131 research outputs found

    Automatic adaptive multi-point moment matching for descriptor system model order reduction

    Get PDF
    We propose a novel automatic adaptive multi-point moment matching algorithm for model order reduction (MOR) of descriptor systems. The algorithm implements both adaptive frequency expansion point selection and automatic moment order control via a transfer function based error metric. Without a priori information of the system response, the proposed algorithm guarantees a much higher global accuracy compared with standard multi-point moment matching without adaptation. The moments are computed via a generalized Sylvester equation which is subsequently solved by a newly proposed generalized alternating direction implicit (GADI) method. Numerical examples then confirm the efficacy of the proposed schemes. © 2013 IEEE.published_or_final_versio

    Analytical Flood Risk Models for First Responder Use: Obstruction Detection and Risk Assessment

    Get PDF
    The objective of this project is to develop and test two qualitative flood risk models for use in first responder and planning roles. The first, the Obstruction Detection Model (ODM), uses Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) and a slope analysis to detect changes in the free surface of the water that might indicate the presence of a sub-surface obstruction. The product of the ODM can be used as a guide for field inspection, as well as an input scenario for the Risk Assessment Model (RAM). The RAM is the second model developed and serves to create an output product that displays the risk factor of each given parcel in order to help prioritize first responder efforts, as well as planning and mitigation efforts when used as a scenario generation tool. The RAM incorporates various vector data comprised of parcels, Monroe County Critical Infrastructure (CIKR), population, and assessed value in order to generate the Risk Factor. A third model, the Flood Extent Generator (FEG), uses an input scenario from the ODM to generate vector flood extents rapidly. These extents are used with the RAM to create a map that displays the Risk Factor in the flooded parcels. The ODM appears to pick up riverine obstructions in the various river reaches tested within New York State. The FEG flood extents have 15% spatial agreement when constrained to Monroe County and 32% when constrained upriver of the Ford Street Bridge obstruction. The over-estimated flood extents lead to the RAM over-predicting populations and infrastructure at risk. Model results, when compared to the more complex Hazus model, suggest that the simplified approach presented needs additional predictor variables or data pre-processing to improve accuracy of each model component

    Parameterized modeling and model order reduction for large electrical systems

    Get PDF

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Intelligent and Secure Underwater Acoustic Communication Networks

    Get PDF
    Underwater acoustic (UWA) communication networks are promising techniques for medium- to long-range wireless information transfer in aquatic applications. The harsh and dynamic water environment poses grand challenges to the design of UWA networks. This dissertation leverages the advances in machine learning and signal processing to develop intelligent and secure UWA communication networks. Three research topics are studied: 1) reinforcement learning (RL)-based adaptive transmission in UWA channels; 2) reinforcement learning-based adaptive trajectory planning for autonomous underwater vehicles (AUVs) in under-ice environments; 3) signal alignment to secure underwater coordinated multipoint (CoMP) transmissions. First, a RL-based algorithm is developed for adaptive transmission in long-term operating UWA point-to-point communication systems. The UWA channel dynamics are learned and exploited to trade off energy consumption with information delivery latency. The adaptive transmission problem is formulated as a partially observable Markov decision process (POMDP) which is solved by a Monte Carlo sampling-based approach, and an expectation-maximization-type of algorithm is developed to recursively estimate the channel model parameters. The experimental data processing reveals that the proposed algorithm achieves a good balance between energy efficiency and information delivery latency. Secondly, an online learning-based algorithm is developed for adaptive trajectory planning of multiple AUVs in under-ice environments to reconstruct a water parameter field of interest. The field knowledge is learned online to guide the trajectories of AUVs for collection of informative water parameter samples in the near future. The trajectory planning problem is formulated as a Markov decision process (MDP) which is solved by an actor-critic algorithm, where the field knowledge is estimated online using the Gaussian process regression. The simulation results show that the proposed algorithm achieves the performance close to a benchmark method that assumes perfect field knowledge. Thirdly, the dissertation presents a signal alignment method to secure underwater CoMP transmissions of geographically distributed antenna elements (DAEs) against eavesdropping. Exploiting the low sound speed in water and the spatial diversity of DAEs, the signal alignment method is developed such that useful signals will collide at the eavesdropper while stay collision-free at the legitimate user. The signal alignment mechanism is formulated as a mixed integer and nonlinear optimization problem which is solved through a combination of the simulated annealing method and the linear programming. Taking the orthogonal frequency-division multiplexing (OFDM) as the modulation technique, simulation and emulated experimental results demonstrate that the proposed method significantly degrades the eavesdropper\u27s interception capability

    Surrogate Models Coupled with Machine Learning to Approximate Complex Physical Phenomena Involving Aerodynamic and Aerothermal Simulations

    Get PDF
    Numerical simulations provide a key element in aircraft design process, complementing physical tests and flight tests. They could take advantage of innovative methods, such as artificial intelligence technologies spreading in aviation. Simulating the full flight mission for various disciplines pose important problems due to significant computational cost coupled to varying operating conditions. Moreover, complex physical phenomena can occur. For instance, the aerodynamic field on the wing takes different shapes and can encounter shocks, while aerothermal simulations around nacelle and pylon are sensitive to the interaction between engine flows and external flows. Surrogate models can be used to substitute expensive high-fidelitysimulations by mathematical and statistical approximations in order to reduce overall computation cost and to provide a data-driven approach. In this thesis, we propose two developments: (i) machine learning-based surrogate models capable of approximating aerodynamic experiments and (ii) integrating more classical surrogate models into industrial aerothermal process. The first approach mitigates aerodynamic issues by separating solutions with very different shapes into several subsets using machine learning algorithms. Moreover, a resampling technique takes advantage of the subdomain decomposition by adding extra information in relevant regions. The second development focuses on pylon sizing by building surrogate models substitutingaerothermal simulations. The two approaches are applied to aircraft configurations in order to bridge the gap between academic methods and real-world applications. Significant improvements are highlighted in terms of accuracy and cost gain

    Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    Full text link

    Machine Learning and Data Mining Applications in Power Systems

    Get PDF
    This Special Issue was intended as a forum to advance research and apply machine-learning and data-mining methods to facilitate the development of modern electric power systems, grids and devices, and smart grids and protection devices, as well as to develop tools for more accurate and efficient power system analysis. Conventional signal processing is no longer adequate to extract all the relevant information from distorted signals through filtering, estimation, and detection to facilitate decision-making and control actions. Machine learning algorithms, optimization techniques and efficient numerical algorithms, distributed signal processing, machine learning, data-mining statistical signal detection, and estimation may help to solve contemporary challenges in modern power systems. The increased use of digital information and control technology can improve the grid’s reliability, security, and efficiency; the dynamic optimization of grid operations; demand response; the incorporation of demand-side resources and integration of energy-efficient resources; distribution automation; and the integration of smart appliances and consumer devices. Signal processing offers the tools needed to convert measurement data to information, and to transform information into actionable intelligence. This Special Issue includes fifteen articles, authored by international research teams from several countries
    • …
    corecore