp. 301–306, 

2017. 
[13] EPRI, “DOE/EPRI National Database Repository of Power 

System Events.” [Online]. Available: 

http://pqmon.epri.com/disturbance_library/.[Accessed: 23-Jun-
2017]. 

[14] U. J. Minnaar, C. T. Gaunt, and F. Nicolls, “Characterisation of 

power system events on South African transmission power lines,” 

Electr. Power Syst. Res., vol. 88, pp. 25–32, 2012. 

[15] B. Li, Y. Jing, and W. Xu, “A Generic Waveform Abnormality 

Detection Method for Utility Equipment Condition Monitoring,” 
IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 162–171, 2017. 

[16] W. Zhang, Y. Jing, and X. Xiao, “Model-Based General Arcing 

Fault Detection in Medium-voltage Distribution Lines,” IEEE 
Trans. Power Deliv., vol. 31, no. 5, pp. 2231–2241, 2016. 

[17] S. Hiroaki and S. Chiba, “Dynamic Programming Algorithm 

Optimization for Spoken Word Recognition,” IEEE Trans. 
Acoust., vol. 26, no. 1, 1978. 

[18] R. A. Rossi, N. K. Ahmed, H. Eldardiry, and R. Zhou, 

“Similarity-based Multi-label Learning,” in arxiv, 2017. 
[19] M. Chow, S. Yee, and L. S. Taylor, “Recognizing Animal-

Caused Faults in Power Distribution Systems Using Artificial 

Neural Networks,” IEEE Trans. Power Deliv., vol. 8, no. 3, pp. 
1268–1274, 1993. 

[20] M. Chow and L. S. Taylor, “Analysis And Prevention Of Animal-

Caused Faults In Power Distribution Systems,” IEEE Trans. 
Power Deliv., vol. 10, no. 2, pp. 995–1001, 1995. 

[21] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. 

Wiley-Interscience, 1998. 
[22] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of 

Statistical Learning-data mining,inference, and prediction. 
Springer Series in Statistics, 2017. 

[23] Transmission and Distribution Committee, “IEEE Std 1159TM-

2009, IEEE Recommended Practice for Monitoring Electric 
Power Quality,” p. 35, 2009. 

 


