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Abstract—We propose a novel automatic adaptive multi-point
moment matching algorithm for model order reduction (MOR)
of descriptor systems. The algorithm implements both adaptive
frequency expansion point selection and automatic moment order
control via a transfer function based error metric. Without a
priori information of the system response, the proposed algo-
rithm guarantees a much higher global accuracy compared with
standard multi-point moment matching without adaptation. The
moments are computed via a generalized Sylvester equation
which is subsequently solved by a newly proposed generalized al-
ternating direction implicit (GADI) method. Numerical examples
then confirm the efficacy of the proposed schemes.

I. INTRODUCTION

With the increasing scale of VLSI circuits, it becomes
extremely expensive, sometimes impossible, to analyze and
simulate the original large circuit system. Model order re-
duction (MOR) [1], [2] comes to the rescue by reducing the
complexity and size of those large systems with the goals of
preserving the input-output responses and important physical
properties.

One mainstream for MOR is multi-point moment matching
[3], [4], which performs better than single-point moment
matching in terms of global accuracy. However, there still
exists the following issues. First, it is very hard to place proper
(Laplace domain) expansion points without prior information
of the system response. Second, the order of moments at a
particular expansion point is usually chosen in an ad hoc
manner or heuristically. Increasing the order of moments or
the number of expansion points is likely to reduce the global
error, but this increases the dimension of the reduced order
model (ROM) and thus defeats the purpose of MOR.

There are some work on adaptive sample points selection
in the framework of truncated balanced realization (TBR) [5],
[6] or sample-based MOR [7]. However, little work has been
done to tackle the issues mentioned above in the framework of
moment matching based MOR, especially for the more general
descriptor systems. The TBR-based method in [5] introduces a
statistical re-sampling scheme which suffers high computation
cost. The sample-based MOR method in [7] presents an
adaptive scheme which requires a huge number of candidate
sample points and this method does not involve higher order
moments, so the ROM may lose accuracy if the sample points
are insufficient or not well-placed. Consequently, we propose
a novel and fully automatic adaptive multi-point moment
matching algorithm for descriptor system MOR which fills
the gap in the literature.

The main contributions of this paper are twofold. First, we
propose a transfer function based error metric to adaptively
select expansion points from a prescribed initial frequency
expansion point set and automatically determine the order of
moments per expansion point. Adaptive selection of expansion
points can place more points in the region with fast-changing
frequency response and fewer points in the region with a
smooth response. If the initial points are insufficient in some
region, adaptive determination of order of moments helps to
solve this problem and guarantee the global accuracy. Second,
MOR is performed by moment matching through solving a
generalized Sylvester equation corresponding to a descriptor
system. The equation is subsequently solved by a newly
proposed generalized alternating direction implicit (GADI)
scheme with an error-control terminating condition.

This paper is structured as follows. Section II reviews
moment matching. Section III introduces the descriptor system
moment matching via a generalized Sylvester equation and
the GADI method. Section IV presents the proposed adaptive
moment matching scheme. Numerical results are reported in
Section V. Finally, Section VI concludes the paper.

II. MOMENT MATCHING

Consider a linear, time-invariant, continuous-time descriptor
system described by

Eẋ = Ax+Bu, y = Cx+Du, (1)

where E,A∈Rn×n, B∈Rn×m, C∈Rp×n and D∈Rp×m. E
is generally singular. The transfer function of (1) is H(s) =
D+C(sE−A)−1B. Moment matching is to find a projection
matrix V ∈ R

n×q by computing the moments of the transfer
function. The ROM is

Erẋr = Arxr +Bru, yr = Crxr +Du, (2)

where Er = V TEV,Ar = V TAV,Br = V TB and Cr =CV .
The transfer function of the ROM, Hr(s) = D + Cr(sEr −
Ar)

−1Br approximates H(s). Expand H(s) at an expansion
point si by s-domain Taylor series, we can get

H(s)=D+

∞∑
k=0

(−1)kC[(siE−A)−1E]k(siE−A)−1B︸ ︷︷ ︸
ηk(si)

(s−si)
k,

(3)
where ηk(si) is called the kth moment at si. If we generate
a projection matrix of order qm at si, it means the reduced
transfer function Hr(s) matches the first q moments of H(s)
at si [8].
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III. EXTENSION AND IMPROVEMENT

A. Moment matching via Sylvester equation

We utilize a recently developed method which computes the
moments of H(s) through solving a Sylvester equation [9],
and extend it from regular systems (without E in the state
equation) to descriptor systems. As noted, the kth moment
at si is ηk(si) = (−1)kC[(siE − A)−1E]k(siE − A)−1B,
denoted as ηk(si) = Cπk, where πk ∈ R

n×m. Then, the first
q moments of H(s), denoted as CΠ, can be computed from
the following Sylvester equation,

AΠ+BL = EΠS, (4)

with Π = [π0, · · · , πq−1]∈Rn×qm, L = [Im, Om, · · · , Om]∈
R

m×qm and

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

siIm Im Om · · · Om

Om siIm Im · · · Om

...
. . .

. . .
...

Om · · · Om siIm Im

Om · · · Om Om siIm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

qm×qm,

where Im ∈R
m×m is an identify matrix and Om ∈R

m×m is
a zero matrix.

B. Generalized ADI for descriptor system Sylvester equation

The alternating direction implicit (ADI) iterative method in
[10] for solving Sylvester equation is only applicable to regular
state spaces and without a terminating condition. Here we
adapt it to generalized ADI (GADI) for solving the generalized
Sylvester equation, offer a new choice of shift parameters and
develop an economic terminating condition for GADI.

1) Extension to descriptor systems: The Sylvester equation
derived from descriptor systems in the previous section is

AΠ+BL = EΠS (5)

where E,A ∈ R
n×n, B ∈ R

n×m, L ∈ R
m×qm, S ∈ R

qm×qm.
E is generally singular. A and −S are assumed stable (i.e.
their eigenvalues have negative real parts). Given two sets of
shift parameters {αi} and {βi}, the GADI consists of two
half-steps,

EΠi+ 1
2
(S − αiI) = (A− αiE)Πi +BL, (6)

(A− βiE)Πi+1 = EΠi+ 1
2
(S − βiI)−BL. (7)

It can be verified that

Πi+1 = (αi − βi)(A− βiE)−1BL(S − αiI)
−1

+ (A− βiE)−1(A− αiE)Πi(S − βiI)(S − αiI)
−1.

(8)
Let Πi = ZiDiYi, we get a low-rank version of (8) as

Πi+1 =
[
(A− βiE)−1B (A− βiE)−1(A− αiE)Zi

]×[
(αi − βi)Im

Di

]
×
[

L(S − αiI)
−1

Yi(S − βiI)(S − αiI)
−1

]

= Zi+1Di+1Yi+1.
(9)

2) Choice of shift parameters: The ADI shift parameters
are usually chosen according to a minmax problem [10], which
is very expensive to compute. Here we give a new choice of
shifts. From (8) we can see if the shifts can achieve∥∥∥∥ k∏

j=1

(λA−αj)
(λA−βj)

∥∥∥∥ ·
∥∥∥∥ k∏
j=1

(λS−βj)
(λS−αj)

∥∥∥∥ < 1, (10)

where λA, λS are the eigenvalues of (A,E) and S, respec-
tively, then (8) will always converge. Therefore, we can choose
the shifts α and β as the real part of minimum spectral radii of
(A,E) and S, respectively. As a result, ‖λA−αj‖ < ‖λA−βj‖
and ‖λS − βj‖ < ‖λS −αj‖, then the left part of (10) would
be less than 1. The new shifts are easy to compute and often
lead to fast convergence.

3) Terminating condition: It can be observed that within
each iteration, Zi and Yi in (9) are only increased by one block
column or one block row. Πi+1 = Πi + Z(i+1)D(i+1)Y (i+1).
This allows us to derive a very cheap residual error monitor
involving only block vector-block vector multiplication,

errR = ‖Πi+1−Πi‖ = ‖(αi+1−βi+1)Z
(i+1)Y (i+1)‖, (11)

where Z(i+1) is the (i+ 1)th block column of Z and Y (i+1)

is the (i+ 1)th block row of Y . GADI is terminated when the
errR drops below a certain threshold. The algorithm is shown
in Algorithm 1 where tol denotes the threshold. In order to
be more general, we present the algorithm with multi-shift
parameters.

Algorithm 1 GADI
Input: E, A, S, B, L, {α1, α2, · · · }, {β1, β2, · · · }, tol
Output: Solution Π

1: Z(1) = (A− β1E)−1B, Y (1) = L(S − α1I)
−1

2: for i=1:k do
3: Z(i+1) = Z(i) + (βi+1 − αi)(A− βi+1E)−1Z(i)

4: Y (i+1) = Y (i) + (αi+1 − βi)Y
(i)(S − αi+1I)

−1

5: D(i+1) = (αi+1 − βi+1)Im
6: errR = ‖(αi+1 − βi+1)Z

(i+1)Y (i+1)‖
7: if errR < tol then
8: BREAK
9: end if

10: end for
11: Zi+1 = (Z(1), Z(2), · · · , Z(i+1))
12: Yi+1 = (Y (1), Y (2), · · · , Y (i+1))
13: Di+1 = diag((α1 − β1)Im, . . . , (αi+1 − βi+1)Im)
14: Π = Zi+1Di+1Yi+1

IV. AUTOMATIC ADAPTIVE MOMENT MATCHING

A. Transfer function based error metric

1) Error metric for moment order control: For certain
selected expansion point, a good error metric to monitor
the order of moment is the absolute error between transfer
functions of the original system and the reduced system,
namely,

errM(si) =
∥∥H(si)−Hr(si)

∥∥ . (12)



However, it is very expensive to explicitly compute the orig-
inal system’s transfer function, as it contains the expensive
computation of the inverse of (siI−A). Instead of computing
the actual error, we derive an error monitor from (12) which
avoids the explicit inverse of (siI −A). It can be verified

errM(si) =
∥∥C(siE −A)−1B − CVsi(siEr −Ar)

−1Br

∥∥
=

∥∥C(siE −A)−1[B − (siE −A)Vsi(siEr −Ar)
−1Br]

∥∥
(13)

where Vsi is the orthogonal projection matrix according to
expansion point si, Er = V T

si EVsi , Ar = V T
si AVsi , Br =

V T
si B. Thus, we use

RM(si) =
∥∥B − (siE −A)Vsi(siEr −Ar)

−1Br

∥∥ (14)

as the error monitor to indicate the error between the original
system and the ROM. This error monitor is highly economic
as it only contains (block) matrix-vector multiplication and a
small-size inverse.

2) Error metric for expansion point selection: Assume we
have already got a projection matrix containing the projection
bases with respect to all the already selected expansion points,
the following error metric can be derived as above to indicate
whether to continue selecting expansion point and which point
should be selected.

errS(st) =
∥∥Zv − Zt

∥∥ , (15)

where Zv = C(stE −A)−1B and Zt = Ct(stEt −At)
−1Bt,

Et = V T
t EVt, At = V T

t AVt, Bt = V T
t B, Vt is the orthogonal

projection matrix with respect to all the already selected
expansion points, st is the candidate point needed to be tested.
Similarly, we can derive the error monitor from (15) as

RS(st) =
∥∥B − (stE −A)Vt(stEt −At)

−1Bt

∥∥ , (16)

to indicate whether the ROM is accurate in the test point.

B. Adaptive moment matching

1) Automatic moment order control: The adaptive control
scheme works in an iterative manner. At each expansion
point, we iteratively increase the order of moments, i.e. the
order of Π, S and L in (4), until RM(si) of (14) drops
below a tolerance (denoted as tolM ). The projection basis
Vsi is obtained via solving (4) by GADI (see Algorithm 1).
When RM(si) drops below the tolerance, it means the current
ROM is sufficiently accurate at si, and therefore the order
of moments at si is sufficient and iteration should end. The
procedure is summarized in Algorithm 2.

2) Adaptive expansion point selection: For the expansion
point selection, if the reduced transfer function generated
by the current projection matrix is not accurate at a certain
frequency point, then this point should be added as a new
expansion point. Based on this idea, we prescribed an initial
expansion point set containing the candidate expansion points
distributed in the frequency range of interest and use RS(st)
of (16) to test each candidate point in the set. The point which
has the maximum value of RS should be selected as the
next expansion point (denoted as snew) in that it contains

Algorithm 2 Adaptive Moment Order Control
Input: E, A, B, si, tolM
Output: new projection basis expanded at si: Vsi

1: S1 = [siIm], L1 = [Im]
2: for q = 2 : k do

3: Sq =

[
Sq−1

siIm

]
, Lq = [Lq−1, Om]

4: solve AΠq +BLq = EΠqSq by Algorithm 1 and get a
new projection basis Vsi (Vsi = qr(Πq))

5: if RM < tolM then
6: BREAK
7: end if
8: end for

more new information which the current projection matrix
cannot provide than any other points in the expansion point set.
Afterwards, this point is removed from the set. The maximum
value of RS is denoted as MaxRS which is used to control
the projection matrix expansion flow.

3) Adaptive moment matching flow: The complete flow of
adaptive moment matching is summarized in Algorithm 3.

Algorithm 3 Adaptive Moment Matching
Input: E, A, B, initial expansion point set, tolerance tolS
Output: Multi-point multi-moment projection matrix V

1: initial: expand at initial point s0 and get VS0

2: for k = 1 : M (total number of points in initial set) do
3: compute the error monitor (16) of all the candidate

points in the set and select the point which has maxi-
mum RS as the next candidate expansion point snew

4: if MaxRS > tolS then
5: do moment matching at snew by Algorithm 2
6: update the projection matrix V by adding the new

basis Vsnew : V =
[
V Vsnew

]
, V = qr(V )

7: remove snew from initial expansion points set
8: else
9: BREAK

10: end if
11: end for

The flow will stop when MaxRS falls below the tolerance
(denoted as tolS), which means the current projection matrix
has already contained all the information the points in the
initial set can provide.

V. NUMERICAL RESULTS

The proposed algorithm is verified by four RLC examples
with linearly distributed initial expansion points. E is singular
in the state equation. We will compare the CPU runtime and
global accuracy in the frequency domain between adaptive
moment matching and standard multi-point moment matching
without adaption. The moments are generated via Sylvester
equation and solved by GADI in both methods. The error is
the relative error between the transfer function of the original



system and that of the ROM, namely,

error(jw) =

∥
∥
∥H(jw)−Hr(jw)

∥
∥
∥

∥
∥
∥H(jw)

∥
∥
∥

, (17)

at all the frequency points in simulation. All experiments are
performed in Matlab R2012b on a platform of Intel Core i5-
2400 with 3.10GHz CPU and 16GB RAM.

In our proposed method, the expansion points in the initial
set are evenly distributed within the frequency range of interest
in a linear scale. The number of expansion points in the initial
set is 1000 in all the experiments. To be fair, if we generate
a ROM of order R and expand at k points in the adaptive
method, then in the standard method we set the number of
expansion points as k (evenly linearly distributed in the same
frequency range) and the number of moments per point as R/k
(fix it as an integer). Then the order of ROMs and number of
expansion points in the two methods will be the same.
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Fig. 1. Frequency response and relative error comparison of example 2.
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Fig. 2. Frequency response and relative error comparison of example 3.

Fig. 1 and Fig. 2 show the comparison of frequency re-
sponse and relative error of examples 2 and 3, respectively.
It can be observed from both examples that the frequency
response of the ROM generated by adaptive method cannot
be distinguished from the original one, whereas the ROM
generated by standard method can only match the original

TABLE I
COMPARISON WITH LINEARLY DISTRIBUTED EXPANSION POINTS

Example
Order Adaptive Standard

Original ROM t/s
Error

t/s
Error

Average Max Average Max
1 540 65 1.91 0.003 0.29 0.20 0.21 21.6
2 1536 44 3.65 0.007 0.35 0.90 0.22 17.1
3 1920 93 17.6 0.082 0.40 7.68 0.58 15.1
4 4863 100 13.4 0.010 1.80 1.88 0.19 48.1

response in the smooth region but loses accuracy in the range
with fast-changing responses. The relative error of adaptive
method is much lower than standard method throughout the
whole frequency range. Observations from examples 1 and 4
are similar. Table I gives the details of four examples, t is the
runtime (in seconds). It can be seen that with the same order
of ROM, the proposed method enjoys much higher accuracy
than the non-adaptive method, though at the expense of higher
CPU times.

VI. CONCLUSION

In linear circuit simulation, standard moment matching
method is faced with the problem of determining the expansion
points and the order of moments. This paper has proposed an
efficient automatic solver (GADI) for generalized Sylvester
equation and a new automatic adaptive multi-point moment
matching algorithm, adapted to the general settings of de-
scriptor systems. The experimental results have shown that the
proposed algorithm provides much higher global accuracy than
the multi-point moment matching method without adaption.
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