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Abstract

Underwater acoustic (UWA) communication networks are promising techniques for

medium- to long-range wireless information transfer in aquatic applications. The

harsh and dynamic water environment poses grand challenges to the design of UWA

networks. This dissertation leverages the advances in machine learning and signal

processing to develop intelligent and secure UWA communication networks. Three

research topics are studied: 1) reinforcement learning (RL)-based adaptive transmis-

sion in UWA channels; 2) reinforcement learning-based adaptive trajectory planning

for autonomous underwater vehicles (AUVs) in under-ice environments; 3) signal

alignment to secure underwater coordinated multipoint (CoMP) transmissions.

First, a RL-based algorithm is developed for adaptive transmission in long-term op-

erating UWA point-to-point communication systems. The UWA channel dynamics

are learned and exploited to trade off energy consumption with information delivery

latency. The adaptive transmission problem is formulated as a partially observable

Markov decision process (POMDP) which is solved by a Monte Carlo sampling-based

approach, and an expectation-maximization-type of algorithm is developed to re-

cursively estimate the channel model parameters. The experimental data processing

reveals that the proposed algorithm achieves a good balance between energy efficiency

and information delivery latency.

xxv



Secondly, an online learning-based algorithm is developed for adaptive trajectory

planning of multiple AUVs in under-ice environments to reconstruct a water param-

eter field of interest. The field knowledge is learned online to guide the trajectories

of AUVs for collection of informative water parameter samples in the near future.

The trajectory planning problem is formulated as a Markov decision process (MDP)

which is solved by an actor-critic algorithm, where the field knowledge is estimated

online using the Gaussian process regression. The simulation results show that the

proposed algorithm achieves the performance close to a benchmark method that as-

sumes perfect field knowledge.

Thirdly, the dissertation presents a signal alignment method to secure underwater

CoMP transmissions of geographically distributed antenna elements (DAEs) against

eavesdropping. Exploiting the low sound speed in water and the spatial diversity of

DAEs, the signal alignment method is developed such that useful signals will col-

lide at the eavesdropper while stay collision-free at the legitimate user. The signal

alignment mechanism is formulated as a mixed integer and nonlinear optimization

problem which is solved through a combination of the simulated annealing method

and the linear programming. Taking the orthogonal frequency-division multiplexing

(OFDM) as the modulation technique, simulation and emulated experimental results

demonstrate that the proposed method significantly degrades the eavesdropper’s in-

terception capability.

xxvi



Chapter 1

Introduction

1.1 Background and Challenges

The earth is a planet where more than 70% of its surface is covered by water, such

as lakes and oceans. Those water bodies not only itself have a significant impact

on the nature but also provide tremendous resources for human beings. We harvest

food in sea farms, extract metal ions from the sea water, and even take advantage

of the cold temperature in water as cooling systems for infrastructures such as data

centers. Furthermore, the mystery at the ocean bottom awaits to be discovered since

about 95% of the ocean remains unexplored. As resource depletion has been a big

concern in the new era, the underwater exploration becomes a potential remedy for

1



AUV AUV

Surface 
Buoys

Control
Center

RF Links

Stationary Nodes

Acoustic 
Links

Figure 1.1: An example of an underwater acoustic communication network. The station-
ary sensor nodes, AUVs, and surface buoys can communicate with each other using acoustic
links. Some stationary nodes and the buoys are connected to a control center via cables
and high-rate radio links, respectively.

sustainable development. Underwater acoustic (UWA) communication networks are

the promising techniques for wireless information transfer over medium and long

ranges in various underwater applications.

A typical structure of UWA networks is presented in Fig. 1.1. The UWA communi-

cation networks are capable of different tasks with the help of data fusion and infor-

mation transferring. Specifically, there exist stationary sensor nodes either mounted

directly or moored at the water bottom. Those nodes usually live in water for a long

period of time, from weeks to years. The mobile autonomous underwater vehicles

(AUVs) can play various roles, such as to scan the water body at different depths and

to relay the information for remotely located sensor nodes. There are surface buoys

and some stationary nodes which are connected to a control center via high-rate radio

2



links and cables, respectively. Their major job is to relay the collected information

from other sensor nodes via acoustic links to the control center for real-time analysis

and decision-making while the cooperation of them can also provide better services

to improve the system performance of the whole network.

The UWA communications networks are very different from terrestrial radio networks.

The UWA channel has large sound propagation delay due to the low sound speed in

water as 1500 m/s while radio waves travel at the speed of 3 × 108 m/s. The UWA

channel has large Doppler effect and frequency-dependent signal attenuation. The

signal attenuation is large at the higher frequency bands, which leads to limited

communication bandwidth. About the multi-path effect, the channel delay spread

is large in UWA channels, and different paths have different Doppler scaling factors.

The investigation of UWA communication networks for practical applications is still

at its early stage. Many existing solutions to UWA networks are modifications of

techniques which are designed for terrestrial radio networks. Hence, many research

problems and opportunities arise associated with the unique characteristics of UWA

networks at different layers [4, 5, 6, 7, 8, 9, 10, 11]. In this dissertation, three critical

issues of UWA communication networks are studied as follows.
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Many underwater nodes are powered by batteries, and the cost of battery re-

placement in the remote water area is high. The energy-efficient adaptive trans-

mission in UWA networks should be specifically designed based on the charac-

teristics of UWA channels.

The capture of the water parameter field of interest such as the temperature map

and underwater acoustic field is an effective method to study the underwater

phenomenon. With a goal of providing an accurate field reconstruction, mobile

sensor nodes such as AUVs are often employed to take field samples along their

trajectories. How to design the optimal sampling trajectories for multiple AUVs

is a key factor to accurately reconstruct the field of interest.

The broadcasting nature of acoustic transmissions makes the UWA communica-

tion networks vulnerable to adversarial attacks. Due to the low sound speed in

water, many security algorithms designed for terrestrial radio networks cannot

be applied directly to UWA communication networks. The security in UWA

communication networks has drawn considerable attention recently.

Nowadays, we enjoy the benefit brought by artificial intelligence in our daily life. The

boom in artificial intelligence provides new techniques and perspectives to solve the

arising research problems in UWA networks. The importance of the UWA networks

also inspires us to care more about their security. We can foresee the rapid growth

and development of intelligent and secure UWA networks in the near future.
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1.2 Contributions

The dissertation focuses on developing intelligent and secure UWA communications

networks. The solutions to the three research issues as discussed are presented in

Chapters 2 to 4, respectively.

Chapter 2 studies adaptive transmission in an UWA point-to-point communication

system that operates on an epoch-by-epoch basis for a long term. A fixed amount

of information bits periodically arrive at the transmitter data queue, and wait for

transmission via a number of packets within each epoch. To trade off energy con-

sumption with transmission latency, the transmitter decides the transmission action

at the beginning of each epoch, including to transmit or not, the transmission power

and the modulation-and-coding parameters, based on the data queue status and the

predicted channel conditions in the current and future epochs. To describe both

the fast fading and the large-scale shadowing of UWA channels, the channel within

each epoch is characterized by a compound Nakagami-lognormal distribution, and the

evolution of the distribution parameters is modeled as an unknown Markov process.

Given that the channel can only be observed during active transmissions, we for-

mulate the adaptive transmission problem as a partially observable Markov decision

process (POMDP), and develop an online algorithm in a model-based reinforcement

learning (RL) framework. The algorithm recursively estimates the channel model
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parameters, tracks the channel dynamics, and computes the optimal transmission

action that minimizes a long-term system cost. Emulated results based on channel

measurements from two field experiments demonstrate that the proposed algorithm

achieves decent performance relative to a benchmark method that assumes perfect

and non-causal channel knowledge.

Chapter 3 studies online learning-based trajectory planning for multiple autonomous

underwater vehicles (AUVs) to estimate a water parameter field of interest in the

under-ice environment. A centralized system is considered, where several fixed access

points (APs) on the ice layer are introduced as gateways for communications between

the AUVs and a remote data fusion center (FC). We model the water parameter

field of interest as a Gaussian process (GP) with unknown hyper-parameters. The

AUV trajectories for sampling are determined on an epoch-by-epoch basis. At the

end of each epoch, the APs relay the observed field samples from all the AUVs to

the FC which computes the posterior distribution of the field based on the Gaussian

process regression (GPR) and estimates the field hyper-parameters. The optimal tra-

jectories of all the AUVs in the next epoch are determined to minimize a long-term

cost that is defined based on the field uncertainty reduction and the AUV mobility

cost, subject to the kinematics constraint, the communication range constraint and

the sensing area constraint. We formulate the adaptive trajectory planning problem

as a Markov decision process (MDP). A reinforcement learning (RL)-based online
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learning algorithm is designed to determine the optimal AUV trajectories in a con-

strained continuous space. Simulation results show that the proposed learning-based

trajectory planning algorithm has performance similar to a benchmark method that

assumes perfect knowledge of the field hyper-parameters.

In Chapter 4, we investigate countermeasures against eavesdropping attack in the

coordinated multipoint (CoMP) transmission of geographically distributed antenna

elements (DAEs) to an underwater legitimate user. Exploiting the low sound speed

in water and the spatial diversity of DAEs, we propose signal alignment for trans-

mission secrecy, where a transmission strategy will be judiciously designed such that

useful signals will collide at the eavesdropper while stay collision-free at the legiti-

mate user. Specifically, the transmit DAE set, and the transmission schedule and

transmission power of each active DAE, are jointly optimized with a goal of mini-

mizing the maximal received signal-to-interference-and-noise ratio (SINR) of useful

signals at the eavesdropper, under a lower bound constraint of the received signal-to-

noise ratio (SNR) at the legitimate user. Taking the orthogonal frequency-division

multiplexing (OFDM) as the modulation technique, simulation and emulated ex-

perimental results demonstrate that the proposed method significantly degrades the

eavesdropper’s interception capability. We further investigate the secrecy capacity

and the secure degrees-of-freedom (d.o.f.) of the signal alignment method from an

information-theoretic perspective, which reveals that without external helpers, secure

d.o.f. greater than 1
2 can be achieved.
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Contributions of the dissertation are summarized in Chapter 5.

Notation: Bold upper case letters and lower case letters are used to denote matrices

and column vectors, respectively. AT denotes the transpose of matrixA. [a]m denotes

the mth element of vector a. |A| denotes the cardinality of set A. ∇a denotes the

derivative w.r.t. a. [A]m,k denotes the (m, k)th element of matrix A. 1 denotes a

column vector with unity elements. [·]+ is defined as max{·, 0}. R{·} represents the

real part of a complex variable.
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Chapter 2

Reinforcement learning-based

Adaptive Transmission in

Underwater Acoustic Channels1

1The work in this chapter was published in “IEEE Access” 2017 IEEE. See Appendix B.1 for the
letter of permission from IEEE.
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2.1 Introduction

2.1.1 Background

Due to the high deployment cost, the lifespan of underwater systems varies from

months to years. For instance, underwater monitoring systems, such as scientific

data collection systems, could be mounted at the water bottom for months to col-

lect parameters of interest, and large-scale ocean observation systems, such as the

NEPTUNE and VENUS ocean observatories [12] and the Ocean Observatory Initia-

tive (OOI) [13], could have projected lifespans of more than 20 years. On the other

hand, underwater nodes are often powered by batteries, and battery replacement and

recharging are time-consuming and costly. Energy-efficient operation is critical for

system longevity.

This chapter considers a long-term operating underwater system with determinis-

tic data arrivals (e.g., periodic data collection systems), and studies energy-efficient

acoustic transmission that adapts the transmission schedule and the transmission pa-

rameters, including the transmission power and the modulation-and-coding parame-

ters, to the system state (e.g., the transmitter data queue length) and the current and

future predicted channel conditions, with a goal of minimizing a long-term average
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cost. The UWA channel exhibits both small-scale fast fading and long-term large-

scale shadowing. Adapting transmission strategy to the channel dynamics could yield

considerable energy saving.

2.1.2 Existing Works in Terrestrial Radio Networks

The channel-aware transmission to trade off energy consumption with information

delivery latency has been extensively studied in terrestrial radio communications.

Particularly for correlated fading channels, most of existing works model the channel

as a finite-state Markov chain (FSMC) with known transitional probabilities, and

formulate the problem as a Markov Decision Process (MDP) to determine the con-

trol variables, such as the transmission schedule, the transmission power, and the

modulation-and-coding parameters, based on the channel state and the communica-

tion system state (e.g., the data queue length, the incoming traffic rate, and the packet

delay constraint). Given that the MDP is generally computationally intractable to

solve, special structures of the optimal policy are identified and exploited to find

the optimal or near-optimal solution [14, 15, 16, 17]. However, the channel state

transition probability and the traffic statistics could be hard to obtain in practice.

Some works propose to solve the MDP online using reinforcement learning (RL) [18],

where model-free RL methods (e.g., Q-learning, and the actor-critic algorithm) are

used to learn from past experiences (namely, how to map “situations” to “actions”)
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without explicit modeling of the channel and/or traffic dynamics [19, 20, 21, 22, 23].

Recent applications of RL in radio-frequency networks include stochastic power con-

trol for energy harvesting systems [24, 25], data scheduling and admission control for

backscatter sensor networks [26], and rate and mode adaptation for Wi-Fi/LTE-U

coexistence [27].

2.1.3 Existing Works in Underwater Acoustic Networks

Compared to radio networks, studies on energy-efficient transmission in UWA net-

works have been limited. At the physical layer, relevant research includes adapting the

transmission power, the frequency band, and the modulation-and-coding parameters

to channel dynamics [28, 29, 30, 31]. At the link layer, assuming a two-state FSMC

channel model with known transition probabilities and accounting the non-negligible

cost of channel probing, energy-efficient transmission scheduling with partial and

discontinuous channel state information (CSI) is studied in [32]. The transmission

scheduling is formulated as a dynamic programming problem, and different ways of

providing the CSI from the receiver are examined. The above work is extended in

[33] when only partial data queue state information is available. In [34], the RL is

introduced to optimize the parameters in a slotted Carrier Sensing Multiple Access

(slotted CSMA) protocol. Assuming a binary symmetric channel (BSC) with un-

known transition probabilities, the model-free RL (Q-learning augmented by virtual

12



experience and state-action aggregation) was introduced in [35] to adapt the link-

layer transmission schedule and transmission parameters to the channel dynamics.

Q-learning has also been used for designing routing protocols [36] with an aim to

balance the workload among network nodes and to prolong the network lifetime.

For long-term operating underwater systems, the UWA channel exhibits both fast

fading and large-scale shadowing; see field experiment observations in, e.g., [37, 38,

39]. Data analysis of different field experiments revealed that the fast fading could

follow Rayleigh, Rician, Nakagami-m, or compound-K distributions; see [40] and

references therein. Based on field measurements, a lognormal model was suggested

for large-scale shadowing [41, 42]. Furthermore, the fading and shadowing statistics

could change continuously over time; for instance, channel stationarity over an average

of three-minute-long interval [43], nonstationarity and cyclostationarity [40] have been

observed in different field experiments.

Existing solutions with the FSMC channel model assumption may not work well

for adaptive transmission in long-term operating UWA systems. Specifically, the

large channel dynamics require a sufficient number of discrete channel states for an

adequate description of the channel behavior. Additionally, the FSMC parameters

could change continuously over time. The high-dimensionality of the channel state

space and the short-term channel stationarity could prevent model-free RL methods

from convergence, which eventually leads to degraded performance.
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2.1.4 Our Work

In this chapter, we introduce a continuous channel model to describe the temporal

dynamics of UWA channels, and adopt a model-based RL framework to determine

the transmission strategy with the aim of optimizing a long-term system performance

measure. Specifically, to better capture the channel variation over a long term, we

introduce a compound Nakagami-lognormal distribution to characterize the channel

fast fading and the large-scale shadowing, and model the evolution of the distribution

parameters as a first-order Markov process. Based on the above channel model, the

model-based RL framework is employed for adaptive transmission. The framework

has two components: channel model estimation and online planning. Following the

maximum likelihood principle and the expectation-maximization concept [44], an

algorithm is developed to recursively estimate the channel model parameters and

predict the channel state based on newly obtained channel measurements. The online

planning is then performed via a Monte Carlo sampling method which finds a near-

optimal transmission strategy through constructing an online state-action tree.

The proposed algorithms are validated using data sets collected from two experiments,

one held off the coast of Martha’s Vineyard, Massachusetts, in 2008, and the other

held in the ice-covered Keweenaw Waterway near Michigan Tech, Michigan, in 2014.

The experimental results show that: 1) the recursive channel estimation method
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yields decent performance on tracking the UWA channel dynamics; and 2) the model-

based RL algorithm achieves performance close to a genie-aided method that assumes

perfect and non-causal channel knowledge.

To the best of our knowledge, this is the first attempt that adopts the model-based RL

framework for adaptive transmission in long-term operating UWA systems, where the

channel statistical parameters in continuous spaces are explicitly learned from past

transmissions.

The rest of the chapter is organized as follows. The system model is presented in

Section 2.2. The model-based RL algorithm for adaptive transmission is developed

in Section 2.3. The Monte Carlo sampling method for online planning is presented in

Section 2.4. A recursive algorithm for channel model estimation and channel tracking

is described in Section 2.5. Evaluation of the proposed algorithm is included in Section

2.6. Summary is presented in Section 2.7.
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2.2 System Model and Problem Formulation

2.2.1 System Description

This work focuses on adaptive transmission in a long-term operating UWA point-to-

point data transmission system. The time is divided into epochs as shown in Fig. 2.1.

Each epoch consists of N time slots, and each time slot is used to transmit one data

packet. At the end of the epoch, an acknowledgement packet is sent from the receiver

through an error-free channel to the transmitter, which includes information of the

packets that are successfully delivered and the received signal-to-noise ratio (SNR) of

each packet. We further assume that at the transmitter, a fixed amount of information

bits are generated at the application layer in each epoch and arrive at the data queue

of the transmitter at the beginning of an epoch. The transmission schedule and the

transmission parameters will be determined recursively epoch by epoch based on the

data queue state and information about the channel state, with an ultimate goal of

minimizing a long-term system cost.

For each time epoch, the transmission parameters include the transmission power,

the modulation size and the channel coding rate. Note that the acoustic modem

in practical systems only maintains a finite number of modulation and coding pairs
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Figure 2.1: Epoch structure at the transmitter and the receiver. The transmission param-
eters, including the transmission power, the modulation size and the channel coding rate,
could vary from epoch to epoch.

as well as a finite number of transmission power levels. We consider a finite set

of discrete power levels P = {P0, P1, P2, · · · }, with P0 = 0 for no transmission, a

finite set of discrete modulation sizes M = {M1,M2, · · · }, and a finite set of channel

coding rates Rc = {rc,1, rc,2, · · · }. A combination of the modulation size Mi and the

coding rate rc,j yields a data rate of rc,j · log2Mi. Stack the triplet of transmission

parameters {P ∈ P,M ∈M, rc ∈ Rc} into a vector, a := [P,M, rc]T. Denote a(ℓ) as

the transmission parameter vector in the ℓth epoch.

In the next, we will develop an UWA channel model and an evolution model of the

transmitter data queue, and then formulate the adaptive transmission as an opti-

mization problem.

2.2.2 Underwater Acoustic Channel Model

To model both the fast fading and the large-scale shadowing of UWA channels,

the UWA channel within one epoch is statistically characterized via a compound
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Nakagami-lognormal distribution. Accordingly, the received SNR follows a gamma-

lognormal distribution [45]. Denote ρ := Ptx/N0 as the transmission signal-power-

to-noise ratio in an epoch, and denote x as the corresponding received SNR. The

probability density function (PDF) of x can be expressed as

fX(x;m,µ, σ)=

∫ ∞

0

xm−1 exp
(

−mx
ρy

)

Γ(m)

(
m

ρy

)m exp
[

− 1
2σ2 (ln y−µ)2

]

√
2πσy

dy, (2.1)

where Γ(·) is the gamma function, m ∈ [1/2,∞) is the fading parameter in the

Nakagami-m fading, and µ and σ are the mean and the standard deviation of the log-

normal shadowing, respectively [45]. Therefore, the UWA channel can be statistically

parameterized by the triplet {m,µ, σ}.

Define sch := [m,µ, σ]T, and denote sch(ℓ) as the channel state in the ℓth epoch. We

model the long-term channel temporal variation as a first-order Markov process,

sch(ℓ) = Asch(ℓ− 1) +wch(ℓ), (2.2)

where A is a 3×3 unknown matrix, and wch(ℓ) is the process noise vector for model-

ing inaccuracy, and is assumed following a zero-mean Gaussian distribution with an

unknown covariance matrix Cw, namely, wch(ℓ) ∼ N (0,Cw).

The UWA channel in an epoch can be measured during packet transmissions. We

assume that the receiver can measure the received SNR of each packet even if the
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packet cannot be successfully decoded. The collected received SNR measurements are

piggybacked on the acknowledgement packet sent from the receiver to the transmitter

at the end of each active epoch. Denote {xℓ,1, xℓ,2, · · · , xℓ,N} as the received SNRs of

N packets in the ℓth epoch. Given the knowledge of the transmission SNR ρ(ℓ), the

channel statistical parameters, {m(ℓ), µ(ℓ), σ(ℓ)}, can be estimated via the method

of moments [44] according to (2.1).

We denote zch(ℓ) as the vector stacked by the estimated parameters,

{m̂(ℓ), µ̂(ℓ), σ̂(ℓ)}, and take zch(ℓ) as the observation vector of sch(ℓ). Hence,

zch(ℓ) = sch(ℓ) + vch(ℓ), (2.3)

where vch(ℓ) ∼ N (0,Cv) is the observation noise with an unknown covariance matrix

Cv, and is assumed independent from the process noise wch(ℓ).

The channel model can then be uniquely represented by the unknown parameter set

Θ := {A,Cw,Cv}. Due to the water environment dynamics, the parameter set could

be slowly time-varying.

Remark 1: For the epochs without active transmissions, a channel probing sequence

could be transmitted to collect information about the channel dynamics. Although

this work does not consider the probing sequence, the obtained theoretical results can

be applied with slight modification to the scenario with channel probing sequences.
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2.2.3 Evolution of the Data Queue

For each transmission parameter triplet a = [P,M, rc]T, the packet error rate (PER)

can be determined based on the compound distribution of the received SNR using

an information-theoretic approach [46, 47] or an empirical formula estimated by real

data [30]. For a channel state sch and a transmission parameter vector a, we denote

the PER by function PER(sch, a).

At the beginning of epoch ℓ, the data queue length can be recursively represented as

q(ℓ) = q(ℓ− 1)− r(ℓ− 1)Ns(ℓ− 1) + rg, (2.4)

where r(ℓ − 1) is the amount of information bits carried by each packet according

to the transmission parameter vector a(ℓ − 1), Ns(ℓ − 1) is the number of packets

that are successfully delivered to the receiver in epoch (ℓ− 1), and rg is the amount

of information bits from the application layer arriving at the beginning of epoch ℓ.

Given PER(sch, a), the number of packets that can be successfully received follows a

binomial distribution B(N, 1− PER(sch, a)), namely,

Pr(Ns = k|sch, a)=
(
N

k

)

(1−PER(sch, a))k (PER(sch, a))N−k . (2.5)

Therefore, given the channel state sch(ℓ − 1) and the transmission parameter vector
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a(ℓ−1), the probability distribution of Ns(ℓ−1), and the transition probability from

q(ℓ− 1) to q(ℓ) can be determined.

2.2.4 Problem Formulation for Optimal Transmission

We define the system state of epoch ℓ as s(ℓ) := {sch(ℓ), q(ℓ)} ∈ S, ∀ℓ = 0, · · · ,∞.

The transmission vector in each epoch, {a(ℓ) ∈ A, ∀ℓ}, can be determined to minimize

the expected total discounted cost,

min
{a(ℓ)∈A}∞ℓ=0

E

{
∞
∑

ℓ=0

γℓC(s(ℓ), a(ℓ))

}

, (2.6)

where γ ∈ (0, 1] is a discount factor, and the cost function C(s, a) : S × A → R is

application-dependent, and can be defined by the system designer. In this work, we

take the cost function as

C(s(ℓ), a(ℓ)) = fp
(

P (ℓ)
)

+ fq
(

q(ℓ)− r(ℓ)Ns(ℓ)
)

, ∀ ℓ (2.7)

where fp(·) and fq(·) are two generic functions that are related to the energy con-

sumption and the queue length, respectively, (q(ℓ) − r(ℓ)Ns(ℓ)) is the queue length

at the end of epoch ℓ, and the number of successfully delivered packets Ns(ℓ) de-

pends on the channel state sch(ℓ) and the action a(ℓ). We note that the cost function

C(s(ℓ), a(ℓ)) is a random variable due to the randomness of the channel state sch(ℓ)
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and the number of successfully delivered packets Ns(ℓ).

2.3 Reinforcement Learning-based Adaptive

Transmission

The optimization problem in (2.6) falls into the category of RL [48], where the trans-

mitter (a.k.a. an agent in RL) interacts with the stochastic and dynamic UWA chan-

nel, with a goal of finding an optimal transmission strategy that minimizes the system

long-term cost. In this section, we will reformulate the optimization problem in (2.6)

in the model-based RL framework, and provide an overview of the proposed algo-

rithm for online adaptive transmission. For notation convenience, we include the

epoch index ℓ as a subscript.

2.3.1 Model-based RL for Adaptive transmission

Should the system state be completely observable, the optimal transmission strategy

can be determined by solving the Bellman optimality equation (BOE),

V ∗(s) = min
a∈A

[

C(s, a) + γ

∫

S

p(s′|s, a)V ∗(s′)ds′
]

, (2.8)
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where V ∗(s) is referred to as the optimal value function of state s, and p(s′|s, a) is

the state transition probability after taking action a. The minimand in (2.8) consists

of two terms: one is the cost of taking action a at the current state s, and the other

is the expected cost in the successor states after taking action a. In the problem

under consideration, although the queue state can be completely observed, the UWA

channel cannot be directly observed, especially in epochs with no transmissions. The

interaction between the transmitter and the underwater channel can be modeled as

a partially observable Markov Decision process (POMDP) [48].

We define b(sch,ℓ) as the belief of channel state sch,ℓ, which corresponds to a priori

PDF of state sch,ℓ, and can be inferred based on past observations {zch,ℓ′; ℓ′ < ℓ}.

Consider zch,ℓ ∈ Z, ∀ℓ, with the empty set Φ ∈ Z to represent the scenario without

active transmissions, and qℓ ∈ Q, ∀ℓ. To indicate the dependence of the value function

on the channel model, we include the model parameter set Θ in the value function

representation. The BOE in (2.8) can be reformulated as in (2.9),

V ∗(qℓ, b(sch,ℓ);Θ) = min
a∈A

[ N
∑

k=0

∫

S

C(sch,ℓ, qℓ, a) Pr(Ns,ℓ = k|sch,ℓ, a)b(sch,ℓ)dsch,ℓ

+ γ
N
∑

k=0

∫

Z

∫

S

Pr(Ns,ℓ = k|sch,ℓ, a)f(zch,ℓ|sch,ℓ, a)b(sch,ℓ)

× V ∗(qℓ+1, b(sch,ℓ+1);Θ)dsch,ℓdzch,ℓ
]

, (2.9)

where qℓ, qℓ+1, Ns,ℓ and a are related according to (2.4). Similar to (2.8), the minimand
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in (2.9) has two terms: the first term is the expected cost in the current epoch based on

the current channel belief state and action, and the second term is the expected cost

in future epochs. The optimal action in the current epoch is the one that minimizes

the total expected cost in the current and future epochs.

We next discuss the probability functions in (2.9) for two types of actions. For

the actions leading to packet transmissions, namely, [a]1 ≠ 0 (c.f. Section 2.2), the

probability functions in (2.9) can be determined based on (2.2), (2.3) and (2.4). The

channel state belief b(sch,ℓ+1) can be recursively updated as

b(sch,ℓ+1) ∝
∫

S

f(sch,ℓ+1|sch,ℓ)f(zch,ℓ|sch,ℓ, a)b(sch,ℓ)dsch,ℓ. (2.10)

For the action of no transmission, namely, [a]1 = 0, we have zch,ℓ ∈ Φ. The prob-

ability function f(zch,ℓ|sch,ℓ, a) is non-informative and is independent of sch,ℓ, hence

∫

Z f(zch,ℓ|sch,ℓ, a)dzch,ℓ = 1. Therefore, the integral w.r.t. zch,ℓ in the second summand

of (2.9) can be separated from the double integral and be removed. Furthermore, since

no transmission is scheduled, qℓ+1 can be computed directly based on qℓ according to

(2.4). The minimand in (2.9) is simplified as

C(sch,ℓ, qℓ, a)|[a]1=0,Ns,ℓ=0 + γ

∫

S

b(sch,ℓ)V
∗(qℓ+1, b(sch,ℓ+1))dsch,ℓ. (2.11)
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The channel state belief b(sch,ℓ+1) can be recursively updated as

b(sch,ℓ+1) ∝
∫

S

f(sch,ℓ+1|sch,ℓ)b(sch,ℓ)dsch,ℓ. (2.12)

Given the Gaussian assumption in (2.2) and (2.3), the channel state belief in (2.10)

and (2.12) can be computed through operating over the mean vectors and the co-

variance matrices of relevant random vectors using Kalman filtering [44]. Detailed

discussions will be provided in Section 2.5.

2.3.2 An Overview of the Proposed Algorithm for Online

Adaptive Transmission

Finding the optimal online transmission strategy requires estimation of channel model

parameters and online planning at the beginning of each epoch. The model parameter

estimation is performed based on channel measurements collected in the past epochs.

A recursive estimator is desirable for online implementation, and especially in the

presence of temporal variation of UWA channels. Given the model estimation, the

optimal transmission strategy can be obtained by solving (2.9). Due to the mix of

continuous and discrete random variables, the optimal solution to the BOE is not

straightforward. In Section 2.4, we will develop a Monte Carlo sampling approach

for online approximation of the optimal solution. In Section 2.5, an algorithm will be
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designed to recursively estimate the unknown model parameter set Θ and track the

channel state.

At the outset, an overview of the proposed algorithm is in the following. At the

beginning of epoch ℓ, the belief state b(sch,ℓ) is computed recursively via (2.10) or

(2.12), based on the parameter set estimation Θ̂ℓ−1, the belief state b(sch,ℓ−1), and

the observation zch,ℓ−1. The queue length qℓ can be observed. Based on the cur-

rent knowledge of the system state and the channel model estimation, the optimal

transmission strategy (i.e. action) can be obtained by solving (2.9). The transmitter

applies the obtained transmission strategy. At the end of the epoch, the transmitter

collects possible feedback from the receiver. Based on the observation zch,ℓ and the

previous model estimation Θ̂ℓ−1, the transmitter updates the channel model estima-

tion, denoted by Θ̂ℓ. The belief state b(sch,ℓ), the observation zch,ℓ, and the model

estimation Θ̂ℓ will be used to compute the belief state b(sch,ℓ+1) in the next epoch.

The above process is repeated for each epoch.
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2.4 Monte Carlo Sampling for Online Approxima-

tion

The mix of continuous and discrete random variables in the BOE (2.9) makes it

intractable to solve. In this section, we develop a Monte Carlo sampling-based ap-

proach [49] to approximate the value function and to find a near-optimal solution.

The approach is also known as Monte Carlo planning.

2.4.1 Value Function Approximation

The BOE in (2.9) has a recursive form. Given an estimation of the model parameters

Θ̂, sampling-based methods [50] can be applied to approximate the value function

recursively through constructing a state-action tree (see Fig. 2.2 for an illustration,

details provided later). The approximation accuracy increases as the number of sam-

ples in the state-action tree increases, which however, incurs higher computational

complexity.

In this work, the idea of sparse sampling [49] is applied during the state-action tree

construction. To guide the selection of “important” samples, a linear regression (LR)

method [51] is introduced to approximate the value function of the system state based
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depth d=3

depth d=2

depth d=1

system state In the current epoch (d=0)

system state to be explored

action to be explored

system state sample

action node

Figure 2.2: An illustration of the state-action tree for online planning, with the tree depth
D = 3. There are 4 actions in the action space A. At depth d, No = 3 system state samples
are drawn based on the action and the system state at depth (d − 1). Na = 2 actions and
1 child system state node are further explored at each depth.

on past value function approximations. Specifically, for the system state {q, b(sch), Θ̂},

denote x as a vector stacked by q and the scalar elements in the mean vector and

the covariance matrix of the channel belief state b(sch). The value function can be

approximated as

V (x;φ) = φ0 + xTφ1, (2.13)

where φT := [φ0,φ
T
1 ] is the LR coefficient vector2. The LR coefficient vector can be

updated via the stochastic gradient decent method [51] based on past value function

approximations.

The proposed Monte Carlo sampling approach has two steps. The first step is to

construct a state-action planning tree, as depicted in Fig. 2.2. The second step is to

approximate the value function recursively based on the state-action tree, as described

2For the elements in x which have relatively higher orders of magnitude, they can be multiplied by
constants to reduce their orders of magnitude. For example, the values of µ and q are multiplied
by 0.1 and 1/rg, respectively, in Section 2.6 for the LR.
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Algorithm II-1 Value function approximation:
V(q, b, Θ̂, d, γ,α, β,λ)

Input: Discount factor γ, temporal difference (TD) learning rate α, learning rate in
the linear regression (LR) β, regularization parameter λ, current planning depth d,
and system state (q, b, Θ̂)
Set the LR coefficient vector φT := [φ0,φ

T
1 ] as a global parameter

Output: Approximated value function Vopt

1: Assign an integer value to D (D > 0) and set Vopt=+∞
2: if d = D then

3: For system state (q, b, Θ̂), set x as a vector consisting of q and all the scalar
elements in the mean vector and the covariance matrix of the channel belief state
b

4: return V (x;φ) = φ0 + xTφ1

5: for i = 1 to |A| do
6: Select an action a from the action space A without replacement
7: Compute the expected immediate cost ci, and set vi = ci
8: for j = 1 to No do

9: Obtain a state sample (q′, b′, Θ̂
′
) according to action a based on Algo-

rithm II-2
10: For (q′, b′, Θ̂

′
), set x′

ij as a vector consisting of q′ and all the scalar elements
in the mean vector and the covariance matrix of the channel belief state b′

11: vi ← vi +
γ
No

V (x′
ij ;φ)

12: Sort elements in {v1, v2, · · · , v|A|} in an increasing order as {v(1), v(2), · · · , v(|A|)}
13: for i = 1 to Na do

14: Choose action a yielding v(i)
15: Randomly select a state sample (q′, b′, Θ̂

′
) obtained after taking action a

16: Perform the TD learning:

v(i) ← v(i)+α(c(i)+γV(q′, b′, Θ̂′
, d+1, γ,α, β,λ)−v(i))

17: Update the LR vector:
φ← φ− β(V (x;φ)− v(i))∇φV (x;φ)− βλφ

18: if v(i) < Vopt then

19: Vopt = v(i)
20: aopt = a

21: return Vopt

in Algorithm II-1. Details about the two steps are in the following.
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Algorithm II-2 Sample the queue state and the belief state in the next epoch

Input: Belief state b, queue length q, action a, and model estimation Θ̂

Output: Belief state b′, and queue length q′ in the next epoch, and updated estimated

Θ̂
′

1: if a indicates transmissions then
2: Sample the channel state sch from the belief state b
3: Sample the observation noise w from N (0, Ĉw)
4: Compute the observation z = sch +w

5: Compute b′ via Kalman filtering based on based on b and observation z

6: Sample the number of packets that are successfully decoded by the receiver,
Ns, based on the channel state samples and the action a, according to (2.5).

7: Compute the queue length in the next epoch q′ = q + rg − rNs

8: else

9: Set q′ = q + rg
10: Compute b′ based on b via Kalman filtering without channel observation

11: Update Θ̂
′
as described in Section 2.5

12: return (q′, b′, Θ̂)

2.4.1.1 State-action Tree Construction

Given a root node which represents the current system state, the state-action tree

is constructed by sequentially drawing samples of actions and samples of the system

states up to a certain planning depth (denoted by D). Specifically,

Let the current system state described by a triplet (q, b, Θ̂) be the root state

node of the state-action tree, where q is the queue length, and b is the channel

belief state;

For each system state node (including the root node) in the state-action tree,

a small number (Na) of actions which yield less approximated expected costs
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will be selected to expand the tree. To do so, one first enumerates all the

actions in the action space. For each enumerated action, a number (No) of

child nodes describing the system states in the next epoch can be obtained

through drawing samples of the channel state, the observations of the channel

state, and the number of successfully delivered packets; see Algorithm II-2. The

value of each child system state node can be approximated by the LR (c.f. Lines

8 to 11 in Algorithm II-1). The expected cost induced by each action can be

approximated by summing up the expected immediate cost and the averaged

value of its child system state nodes.

The expected immediate cost of each action can be computed by drawing a suf-

ficient number of channel samples according to the belief state. The immediate

cost corresponding to each channel sample can be obtained based on the packet

error rate of the channel sample according to (2.5) and (2.7). The averaged

immediate costs based on all samples yields the expected immediate cost.

For each action to be further explored via the tree expansion, for computational

efficiency, only one of its child nodes is randomly selected and serves as the

system state to be explored in the next epoch.

The above process is repeated until the tree reaches the maximal planning depth,

namely, the maximal number of future epochs to be evaluated. The values of D, Na,

and No can be determined to strike a balance between the approximation accuracy
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and the computational complexity. Benefited from the LR-based value function ap-

proximation and the sparse sampling, the structure of the state-action tree can be

much simplified compared to the case when all the actions or a large amount of child

system state samples are explored to reach similar approximation accuracy.

2.4.1.2 Value Function Calculation

The value of the root state node (i.e., the current system state), can be calculated

by propagating the values of all the child nodes in the state-action tree to the root

node. Specifically,

The value of a particular system state node at the planning depth d (d < D) is

set as the minimal expected cost induced by the selected actions to be explored,

and the action with the minimal expected cost is taken as the optimal action.

For the system state nodes at the tree leaves, their values are approximated by

the LR (c.f. Lines 2 to 4 in Algorithm II-1).

For each action, we follow the concept of the temporal difference (TD) learning

[18] to approximate its expected cost (as shown in Line 16 of Algorithm II-1),

based on its expected immediate cost, the value of its child system state node in

the state-action tree, and the approximated cost obtained via the LR method

(c.f. Lines 8 to 11 in Algorithm II-1). Compared to the method that calculates
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the expected cost as the summation of the expected immediate cost and the

value of the child system state node, the above method can exploit the historical

value function approximation results obtained via the LR to achieve higher

approximation accuracy.

2.4.2 Computational Complexity

Denote K as the total number of channel state samples to calculate the expected im-

mediate cost of each action and CPER as the complexity of calculating the PER. The

computational complexity of the expected immediate cost is Ccur = O(KCPER). The

computational complexity to sample the triplet in Algorithm II-2 in the worst case,

namely, every action indicating packet transmissions, is C2 = O(Cest + CPER) where

Cest is the computational complexity for the channel model estimation. The com-

plexity of Algorithm II-1 in the worst case is C1 = O(|A|ND−1
a CD

cur + |A|ND−1
a NoC2).

Hence, the total complexity of the algorithm in the worst case is O(C1 + Cest).
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2.5 Recursive Estimation of Unknown Channel

Model Parameters

To facilitate online implementation, we will develop a low-complexity recursive al-

gorithm to estimate the parameter set Θ and the channel state vector based on

the sequentially obtained observations {zch,ℓ}. For notation convenience, we denote

zℓ2ch,ℓ1 := {zch,ℓ1, · · · , zch,ℓ2} and sℓ2ch,ℓ1 := {sch,ℓ1, · · · , sch,ℓ2}.

At time epoch ℓ, the unknown parameters can be estimated by maximizing

the log-likelihood function with respect to the complete data set Lℓ(Θ) :=

ln f(zℓch,0, sch,−1, sℓch,0|Θ). However, the channel state process {sch,ℓ′} is not observ-

able. Instead, the expectation-maximization (EM) algorithm [51] can be used, which

estimates the unknown parameters iteratively through an expectation step and a

maximization step. Given a parameter set estimation Θ̂, in the expectation step, the

expectation of the log-likelihood function can be approximated as

E

[

Lℓ(Θ)|Θ̂
]

=

∫
[

ln f(zℓch,0, sch,−1, s
ℓ
ch,0|Θ)

]

f
(

sℓch,−1|zℓch,0, Θ̂
)

dsℓch,−1. (2.14)

The parameter set estimation can be updated in the maximization step as Θ̂
new

=

arg max E
[

Lℓ(Θ)|Θ̂
]

.
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The algorithm, however, requires processing within each iteration the data in the

current and all the past epochs, hence is not amenable to online implementation.

We next introduce several approximations, and then develop an EM-type and low-

complexity recursive algorithm that estimates the parameter set Θ in each epoch

iteratively based on the new observation vector and the parameter estimation in the

last epoch. We denote Θ̂ℓ′ as the estimation at epoch ℓ′.

2.5.1 Approximation for Recursive Operation

Consider that

ln f(zℓch,0, s
ℓ
ch,−1|Θ) = ln f(zch,ℓ, sch,ℓ|sch,ℓ−1,Θ) + ln f(zℓ−1

ch,0, s
ℓ−1
ch,−1|Θ). (2.15)

The expectation in (2.14) can be decomposed as

E
[

Lℓ(Θ)|Θ̂
]

=

∫

[ln f(sch,−1|Θ)]f(sch,−1|zℓch,0, Θ̂)dsch,−1

+
ℓ
∑

ℓ′=0

∫

[ln f(sch,ℓ′, zch,ℓ′|sch,ℓ′−1,Θ)]

× f
(

sch,ℓ′, sch,ℓ′−1|zℓch,0, Θ̂
)

dsch,ℓ′dsch,ℓ′−1. (2.16)
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It can be approximated in two steps,

E
[

Lℓ(Θ)|Θ̂
]

≈
∫

[ln f(sch,−1|Θ)]f(sch,−1|zℓch,0, Θ̂)dsch,−1

+
ℓ
∑

ℓ′=0

∫

[ln f(sch,ℓ′, zch,ℓ′|sch,ℓ′−1,Θ)]

× f(sch,ℓ′, sch,ℓ′−1|zℓ
′

ch,0, Θ̂)
︸ ︷︷ ︸

≈f(sch,ℓ′ ,sch,ℓ′−1|z
ℓ
ch,0,

ˆΘ) in Eq. (2.16)

dsch,ℓ′dsch,ℓ′−1, (2.17a)

≈
∫

[ln f(sch,−1|Θ)]f
(

sch,−1|zℓch,0, Θ̂−1

)

dsch,−1

+
ℓ−1
∑

ℓ′=0

∫

[ln f(sch,ℓ′, zch,ℓ′|sch,ℓ′−1,Θ)]

× f(sch,ℓ′, sch,ℓ′−1|zℓ
′

ch,0, Θ̂ℓ′)
︸ ︷︷ ︸

≈f(sch,ℓ′ ,sch,ℓ′−1|z
ℓ′
ch,0,

ˆΘ) in Eq. (2.17a)

dsch,ℓ′dsch,ℓ′−1

+

∫

[ln f(sch,ℓ, zch,ℓ|sch,ℓ−1,Θ)]

× f(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂)dsch,ℓdsch,ℓ−1, (2.17b)

where the expectation of ln f(sch,ℓ′, zch,ℓ′|sch,ℓ′−1,Θ) in (2.17a) is performed with re-

spect to f(sch,ℓ′, sch,ℓ′−1|zℓ
′

ch,0, Θ̂) instead of f(sch,ℓ′, sch,ℓ′−1|zℓch,0, Θ̂), and in (2.17b),

the expectation of [ln f(sch,ℓ′, zch,ℓ′|sch,ℓ′−1,Θ)] can be computed at epoch ℓ′ based on

f(sch,ℓ′, sch,ℓ′−1|zℓ
′

ch,0, Θ̂ℓ′). The above approximations enable recursive computation of

the summation on the right side of (2.17b).

One more approximation is made for recursive computation of the PDF
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f(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂). Note that

f(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂) =
1

c0
f(zch,ℓ|sch,ℓ, Θ̂)f(sch,ℓ|sch,ℓ−1, Θ̂)f(sch,ℓ−1|zℓ−1

ch,0, Θ̂) (2.18)

where c0 is a normalization constant. We approximate the joint PDF by

f̃(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂) :=
1

c′0
f(zch,ℓ|sch,ℓ, Θ̂)f(sch,ℓ|sch,ℓ−1, Θ̂)f̃(sch,ℓ−1|Θ̂ℓ−1), (2.19)

through replacing f(sch,ℓ−1|zℓ−1
ch,0, Θ̂) by f̃(sch,ℓ−1|Θ̂ℓ−1) in (2.18), wheref̃ (sch,ℓ′|Θ̂ℓ′) is

defined as the marginalization of f̃(sch,ℓ′, sch,ℓ′−1|zℓ
′

ch,0, Θ̂ℓ′) with respect to sch,ℓ′, and

c′0 is a normalization constant.

Finally, based on (2.17b) and (2.19), the expectation E
[

Lℓ(Θ)|Θ̂
]

is approximated

by Qℓ(Θ|Θ̂) which is recursively defined as

Qℓ(Θ|Θ̂)=γchQℓ−1(Θ|Θ̂ℓ−1)+
∫

[ln f(sch,ℓ, zch,ℓ|sch,ℓ−1,Θ)] f̃(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂)dsch,ℓdsch,ℓ−1, (2.20)

where γch ∈ (0, 1] is a forgetting factor that accounts for the temporal variation of

unknown parameters. Based on (2.20), the expectation and maximization operations

in the EM algorithm can be applied for recursive and iterative parameter estimation

and channel tracking, as described in the next subsection.

37



2.5.2 Recursive Model and Channel State Estimation

Denote Θ̂
(i)

ℓ = {Â(i)
ℓ , Ĉ(i)

w,ℓ, Ĉ
(i)
v,ℓ} as the estimation of the unknown parameters in the

ith iteration at epoch ℓ. The parameter estimation can be updated via maximiz-

ing Qℓ(Θ|Θ̂
(i)

ℓ ). Note that f(zch,ℓ, sch,ℓ|sch,ℓ−1,Θ) = f(zch,ℓ|sch,ℓ,Θ)f(sch,ℓ|sch,ℓ−1,Θ).

Substitute

f(zch,ℓ|sch,ℓ,Θ) ∼ N (sch,ℓ,Cw),

f(sch,ℓ|sch,ℓ−1,Θ) ∼ N (Asch,ℓ−1,Cv)

into the log-likelihood function in (2.20). Set the partial derivative of Qℓ(Θ|Θ̂(i)

ℓ )

with respect to each unknown parameter to zero. A set of recursive equations can be

obtained,

Â
(i+1)
ℓ = Âℓ−1 +

(

E[sch,ℓs
T
ch,ℓ−1]− Âℓ−1E[sch,ℓ−1s

T
ch,ℓ−1]

)

M−1
ℓ−1, (2.21a)

Ĉ
(i+1)
w,ℓ =Ĉw,ℓ−1+

1−γch
1−γℓ

ch

×
{

E

[

(sch,ℓ−Â(i+1)
ℓ sch,ℓ−1)(sch,ℓ−Â(i+1)

ℓ sch,ℓ−1)
T
]

−Ĉw,ℓ−1

}

, (2.21b)

Ĉ
(i+1)
v,ℓ = Ĉv,ℓ−1 +

1− γch
1− γℓ+1

ch

{

E
[

(zch,ℓ − sch,ℓ)(zch,ℓ − sch,ℓ)
T
]

− Ĉv,ℓ−1

}

, (2.21c)
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where an auxiliary matrix is defined as

Mℓ−1 := γchMℓ−2 + E[sch,ℓ−1s
T
ch,ℓ−1], (2.22)

and the expectations are performed with respect to f̃(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂
(i)

ℓ ).

The expectations in (2.21) and (2.22) can be computed via performing marginalization

of f̃(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂
(i)

ℓ ) (c.f. (2.19)). For convenience, denote f̃(sch,ℓ−1|Θ̂ℓ−1) ∼

N (µℓ−1,Cℓ−1). It can be shown that [51]

E[sch,ℓ|Θ̂
(i)

ℓ ] = µ
(i)
ℓ = Â

(i)
ℓ µℓ−1 +K

(i)
ℓ (zch − Â

(i)
ℓ µℓ−1) (2.23a)

E[sch,ℓ−1|Θ̂
(i)

ℓ ] = µ̆
(i)
ℓ−1 = µℓ−1 + J

(i)
ℓ−1(µ

(i)
ℓ − Â

(i)
ℓ µℓ−1) (2.23b)

E[sch,ℓs
T
ch,ℓ|Θ̂

(i)

ℓ ] = C
(i)
ℓ + µ

(i)
ℓ µ

(i),T
ℓ (2.23c)

E[sch,ℓ−1s
T
ch,ℓ−1|Θ̂

(i)

ℓ ] = C̆
(i)
ℓ−1 + µ̆

(i)
ℓ−1µ̆

(i),T
ℓ−1 (2.23d)

E[sch,ℓs
T
ch,ℓ−1|Θ̂

(i)

ℓ ] = C
(i)
ℓ J

(i),T
ℓ−1 + µ

(i)
ℓ µ̆

(i),T
ℓ−1 (2.23e)

where K
(i)
ℓ = P

(i)
ℓ

(

Ĉ
(i)
v + P

(i)
ℓ

)−1
with P

(i)
ℓ = Â

(i)
ℓ Cℓ−1Â

(i),T
ℓ + Ĉ

(i)
w , J

(i)
ℓ−1 =

Cℓ−1Â
(i),T
ℓ

(

P
(i)
ℓ

)−1
, C(i)

ℓ = (I−K
(i)
ℓ )P(i)

ℓ , and C̆
(i)
ℓ−1 = Cℓ−1 + J

(i)
ℓ−1(C

(i)
ℓ −P

(i)
ℓ )J(i),T

ℓ−1 .

In summary, when zch,ℓ is available at the end of epoch ℓ, the iterative model param-

eter estimation can be initialized as Θ̂
(0)

ℓ = Θ̂ℓ−1. The expectation and maximization

operations are performed iteratively based on (2.23) and (2.21). Consider that the
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operation terminates after a pre-determined number of iterations, denoted by Niter.

We set Θ̂ℓ = Θ̂
(Niter)

ℓ and f̃(sch,ℓ|Θ̂ℓ) ≃ N (µℓ,Cℓ) with µℓ = µ
(Niter)
ℓ and Cℓ = C

(Niter)
ℓ ,

which will be used for the operation in the next epoch. If no transmission is scheduled

in epoch ℓ, namely, zch,ℓ is an empty set, no model parameter estimation is needed.

One can set Θ̂ℓ = Θ̂ℓ−1, µℓ = Âℓ−1µℓ−1 and Cℓ = Âℓ−1Cℓ−1Â
T
ℓ−1 + Ĉw,ℓ−1. In both

cases, the a posteriori PDF f̃(sch,ℓ|Θ̂ℓ) and the conditional PDF f̃(sch,ℓ+1|sch,ℓ, Θ̂ℓ)

can be used to compute the belief state b(sch,ℓ+1) according to (2.10) or (2.12).

Remark 2: The proposed algorithm does not guarantee that the Nakagami-fading

parameter m ≥ 1/2. In the Monte Carlo sampling method for online approximation,

we only draw samples of m which are greater than 1/2 based on the channel belief

state.

2.6 Algorithm Evaluation

The proposed algorithm is evaluated using data sets collected from two experiments:

one is the Surface Processes and Acoustic Communications Experiment (SPACE08),

and the other is an experiment conducted in the Keweenaw Waterway near Michigan

Tech in Nov. 2014 (KW-NOV14).
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Figure 2.3: Estimated parameters {µ,σ,m} in two experiments. In KW-NOV14, the
estimated σ’s are on the order of 10−3.

2.6.1 Experiment Description

The SPACE08 experiment was conducted near the coast of Martha’s Vineyard, MA,

from Oct. 14 to Nov. 1, 2008. We consider the data collected by a receiver which is

200 meters away from the transmitter, from Julian date 287 to Julian date 302. Due

to the appearance of severe weather conditions during the experiment, some of the

data files were damaged hence are excluded for algorithm evaluation. A waveform of
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10 seconds was transmitted every two hours from the source to the receiver, leading

to 12 transmissions per day. The waveform consists of 60 signaling blocks within the

frequency band [8, 18] kHz, and each block has 672 symbols. In this work, we take

each transmission as one epoch and take each signaling block as one packet. There

are 117 epochs in total. The channel distribution parameters µ, σ and m within

each epoch are estimated via the method of moments [44] based on the received SNR

samples obtained within that epoch. The evolution of the distribution parameters is

shown in Fig. 2.3.

The KW-NOV14 experiment was held in the Keweenaw Waterway adjacent to Michi-

gan Tech from Nov. 22 to Nov. 28, 2014 when the water surface was covered by a

thin layer of ice. The distance between the transmitter and the receiver is 312 m. A

waveform of about 9 seconds was transmitted every 15 minutes. The waveform con-

sists of 20 signaling blocks within the frequency band [14, 20] kHz, and each block

has 672 symbols. Similar to SPACE08, we take each transmission as one epoch and

take each signaling block as one packet. A total of 117 epochs are used for algorithm

evaluation. Artificial Gaussian noise is added to the received signal in KW-NOV14

such that the two experiments have similar average channel losses over all the epochs.

Evolution of the KW-NOV14 channel distribution parameters is shown in Fig. 2.3.

Comparing the channels in the two experiments, one can see that the channel in

SPACE08 varies faster than that in KW-NOV14 due to a larger time interval between
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Table 2.1

Transmission Modes.

Mode Index Coding rate Modulation TSNR
1 N/A N/A 0
2 1/2 BPSK 76 dB
3 1/2 BPSK 79 dB
4 1/2 QPSK 79 dB
5 1/2 BPSK 82 dB
6 1/2 QPSK 82 dB
7 3/4 QPSK 85 dB
8 3/4 QPSK 88 dB

two consecutive transmissions. Especially about KW-NOV14, the mean of the channel

lognormal shadowing per epoch (µ) is quite stable from epoch 30 to 75, and the values

of σ on the order of 10−3 reveals very slow variation.

2.6.2 Emulation Setup and Performance Metric

We consider 8 transmission modes as listed in Table 2.1. Mode 1 refers to no trans-

mission. There are five non-zero discrete transmission power levels according to the

listed transmission SNRs (TSNRs) (Ptx/N0). We set the ambient noise level using an

empirical formula N0 [dB] = 55 + 10 log10(bandwidth) re 1µPa2 [52], which leads to

94.9 dB for SPACE08 and 92.8 dB for KW-NOV14. For a given transmission mode

and a channel parameter triplet {µ, σ, m}, the PER is computed using an information-

theoretic method [46, Eq. (4)].
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We define the cost function as

C(sℓ, aℓ)= log2 (1+Pℓ/Pmax) +
(

qℓ−rℓNs,ℓ

)

/rmax, (2.24)

where Pℓ is the transmission power in the ℓth epoch in Watts, Pmax is the maximal

transmission power in Watts, and rmax is the maximal amount of information bits

that can be carried during one epoch. According to Table 2.1, rmax can be computed

based on the mode with the highest data rate, namely, Mode 8, as rmax = 672× 3
4 ×

log2 4 × Npa, where 672 is the number of symbols per packet, and Npa is the total

number of packets within one epoch.

The average observed cost is used as the performance metric,

C̄ =
1

Nepoch

Nepoch
∑

ℓ=1

C(sℓ, aℓ), (2.25)

where Nepoch is the total number of epochs in the algorithm evaluation.

To establish a performance upper bound, we consider a genie-aided transmission

scheme with non-causal and perfect knowledge. It assumes that at the beginning

of each epoch, the transmitter knows the number of successfully delivered packets

corresponding to each transmission action in the current and all the future epochs.

With the above knowledge, the system state only consists of the queue state. The
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optimal action selection can be formulated as a dynamic programming (DP) problem,

V ∗
Genie(qℓ) = min

a∈A
[C(qℓ, a) + γV ∗

Genie(qℓ+1)] , (2.26)

where C(qℓ, a) is defined as in (2.24), and qℓ+1 and qℓ are related as in (2.4) with

perfect knowledge of Ns,ℓ for a given a. The optimization problem (2.26) is essen-

tially a deterministic DP problem. However, the DP solver cannot be applied to

(2.26) directly due to the curse of dimensionality [18] induced by the large total num-

ber of epochs and a large queue state space. To obtain a near-optimal solution, we

modify Algorithm II-1 to approximate the value function in (2.26). Specifically, to

approximate the expected cost induced by one action (c.f. Lines 8 to 11 in Algo-

rithm II-1), the process of drawing system state samples is replaced by using the true

system state directly. Correspondingly, the TD learning is performed based on the

true system state instead of a system state sample in the next epoch (c.f. Line 16 in

Algorithm II-1).

2.6.3 General Results

We set the data arrival rate rg = 20 kilobits per epoch for SPACE08 and rg = 6

kilobits per epoch for KW-NOV14. For an epoch with a small queue length, if the

number of encoded data packets according to a chosen transmission mode is less than
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Figure 2.4: The performance of fixed-mode transmissions. The number next to each mode
is the average cost calculated based on the cost function in (2.24).

the number of time slots within that epoch (see Fig. 2.1), the remaining time slots

will be used to transmit dummy packets at a very low power level (with TSNR = 70

dB) for the purpose of channel probing. The average packet transmission power will

be used to calculate the cost defined in (2.24).

To shed light on the tradeoff between energy consumption and information delivery

latency, Fig. 2.4 depicts the performance of fixed-mode transmissions in both exper-

iments. According to the cost function defined in (2.24), Mode 8 achieves the least

average cost in both experiments.

We compare in details the performance of five schemes for the transmission action
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selection.

Scheme 1: The genie-aided transmission scheme;

Scheme 2: The proposed online algorithm;

Scheme 3: Randomly select a transmission action from the action space in each

epoch;

Scheme 4: Select the action with the least transmission power and rate, namely,

Mode 2, in all epochs;

Scheme 5: Select the action with the highest transmission power and rate,

namely, Mode 8, in all epochs.

In the proposed algorithm, the number of the child system nodes for each action No,

the number of the actions to be explored Na, and the planning depth D are set to

be 3, 3, and 5, respectively. We set the discount factor γ = 0.8 in both the genie-

aided scheme and the proposed algorithm. The unknown channel model parameters

in the first epoch Θ̂0 are initialized as Â0 = Ĉw,0 = Ĉv,0 = diag([1, 1, 1]). We set

the forgetting factor γch = 0.8 and the number of iterations Niter = 20. The learning

rates for the TD learning and the LR, i.e., α and β, are set to be 0.01 and 0.01,

respectively. The regularization parameter λ is set to be 1. The initial values of all

the elements in φ are set as 0. The number of channel state samples to calculate the

expected immediate cost is set to be 100.
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Table 2.2

Average Performance using the SPACE08 Data Set.

Scheme Index 1 2 3 4 5
Average Queue Length [kb] 10.9 13.1 254.8 949.6 7.1

Average Transmission Power [dB] 76.2 81.1 81.3 76.0 84.4
Average Cost 0.47 0.58 4.48 15.79 0.65

2.6.3.1 SPACE08

The performance of different schemes is shown in Table 2.2. It can be seen that

the proposed algorithm has the least performance gap with the genie-aid method.

Schemes 3 and 4 suffer from very large average queue lengths. Compared to the

proposed algorithm, Scheme 5 has a smaller average queue length but requires more

average transmission power.

The immediate costs per epoch of different schemes are shown in Fig. 2.5. One can

see that the immediate cost of the proposed algorithm is close to that of the genie-

aided method. With the immediate costs fluctuating with the mean of the channel

lognormal shadowing, the proposed algorithm and the genie-aided method are able

to maintain low costs when the average channel loss is small (i.e., when µ is large).

When the average channel loss is large, the proposed algorithm still can maintain

relatively low immediate costs. The immediate costs of Schemes 3 and 4 increase

drastically due to the random selection of transmission actions in Scheme 3 and the

adoption of the least transmission power and data rate in Scheme 4. Scheme 5 has
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Figure 2.6: SPACE08: The mean of the channel lognormal shadowing and selected actions
in different schemes.

larger immediate costs than the proposed algorithm and the genie-aided method in

most epochs, due to its adoption of the largest transmission power.

The actions selected by different schemes are shown in Fig. 2.6. The proposed algo-

rithm and the genie-aided method prefer in most epochs the transmission action with
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Figure 2.7: SPACE08: Comparison between the mean (µ̄, σ̄, m̄) of the estimated channel
belief state and the true channel state (µ,σ,m), and the NRMSE.

a moderate transmission power level and a moderate data rate, i.e., 1/2 QPSK and

79 dB. In the epochs with large channel losses, the proposed algorithm opts for the

transmission actions with larger transmission power levels to suppress the increase of

the data queue length.

The channel state vector estimation and the normalized root mean squared error

(NRMSE) of the estimation are depicted in Fig. 2.7. The results reveal that the

proposed channel model can capture the channel dynamics reasonably well, and the
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Table 2.3

Average Performance using the KW-NOV14 Data Set.

Scheme Index 1 2 3 4 5
Average Queue Length [kilobits] 4.9 11.4 31.3 25.1 7.0
Average Transmission Power [dB] 74.4 75.6 80.8 76.0 84.3

Average Cost 0.40 0.76 1.81 12.52 0.89

NRMSE less than 0.1 in each epoch shows the superior performance of the proposed

recursive estimation algorithm.

2.6.3.2 KW-NOV14

The performance of different schemes is shown in Table 2.3. It can be seen that

the proposed algorithm has the least performance gap with the genie-aid method.

Schemes 3 and 4 suffer from large average queue lengths. Although Scheme 5 has a

small average queue length, it requires the most average transmission power among

all schemes.

The immediate costs and actions of different schemes are shown in Figs. 2.8 and 2.9,

respectively. The immediate cost of Scheme 4 grows drastically due to its adoption of

the least transmission power and data rate. Schemes 3 and 5 have larger immediate

costs than the proposed algorithm and the genie-aided method in most epochs. The

immediate cost of the proposed algorithm is close to that of the genie-aided method. A

large performance gap between the proposed algorithm and the genie-aided method

can be observed during epochs 8 to 32. Due to large channel dynamics and large
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channel losses in those epochs, the immediate cost of the proposed algorithm grows

greater than that of the genie-aided method which can adapt the transmission mode

more precisely. A little lag around epoch 30 can be observed between the changes of

the immediate costs of those two schemes. During epochs 32 to 85, the immediate
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Figure 2.10: KW-NOV14: Comparison between the mean (µ̄, σ̄, m̄) of the estimated
channel belief state and the true channel state (µ,σ,m), and the NRMSE.

costs obtained by the proposed algorithm and the genie-aided method are almost

identical, as the transmitter in the proposed algorithm has learned adequate channel

knowledge. Both schemes prefer the transmission action with a moderate transmission

power level and a moderate data rate, i.e., 79 dB and 1/2 QPSK.

The channel state vector estimation and the NRMSE of the estimation are depicted

in Fig. 2.10. Similar to the case in SPACE08, the difference between the mean values
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of the channel belief state and the true channel states is small and the NRMSE is

less than 0.1 in every epoch. The results validate the effectiveness of the proposed

recursive estimation algorithm.

2.6.4 Performance of the Proposed Algorithm with Different

System Setups

The performance of the proposed algorithm is examined in different system setups,

including different data arrival rates from the application layer, different numbers of

child system state samples in online approximation, different numbers of actions to be

explored, and different depths of the state-action tree, in the Monte Carlo planning.

To quantify the performance of the proposed algorithm in different setups, we take the

performance of the genie-aided scheme as a benchmark, and evaluate the normalized

difference which is defined as
(

C̄− C̄Genie

)

/C̄Genie, where C̄ is the average cost defined

in (2.25). For comparison purpose, C̄Genie is obtained based on No = 3, Na = 3, and

D = 5.
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Figure 2.11: Normalized difference with respect to the genie-aided method with different
data arrival rates with No = 3, Na = 3, and D = 5.

2.6.4.1 Performance with Different Data Arrival Rates

The data arrival rate will impact the performance of the proposed algorithm. As the

data arrival rate increases, both the proposed algorithm and the genie-aided method

prefer the transmission modes with high data rates to suppress the increase of the

data queue length. Without precise channel knowledge, there are high chances that

the proposed algorithm could schedule high-data-rate transmissions in epochs with

bad channel conditions. Consequently, the proposed algorithm suffers an increased

performance gap with the genie-aided method that determines the transmission ac-

tions based on non-causal and perfect knowledge. Fig. 2.11 shows the normalized
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Figure 2.12: Normalized difference with respect to the genie-aided method with different
Monte Carlo planning parameters. rg = 20 kb/epoch in SPACE08, and rg = 6 kb/epoch in
KW-NOV14.

performance difference of the proposed algorithm w.r.t. the genie-aided method with

different data arrival rates. It can be seen that as the data arrival rate increases from

a small value to a moderately large value, the normalized difference increases. How-

ever, with further increase of the data arrival rate, the normalized difference starts

decreasing. This is caused by the large value of the average cost C̄Genie that increases

monotonically with the data arrival rate.
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2.6.4.2 Performance with Different Numbers of Child System State Sam-

ples and Actions To Be Explored in Online Approximation

The normalized performance difference of the proposed algorithm w.r.t. the genie-

aided method with different numbers of child system state samples and different

numbers of actions to be explored in online approximation are shown in Fig. 2.12(a)

and Fig. 2.12(b), respectively. The performance improvement is minor with the in-

crease of the numbers of child system state samples and actions to be explored. This

indicates that with a small number of child system state samples and a small number

of actions to be explored, the proposed algorithm can achieve good online approxi-

mation performance with a low computational complexity.

2.6.4.3 Performance with Different Depths of Monte Carlo Planning

The depth of Monte Carlo planning is a key factor in the tradeoff between the approx-

imation accuracy and the computational complexity; see Section 2.4.2. Fig. 2.12(c)

shows the normalized performance difference of the proposed algorithm w.r.t. the

genie-aided method with different planning depths. It can be seen that considerable

performance improvement is achieved when the depth of planning is increased from

1 to 2 in SPACE08 and from 1 to 3 in KW-NOV14. Further increase of the planning

depth in both experiments leads to slight performance improvement, which, however,
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is accompanied with exponentially increased computational cost. The results demon-

strate that the proposed algorithm achieves decent performance with a small depth

of planning since it stores and exploits the historical knowledge of the value function

via the TD learning and the LR when evaluating the future expected costs.

2.7 Summary

This chapter focused on an UWA point-to-point transmission system which operates

on an epoch-by-epoch basis over a long term, and developed an adaptive transmis-

sion algorithm which exploits the UWA channel dynamics to trade off energy con-

sumption with information delivery latency. To describe both the short-term fading

and the large-scale shadowing of UWA channels, the Nakagami-lognormal distribu-

tion was adopted for channel characterization. To account for the channel variation

across epochs, the evolution of the channel distribution parameters was modeled as

a Markov process with unknown parameters. Given that the channel can only be ob-

served during active transmissions, we formulated the adaptive transmission problem

as a POMDP to strike an optimal tradeoff between learning the channel dynam-

ics via active transmissions and exploiting the learned channel knowledge for trans-

mission efficiency. An algorithm in the model-based RL framework was developed,

which recursively estimates the channel model parameters and computes the optimal

transmission strategy that minimizes a long-term system cost. Thorough algorithm
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evaluation was performed using channel measurements from two field experiments.

The emulated results revealed that the proposed algorithm achieves decent perfor-

mance relative to a benchmark method that assumes perfect and non-causal channel

knowledge.
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Chapter 3

Reinforcement Learning-based

Adaptive Trajectory Planning for

AUVs in Under-ice Environments1

1The work in this chapter was accepted by the “2018 MTS/IEEE Oceans Conference”.
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3.1 Introduction

The reconstruction of water parameter fields of interest such as water temperature and

underwater acoustic field has drawn considerable attention in recent years [53, 54, 55].

To provide an accurate field reconstruction with stationary sensor networks, a large

number of sensors at different locations are required. Besides, the deployment cost

and the maintenance effort of stationary sensors are even higher in the under-ice envi-

ronment as demanding activities involved in under-ice water exploration [56, 57, 58].

Autonomous underwater vehicles (AUVs) can detect and track the water parameter

field of interest in a more flexible way since they can sense the field through either pre-

determined or adaptively determined trajectories. In addition, thanks to the spatial

correlation of the underwater parameter field [59], it is not necessary to traverse all

the area of interest to reduce the uncertainty of the field to a certain level. Instead,

by visiting a subset of the area, an accurate field reconstruction can be achieved.

However, the knowledge of field spatial correlation is often unavailable, especially in

under-ice environments. In this chapter, we develop an online learning-based tra-

jectory planning mechanism which adaptively determines the sampling locations of

multiple AUVs to reduce the field uncertainty as more as possible without any field

knowledge of the spatial correlation.
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3.1.1 Existing Studies in Terrestrial Robotic Networks

The adaptive trajectory planning has been extensively studied in terrestrial robotic

networks. Many works determine trajectories greedily to optimize some performance

metrics such as field estimation error reduction and information entropy at each time

step. For one robot, [60] studies trajectory planning to explore the maxima of the

field of interest. The field is modeled as a Gaussian process (GP) where the mean

function includes the information of the field maxima while the variance indicates

the uncertainty of the field. The Bayesian optimization (BO) is leveraged which

adaptively determines the optimal trajectory of a robot in each time step to strike a

balance on tracking the field maxima and exploring the field with high uncertainty.

In [61], trajectory planning to monitor physical phenomenon for multiple AUVs is

investigated. The field is modeled as a GP and the variances at different locations

can be updated through the Gaussian process regression (GPR) based on field sam-

ples at the sampling locations. At each time step, the next sampling locations for all

the mobile sensors are determined to minimize the variances of the field over a set of

locations (which could be a grid on the field or interested areas) based on the GPR.

Both centralized and decentralized algorithms with coordination via wireless commu-

nications are presented. To monitor spatial phenomena by multiple wireless mobile

sensors, an adaptive sampling strategy is proposed in [62]. At each time slot, the

next sampling locations of all the sensors are determined to minimize the conditional
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entropy based on the previous noisy measurements. It assumes that at each time slot,

the robots could communicate to a based station via single hop or multi-hop links.

The greedily optimized trajectory planning could results in myopic performance of

the field reconstruction since it only cares about the immediate uncertainty reduction,

and it often assumes that the field knowledge of spatial correlation is known a priori.

There exist some works on non-myopic adaptive trajectory planning which consider

the long-term performance of field reconstruction. In [63], the trajectory planning

of one robot for localization and mapping is proposed where the trajectory is deter-

mined to minimize the overall uncertainty about its pose (location and heading) and

the locations of environmental landmarks. A partially observable Markov decision

process (POMDP) is formulated where the system states are the robots’ pose and the

landmarks’ locations, and the action includes the waypoints within the trajectory.

The proposed POMDP is solved by direct policy search which uses BO to adjust

the policy parameters. [64] studies adaptive trajectory planning method to observe

environments by visiting a subset of sampling locations. For one robot, it selects the

next sampling locations which maximize the expected utility related to “informative-

ness” within fixed timesteps based on the posterior belief of the field. For multiple

robots, a greedy algorithm is proposed based on the sequential allocation. However,

the objective function needs to be local-submodular to achieve the near-optimality.

As extensions to [60] where the trajectory planning is myopic, the trajectory plan-

ning problem is reformulated as sequential BO (SBO) problems which consider BO
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for future trajectories to seek non-myopic performance [65, 66]. It shows that the

proposed SBO is essentially a POMDP where the system state consists of the field

and the positions of the robots, and the action is the parameterized trajectory. It

assumes that the transition probability of the state is known and deterministic, and

a Monte Carlo tree-based method is used to solve the POMDP. The existing solu-

tions to non-myopic adaptive trajectory planning usually formulate it as an MDP

or a POMDP with discrete action spaces and one mobile robot, and the tree-based

methods are often used to solve the problem. For GP-based field modeling for tra-

jectory planning, the field hyper-parameters of the covariance function in GP which

indicates the field spatial correlation is often considered to be known a priori. For

non-myopic adaptive trajectory planning, one robot is often considered due to the

low computational complexity.

3.1.2 Existing Studies in Underwater AUV Networks

The research on adaptive trajectory planning in underwater AUV networks has been

limited. Some works first construct the uncertainty map of the interested area such as

the estimation error over the area based on historical observation data and then de-

termine trajectories of AUVs to globally maximize the uncertainty reduction. In [67],

a trajectory planning method for one AUV is proposed to inspect underwater struc-

tures. The view locations are selected to minimize the uncertainty of the structure
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surface based on known uncertainty maps. The optimization problem is solved by

a sampling-based redundant roadmap method. In [68], adaptive trajectory planning

of one AUV is studied to reduce the field uncertainty. The field spatial correlation

is first estimated based on historical data. Then, the sampling locations are selected

among pre-determined waypoints to minimize the mutual information between the

sampled and unsampled locations. In [69], trajectories of multiple AUVs are deter-

mined to maximize the line integral of the uncertainty of water field estimates subject

to constraints of primary motion, anticurling, vicinity, communications, and obstacle

avoidance. It assumes the uncertainty of field estimates is known a priori, and a

mixed integer optimization problem is formulated. It does not consider the coordi-

nation of multiple AUVs since the trajectories are determined offline. Those works

consider the prior field knowledge, however, which is difficult and time-consuming

to obtain in practice. An adaptive trajectory planning of multiple AUVs strategy

which considers coordination of wireless communications is studied in [70]. In each

time step, the sampling locations of all the AUVs are determined to minimize the

total uncertainty of the field where the field is described by a GP. A decentralized

algorithm is proposed where the Voronoi tessellation is used to distribute the opti-

mization objective among the AUVs. The non-myopic adaptive trajectory planning

of multiple AUVs for the long-term field reduction is rarely studied.
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Figure 3.1: An illustration of a system layout with 3 AUVs and 4 APs.

3.1.3 Our Work

This chapter studies the adaptive trajectory planning of multiple AUVs in the under-

ice environment for estimation of a water parameter field of interest. Particularly, we

consider a centralized system as illustrated in Fig. 3.1, where the fixed access points

(APs) on the ice layer serve as gateways for communications between the AUVs and

a remote data fusion center (FC). The AUV trajectories are determined by the FC

on a time epoch-by-epoch basis based on the samples collected in the past epochs.

In this work, the water parameter field of interest is modeled as a Gaussian process

(GP) with unknown hyper-parameters [71]. At the end of each epoch, the APs relay
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the field samples collected by the AUVs to the FC where the field hyper-parameters

are estimated via the maximum likelihood method [71], and the posterior field dis-

tribution and the field uncertainty are computed via the Gaussian process regression

(GPR) [72]. The AUV trajectories in the next epoch will then be determined based

on the current system state including the current positions of all the AUVs and the

field knowledge, with an aim of minimizing a long-term system cost that is defined

based on the field uncertainty reduction and the AUV mobility cost. The AUV tra-

jectories are expected to satisfy several practical constraints, including the kinematics

constraint, the constraint on the communication range, and the constraint of being

within the area of interest.

The adaptive trajectory planning problem is formulated as a Markov decision process

(MDP) [73] with a constrained continuous action space. A reinforcement learning

(RL)-based method is designed for online learning of the optimal action, i.e., the

trajectories of all the AUVs, which satisfies the constraints. The knowledge for de-

termining the optimal trajectories in each epoch is first obtained by transferring the

historical knowledge to determine the trajectories in the previous epoch and then is

further adjusted based on the newly collected system cost. The proposed RL-based

trajectory planning algorithm is validated using simulated 2-dimensional (2D) fields.

The simulation results show that the proposed algorithm achieves performance similar

to a benchmark method that assumes perfect knowledge of the field hyper-parameters.
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The main contributions of this work are in the following.

The developed algorithm is non-myopic and for multiple AUVs, while most

existing works on non-myopic planning consider only a single vehicle [63, 64,

65, 66].

This work performs the online learning of the field hyper-parameters, while

many existing works assume known a priori of the field knowledge [61, 68, 69,

70].

The developed algorithm considers a continuous action space, while many ex-

isting works consider either a discrete action space or a finite number of pre-

determined trajectory patterns [62, 64, 65, 66].

The rest of the chapter is organized as follows. The system model is presented in

Section 3.2. The RL-based adaptive trajectory planning algorithm is developed in

Section 3.3. Evaluation of the proposed algorithm is included in Section 3.4. Summary

is presented in Section 3.5.

3.2 System Model and Problem Formulation

In this section, we describe the system in details and build a mathematical model for

the field estimation. The trajectory planning for multiple AUVs is then formulated
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as an optimization problem under constraints.

3.2.1 System Description

The system under consideration consists of multiple AUVs, several fixed APs and

a remote FC. Denote the set of the AUVs as M = {1, 2, ..., |M|}. The AUVs are

equipped with sensors and acoustic communication devices. They take field mea-

surements at different sampling locations as navigate along their trajectories. A total

number of NAP APs are placed at fixed locations which collect data from all the AUVs

via acoustic links. The APs send the observation data and location information of all

the AUVs to a data FC via high data rate radio links where the FC performs further

data processing. An illustration of the system layout with 3 AUVs and 4 APs is

shown in Fig. 3.1. The underwater area of interest can be described by a continuous

location set Xarea ⊂ RD with D = 2 or D = 3. The field can be described as f(x),

where x ∈ Xarea represents a location in the area of interest.

The system operates on an epoch-by-epoch basis. The proposed trajectory planning

mechanism for AUVs in each epoch is described as in Fig. 3.2. The planned trajec-

tory of each AUV in the ℓth epoch consists of K waypoints in K time slots and is

determined at the end of the (ℓ− 1)th epoch, i.e., ỹi(ℓ) := [yi1(ℓ);yi2(ℓ); · · · ;yiK(ℓ)].

Each AUV takes field measurements around the waypoints, and after reaching the last
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......
epoch l

AUVs move and sense

FC receives samples via APs, 
reconstructs field, and plans trajectories

FC distributes trajectory 
information to AUVs via APs

...K time slots

Figure 3.2: Epoch structure for water parameter field reconstruction using AUVs.

waypoint in the current epoch, it transmits the observed data and the corresponding

sampling locations to the nearest AP via acoustic links in water. The APs then relay

all the information to the FC via radio links above water. The FC estimates the

field based on all the observation data, estimates the field knowledge, determines the

trajectories {ỹi(ℓ+ 1), i ∈M} for all the AUVs in the next epoch, and transmits via

APs the planned trajectories to all the AUVs. At the end of the ℓth epoch, all the

AUVs receive their planned trajectories in the next epoch.

3.2.2 Constraints on Sampling Trajectories

The planned trajectories must satisfy practical constraints. In this chapter, we con-

sider three constraints related to kinematics, the communication range, and the sens-

ing area.
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3.2.2.1 Kinematics Constraint

Due to the limited travel speed of an AUV, in each epoch, the distance between any

two consecutive waypoints for each AUV is constrained as

√

||yij(ℓ)−yi,j+1(ℓ)||2 ≤ κup, ∀i ∈M (3.1)

with 1 ≤ j ≤ K−1, and

√

||yiK(ℓ)− yi1(ℓ+ 1)||2 ≤ κup, ∀i ∈M (3.2)

where κup is the maximal distance that an AUV can travel within one time slot.

3.2.2.2 Communication Range Constraint

Since the field samples of each AUV must be sent to an AP in the last time slot in

each epoch, we must ensure that in the Kth time slot of each epoch, each AUV must

be within the communication range of at least one of the NAP APs, i.e.,

√

||yiK(ℓ)− y
(j)
AP||2 < κcomm, ∃j ∈ IAP, ∀i ∈M (3.3)
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where IAP := {1, 2, · · · , NAP} is the AP index set, y(j)
AP is the location of the jth AP,

and κcomm is the communication range that ensures error-free transmission between

an AP and an AUV.

3.2.2.3 Sensing Area Constraint

We assume that all the AUVs should stay within the area of interest, i.e.,

yij(ℓ) ∈ Xarea, ∀i ∈M, i ≥ 0, 0 ≤ j ≤ K, ℓ ≥ 0. (3.4)

3.2.3 Modeling Real Trajectories of AUVs

Denote Y(ℓ) :=
{

ỹ1(ℓ), ỹ2(ℓ), · · · , ỹ|M|(ℓ)
}

as the planned trajectories consisting of

waypoints for all the AUVs in the ℓth epoch. Due to the complex underwater envi-

ronment, the AUVs may not arrive at each planned waypoint exactly. We model the

true sampling location of the ith AUV in the kth time slot within the ℓth epoch as

xik(ℓ) = yik(ℓ) + eik(ℓ), (3.5)

where eik(ℓ) ∈ RD is a noise vector which describes the location inaccuracy, and is

assumed following a uniform distribution U(−ϵ, ϵ) [74] with ϵ ≪ κcomm and ϵ ≪ κup
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being the navigation error.

The exact sampling locations of the ith AUV in the ℓth epoch are described by

x̃i(ℓ) = [xi1(ℓ);xi2(ℓ); · · · ;xiK(ℓ)]. Denote Xsamp(ℓ) :=
{

x̃1(ℓ), x̃2(ℓ), ..., x̃|M |(ℓ)
}

as

the sampling locations of all the AUVs in the ℓth epoch, Z(ℓ) as all the sampling

location from epoch 0 to epoch ℓ, and p̃(ℓ) := [x1K(ℓ−1);x2K(ℓ−1); · · · ;x|M|K(ℓ−1)]

as the locations of all the AUVs at the beginning of the ℓth epoch.

3.2.4 Gaussian Process Regression for Field Estimation

In this work, we exploit the GPR to reconstruct the field of interest and estimate the

field knowledge of spatial correlation. We first obtain a discrete set of target points

X by discretizing the area Xarea. We intend to minimize the field uncertainty over

the target points rather than the whole area of interest to reduce the computational

complexity. The set X can be selected based on different application requirements or

to balance the field reconstruction accuracy and the computational complexity. We

assume that the total number of elements in X is NX . The field of interest is then

modeled as a GP with zero mean,

f(x) ∼ GP(0, K(x,x′)), ∀x,x′ ∈ Xarea, (3.6)
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whereK(x,x′) is the value of covariance function at locations x and x′ which describes

the spatial correlation between locations x and x′.

There are various types of covariance functions that can be employed [71]. In this

work, we consider the squared exponential covariance function,

K(x,x′) = σ2
f exp

{

−(x− x′)TΛ−2(x− x′)
}

, (3.7)

where Λ = diag([d1, · · · , dD]) with D = 2 or D = 3 being the dimension of the water

area and di being the distance scale that determines the spatial correlation of two

locations, and σ2
f is the signal variance.

In the ℓth epoch, a set of field observations can be obtained,

ψ(ℓ) = f (Xsamp(ℓ)) + n(ℓ), (3.8)

where f(Xsamp(ℓ)) are the field values at the locations in Xsamp(ℓ), and n(ℓ) is the

observation noise with each of its elements assumed following a Gaussian distribution

N (0, σ2
n).

DenoteΨ(ℓ) = {ψ(ℓ′)}ℓℓ′=0 as available field observations. DenoteC(A,B) as a matrix

whose the (i, j)th element is calculated as K(xi,xj), with xi ∈ A and xj ∈ B. The

posterior distribution of the field in the ℓth epoch over the target point set X can be
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obtained as

f(X ) ∼ N (µℓ,Σℓ), (3.9)

with µℓ = C(X ,Z(ℓ))C−1
Z Ψ(ℓ), Σℓ = C(X ,X )−C(X ,Z(ℓ))C−1

Z C(Z(ℓ),X ), and

CZ = C(Z(ℓ),Z(ℓ)) + σ2
nI, according to [71].

Based on the available observation Ψ(ℓ) at the end of the ℓth epoch, the field hyper-

parameters θhyper := {σ2
f ,Λ} can be estimated by maximizing the log marginal like-

lihood,

θ̂hyper = max
θhyper

{

−1
2
Ψ(ℓ)TC−1

Z Ψ(ℓ)− 1

2
log |CZ |

}

. (3.10)

The hyper-parameters fully characterize the field spatial correlation, which are un-

known a priori and estimated on the fly. The optimization problem (3.10) can be

solved using a quasi-Newton method, i.e., the L-BFGS-B method [75].

3.2.5 Problem Formulation for Optimal Trajectory Planning

The field uncertainty can be obtained based on the field posterior distribution which

is updated through the GPR. Specifically, we denote uℓ := diag(Σℓ−1), to describe

the uncertainty of all the target points in X based on the observations up to the

(ℓ− 1)th epoch.

Denote s(ℓ) = {p̃(ℓ),uℓ} as the system state at the beginning of the ℓth epoch.
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Denote a(ℓ) as the action in the ℓth epoch which consists of the planned waypoints

for all the AUVs in the ℓth epoch. The desired trajectories for all the AUVs in the

ℓth epoch can be determined to minimize the expected total discounted cost,

min
{a(ℓ)}∞ℓ=0

E

{
∞
∑

ℓ=0

γℓC(s(ℓ), a(ℓ))

}

, (3.11)

where γ ∈ (0, 1] is a discount factor, and C(s(ℓ), a(ℓ)) is an application-dependent

cost function. In this work, the cost function considers the field uncertainty reduction,

the AUV mobility cost based on the planned trajectories, and the constraints from

(3.1) to (3.4). Next we present the formulation of the cost function used in this work.

3.2.5.1 Cost Function

Denote the current state s = {p̃,u} and the planned trajectories as a. Denote the

next state s′ = {p̃′,u′}. The costs, reward, and penalties induced by action a under

the current state s and the next state s′ are as follows.

Uncertainty reduction reward: The sampling reward to reduce the field uncer-

tainty by performing the action a at the system state s is defined as

R(s, a) :=
αR

NX
(||u||1 − ||u′||1) , (3.12)
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where αR is a weighting factor, and ||u′||1 is the summation of all the elements in

u′ which describes the total estimation error of the field. We intend to minimize

the field uncertainty over the target set.

Trajectory cost: The mobility cost is defined as

CT(a) := αLL(a) + αAA(a), (3.13)

where L(a) is the total distance of the planned trajectories based on a, A(a) is

the total angle that the AUVs travel along the planned trajectories based on a,

and αL and αA are weighting factors. Less energy will be consumed if an AUV

travels less distance and makes less turns.

Trajectory constraint penalty: We define a penalty term for the case if the

planned trajectories do not satisfy constraints (3.3) to (3.4). The penalty is

defined as

CP(a) := αp1I1 + αp2I2, (3.14)

where αp1 and αp2 are positive values, and I1 and I2 are indication functions

for constraints (3.3) and (3.4), respectively, which equal 1 if the constraints are

not satisfied and 0 otherwise.
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Hence, the cost function in (3.11) used in this work can be described as

C(s, a) = −R(s, a) + CT(a) + CP(a). (3.15)

3.3 Reinforcement Learning-based Adaptive Tra-

jectory Planning

The proposed optimization problem (3.11) is essentially an MDP if the field hyper-

parameters are known a priori. It has a continuous action space and a continuous

state space, which generally is difficult to solve. In this work, we adopt one type of RL

mechanism, i.e., the actor-critic method to solve the proposed MDP. Classic RL algo-

rithms can be categorized into two types. One type is the actor-based method where

an actor is trained to generate optimal actions while the other type is the critic-based

method where a critic is trained to evaluate actions. The actor-critic method combines

the two classic types of RL methods which can achieve higher learning performance.

Specifically, in actor-critic-based algorithms, the actor is trained to generate the op-

timal actions while the critic is trained to provide action evaluation which helps the

actor to improve its action generation strategy. Among various actor-critic-based al-

gorithms, we employed the deep deterministic policy gradient (DDPG) algorithm [76]

which deals with continuous action spaces and has high learning efficiency.
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3.3.1 DDPG Basics and Design

In the DDPG algorithm, an actor is represented by a neural network which takes the

system state s as the input and takes the optimal action a under the system state

s as the output. A critic is also represented by a neural network which takes the

system state s and the action a as the inputs and takes a Q-value function Q(s, a)

as the outputs. The Q-value Q(s, a) indicates the expected cost after taking the a

under the system state s. In the learning process, the actor network is leveraged to

provide the action a to be executed under the state s. After performing the action

a, the corresponding cost C(s, a) can be obtained. Based on the obtained cost, the

weights of the critic network are adjusted to better approximate the Q-value function

Q(s, a). Then, the weights of the actor are adjusted using the policy gradient method

such that the action obtained by the actor could result in lower expected cost, i.e.,

lower output of the critic network which takes the output of the actor network as the

input. For more details about the DDPG method, please refer to [76].

A critical issue of the DDPG method is how to design the actor and critic neural

networks. The structural design of the actor and the critic is presented as follows. For

the actor, as illustrated in Fig. 3.3, the uncertainty map and the current locations of

all the AUVs go through two fully connected layers with rectified linear units (ReLU)

as the activation functions. The output layer takes the summation of the outputs of
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Figure 3.3: An example of the forward structure of actor network.
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Figure 3.4: An example of the forward structure of critic network.

the second fully connected layer and uses the tanh activation function to bound the

elements of the action to be within [−1, 1]. For the critic, as shown in Fig. 3.4, the

uncertainty map, and the current locations and actions of all the AUVs go through two

fully connected layers with rectified linear units (ReLU) as the activation functions.

The output layer of the critic is just the summation of the outputs of the second

fully connected layer. Considering the online application in this work, the structural

design of the actor and critic networks should achieve learning efficiency to balance

the system performance and the computational complexity.

In each training iteration, the parameters of the actor and the critic networks are

updated based on one iteration of the backpropagation algorithm [51].
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3.3.2 Training for Actions Under Constraints (3.1) to (3.4)

For the kinematics constraints (3.1) and (3.2), the tanh activation function is first

exploited in the output layer of the actor as mentioned in the subsection above. In

this way, the output of the actor is constrained to be from −1 to 1. Furthermore, the

outputs of the actor network is multiplied by κup/
√
2 such that the distance that an

AUV travels in each time slot is guaranteed to be not greater than κup, considering

that the action for each AUV in each time slot describes the moving distance along

each dimension of the area.

For the constraints (3.3) to (3.4), we first briefly introduce a technique called expe-

rience replay used in the DDPG algorithm [76]. Experience replay is a technique to

train the agent with transition samples drawn from a buffer which consists of his-

torical transitions from the previous training experience. Denote the replay buffer

as B. Denote a quadruple as (s, a, s′, c) which consists of the current state s, the

action performed under the state s, the next state s′ by performing a based on s,

the cost c collected by performing a based on s. The quadruple describes the system

transition from one epoch to the next epoch. In each epoch, the transition is stored

into the buffer B. In each training iteration, the parameters in the actor and critic

networks are adjusted by a mini-batch of samples of transitions which are randomly
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taken from B. By mini-batch samples, the neural networks can be trained more ef-

ficiently compared to the case with one sample per learning iteration. By training

based on samples from the relay buffer rather than samples obtained sequentially,

the correlation of training samples can be removed, which improves the convergence

performance of the neural networks.

To better learning the actions which satisfy the constraints (3.3) to (3.4), we propose a

modified DDPG algorithm where two replay buffers are exploited for training. Denote

B1 and B2 as two buffers where one consists of transitions whose actions satisfy the

constraints (3.3) and (3.4) and the other one consists of transitions whose actions do

not satisfy the constraints (3.3) and (3.4). In the training process, it is found that

most of the transition samples are from B1, which makes it difficult for the actor and

the critic to learn from ”bad” samples in B2. To learn the optimal actions which

satisfy the constraints, we should ensure that the actor and the critic learn equally

sufficient samples from B1 and B2 in the training process. In this way, the actor will

generate actions which have less cost and satisfy the constraints (3.3) to (3.4) while

the critic could evaluate the actions and states without a bias.

Denote the actor network as µ and the critic network as Q. The modified algorithm

to obtain the optimal trajectories for all the epochs under the known field hyper-

parameters is described in Algorithm III-1. In the training process, one training

episode refers to a process which begins from the initial state when all the AUVs are
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at their initial positions (the first epoch) and ends at the final state when the whole

sampling task is completed (the last epoch). In each epoch, an action a is randomly

adjusted based on the output of the actor with an exploration noise. The purpose of

the random action adjust is to introduce actions which potentially achieve less cost.

The random adjust function considered in this chapter is described in Algorithm III-2.

After performing the action a, the immediate cost C and the next state s′ can be

obtained based on (3.15) and the GPR. Instead of training the transition quadruple

{s, a, C, s′} immediately, the quadruple is stored into the replay buffers B1 or B2 based

on the situation that whether a satisfies the communication and sense area constraints

(3.3) and (3.4) or not. We will train the actor and the critic by a minibatch of

transitions drawn from the buffers B1 or B2. To ensure that the actor and the critic

learn sufficient samples in both B1 and B2, the transition samples from B1 and B2 are

learned in consecutive learning iterations. Using the transition samples, the weights

of the actor and critic networks are updated to minimize the prediction error of

the Q-value function and to maximize the Q-value, respectively, using the stochastic

gradient descent (SGD) method based on the critic and actor networks and the target

networks. At the end of the training iteration, the target critic and actor networks are

updated. The exploitation of the target networks improves the stability of learning

[76].

If the field hyper-parameters are known a priori, the modified DDPG algorithm can

be used to learn the optimal actions offline, which could provide the performance
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Algorithm III-1 Modified DDPG algorithm:
MDDPG(Ninitial, Nepisode, Nepoch, NB, γ, τ, Q, θQ, µ, θµ, Q′, θQ

′
, θµ

′
, σ̂f , D̂, s)

Input: Initial epoch Ninitial, total training episode Nepisode, total epochs in an episode
Nepoch, minibatch size NB, discount factor γ, learning rate of target network τ , the
critic network Q with its weight θQ, the actor network µ with its weights θµ, the target
critic network Q′ with its weight θQ

′
, the target actor network µ′ with its weights θµ

′
,

the estimated hyper-parameters σ̂f and D̂, and current system state s

Output: Optimal action Aopt for future epochs, the critic and actor networks Q and
µ, weights θQ and θµ, the target critic and actor networks Q′ and µ′, weights θQ

′
and

θµ
′

1: Initialize replay buffers B1 and B2. Set iiter = 0 and Copt =∞
2: for episode = 1 to Nepisode do

3: Set Ctot = 0
4: Receive the initial state s

5: for epoch = Ninitial to Nepoch do

6: Perform action aepoch = RandomAdjust(µ(s)+N (0, ϵ)) according to Algo-
rithm III-2, obtain the immediate cost C based on (3.15), and observe the next
state s′.

7: if a does not satisfy the communication and sensing area constraints (3.3)
and (3.4) then

8: Store the transition quadruple {s, aepoch, C, s′} into the buffer B2

9: else

10: Store the transition quadruple {s, aepoch, C, s′} into the buffer B1

11: if iiter mod 2 then

12: Sample a random minibatch of NB transitions {si, ai, Ci, si+1} from B1

13: else

14: Sample a random minibatch of NB transitions {si, ai, Ci, si+1} from B2

15: ξi ← Ci + γQ′(si+1, µ′(si+1)), update the critic by minimizing the error:
L = 1

NB

∑

i (ξi −Q(si, ai)), and set iiter ← iiter + 1
16: Update the actor by deterministic policy gradient theorem to maximize

Q(si, µ(si))
17: Update the target networks: θQ

′ ← τθQ + (1− τ)θQ
′
and θµ

′ ← τθµ + (1−
τ)θµ

′

18: Ctot ← Ctot + C

19: if Copt > Ctot then

20: Aopt = {aepoch}
Nepoch

epoch=Ninitial

21: Return (Aopt, Q, µ, θQ, θµ, Q′, µ′, θQ
′
, θµ

′
)
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Algorithm III-2 Random action adjust: RandomAdjust(a)
Input: Action a

Output: Adjusted action a

1: Assign δ ∈ [0, 1] and drawn u from a uniform distribution U [0, 1]
2: if u < δ then

3: Set the latitude travel distance in a to 0
4: else

5: Set the longitude travel distance in a to 0

6: Clip the elements in a to be within [−κup/
√
2, κup/

√
2] to satisfy the kinematics

constraints (3.1) and (3.2)
7: Return a

Algorithm III-3 Online trajectory planning algorithm in each epoch
Input: Current epoch Ncurr, total episode Nepisode, total epochs in each episode
Nepoch, minibatch size NB, discount factor γ, learning rate of target network τ , the
critic network Q with its weight θQ, the actor network µ(s) with its weights θµ, the
target critic network Q′ with its weight θQ

′
, and the target actor network µ′ with its

weights θµ
′

1: All AUVs take samples of the field via their planned trajectories
2: The FC receives the observations of field samples from all the AUVs
3: Hyper-parameters of field σ̂f and D̂ are estimated based on (3.10)
4: The FC obtained the updated system state s of all the AUVs based on σ̂f and D̂

5: Aopt, τ, Q, θQ, µ, θµ, Q′, θQ
′
, θµ

′

← MDDPG(Ncurr, Nepisode, Nepoch, NB, γ, τ, Q, θQ, µ, θµ, Q′, θQ
′
, θµ

′
, σ̂f , D̂, s)

6: Start to perform the action for the next epoch only according to Aopt

upper bound for the proposed online learning strategy.

3.3.3 Online Learning for Trajectories Planning with Un-

known Field Hyper-parameters

In practice, the perfect knowledge of the field hyper-parameters is often unavailable.

It is generally the case that those hyper-parameters should be estimated online during
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the sampling process. We propose an online learning algorithm, i.e., Algorithm III-3,

which incorporates the modified DDPG algorithm to online determine the optimal

trajectories of all the AUVs at each epoch, where the field hyper-parameters online

estimated. Specifically, after the moving and sampling process at each epoch, the

unknown field hyper-parameters in the covariance function (3.7) can be estimated by

solving the optimization problem (3.10) based on all the historical observations. After

obtaining the estimated hyper-parameters, the previous learned knowledge, i.e., the

critic network Q(s, a) with its weight θQ, the actor network µ(s) with its weights θµ,

the target critic network Q′(s, a) with its weight θQ
′
, and the target actor network

µ′(s) with its weights θµ
′
in the previous epoch are transferred to the current epoch.

The modified DDPG algorithm then takes the available knowledge of the actors and

the critics and the estimated field hyper-parameters as inputs to learn what will be the

optimal trajectories for future epochs. In this way, the optimal trajectories for each

epoch can be learned online according to the online estimated field hyper-parameters.

3.4 Algorithm Evaluation

We consider an under-ice field of interest in a 2D 15 km × 15 km square area, and

the target set X consists of 16 × 16 grid points where the latitude and longitude

distance between any two consecutive locations is 1 km. The 2D water parameter
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field is generated based on the circulant embedding method [77] with the field hyper-

parameters as σ2
f = 1 and Λ = diag([0.3, 0.3]).

The duration of one time slot is 1,000 seconds (16.7 minutes), and one epoch consists

of 3 time slots, leading to an epoch duration of 50 minutes. We consider a total of

9 epochs in the sampling process, which yields a deployment time duration of 7.5

hours in total. The simulated system consists of 4 AUVs and 4 APs. The 4 APs

are located at (4 km, 4 km), (4 km, 11 km), (11 km, 4 km), and (11 km, 11 km),

respectively. Those four locations are also the initial deployment sites of the 4 AUVs.

The maximal navigation error is ϵ = 5 m. The maximal speed of each AUV is 1

m/s, and the maximal distance of an AUV can travel within one time slot is therefore

κup = 1 km. The communication range for underwater acoustic links between an

AUV and an AP is κcomm = 3.5 km. The discounted factor is γ = 0.99. The weights

in the total cost function (3.15) are αR = −10, αL = 1×10−3, αA = 5×10−2, αp1 = 2,

and αp1 = 4.

The hyper-parameters for the modified DDPG algorithm are as follows. The numbers

of units in the first and the second hidden layers for both of the actor and critic

networks are 400 and 300, respectively. The activation functions of the hidden layers

are rectified linear units (ReLU). The batch normalization is exploited in the actor

network. The learning rates for the actor and the critic networks are 1 × 10−3 and

1× 10−4, respectively. The L2 weight decay for the actor and the critic networks are
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1× 10−1 and 1× 10−2, respectively. The mini-batch size for training is 10.

We evaluate the field estimation performance of three schemes.

Scheme 1: The clairvoyant method which determines the sampling trajectories

through the offline modified DDPG algorithm based on the perfect knowledge

of the field hyper-parameters, according to Algorithm III-1;

Scheme 2: The proposed online RL algorithm which determines the sampling

trajectories epoch-by-epoch through the modified DDPG algorithm where the

field hyper-parameters are online estimated in each epoch based on the collected

samples, according to Algorithm III-3.

Scheme 3: All the AUVs sample the water parameter field via random walk.

Here, we present the simulation result that is selected among 10000 Monte Carlo

runs which yields the minimal total cost.

We take the normalized mean square error (NMSE) as a performance metric for the

field estimation, which describes the normalized difference between the true field and

the estimated field,

NMSE :=

∫

Xarea
||f(x)− f̂(x)||2dx
∫

Xarea
||f(x)||2dx

, (3.16)

where f is the true field and f̂ is the estimated field based on the mean of the GPR.

The three schemes are first examined from the perspectives of the total traveled
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Table 3.1

Performance Comparison of the Three Schemes.

Scheme 1 Scheme 2 Scheme 3
Total traveled distance [km] 74.4 77.9 78.1
Total traveled angle [rad] 76.6 117.4 131.5

NMSE 0.11 0.15 1.07

distance, the total traveled angle and the NMSE, as shown in Table 3.1. Scheme

1 achieves the least total traveled distance and the least total traveled angle, while

Scheme 2 has a similar total traveled distance but greater total traveled angle. The

performance gap is due to the fact that Scheme 2 estimates the field hyper-parameters

and determines the actions online. The total traveled distance and the total traveled

angle obtained by Scheme 3 are similar to those of Scheme 2. However, the NMSEs

obtained by Schemes 1 and 2 are significantly smaller than that of Scheme 3, where

a marginal difference of the NMSEs obtained by Schemes 1 and 2 can be observed.

The simulated true field and the estimated fields by the three schemes are presented

in Fig. 3.5. One can see that Schemes 1 and 2 can capture important features of

the true field, and the estimated field by Scheme 3 is significantly different from

the true field. The planned trajectories obtained by the three schemes are shown in

Fig. 3.6. To explore the area with high uncertainty, the trajectories determined by

Scheme 1 spread out more than those of Schemes 2 and 3, which results in the largest

sensed area. The sensed area based on the trajectories obtained by Scheme 2 at the

early epochs is small due to the inaccurate field hyper-parameter estimation based

on limited field samples at the early stage. With more field samples collected, the
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Figure 3.5: The true field and the estimated fields obtained by the three schemes.

trajectory pattern obtained by Scheme 2 is similar to the pattern obtained by Scheme

1 which tends to explore the area with high uncertainty.
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Figure 3.6: Trajectories of 4 AUVs obtained by the three schemes, where the black squares
and the black circles indicate the positions of 4 APs and the communication ranges of the
APs, respectively. The black circles also are the initial deployment locations of the 4 AUVs.

3.5 Summary

In this chapter, we investigated the adaptive trajectory planning of multiple AUVs

for the water parameter field estimation in the under-ice environment. An online

learning-based trajectory planning algorithm was proposed to adaptively determine

the trajectories of AUVs. The field of interest was modeled as a GP with unknown
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hyper-parameters. The field hyper-parameters and the field posterior distribution

were estimated online based on the collected samples. The adaptive trajectory plan-

ning problem was formulated as an MDP with a goal of minimizing a long-term cost

that is defined based on the field uncertainty reduction and the AUV mobility cost,

subject to the kinematics constraint, the communication range constraint, and the

sensing area constraint. A RL-based method was designed to solve the above MDP

with a constrained action space. The simulation results showed that the proposed

RL-based adaptive trajectory planning algorithm achieved the performance close to

a benchmark method that assumes perfect knowledge of the field hyper-parameters.
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Chapter 4

Signal Alignment for Secure

Underwater Coordinated

Multipoint Transmissions1

1The work in this chapter was published in “IEEE Transactions on Signal Processing” 2016 IEEE.
See Appendix B.2 for the letter of permission from IEEE.
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4.1 Introduction

Coordinated multipoint (CoMP) has recently attracted considerable attention in the

radio community [78, 79], and been taken as one of the core techniques for the LTE-

Advanced system, the 5th generation (5G) cellular networks and the recently pro-

posed C-RAN architecture [80, 81, 82]. Compared to centralized operations, CoMP

promises a larger coverage and a higher throughput for the network with nomadic

users [78, 79, 83, 84, 85]. The system architecture with interconnected and geograph-

ically distributed antenna elements (DAEs) has also been widely used by engineers

for underwater acoustic (UWA) system development
2
. Two examples are shown in

Fig. 4.1, where one is formed by distributed nodes which are anchored at the wa-

ter bottom and connected via cables, and the other is formed by gateways which

can communicate instantaneously with a control center via high-rate radio links. A

large-scale testbed with 96 DAEs distributed over an area of 30 km × 50 km has

been deployed in early days by the Atlantic Underwater Test and Evaluation Center

(AUTEC) [86], where the DAEs are separated by more than 4 km. Another example

is the Ocean-TUNE testbed [87] which has four distributed stationary nodes with

distances among nodes varying from 500 m to 12 km.

2Due to the large sound propagation latency in water, the distributed antenna system and the
coordination among DAEs (CoMP) are naturally coupled in underwater acoustic environment,
which slightly differ from relevant research efforts in terrestrial radio networks.
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A network anchored at the water bottom A data collection network

surface AUV

bottom

buoy

sensor

Figure 4.1: Two examples of underwater distributed antenna systems. In (a), the nodes
anchored at water bottom are interconnected and also connected to a control center via
fibers and cables. In (b), the gateways can communicate with each other and also with a
control center via high-rate radio links.

Similar to terrestrial radio networks, UWA networks are prone to adversarial attacks,

especially in critical missions, such as tactical surveillance, underwater asset protec-

tion, and commercial offshore oil and gas exploration. The attacks could be passive,

such as eavesdropping and traffic analysis, or active, such as denial-of-service (DoS)

attacks, resource consumption, reply attacks, and message modification [88]. Among

all these attacks, the eavesdropping attack often precedes other types of attacks, due

to the low cost and low probability of detection. In this chapter, we investigate the

physical-layer security for underwater acoustic CoMP transmissions in the presence of

eavesdropping attacks. Despite considerable progress on UWA communications and

networking in the last decade [59, 89, 90, 91], research on UWA communication and

network security has been very limited.
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4.1.1 Physical-layer Security in Terrestrial Radio Networks

Due to the nature of broadcast transmission, wireless communication is vulnerable

to security attacks. Besides classical security mechanisms such as cryptography, it

has recently been shown that communication security can be largely enhanced by

exploiting the physical-layer randomness [92, 93, 94]. Typical physical-layer trans-

mission secrecy mechanisms include: (1) secrecy beamforming or precoding with a

multi-antenna source and a single-antenna or multi-antenna destination [95, 96, 97];

(2) artificial noise-assisted friendly jamming where the jamming signal can be trans-

mitted by helpers or embedded in the transmitted signal from the source node [93];

(3) full-duplex transceiving where the destination can simultaneously receive the de-

sired signal from the source and transmit jamming signal to eavesdroppers [98, 99];

and (4) security key generation based on physical-layer randomness [100, 101].

Particularly about cooperative jamming in the Gaussian wiretap channel, interfer-

ence alignment is investigated in [102] based on both the legitimate user’s and the

eavesdropper’s channel state information (CSI), where the message from the legiti-

mate transmitter is divided intoM submessages, and the cooperative jamming signals

from M helpers are specifically designed so that at the legitimate receiver, they are

aligned in the same dimension and occupy the smallest signal space, while at the
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eavesdropper, each jamming signal is aligned with a submessage for transmission se-

crecy. This approach achieves secure degrees-of-freedom (d.o.f.) of M
M+1 . The above

result is further extended in [103] to the scenario without the eavesdropper’s CSI.

Through transmitting an extra cooperative jamming signal afterM submessages from

the legitimate transmitter, the same secure d.o.f. of M
M+1 can be achieved. In [104],

interference alignment and secrecy precoding are applied to a K-user Gaussian inter-

ference channel with confidential messages and a K-user interference channel with an

external eavesdropper. It is shown that each user can achieve secure d.o.f. of K−2
2K−2 in

the former scenario with probability one and secure d.o.f. of K−2
2K in the latter scenario

in the ergodic setting. For an overview on interference alignment for physical-layer

security, please refer to [105, 106] and references therein.

4.1.2 Underwater Acoustic Network Security

In contrast to terrestrial radio networks, there has been very limited study on commu-

nication and network security in the UWA environment [107]. A literature survey of

recent research about secure communication protocols over the network stack is pre-

sented in [108], which calls for more investigation on UWA network security to meet

their rapidly growing applications. The DoS attacks, especially jamming attacks on

the physical layer and the network layer are investigated in [109, 110, 111]. Partic-

ularly about transmission secrecy, a cooperative jamming method is investigated in
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[112] for point-to-point transmissions with a friendly jammer. The jamming signal is

known a priori only to the legitimate users. Therefore, the legitimate receiver can

retrieve the useful information by joint channel estimation and interference suppres-

sion, while the eavesdropper cannot perform the above operation due to the lack of

knowledge about the jamming signal. When multiple friendly jammers are available,

jammer selection and power allocation strategies are investigated to minimize the

signal-to-interference-and-noise ratio (SINR) at the eavesdropper while maintain a

sufficiently large SINR at the legitimate receiver. A game-theory based anti-jamming

system is proposed in [113] to secure transmissions from underwater nodes to a surface

sink in the presence of a reactive jammer. The static game and the dynamic game

between the underwater nodes and the jammer are studied to maximize their indi-

vidual utilities based on the received SINR of the useful signal and the transmission

cost. A closed form of the optimal allocation strategy is derived for the static game

with known channel gains, and the reinforcement learning technique is adopted for

the dynamic game where the channel gain is not available. The challenges of applying

the received signal strength (RSS) for key generation in UWA networks are reviewed

in [114]. It points out that, the RSS-based key generation approaches for terrestrial

radio networks cannot be directly used in UWA networks since the long transmission

delay of probes leads to a low key generation rate and the asymmetric RSS mea-

surements decrease the key agreement probability. To increase the RSS-based key

generation rate in UWA networks, it suggests to dividing the communication band
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Figure 4.2: Illustration of signal alignment for secure coordinated multipoint transmissions

into multiple independent subchannels and performing multi-channel key generation

(see details in [114]). To improve the key agreement probability, a smoothing filter is

proposed to reduce the RSS random fluctuation. The proposed methods are validated

via data collected from sea trials. In [115], a secret key generation method based on

the UWA channel randomness is investigated. A predefined linear block code (e.g., a

BCH code) is used for key bits extraction based on the observed channel frequency

response at each user. To mitigate the channel observation difference at the two users

due to noise or channel asymmetry, the syndrome information at one user is sent to

and used at the other user for key reconciliation. The developed approach is validated

via field experiments.

4.1.3 Our Work

The underwater acoustic environment features large sound propagation latency. For

instance, at a nominal sound speed of 1500 m/s, the signal propagation latency for
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a transmission distance of 3 km is two seconds. In this work, we exploit the low

sound speed in water and the spatial diversity of system entities, including the DAEs,

the legitimate user and the eavesdropper, and develop signal alignment strategies to

secure underwater CoMP transmissions, where the transmission strategy is judiciously

designed such that useful signals will collide at the eavesdropper while stay collision-

free at the legitimate user, as illustrated in Fig. 4.2.

The main contributions of this work are the following.

We develop practical signal alignment strategies for secure CoMP transmissions.

Assuming a priori knowledge of the eavesdropper’s location, the transmit DAE

set and the transmission schedule and power level of each active DAE, are

optimized with a goal of minimizing the maximal value of the eavesdropper’s

received SINRs under the constraint that the signals are well-separated at the

legitimate user and the received signal-to-nose ratio (SNR) is lower bounded

by a predetermined threshold. Taking the orthogonal frequency-division mul-

tiplexing (OFDM) as the physical-layer modulation technique, simulation and

emulated experimental results show that the proposed method achieves much

higher confidentiality than a benchmark method.

When the eavesdropper’s location is not available, a simplified version of the

proposed method is developed to exploit the spatial diversity of DAEs and

the legitimate user for transmission secrecy. Assuming a randomly located
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eavesdropper, simulation results reveal that the proposed method still achieves

a decent transmission secrecy performance.

We further derive the lower and upper bounds of the secrecy capacity and the

secure d.o.f. of the signal alignment method from an information-theoretic per-

spective. The derivation reveals that without the assistance of external helpers,

a secure d.o.f. greater than 1
2 can be achieved, and the lower bound of the secure

d.o.f. increases with the total number of DAEs.

The eavesdropper considered in this work could be a legitimate user who is curious

about the message transmitted to other system users, or an adversary who passively

intercepts data transmissions under water. The honest-but-curious eavesdropper has

been considered in many existing works, e.g., [93, 116, 117, 118, 119, 120], where a

priori knowledge of the eavesdropper’s location and/or CSI is often assumed. The

underwater localization techniques developed in e.g., [121], can be used for system

user positioning. When the eavesdropper is a passive adversary, techniques for pas-

sive target localization, such as range and bearing estimation [122, 123, 124] and

target tracking [125] in passive sonar applications, can be applied to estimate the

eavesdropper’s location.

The proposed signal alignment concept for secure underwater CoMP transmission

falls into the general category of interference alignment for physical-layer security.

Different from existing research in radio networks that requires accurate CSI and
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receiver front-end characteristics [102, 103, 126], the low sound speed in water provides

grand opportunities to align signal and/or interference in the time domain. Other

benefits of exploiting the low sound speed in transmission scheduling, such as UWA

network throughput improvement, have been demonstrated in existing works [5, 8].

The rest of the chapter is organized as follows. The system model is presented in

Section 4.2. The receiver processing method at the eavesdropper is developed in

Section 4.3. The signal alignment method for secure CoMP transmissions is developed

in Section 4.4. The secrecy capacity and secure d.o.f. are investigated in Section 4.5.

Simulation and emulated experimental results are presented in Sections 4.6 and 4.7,

respectively. Summary is presented in Section 4.8.

4.2 System Model for Coordinated Multipoint

Transmissions

We consider an underwater system with NDAE DAEs that are connected via cables

or high-rate radio links. The information message from DAEs to a legitimate user

is encoded into multiple blocks using an identical parameter set, with the center

frequency, the frequency band, and the time duration of each block denoted by fc,

B, and Tbl, respectively. Among a set of DAEs for transmission (denoted by TDAE),
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each DAE is assigned to transmit an individual block. When the total number of

blocks is larger than the number of active DAEs, i.e., M := |TDAE|, a round-based

transmission can be performed.

Denote dµ as the distance between the µth DAE and the legitimate user, and denote

tµ as the transmission starting time of the µth DAE. The time-of-arrival of the signal

from the µth DAE at the legitimate user is

ξµ := tµ + dµ/c, (4.1)

where c is the sound speed in water. Denote Npa,µ as the number of channel paths

between the µth DAE and the legitimate user. We assume: (1) the amplitude of

the pth path Ap,µ(t), is constant within one block, i.e., Ap,µ(t) = Ap,µ, and (2) the

time varying delay of the pth path τp,µ(t) relative to the delay in the line-of-sight

transmission can be approximated as τp,µ(t) ≈ τp,µ. The channel impulse response is

hµ(τ) =

Npa,µ
∑

p=1

Ap,µδ(τ − τp,µ − ξµ). (4.2)

Denote s̃µ(t) as the transmitted signal of the µth DAE. The signal arrived at the

legitimate user can be formulated as

ỹµ(t) =

Npa,µ
∑

p=1

Ap,µs̃µ (t− τp,µ − ξµ) . (4.3)
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Corresponding to the active DAE set TDAE, the overall received signal at the legiti-

mated user can be cast as

ỹ(t) =
∑

µ∈TDAE

Npa,µ
∑

p=1

Ap,µs̃µ (t− τp,µ − ξµ) + ñ(t), (4.4)

where ñ(t) is the ambient noise.

According to the pth signal propagation path, denote A(lp(t), f) = A0lkp(t)α(f)
lp(t)

as the power loss experienced by a signal of frequency f travelling over the distance

lp(t) where k is the spreading factor, α(f) is the absorbtion coefficient, and A0 is a

scaling constant. Based on [127], the transmission power loss from the µth DAE to

the legitimate user can be calculated as

Ploss(fc, dµ) =

∑Npa,ν

p=1 |Ap,ν|2

B

∫ fc+B/2

fc−B/2

Q2(f)df (4.5)

where Q(f) is the path transfer function can be expressed in terms of a reference

path’s (p = 0) nominal transfer function as

Q(f) =
1

√

A
(

l̄0, f
)

(4.6)

where l̄0 is the nominal length of a reference path.

Denote Ptx,µ as the transmission power of the µth DAE, and denote Ploss(f, d) as

106



the transmission power loss of an acoustic signal at frequency f for a distance d.

Corresponding to the signal from the µth DAE, the received signal power at the

legitimate user can be approximated as

Prx,µ = Ptx,µ · Ploss(fc, dµ). (4.7)

A similar system model can be developed for the eavesdropper. Denote d(e)µ as the

distance between the µth DAE and the eavesdropper. The time-of-arrival of the signal

from the µth DAE at the eavesdropper is

ξ(e)µ := tµ + d(e)µ /c. (4.8)

The received signal at the eavesdropper can be formulated as

ỹ(e)(t) =
∑

µ∈TDAE

N(e)
pa,µ
∑

p=1

A(e)
p,µs̃

(e)
µ

(

t− τ (e)p,µ − ξ(e)µ

)

+ ñ(e)(t), (4.9)

where {A(e)
p,µ, τ

(e)
p,µ} denote the amplitude and delay of the pth path between the µth

DAE and the eavesdropper, respectively, and ñ(e)(t) is the ambient noise. The received

signal power corresponding to the µth DAE’s transmission can be similarly obtained

as

P (e)
rx,µ := Ptx,µ · Ploss(fc, d

(e)
µ ). (4.10)

107



blk�1 blk�2 blk�3 blk�4
ʇ1� ʇ2� ʇ3� ʇ4 t

yຸ(t) blk�1
blk�2
blk�3

blk�4

t

yຸ
(e)
(t)

quasiͲ
synchronous�
alignment

Tbl�

legitimate�AUV eavesdropper

Tbl�Tbl�

z3ຸ
(e)
(t)

blk�1 blk�2 blk�3 blk�4
ʇ1� ʇ2 ʇ3 ʇ4 t

yຸ(t) blk�1
blk�2
blk�3
blk�4

t

yຸ
(e)
(t)

synchronous�
alignment

Tbl�

legitimate�AUV eavesdropper

Tbl�Tbl�

(a)�QuasiͲsynchronous�alignment

(b)�Synchronous�alignment

overlapped�signal

overlapped�signal

Figure 4.3: Illustration of quasi-synchronous alignment and synchronous alignment of
transmit blocks at the eavesdropper. As an illustration of the receiver processing at the

eavesdropper, z̃(e)3 (t) in (a) is truncated from the received signal to recover the information
symbols in block 3.

4.3 Receiver Processing at the Eavesdropper

To reduce the eavesdropper’s interception capability, one can exploit the low sound

speed in water to create signal collision at the eavesdropper while keep the signals

well-separated at the legitimate user.
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We consider that the eavesdropper has one receive antenna and performs the single-

block decoding in the frequency domain by truncating each desired block from the

received signal based on its time-of-arrival [128, 129, 130, 131], as illustrated in

Fig. 4.3 (a). Taking the block transmitted by the µth DAE as the desired signal,

the truncated signal can be expressed as

z̃(e)µ (t) = ỹ(e)(t+ ξ(e)µ ) (4.11)

= ỹ(e)µ (t) +
∑

ν∈TDAE,ν≠µ

ỹ(e)ν

(

t− ξ(e)ν + ξ(e)µ

)

︸ ︷︷ ︸

:=Ĩ(e)µ (t)

+ñ(e)
µ (t) (4.12)

for t ∈ [0, Tbl], where Ĩ(e)µ (t) denotes the interference caused by other overlapped

blocks.

The Fourier transform of (4.12) yields

Z̃(e)
µ (f) =

∫ Tbl

0

z̃(e)µ (t)e−j2πftdt (4.13)

= Ỹ (e)
µ (f) + Ĩ(e)

µ (f) + Ñ (e)
µ (f), (4.14)

where

Ĩ(e)
µ (f) :=

∑

ν∈TDAE,ν≠µ

∫ Tbl

0

ỹ(e)ν

(

t− ξ(e)ν + ξ(e)µ

)

e−j2πftdt, (4.15)

and Ñ (e)
µ (f) is similarly defined.
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Assume that the ambient noise in the frequency domain is white and follows a zero-

mean complex Gaussian distribution, i.e., Ñ (e)
µ (f) ∼ CN (0, N0/2). The SINR at the

eavesdropper can be formulated as

λ(e)
µ :=

1
Tbl

∫

B

∣
∣
∣Ỹ

(e)
µ (f)

∣
∣
∣

2

df

1
Tbl

∫

B

∣
∣
∣Ĩ(e)

µ (f)
∣
∣
∣

2
df +N0B/2

. (4.16)

Based on the Parseval’s Theorem [132], we have

∫

B

∣
∣
∣Ĩ(e)

µ (f)
∣
∣
∣

2

df =
1

2

∫ Tbl

0

∣
∣
∣
∣
∣

NDAE∑

ν=1,ν≠µ

ỹ(e)ν

(

t− ξ(e)ν + ξ(e)µ

)

∣
∣
∣
∣
∣

2

dt. (4.17)

Moreover, to obtain a closed-form representation of (4.17), we approximate the trans-

mitted waveform as white Gaussian noise and assume that all the blocks are inde-

pendently distributed. Hence,

∫

B

∣
∣
∣Ĩ(e)

µ (f)
∣
∣
∣

2
df ≈ 1

2

∑

ν∈TDAE,ν≠µ

∫ Tbl

0

∣
∣ỹ(e)ν

(

t− ξ(e)ν + ξ(e)µ

)∣
∣
2
dt

=
1

2

∑

ν∈TDAE,ν≠µ

P (e)
rx,ν

[

Tbl − |ξ(e)ν − ξ(e)µ |
]+

, (4.18)

where [·]+ := max{·, 0}.
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The SINR in (4.16) can be rewritten as

λ(e)
µ =

P (e)
rx,µ

N0B + 1
Tbl

∑

ν∈TDAE,ν≠µ P
(e)
rx,ν

[

Tbl − |ξ(e)ν − ξ(e)µ |
]+ . (4.19)

Following the same derivation, the SNR of each received block at the legitimate user

can be obtained as

λµ :=
Prx,µ

N0B
. (4.20)

4.4 Signal Alignment for Transmission Secrecy

To minimize the amount of information leaked to the eavesdropper, the active DAE set

TDAE, and the transmission starting time and transmission power of each active DAE,

can be jointly optimized under a constraint that the received SNR at the legitimate

user is sufficiently large for successful decoding. In this work, we take the maximal

SINR of the blocks received by the eavesdropper as an indicator of the eavesdropper’s

interception performance.
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4.4.1 Signal Alignment with Eavesdropper’s Location Infor-

mation

Sort the time-of-arrivals of signals from all the active DAEs at the legitimate user in

an increasing order, i.e., {ξℓ1, ξℓ2, · · · , ξℓM}, where the time-of-arrival ξℓµ is related to

the transmission starting time as ξℓµ = tℓµ + dℓµ/c. The optimization problem can be

cast as

min
TDAE,{tµ,Ptx,µ: µ∈TDAE}

max
µ∈TDAE

λ(e)
µ (4.21a)

s.t. λµ ≥ Γth, (4.21b)

ξℓµ+1 − ξℓµ ≥ Tbl, (4.21c)

0 ≤ Ptx,µ ≤ Pth, ∀µ ∈ TDAE (4.21d)

where Γth is the lower bound of the required decoding SNR at the legitimate user,

(4.21c) ensures collision-free at the legitimate user, and Pth is the maximal transmis-

sion power at each DAE.

To make the optimization problem in (4.21) tractable, we introduce an auxiliary

variable

ϱ := max
µ∈TDAE

λ(e)
µ , (4.22)
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with a new constraint λ(e)
µ ≤ ϱ, ∀µ ∈ TDAE. The received SNR constraint in (4.21b)

can be translated into a lower bound of the transmission power of each active DAE

based on (4.7) and (4.20), which combined with (4.21d) yields Ptx,µ,L ≤ Ptx,µ ≤ Pth.

Define

θν,µ :=

[

1− |ξ(e)ν − ξ(e)µ |
Tbl

]+

, (4.23)

which satisfies θµ,ν = θν,µ. Define a column vector q of length M , with its µth element

[q]µ =
1

N0B
Ptx,µ · Ploss(fc, d

(e)
µ ), (4.24)

for µ = 1, 2, · · · ,M . Denote ξ := [ξℓ1, ξℓ2, · · · , ξℓM ]T. As detailed in Appendix A.1,

the optimization problem in (4.21) can be reformulated as

min
ϱ,TDAE,{tµ,Ptx,µ: µ∈TDAE}

ϱ (4.25a)

s.t. G̃1(ξ, ϱ)q ≤ ϱ1, (4.25b)

G2ξ ≥ Tbl1, (4.25c)

qL ≤ q ≤ qU, (4.25d)

where 1 is a column vector of length M with unity elements, qL and qU are similarly

defined as q in (4.24) through replacing Ptx,µ by Ptx,µ,L and Pth, respectively, and

113



G̃1(ξ, ϱ) and G2 are two matrices of size M ×M and (M − 1)×M , respectively,

G̃1(ξ, ϱ) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −ϱθ1,2 · · · −ϱθ1,M

−ϱθ2,1 1 · · · −ϱθ2,M
...

...
. . .

...

−ϱθM,1 −ϱθM,2 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.26)

and

G2 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 · · · 0 0

0 −1 1 0 · · · 0

...
...

...
. . . . . .

...

0 0 · · · 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.27)

As detailed in Appendix A.2, through an appropriate modification of (4.21) based

on the receiver processing algorithms at the legitimate user and at the eavesdropper,

the proposed signal alignment method can be extended to the scenario with multiple

users and multiple eavesdroppers and the scenario when an eavesdropper has multiple

geographically distributed antenna elements.
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4.4.2 Optimization Problem Solver

Although the optimization problem in (4.25) is derived for quasi-synchronous signal

alignment at the eavesdropper (see Fig. 4.3 (a)), there are scenarios that synchronous

signal alignment can be achieved when the blocks can arrive simultaneously at the

eavesdropper while stay collision-free at the legitimate user; see an example in Fig. 4.3

(b). Under those scenarios, the transmission starting time of each active DAE can be

immediately determined based on the sound propagation delay to the eavesdropper.

For ease of exposition, in this section we will first present a solution to the opti-

mization problem in (4.25) for synchronous signal alignment, and then proceed to an

optimization problem solver for quasi-synchronous signal alignment.

4.4.2.1 Synchronous Signal Alignment

When synchronous signal alignment can be achieved, all the blocks have an identical

time-of-arrival at the eavesdropper, i.e., ξ(e)µ = ξ(e)ν , ∀µ, ν, which can be assumed zero

without loss of generality. The transmission starting time of each active DAE, e.g.,

the µth DAE, can be determined as tµ = −d(e)µ /c. Furthermore, θν,µ = 1, ∀µ, ν, and
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the matrix G̃1(ξ, ϱ) can be simplified as

G1(ϱ) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −ϱ · · · −ϱ

−ϱ 1 · · · −ϱ

...
...

. . .
...

−ϱ −ϱ · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.28)

The optimization problem for synchronous signal alignment can be cast as

min
ϱ,TDAE,{Ptx,µ: µ∈TDAE}

ϱ (4.29a)

s.t. G1(ϱ)q ≤ ϱ1, (4.29b)

qL ≤ q ≤ qU. (4.29c)

To solve the optimization problem in (4.29), we first enumerate all the possible com-

binations of DAEs. Taking each combination as the active DAE set TDAE, the optimal

transmission power of each active DAE can be computed via the bisectional search

method and the Simplex method [133] as stated in Algorithm IV-1. The combination

which yields the minimal value of ϱopt provides the final optimal solution. We com-

pared the above optimization method with a grid search method. The two methods

yield identical solutions.
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Algorithm IV-1 Synchronous Signal Alignment

Input: Active DAE set TDAE

Output: Optimal ϱ and the transmission power of each active DAE

1: Generate initial ϱmin, ϱmax, ϵ, Nmax, and i← 1
2: while ϱmax−ϱmin

(ϱmax+ϱmin)/2
≥ ϵ and i ≤ Nmax do

3: ϱ← (ϱmin + ϱmax)/2
4: With a known ϱ, compute G1(ϱ), qL, and qU in (4.29), and use the Simplex

method to solve for the transmission power vector p̃tx := [P̃tx,ℓ1 , P̃tx,ℓ2, · · · , P̃tx,ℓM ]
T

whose summation is minimal.
5: if a feasible solution of p̃tx can be found then

6: ϱmax ← ϱ, popt
tx ← p̃tx

7: else

8: ϱmin ← ϱ

9: i← i+ 1
10: ϱopt ← ϱmax

11: return ϱopt and popt
tx

4.4.2.2 Quasi-synchronous Signal Alignment

When the synchronous signal alignment at the eavesdropper and the non-

overlapping constraint at the legitimate user cannot be simultaneously satisfied,

quasi-synchronous alignment at the eavesdropper can be performed. Similar to Al-

gorithm IV-1, to solve the optimization problem in (4.25), we first enumerate all

the possible combinations of DAEs. Taking each combination as the active DAE set

TDAE, the optimal transmission starting time and transmission power of each active

DAE that yield the minimal value of ϱ can be computed via the simulated annealing

method [134] and a random search method [135]. The DAE combination which leads

to the minimal value of ϱopt provides the final optimal solution. The overall algo-

rithm is described in Algorithm IV-2. Specifically, in the ith iteration of Algorithm 2,
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a feasible transmission schedule t̃ is obtained based on the transmission starting time

ti−1 in the (i − 1)th iteration. Based on t̃, the optimal transmission power p̃tx and

the minimal SINR ϱ̃ at the eavesdropper are calculated. The transmission starting

time t̃ and transmission power p̃tx are recorded if the minimal SINR ϱ̃ is smaller than

the minimal SINRs obtained in previous iterations. Based on the accepting criteria

of the simulated annealing method, the transmission starting time t̃ will be accepted,

i.e., ti = t̃ and otherwise ti = ti−1.

To initialize Algorithm 2, t0 is taken as the one that allows consecutive arrivals of

blocks at the legitimate user with zero intervals, and the arrival sequence of blocks

at the legitimate user is identical to the arrival sequence when the blocks arrive

simultaneously at the eavesdropper.

Set β = 0.98 andNmax = 200. We compared Algorithm 2 with a grid search method in

simulations, which showed that the normalized optimal SINR difference is 1.9× 10−4

in decimal, averaged over 1000 random system layouts.

Remark 3: In the proposed method, all the transmissions from DAEs are constrained

to be useful signals. In fact, some DAEs near the eavesdropper can serve as friendly

jammers. The jamming transmission, however, has to be carefully designed to min-

imize its impact at the legitimate user. A detailed design, including (1) DAE se-

lection for useful signal transmission and for jamming transmission, (2) transmission
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Algorithm IV-2 Quasi-synchronous Signal Alignment

Input: Active DAE set TDAE

Output: Optimal ϱ, and the transmission starting time and power of each active
DAE

1: Generate initial t0, T
(0)
emp, Nmax, ϱopt, and i← 1

2: while i ≤ Nmax do

3: T (i)
emp ← βT (i−1)

emp (0 < β < 1), t̃← SubFunction(ti−1) as described from Line
13

4: Use Algorithm IV-1 to obtain the optimal ϱ̃ and p̃tx based on t̃

5: if ϱ̃ < ϱopt then
6: ϱopt ← ϱ̃, topt ← t̃, and p

opt
tx ← p̃tx

7: if ϱ̃− ϱi−1 < 0 or exp
(

− ϱ̃−ϱi−1

T (i)
emp

)

> u where u ∼ U [0, 1] then
8: ti ← t̃, ϱi ← ϱ̃
9: else

10: ti ← ti−1, ϱi ← ϱi−1

11: i← i+ 1
12: return ϱopt, topttx and popt

tx

SubFunction: Generate t̃ based on ti−1

13: Based on ti−1, calculate the time-of-arrivals of blocks at the eavesdropper and
sort them in an increasing order {ξ(e)κ1 , ξ

(e)
κ2 , · · · , ξ

(e)
κM}

14: Randomly pick up blocks κm and κn, and assume m < n and κm = ℓµ, κn = ℓν

15: ∆tκm ← min
(

[ξℓµ+1 − ξℓµ − Tbl]+,
∣
∣
∣ξ

(e)
κm − ξ(e)κn

∣
∣
∣

)

, t̃1 ← ti−1

16: ∆tκn ← min
(

[ξℓν − ξℓν−1 − Tbl]+,
∣
∣
∣ξ

(e)
κm − ξ(e)κn

∣
∣
∣

)

, t̃2 ← ti−1

17: if ∆tκm = 0 then

18: [t̃2]ℓν ← [ti−1]ℓν − u1∆tκn(u1 ∼ U [0, 1])
19: else

20: [t̃1]ℓµ ← [ti−1]ℓµ + u1∆tκm , [t̃2]ℓν ← [ti−1]ℓν − u2∆tκn (u1, u2 ∼ U [0, 1])
21: return t̃1 or t̃2 which results in a lower maximal SINR at the eavesdropper

scheduling and power control, and (3) jamming signal lengths, warrants another piece

of work.
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Figure 4.4: Illustration of time-of-arrivals of DAE transmitted signals

4.4.3 Signal Alignment without Eavesdropper’s Location

When the eavesdropper’s location information is not available, we propose to select a

set of active DAEs that satisfy both the lower bound constraint of the received SNR at

the legitimate user and the maximal transmission power constraint. The transmission

starting time of each active DAE is determined by allowing blocks arriving consecu-

tively with zero interval at the legitimate user in an arbitrary order. Exploiting the

spatial distribution of DAEs and the low sound speed in water, signals from multiple

DAEs have a large probability of collision at a randomly located eavesdropper. We

will examine the security performance of this scheme in simulations.
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4.5 Secrecy Capacity in AWGN Channels

In this section, we investigate the secrecy capacity of the signal alignment method in

AWGN channels. The secrecy capacity per CoMP transmission is defined as

Cs = max
{s̃µ(t):µ∈TDAE}

[

I ({s̃µ(t) : µ ∈ TDAE}; ỹ(t))− I
(

{s̃µ(t) : µ ∈ TDAE}; ỹ(e)(t)
)]

.

(4.30)

It has been shown that with a Gaussian input, the secrecy capacity equals to the

difference between the legitimate link capacity CU and the wiretap link capacity CE

[92], i.e.,

Cs = CU − CE. (4.31)

Different from the signal alignment method for the block transmission with an iden-

tical length, we will let each active DAE transmit for a maximal time duration as

long as there is no collision at the legitimate user, as illustrated in Fig. 4.4. The

transmission time duration of the ℓµth DAE is

Tℓµ := ξℓµ+1 − ξℓµ, 1 ≤ µ ≤M − 1. (4.32)

Define

Tmax := max{Tℓ1 , · · · , TℓM−1}. (4.33)
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Without loss of generality, we take the time duration of the signal arriving last at the

legitimate user as

TℓM = Tmax, (4.34)

which leads to a total reception time duration of the legitimate user

Ttotal :=
M
∑

µ=1

Tℓµ = ξℓM − ξℓ1 + TℓM . (4.35)

Denote σ2
w as the ambient noise variance. The legitimate link capacity per CoMP

transmission is

CU =
∑

µ∈TDAE

Tµ

2
log2

(

1 +
Prx,µ

σ2
w

)

. (4.36)

Consider that the wiretap link can be regarded as a multi-access (MAC) channel. Its

capacity is lower bounded by

CE ≥
∑

µ∈TDAE

Tµ log2

(

1 +
P (e)
rx,µ

σ2
w + P (e)

I,µ

)

, (4.37)

where the power of the inter-block-interference at the eavesdropper can be approxi-

mated as

P (e)
I,µ ≈

1

Tµ

∑

ν∈TDAE,ν≠µ

P (e)
rx,νmin(Tµ, Tν). (4.38)

To derive the upper bound of the wiretap link capacity, we sort the transmission time

duration of active DAEs in an increasing order {To1 , To2, . . . , ToM}, and for expression
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convenience, we denote To0 = 0. As illustrated in Fig. 4.4 (b), by truncating the

received signal at the eavesdropper into multiple segments based on the number of

collided blocks, the upper bound of the wiretap link capacity can be obtained as the

sum rate of each truncation,

CE ≤
M−1
∑

µ=1

(Toµ − Toµ−1)

2
log2

(

1 +

∑

ν≥µ P
(e)
rx,oν

σ2
w

)

. (4.39)

The lower bound Cs,Lo and the upper bound Cs,Up of the secrecy capacity per CoMP

transmission can be obtained as

Cs,Up =

[

∑

µ∈TDAE

1

2

{

Tµ log2

(

1 +
Prx,µ

σ2
w

)

− Tµ log2

(

1 +
P (e)
rx,µ

σ2
w + P (e)

I,µ

)
}
]+

, (4.40)

Cs,Lo =

[
{
∑

µ∈TDAE

Tµ

2
log2

(

1 +
Prx,µ

σ2
w

)}

−
{M−1∑

µ=1

(Toµ − Toµ−1)

2
log2

(

1 +

∑

ν≥µ P
(e)
rx,oν

σ2
w

)
}
]+

. (4.41)

Due to the lack of closed-form expression of the secrecy capacity, we will bound the

maximal secrecy capacity Copt
s by maximizing its lower bound in bits per second, i.e.,
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max
TDAE,{Ptx,µ}µ∈TDAE

Cs,Lo

Ttotal
(4.42a)

s.t. 0 ≤ Ptx,µ ≤ Pth, ∀µ. (4.42b)

To solve the optimization problem, we first enumerate all the possible combinations

of DAEs. Taking each combination as an active DAE set, the total transmission

duration Ttotal can be calculated a priori. With the known Ttotal, the objective function

of (4.42) can be rewritten as a difference of two convex functions (DC). With the

constraints being affine, the optimization problem (40) is a standard DC programming

problem [136]. Hence, the global optimal transmission power of each active DAE that

maximizes the lower bound Cs,Lo can be obtain by the DC programming algorithm

proposed in [137]. Furthermore, it can be shown that in both the high transmission

SNR regime and the low transmission SNR regime, Cs,Lo can be approximated as

weak concave, hence a low-complex solver, such as the interior point method can be

used. The combination that has the maximal lower bound of the secrecy capacity

leads to the optimal solution.

It is worth noting that, in the very low transmission SNR regime where noise dom-

inates the receiver decoding performance, instead of aligning multiple useful signals

at the eavesdropper to create self interference, it can be easily show that the max-

imal secrecy capacity is achieved by taking the DAE having the largest difference
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between its distance to the legitimate user and to the eavesdropper for transmission

at the maximal power level. In this scenario, the secrecy capacity of Gaussian wiretap

channels applies [92].

To quantify the cost for transmission secrecy, the secure d.o.f., which is defined as

the ratio of the secrecy capacity to the capacity without secrecy constraint as the

transmission power goes to infinite, is often used. Here, we define the secure d.o.f. as

the ratio of the secrecy capacity to the capacity of the channel between the legitimate

user and its nearest DAE µ′ with a transmission power Pth,

η := lim
Pth→∞

Copt
s /T opt

total

1
2 log2

(

1 +
Prx,µ′

σ2
w

) . (4.43)

The upper and lower bounds of the secure d.o.f. are derived in Appendix A.3, by

substituting the upper and lower bounds of the secrecy capacity in (4.40) and (4.41)

into (4.43). The derivation yields an upper bound of 1, and a lower bound of 1 −

Tmax
Ttotal

, where Tmax
Ttotal

is the ratio of received signal lengths at the eavesdropper and the

legitimate user. Since Tmax ≤ Ttotal
2 (see (4.33), (4.34) and (4.35)), the lower bound

indicates that a secure d.o.f. greater than 1
2 can be achieved.
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4.6 Simulation Results

We consider a system with NDAE = 4 DAEs, and assume that all the DAEs, the

legitimate user and the eavesdropper are uniformly distributed within a disk of radius

4 km. In particular, the distance between any two DAEs is constrained to vary from

100 m to 8 km, and each DAE can cover the entire disk area. The simulation results

are averaged over 1000 random system layouts. The transmission loss of the acoustic

signal is modeled as

Ploss(f, d) ∝ e−α(f)dd−β, (4.44)

where α(f) is the frequency-dependent absorption coefficient (see [138] for a simplified

formula of α(f)), and β is the path-loss exponent taking a practical value of 1.5.

Despite the simple form of the transmission loss in (4.44), it suffices to validate

the performance of the proposed signal alignment methods. In practical systems, the

transmission loss can be estimated based on the received signal strength in field [139].

We assume that each signal block is modulated by the zero-padded (ZP) OFDM

technique. Denote K as the total number of subcarriers, and denote T as the time

duration of each OFDM symbol. The kth subcarrier frequency is fk := fc + k/T , for

k = −K/2, · · · , (K/2) − 1. The signal bandwidth is therefore B = K/T . To avoid

the inter-symbol-interference caused by multiple channel paths, a guard interval of
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length Tg is padded at the end of each OFDM symbol. The total time duration of

each OFDM block is thus Tbl = T +Tg. Denote sµ[k] as the data (or pilot) symbol at

the kth subcarrier of the µth DAE. The transmitted signal at the µth DAE can be

formulated as

s̃µ(t) = 2R

⎧

⎨

⎩

K/2−1
∑

k=−K/2

sµ[k]e
j2πfktg(t)

⎫

⎬

⎭
, t ∈ [0, Tbl] (4.45)

where g(t) is a rectangular window being one for t ∈ [0, T ] and zero elsewhere.

The ZP-OFDM parameters are listed in Table 4.1. Out of 1024 subcarriers, 96 are

null subcarriers with 24 on each edge for band protection and 48 distributed evenly

in the middle, 256 are pilot subcarriers for channel estimation, and the remaining 672

are data subcarriers for information delivery. The data symbols are encoded with a

rate-1/2 nonbinary low-density parity-check (LDPC) code [140] and modulated with

a QPSK constellation, which leads to a data rate

R =
1

2

|SD|
T + Tg

log24 = 5.2 kb/s, (4.46)

where |SD| denotes the number of data subcarriers.

To simulate underwater acoustic channels, we assume that the channel between each

transmit and receive pair consists of 10 discrete paths, where the inter-arrival time of

paths follows an exponential distribution with a mean of 1 ms. The path amplitudes
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Table 4.1

OFDM Parameters in Simulations.

center frequency: fc 13 kHz
bandwidth: B 9.77 kHz
# of subcarriers: K 1024
time duration: T 104.86 ms
frequency spacing: ∆f := 1/T 9.54 Hz
guard interval: Tg 24.6 ms

are Rayleigh distributed with an average power decreasing exponentially with the

delay, where the difference between the beginning and the end of the guard time is

20 dB. We assume that all the paths are time-invariant with zero Doppler rates.

The sparse channel estimation method [141] and the linear minimum mean square

error (LMMSE) estimator are adopted for channel estimation and symbol detection,

respectively. The block-error-rate (BLER) performance is used as the decoding per-

formance metric. The average transmission SNR to be used in the sequel is defined

as

TSNR :=
1

|TDAE|
∑

µ∈TDAE

Ptx,µ

N0B
. (4.47)

4.6.1 BLER Performance

We compare the decoding performance of the eavesdropper and the legitimate user

in three configurations.
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Figure 4.5: Decoding BLERs of the legitimate user and the eavesdropper. Both have
single receive antenna.

Conf. 1: A benchmark method that takes the DAE nearest to the legitimate

user to transmit consecutively all the OFDM blocks;

Conf. 2: The signal alignment method with the eavesdropper’s location infor-

mation;

Conf. 3: The signal alignment method without the eavesdropper’s location

information.

Assume that both the legitimate user and the eavesdropper have one receive hy-

drophone. The BLER performance of the eavesdropper and the legitimate user in

the three configurations are shown in Fig. 4.5. The simulation results reveal that the
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Figure 4.6: Decoding BLERs of the legitimate user and the eavesdropper with location
inaccuracy.

signal alignment method with the eavesdropper’s location information achieves the

highest level of transmission secrecy — the eavesdropper cannot decode any block,

whereas it consumes vast transmission power in order to minimize the eavesdropper’s

interception capability. Compared to the benchmark method, better secrecy perfor-

mance can be achieved by the signal alignment method without the eavesdropper’s

location information, benefited from the spatial diversity of DAEs and the legitimate

user.
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4.6.2 Sensitivity Analysis

To evaluate the performance sensitivity of the signal alignment method with the

eavesdropper’s location information to the user’s and the eavesdropper’s location

inaccuracy, we assume that the user’s and the eavesdropper’s location errors both

are independently and identically distributed in longitude and latitude, and in each

direction the error follows a Gaussian distribution N (0, σ2
d). The BLER performance

of the eavesdropper and the legitimate user with different values of σd are shown

in Fig. 4.6, which reveals that as σd increases, the BLER performance gap between

the legitimate user and the eavesdropper degrades. However, with a fairly large

location error level σd = 100 m, only slight performance degradation is observed,

which indicates the robustness of the proposed method to the location inaccuracy.

4.6.3 Secrecy Capacity and Secure DOF

For a narrowband system at frequency 13 kHz, Fig. 4.7 (a) shows the secrecy capacity

of the benchmark method and the signal alignment method with the eavesdropper’s

location information, as well as the legitimate user link capacity in the benchmark

method. In the signal alignment method, the active DAE set and the transmission

power of each active DAE are obtained in (4.42a) through maximizing the lower
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Figure 4.7: Secrecy capacity and secure degrees-of-freedom (d.o.f.) with different total
number of DAEs.

bound of the secrecy capacity. As the transmission SNR increases, one can observe

that (1) the secrecy capacity of the benchmark method converges, and is further less

than the secrecy capacity lower bound of the signal alignment method; and (2) the

secrecy capacity upper bound of the signal alignment method increases almost at the

same rate as that of the user link capacity in the benchmark method.

Fig. 4.7 (b) shows the lower bound of the secure d.o.f. of the signal alignment method

with different total numbers of randomly distributed DAEs. The result reveals that

the average lower bound of the secure d.o.f. increases monotonically with the total

number of DAEs, which agrees with intuition, as more DAEs promise more freedom

to enlarge the received signal quality difference between the legitimate user and the

eavesdropper.
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DAE 3

Figure 4.8: A case study: An example of the system layout in one Monte Carlo run.

4.6.4 A Case Study

Some insights about the proposed signal alignment method can be revealed in a case

study. Specifically, we consider 4 DAEs uniformly distributed in a ring area defined

by a circle of radius 4 km and the circumcircle (with a radius of 2 km) of a triangle

formed by three legitimate users, as illustrated in Fig. 4.8. An eavesdropper moves

from the the center of the triangle to user 1 at a speed of 1 m/s.

Two types of transmissions are considered: (i) the unicast transmission, where the
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Figure 4.9: Decoding BLERs of the legitimate user and the eavesdropper in the case
study.

DAEs transmit to each legitimate user individually based on the proposed signal

alignment method; and (ii) the broadcast transmission, where the proposed signal

alignment method is applied only with respect to user 1 and the eavesdropper. The

minimal received SNR at each individual user in the unicast transmission and at user

1 in the broadcast transmission is constrained to be Γ = 7 dB. 400 system layouts are

tested. The performance of different transmission strategies is presented in Fig. 4.9.

The following observations can be obtained based on Fig. 4.9 (a) about the unicast

transmission. Firstly, the proposed signal alignment method provides decent trans-

mission secrecy for users 2 and 3, and none of the blocks can be decoded at the

eavesdropper. Secondly, when the distance between the eavesdropper and user 1 is

large, the secrecy performance of user 1 is similar to that of users 2 and 3. The

performance gap between the eavesdropper and user 1 decreases as the eavesdropper
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Table 4.2

OFDM Parameters in the MACE10 Experiment.

center frequency: fc 13 kHz
bandwidth: B 4.883 kHz
# of subcarriers: K 1024
time duration: T 209.7 ms
frequency spacing: ∆f := 1/T 4.77 Hz
guard interval: Tg 40.3 ms

moves closer to user 1. When the eavesdropper and user 1 are at the same location,

the decoding performances of the two are identical.

About the broadcast transmission, Fig. 4.9 (b) shows that when the distance between

the eavesdropper and user 1 is large, user 1 achieves better decoding performance than

users 2 and 3, since signals from active DAEs could collide at the latter two users. In

addition, users 2 and 3 exhibit similar decoding performance due to their symmetric

location with respect to the eavesdropper.

4.7 Emulated Experiment Results

We use the data set collected from a field experiment to emulate OFDM transmissions

from coordinated DAEs. The mobile acoustic communication experiment (MACE10)

was carried out off the coast of Martha’s Vineyard, Massachusetts, in June 2010. The

water depth was about 95 to 100 meters. The receiver array was stationary, while

the source was towed slowly away from the receiver from 500 m to 4.5 km and then
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Figure 4.10: Evolution of the channel impulse response in the MACE10 experiment.

towed back, at a speed around 1 m/s. Out of two tows in the experiment, we only

consider the data set collected in the first tow, where 30 recorded transmissions are

used for emulation and each transmission has 20 OFDM blocks. The average received

SNR of the recorded transmissions is around 20 dB.

The ZP-OFDM parameters are listed in Table 4.2. The subcarrier distribution is

identical to that in Section 4.6. The data symbols are encoded with a rate-1/2

nonbinary LDPC code and modulated with a QPSK constellation. The data rate is

R =
1

2

|SD|
T + Tg

log24 = 2.7 kb/s. (4.48)
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data.

We recycle the simulated system layouts in Section 4.6, and assume that the maximal

transmission power level of each DAE is 180 dB and the noise level is 60 dB. The

received signals at the legitimate user and the eavesdropper are emulated based on the

recorded waveforms in MACE10, where prior to the emulation, a resampling operation

to remove the Doppler effect caused by the source mobility. Fig. 4.10 illustrates an

example of the evolution of the underwater acoustic channel in MACE10. For each

simulation layout, white Gaussian noise of appropriate variance levels are introduced

to control the received SNR at the legitimate user and the eavesdropper.

With different numbers of receive hydrophones, Fig. 4.11 shows the BLER perfor-

mance of the eavesdropper and the legitimate user in the three configurations defined
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Figure 4.12: Decoding BLERs of the legitimate user and the eavesdropper with location
inaccuracy.

in Section 4.6.1. Similar to our observations in simulation, the signal alignment

method with the eavesdropper’s location information achieves the highest level of

transmission secrecy. The signal alignment method without the eavesdropper’s loca-

tion information exhibits better secrecy performance than the benchmark method.

For the signal alignment method with the eavesdropper’s location information, the

impact of location inaccuracy of both the legitimate user and the eavesdropper on the

transmission secrecy is depicted in Fig. 4.12, where the location error of the legitimate

user and the eavesdropper follows an independent zero-mean Gaussian distribution

with a standard deviation of σd. Similar to the observation in Fig. 4.6, the BLER

performance gap between the legitimate user and the eavesdropper degrades as the
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location error increases. Nevertheless, the proposed method achieves decent secrecy

performance with a location error less than 50 m, and localization techniques with

an error less than 10 m have been demonstrated in real underwater acoustic systems

[121].

4.8 Summary

In this chapter, we investigated signal alignment for secure underwater CoMP trans-

missions. Exploiting the low sound speed in water and the spatial diversity of DAEs,

transmission secrecy was achieved by overlapping signals at the eavesdropper while

keeping them free of collision at the legitimate user. Practical designs of the above

signal alignment concept were pursued. The eavesdropper’s interception capability

was minimized through jointly optimizing relevant transmission parameters, including

the transmit DAE set, and the transmission schedule and power level of each DAE,

under a lower bound constraint of the received SNR at the legitimate user. Taking

OFDM as the underlying modulation, both simulation and emulated experimental

results showed that the proposed method has much higher data confidentiality than

a benchmark method. From an information-theoretic perspective, we further derived

the secrecy capacity and the secure d.o.f. of the signal alignment method, which

revealed that a secure d.o.f. greater than 1
2 can be achieved, and the lower bound of

the secure d.o.f. increases as the number of DAEs increases.
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Chapter 5

Conclusions

We have witnessed emerging underwater applications from ocean monitoring to recent

underwater data centers. UWA communication networks are promising techniques

for medium and long ranges wireless information transfer in underwater applications.

However, with challenges induced by complex underwater environments and high

dynamic UWA channels, we are still at the early stage to make UWA communication

networks more reliable and efficient in demanding underwater applications.

This dissertation provides three research works towards intelligent and secure UWA

communication networks exploiting machine learning and signal processing. The three

research problems studied in the dissertation and their solutions are summarized as

follows.
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RL-based adaptive transmission: A RL-based adaptive transmission framework

was proposed for point-to-point UWA communication networks. The trans-

mission strategies were determined adaptively to balance energy efficiency and

information delivery latency according to UWA channel dynamics.

RL-based adaptive trajectory planning: A RL-based adaptive trajectory plan-

ning of multiple AUVs for water parameter field reconstruction was developed in

the under-ice environment. The optimal trajectories were learned online with a

goal to minimize a long-term system cost for field uncertainty reduction, where

the field knowledge was learned on the fly.

Secure underwater CoMP: A signal alignment method was designed for under-

water CoMP to secure a legitimate user against eavesdropping. The transmis-

sion schedule, the active DAE, and the transmission power were determined to

degrade the decoding performance of the eavesdropper.

The proposed algorithms were validated based on simulation and/or experimental

data sets. Compared to the benchmarks which had perfect system knowledge, the

proposed algorithms achieved decent system performance.

The machine learning techniques offer a new perspective to rethink about research

problems in UWA communication networks. In this dissertation, the RL framework
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was exploited to study the sequential decision-making problem for underwater ap-

plications which operate in the long term. It showed that applying machine learn-

ing techniques to UWA communication networks significantly improved their system

performance. About UWA network security, due to large sound prorogation delay

in water, conventional security mechanisms designed for terrestrial radio networks

cannot be applied directly to UWA networks, and many algorithms were proposed to

overcome that delay challenge. However, in this dissertation, we took the advantage

of the large sound prorogation delay to secure UWA communication networks. The

solutions in this dissertation provided innovative perspectives for research challenges

and opportunities in UWA communication networks.
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Appendix A

Detailed Derivation and Extension

for Chapter 2

A.1 Reformulation of Optimization Problem (4.21)

The optimization problem in (4.21) can be recast as

min
ϱ,TDAE,{Ptx,µ}µ∈TDAE

ϱ (A.1a)

s.t. λ(e)
µ ≤ ϱ, (A.1b)

ξℓµ+1 − ξℓµ ≥ Tbl, (A.1c)

Ptx,µ,L ≤ Ptx,µ ≤ Pth, ∀µ ∈ TDAE. (A.1d)
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Based on the definition of θν,µ in (4.23), the constraint in (A.1b) becomes

λ(e)
κµ

=
P (e)
rx,κµ

N0B +
∑

ν≠µ P
(e)
rx,κνθν,µ

≤ ϱ. (A.2)

Substituting (4.10) into (A.2) yields

Ptx,κµ · Ploss(fc, d
(e)
κµ )

N0B +
∑

ν∈TDAE,ν≠µ Ptx,κν · Ploss(fc, d
(e)
κν )θν,µ

≤ ϱ. (A.3)

With the definition of vector q in (4.24), the constraint in (A.1b) can be rewritten as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −ϱθ1,2 · · · −ϱθ1,M

−ϱθ2,1 1 · · · −ϱθ2,M
...

...
. . .

...

−ϱθM,1 −ϱθM,2 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

=G̃1(ξ,ϱ)

q ≤ ϱ1, (A.4)

where G̃1(ξ, ϱ) is a generic matrix of size M × M . The constraint (A.1c) can be

146



rewritten as ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 · · · 0 0

0 −1 1 0 · · · 0

...
...

...
. . . . . .

...

0 0 · · · 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

=G2

ξ ≥ Tbl1, (A.5)

where the size of G2 is (M − 1) ×M . Define qL and qU through replacing Ptx,µ by

Ptx,µ,L and Ptx,µ,th in (4.24) , respectively. The optimization problem in (A.1) can be

reformulated into the matrix form in (4.25).

A.2 Extension to General Scenarios

In the scenario with multiple users, the constraints (4.21b) and (4.21c) can be modified

to ensure that the blocks arrived at each user are well separated and with sufficiently

large received SNRs. Denote Tuser as the user set with Nuser users. The optimization

problem can be formulated as

min
TDAE,{tµ,Ptx,µ: µ∈TDAE}

max
µ∈TDAE

λ(e)
µ (A.6a)

s.t. λµν ≥ Γth, (A.6b)

ξℓµ+1,ν − ξℓµ,ν ≥ Tbl, ∀ν ∈ Tuser (A.6c)

0 ≤ Ptx,µ ≤ Pth, ∀µ ∈ TDAE (A.6d)
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where λµν and ξµ,ν is the received SNR and the time-of-arrival of the signal from the

µth DAE at the νth legitimate user, respectively. The optimization problem (A.6)

can be solved by the proposed Algorithm 1 and Algorithm 2 for synchronous and

asynchronous signal alignment, respectively.

Furthermore, from the legitimate user’s perspective, the scenario with multiple eaves-

droppers is equivalent to the scenario where an eavesdropper has multiple geograph-

ically distributed antennas. Modification of the objective function (4.21a) to the

scenario where an eavesdropper has multiple distributed antennas depends on the

diversity combining technique used by the eavesdropper. For instance, when the

maximal ratio combining (MRC) is used by an eavesdropper equipped with Nant

distributed antennas, the optimization problem can be recast as

min
TDAE,{tµ,Ptx,µ: µ∈TDAE}

max
µ∈TDAE

Nant∑

ν=1

λ(e)
µν (A.7a)

s.t. λµ ≥ Γth, (A.7b)

ξℓµ+1 − ξℓµ ≥ Tbl, (A.7c)

0 ≤ Ptx,µ ≤ Pth, ∀µ ∈ TDAE (A.7d)

where λ(e)
µν is the received SINR of the signal from the µth DAE at the νth antenna
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of the eavesdropper. By introducing an auxiliary variable

ϱ := max
µ∈TDAE

Nant∑

ν=1

λ(e)
µν (A.8)

and a new constraint
∑Nant

ν=1 λ(e)
µν ≤ ϱ, the optimization problem (A.7) can be solved

based on Algorithm 1 and Algorithm 2 for synchronous and asynchronous signal

alignment, respectively.

It can be easily shown that the scenario with multiple legitimate users and the sce-

nario where an eavesdropper has multiple distributed antenna elements can be jointly

considered through combining the optimization problems (A.6) and (A.7).

A.3 Derivation of Secure Degrees of Freedom

Assume the transmission powers of active DAEs going to infinity in the same order.

Accordingly, the received signal power at the legitimate user and the eavesdropper

can be rewritten as Prx,µ = αµP and P (e)
rx,µ = α(e)

µ P , respectively, where αµ and α(e)
µ

are constant. For upper bound of secrecy d.o.f., substituting (4.40) into (4.43) yields

ηU = lim
P→+∞

[

∑

µ∈TDAE

{
Tµ

Ttotal

log2

(

1 + αµP
σ2
w

)

log2

(

1 +
αµ′P

σ2
w

) − Tµ

Ttotal

log2

(

1 + α(e)
µ P

σ2
w+P (e)

I,µ

)

log2

(

1 +
αµ′P

σ2
w

)

}
]+

. (A.9)
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Due to the inter-symbol-interference the denominator of the second term is bounded

as P → +∞, hence leading the second term to be zero. Applying the L’Hospital’s

Rule to the first term yields

ηU = lim
P→+∞

∑

µ∈TDAE

{

Tµ

Ttotal

1
ln 2

1
1+αµP/σ2

w

αµ

σ2
w

1
ln 2

1
1+αµ′P/σ2

w

αµ′

σ2
w

}

=
∑

µ∈TDAE

{

Tµ

Ttotal

}

= 1. (A.10)

For lower bound of secrecy d.o.f., substituting (4.41) into (4.43) yields

ηL = lim
P→+∞

[

∑

µ∈TDAE

Tµ

Ttotal

log2

(

1 + αµP
σ2
w

)

log2

(

1 +
αµ′P

σ2
w

)

−
{M−1∑

µ=1

(Toµ − Toµ−1)

Ttotal

log2

(

1 +
P
∑

ν≥µ α(e)
oν

σ2
w

)

log2

(

1 +
αµ′P

σ2
w

)

}
]+

. (A.11)

For the first term, from (A.10), it goes to 1 as P → +∞. For the second term, it

comes to

M−1
∑

µ=1

{
(Toµ − Toµ−1)

Ttotal
lim

P→+∞

log2

(

1 +
P
∑

ν≥µ α
(e)
oν

σ2
w

)

log2

(

1 +
αµ′P

σ2
w

)

}

. (A.12)

By using L’Hospital’s Rule, it yields

lim
P→+∞

log2

(

1 +
P

∑
ν≥µ α

(e)
oν

σ2
w

)

log2

(

1 +
αµ′P

σ2
w

) = lim
P→+∞

1
ln 2

1

1+P
∑

ν≥µ α(e)
oν /σ2

w

∑
ν≥µ α

(e)
oν

σ2
w

1
ln 2

1
1+αµ′P/σ2

w

αµ′

σ2
w

= 1. (A.13)
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Thus, the second term is

M−1∑

µ=1

{
(Toµ − Toµ−1)

Ttotal
lim

P→+∞

log2

(

1 +
P

∑
ν≥µ α(e)

oν

σ2
w

)

log2

(

1 +
αµ′P

σ2
w

)

}

=
M−1∑

µ=1

(Toµ − Toµ−1)

Ttotal

=
ToM−1

Ttotal
. (A.14)

Consider that ToM−1 = Tmax. The secrecy d.o.f. is therefore lower bounded by

ηL = 1− Tmax

Ttotal
. (A.15)
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