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Samenvatting
– Summary in Dutch –

Naargelang de grootte afneemt en complexiteit toeneemt van de huidige
geı̈ntegreerde schakelingen is er een nood aan innovatieve ontwerptechnieken.
Omwille van de trend naar hogere kloksnelheden is het belangrijk om rekening
te houden met de interacties tussen schakelingen en hun omliggende componen-
ten. Hierdoor winnen nauwkeurige circuitsimulatie methodes aan belang. Een
manier om dit probleem aan te pakken is door gebruik te maken van snellere com-
puter hardware. Soms is het probleem niet enkel gerelateerd aan de omvang van
het circuit, maar ook aan de tijd die simulaties innemen of de complexiteit van het
model. Derhalve de efficiëntie van het simulatieproces te verbeteren is het belang-
rijk om bijzondere kenmerken van het probleem te benutten met behulp van een
algoritme of techniek.

Een mogelijke aanpak maakt gebruik te maken van Model Orde Reductie
(MOR) technieken. MOR capteert de belangrijkste kenmerken van de schake-
ling en berekent hiervoor een vereenvoudigd dynamisch model. Dit leidt tot meer
efficiënte berekeningen, een lagere opslagcapaciteit en hogere accuraatie. Basis-
technieken voor MOR werden reeds in de jaren tachtig en jaren negentig voor-
gesteld. Technieken zoals de afgeknotte evenwichtige realizatie (TBR), Hankel
norm reductie en een orthogonale decompositie (POD) zijn speciaal ontwikkeld
geweest voor systeem- en controle theorie. Technieken die gebaseerd zijn op Kry-
lov deelruimten zoals Padé via Lanczos, PRIMA en Laguerre-SVD werden later
ontwikkeld. Het compact modelleren van passieve RLC interconnecties is een
intensief onderzoeksgebied omwille van dominante vertragingseffecten in het hui-
dige systeem-op-een-chip ontwerp en het belang van signaalintegriteit. De Krylov
MOR technieken zijn ook uitgebreid naar systemen met vertraging en niet-linear
gedrag. Om accurate gereduceerde modellen te genereren over het gehele frequen-
tiebereik kan een meerpunts MOR gebruikt worden.

MOR technieken voeren enkel reductie uit met betrekking tot de tijd of fre-
quentie. Tijdens het ontwerp van grootschalige systemen is het ook essentieel
om het gedrag van een schakeling als functie van ontwerpveranderlijken te be-
studeren, zoals omgevingsveranderlijken, thermische effecten, productvariaties en
schommelingen in de kritische afmetingen van geometrische veranderlijken. Een
typische ontwerpprocedure die optimalisatie en ontwerpverkenning van de ruimte
omvat, vereist herhaalde simulaties voor verschillende waarden van de ontwerp-
veranderlijken. Het is vaak niet mogelijk om een groot aantal simulaties van grote
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circuits uit te voeren vanwege de grote rekenkost per simulatie. Deze ontwerpac-
tiviteiten vragen om de ontwikkeling van parametrisatietechnieken.

Geparametriseerde model orde reductie (PMOR) werkwijzen kunnen grote
stelsels vergelijkingen reduceren met betrekking tot tijd en frequentie en ook an-
dere ontwerpveranderlijken van de schakeling. Ze zijn daarom goed geschikt om
ontwerpactiviteiten efficiënter uit te voeren. De twee belangrijkste klassen van
PMOR technieken zijn multiparameter moment matching en multivariate interpo-
latie. De eerste methode bepaalt een gemeenschappelijke projector die de infor-
matie over het systeem en parameters bewaart; de laatste reduceert elk systeem
met meerdere veranderlijken met behulp van hun individuele projectoren en ver-
krijgt een globaal PMOR model via multivariate interpolatie. De interpolatie kan
worden uitgevoerd op de ingang-uitgang representatie (overdrachtsfunctie) en de
toestandsruimte matrices.

Dit proefschrift richt zich voornamelijk op interpolatie gebaseerde PMOR tech-
nieken en bespreekt er verschillende aspecten van, zoals het schatten van de gere-
duceerde orde, lokale versus globale aanpak, het behoud van systeemeigenschap-
pen en het compacteren van de gemeenschappelijke projectiematrix voor de ont-
werpruimte op basis van singuliere waarde ontbinding. Ook de voordelen van het
combineren van een sequentiële sampling techniek samen met een PMOR techniek
worden geı̈lustreerd.

Een geparametriseerd model kan ook worden verkregen via het identificatie-
proces uitgaande van een set van multivariate datapunten. Zoals eerder vermeld,
kan het geparametriseerde model worden verkregen door multivariate interpolatie
van de frequentie respons of toestandsruimte matrices. De passieve interpolatie
van de toestandsruimte matrices van een aantal univariate modellen geeft een ver-
hoogd modelleringsvermogen ten opzicht van input-output interpolatie, maar is
meer gevoelig voor problemen met de gladheid van de toestandsruimte matrices
als een functie van de veranderlijken.

Het proefschrift is als volgt opgebouwd: Hoofdstuk 1 geeft een algemene in-
leiding van het werk en de grote onderzoeksbijdragen. In Hoofdstuk 2 wordt
een literatuuroverzicht gegeven over de verschillende MOR en PMOR technie-
ken. Een korte introductie over lineaire tijd-invariante (LTI) systemen worden
gegeven, alsook de algemene notaties die worden gebruikt in de volgende hoofd-
stukken. In hoofdstuk 3 wordt de hogere orde Krylov deelruimte MOR techniek
voor tijdsvertraagde systemen (TDSs) gepresenteerd die gebaseerd is op Lagu-
erre expansies. Hoofdstuk 3 presenteert een gereduceerde orde schattingstechniek
voor TDSs. In Hoofdstuk 4, het wordt het belang van meerpuntsexpansie MOR
technieken geı̈ntroduceerd en een hybride adaptieve frequentiebemonsteringstech-
niek wordt gepresenteerd. In het eerste deel van hoofdstuk 4 wordt de reflectieve
exploratie techniek geı̈ntroduceerd voor quasi-statische systemen, d.w.z. syste-
men die beschreven zijn door frequentieonafhankelijke toestandsruimte matrices.
Vervolgens wordt de techniek toegepast op systemen met frequentieafhankelijke
toestandsruimte matrices. Om het systeem te valideren wordt het model zoals
verkregen na reflecterende exploratie verder verfijnd middel van een binaire zoek-
tocht. Het afknotten van de gemeenschappelijke projectie matrix op basis van de
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singuliere waarden wordt geı̈ntroduceerd in hoofdstuk 4. Vervolgens wordt een
unieke realisatie voor de interpolatie van toestandsruimte matrices van ontwerp
veranderlijken besproken in hoofdstuk 5. De Sylvester realisatie wordt gentro-
duceerd in hoofdstuk 5 en vergeleken met de Gilbert realisatie, de gebalanceerde
realisatie en barycentrische realisatie wat de nauwkeurigheid van de voorgestelde
techniek illustreert. In hoofdstuk 6 wordt passiviteitsbewarende PMOR met be-
hulp van singuliere waarden en matrix interpolatie voorgesteld. In hoofdstuk 6
worden twee strategieën voorgesteld voor de schatting van de gereduceerde orde
voor een ontwerpruimte in PMOR. De techniek kan als lokaal of globaal worden
geı̈nterpreteerd en afhankelijk van het scenario varieert de computationele com-
plexiteit en nauwkeurigheid zoals aangetoond in hoofdstuk 6. In het tweede deel
van hoofdstuk 6 wordt aangetoond dat de totale simulatiekosten gereduceerd kun-
nen worden door het implementeren van een sequentiële bemonsteringstechniek
om veranderlijken te modelleren. In Hoofdstuk 7 wordt de in hoofdstuk 6 voorge-
stelde PMOR techniek uitgebreid tot TDSs die gemodelleerd worden met behulp
van de methode der karakteristieken (MOC). In Hoofdstuk 7 wordt een adaptief
algoritme ingevoerd voor het afknotten van de gemeenschappelijke projectiema-
trix. Tot slot wordt het proefschrift afgerond met conclusies en een uitzicht op
toekomstige werkzaamheden in hoofdstuk 8.





Summary

Design techniques are increasingly elaborate and innovative with the decreasing
size and increasing complexity of today’s integrated circuits. Also with the ongo-
ing trend of increasing the speed of operations, it is important to take into account
the interaction between the circuits and its surrounding, thereby necessitating ac-
curate circuit simulation methods. One way to address this issue is through the
use of faster computer hardware. However, at times the difficulty may not only be
related to the size of the circuit but also on the time needed for the simulations,
or on the model complexity involved. Thus to improve the efficiency of the simu-
lation process it is important to exploit the characteristic features of the particular
problem using some algorithm or technique. One way to do this is by using model
order reduction (MOR) techniques.

MOR captures the essential feature of a circuit and provides a simplified dy-
namical model for it. This yields efficient computation and storage capacity with
reliable accuracy. Basic techniques for MOR were proposed in the 80’s and 90’s
of the last century. Techniques like truncated balanced realization, Hankel-norm
reduction and proper orthogonal decomposition were developed especially for sys-
tem and control theory. Later techniques based on Krylov subspaces are mainly
Padé via Lanczos, PRIMA and Laguerre-SVD. Compact modeling of passive RLC
interconnects has been an intensive research area owing to the increasing signal in-
tegrity and dominant delay effects in current system-on-a-chip design. The Krylov
MOR techniques have also been extended to systems with delays and nonlineari-
ties.To generate accurate reduced models over the whole frequency range of inter-
est, multipoint MOR has recently been proposed.

MOR techniques perform model order reduction only with respect to time or
frequency. However, during the circuit design synthesis of large-scale systems, it
is also essential to analyze the response of a circuit as a function of design pa-
rameters, such as environmental effects, thermal effects, manufacturing variations
and fluctuations in the critical dimensions of geometrical layout features. A typi-
cal design procedure includes optimization and design space exploration, and thus
requires repeated simulations for different design parameter values. It is often not
feasible to perform multiple simulations of large circuits, due to the high compu-
tational cost per simulation. These design activities call for the development of
parameterization techniques.

Parameterized model order reduction (PMOR) methods can reduce large sys-
tems of equations with respect to time or frequency and also other design pa-
rameters of the circuit and are therefore well suited to efficiently perform design
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activities. The two main classes of PMOR techniques are multiparameter moment
matching and multivariate interpolation. The former finds a common projector
which preserves the information about system and parameters; the latter reduces
each system with different parameters using their individual projectors and ob-
tains a global PMOR model by multivariate interpolation. The interpolation can
be performed using input-output representation (transfer function) and state-space
matrices.

This PhD thesis focuses mainly on interpolation based PMOR techniques and
discusses different aspects, such as the estimation of the reduced order, local versus
global approaches based on the design space, preservation of system properties and
compacting the common projection matrix for the design space based on singular
values. Also the advantages of combining a sequential sampling technique along
with a PMOR technique is illustrated.

A parameterized model can also be obtained via the identification process start-
ing from a set of multivariate data samples. As mentioned before, the parameter-
ized model can be obtained by the multivariate interpolation of input-output or
state-space matrices. The passive interpolation of the state-space matrices of a
set of root models provides an increased modeling capability over input-output
interpolation, but is sensitive to issues related to the interpolation of state-space
matrices, such as the smoothness of the state-space matrices as a function of the
parameters.

The PhD thesis is organized as follows: Chapter 1 gives a general introduc-
tion of the work and the major research contributions. In Chapter 2 a literature
survey is provided about the different MOR and PMOR techniques. Also a brief
introduction to linear time-invariant (LTI) systems is provided with the general no-
tations that will be used in the following chapters. In Chapter 3, the higher order
Krylov subspace MOR technique for time-delay systems (TDSs) based on La-
guerre expansions is presented. Chapter 3 also presents a reduced order estimation
technique for TDSs. In Chapter 4, the importance of multi point expansion MOR
techniques are introduced and an hybrid adaptive frequency sampling technique
is presented. In the first part of Chapter 4, the reflective exploration technique is
introduced for quasi-static systems i.e., systems described by frequency indepen-
dent state-space matrices. Then the technique is applied to systems with frequency
dependent state-space matrices. In order to validate the system the model obtained
after reflective exploration is further refined using a binary search. The trunca-
tion of the common projection matrix based on the singular values is introduced
in Chapter 4. Next the significance of a unique realization for the interpolation of
state-space matrices for parameterized modeling is discussed in Chapter 5. The
Sylvester realization is introduced in Chapter 5 and is compared with Gilbert real-
ization, Balanced realization and Barycentric realization to illustrate the accuracy
of the proposed technique. In Chapter 6, passivity-preserving PMOR using sin-
gular values and matrix interpolation is proposed. In Chapter 6 two strategies
are proposed for the estimation of the reduced order for a design space in PMOR.
Also the technique can be interpreted in two ways as local or global and depending
on the scenario the computational complexity and the accuracy varies as demon-
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strated in Chapter 6. In the second part of Chapter 6 it is shown that the overall
simulation cost can be reduced by implementing a sequential sampling approach
for parameterized modeling. In Chapter 7 the PMOR technique proposed in Chap-
ter 6 is extended to TDSs that are modeled using method of characteristics (MoC).
In Chapter 7 an adaptive algorithm is introduced for the truncation of the common
projection matrix. Finally, the dissertation is finalized with conclusions and future
work in Chapter 8.





1
Introduction

“We have no idea about the ’real’ nature of things ... The function of modeling is
to arrive at descriptions which are useful.”

–Richard Bandler and John Grinder (1979)

Computational science has become an important part of todays technological
world and can be considered as a discipline on its own, besides the discipline
of theory and experiments. Computer simulations are now performed routinely
for a wide variety of processes, and virtual design environments have been set
up for a variety of problem classes in order to ease the work of designers and
engineers. In this way new products can be made faster and more reliable. The
ever increasing demand for realistic simulations of complex products represents
a great challenge for researchers working in the area of computational science
and engineering. Realistic simulations imply that the errors of the virtual models
should be small and a variety of the different features of the product must be taken
into account [1].

1.1 Overview

The rapid advances of high frequency circuit technology have significantly af-
fected the construction of different types of microwave, millimeter-wave, optical
and VLSI devices commonly used in mobile communications, radio links, optical
communications, and various other automotive electronics systems. Electrically
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large electromagnetic (EM) structures are involved in the current wireless systems
such as waveguides, antennas, microwave circuits, and optical components, which
are very complex in both geometry and material properties [2]. The advances in
circuit technology have significantly reduced the feature size of high-speed elec-
tronic circuits and increased the density of chips. Therefore it is important to
meet the need for efficient analysis and design tools for simulating and model-
ing the behavior of such structures. Moreover, circuit designers also demand that
the simulation techniques be fast and run on relatively small computing platforms,
such as standard personal computers [2]. Hence at higher frequencies, integrated
and microwave circuits require fast and accurate modeling and simulation tech-
niques for the optimization and design space exploration problems. All together,
this implies that in order to describe an EM structure properly, it is necessary to
construct mathematical models which may contain many variables. In order to
perform simulations, it becomes necessary to approximate those models by mod-
els of lower complexity, while approximately maintaining the same behavior. This
is known as model order reduction (MOR) [1, 3–7]. MOR has a long history in
the systems and control literature. The main idea is that a high-dimensional state
vector might belong to a low-dimensional subspace. When the low-dimensional
subspace is known, the dynamical system can be projected on it. This projection
yields the required low-dimensional approximation. Model reduction aims to sub-
stantially increase the applicability of the traditional methods to structures such as
vias, high-speed packages, interconnects, and on-chip passive components [8–10].

The concept of MOR is founded mathematically in eigenvalue or singular value
(SVD) problems, and as this requires a considerable amount of computation, it
would be helpful if one could reduce the size of the model while keeping the ac-
curacy of the eigenvalue or SVD decomposition. Fundamental ideas and theories
which are used in MOR are developed from solving eigenvalue or SVD problems.
The application of MOR is especially important in the control engineering field
because reduced order models (ROMs) are very convenient to design a controller.
The demands for MOR also arises from structural analysis, especially as the finite
element (FE) analysis is nowadays widely used. The principle of the FE method
is approximating a continuous physical structure by discretized elements. As the
structure is divided into finer elements, the approximated model is closer to the real
structure. To increase the accuracy of structural analysis, a complex large struc-
ture needs to be divided into small elements. Consequently the model has a very
large size, that increases proportionally to the number of elements in the struc-
ture. Several hundred thousand degrees of freedom can result to large, complex
structures. This increases the computational time and effort, which is undesirable.
Here MOR comes into the picture, since it enables a formal approximation of the
physical model and hence, the generation of a compact model suitable for system
level simulation as shown in Fig. 1.1.
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Figure 1.1: Idea of Model Order Reduction [11]

Traditional MOR techniques perform model order reduction only with respect
to time or frequency. However, during the circuit design synthesis of large-scale
applications, it is also essential to analyze the response of a circuit as a function of
design parameters, such as geometrical and other features. A typical design pro-
cedure includes optimization and design space exploration. It requires repeated
simulations for different design parameter values. Parameterized model order re-
duction (PMOR) methods can reduce large systems of equations with respect to
time or frequency and also other design parameters and therefore are well suited
to efficiently perform design activities. Fig. 1.2 (a) and Fig. 1.2 (b) plots the sys-
tem response with respect to frequency for a value of length (parameter) and with
respect to length for a frequency point respectively. In Fig. 1.2 (c) a parameter-
ized model is plotted with respect to frequency and length which helps in better
analysis of the system.

PMOR not only makes the model smaller. It also reduces model manageable
with respect to the effects of the parameters, so that once the model reduction
phase is over, the reduced model with general parameter values can be obtained
from the reduced space only, regardless of the original large model; this ability is
of course very useful in optimization problems.

1.2 Research contributions
This PhD thesis focuses on efficient MOR and PMOR techniques for linear sys-
tems and time-delay systems (TDSs) using state-space matrices. The challenging
need for building a computationally efficient parameterized model and a reduced
order model over the design space of interest is addressed by novel techniques.
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Figure 1.2: Idea of Parameterized Model Order Reduction
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When the signal waveform rise time decreases and the corresponding spec-
tral content increases, the geometric dimensions become electrically large. Time
delays must be taken into account and included in the modeling [12, 13]. This
PhD thesis proposes a higher order Krylov subspace algorithm for MOR of TDSs
based on a Laguerre expansion technique to incorporate this delay. A zero-order
approximation technique is also proposed to estimate the reduced order for the
MOR. This tackles an important and practical common problem in prominently
used order-reduction techniques, is namely the estimation of the reduced order for
the reduced model. The proper choice of order is important to achieve the pre-
defined accuracy.

The model obtained after MOR must not only be accurate in the vicinity of
a single point in the frequency range but also over the whole frequency range of
interest. To implement this, multipoint reduction algorithms have been developed
over the years [5, 14, 15]. These allow to generate accurate reduced models over
the whole frequency range of interest. This PhD thesis proposes an hybrid adaptive
sampling algorithm for the selection of the expansion points for systems described
with frequency independent and frequency dependent state-space matrices. In or-
der to have an optimum number of frequency samples, the proposed algorithm
uses a reflective exploration (RE) technique for the adaptive selection of the sam-
ples. The sampling is further refined using a binary search (BS). RE is a selective
sampling technique. The model is improved incrementally using the best possible
data at every step. It uses the reflective functions to propose candidate exploration
points [16]. RE is an effective technique to be used when it is expensive to obtain
the actual model response from the EM simulator.

MOR is known to be an efficient tool for replacing very large dynamical sys-
tems in numerical simulations by systems of much smaller dimension while keep-
ing a desired accuracy in the approximation of the original system response. How-
ever, significant modifications to the underlying physical model such as geometric
variations, changes in material properties, or alterations in boundary conditions are
usually not dealt with in the ROMs. This motivates the development of new model
reduction methods which preserve the parameterized dependence of the original
system in the ROM. For such cases PMOR has proved to be an efficient and accu-
rate technique [17–21]. The PMOR technique reduces large systems of equations
with respect to time or frequency and also other design parameters and is therefore
well suited to efficiently perform design activities. In this PhD thesis, an efficient
state-space interpolation technique is proposed for obtaining accurate PMOR’s.
The technique introduces two strategies for the estimation of the reduced order for
the design space as it is important for repeated simulation tasks to avoid unneces-
sary computational cost. A common projection matrix is found locally or globally
as per the designer requirement. This PhD thesis also demonstrates the importance
of sequential sampling for selecting the interpolation root models and building the
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parameterized models. It is shown that sequential sampling algorithms can signif-
icantly reduce the model generation cost.

The parameterized models can also be obtained by the interpolation of the
transfer function [17–19, 21] or by the interpolation of the state-space matrices
[20] of multivariate data obtained through an identification process. In compari-
son to the transfer function interpolation, in state-space matrices based interpola-
tion the matrices of the same order are interpolated and hence the model order is
kept the same throughout the design space considered. Thus in general state-space
interpolation gives a more compact model. In the literature an interpolation based
on amplitude and frequency scaling coefficients has been proposed which over-
comes the problem of model oversize with transfer function interpolation [22].
Also, state-space interpolation helps to parameterize the poles and residues of the
system and hence has a higher modeling capability in comparison with transfer
function interpolation.

Unfortunately, it is known that state-space matrices do not have a unique re-
alization, which could affect the assumed smoothness of the state-space matrices
with respect to the design parameters. To address this the PhD thesis proposes
a novel state-space realization using a Sylvester technique. The Sylvester tech-
nique is used in combination with suitable interpolation schemes to interpolate a
set of state-space matrices, and hence the poles and residues indirectly, in order to
build accurate parameterized macromodels. The key points of the technique are
the choice of a proper pivot matrix and a well-conditioned solution of a Sylvester
equation. Stability and passivity are guaranteed by construction over the design
space of interest.

1.3 Outline of the Thesis

An overview of the different chapters is provided in the following paragraphs and
is indicated schematically in Fig. 1.3.

Chapter 2

Chapter 2 first gives a basic introduction to LTI systems and basic notations that
are necessary for understanding the main chapters of this PhD thesis. Then an
overview of the different MOR techniques is briefly discussed in Section 2.2. In
this PhD thesis the PRIMA and Laguerre-SVD based MOR techniques are in gen-
erally used for the algorithms. In the next section the PMOR techniques are de-
scribed based on two main streams, i.e., the multiparameter moment matching
method and the interpolation based method.
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Figure 1.3: Schematic position of the different chapters in this dissertation

Chapter 3

Chapter 3 provides a MOR technique for large scale systems that is described by
delayed differential equations. The technique is a generalization and extension
of the well-known Laguerre-SVD method to TDSs. The algorithm proposes a
Laguerre expansion for the delays together with a higher-order Krylov subspace
technique for obtaining the ROMs for the TDSs.

Chapter 4

Chapter 4 deals with the importance of adaptive frequency sampling for multi-
point MOR techniques using reflective exploration. In the first part of Chapter
4 the reflective exploration technique is discussed using frequency independent
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state-space matrices and in the second part a hybrid adaptive sampling technique
is proposed. The hybrid adaptive sampling technique is a combination of a reflec-
tive exploration and a binary search technique. which illustrates the generation
of ROMs for systems described by large scale frequency dependent state-space
models. The importance of optimizing the sampling over the frequency range of
interest in order to avoid oversampling or undersampling is demonstrated.

Chapter 5

In Chapter 5 a novel state-space realization is proposed to build accurate param-
eterized macromodels. An intelligent choice of the state-space realizations is re-
quired for the state-space interpolation. This is needed in order to guarantee the
assumed smoothness of state-space matrices with respect to the design parameters.
The technique also guarantees stability and passivity of the model by construction
over the design space of interest.

Chapter 6

Chapter 6 presents a PMOR method based on singular values and matrix interpo-
lation. The design space is divided into cells and a Krylov subspace is computed
for each cell. Next the merged Krylov subspace is truncated with respect to its sin-
gular values to obtain a common projection matrix for the design space. Finally,
the reduced system matrices are interpolated using positive interpolation schemes
to obtain a guaranteed passive parameterized reduced order model. Chapter 6 also
demonstrates the importance of sequential sampling for selecting the interpolation
nodes and building the PMOR. It is shown that sequential sampling algorithms can
significantly reduce the model evaluation cost.

Chapter 7

Chapter 7 is an application of Chapter 6 to time-delay systems. As introduced in
Chapter 3, the delays are approximated using an expansion series and uses higher-
order Krylov subspace based MOR. An adaptive truncation of the singular values
of the common projection matrix for the design space considered is introduced in
this Chapter.

Conclusions

A summary of the research contributions of this PhD thesis is provided in this
chapter. The possibilities for future directions are also discussed.
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1.4 Publications

The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. The fol-
lowing list provides an overview of the publications during my PhD research.

1.4.1 Publications in international journals
(listed in the Science Citation Index 1 )

1. Elizabeth Rita Samuel, Luc Knockaert, Francesco Ferranti, Tom Dhaene.
Guaranteed Passive Parameterized Macromodeling by Using Sylvester
State-Space Realizations. Published in IEEE Transactions on Microwave
Theory and Techniques, 61(4):1444–1454, April 2013.

2. Elizabeth Rita Samuel, Francesco Ferranti, Luc Knockaert, Tom Dhaene.
Passivity-Preserving Parameterized Model Order Reduction Using Singular
Values and Matrix Interpolation. Published in IEEE Transactions on Com-
ponents Packaging and Manufacturing Technology, 3(6):1028–1037, June
2013.

3. Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene. Model Order Re-
duction of Time-Delay Systems Using a Laguerre Expansion Technique.
Published in IEEE Transactions on Circuits and Systems I: Regular Papers,
61(6):1815–1823, June 2014.

4. Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene. Matrix Interpolation
based Parameterized Model Order Reduction for Multiconductor Transmis-
sion Lines with Delays. Accepted in IEEE Transactions on Circuits and
Systems II, September 2014.

5. Elizabeth Rita Samuel, Francesco Ferranti, Luc Knockaert, Tom Dhaene.
A Hybrid Adaptive Sampling Algorithm for Obtaining Reduced Order Mod-
els for Frequency Dependent State-Space Matrices. Submitted to SIAM
Journal on Scientific Computing, January 2015.

6. Elizabeth Rita Samuel, Dirk Deschrijver, Luc Knockaert, Tom Dhaene.
Rational Modeling Of Multivariate Multifidelity Data. Submitted to Simu-
lation Modeling Practice and Theory, December 2014.

1The publications listed are recognized as ‘A1 publications’, according to the following definition
used by Ghent University: A1 publications are articles listed in the Science Citation Index, the Social
Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of Science, restricted
to contributions listed as article, review, letter, note or proceedings paper.



10 CHAPTER 1

1.4.2 Publications in book chapters

1. Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene, “Passive Parametric
Macromodeling by Using Sylvester State-Space Realizations”. Chapter in
the book Informatics in Control, Automation and Robotics, Lecture Notes
Electrical Engineering, ISBN: 978-3-319-10890-2, Springer International
Publishing Switzerland, pages 311-327, 2014.

1.4.3 Publications in international conferences
(listed in the Science Citation Index 2 )

1. Elizabeth Rita Samuel, Francesco Ferranti, Luc Knockaert, Tom Dhaene.
Parameterized reduced order models with guaranteed passivity using ma-
trix interpolation. Published in proceedings of the IEEE 16th Workshop on
Signal and Power Integrity, pages 65–68, Sorrento, Italy, 2012.

2. Elizabeth Rita Samuel, Francesco Ferranti, Luc Knockaert, Tom Dhaene.
Robust passivity preserving parametric model order reduction using matrix
interpolation. Published in proceedings of the 7th IFAC Symposium on
Robust Control Design, pages 705–710, Aalborg, Denmark, 2012.

3. Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene. Parametric macro-
modeling using interpolation of Sylvester based state-space realizations.
Published in proceedings of 10th International Conference on Informatics
in Control, Automation and Robotics, pages 319–325, Reykjavik, Iceland,
2013.

4. Elizabeth Rita Samuel, Krishnan Chemmangat, Dirk Deschrijver, Luc Knock-
aert, Tom Dhaene. Model order reduction of parameterized state-space sys-
tems with sequential sampling. Published in proceedings of the International
Symposium on Electromagnetic Compatibility, pages 342–347, Brugge, Bel-
gium, 2013.

5. Elizabeth Rita Samuel, Francesco Ferranti, Luc Knockaert, Tom Dhaene.
Reduced order delayed systems by means of Laguerre functions and Krylov
subspaces. Published in proceedings of the 18th IEEE Workshop on Signal
and Power Integrity, pages 1–4, Ghent, Belgium, 2014.

6. Elizabeth Rita Samuel, Francesco Ferranti, Luc Knockaert, Tom Dhaene.
Multipoint Model Order Reduction using Reflective Exploration. Published

2The publications listed are recognized as ‘P1 publications’, according to the following definition
used by Ghent University: P1 publications are proceedings listed in the Conference Proceedings Ci-
tation Index - Science or Conference Proceedings Citation Index - Social Science and Humanities of
the ISI Web of Science, restricted to contributions listed as article, review, letter, note or proceedings
paper, except for publications that are classified as A1.
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in the 10th International Conference on Scientific Computing in Electrical
Engineering , pages 109-110, Wuppertal, Germany, 2014.

7. Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene. Passivity preserving
Multipoint Model Order Reduction using Reflective Exploration. Published
in proceedings of 10th International Conference on Informatics in Control,
Automation and Robotics, pages 483–491, Vienna, Austria, 2014.

8. Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene. Multipoint Model
Order Reduction using Reflective Exploration. Submitted to Springer Series
Mathematics in Industry, October 2014.

1.4.4 Publications in national conferences

1. Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene. Parametric model
order reduction: obtaining concise mathematical models that work. Pub-
lished in the 13th UGent - FEA PhD symposium, Ghent, Belgium, Dec.
2013.
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2
Introduction to Model Order Reduction

and Parameterized Model Order
Reduction

Most physical real-world systems are described by partial differential or dis-
tributed equations. An accurate representation requires millions of degrees of
freedom and hence the solution of the system will require a considerable amount of
data storage and computation time. The aim of model order reduction (MOR) and
parametrized model order reduction (PMOR) is to significantly reduce the degrees
of freedom needed to describe the physical system. Henceforth in this chapter,
we focus on the state-of-the-art techniques for MOR and PMOR. MOR replaces a
given mathematical model of a system or process by another model that is much
smaller than the original model and this involves a number of important issues.

2.1 Linear Time-Invariant Systems (LTI)

This section gives an introduction to LTI from the viewpoint of MOR and numer-
ical linear algebra. The stability and passivity of LTI systems is also addressed.

2.1.1 State-space systems

The state-space representation is a convenient way to model and analyze systems
with multiple inputs and outputs. The most general state-space representation of a
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LTI system can be mathematically described as follows:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t), (2.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp
and D ∈ Rp×m. The matrix A is called the state-space matrix, the matrices B and
C are called the input and output matrices respectively, and D is the feed-forward
matrix which allows the system input to affect the system output directly. For the
systems considered in this PhD thesis the D is the zero matrix. The order of the
system is n. If m, p > 1, the system is called multi-input multi-output (MIMO).
If m = p = 1 the system is called single-input single-output (SISO).

By applying the Laplace transform to (2.1) the transfer function matrix H of
the system is obtained as

H(s) = C(sI−A)−1B + D, (2.2)

under the condition that the initial states are zero. The input-output relation in
the Laplace domain is simply Y(s) = H(s)U(s), where Y(s) and U(s) are the
Laplace transforms of y(t) and u(t), respectively. The lower limit n̂ ≤ n on the
order of the system is called the McMillan degree of the system and a realization
of order n̂ is called a minimal realization. In what follows, we generally assume,
unless stated otherwise, that all state-space realizations are minimal.

State controllability means that it is possible, by admissible inputs to steer the
states from any initial value to any final value within some finite time window [1].
A continuous time-invariant linear state-space model is controllable if and only if

rank
[
B AB A2B . . . An−1B

]
= n. (2.3)

Where the rank of a matrix is the number of linearly independent rows.
Observability is a measure for how well internal states of a system can be

inferred by knowledge of its external outputs. A continuous time-invariant linear
state-space model is observable if and only if

rank


C
CA

...
CAn−1

 = n. (2.4)

The observability and controllability of a system are mathematical duals (i.e., as
controllability infers that an input is available that brings any initial state to any
desired final state, observability infers that knowing an output trajectory provides
enough information to predict the initial state of the system).
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2.1.1.1 Descriptor Systems

A system in its descriptor form is represented as:

Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t), (2.5)

with E ∈ Rn×n possibly singular but with A − sE a regular matrix pencil. The
linear system (2.5) is called regular if E is nonsingular, else it is called singular.

Such representations are common for interconnected systems and in this PhD
thesis the systems are generally represented in their descriptor state-space form.
The transfer function can be written as:

H(s) = C(sE−A)−1B + D. (2.6)

The development of reliable numerical algorithms for analysis and synthesis
of descriptor state-space systems has been an active area of research in the last
decade.

2.1.2 Moments

The transfer function is a function in s (2.6), and can therefore be expanded into a
Taylor expansion around s = 0:

H(s) = M0 + M1s+ M2s
2 + . . . (2.7)

where M0, M1, M2, . . . are the moments of the transfer function. In elec-
tronics, M0 corresponds with the DC operating point. The transfer function can
also be expanded around some non-zero s0. We then obtain a similar expansion in
terms of the moments.

H(s) = M0 + M1(s− s0) + M2(s− s0)2 + . . . (2.8)

2.1.3 Poles and Residues

The transfer function can also be represented as a rational function:

H(s) =

n∑
j=1

Rj

s− zj
, (2.9)

where the zj are the poles, and Rj are the corresponding residue matrices. The
poles are the eigenvalues of the system (2.5). During the approximation of systems
it is important to approximate the dominant poles.



18 CHAPTER 2

2.1.4 Stability

The stability of a LTI system is simply a property of its poles. For LTI systems,
stability is guaranteed if and only if the real part of every pole is non-positive, and
all poles with zero real part are simple (i.e. the poles on the imaginary axis are all
distinct from one another). If all poles have strictly negative real parts, the system
is strictly or asymptotically stable. If one or more poles have positive real parts the
system is unstable.

2.1.5 Passivity

Stability is a necessary, but not in general a sufficient condition for an LTI system
to be passive or dissipative. Roughly speaking, a dissipative system is charac-
terized by the property that at any time the amount of energy which the system
can conceivably supply to the environment cannot exceed the amount of energy
that has been supplied to the system itself. A merely stable system can become
unstable when non-active nonlinear loads are connected to it. On the contrary, a
passive system remains passive when non-active nonlinear loads are connected to
it. While a passive system is also stable, the converse is not necessarily true. A

Figure 2.1: Not passive ROMs can produce unstable systems when connected to other
stable, even passive, loads

passive system denotes a system that is incapable of generating energy, and hence
one that can only absorb energy from the sources used to power it [2]. If a system
is passive then the appropriate MOR procedure to use is of course the one that
preserves passivity.

2.2 Model Order Reduction

MOR is a mathematical tool used to find a low-dimensional approximation for a
system of ordinary differential equations (ODEs) [3]. MOR has been used exten-
sively in the circuit analysis community over the past years. The need for MOR
techniques was inspired by the desire to decrease the simulation time required for
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large-scale computer-generated models in analysis and design, while retaining suf-
ficient accuracy. The main idea is that the high-dimensional state vector belongs
to a low-dimensional subspace as shown in Fig. 2.2.

Figure 2.2: Low dimensional subspace

Provided that the low-dimensional subspace of z is known, the ordinary dif-
ferential equations can be projected on it. This is shown in Fig. 2.3 in the case
of a linear system of ODEs and it is seen that the projection gives us the required
low-dimensional approximation.
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Figure 2.3: Projecting a system of ODEs onto a low dimensional space.
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In the following sections an overview of some typical MOR approaches are
given.

2.2.1 Asymptotic Waveform Evaluation (AWE)

AWE was one of the initial contributions to MOR [4]. In AWE the transfer function
is reduced by means of a Padé approximation with numerator P(s) and denomi-
nator Q(s). AWE computes a finite degree approximation for P(s) and Q(s) with
deg(P(s)) ≤ deg(Q(s)). As indicated in formula (2.8) the transfer function can
be represented in terms of its moments and can be approximated as:

Ĥ(s) =

n∑
j=0

Mj(s− s0)j , (2.10)

for some finite n. Then a Padé approximation Ĥ(s) of the transfer function is
computed as:

Ĥ(s) =
P(s)

Q(s)
,

P(s) =

p∑
k=0

ak(s− s0)k , Q(s) =

p+1∑
k=0

bk(s− s0)k. (2.11)

On equating the coefficients of (s− s0) and setting b0 = 1, the coefficients bk
and ak can be computed. Calculating the poles and residues in AWE is inherently
a comuputational challenge, since ill conditioning frequently occurs in the AWE
scheme [5, 6].

2.2.2 Padé-via-Lanczos (PVL)

The motivation for the development of PVL [7] was to overcome some of the
issues and limitations of AWE. In PVL the moment matching is not explicitly
performed. The algorithm requires the same computational effort as AWE, but is
able to extract several more poles per expansion point and is more robust. In PVL
the transfer function is written as:

H(s) = C(I− (s− s0)Â)−1r, (2.12)

where Â = −(s0I −A)−1 and r = (s0I −A)−1B. The Padé approximation is
calculated by means of the two-sided Lanczos algorithm. This which is an iterative
algorithm that is also applicable to eigenvalue problems [8]. Â is approximated in
the form of a tridiagonal matrix Tq. This results in the reduced transfer function:

Hq(s) = Cre′1(I− (s− s0)Tq)
−1e1. (2.13)

Here, e1 is the first unit vector and the other parameters can be found in [7].
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2.2.3 Arnoldi and PRIMA

In the Arnoldi process a Krylov subspace is formed as follows [9]:

Kq(r, Â) = span{r, Âr, . . . , Âqr}. (2.14)

In comparison with PVL, in the Arnoldi method only one Krylov space is gen-
erated by means of the (block) Arnoldi process , and the projections are performed
with orthogonal operators. The expansion point can be chosen either real or com-
plex, leading to different approximations of the poles of the system.

The passive reduced-order interconnect macromodeling algorithm (PRIMA)
[10] generates Krylov subspace similarly as in Arnoldi method and generates an
orthogonal basis for the Krylov subspace. The projection of the matrices is done
explicitly as:

Aq = V′qAVq , (2.15)

where Vq is the projection matrix associated with the orthonormal basis for the
Krylov space. The PRIMA algorithm ensures the preservation of stability and
passivity.

2.2.4 Laguerre-SVD

In this method the transfer function is expanded in terms of Laguerre functions
[11, 12] using α, a positive real scaling parameter called the Laguerre parameter
or the time-scale factor [11, 13]

In the frequency domain, the Laplace transforms of the scaled Laguerre func-
tions can be written as

Φαi (s) =

√
2α

s+ α

(
s− α
s+ α

)i
i = 0, 1... (2.16)

In [11], it is shown that the transfer function of any system can be expanded
into the Laguerre orthonormal basis Φαi (s) as

H(s) = C(sE−A)−1B =

√
2α

s+ α

∞∑
i=0

Fi

(
s− α
s+ α

)i
(2.17)

where Fi’s are the matrices of the Laguerre coefficients. Then considering the
bilinear transformation,

s = α
1 + u

1− u
(2.18)
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the Laguerre expansion is mapped from s-domain to the u-domain as:

H(u) = C(u(αE + A)− (A− αE))−1B =
1√
2α

∞∑
i=0

Fiu
i (2.19)

The Krylov subspaces for the Laguerre based reduction approaches are defined
as, Kq(A−1u Eu,A

−1
u B) and Kq(A−Tu Eu,A

−T
u B).

As in the PRIMA method, the Laguerre-based method makes use of explicit
projection of the system matrices. Consequently, these methods preserve stability
and passivity. Since α is a real number, the matrices in the Laguerre algorithm
remain real during projection, thereby making it suitable for circuit synthesis. For
this PhD thesis, the PRIMA and Laguerre-SVD techniques of MOR were used.

2.2.5 Balanced Truncation

In control theory, the poles define the system stability, where the Hankel singular
values (HSV) define the energy of each state of the system. Keeping the dominant
energy states of a system, preserves most of its characteristics in terms of stability,
frequency and time responses. This is the rationale for the use of balanced trun-
cation based MOR. The major advantage of balanced truncation is that it gives a
deterministic global bound for the approximation error and produces nearly opti-
mal models in terms of error and model sizes [14, 15].

The controllability Wc and observability Gramians Wo are obtained from the
solutions of two Lyapunov equations:

AWc + WcA
′ + BB′ = 0

A′Wo + WoA + C′C = 0. (2.20)

After computing the Gramians, the system (2.2) is transformed in order to
balance the system. A system is said to be balanced if Wc = Wo = Σ, where
Σ is the diagonal Hankel singlar value matrix. The balancing transformation T is
applied to the system as shown:

Ar = T−1AT

Br = T−1B

Cr = CT

Dr = D (2.21)

with

T = R′U′Σ
1
2 and T−1 = Σ

1
2UR−1. (2.22)

Since Wc and Wo are positive definite. The Cholesky factorization of Wc gives
Wc = R′R. Then the HSV are computed as RWoR

′ = U′Σ2U. Balanced MOR



24 CHAPTER 2

is finally performed by truncating the matrices with respect to the most significant
HSV.

2.2.6 Proper Orthogonal Decomposition (POD)

The POD method is a sampling based reduction method. From snapshots of the
states, the optimal bases to describe these snapshots are found. The relation be-
tween POD and SVD makes POD applicable for model order reduction. It is used
for dynamic analysis of structures [16], and Micro Electro-Mechanical Systems
(MEMS) [17]. Since POD is applicable to nonlinear systems, it is often used in
the field of fluid dynamics or aerodynamics. However, the accuracy of the reduced
model is significantly dependent on the choice of the snapshots.

2.2.7 Multipoint MOR

ROMs obtained by MOR methods must be accurate over the whole frequency
range of interest. To obtain this, multipoint reduction algorithms have proved to
be efficient [18–20]. These algorithms allow to match a substantial number of
derivatives (or moments) around many distinct Taylor series expansion points.

To illustrate this, first consider the approximation achieved by expanding around
a single frequency point, as shown in Fig.2.4. It works by increasing the accuracy

Figure 2.4: The single point expansion based MOR.

of the approximation as the order of the reduced model is increased. However, to
achieve satisfactory levels of accuracy at points further away from the expansion
point, a much larger increase is needed in the order of the reduced model. Instead,
if multiple expansion points are used, as shown in Fig. 2.5, the same level of ac-
curacy can be achieved over the entire bandwidth with a much smaller reduced
model. One of the research contributions of this PhD thesis is to automate the
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Figure 2.5: The multiple point expansion based MOR.

choice of the expansion points and the determination of the order of approxima-
tion per expansion point.

2.3 Parameterized Model Order Reduction (PMOR)

PMOR is an adaptive and efficient approach for constructing ROMs that are robust
with respect to parameter changes in a given design space. The goal is to include
parametric effects into the reduced space based on general MOR methods, such
as SVD and Krylov [21]. Focusing on system parameters, the two main streams
used in PMOR are multiparameter moment matching and interpolation based. The
former finds a common projector which preserves the information about both the
system and the parameters; the latter reduces each system with a different pa-
rameter set individually using their own projector and approximating the response
via interpolation. The interpolation is performed using input-output representation
(transfer function) and state-space matrices. In this PhD thesis we focus on the
interpolation based PMOR technique.

2.3.1 Multiparameter moment matching

Moment matching algorithms have gained a well-deserved fame in nominal MOR
due to their simplicity and efficiency of application. The extension of these tech-
niques to parametric cases is usually based on the implicit and explicit moment
matching of the parametric transfer function [22]. These techniques approximate
the parameterized behavior using Taylor series expansions. Some of the multipa-
rameter moment matching methods presented in the literature [23–25] are suitable
only for a low-dimensional design space as in nearly all multiparameter moment-
matching based PMOR techniques. If the system has very distinctive parameter
sets, or if the system is nonlinearly dependent on parameters, the accuracy of re-
duced order model tends to be low. Consequently the required order of the pro-



26 CHAPTER 2

Figure 2.6: Parameterized Model Order Reduction approaches (Orange arrows
correspond to interpolation based PMOR and the blue arrows correspond to

multiparameter moment matching).

jector needed to maintain a certain level of accuracy will be high; that is the point
where interpolation methods come in. Interpolation based methods are a combi-
nation of two different fields of study: MOR and interpolation.

2.3.2 Interpolation based PMOR

There are many variations to interpolation based PMOR. In this PhD thesis we
focus on the input-output (transfer function) interpolation and he state-space inter-
polation.

2.3.2.1 PMOR based on input-output interpolation

Input-output based interpolation for PMOR is a quite robust technique. In input-
output interpolation the order of the PMOR increases due to the nature of the
input-output system level interpolation. A weighted sum of LTI systems does in-
deed result in a LTI system with order equal to the sum of the orders of the individ-
ual LTI systems. An increased model order leads to a reduction of the CPU time
efficiency of PMOR. The modeling capability is then much reduced in compari-
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son with state-space interpolation techniques. In order to increase the modeling
capability, a technique based on amplitude and frequency scaling of coefficients
technique was introduced [26] and proved to be an efficient PMOR technique.
The technique in [27] combines traditional passivity-preserving MOR methods
and interpolation schemes based on a class of positive interpolation operators. A
PMOR method based on EM matrix parameterization and projection subspaces is
proposed in [28]. Overall passivity of parameterized ROMs is guaranteed over the
design space of interest in [27, 28].

2.3.2.2 PMOR based on state-space interpolation

A parameterized dynamical system with N design parameters ~p = (p(1), ..., p(N))

can be represented in descriptor state-space form as:

E(p̃)
dx(t, p̃)

dt
= A(p̃)x(t, p̃) + Bu(t)

y(t, p̃) = Cx(t, p̃) + Du(t). (2.23)

As in [27, 29] using (2.23), a set of reduced system matrices is computed in
a common subspace and then interpolated to generate a PMOR. The state-space
matrices have the same order when they are interpolated, thus keeping the same
model order throughout the design space. It allows to parameterize the poles and
the residues and thus has higher modeling capabilities. This technique avoids the
oversize problem of multiparameter moment matching algorithms, but the reduced
system matrices needed for interpolation must have the same reduced order and
must be postprocessed for reprojection onto a common subspace. The passivity
of PROM is not guaranteed with this approach. In this PhD thesis, we propose
a PMOR technique which generates a common projection matrix for the design
space and also preserves the properties of the system.

To obtain an accurate parameterized model by interpolation of the state-space
matrices, the choice of the state-space realization is fundamental [30]. Here, we
propose to use a Sylvester realization technique for the unique representation of
the state-space matrices.
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The demands for miniature sized circuits with higher operating speeds have
increased the complexity of the circuit, while at high frequencies it is known that
effects such as crosstalk, attenuation and delay can have adverse effects on sig-
nal integrity. To capture these high speed effects a very large number of system
equations is normally required and hence MOR techniques are required to make
the simulation of the circuits computationally feasible. As briefed in the previous
chapter, it can be noted that MOR for LTI systems are quite well developed and
these techniques have been extended to time-delay systems (TDSs) and nonlinear
systems. In this chapter, a higher order Krylov subspace algorithm for model or-
der reduction of TDSs based on a Laguerre expansion technique is proposed. The
proposed technique consists of three sections i.e., first the delays are approximated
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using the recursive relation of Laguerre polynomials, then in the second part, the
reduced order is estimated for the TDSs using a delay truncation in the Laguerre
domain and in the third part, a higher order Krylov technique using Laguerre ex-
pansion is computed for obtaining the reduced order TDS. The proposed technique
is validated by means of real world numerical examples.

3.1 Introduction

The ever increasing quest for high density and high operating speed requires more
accurate models in modern electronic design, and this implies that the analysis
of interconnects and high-speed circuits has become a critical aspect for studying
system reliability, and speed of operation [1, 2]. The gigabit per second range for
high-speed links has made signal integrity (SI) analysis and design of interconnec-
tions of great importance.

For printed circuit board (PCB) structures, long transmission lines (TLs) are
often needed for accurate simulations. Lossy TLs are traditionally modeled by
ladder networks with cascaded sections of RLC components [3]. The effects of
different packaging components such as bond wires, traces, vias and balls can also
be modeled as RLC lumped components. When geometric dimensions become
electrically large and the frequency content of signal waveform increases, time
delays must be taken into account and, included in the modeling process [4, 5].
A major drawback of this brute force approach is the potentially huge number of
system equations leading to high CPU cost in the circuit simulation. To alleviate
this, efficient model order reduction (MOR) techniques can be used.

Most MOR approaches are based on moment matching techniques (MMTs)
and in general, MOR methods can be classified as explicit or implicit MMTs. The
explicit MMT using a single Padé expansion [6–8] is known as asymptotic wave-
form evaluation (AWE). However, AWE and the underlying Padé approximation
induces numerical ill-conditioning, while the approximant may produce unstable
poles as briefed in Section 2.2. Also, AWE does not guarantee passivity. The
implicit MMTs based on Krylov-subspace algorithms [5, 9–13] use congruence
transformation to deal with ill-conditionedness, and can also guarantee the preser-
vation of passivity in the reduced models.

TDSs are systems with aftereffect or dead-time, which belong to the class of
functional differential equations (FDEs), as opposed to ordinary differential equa-
tions (ODEs) [14]. TDSs in the Laplace domain contain elements with exponential
factors e−sτ where τ corresponds to the time delays present in the circuit. In [15],
the equivalent representation of the TDSs are build as an infinite-dimensional lin-
ear problem and is then reduced to a system without delay. In [16, 17], the ex-
ponential terms corresponding to the delays are expanded in a Taylor series and
subsequently the moments of the system are obtained via Krylov-subspace tech-



MOR OF TDSS USING A LAGUERRE EXPANSION TECHNIQUE 33

niques. This MOR technique guarantees passivity preservation for certain specific
cases of RLC networks by means of congruence transformations. But in [16, 17]
the original system needs to be augmented by introducing extra state variables, and
finally the resulting reduced order model does not preserve the TDS structure of
the original system. In the approach of [5, 12], the moments are calculated using
extra state variables, but the dimension of the row of the augmented system mo-
ments that is used for the reduction of the original model is same as the number of
state variables in the original model. But still the computation effort is excessive,
as the moment matrix is calculated with the extra state variables.

These shortcomings were somewhat alleviated in [13] by proposing multiorder
Arnoldi. In that technique the moments of the original system are calculated im-
plicitly using a higher order Krylov technique [18, 19] without having to introduce
extra state variables and the structure of the reduced model resembles the original.

In this chapter we propose a novel technique using a higher order Krylov sub-
space decomposition with orthonormal Laguerre functions, which do provide good
approximations for a large class of time-delay systems [20]. The link with the sin-
gular value decomposition (SVD) leads to a simple and stable implementation of
the algorithm. The present technique is a generalization and extension of the well-
known Laguerre-SVD method [21] to TDS.

As a first step towards improving the efficiency, the proposed technique esti-
mates the reduced order using a smart approximation of the delay terms after ap-
proximating the delays using a recursive relation using Laguerre polynomials. As
a second step higher order Laguerre approximation is used to obtain the reduced
order TDS.

More precisely, the three steps of the proposed algorithm are:

1. Delay Approximation - The time delay term e−sτ , is approximated using a
recursive relation of Laguerre polynomial.

2. Zero-Order Approximation Technique (ZAT) - The time delay term e−sτ , is
approximated as e−2ατ , where α is the Laguerre parameter [20–22]. So an
approximate linear time-invariant (LTI) system is obtained, whose Hankel
singular values (HSVs) are computed. HSVs provides a measure of the
energy of each state in a system and can be computed using the Matlab
command hsvd. From the HSVs an initial guess of the reduced order can be
estimated depending on the required (predefined) accuracy.

3. Higher-order Laguerre Approximation Technique (HLAT) - The delays are
replaced by their approximations in the Laguerre domain and then the higher
order Krylov subspace is computed [23] in order to reduce the original sys-
tem.

Thereby, the proposed Laguerre expansion technique computes the Krylov sub-
space more efficiently, and generates an accurate reduced order model.
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3.2 Overview of Laguerre-based Model Order Re-
duction

As described in Section 2.2.4 a MIMO descriptor system is considered of the form

Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (3.1)

with (McMillan) degree n and number of ports p. The transfer function of this
system is

H(s) = C(sE−A)−1B + D. (3.2)

Note that it is usually required that sE−A is a regular matrix pencil [24].
The ith Laguerre polynomial is defined as

Li(t) =
et

i!

di

dti
(e−tti). (3.3)

and the scaled Laguerre functions are

Φαi (t) =
√

2αe−αtLi(2αt) i = 0, 1... (3.4)

Here α is a positive scaling parameter called the Laguerre parameter or time-
scale factor [25]

In the Laplace domain, the transformation of the scaled Laguerre functions can
be written as

Φαi (s) =

√
2α

s+ α

(
s− α
s+ α

)i
i = 0, 1... (3.5)

In [21], it has been shown that the transfer function of a strictly proper (D = 0)
stable system can be expanded into the Laguerre orthonormal basis Φαi (s) as

H(s) = C(sE−A)−1B =

√
2α

s+ α

∞∑
i=0

Fi

(
s− α
s+ α

)i
(3.6)

where the Fi’s are the Laguerre coefficients, which are matrices in general. Ap-
plying the bilinear transformation (3.7) to the r.h.s of formula (3.6),

s = α
1 + u

1− u
(3.7)
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we obtain

C(u(αE + A)− (A− αE))−1B =
1√
2α

∞∑
i=0

Fiu
i. (3.8)

From this it can be inferred that the qth-order Padé approximation of the mod-
ified transfer matrix

Ĥ(u) = C(u(αE + A)− (A− αE))−1B (3.9)

in the u-domain is equivalent to the qth-order Laguerre approximation in the
s-domain.

Note that the bilinear transformation (3.6) maps the Laplace s−domain onto
the Laguerre u−domain. It is seen, by comparing (3.9) and (3.2) that the state-
space matrices have been modified to Eu = αE + A and Au = A− αE.

Thus, on defining G = A−1u Eu and L = A−1u B, for a reduced order q the
n× q modified Krylov subspace Kq [26, 27] is:

Kq(G,L) = colspan[L,GL,G2L, ...,Gq−1L] (3.10)

This yields a reduced order system described by

Ar = Q′AQ,

Er = Q′EQ,

Br = Q′B,

Cr = CQ. (3.11)

Here the column-orthogonal matrix Q is found through the singular value de-
composition (SVD) approach on the Krylov subspace Kq (3.10) i.e;

UΣV′ = SV D(Kq(G,L)) (3.12)

where U is the column-orthogonal matrix, Σ is a diagonal matrix containing the
singular values and V is orthogonal matrix of dimensions N × q, q × q and q × q
respectively, q is the reduced order.

Thus Q is equal to the left SV D column-orthogonal factor U.
Note that the algorithm makes use of the Laguerre functions, but they do not

appear in the algorithm. The main aim of using the Laguerre functions is to get rid
of the s term in (sE−A)−1 (3.2). Instead the algorithm makes use of the inverse
of Au = (A− αE). The parameter α is chosen such that the inverse exists.
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3.3 Proposed algorithm

Consider a time-delay system of degree n with p ports having k delays τj , present
in both the state and descriptor matrices, which can be represented in general de-
layed state space form as:

E0ẋ(t) +

k∑
j=1

Ejẋ(t− τj) = A0x(t) +

k∑
j=1

Ajx(t− τj) + Bu(t)

y(t) = Cx(t) + Du(t). (3.13)

Here, x(t) ∈ Rn is the state vector; u(t) ∈ Rp is the control input with u(t) = 0

for t < 0; y(t) ∈ Rp is the output. A0,Aj,E0,Ej,B,C,D are constant matrices
with appropriate dimensions. From (3.13) we obtain the transfer function H(s) as:

H(s) = C(s(E0 +

k∑
j=1

Eje
−sτj )− (A0 +

k∑
j=1

Aje
−sτj ))−1B + D. (3.14)

3.3.1 Delay Approximation

The delay terms e−sτj in (3.14) are mapped onto the Laguerre domain by applying
the bilinear transformation (3.7). Thus obtaining:

e−sτj = e−aj(
1+u
1−u ) (3.15)

where aj = ατj . As the generating function of the Laguerre polynomial [28] [29]
is given by,

e
−xt
(1−t)

(1− t)
=

∞∑
i=0

Li(x)ti. (3.16)

we can easily prove that

e−aj(
1+u
1−u ) = e−aje(−2aj(

u
1−u )) = e−aj (1− u)

∞∑
i=0

Li(2aj)ui. (3.17)

Using the recurrence relation of Laguerre polynomials, we obtain the approxima-
tion series in powers of u as shown,

e−aj(
1+u
1−u ) = e−aj +

∞∑
i=1

e−aj (Li(2aj)− Li−1(2aj))u
i. (3.18)
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This will help us to obtain a suitable form for the transfer function of the TDSs
in u domain for deriving the higher-order Krylov.

The delay term is approximated to an order r i.e;

e−aj(
1+u
1−u ) ≈ T rd = e−aj +

r∑
i=1

e−aj (Li(2aj)− Li−1(2aj))u
i. (3.19)

Such that the error is below a defined threshold as shown

‖ e−aj(
1+u
1−u ) − T rd ‖2 ≤ threshold. (3.20)

The threshold is set to a desired level of accuracy required for the reduced
order model.

Then (3.14) is mapped to the u-domain similar to that of (3.9), in which the
approximated delay term (3.19) is substituted to obtain an accurate reduced order
TDS as described in the following section.

3.3.2 Reduced Order Estimation

A priori reduced order estimation makes the construction of the reduced order TDS
much more efficient. The reduced order can be estimated by studying the Hankel
singular values (HSVs) of the system. The HSVs provides a measure of energy for
each state in a system [30].

3.3.2.1 Zero-order Approximation Technique (ZAT)

To obtain an initial estimation for the reduced order of the TDSs we consider a
zero order approximation for the delay term i.e;

e−aj(
1+u
1−u ) ≈ e−aj (3.21)

Thus, approximating the system matrices of (3.13) with delay as:

EZAT (u) = E0 +

k∑
j=1

Ej(e
−aj( 1+u

1−u )) ≈ E0 +

k∑
j=1

Ej(e
−aj )

AZAT (u) = A0 +

k∑
j=1

Aj(e
−aj( 1+u

1−u )) ≈ A0 +

k∑
j=1

Aj(e
−aj ) (3.22)

From the decay rate of the HSVs of the system (AZAT , B, C, D, EZAT ), the
reduced order q can be estimated [31]. Then the reduced order is increased from q

by a bottom-up approach depending on the required pre-defined accuracy.
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3.3.3 Higher-Order Laguerre Approximation Technique (HLAT)

After estimating the reduced order, the transfer function (3.14) of the strictly
proper TDS is then written in terms of Laguerre expansion similar to that of (3.9),
i.e. by mapping s-domain to u-domain

H(u) = C

(
α

(
1 + u

1− u

)
ETDS(u)−ATDS(u)

)−1
B (3.23)

Then, (3.19) is substituted for the delay term in (3.23) such that (3.22) becomes:

ETDS(u) = E0 +

k∑
j=1

Ej(e
−aj )(1 +

r∑
i=1

e−aj (Li(2aj)− Li−1(2aj))u
i)

ATDS(u) = A0 +
k∑
j=1

Aj(e
−aj )(1 +

r∑
i=1

e−aj (Li(2aj)− Li−1(2aj))u
i).

(3.24)

On substituting (3.24) in (3.23) we can write the modified transfer function in u-
domain as,

Ĥ(u) = C
(
φr+1u

r+1 + φru
r + ...+ φ1u+ φ0

)−1
B. (3.25)

Here φi for i = 0, 1, ..., r + 1 are the coefficients of ith power of u, where the
constant term

φ0 = α(E0 +

k∑
j=1

Ej(e
−aj ))− (A0 +

k∑
j=1

Aj(e
−aj )), (3.26)

the coefficient of u

φ1 = α(E0 +

k∑
j=1

Ej(e
−aj )(1− 2aj)) + A0 +

k∑
j=1

Aj(e
−aj )(1 + 2aj),

(3.27)

the coefficient of ui for i = 2, ..., r

φi = α

k∑
j=1

Ej(e
−aj (Li(2aj)− Li−2(2aj))

−
k∑
j=1

Aj(e
−aj (Li(2aj)− 2Li−1(2aj) + Li−2(2aj))

(3.28)



MOR OF TDSS USING A LAGUERRE EXPANSION TECHNIQUE 39

and the coefficient of ur+1

φr+1 =

k∑
j=1

(αEj + Aj)(e
−aj (Lr(2aj)− Lr−1(2aj)). (3.29)

Note that different order of approximation can be chosen for each delay thereby
the coefficients of u will change accordingly for (3.25). In this chapter, the order
of approximation is considered equal for all the delays and is equal to that of the
largest delay in the TDSs so that the accuracy is guaranteed.

In [32, 33], moment matching theorems for Krylov subspace based model re-
duction of higher order linear dynamical systems are presented in the context of
higher order Krylov subspaces.

For a transfer function of the form,

H(s) = C
(
σrs

r + σr−1s
r−1 + ...+ σ1s+ σ0

)−1
B. (3.30)

The rth order Krylov subspace is defined as

Kq(G1,G2, ...,Gr,L) = colspan [P0, P1, ..., Pq−1], (3.31)

where L = σ−10 B and Gi = σ−10 σi for i = 1, 2, ..., r and

P0 = L; Pi = 0 for i < 0

Pi = G1Pi−1 + ...+ GrPi−r, (3.32)

This subspace is a generalization of Krylov subspaces for higher order systems
and eliminates the linearization step of rewriting the higher-order system in an
equivalent first-order form to prove moment-matching properties. However, to
match the moments of an r-th order model, the matrix σ0 should be invertible.
Thus, (3.25) can be inferred as Padé approximation of the modified transfer matrix
in the u-domain.

Thereby, the higher order Krylov subspaceKq is defined as in (3.31), with L =

φ−10 B and Gi = φ−10 φi for i = 1, 2, ..., r + 1. The column-orthogonal matrix Q

for congruence transformation is found through the singular value decomposition
(SVD) approach i.e;

UΣV′ = SV D(Kq(G1,G2, ...,Gr,L)) (3.33)

Thus Q is equal to the left SVD column-orthogonal factor U of dimension
n× q associated with the (r + 1)th Krylov subspace.

The column-orthogonal matrix Q thus yields reduced order state-space matri-
ces through congruence transformation described by
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A0r = Q′A0Q , Ajr = Q′AjQ,

E0r = Q′E0Q , Ejr = Q′EjQ,

Br = Q′B , Cr = CQ, (3.34)

such that the reduced-order transfer matrix Hr(s) is

Hr(s) = Cr(s(E0r +

k∑
j=1

Ejre
−sτj )

− (A0r +

k∑
j=1

Ajre
−sτj ))−1Br (3.35)

The algorithmic steps of the proposed techniques is shown as a flowchart in
Fig. 3.1.

Concerning the complexity of the proposed technique, it can be noted that the
most expensive step is related to ZAT for an initial guess of the reduced order and
its complexity is O(n3) with n equal to the actual order of the system. If the order
of the system n is larger than 3000, then its advisable to estimate the order using
the bottom-up approach. Next, the higher-order Krylov subspace is computed and
the SVD has to be performed to obtain the column-orthogonal matrix Q (3.33),
which has a complexity of O(4n2q) where q is the column size of the Q matrix.

3.4 Numerical Results
The numerical simulations were performed on a Windows 7 platform on Intel(R)

Core(TM)2 Duo P8700 2.53 GHz machine with 2 GB RAM and has been imple-
mented in Matlab R2010a.

Error criteria
The reduced order estimation using ZAT as described in Section 3.3.2.1 de-

pends on the pre-defined accuracy required.The weighted RMS error is used to
assess the accuracy of the reduced order model with a target accuracy of 0.001.

The weighted RMS error between the original frequency response Hij and the
reduced order model Hr,(ij) is defined as:

Err =

√∑Ks
k=1

∑Pin
i=1

∑Pout
j=1

|Hr,(ij)(sk)−H(ij)(sk)|2
W(ij)(sk)

PinPoutKs

W(ij)(sk) = |H(ij)(sk)|2. (3.36)

In (3.36) Ks, Pin and Pout are the number of frequency samples, input and output
ports of the system, respectively.
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Figure 3.1: Flowchart of the proposed algorithm.

The results obtained using the proposed technique is validated by comparing
with Augmented MOR [5] and multiorder Arnoldi MOR [13].
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3.4.1 BPV: Backplane Vias

A simple backplane via is considered [34] which consists of a probe launch, the
differential via, which includes the through part and the stub part, and the uniform
stripline section. A simple topology that includes these features is shown in Fig.
3.2. Each probe launch is composed of four uniform transmission line elements
which is modeled using the conventional lumped model as in [21]. The via model
is the simplest possible model and the uniform stripline structure is modeled using
the method of characteristics [5] as a simple, dual lossless stripline based on the
geometry as described in [34, 35].

Then the TDSs is constructed as a linear interconnect network with a set of
TLs as elaborated in [5]. For the modeling, the per-unit-length (PUL) parameter
matrices of the TLs are extracted utilizing the approaches described in [1].

Figure 3.2: BPV: Block Diagram of backplane vias.

The order of the original model is 1448 with τmax = 0.057ns. The Laguerre
parameter α for the proposed technique is 38πe9 and the expansion point for the
comparison technique is set to half of the maximum frequency.

Fig. 3.3 plots the HSVs of the approximated TDS, from which an initial guess
for the reduced order of the TDSs is obtained.

Fig. 3.4 and Fig. 3.5 plots the magnitude and phase of S14(s) of the origi-
nal model with reduced order models of order 387 obtained using the proposed
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Figure 3.3: BPV: Hankel Singular Values (state contributions) of the approximated model
using ZAT.

Technique Multiorder Arnoldi [13] Proposed

Initial Order 1448 1448

Order of delay approximation 7 7

Reduced Order 388 387

CPU time (sec) 897.7 702.2

Table 3.1: BPV: Efficiency comparison for achieving a weighted RMS error of 0.001

technique.
Table 3.1 compares the efficiency of the different techniques for achieving a

weighted RMS error (3.36) smaller than 0.001 with 201 frequency samples in the
range [1-10] GHz. For both the techniques the delays are approximated to an
order of 7 and is obtained by setting a threshold of 0.01 for (3.20). If we consider
a higher threshold then we might not be able to obtain an accuracy of 0.001 for the
reduced order TDSs. Fig. 3.6 shows the approximation curve for τmax = 0.057ns

considering r=2,5,7.
In Table 3.1 the CPU time for the proposed technique includes the time for
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Figure 3.4: BPV: Magnitude of S14.

Solution method Size CPU Time for
generating the
reduced TDSs

Simulation Time

Original System 1448 2406.82

Proposed 387 702.2 6.21

Table 3.2: BPV: Computational Information

the reduced order estimation and the time for generating the reduced TDSs, while
that for the multiorder Arnoldi is with a bottom-up approach for generating the
reduced order TDSs with the required accuracy. The technique presented in [5]
using augmented first order systems could not be used for the comparison due to
memory limitations.

Table 3.2 compares the total size and simulation times of the original and pro-
posed algorithm. For this example, the simulation time of the reduced order TDSs
is about 388 times faster when compared to the original system.

Thus in this example the proposed method is able to model the S-parameter of
the system accurately. In the next example, the technique models the admittance
(Y) parameter which is in general more difficult to accurately capture the model
behavior due to the resonance peaks.
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Figure 3.5: BPV: Phase of S14.
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Figure 3.6: BPV: Approximation of the delay term.
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3.4.2 RLC: RLC Network With Delay Elements

A system consisting of two lossless multiconductor transmission lines (MTLs) and
three RLC networks has been modeled ( see Fig. 3.7). The detailed procedures
of constructing such TDSs are elaborated in [5]. Each MTL block is composed of
three conductors and it has a length equal to 2 cm in total and the RLC network
has a length of 1.5 cm in total.

Figure 3.7: Schematic of RLC network including delay elements.

The order of the original network is 2625 with τmax = 0.02ns. The frequency
range of interest for this system is [0-6] GHz. The Laguerre parameter α for the
proposed method is 24πe9 and the expansion point for the compared techniques is
set to half of the maximum frequency.

The reduced order is estimated as described in Section 3.3.2, from the HSVs
of the approximated TDSs.

Fig. 3.8 - Fig 3.9 compares the magnitude and phase of the original and
Laguerre-based reduced delayed model Y14(s). A good agreement is obtained
between the original and reduced model.

Table 3.3 compares the efficiency of the different techniques for achieving a
weighted RMS error (3.36) smaller than 0.001 with 201 frequency samples in the
range [0-6] GHz. As in the former example for a threshold of 0.01 for (3.20),
the order of approximation for the delay is 5 for both the techniques. The CPU
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Figure 3.8: RLC: Magnitude of Y14.

Technique Multiorder Arnoldi [13] Proposed

Initial Order 2625 2625

Order of delay approximation 5 5

Reduced Order 212 213

CPU time (sec) 934.70 896.73

Table 3.3: RLC: Efficiency comparison for achieving a weighted RMS error of 0.001

time for the proposed technique includes the time for the reduced order estima-
tion and the time for generating the reduced TDSs, while that for the multiorder
Arnoldi is with a bottom-up approach for generating the reduced order TDSs with
the required accuracy. The technique presented in [5] using augmented first order
systems could not be used for the comparison due to memory limitations.

Similar to the previous example Table 3.4 compares the total size and sim-
ulation times of the original and proposed algorithm and the simulation time of
the reduced order TDSs is about 980 times faster when compared to the original
system.

Thus, from the above results we see that the proposed technique is able to
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Figure 3.9: RLC: Phase of Y14.

Solution method Size CPU Time for
generating the
reduced TDSs

Simulation Time

Original System 2625 3409.42

Proposed 213 896.73 3.48

Table 3.4: RLC: Computational Information

reduce TDS more efficiently to achieve the required accuracy using Laguerre ex-
pansion.

3.5 Conclusion

In this chapter, a novel model order reduction method for large linear networks
that contain delay elements is presented. The algorithm is based on higher order
Krylov subspace for model order reduction of time-delay systems based on a La-
guerre expansion technique.The proposed technique consists of three parts: 1) the
delays are approximated using recursive relation of Laguerre polynomial then 2)
the reduced order is estimated for the time-delay system using a smart truncation of
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the delay term and 3) a higher order Krylov subspace is computed using Laguerre
expansion for obtaining the congruence-based reduced order time-delay system.

The approximation of the delays using a recursive relation of the Laguerre
polynomial gives a better approximation with lesser terms in comparison with the
Taylor series expansion. This is obtained with the proper choice of the Laguerre
parameter α, and for systems with large delays this can be difficult. To have an
accurate reduced order model for systems with large delays, multipoint expansion
technique must be considered. In Chapter 4 an adaptive multipoint expansion
MOR technique is proposed.
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A Hybrid Adaptive Sampling

Algorithm for Multipoint MOR

Based on the publications:
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“Passivity preserving Multipoint Model Order Reduction using Reflective
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Informatics in Control, Automation and Robotics, pages 483–491, Vienna,

Austria, 2014.

Elizabeth Rita Samuel, Francesco Ferranti, Luc Knockaert, Tom Dhaene,
“A Hybrid Adaptive Sampling Algorithm for Obtaining Reduced Order Models

for Systems with Frequency Dependent State-Space Matrices”, submitted to
IEEE Transactions on Components Packaging and Manufacturing

Technology, August 2014

? ? ?

MOR techniques are now standard for reducing the complexity of large scale
models and the computational cost of the simulations, while retaining the impor-
tant physical features of the original system. In order to have a sufficiently ac-
curate reduced order model not only at a single frequency point but over a whole
range of frequencies, multipoint MOR was proposed. Multipoint MOR raises many
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practical implementation questions. In this chapter, the focus is put on three points
namely;

• the order considered for each expansion point.

• the adaptive frequency sampling using reflective exploration [1].

• obtaining a compact projection matrix.

A new adaptive algorithm for selecting the expansion points is proposed using a
hybrid technique of reflective exploration and binary search. In the first section of
the chapter, the reflective exploration technique for adaptive frequency sampling is
illustrated on quasi-static systems i.e., systems with frequency independent state-
space matrices. In the next section, the hybrid technique is applied to systems
with frequency dependent state-space matrices to illustrate the adaptive frequency
sampling.

4.1 Introduction
As the system data rates achieve multi-gigabit levels for nanometer scale inte-
grated circuits (ICs) and printed circuit boards (PCBs), it is increasingly important
for designers to consider the system interconnect in its eternity. From this vantage
point, IC package design has become of great importance. High-speed IC package
designers must ensure both signal and power integrity by designing IC package
structures that are properly modeled, extracted, and simulated. Fortunately, in-
tegrated modeling and analysis techniques and tools are available to describe a
complicated package structure with true three-dimensional representations, and
simulate those representations in the context of system interconnects. These tools
help designers take into account the package effect from designs and make deci-
sions based on actual conditions. This reduces the number of design iterations,
cycles, and development time [2, 3].

For the three-dimensional field solvers both full-wave and quasi-static solvers
are useful in representing package behavior, depending on the application. Quasi-
static field solvers are used for obtaining complex algebraic systems of equations
with frequency independent state space matrices while full-wave solvers provide
frequency dependent matrices in the frequency domain.

The three-dimensional field solvers are very accurate but that is at the cost of
very large system of equations which are expensive to solve. Hence, obtaining a
compact macromodel for the electromagnetic (EM) systems has become increas-
ingly important over the last years. Model order reduction (MOR) is a technique
that has been developed to speed up the EM simulations.

Reduced state-space models obtained by MOR techniques must be accurate
over the whole frequency range of interest and must also preserve the properties
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of the original system. For a quasi-static electromagnetic analysis, several robust
MOR techniques have been proposed over the years [4–8]. The Krylov subspace
projection methods such as PVL [6] and PRIMA [8] are the most utilized algo-
rithms over the past decade. It can be noted that for Krylov-based MOR the pro-
jection space can be constructed from multipoint Krylov subspaces [9–11]. For a
given reduced order the multipoint approximation tends to be more accurate but
is usually numerically very expensive to obtain. Multipoint expansion provides a
better framework for frequency dependent models and also for models with vary-
ing parameters [12]. Some techniques have been proposed for the model order
reduction of full-wave systems [13–15], where a state-space representation with
frequency dependent matrices is obtained. In [13], a hybrid algorithm which in-
corporates features of orthogonalized Krylov methods and the series-expansion-
based methods to construct a multipoint rational approximant is proposed to obtain
reduced order models (ROMs). The approach in [14] extracts exponential terms
(primary phase factors) after which the remainders are expanded into a linear form
and then projected to obtain the reduced model. Hence, the extraction of primary
phase factors and the segregation of the system into multiple remainder phase ma-
trices, each corresponding to a primary phase factor, is needed. In [15], systems
described by neutral delayed differential equations are considered, which are also
frequency dependent, and the reduced model is obtained by a binary search.

In Section 4.2 of the chapter, multipoint reduction technique using reflective
exploration is proposed to adaptively choose the expansion points for quasi-static
systems i.e., systems with frequency independent state-space matrices. The pro-
jection matrices are computed using the PRIMA technique [8], which is known
to be an efficient technique for the reduction of large systems. The expansion
points are selected adaptively using a reflective exploration (RE) technique. It is a
sequential sampling algorithm, where the model is improved incrementally using
the best possible data at every time step and also has additional properties allow-
ing it to propose candidate exploration points [1]. An error-based exploration is
implemented to find the expansion points. The corresponding projection matrices
are then computed using a Krylov based MOR technique. Finally, the projection
matrices are merged to obtain the overall projection matrix. When the number of
expansion points increases, the merged projection matrix also grows and might fail
to provide a satisfactory model dimension reduction. An adaptive truncation algo-
rithm is proposed to truncate the merged projection matrix based on its singular
values, thereby obtaining a more compact ROM which preserves the system prop-
erties. The technique is illustrated using suitable numerical examples in Section
4.2.6.

In Section 4.3, systems described with frequency dependent state-space matri-
ces are considered. For the frequency dependent model it can be noted that the
solver can have samples over a specified frequency range. These samples can be
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obtained from numerical simulations, which can be very expensive. The simula-
tions can be done in the time domain (TD) and as well as in the frequency domain
(FD), but phenomena like skin effect, dielectric loss and delays require additional
information for modeling and these can be more easily modeled in the FD [16].
To obtain the evaluation of the state-space matrices for each frequency sample can
be computationally expensive and sometimes even lead to oversampling. If the
sampling rate is reduced then there could be undersampling, which might lead
to loss of important features of the frequency response. Prior knowledge of the
dynamics of the EM system is always beneficial for the appropriate selection of
the frequency sample distribution [17]. Uniform griding or random selection of
samples are uninformed algorithms and thus may not be ideal. This section of the
chapter proposes a hybrid adaptive sampling algorithm to automate the generation
of reduced order models for systems described by large scale frequency dependent
state-space models. The evaluation of the frequency dependent state-space model
for each frequency sample can be computationally expensive. The distribution of
frequency samples must be optimized to avoid oversampling and undersampling.
In order to have an optimum number of frequency samples, the proposed algorithm
uses reflective exploration technique for the adaptive selection of the samples and
the sampling is further refined using a binary search to validate the frequency de-
pendent reduced order models. Projection based model order reduction techniques
are used for obtaining the reduced order model. The projection matrices obtained
for each frequency sample are merged to obtain a common projection matrix for all
the samples. However, in certain cases when the number of sample points becomes
large, the merged projection matrix also increases in dimension and might fail to
provide a satisfactory model order reduction. Thus, the merged projection matrix
is truncated based on its singular values to obtain a compact common projection
matrix. The reduced order state-space matrices per frequency are interpolated over
the frequency range of interest to obtain the complete system response.

The proposed algorithm thus has three main sections:

1. Reflective exploration (RE): As explained in Section 4.2.3. RE is a selec-
tive sampling method, where the model is improved incrementally using the
best possible datum at every time step using the reflective functions. These
functions allow it to propose candidate exploration points [1, 18].

2. Binary search (BS): It is a dichotomic divide and conquer search. At each
step the ROM is computed at the midpoint of two samples by linear interpo-
lation to validate the model obtained through RE. The interpolation is then
compared with the actual model simulated at that point using an EM simu-
lator. This is continued till all the sections are modeled accurately [15].

3. Model compacting: After the samples are chosen adaptively the reduced
frequency dependent state-space matrices are interpolated linearly to repre-
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sent the frequency behavior over a frequency range of interest. Note that for
quasi-static systems there is no interpolation as the state-space matrix is fre-
quency independent. Interpolation is only present for systems represented
using frequency dependent state-space matrices. For obtaining the ROM, a
common projection matrix is used and to make the model more compact the
singular value of the merged projection matrices obtained from the samples
are truncated [19].

Pertinent examples in Section 4.3.3 illustrate the proposed hybrid adaptive
sampling algorithm.

4.2 Multipoint MOR for frequency independent state-
space matrices using reflective exploration

4.2.1 PRIMA

Here, a brief overview is provided of the PRIMA algorithm for a MIMO descriptor
system of the form

Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t). (4.1)

Let s0 be a suitably chosen expansion point such that the matrix s0E −A is
nonsingular. Then the transfer function can be rewritten as:

H(s) = C(s0E−A + (s− s0)E)−1B + D

= C(I + (s− s0)M)−1R + D (4.2)

where M = (s0E−A)−1E, R = (s0E−A)−1B.
The q-th block Krylov-subspace is given by

Kq(M,R) = colspan[R MR M2R . . . M(q−1)R]. (4.3)

This yields Pq the column orthogonal matrix computed from the Krylov subspace
Kq(M,R), from which using congruence transformation (4.4) the reduced state-
space matrices (Aq,Eq,Bq,Cq,Dq ) are obtained as:

Aq = PTq APq, Eq = PTq EPq,

Bq = PTq B, Cq = CPq, Dq = D. (4.4)
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4.2.2 Multipoint projection matrix

After model order reduction, the resulting model must not only be accurate at
one frequency point but over the whole range of interest and must also preserve
passivity. For this the multipoint reduction algorithm is used [15].

At each expansion point, the column orthogonal matrix is computed as de-
scribed in Section 4.2.1, i.e., for N expansion points the corresponding matrices
Pqi (i = 1, 2, . . . , N ) are merged to give;

Punion = colspan[Pq1 Pq2 . . . PqN ]. (4.5)

The merged projection matrix is not truncated during the iterative procedure of
the reflective exploration. The matrix is truncated however after all the expansion
points are adaptively chosen as is described in the following section.

4.2.3 Reflective Exploration

The process of selecting expansion points and building the model in an adaptive
way is referred to as reflective exploration [1]. RE is an effective technique when
its very expensive to obtain the model from EM simulators. For the exploration a
reflective function is required to select a new expansion point. The reflective func-
tion used for the proposed multipoint MOR algorithm is the error norm between
the best model and the second best model. As described in [18], the algorithm has
two loops: an adaptive modeling loop and an adaptive sampling loop.

1. Adaptive Modeling Loop: The algorithm starts with two expansion points
selected at ωmin and ωmax of the frequency range of interest. It should be
noted that the initial number of sample points that is uniformly distributed
along the frequency range of interest can be varied as needed, if prior knowl-
edge of the system is available.

The reduced order q at the chosen expansion points is considered to be equal
to the number of input ports of the system initially. Then the reduced model
is obtained with a common projection matrix as explained in Section 4.2.2.
If the RMS error (4.6) between the two best models (Ith and (I − 1)th)
is more than a threshold δmod, then the reduced order q is increased by
the number of input ports for all the expansion points. In this chapter the
threshold is chosen to be 10−3.

Err
(I)
est =

√∑Ks
k=1

∑Pin
i=1

∑Pout
j=1

|HI,(ij)(sk)−HI−1,(ij)(sk)|2
W(ij)(sk)

PinPoutKs

W(ij)(sk) = |HI,(ij)(sk)|2. (4.6)
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Figure 4.1: Reflective Exploration.
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Here, Ks, Pin and Pout are the number of frequency samples considered on
a dense grid, input and output ports of the system, respectively.

2. Adaptive Sampling Loop: When the difference in RMS error (4.6), between
the two consecutive models is very small i.e.,

Err
(I)
est − Err

(I−1)
est

Err
(I−1)
est

< δsamp (4.7)

(for the chapter the difference is considered to be less than 10%), then a
new expansion point is selected. For selecting the new expansion point, the
error per frequency is first computed by taking the standard 2- norm of the
frequency response of the best model (HI ) and the original model (Hact),
and then the frequency at which Errsk is maximum is chosen to be as the
new expansion point.

Errsk = ‖Hact(sk)−HI(sk)‖;
k = 1, . . . ,Ks. (4.8)

This process is iteratively repeated until the RMS error between the original
frequency response and the reduced model is 10−3. Figure 4.1 shows a flowchart
of the RE algorithm.

4.2.4 Model compacting

After obtaining the best ROM from the iterative procedure, it might be possible to
further compact the model with the information obtained from the singular values
Σ (4.9) of the Punion (4.5).

The economy-size SV D is computed for the common projection matrix Vcomm
(4.5), to obtain the singular values Σ of the merged projection matrix. In matlab
the economy-sized SV D is computed as shown:

UΣV′ = SV D(Punion, 0) (4.9)

Here, U and V are orthogonal matrices, which are known as the left and right
singular values. The diagonal of Σ gives the singular values of the system.

σ = diag(Σ). (4.10)

The reduced order for the system is defined based on the first qcomm significant
singular values of Punion, which is computed by adaptively setting a threshold on
the ratio of the singular values with respect to the largest singular value as shown
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in Fig.4.2. The ROM obtained by the truncation of the merged projection matrix
with respect to the singular value, is compared with the best model obtained from
reflective exploration. If the RMS error after truncation is less than 10−4, then we
shall truncate the singular values. If the error is large we keep the model with the
number of singular values obtained before.

The compact projection matrix Qcomm is equal to the left singular value U

where the column is truncated to a size qcomm based on the significance of the
singular values.

Qcomm = U(:, 1 : qcomm). (4.11)

After truncation it can be noted that, on average per expansion point an order of
qsamp (4.12) is required to guarantee the desired accuracy at that expansion point.

qsamp = qcomm/N. (4.12)

Here, n is the number of expansion points.
Once the compact projection matrix Qcomm is computed, it is applied to the

original system (4.1) and a reduced system (4.4) is obtained through congruence
transformation.

4.2.5 Passivity Preservation

For transient behavior, stability and passivity are the fundamental properties to be
guaranteed by the system, as stated in Section 2.1.5. A passive system denotes a
system that is incapable of generating energy, and hence one that can only absorb
energy from the sources used to excite it [20]. Passivity is an important property to
satisfy because stable, but not passive macromodels can produce unstable systems
when connected to other stable, even passive, loads.

If the descriptor state-space model in (4.1) satisfies the following properties
[8]:

E = E′ ≥ 0

A + A′ ≤ 0

B = C′, (4.13)

then it ensures the passivity of the admittance model Y(s) = C(sE−A)−1B

and with congruence transformation the passivity of the model is preserved,

Er(g) = Qcomm
′E(g)Qcomm ≥ 0

Ar(g) = Qcomm
′A(g)Qcomm ≤ 0

Br(g) = Qcomm
′B(g)

Cr(g) = QcommC(g). (4.14)
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Figure 4.2: Truncation of the projection matrix.
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If the system fails to have the state-space properties described in (4.13) then
the technique of Linear Matrix Inequalities (LMI’s) [21] has to be used. The so-
lution obtained from the LMI’s [22, 23] gives a descriptor state space format that
preserves both positive-realness and the bounded realness of the system. Solving
the LMI can be replaced by equivalently solving an ARE, which is known to be a
more efficient approach [24, 25] as the number of operations required to solve a
Riccati equation is O(n3), while the cost of solving an equivalent LMI is O(n6).
Thus for high orders it is advisable to solve the ARE which is computationally
cheaper in comparison with LMI.

4.2.6 Numerical Results for frequency independent state-space
matrices

Transmission line examples are used to illustrate the accuracy and efficiency of the
adaptive frequency sampling technique using RE.

4.2.6.1 LTL: Lossless Transmission Line Example

For this example, a 20 cm lossless uniform coupled microstrip structure with two
strips with the following per-unit-length matrices [26],

lpul =

[
425.6 74.83
74.83 425.6

]
nH/m

cpul =

[
174.9 14.25
14.25 174.9

]
pF/m. (4.15)

for a frequency range of interest [1 KHz − 1 GHz], is modeled as described
in [27]. The original system has an order of 1604 with 4 ports.

Similar to the previous TL example, two expansion points at ωmin and ωmax
are considered. The reduced order for the first iteration is equal to 4, the number
of ports. Then as briefed in Section 4.2.2, the frequency responses are computed
using a merged projection matrix (4.5). Then similar to the previous case the
difference in response between the two models (4.6) is computed and as the error
is bigger than the threshold set, the algorithm checks for the next expansion point
using the adaptive sampling loop as shown in Fig.4.11.

Similarly in this manner the sampling process is iterated till the RMS error
(4.6) is less than threshold value of 10−3.

Figure 4.4 plots the RMS error (4.6) of the best two models during each itera-
tion of the reflective exploration algorithm.

Figure 4.12, shows the frequency responses obtained during the reflective ex-
ploration for different iterations. The best model has dimension 64 and is obtained
with 4 expansion points within a CPU time of 14.8 secs.
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Figure 4.3: LTL: Error per frequency used to select the new expansion point for the
adaptive sampling loop.

Finally, the model is compacted based on the truncation of the singular values
of the common projection matrix. With the truncation algorithm described in Sec-
tion 4.2.4, we obtain a model of order 35 by adaptively choosing a threshold of
10−2 in 0.16 secs as shown in Table 4.1.

Threshold RMS Error Dimension of

ROM

10−1 8.04 29

10−2 8.645× 10−4 35

Table 4.1: LTL: Adaptive truncation for model compacting.

Figure 4.13 plots the magnitude of Y11 for the original and the reduced model
using 4 expansion points with a reduced order of 9 per expansion point..
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Figure 4.4: LTL: RMS error between the iterated models during the addition of new
expansion points.
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Figure 4.5: LTL: Magnitude of lossless line Y11 for each iterative step with the adaptively
chosen expansion points.
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Figure 4.6: LTL: Magnitude of lossless line Y11 with the original response after model
compacting.
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4.2.6.2 TL: Lossy Transmission Line

For this example, a 10 cm long two conductor lossy transmission line with the
following per-unit-length matrices

rpul =

[
75 15
15 75

]
Ω/m

lpul =

[
494.6 63.3
63.3 494.6

]
nH/m

gpul =

[
0.1 0
0 0.1

]
S/m

cpul =

[
62.8 -4.9
-4.9 62.8

]
pF/m. (4.16)

for a frequency range of [1 Khz − 1 GHz], is modeled as described in [27]. The
original state-space order of the system is 1202 with 4 ports.

The sampling starts by considering two expansion points at ωmin and ωmax.
The reduced order for the first iteration is equal to 4, the number of ports of the sys-
tem. Then, as briefed in Section 4.2.2, the frequency responses is computed using
a merged projection matrix (4.5) formed from the two expansion points. For the
next iteration, the frequency response is computed for the same expansion points
with an increased order of 8, i.e.: it is increased by the number of ports. Then the
difference in response between the two models is computed using (4.6). The error
obtained is 2.147, which is significantly greater than 10−3, the threshold set for the
RMS error. Therefore, the algorithm increases the order of the expansion points
and again computes the RMS error. Since the difference in the RMS error in the
successive iterations is less than 10%, the algorithm checks for the new expansion
point by computing the standard 2-norm of the best model and the original model.
As shown in Fig.4.7, the standard 2-norm of the frequency responses of the best
model and the actual response gives the error per frequency and the new expansion
point is considered at the frequency at which the error is maximum.

Then, the frequency response which is the admittance parameter Y(s), is again
computed with all the expansion points, with a reduced order of 12 per expansion
point. Similarly in this manner the sampling process is iterated till the RMS error
(4.6) is less than the 10−3, the accuracy threshold value set.

Figure 4.8 plots the RMS error (4.6) between the iterated models when new
expansion points are added during reflective exploration.

Figure 4.9, shows the magnitude of the admittance parameter Y11 obtained
during the reflective exploration for different iterations. A best model of dimension
96 is obtained with 4 expansion points within a CPU time of 15.23 secs.

Then the model is compacted based on the truncation of the singular values of
the common projection matrix. With the truncation algorithm described in Section
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Figure 4.7: TL: Error per frequency for the adaptive sampling loop.

4.2.4, we obtain a model of order 85 by adaptively choosing a threshold of 10−4

in 0.715 secs as shown in Table 4.7.

Threshold RMS Error Dimension of

ROM

10−1 2.23× 10−1 61

10−2 1.703× 10−1 71

10−3 6.96× 10−2 77

10−4 9.72× 10−4 85

Table 4.2: TL: Adaptive truncation for model compacting.

Figure 4.10 plots the magnitude of Y11 for the original and the reduced model
using 4 expansion points with a reduced order of 22 per expansion point.
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Figure 4.8: TL: RMS error between the iterated models with new expansion points.
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Figure 4.9: TL: Magnitude of lossy line Y11 for each iteration with the adaptively chosen
expansion points.



70 CHAPTER 4

0 0.2 0.4 0.6 0.8 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Frequency (GHz)

|Y
11

| (
S

)

 

 
Original Data
Reduced Data

Figure 4.10: TL: Magnitude of lossy line Y11 after model compacting.
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4.2.6.3 MNA: Modified Nodal Analysis

A modified nodal analysis (MNA) formulation for a 22 port circuit as given in
the Niconet benchmark collections 1 is considered for this example. The origi-
nal system has an order of 4863 with 22 ports for a frequency range of interest
[1 KHz − 5 GHz].

Similar to the previous examples, two expansion points at ωmin and ωmax are
considered. The reduced order for the first iteration is equal to 22, the number
of ports. Then as briefed in Section 4.2.2, the frequency responses are computed
using a merged projection matrix (4.5). Then similar to the previous case the
difference in response between the two models (4.6) is computed and as the error
is bigger than the threshold set, the algorithm checks for the next expansion point
using the adaptive sampling loop as shown in Fig.4.11.
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Figure 4.11: MNA: Error per frequency used to select the new expansion point for the
adaptive sampling loop.

Similarly in this manner the sampling process is iterated till the RMS error
(4.6) is less than threshold value of 10−3.

Figure 4.12, shows the frequency responses obtained during the reflective ex-
ploration for different iterations. The best model has dimension 1122 and is ob-
tained with 9 expansion points within a CPU time of 2048.5 secs.

1http://www.win.tue.nl/niconet/niconet.html
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Figure 4.12: MNA: Magnitude of Y11 for each iterative step with the adaptively chosen
expansion points.

Finally, the model is compacted based on the truncation of the singular values
of the common projection matrix. As shown in Table 4.3, with the truncation
algorithm described in Section 4.2.4, we obtain a model of order 202 by adaptively
choosing a threshold of 10−2 in 4.38 secs.

Threshold RMS Error Dimension of

ROM

10−1 15.09 88

10−2 2.645× 10−3 202

Table 4.3: MNA: Adaptive truncation for model compacting.

Figure 4.13 plots the magnitude of Y11 for the original and the reduced model
using 9 expansion points with a reduced order of 22 per expansion point..

From the examples described it can be illustrated that the proposed technique
is able to capture the behavior of the system accurately and is able to preserve
passivity of the original model by construction.
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Figure 4.13: MNA: Magnitude of Y11 with the original response after model compacting.
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4.3 Multipoint MOR for frequency dependent state-
space matrices using hybrid adaptive sampling
algorithm

4.3.1 Common projection matrix

For frequency dependent state-space matrices, (4.1) will have matrices that are
frequency dependent i.e., E(s),A(s),B(s),C(s) and D(s). For obtaining the
ROM for each frequency, the projection matrix is computed for each frequency
sample by considering the expansion point as equal to the corresponding frequency
sample.

After obtaining the projection matrix for each frequency sample, the frequency
response of the system is obtained by interpolating the reduced state-space matri-
ces as a function of frequency. To interpolate the reduced state-space matrices they
must be in the same subspace and to obtain this a common projection matrix is re-
quired for all the samples that are selected. It is assumed that since the frequency
dependent state-space matrices are obtained from a common simulator using the
same meshing topology, they belong to a common space and hence projecting with
a common projection matrix will generate reduced state-space matrices in the same
subspace.

First we can compute the projection matrices for each frequency sample sim-
ilarly to what was done in (4.3) and then column stack the matrices to obtain a
common projection matrix. For n frequency samples we obtain the correspond-
ing projection matrices Pqi (i = 1, 2, . . . , n) with the expansion points chosen as
equal to the frequency samples, then the common projection matrix is defined as
in (4.5). Once the reduced matrices are computed, they are interpolated to build
the response of the system on a dense grid. Here we have used linear interpolation
using the matlab command interp1.

The common projection matrix is not truncated based on its singular values
during the iterative procedure of the adaptive sampling algorithm. It is truncated
once the required samples have been adaptively chosen using the proposed sam-
pling technique proposed, which allows compacting the size of the ROM.

4.3.2 Hybrid Adaptive Sampling Algorithm

To obtain the frequency dependent state-space matrices we can use full-wave EM
techniques. At times they are very expensive, that one might limit the number of
samples in order to get results in a moderate amount of time. If the samples are
reduced then there is a serious chance of undersampling of the frequency response,
which can cause the loss of certain important features such as coupling effect or
resonances. Even if most of the desired frequency range is oversampled, some im-
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portant effects can still be missed due to local undersampling [18]. The proposed
algorithm adaptively samples the frequency range of interest, on the cost of certain
threshold values set for the HAS algorithm. It is important to choose adaptively
the expansion points in order to minimize the cost of evaluation of the ROM.

4.3.2.1 Reflective exploration (RE)

Similarly to what was done in Section 4.2.3 the exploration algorithm starts with
a set of initial samples Sf that are spaced uniformly over the frequency of inter-
est. The state-space matrices for these samples of frequencies are reduced to an
order q = mPin (m is an integer and is 1 for the first iteration I = 1 and Pin is
the number of input ports), using a common projection matrix as in (4.5) for the
first iteration. Starting with a reduced order for each sample equal to Pin, guar-
antees accuracy at the sample points by considering expansion point equal to the
frequency sample. In order to obtain the model behavior over the frequency range
of interest, linear interpolation is performed on a dense grid. Its important to note
that the density of the grid considered for each iteration throughout the algorithm
must remain constant. In the second iteration (I = 2), the reduced order q is incre-
mented by Pin and similarly the frequency response is found. Then the reflective
function i.e., the RMS error Errest (4.6) is computed.

This error (4.6) is used as a measure to validate the quality of the model. Usu-
ally, the threshold for the error is set depending on the desired accuracy of the
model. But as the comparison is made with the models in the reduced form and
not with the detailed model, the error (4.6) is an estimated error and not the ac-
tual one. Henceforth the estimated error threshold δest set might give an accurate
model and also might not. In order to overcome this problem, a BS over the sam-
ples obtained through RE is followed, and thereby the final accuracy is not much
affected by the estimated error threshold δest.

For each iteration the reduced order is incremented by the number of ports and
ErrIest is calculated, which forms the adaptive modeling loop. For the adaptive
sampling loop, the difference between the ErrIest and ErrI−1est being less than a
threshold value δcomp is used as a criterion to say that the ROMs are the same. The
sampling loop is then extended to check if the response changes by the addition of
a new sample. To select the new sample the error Errsk (4.17) is computed. The
new sample is located at the frequency where the error Errsk is maximum when
computed over a dense frequency grid. Note that in Section 4.2.3 (4.8) the error
was computed in comparison with the original system, but in this case we assume
that the original model is not computed.

The error at each frequency sk Errsk is calculated as the standard 2-norm
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Figure 4.14: Flowchart for Reflective Exploration.
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which is the difference between the frequency responses,

Errsk = ‖HI(sk)−HI−1(sk)‖;
k = 1, . . . ,Ks. (4.17)

The exploration is terminated when the reflective functionErrest (4.6) is equal
to or less than the estimated error threshold δest set. The flowchart for the RE
technique is shown in Fig.4.14.

Note that the number of samples considered at the start of the RE iteration
and the threshold values set for the RE algorithm can be set based on the user’s
preference.

4.3.2.2 Binary search (BS)

A binary search is also known as half interval search or a dichotomy. With the
samples obtained from RE and the common projection matrix (4.5), the ROM for
each frequency sample is obtained through a congruence transformation at the se-
lected sample points. Then a linear interpolation for the ROM at the midpoint
of two samples is used. The response is then compared with the actual model at
the midpoint using the EM simulator [15]. If the section error satisfies a thresh-
old value δsect, then the algorithm terminates. Otherwise, the midpoints were the
threshold was not met are considered as new sample points. When the midpoint
satisfies the error threshold, the corresponding interval is considered to be accu-
rately modeled and is not accounted in the next iteration. The comparison point
for each iteration is the midpoint of the intervals between the samples, except for
the ones that were accurate in the previous iterations. The error at the midpoint is
defined in a similar way as the estimation error (4.6), but it is defined at one point
and thereforeKs = 1 and the evaluation frequency is the corresponding frequency
at the midpoint. The flowchart for the BS technique is shown in Fig.4.15.

4.3.2.3 Model compacting (MC)

Once the state-space matrices (E(s), A(s), B(s), C(s), D(s)) for the samples
chosen adaptively and the frequency response of the best model HI(s) are ob-
tained from the HAS, it might be possible to further compact the ROM with the
information obtained from the singular values of the common projection matrix
(4.5).

The ROM obtained by the truncation of the common projection matrix with
respect to the singular values, is compared with the best model obtained from RE
and BS. If the RMS error is less than a threshold δtrunc, then we shall truncate
the singular values, else we keep the model with the reduced order obtained using
the sampling algorithms. To truncate the singular values, an adaptive algorithm is
proposed as shown in Fig. 4.2.
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Figure 4.15: Flowchart for Binary Search.
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The economy-size SV D is computed for the common projection matrix as in
(4.9). Thus the common project matrix for the samples chosen adaptively is,

Qcomm = U(:, 1 : qcomm) (4.18)

Thus, on an average it can be noted that per sample it requires a reduced order
qsamp (4.12) to guarantee accuracy at that sample point.

The projection matrix Qcomm with congruence transformation (4.4) computes
the ROMs of dimension qcomm for the sample points chosen adaptively. Then, the
frequency dependent ROMs are interpolated to build the frequency response of the
system for each frequency sample of interest.

4.3.3 Numerical Results for frequency dependent state-space
matrices

Some pertinent numerical examples are used to demonstrate the proposed HAS
algorithm. For the proposed HAS algorithm the following threshold values as
mentioned in Table 4.4 have been considered for the numerical examples. The
adaptive sampling starts with Sf equal to 3 samples for the exploration and for the
accuracy evaluations the number of frequency samples considered on a dense grid
is equal to 200.

Threshold Values

δest 10−2

δcomp 10−1

δsect 10−3

δtrunc 10−4

Table 4.4: Threshold values set for the HAS algorithm.

4.3.3.1 2TL: Two coupled transmission lines

In the first example, a 5 cm long coupled transmission line structure [28] is con-
sidered. The transmission line matrices of order 1402 are frequency dependent,
thereby including the effects of skin effect and dielectric losses. The frequency
dependent parameters are detailed in [28], where it is denoted as Line 2.

The frequency dependent state-space matrices can be derived as described
in [27]. The frequency range considered is [1 KHz - 10 GHz].
Reflective Exploration- The sampling starts by considering Sf equal to three sam-
ples, that are spaced uniformly over [ωmin, ωmax]. The reduced order for the first
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iteration is equal to 4. Then, as discussed in Section 4.3.2.1, the frequency re-
sponses are computed by the linear interpolation of the three sample state-space
matrices of order 4. In the next step the frequency response is computed for the
same samples with an increased order of 8, i.e; it is increased by the number of
ports. Then we compute the difference in response between the two models us-
ing (4.6). The error obtained is 4.2, which is greater than δest, the threshold set
for the estimated error. Therefore, the algorithm continues to increase the order
till the difference between successive estimated error is less than δcomp. Next the
adaptive sampling loop starts to find the new sample, by computing the norm of
the frequency responses of the two best models (4.8). The new sample point is
considered at the frequency at which the error (4.8) is maximum. Then again the
frequency response is computed with all the samples and also with increment of
the reduced order by 4. Similarly in this manner the sampling process is iterated
till the estimated error (4.6) is less than threshold value δest = 10−3.

Table 4.5 shows the number of samples used during each iteration of RE to
achieve an estimated error less than δest.

Sample RMS Error (4.6)

3 4.2

4 0.12

5 1.24

6 1.57

7 1.3× 10−4

Table 4.5: 2TL: Sampling and Modeling in Reflective Exploration with RMS error.

Figure 4.16, shows the frequency responses obtained during the RE for differ-
ent iterations. A best model of dimension 112 is obtained with 7 samples within a
CPU time of 40.57 s.
Binary Search- For the BS we start with the samples obtained from RE and the

reduced order for each sample is considered as 16, which is calculated as an av-
erage from the total model order divided by the number of samples obtained from
RE. The section error is computed for 6 sections, i.e., between the samples as men-
tioned in section 4.3.2.2. If the error is less than or equal to the threshold value
δsect, then the section is considered to be accurately modeled, else the midpoint is
considered as a new sample as shown in table 4.7. The sampling is continued till
all the sections are accurately modeled.

Figure 4.17, shows the frequency responses obtained during the BS, with a
computation time of 131.28 s. It can be seen that with BS we were able to obtain a
more accurate model which captures the model behavior that were missed by RE.
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Figure 4.16: 2TL: Magnitude of Y11 for the different iteration steps of RE.

Section Section Error midpoint considered as sample

(Section error > δsect)

1 0.056 yes

2 0.007 no

3 0.002 no

4 0.056 yes

5 0.981 yes

6 0.179 yes

Table 4.6: 2TL: Sampling using Binary Search.

The order of the model obtained is 400, with 16 samples. Note that the compu-
tational time for BS will be in general more expensive than the RE as in BS the
new frequency samples are obtained by comparing the ROM at the midpoint of a
section, in each iteration with the original model at that frequency obtained form
the solver.

Model compacting- Finally the model is compacted based on the truncation of
the singular values of the common projection matrix as shown in Figure 4.18. Us-
ing the truncation algorithm described in Figure 4.2, a ROM of dimension 104 is
obtained in 4.1 s.
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Figure 4.17: 2TL: Magnitude of Y11 obtained with BS.

Threshold RMS Error Dimension of

(Best Model and truncated model) ROM

10−2 0.55 62

10−4 0.016 70

10−6 0.007 81

10−8 0.0003 104

Table 4.7: 2TL: Adaptive truncation for model compacting.

Thus from the reduced model order obtained for the 16 samples chosen adap-
tively, we can infer that for a reduced order of 7 per samples (≈ 104/16), an
accurate frequency response is generated. The reduced state-space matrices are
interpolated linearly to obtain the frequency response. The elements in the state-
space matrices varies as shown in Fig. 4.19.

The frequency response obtained after RE, BS and model compacting in com-
parison with the original model is plotted in Fig. 4.20.

Only in order to validate the algorithm, the original model was simulated over
a dense frequency grid of 200 samples, for which a RMS error of 2.1e − 3 was
obtained for the ROM. The computation time needed to compute a frequency sam-
ple by the original solver is 6.98 s and that with the interpolation of the frequency
dependent reduced state-space matrices is 0.019 s, thereby achieving a speed up of
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Figure 4.18: 2TL: Singular value of the common projection matrix.
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Figure 4.19: 2TL: Variation of matrix element with frequency.

367 times. Thus, the HAS technique was able to automate the generation of accu-
rate reduced frequency dependent state-space matrices with adaptive selection of
the frequency samples.
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Figure 4.20: 2TL: Magnitude of Y11 obtained using the HAS algorithm.
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Figure 4.21: 2TL: Relative error of the original model with the reduced order models
obtained from RE and BS.
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4.3.3.2 IEM: Inverted Embedded microstrip line

The cross-section of the IEM line having a finite length of 1mm is shown in Fig.
4.22. The frequency-dependent behavior is determined using a very accurate, but
slow, 2-D electromagnetic (EM) solver [29, 30]. The order of the original fre-
quency dependent state-space matrix is 1202.

Figure 4.22: IEM: Cross section of IEM line.

Reflective Exploration- As discussed in the former example, the sampling starts
with 3 samples for the first iteration. Table 4.8 shows the number of samples used
during each iteration of RE to achieve an estimated error less than δest.
Binary Search- For the BS, similar to the previous example we start with the sam-

Sample RMS Error (4.6)

3 1.32

4 0.022

5 0.0064

Table 4.8: IEM: Sampling and Modeling in Reflective Exploration with RMS error.

ples obtained from RE. The section error is computed for 4 sections, i.e., between
the samples as mentioned in section 4.3.2.2. If the error is less than or equal to
the threshold value δsect, then the section is considered to be accurately modeled,
else the midpoint is considered as a new sample. The sampling is continued till all
the sections are accurately modeled. Thus a model of order 416 with 26 samples
is obtained. Figure 4.25 gives the relative error plot of the reduced order models
obtained from RE and RE with BS in comparison with the original model.

Model compacting- Finally the model is compacted as described in Section
4.3.2.3. Thus, the proposed algorithm was able to generate ROM of dimension 82
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with 26 frequency samples. Table 4.9 gives the number of samples generated with
the size of the ROM and computation time taken for each section of the proposed
HAS algorithm.

Approach Number of Dimension of CPU time

samples ROM (s)

Reflective Exploration 5 80 33.80

Binary Search 26 416 245.7

Model Compacting 26 82 1.51

Table 4.9: IEM: Samples, Size of ROM and Computation time for each step of the HAS
algorithm.

The reduced state-space matrices are interpolated linearly to obtain the fre-
quency response. The elements in the state-space matrices varies as shown in Fig.
4.23. The frequency response obtained after RE, BS and MC in comparison with
the original model is plotted in Fig. 4.24.
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Figure 4.23: IEM: Variation of matrix element with frequency.

Fig. 4.26 and Fig. 4.27 plots the magnitude and phase of Y13 of the ROM ob-
tained using the proposed HAS algorithm in comparison with the original model.

The computation time needed to compute a frequency sample by the original
solver is 13.943s and that with the interpolation of the frequency dependent re-
duced state-space matrices is 0.025s, thereby achieving a speed up of 558 times.
Thus, the HAS technique was able to automate the generation of accurate reduced
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Figure 4.24: IEM: Magnitude of Y11 obtained using the HAS algorithm.

Figure 4.25: IEM: Relative error of the original model with the reduced order models
obtained from RE and BS.

frequency dependent state-space matrices with adaptive selection of the frequency
samples.
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Figure 4.26: IEM: Magnitude of Y13 obtained using the HAS algorithm.
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Figure 4.27: IEM: Phase of Y13 obtained using the HAS algorithm.
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4.4 Conclusion
In this chapter, a novel hybrid adaptive sampling algorithm to automate the genera-
tion of reduced order models for systems with frequency dependent and frequency
independent state-space models has been proposed. The proposed algorithm com-
bines (i) the active selection of samples and (ii) the reduced order for each sam-
ple. The samples are adaptively chosen using reflective exploration that is further
refined using a binary search. Then in order to obtain a compact model the projec-
tion matrices obtained from the samples are truncated with respect to their singular
values and then the frequency dependent ROMs are interpolated to obtain the fre-
quency response of the system. Numerical results illustrates the efficiency and
accuracy of the proposed technique.

For the estimation of the reduced order per sample the technique initially as-
sumes that the order is equal to the number of ports, this might not be advisably for
systems with large number of ports. In such cases, the MOR technique for systems
with large number of ports has to be considered [31].

For the systems with frequency dependent state-space matrices, after obtaining
the reduced order state-space matrices per sample point, it is then interpolated to
obtain the frequency response, this is with an assumption that the initial models are
unique or in other words from a common subspace. But if the state-space matrices
are not unique then on interpolation a smooth model may not be obtained. In such
cases an unique realization is required which is proposed in Chapter 5.
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? ? ?

In the previous chapter, the interpolation of the reduced frequency dependent
state-space matrices is performed based on the assumption that the state-space
matrices are in the same subspace or in other words that they are unique, such that
on interpolating a smooth model is obtained. Even for a PMOR based on state-
space interpolation, the realization of the state-space matrices is important. It
allows to assume smoothness of variation for the state-space matrices with respect
to the design parameters. Thus, it is seen that the realization of the state-space ma-
trices is important to obtain an accurate parameterized model. Therefore, in this
chapter, a novel state-space realization is proposed using the Sylvester technique.
A judicious choice of the state-space realization is required to exploit the assumed
smoothness of the state-space matrices with respect to the design parameters. The
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Sylvester technique is used in combination with suitable interpolation schemes to
on a set of state-space matrices. The poles and residues are hereby interpolated
indirectly, in order to build accurate parameterized macromodels. The key points
of the novel state-space realizations are the choice of a proper pivot matrix and
a well-conditioned solution of a Sylvester equation. Stability and passivity are
guaranteed by construction for the interpolation over the design space of inter-
est. Pertinent numerical examples illustrate the proposed Sylvester realization for
parameterized macromodeling.

5.1 Introduction

As briefed in Section 2.3, parameterized macromodels are multivariate models
that describe the complex behavior of EM systems, typically characterized by fre-
quency (or time) and several geometrical and physical design parameters, such
as layout or substrate features. Recently, parameterized macromodeling tech-
niques that are able to guarantee overall stability and passivity have been proposed
in [1–4]. The techniques described in [1] and [2] are based on the interpolation
of a set of univariate macromodels, called root macromodels. This interpolation
process of input-output systems leads to parameterization of the residues, but un-
fortunately not of the poles. Passive interpolation of the state-space matrices of a
set of root macromodels is proposed in [3] and [4], providing an increased model-
ing capability with respect to [1] and [2], due to the parameterization of both poles
and residues. Unfortunately, these methods are sensitive to issues related to the in-
terpolation of state-space matrices [5], such as the lack of smoothness of variation
in between the state-space matrices as a function of the parameters.

In this chapter, we propose a novel state-space realization that is suitable to
build accurate parameterized macromodels. The direct parameterization of poles
and residues is avoided, due to their potentially non-smooth behavior with respect
to the design parameters. The Vector Fitting (VF) technique is initially used to
build a set of root macromodel for different combinations of design variables. Sta-
bility for each root macromodel is enforced by pole flipping [6], while passivity
is checked and enforced by means of standard techniques (e.g., [6–9]). The trans-
formation of a pole-residue form obtained by means of VF to a Sylvester realiza-
tion is computed for each root macromodel. The key advantages of the Sylvester
realization are the choice of a pivot or reference matrix and the obtention of a
well-conditioned solution to the Sylvester equation. Since the same pivot ma-
trix is used for all the state-space realization of all the root macromodels, smooth
variations of the state-space matrices with respect to the design parameters can
be expected. The state-space matrices obtained from the Sylvester realization are
used to obtain matrix solutions of the linear matrix inequalities (LMIs) pertaining
to the positive-real or bounded-real lemma [10], and this information is then used
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to perform a passivity preserving interpolation of the state-space matrices. Com-
putationally, the solution of LMIs or algebraic Riccati equations (AREs) generates
a descriptor state-space form that preserves positive-realness or bounded-realness
of the model. Finally, suitable interpolation schemes are used to build accurate
parameterized macromodels which preserve stability and passivity.

The proposed Sylvester realization for macromodeling based on interpolation
of state-space matrices is illustrated using suitable numerical examples.

5.2 Parameterized Macromodeling
Starting from a set of data samples {(s, ~p)k,H(s, ~p)k}, a set of frequency-dependent
rational models is built for an initial selection of design space points by means of
system identification techniques [11], in our case the VF technique [6]. The re-
sult of this initial procedure is a set of rational univariate macromodels, called
root macromodels. Each root macromodel is related to a design space point ~pk =

(p
(1)
k1
, ..., p

(M)
kM

) . Two data grids are used in the modeling process: an estimation
grid and a validation grid. The estimation grid is utilized to build the root macro-
models that, combined with suitable interpolation schemes, are able to provide
stable and passive parameterized macromodels. The validation grid is utilized to
assess the interpolation capability of the parameterized macromodel and its capa-
bility of describing the system under study in points of the design space previously
unused for the construction of the root macromodels.

Suppose we have a set of root macromodels S~pk , k = 1, ..., N with a mini-
mal realization

S~pk ≡
[

A~pk B~pk

C~pk D~pk

]
, (5.1)

the state-space equations become

ẋ = A~pkx+ B~pku (5.2)

y = C~pkx+ D~pku (5.3)

while the transfer functions are given by

H~pk(s) = C~pk(sI−A~pk)−1B~pk + D~pk . (5.4)

We assume in this chapter that all realizations S~pk have the same McMillan
degree n [12] and a number of ports m ≤ n. We further suppose that all matrices
A~pk are Hurwitz stable i,e; every eigenvalue of A~pk has a strictly negative real
part [13].
We propose a generic parameterized realization of the form

S(~p) ≡
[

A(~p) B(~p)
C(~p) D(~p)

]
(5.5)
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with ~p = (~p(1), ..., ~p(M)). The models S~pk can be considered as snapshots of S(~p).
S~pk needs to be able to accurately model the system behavior as a function of the
complex frequency s and the vectorial parameter ~p while guaranteeing stability
and passivity over the design space of interest.

5.3 State-Space Realization For Parameterized Macro-
modeling

To obtain accurate parameterized macromodels by interpolation of the state-space
matrices, the choice of the state-space realization is fundamental.

In this section, we will discuss the well-known Gilbert realization, the balanced
realization, the barycentric realization, and then the proposed novel Sylvester re-
alization, preceded by an important subsection on passive parameterized interpo-
lation.

5.3.1 Gilbert Realization

The minimal state-space realization problem for linear time invariant (LTI) sys-
tems was first formulated by Gilbert [14], who gave an algorithm for transforming
a transfer function into a system of differential equations. The approach of Gilbert
is based on partial-fraction expansions.

H(s) = R0,~pk +

N∑
n=1

Rn,~pk
s− zn,~pk

(5.6)

where Rn,~pk and zn,~pk are respectively the model residues and poles, with R0,~pk

being the direct coupling constant. The poles and the residues are stamped directly
in the A(~p) and C(~p) matrices using the Gilbert realization [14]. It is well-known
that model poles and residues are very sensitive to even small variations of the
design parameters, resulting in quite irregular variations of each pole in the design
space, e.g. bifurcation effects [15]. Since poles and residues may present a
highly non-smooth behavior with respect to the design parameters, achieving a
reasonable accuracy in parameterized macromodels built by interpolation of state-
space matrices becomes difficult, due to the fact that pole and residue trajectories
as a function of ~p are not well defined.

5.3.2 Balanced Realization

A minimal and stable realization is called balanced [16, 17], if the controllability
and observability Gramians [16] are equal and diagonal. Every minimal system
can be brought into balanced form. The balanced realization can be calculated
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using the Matlab function balreal. This routine uses the eigendecomposition
of the product of the observability and controllability Gramians to construct the
balancing transformation matrix [12].

The most interesting property of a balanced realization is associated with the
uniqueness properties of the balancing transformation [18]. As the eigenvalues
(real and nonnegative) of the product of the controllability and observability Grami-
ans, are distinct, then the balancing transformation matrix is unique. If, on the
other hand, two or more eigenvalues are repeated, then their corresponding eigen-
vectors can be rotated arbitrarily in the corresponding eigenspace. Thus as stated
in [5, 18, 19], uniqueness is guaranteed up to a sign and it may affect the smooth-
ness of the state-space matrices as functions of the design parameters.

5.3.3 Barycentric Realization

In what follows, the barycentric realization [15, 20] is described. The transfer
function of the macromodel related to a generic point ~p = (p

(1)
k1
, ..., p

(M)
kM

) in the
design space is converted from the rational pole residue form

H(s) = R0,~pk +

N∑
n=1

Rn,~pk
s− zn,~pk

(5.7)

obtained by means of VF, into the barycentric realization [15, 21]

H(s) =
F0,~pk +

∑N
n=1 Fn,~pkφn(s)

f0,~pk +
∑N
n=1 fn,~pkφn(s)

(5.8)

with basis functions defined as follows

φn(s) =
1

s− an
, n = 1, ..., N (5.9)

and where the barycentric basis poles {an}Nn=1 are fixed and do not depend on ~pk.
The barycentric realization (5.8) can be split into a numerator and a denominator,
i.e;

H(s) =
N~pk(s)

∆~pk(s)
(5.10)

where

N~pk(s) = F0,~pk +

N∑
n=1

Fn,~pkφn(s) (5.11)

∆~pk(s) = f0,~pk +

N∑
n=1

fn,~pkφn(s) (5.12)

This factorization can be seen as a special case of the so called right coprime
factorization [22]. A state-space realization for each root macromodel is obtained
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by means of (5.11)-(5.12). First, we construct two separate state-space realizations
for the numerator and denominator. We have

N~pk(s) =

[
Ãnum
~pk

B̃num
~pk

C̃num
~pk

D̃num
~pk

]
(5.13)

∆~pk(s) =

[
Ãden
~pk

B̃den
~pk

C̃den
~pk

D̃den
~pk

]
(5.14)

where

• Anum
~pk

= Aden
~pk

= blkdiag{anIP }, n = 1, ..., N , where IP is the identity
matrix of order P

• Bnum
~pk

= Bden
~pk

= [IP , ..., IP ]T is a block-column matrix obtained by stack-
ing N identity matrices IP

• Cnum
~pk

= [F1,~pk , ..., FN,~pk ]

• Cden
~pk

= [f1,~pkIP , ..., fN,~pkIP ]

• Dnum
~pk

= F0,~pk

• Dden
~pk

= f0,~pkIP

Remark that, whenever some of the basis poles in the set of {an}Nn=1 are complex,
the above state-space matrices are complex. However, standard state-space coordi-
nate transformations can be applied such that the resulting realization is real. The
matrix Anum

~pk
= Aden

~pk
can be seen as a pivot matrix for the barycentric realization.

Although the denominator function (5.12) is scalar, its realization has been chosen
to have P ports, in order to be compatible in size with the realization of (5.11). We
have

H(s) = N~pk(s)∆~pk(s)−1IP (5.15)

Then after some standard manipulations [15], we can write the final state-space
realization of (5.10) as

H(s) =

[
Ã~pk B̃~pk

C̃~pk D̃~pk

]
(5.16)

with

Ã~pk = Aden
~pk
−Bden

~pk
(Dden

~pk
)−1Cden

~pk
(5.17a)

B̃~pk = Bden
~pk

(Dden
~pk

)−1 (5.17b)

C̃~pk = Cnum
~pk
−Dnum

~pk
(Dden

~pk
)−1Cden

~pk
(5.17c)

D̃~pk = Dnum
~pk

(Dden
~pk

)−1 (5.17d)
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The barycentric realization (5.17) for a root macromodel can be computed using
different methods. The robustness of this conversion is an important aspect. The
computation of the barycentric realization (5.17) requires the identification of the
matrices Cnum

~pk
and Cden

~pk
, which can be found using any of the approaches de-

scribed below.

1. Pole placement approach:
An interesting and robust approach to compute the barycentric realization
uses the pole placement technique [23]. The calculation of the matrix

Ã~pk = Aden
~pk
−Bden

~pk
(Dden

~pk
)−1Cden

~pk
(5.18)

requires the identification of Cden
~pk

which can be computed using the tech-
nique proposed in [23]. Another interesting approach based on the solution
of a Sylvester equation can be found in [24]. Some assumptions concerning
observability and controllability must be satisfied for these approaches and
for the uniqueness of the solution [23, 24]. The matrix Cden

~pk
is used to place

the eigenvalues of the Ã~pk matrix, and therefore the poles of the root macro-
models in such a way that they are equal to zn,~pk . Once Cden

~pk
is obtained, the

next step is to compute the Cnum
~pk

matrix. Each block Fn,~pk , n = 1, ..., N

can be easily computed by means of [15]

Fn,~pk = fn,~pkH(an). (5.19)

2. Linear system approach:
The matrix Cden

~pk
is computed solving a linear system in [15] . This approach

uses the solution of a linear system that contains the products of poles and
becomes ill-conditioned if the order of the system is high and the bandwidth
of interest is large. Once Cden

~pk
is obtained, the computation of Cnum

~pk
is

done as in the pole placement approach described above.

5.3.3.1 Passive Parameterized Interpolation

When the macromodel is utilized in a circuit simulator for transient analysis, sta-
bility and passivity are the fundamental properties to be guaranteed. It is known
that while a passive system is also stable, the reverse is not necessarily true. A
passive system denotes a system that is incapable of generating energy, and hence
one that can only absorb energy from the sources used to excite it [25]. Passivity is
an important property to satisfy because stable, but not passive macromodels can
produce unstable systems when connected to other stable, even passive, loads.

The interpolation of state-space matrices does not in general result in the preser-
vation of stability and passivity over the design space even if the root macromodels
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(5.1) are stable and passive. First, we need to define what we mean by passive in-
terpolation. Since each root macromodel S~pk is passive, the bounded real lemma
or positive real lemma [25] states that this is the case if there exists a positive
definite symmetric matrix Ppk such that the (LMI) [20, 26, 27]

L~pk =

 A′~pkPpk + PpkA~pk P~pkB~pk C′~pk
(PpkB~pk)′ −I D′~pk

C~pk D~pk −I

 ≤ 0 (5.20)

for S-parameters [28] or

L~pk =

[
A′~pkP~pk + P~pkA~pk P~pkB~pk −C′~pk
(P~pkB~pk −C′~pk)′ −D~pk −D′~pk

]
≤ 0 (5.21)

for Y-parameters is satisfied.
Solving the LMI can be replaced by equivalently solving an ARE, which is

known to be a more efficient approach [29, 30] as the number of operations re-
quired to solve a Riccati equation isO(n3), while the cost of solving an equivalent
LMI is O(n6). Thus for high orders it is advisable to solve using ARE as it is
computationally much cheaper in comparison to the LMI.

For the S-parameters and Y-parameters, the AREs can respectively be written
as

A′~pkP~pk + P~pkA~pk + C′~pkC~pk +

(P~pkB~pk + C′~pkD~pk)Ws(P~pkB~pk + C′~pkD~pk)′ = 0 (5.22)

and

A′~pkP~pk + P~pkA~pk + (P~pkB~pk −C′~pk)Wa(P~pkB~pk −C′~pk)′ = 0 (5.23)

if Ws = (Im − D′~pkD~pk)−1 and Wa = (D~pk + D′~pk)−1 exist, i.e; (Im −
D′~pkD~pk) > 0 and D~pk + D′~pk > 0.

Once the matrix P~pk is obtained for each root macromodel, it is possible to
convert the transfer function from the form (5.4) to the descriptor state-space form

H~pk(s) = C~pk(sP~pk −P~pkA~pk)−1P~pkB~pk + D~pk . (5.24)

which will be useful for obtaining the passive parameterized interpolation.
Next, consider a positive interpolation kernel [31] µpk(~p) satisfying [32]

µpk(~p) ≥ 0, µpk(~pl) = δpk,l∑
pk
µpk(~p) = 1 (5.25)
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We assume that the interpolation kernel only depends on the design space grid
points and not on the values of the functions to be interpolated. The kernel compu-
tation does not require the solution of a linear system to impose the interpolation
constraints. In what follows, each interpolation kernel µpk(~p), is selected as in the
piecewise linear interpolation.

It is straightforward to prove that, if each state-space matrix is interpolated by
a positive interpolation scheme with an interpolation kernel that depends locally
on the data points, this is equivalent with the interpolation of the LMI (5.20) with
the same interpolation scheme i.e;

L(~p) =

N∑
pk=1

µpk(~p)Lpk (5.26)

Hence if we parameterize all entries of the P~pkA~pk ,P~pkB~pk ,C~pk ,D~pk ,P~pk ma-
trices as

P(~p)A(~p) = (PA)(~p) =

N∑
k=1

µpk(~p)P~pkA~pk (5.27a)

P(~p)B(~p) = (PB)(~p) =

N∑
k=1

µpk(~p)P~pkB~pk (5.27b)

C(~p) =

N∑
k=1

µpk(~p)C~pk (5.27c)

D(~p) =

N∑
k=1

µpk(~p)D~pk (5.27d)

P(~p) =

N∑
k=1

µpk(~p)P~pk (5.27e)

it is seen by inspection that the parameterization (PA)(~p), (PB)(~p), C(~p), D(~p),
P(~p) thus obtained is passive. Since any non-negative linear combination of posi-
tive (negative) semi-definite real matrices is a positive (negative) semi-definite real
matrix, stability and passivity are preserved over the entire design space. Similar
results can be obtained for admittance and impedance representations [3].

The problem with the passive parameterized interpolation procedure for the
Gilbert and balanced realizations are twofold. First, there are 5 interpolation equa-
tions (5.27) to be satisfied. Secondly the interpolation technique yields by con-
struction the discrete macro-model S~pk for ~p = ~pk it is not at all sure that the
interpolated matrices A(~p),B(~p),C(~p),D(~p) (or related descriptor form) will be-
have smoothly in between the nodes ~pk. The reason for this is that minimal real-
izations are all equivalent modulo a similarity transformation. This means that two



102 CHAPTER 5

realizations related by[
Ã~pk B̃~pk

C̃~pk D̃~pk

]
=

[
X−1A~pkX X−1B~pk

C~pkX D~pk

]
(5.28)

where X is any nonsingular matrix, yield the same transfer function

H~pk(s) = C~pk(sI−A~pk)−1B~pk +D~pk = C̃~pk(sI−Ã~pk)−1B̃~pk +D̃~pk (5.29)

It is important to note that the interpolation of state-space matrices allows for
a higher modeling capability than the interpolation of transfer functions [1, 2], but
unfortunately these methods are sensitive to the possible lack of smoothness of the
variation of state-space matrices as a function of the parameters.

In the next subsections, we describe the proposed Sylvester realization to get
around this problem.

5.3.4 Sylvester Realization

For the Sylvester realization we propose the following state-space feedback real-
ization with feedback matrix F and pivot matrix Ã.

ẋ = Ãx+ B̃~pkv (5.30a)

y = Ĉ~pkx+ D̃~pkv (5.30b)

v = −Fx+ u (5.30c)

where Ã is a fixed n×n pivot matrix and F is a fixed m×n state-space feedback
matrix. This realization can be written as

R~pk ≡
[

Ã− B̃~pkF B̃~pk

Ĉ~pk − D̃~pkF D̃~pk

]
=

[
Ã− B̃~pkF B̃~pk

C̃~pk D̃~pk

]
(5.31)

For R~pk and S~pk to be equivalent requires the existence of nonsingular matrices
Xk such that

Ã− B̃~pkF = X−1k A~pkXk (5.32a)

B̃~pk = X−1k B~pk (5.32b)

C̃~pk = C~pkXk (5.32c)

is needed.
By eliminating (5.32b) from (5.32a) we obtain the Sylvester equation

A~pkXk −XkÃ + B~pkF = 0 (5.33)
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for the unknown matrix Xk. We need the following to hold:
Theorem 1: The Sylvester equation (5.33) has a unique nonsingular solution Xk

provided the pair (A~pk ,B~pk) is controllable, the pair (Ã,F) is observable, and
the intersection of the eigenspectra of A~pk and Ã is empty.

Proof. See [24, 33].

Note that Sylvester equations are routinely solved by the Matlab function lyap
and that the solution comes with a computational cost of O(n3).
Remark 1: The Sylvester realization for a given pivot matrix Ã and feedback ma-
trix F, is unique by construction. For the choice of Ã we can take a block-diagonal
or block-Jordan matrix [24], which never shares eigenvalues with any of the A~pk

matrices. This can be accomplished by choosing the eigenvalues of Ã close to
the imaginary axis (see also the numerical simulations), similarly to Anum

~pk
and

Aden
~pk

in (5.11) and (5.12). The choice of F is subject to the requirement that
the pair (Ã,F) has to be observable. In this chapter we have considered F as
Bnum
~pk

= Bden
~pk

as described in Section 5.3.3 with proper transformation.

More generally speaking, F can be chosen quite freely, or its choice can be
embedded in the overall Sylvester algorithm [34]. It is important to choose the Ã
and F matrices properly to have a well-conditioned Sylvester equation solution.

The Sylvester realization state-space matrices generate their own LMIs simi-
larly to (5.20) for S-parameters and as in (5.21) for Y-parameters, i.e;

 (Ã− B̃~pkF)′P̃~pk + P̃~pk(Ã− B̃~pkF) P̃~pkB̃~pk C̃′~pk
(P̃~pkB̃~pk)′ −I D̃′~pk

C̃~pk D̃~pk −I

 ≤ 0 (5.34)

for S-parameters and

[
(Ã− B̃~pkF)T P̃~pk + P̃~pk(Ã− B̃~pkF) P̃~pkB̃~pk − C̃′~pk

(P̃~pkB̃~pk − C̃′~pk)′ −D̃~pk − D̃′~pk

]
≤ 0

for Y-parameters. The ARE can also be similarly recast.
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It is then parameterized as in the four last equations of (5.27), i.e.,

P̃ (~p)B̃(~p) = ˜(PB)(~p) =

N∑
k=1

µk(~p)P̃~pkB̃~pk (5.35a)

C̃(~p) =

N∑
k=1

µk(~p)C̃~pk (5.35b)

D̃(~p) =

N∑
k=1

µk(~p)D̃~pk (5.35c)

P̃(~p) =

N∑
k=1

µk(~p)P̃~pk (5.35d)

The first equation of (5.27) has no counterpart in equations (5.35) since it is easy
to show that

(P̃ [Ã− B̃F ])(~p) =

N∑
k=1

µpk(~p)P̃~pk [A−B( ~pk)F ] (5.36)

always holds.
Finally, the parameterized Sylvester realization in descriptor format is then

simply generated by the interpolated matrices (P̃Ã)(~p), (P̃B̃)(~p), C̃(~p), D̃(~p), P̃(~p)

and the parameterized transfer function is

H~p(s) = C̃~p(sP̃(~p)− P̃(~p)Ã(~p))−1P̃B̃(~p) + D̃(~p) (5.37)

Remark 2: Note that, even if passivity is not required, the Sylvester realizations
R~pk can be very useful for parameterization. Suppose the interpolation kernel
K(~pk, ~p) = µpk(~p) is not necessarily positive, but satisfies partition of unity i.e.,∑

pk

µpk(~p) = 1, µpk(~pl) = δpk,l (5.38)

Then it is clear that the interpolation procedure

B̃(~p) =

N∑
pk=1

µpk(~p)B̃~pk (5.39a)

C̃(~p) =

N∑
pk=1

µpk(~p)C̃~pk (5.39b)

D̃(~p) =

N∑
pk=1

µpk(~p)D̃~pk (5.39c)

is a very simple way to generate a parameterized macromodel.
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5.4 Numerical Examples
In the following examples, we show the importance of the state-space realization.
We validate the novel Sylvester realization approach by a comparison with the
standard Gilbert, the balanced and the barycentric realization. The pole placement
approach described in Section 5.3.3 [24] is used for the barycentric realization as
it gives a more robust solution in comparison to the linear system approach [15].

5.4.1 CM: Two Coupled Microstrip with Variable Spacing

Two coupled microstrip lines (length L=2cm) are considered in this example. The
cross-section is shown in Fig.5.1. The conductors have a width W of 500 µm and

Figure 5.1: CM: Two coupled microstrips.

the height h of the dielectric (εr = 9.6) is 800 µm. A bivariate macromodel is
built as a function of the spacing S between the microstrips and the frequency,
freq. Their corresponding ranges are shown in Table 5.1.

Parameter Min Max
Frequency (freq) 20 MHz 4 GHz
Spacing (S) 1 mm 3 mm

Table 5.1: CM: Parameters of the coupled microstrip

The scattering parameters were obtained by means of a full-wave solver based
on the Partial Element Equivalent Circuit method [20] over a grid of 200 × 15

samples, for frequency and spacing respectively. We have built root macromodels
for 8 values of the spacing by means of VF, each with an order equal to 8.

As described in Section 5.3.4, a pivot matrix and a feedback matrix must be
chosen such that a well-conditioned solution is obtained for the Sylvester equation
(5.33). We use a pivot matrix based on the set of poles {an}Nn=1, chosen as follows
N ; % Order of approximation
%Complex conjugate pairs, linearly spaced:
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β=linspace(ω(1),ω(end),N/2);% ω = 2πfreq

poles=[];
for n=1:length(β)
α = −β(n) ∗ 1e− 2;
poles=[poles (α− i ∗ β(n)) (α+ i ∗ β(n)) ];
end

i.e; the pole pairs are chosen as

an = −α+ jβ, an+1 = −α− jβ

where, α = β/100.
Also, since the eigenvalues of the pivot matrix and those of the root macro-

models obtained from Gilbert realization must not be the same, we choose the
poles very close to the imaginary axis as shown in Fig.5.2. The feedback ma-
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Figure 5.2: CM: Eigenvalues of the pivot matrix and the root macromodels obtained from
Gilbert realization.

trix is chosen as described in Section 5.3.4. A similarity transformation is then
performed using the Sylvester solution to obtain the state-space matrices of the
Sylvester realization.

Then the four realizations are converted to a passive descriptor state-space form
using LMI (5.34) as described in Section 5.3 with the help of CVX [35]. A bi-
variate macromodel is then obtained by linear interpolation of the corresponding



SYLVESTER STATE-SPACE REALIZATIONS 107

1

1.5

2

2.5

3
0

1
2

3
4

x 10
9

0

0.1

0.2

0.3

0.4

Frequency (GHz)
Spacing (mm)

|S
11

|

Figure 5.3: CM: Magnitude of the bivariate macromodel S11(s, S) (Sylvester realization).

state-space matrices. The parameterized macromodel obtained by the Sylvester
realization is shown in Fig.5.3 . Fig.5.4 compares S11(s, S) and its macromodel
using the proposed realization for the spacing values S = {1.08, 2.08, 2.91} mm
that have not been used for the generation of the root macromodels.

The error plot in Fig.5.5 shows the absolute error at the validation points for
the different realizations. It can be seen that the proposed Sylvester realization
method gives a more accurate parametric macromodel with an absolute maximum
error of −55.77 dB in comparison with the other realization techniques. The error
plot of barycentric realization and the proposed technique is almost similar, but
the proposed technique is computationally cheaper in comparison with barycentric
realization.

Technique Maximum Error (dB) CPU time (sec)
Gilbert -0.505 -
Balanced 3.134 0.115
Barycentric -55.032 0.281
Sylvester -55.766 0.095

Table 5.2: CM: Comparison of the different techniques

Table 5.2 compares the accuracy and CPU time needed for the four realiza-
tions. As the initial set of data samples are built using the VF technique, the root
macromodels are in the standard Gilbert form. Thus 5.2 gives the CPU time for
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Figure 5.4: CM: Magnitude of the bivariate macromodel of S11(s, S)
(S = {1.08, 2.08, 2.91} mm using the Sylvester realization.

the transformation from the Gilbert state-space form to the respective state-space
realization forms. It can be noted, that the proposed Sylvester realization is ac-
curate and has the least computation. The distribution of the poles is shown in
Fig.5.6 ; a bifurcation effect on a couple of poles is visible with two real poles
moving towards each other and becoming a complex conjugate pole-pair, causing
the slope of the corresponding trajectory to become discontinuous. This example
shows that direct parameterization of the poles should be avoided due to poten-
tially non-smooth behavior with respect to the design parameters. The effect of
the bifurcation for the Gilbert realization can be seen in Fig.5.7. In order to verify
the properties of the parameterized macromodel using Sylvester realization, we
check the poles of the parameterized macromodel over a dense sample (i.e; 200
samples) of the spacing S and is seen in Fig.5.8 that the real part of the poles are
negative and thus the system is stable.

The H∞ norm [36] of the system for the same dense samples of the spacing S
is plotted in Fig.5.9 and is found to be always less than 1 which shows that the sys-
tem is passive. Thus the proposed Sylvester realization is able to provide a more
accurate parameterized macromodel than the Gilbert realization and balanced re-
alization, and a computationally cheaper model in comparison with barycentric
realization. Also by using an LMI along with the Sylvester realization a stable and
passive parameterized macromodel is obtained.
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Figure 5.5: CM: Error comparison for the different realizations.

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6

x 10
10

−4

−3

−2

−1

0

1

2

3

4
x 10

10

Im
(s

)

Re(s)

Figure 5.6: CM: Model poles as a function of spacing for the root macromodels.
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Figure 5.8: CM: Poles of the bivariate macromodel S(s, S) using the Sylvester realization.
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5.4.2 NF: Folded Stub Notch Filter with Variable Length and
Variable Spacing

A folded stub microwave notch filter on a substrate with relative permitivity εr =

9.6 and a thickness of 0.635 mm is modeled in this example. The layout of this
filter is shown in Fig.5.10.

Figure 5.10: NF: Layout of the folded stub notch filter.

The spacing S and the length L of the stub are chosen as design variables in
addition to frequency. Their corresponding ranges are shown in Table 5.3. The

Parameter Min Max
Frequency (freq) 2 GHz 4 GHz
Length (L) 5 mm 10 mm
Spacing (S) 0.5 mm 0.7 mm

Table 5.3: NF: Parameters of the folded stub filter

scattering parameters were computed with advanced design system (ADS) mo-
mentum over a grid of 11 × 11 samples, for length and spacing respectively. We
have built root macromodels for 6×6 values of the length and spacing respectively
by means of VF, each with an order 6. As in the previous example, a pivot matrix
and feedback matrix are found, and the eigenvalues of the pivot matrix and of the
root macromodels are different as shown in Fig.5.11. Then a similarity transfor-
mation is done using the Sylvester solution to obtain the state-space matrices of
the Sylvester realization. In order to convert the state-space matrices to a passive
descriptor state-space form, we solve the LMI (5.34) using CVX [35] for the three
realizations. Thus, an accurate trivariate macromodel is obtained by the multilin-
ear interpolation of the corresponding state-space matrices. Fig.5.12 shows the
parameterized macromodel obtained using the Sylvester realization .

Fig.5.13 compares S12(s, L, S) and its macromodel for the length values L =

{5.5, 6.5, 7.5, 8.5} mm that have not been used for the generation of the root
macromodels using the Sylvester realization.
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Figure 5.11: NF: Eigenvalues of the pivot matrix and the root macromodels obtained from
Gilbert realization.

As in the case of the two coupled microstrips, in this example also we can
see from the error plot in Fig.5.14 that the proposed realization method gives an
accurate parameterized macromodel with an absolute maximum error of −43.62

dB. While the barycentric realization provides a slightly better accuracy than the

Technique Maximum Error (dB) CPU time (sec)
Gilbert -21.201 -
Balanced 9.718 0.891
Barycentric -45.552 0.963
Sylvester -43.617 0.378

Table 5.4: NF: Comparison of the different techniques

Sylvester-based realization, but it results to be computationally more expensive as
shown in Table 5.4.

Fig.5.15 shows the parameterized macromodel using balanced realization, and
we note that the behavior is very erratic in comparison with Fig.5.12. This is due
to the abrupt changes in the elements of the state-space matrices obtained through
the balanced realization.

The behavior of one of the elements in the matrix A ~pk is shown in Fig. 5.16.
The figure compares the behavior of the corresponding element in Sylvester real-
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Figure 5.12: NF: Magnitude of the trivariate macromodel S12(s, L, S) for S = 0.5mm
using Sylvester realization.

ization and can be seen to have a smooth variation.
In order to verify the stability and passivity of the parameterized macromodel

using the Sylvester realization, we check its poles over a dense sampling (i.e. of
200× 200 samples of the spacing S and length L). In Fig.5.17 we can see that the
real part of the poles is always negative and therefore the system is stable.

For passivity similar to the previous example, the H∞ of the system is plotted
in Fig.5.18 and it is found to be less than 1 for all cases.

Thus the proposed Sylvester realization is able to provide a more accurate pa-
rameterized macromodel in comparison to Gilbert realization and balanced real-
ization, and a computationally cheaper parameterized macromodel in comparison
with barycentric realization. The stability and passivity of the system can be pre-
served by solving LMI and by using suitable interpolation schemes.
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Figure 5.17: NF: Poles of the trivariate macromodel S(s, L, S) using Sylvester
realization.
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5.5 Conclusion
This chapter proposes a novel state-space realization for parameterized macro-
modeling based on interpolation of state-space matrices. A judicious choice of the
state-space realization is required to account for the generally assumed smooth-
ness of the state-space matrices with respect to the parameters. Suitable interpola-
tion schemes along with Sylvester realization are used to interpolate a set of root
state-space matrices in order to build accurate parameterized macromodels. The
essential aspects of this novel realization are to find a proper pivot matrix and to
obtain a well-conditioned solution for a Sylvester equation. The numerical exam-
ples and related comparison results show that the proposed Sylvester realization
provides very accurate parameterized macromodel with a low computation cost.
The stability and passivity of the system can be preserved with the help of LMI
and by the use of proper interpolation schemes.

Note that the Sylvester technique has a computational complexity of O(n3)

and thus becomes expensive for state-space systems with large size. Thus in Chap-
ter 6, parameterized model order reduction using state-space interpolation is pro-
posed.
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? ? ?

As mentioned in Section 2.3, PMOR methods can reduce large systems of equa-
tions with respect to frequency or time and also other design parameters of the cir-
cuit and are therefore well suited to efficiently perform EM design activities. The
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focus in Section 6.2 of this chapter is on state-space interpolation based PMOR
and on the estimation of the reduced order for the PMOR in a design space. For
this a fast technique using Gramians is utilized to estimate the reduced order and
then common projection matrices are used to build parameterized reduced order
models. The design space is divided into cells and a Krylov subspace is computed
for each cell vertex model. The truncation of the singular values of the merged
Krylov subspaces from the models located at the vertices of each cell yields a
common projection matrix per design space cell. Finally, the reduced system ma-
trices are interpolated using positive interpolation schemes to obtain a guaranteed
passive parameterized reduced order model. Then in Section 6.3 the importance
of sequential sampling in the modeling of PMOR is proposed and illustrated using
pertinent examples.

6.1 Introduction

A number of PMOR methods have been developed in recent years. The multipa-
rameter moment-matching methods presented in [1, 2] use a subspace projection
approach. However, the resulting ROMs usually suffer from oversize when the
number of moments to match is high, either because high accuracy is required
or because the number of parameters is large. The parameterized interconnect
macromodeling obtained using a two-directional Arnoldi process (PIMTAP) algo-
rithm presented in [3], preserves the passivity of the parameterizedRLC networks.
However, as all multiparameter moment-matching-based PMOR techniques, it is
suitable only for a low-dimensional design space. The selection of the multidi-
mensional expansion points and the number of multiparameter moments needs to
be addressed in these methods. The technique presented in [4] combines tradi-
tional passivity-preserving MOR methods and interpolation schemes based on a
class of positive interpolation operators. A PMOR method that is based on the
EM matrix parameterization and projection subspaces is proposed in [5]. Overall
passivity of PROMs is guaranteed over the design space of interest in [4, 5]. A ma-
trix interpolation-based technique [6] computes a set of reduced system matrices
in a common subspace and interpolates them to generate a PROM. This technique
avoids the oversize problem of multiparameter moment matching algorithms, but
the reduced system matrices that are needed for the interpolation must have the
same reduced order and must be postprocessed for reprojection onto a common
subspace. The passivity of PROM is not guaranteed with this approach.

In Section 6.2 a novel PMOR technique that remediates the shortcomings of the
method in [6] is proposed by combining an a-priori reduced order estimation, com-
mon projection matrices (locally (cell by cell) or globally), design space decompo-
sition and passivity-preserving parameterization schemes. A fast technique using
Gramians is first utilized to estimate the reduced order. After that projection matri-
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ces are used to build parameterized models. The design space is divided into cells
and a Krylov subspace is computed for each cell and each cell vertex model. The
truncation of the singular values of the merged Krylov subspaces computed from
the models at the vertices of each cell generates a common projection matrix per
cell for the local approach. For the global approach the whole design space is con-
sidered as one cell and a common projection matrix is computed globally. Next,
the reduced system matrices are interpolated using positive interpolation schemes
to obtain a passive PROM. The Krylov subspaces are obtained using Krylov-based
MOR methods. In this chapter we use the Laguerre-SVD technique [7].

Most of the PMOR techniques are based on the interpolation of univariate
nodal macromodels (also called nodes) which are a priori sampled over the pa-
rameter design space [8]. The rules of thumb used to sample the space are neither
optimal nor automated. One of the main challenges is to find a reduced set of
nodes that are well-chosen in the parameter design space in order to reduce the
model evaluation cost [9–12]. Thus in Section 6.3, it is illustrated that sequential
sampling techniques can facilitate this step and deliver promising results.

Sequential sampling techniques can be classified into three main categories,
namely input-based methods [13], output-based methods [11, 14, 15] and model-
based methods [9, 10]. In this chapter, an algorithm similar to [16] is used for se-
lecting the optimal number of nodes with the aim of generating an accurate PROM.
In contrast to the data driven approach presented in [16], additional nodes are se-
lected by comparing the reduced model order of the nodes along the edges of the
parameter design space.

The advantages of combining a sequential sampling technique [16] along with
a PROM technique described in Section 6.2 are numerous: the approach can be
applied to multidimensional problems [17, 18], it is portable to parallel computing
platforms and it reduces the expensive model evaluation time. The sampling of
the parameter design space is fully automated and doesn’t need to be specified a
priori, hereby avoiding undersampling/oversampling in a natural way. Note that
undersampling generates poor model quality whereas oversampling often results in
a waste of computational resources. Finally, it is noted that the local interpolation
ensures that the models are stable and passive.
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6.2 Passivity-Preserving Parameterized Model Or-
der Reduction using Singular Values and Matrix
Interpolation

6.2.1 Estimation of the reduced order based on Grammians

An a-priori reduced order estimation makes the construction of PROMs much
more efficient. The reduced order can be estimated by studying the so-called Han-
kel singular values of the model which are based on the system Gramians. The
system Gramians are positive-semidefinite matrices that express the controllabil-
ity and observability properties of systems or models.

The reduced order is computed at the corner points of the design space. The
design space is sampled as described in [5]. It contains all parameters except
frequency. Two data grids are used in the modeling process: an estimation grid and
a validation grid as is shown in Fig. 6.1. The parametrized ROMs are estimated

Figure 6.1: Example of an uniformly sampled estimation and validation design space
grids.
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either locally (cell by cell) or globally using the estimation grid and are validated
over the validation grid. First, we estimate the reduced order as follows.

Consider a parameterized dynamical system with N design parameters ~p =

(p(1), ..., p(N)) in a descriptor state-space form :

E(~p)
dx(t, ~p)

dt
= A(~p)x(t, ~p) + Bu(t)

y(t, ~p) = Cx(t, ~p) + Du(t) (6.1)

The fast and efficient modified Smith technique [19, 20] enables to find the
controllability Gramian (Wc) and the observability Gramian (Wo) of a large sys-
tem. For the state-space model described in (6.19), the generalized Gramians are
defined as the unique solutions of the linear equations

E(p̃)WcA(p̃)
′
+ A(p̃)WcE(p̃)′ + BB′ = 0 (6.2)

E(p̃)′WoA(p̃) + A(p̃)′WoE(p̃) + C′C = 0 (6.3)

For every real scalar g < 0, the Stein equation [21] can be written for (6.2) as
shown:

ÃgWcÃ
′
g −Wc + BgB

′
g = 0 (6.4)

where Ãg = (gE(~p) + A(~p))−1(gE(~p) −A(~p)), and Bg =
√

(−2g)(gE(~p) +

A(~p))−1B. It follows that Wc =
∑∞
j=0 Ã

j
gBgB

′
g(Ã

′
g)
j [21–23]. In practice the

spectral radius of Ãg should be minimized so that the power terms decay quickly
and the infinite summation can be well approximated by finite terms.

Wc ≈
k−1∑
j=0

Ãj
gBgB

′
g(Ã

′
g)
j = Kk(Ãg,Bg)Kk(Ãg,Bg)

′ (6.5)

where Kk(Ãg,Bg) = [BgÃgBg...A
k−1
g Bg] is called the kth order Krylov ma-

trix and serves as a Cholesky factor of Wc. Similarly, taking Ãg = (gE(~p) −
A(~p))(gC(~p)−G(~p))−1, and Cg =

√
(−2g)C′(gE(~p) +A(~p))−1 , the observ-

ability Gramian Wo can be computed.
The value of k in (6.5) can be found from the convergence criterion:

‖Wk−1
c −Wk

c ‖2
‖Wk−1

c ‖2
≤ threshold (6.6)

The Smith method is similar to the alternating direction implicit (ADI) method
[24–26]. The Smith method is chosen because of its ease of exposition and also
because it requires only one large-scale matrix inversion (in finding Ãg).

Next, the Hankel singular values σi, which quantifies the reachability and ob-
servability of a system, are defined as the square root of the eigenvalues of the
product of the Gramians as shown:√

eig(WcWo) = σi (6.7)
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Here we define the reduced order q, based on the first q significant singular values,
by setting a threshold for the ratio of the Hankel singular values and the largest
singular value.

σi
σmax

≥ thresholdσ , i = 1, 2, ........, q (6.8)

There are no a priori rules for setting the threshold, it can be adjusted to achieve
the desired level of accuracy and compactness for the PROM.

Two strategies are proposed for the order estimation. First the reduced order is
estimated at the corner points of the design space. Two strategies can be followed:

1. worst-case reduced order: the highest estimated reduced order at the corner
points is extended to the entire design space. This approach can guarantee
an accurate reduction over the design space.

2. best-case reduced order: the lowest estimated reduced order is extended to
the design space. The approach guarantees more compact models with re-
spect to the worst-case, but the reduced order may need to be increased for
some design space regions by a bottom-up approach to guarantee the desired
accuracy level.

6.2.2 Common projection matrix computation

For each point in the estimation design space grid as described in Section 6.2.1,
a Krylov-based MOR method is applied to the corresponding system and a set of
projection matrices is obtained. In this chapter, the Laguerre-SVD method [7] is
used for this aim.

All the projection matrices will have the same dimension in the worst-case
reduced order scenario, while it may have different dimensions for the best-case
reduced order scenario. We propose two approaches for the construction of com-
mon projection matrices, namely local and global.

In the local approach, each design space cell has M vertices and for each cell
an union of the vertex projection matrices is performed by column stacking

Punion = [P1, P2, .....PM ] (6.9)

In the global approach, the whole design space is considered as one cell and
the projection matrices are computed for all points on the estimation grid. All
the projection matrices are merged by column stacking similarly as in (6.9). The
dimension of Punion is n × w where n is the order of the system and w = (q1 +

q2... + qM ) with qi the reduced order of the i − th vertex of the cell. Then, the
economy-size svd is computed for the union of the projection matrices

UΣV′ = svd(Punion) (6.10)
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A common reduced order r for a cell is defined based on the first r significant
singular values, by setting a threshold value for the ratio of the singular values
with respect to the largest singular value. As in the case of the previous threshold
value (6.8), there are no a priori rules for setting the threshold, it can be adjusted to
achieve the desired level of accuracy and compactness for the PROM. A common
projection matrix Qcomm is obtained by the QR orthonormalization of Pcomm.

Pcomm = UrΣrVr
′

[Qcomm,R] = qr(Pcomm) (6.11)

where Ur, Σr and Vr have a truncated dimension of n × r, r × r and r × r re-
spectively. The congruence transformation using Qcomm, the common projection
matrix of dimension n × r, on the original models of the design space gives the
reduced system matrices for the specific cell. Using the global approach, means
that one Qcomm is used over the entire design space.

Regarding the state-space equations of the system under study we assume that
a topologically fixed discretization mesh is used and is independent of the specific
design parameter values [5]. It preserves the size of the system matrices as well
as the numbering of the mesh nodes and mesh edges. The mesh is only locally
stretched or shrunk when shape parameters are modified. The matrices B, C are
uniquely determined by the circuit topology and therefore remains constant, while
the matrices E and A are defined as functions of the design parameters. Starting
from a set of models in the estimation design space (generated with respect to a
common space) using common projection matrices, it is straightforward to prove
that all the reduced system matrices in the estimation grid are in the same subspace
(locally or globally) and hence can be interpolated.

A flowchart that describes the different steps of the proposed technique is
shown in Fig.6.2.

From the flowchart one can see that the technique can use a combination of
best-case or worst-case reduced order strategy with a local or a global approach.
Depending on the scenario selected, the computation complexity as well as the ac-
curacy and compactness of the PROM change. For the local approach a PROM is
built cell by cell in the design space. In this chapter, a hypercube [4] is considered
as elementary design space cell for the local approach and it has 2N vertices. The
amount of vertices increases exponentially with the number of dimensions, but this
number still remains smaller than the number of estimation points in the whole de-
sign space that are used in the global approach. From Table 6.1 we can obtain the
dimension of the merged projection matrix (6.9), for the different approaches be-
fore computing the compact common projection matrix. The following notations
are used in the table:
- qmin the minimum of the reduced order estimated at the corner points of the de-
sign space.
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Figure 6.2: Flowchart of the proposed technique.

Approach Best-Case Worst-Case

Local 2N (qmin) +
∑2N

i=1 qbui
2N (qmax)

Global M(qmin) +
∑M
i=1 qbui

M(qmax)

Table 6.1: Column size (w) of the Projection matrix (Punion)

- qmax the maximum of the reduced order estimated at the corner points of the
design space.
- N the number of design parameters.
- M the total number of estimation points and M ≥ 2N .
- qbui

the order by which the best-case order is increased at the i− th design space
point using a bottom-up approach.

Concerning the complexity of the proposed technique, it can be noted that the
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most expensive step is related to the Smith’s technique for the order estimation at
the corner points of the design space, where the inverse of Ãg (6.4) is required
and its complexity is O(n3) with n equal to the actual order of the system. Then
the projection matrix can be computed at each estimation point using any model
order reduction technique that influences the complexity of this step. After com-
puting the merged projection matrix (6.9), the SV D has to be performed to obtain
the common projection matrix, which has a complexity of O(4n2w) where w is
the column size of the merged projection matrix. Therefore, depending on the
approach chosen, as stated in Table 6.1, the complexity of SV D varies. When
the local approach is chosen, the model will be quite compact as only 2N points
are considered for each design space cell. It is important to note that each cell
will have its own compact common projection matrix. While in the case of the
global approach, the projection matrix is computed using the projection matrices
of all estimation points. Therefore, it will be less compact than the local approach.
On the other hand, it is computed once for the entire design space and then only
one SV D computation must be performed. When the number of design param-
eters increases, it leads to increase the size of the merged projection matrix and
the computational complexity of the related SV D operation (6.10). In high di-
mensional design spaces, the local approach is more feasible since it works cell
by cell. After obtaining the common projection matrix, congruence transforma-
tion has to be performed and its complexity is equivalent to matrix multiplication.
Then, the complexity of the last step depends on the selected interpolation scheme.

6.2.3 Multivariate Interpolation

Once the reduced matrices are computed, they are interpolated to build a PROM.
Multivariate interpolation can be realized by means of tensor product [27] or tes-
sellation methods [28]. Any interpolation scheme in the class of positive interpo-
lation operators [4] can be used, e.g., multilinear and simplicial methods [29], to
preserve overall passivity as described in the sequel.

For example considering multilinear interpolation, each interpolated matrix
T(p(1), ..., p(N)) is

T(p(1), ..., p(N)) =
∑K1

k1=1 · · ·
∑KN

kN=1T(p
(1)
k1
,...,p

(N)
kN

)

lk1(p(1)) · · · lkN (p(N)) (6.12)

where K1 is the number of estimation points and the interpolation kernel
lki(p

i) satisfies the following constraints

0 ≤ lki(p(i)) ≤ 1,

lki(p
(i)) = δki,i∑K1

k=1 lki(p
(i)) = 1 (6.13)
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It should be noted that the interpolation kernel functions of these methods only
depend on the design space grid points and their computation does not require
the prior solution of a linear system to impose an interpolatory constraint. Posi-
tive interpolation schemes have already been used in [4], where a parameterized
macromodel is built by interpolating a set of ROMs treated as input-output sys-
tems, while preserving overall stability and passivity. Therefore, interpolating sys-
tems, matrices or scalars does not make any difference for these local interpolation
kernel functions.

When performing transient analysis, stability and passivity must be guaran-
teed. It is known that, while a passive or positive-real system is also stable, the
reverse is not necessarily true [30], which is crucial when the macromodel is to be
utilized in a time domain simulator. Passive systems cannot generate more energy
than they absorb through their ports. When the system is terminated on any arbi-
trary passive load, none of them will cause the system to become unstable [31, 32].

6.2.4 Systems with a special state-space form

In the PRIMA and Laguerre-SVD methods, the original systems are assumed to be
in the descriptor state-space form (6.19). If the following conditions are satisfied:

E = E′ ≥ 0

A + A′ ≤ 0

B = C′ (6.14)

the passivity of the system with transfer function Y(s) = L′(sC + G)−1B is
guaranteed [33]. For this specific format, PRIMA and Laguerre-SVD methods
guarantee the passivity of the reduced model built by congruence transformation
using the projection matrix Qcomm

Er(~p) = Qcomm
′E(~p)Qcomm ≥ 0

Ar(~p) = Qcomm
′A(~p)Qcomm ≤ 0

Br(~p) = Qcomm
′B(~p)

Cr(~p) = C(~p)Qcomm (6.15)

Since any nonnegative linear combination of positive semi-definite matrices is a
positive semi-definite matrix, stability and passivity are preserved over the entire
design space if positive interpolation operators are used to interpolate the reduced
matrices.
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6.2.4.1 System with a general state-space form

Consider the following state-space form

dx(t, ~p)

dt
= A(~p)x(t, ~p) + Bu(t)

y(t, ~p) = Cx(t, g) + Du(t) (6.16)

To build passive parameterized reduced order models, some additional steps
with respect to the previous case are required. A MOR technique that preserves
passivity of systems in the form (6.16) by using the solution of linear matrix in-
equalities (LMI) to generate a descriptor state-space format has been proposed
in [34]. The original systems after LMI matrix computations are in a descriptor
form satisfying properties (6.14), and therefore the passivity-preserving interpo-
lation previously described can be used to build a passive PROM. This method
is less expensive than the passivity-preserving technique described in [35], since
only a single LMI equation has to be solved.

6.2.5 Numerical Results

Some pertinent numerical examples are used to demonstrate the accuracy and ef-
ficiency of the proposed PMOR technique.

Let us define the weighted RMS error as

Err(Y1(s),Y2(s)) =

√∑Ks
k=1

∑Pin
i=1

∑Pout
j=1

|Y1,(ij)(sk)−Y2,(ij)(sk)|2
W(ij)(sk)

PinPoutKs

W(ij)(sk) = |Y2,(ij)(sk)|2 (6.17)

In (6.17) Ks, Pin and Pout are the number of frequency samples, input and output
ports of the system, respectively.

The worst case RMS error over the validation grid is chosen to assess the ac-
curacy and the quality of PROMs

gmax = argmaxErr(g), g ∈ validation grid
Err(g)max = Err(gmax) (6.18)

and it is used in the numerical examples. The proposed technique was imple-
mented in MATLAB R2009A [36] and all experiments were carried out on Win-
dows platform equipped with Intel(R) Xeon(R) CPU E5504@2.0 GHz and 6GB
RAM.

6.2.5.1 EM: EM model

An EM model satisfying (6.14), of an interconnection structure composed of six
conductors having εr = 9.6, with a length L = 2 cm, a width w = 1 mm and a
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Parameter Min Max

Frequency (freq) 1 kHz 15 GHz

Horizontal spacing (Sx) 1 mm 2 mm

Vertical spacing (Sy) 2 mm 3 mm

Table 6.2: EM:Parameters of the model

thickness t = 0.2 mm has been modeled in this example. Fig.6.3 shows its cross
section. Sx and Sy represents the horizontal and vertical spacings between the
conductors and are the two parameters that vary in addition to frequency. Their
corresponding ranges are shown in Table 6.6. The order of the original models
is 702. The design space is sampled uniformly over an estimation grid of 4 × 4

Figure 6.3: EM: Cross section of multiconductor system.

(Sx, Sy) samples and a validation grid of 3 × 3 (Sx, Sy) samples. The validation
design space points are located in the center of each cell of the rectangular estima-
tion grid as shown in Fig.6.1. The reduced order is estimated at the corners of the
design space by the truncation of the Hankel singular values with a threshold.

This threshold can be set based on the level of accuracy needed for the PMOR.
For example we have set a threshold of 0.01 for (6.8), such that the weighted RMS
error (6.17) at the corner points of the design space is not larger than 0.05. De-
pending on the accuracy and compactness required, one can increase or decrease
the threshold. Then, the projection matrices are computed at the estimation points
using Laguerre-SVD.

For local projection, the projection matrix is constructed cell by cell. For ex-
ample, consider the cell with Sy varying from 2 mm to 2.3 mm and Sx varying
from 1 mm to 1.3 mm, the local projection matrix is found by truncating the
singular values of the union of the projection matrices computed at the vertices
of the cell. If the common projection matrix is generated by the mere union of
the projection matrices computed at the vertices of the cell, then the reduced order
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is 178, but with the truncation of the merged projection matrices by a threshold
of 0.01 as described in Section 6.2.2, the reduced order is 66 as shown in Fig.6.4.
Thus a more useful projection matrix is obtained locally for the specified cell using
the novel PMOR technique. The parameterized model is obtained by multilinear
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Figure 6.4: EM: Singular values of the projection matrix (best-case local approach).

interpolation of the reduced system matrices. Fig.6.5 shows the crosstalk term
Y16(s, Sx, Sy) for Sx = 1.2 mm . Fig.6.6 plots the magnitude of Y16(s, Sx, Sy)

at the validation points of this design space cell. The worst-case RMS error (6.18)
for the local approach is 0.0416 as shown in Fig.6.7.

The PROM can be built globally by computing a global common projection
matrix for the entire design space. The whole design space is considered as one cell
and then the projection matrices are found at the estimation points. The projection
matrices are then merged and its singular values are truncated by a threshold of
0.01. It can be seen that the merged projection matrix, that is 708 has been reduced
to 92 for the global common projection as shown in Fig.6.8. Thus we are able to
obtain reduced order models at the estimation points globally.

The Table 6.3 below summarizes, the dimension of the merged and common
projection matrix along with the CPU time for computing the reduced order and
the common projection matrix using the different approaches. In this example,
Table 6.3 shows that for a compact model the best-case scenario can be selected
and that for a faster performance the worst-case scenario can be selected. It should
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Figure 6.5: EM: Magnitude of Y16(s, Sx, Sy) for Sx = 1.2 mm.

Approach Column size Column size Computation time

of Punion of Pcomm (sec)

Best-case local 178 66 41.58

Best-case global 708 92 82.71

Worst-case local 184 71 38.13

Worst-case global 736 128 57.64

Table 6.3: EM:Column size of the projection matrix with computation time

also be noted that the results of the local approach are related to the cell with Sy
varying from 2 mm to 2.3 mm and Sx varying from 1 mm to 1.3 mm. We recall
that each design space cell has its own common projection matrix using the lo-
cal approach. While for the global approach the common projection matrix can be
used for the whole design space. The parameterized model is obtained by multilin-
ear interpolation of the reduced system matrices. Fig. 6.9 compares the actual data
and PROM obtained by interpolation for the spacing Sy = {2.2, 2.5, 2.9} mm
and Sx = 1.3 mm. These specific spacing values have not been used for the esti-
mation grid. The worst case RMS error (6.18) for the global approach is 0.0512.
It is clear that, the PROM captures the behavior of the system very accurately with
passivity guaranteed by construction.
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6.2.5.2 3MTL: Three coupled microstrip lines

Parameter Min Max

Frequency (freq) 1 kHz 4 GHz

Spacing (S) 200 µm 400 µm

Length (L) 2 cm 6 cm

Table 6.4: 3MTL:Parameters of the model

Three coupled microstrip lines are modeled [7] starting from known per-unit-
length parameters. Fig.6.10 shows the cross section of the setup. The conductors

Figure 6.10: 3MTL: Cross section of three coupled microstrip line.

have width w = 100 µm and thickness t = 50 µm. The spacing S between the
conductors and the length L of the lines are considered to be variable parameters
in addition to frequency. Their corresponding ranges are shown in Table 6.4. The
C,G,B,L matrices are obtained for 5 values of S and 5 values of L. The original
models are represented as in (6.19) and have an order of 10203. A 3 × 3 (S,L)

estimation grid and a validation grid of 2 × 2 (S,L) samples is considered. The
reduced order at the corner points of the design space is estimated by truncating
the Hankel singular values, similarly to the previous example a threshold level of
0.01 is chosen.

For the global approach the projection matrices are computed at all the esti-
mation points in the design space to obtain a common global projection matrix.
Similar to the previous example, it can be seen that the size 298 for the merged
projection matrix can be reduced to 81 by truncating the singular values as shown
in Fig.6.11. The PROM is obtained using multilinear interpolation. Fig.6.12 plots
the magnitude of Y11(s, S, L) for S = 200 µm. Fig.6.13 plots the magnitude of
Y11(s, S, L) for a S = 200 µm and L = {3, 5} cm. The worst case RMS error
(6.18) for the global approach is 0.057.



140 CHAPTER 6

0 50 100 150 200 250 300
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Column size of the projection matrix

lo
g(

σ/
 σ

(1
))

threshold = 0.01

column size
for
the global 
common
projection

column size
for the
merged
projection
matrix

Figure 6.11: 3MTL: Singular values of the projection matrix (best-case global approach).

As explained before, for local projection the projection matrix is found cell
by cell. For example, the cell with S varying from 200 µm to 297.44 µm and
L varying from 2 cm to 4 cm, the local projection matrix is found by truncating
the singular values of the union of the projection matrices computed at the vertices
of the cell. When the common projection matrix is the union of the projection
matrices computed at the vertices of the cell, then the reduced order will be 162,
but with the truncation of the merged projection matrix by a threshold of 0.01 as
described in Section 6.2.2, the reduced order is 57 as shown in Fig.6.14. Thus a
more useful projection matrix is obtained locally for each specified cell using the
novel technique.

Similarly to the previous example, Table 6.5 below summarizes the dimension
of the merged and common projection matrix along with the CPU time for com-
puting the reduced order and the common projection matrix using the different
approaches. In this example, the results of the local approach shown in Table 6.5
are related to the cell with S varying from 200 µm to 297.44 µm and L varying
from 2 cm to 4 cm.

Fig.6.15 shows the magnitude of Y11(s, S, L) for S = 246.15 µm and L =

3 cm. The PROM with local approach has worst-case RMS error (6.18) equal to
0.0415.

As in the previous example, the PROM is able to accurately describe the pa-
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Figure 6.12: 3MTL: Magnitude of Y11(s, S, L) for S = 200 µm.

rameterized behavior of the system with a common projection matrix locally and
globally. The passivity of the system is guaranteed by construction.
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Figure 6.13: 3MTL: Magnitude of Y11(s, S, L) for S = 200 µm and L = {3, 5} cm
using a best-case global common projection matrix.
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Figure 6.14: 3MTL: Singular values of the projection matrix (best-case local approach).
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Approach Column size Column size Computation time

of Punion of Pcomm (sec)

Best-case local 162 57 1502.36

Best-case global 298 81 3104.11

Worst-case local 168 62 1456.42

Worst-case global 378 103 3002.75

Table 6.5: 3MTL: Column of projection matrix with computation time
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Figure 6.15: 3MTL: Magnitude of Y11(s, S, L) for S = 246.15 µm and L = 3 cm using
a best-case local projection.
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6.3 Model Order Reduction of Parameterized State-
Space Systems with Sequential Sampling

6.3.1 PMOR with Sequential Sampling

Consider a parameterized dynamical system with design parameters ~p = (p(1), ..., p(N))

in descriptor state-space form

E(~p)
dx(t, ~p)

dt
= A(~g)x(t, ~p) + Bu(t)

y(t, ~p) = C(~p)x(t, ~p) + Du(t) (6.19)

In the sequel the parameter design space, will be denoted as P(~p). The goal is
to build an interpolated PMOR that approximates the large system (6.19) up to
a predefined accuracy level. As a first step, a sequential sampling algorithm is
used to identify a set of nodes on a multi-rectangular grid in the parameter design
space P(~p), henceforth called the parameter subspace. These nodes are located
at the corner points of each grid cell and correspond to a ROM that characterizes
the frequency domain behavior at a fixed point in the parameter design space.
Secondly, a parameterization step is introduced to obtain a PROM that can be
evaluated at every test point in the parameter design space. This paramaterization
is performed by picking the corner points of the corresponding cell and applying
local interpolation on the state-space matrices.

Regarding the state-space equations of the system under study we assume that
a fixed discretization mesh is used which is independent of the specific design pa-
rameter values [5]. The size of the system matrices as well as the numbering of
the mesh nodes and mesh edges are preserved. The mesh is only locally stretched
or shrunk when shape parameters are modified. The matrices B, C are uniquely
determined by the circuit topology and therefore remains constant, while the ma-
trices E and A are functions of the design parameters. Starting from a set of
models in the design space using common projection matrices, it is straightfor-
ward to prove that all the reduced system matrices in the estimation grid are in the
same parameter subspace and hence can be interpolated.

6.3.1.1 Sequential Sampling

The division of the parameter design space into multi-rectangular cells is imple-
mented using a sequential sampling algorithm. Based on differences in the reduced
order of each ROM, it is possible to identify the edge of the cell that corresponds
to the most dynamic parameter. By selecting additional nodes at the midpoint of
that edge, the parameter design space is recursively divided into 2 halves (i.e. 2
smaller subspaces). If the deviation between the original system and the PROM is
too large, then the procedure is repeated. Note that this is a key difference with the
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Figure 6.16: Division of the design space.

approach in [16], where the segmentation of the parameter design space is based
uniquely on the difference in system responses and the division is performed at the
geometric center.

As an example, consider a bivariate case with parameter vector ~p = (p(1), p(2))

as shown in Fig. 6.16-a, where the four initial nodes are marked by ~pij = (p
(1)
i , p

(2)
j );

i, j = 1, 2. Consider any corner point in the parameter subspace and estimate the
reduced order at the corner point and its immediate neighbors in other words, the
reduced order has to be estimated for N + 1 points in the parameter subspace, as
shown in Fig. 6.16-b where ~p11 is considered and its immediate neighboring points
are [~p12, ~p21]. Next the difference between the reduced orders over each edge is
computed, and the PROM is evaluated at the midpoint of the most dynamic edge.
At this test node, the difference between the interpolated response of the PROM
and the original model is calculated. If the deviation is too large, then the param-
eter subspace is further divided into two child subspaces along that edge and that
procedure is repeated recursively, as shown in Fig. 6.16-c and Fig.6.16-d. If the
differences across the edges are the same then we can randomly select an edge.
Otherwise, if the deviation is sufficiently small and all subspaces are covered, then
the algorithm terminates. A flowchart is shown in Fig. 6.17.

6.3.2 5CM: Five Coupled Microstrip Lines

As an example, five coupled microstrips are considered (εr = 9.6), where the
spacing S between the lines and the length L of the lines are chosen as design
parameters in addition to frequency (see Fig.6.18). Table 6.6 shows the ranges of
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Figure 6.17: Flowchart of sequential sampling algorithm.
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Figure 6.18: 5CM: Layout of five coupled microstrip.

Parameter Min Max
Frequency (freq) 0 GHz 5 GHz
Length (L) 5 mm 15 mm
Spacing (S) 0.04 mm 0.1 mm

Table 6.6: Parameters of coupled microstrips

the parameters and the number of frequency samples Ns is 120.
The order of the initial system is 1200. Here, the mean absolute error (MAE)

is used as a measure to assess the accuracy of the ROM and −60 dB is used as a
target value. If Pin denotes the number of input ports and Pout denotes the number
of output ports, then the MAE between the original frequency response Hi,j and
the ROM Ri,j is calculated as follows

EMAE(~g) =

∑Pin

i=1

∑Pout

j=1

∑Ns

k=1 |Ri,j(sk, ~g)−Hi,j(sk, ~g)|
PinPoutNs

. (6.20)

As described in Section 6.2.1, a reduced order of 38 is estimated at the corner
point of the parameter design space for L = 5 mm and S = 0.04 mm by truncating
the Hankel singular values as shown in Fig.6.19. Similarly, the reduced order is
estimated for the immediate neighbors of the considered parameter design space
and is found to be 44 for L = 5 mm and S = 0.1 mm and 56 for L = 15 mm and
S = 0.04.

Additional nodes in the design space are selected by the sequential sampling
algorithm (see Section 6.3.1.1) and the PROM is generated using multilinear in-
terpolation (see Section 6.2.3). Fig.6.20 shows the final result, with as outcome
172 nodes spread in an adaptive non-uniform way. Based on the distribution of the
nodes, it can be inferred that S-parameters corresponding to designs with small
spacing S and large length L are changing more rapidly. As an illustration, Fig.
6.21 visualizes the magnitude S18(L, S) for varying L and S = 0.045 mm. Sim-
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Figure 6.19: Hankel singular values of a node.

L (mm) S (mm) Uniform (dB) Sequential (dB)
8.1 0.090 -66.04 -68.06
11.7 0.070 -56.51 -65.12
14.3 0.045 -43.91 -62.87

Table 6.7: 5CM: Comparison of Mean Absolute Error

ilarly, in Fig. 6.22 the magnitude of S1 10 is shown for varying S with L = 12.8

mm. In both cases, we see that designs with a more resonant-like frequency re-
sponse are effectively more densely sampled.

To validate goodness of fit of the node distribution, the result is compared to
a PROM that is build using the same (slightly larger) number of nodes simulated
over a classical uniform sampling (e.g., a uniform 14 × 14 grid). The response
of the PROMs is evaluated and compared for three validation points, marked by
asterisks in Fig. 6.20.

Table 6.7 shows a comparison of the MAE over all frequencies at each val-
idation point. It is clear that the accuracy in the sequential non-uniform case is
significantly better than in the uniform case. As a final illustration it can be seen
from Fig. 6.23 that the response of the reduced order model over the sequentially
sampled parameter space has a better accuracy than in the uniformly sampled pa-
rameter design space case when compared to the original system.
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Figure 6.20: Sequentially sampled design space (validation points marked as ∗)
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Figure 6.21: 5CM: Magnitude bivariate PMOR S1 8(L, S) for S = 0.045 mm.
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Figure 6.22: 5CM: Magnitude bivariate PROM S1 10(L, S) for L = 12.8 mm.

6.4 Conclusion

A novel PMOR method based on singular values and matrix interpolation has been
proposed in this chapter. A fast technique using Gramians is first utilized to esti-
mate the reduced order and then projection matrices are used to build parameter-
ized reduced order models. The design space is divided into cells and a Krylov
subspace is computed for each cell vertex model. The truncation of the singular
values of the merged Krylov subspaces computed from the models at the vertices
of each cell generates a common projection matrix per design space cell. The
stability and passivity of the parameterized reduced order models are preserved
using classical MOR methods and positive interpolation schemes. Also the im-
portance of sequential sampling for building parameterized reduced order model
has been demonstrated in this chapter. The model is obtained by combining a
sequential sampling algorithm (that recursively divides the subspace by picking
samples along the most dynamical edge) with a local matrix interpolation method.
It is shown that an accurate PROM is obtained, while avoiding potential under-
sampling or oversampling of the parameter space. The approach is illustrated with
numerical results.
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In this chapter the parameterized model order reduction (PMOR) technique
based on the matrix interpolation as described in the previous chapter is extended
to multicondutor transmission lines with delays having design parameter vari-
ations. As mentioned in the previous chapters, matrix interpolation overcomes
the oversize problem caused by input-output system level interpolation based pa-
rameterized macromodels. The reduced state-space matrices are obtained using
a higher-order Krylov subspace based MOR technique which is more efficient in
comparison to the Gramian based parameterized modeling where the projection
matrix is computed using a Cholesky factorization. The design space is divided
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into cells and then the Krylov subspaces computed for each cell is merged and
then truncated using an adaptive truncation algorithm with respect to their singu-
lar values to obtain a compact common projection matrix. The resulting reduced
order state-space matrices and the delays are interpolated using positive interpo-
lation schemes making it computationally cheap and accurate for repeated system
evaluations under different design parameter settings. The proposed technique
is successfully applied to RLC and multiconductor transmission line circuits with
delays.

7.1 Introduction

Circuit analysis using electromagnetic (EM) simulation methods [1] can generate
very large systems of equations. Time delays must be included during the process
of modeling, when the geometric dimensions of the lines become electrically large
and the frequency content of signal waveform increases [2, 3]. In such cases,
comprehensive model order reduction (MOR) techniques are crucial to reduce the
complexity of large scale models and the computational cost of the simulations,
while retaining the important physical features of the original system.

Time-delay systems (TDSs) in the Laplace domain contain transfer functions
with elements of the form e−sτ , where τ corresponds to the time delay present
in the circuit. Several techniques of MOR for TDSs have been presented during
recent years as briefed in Chapter 3, and any of the approaches based on Krylov-
subspace algorithms [3–7] can be used as non-PMOR technique.

The system response of TDSs can be affected by design parameters, other than
frequency or time, such as geometric features. Therefore, it is important to predict
the response of the circuit as a function of general design parameters, such as
geometric and physical features. PMOR methods are well suited to efficiently
perform design activities.

A number of PMOR methods have been developed in recent years for TDSs
based on input-output interpolation [8–10]. In [8], the approach is based on a mul-
tiorder Arnoldi algorithm which is used to implicitly calculate the moments with
respect to frequency and the design parameters, as well as the cross-moments.
Also in [9] an input-output based interpolation technique is presented with scaling
and frequency shifting, which enhances the modeling capabilities. These PMOR
methods use input-output system level interpolation which are proved to be ro-
bust and accurate, but the order of the parameterized macromodels may suffer
from oversize due to the nature of the input-output system level interpolation. A
Gramian-based PMOR for TDS is presented in [10] where an affine model is used
to represent the parameterized behavior, but the technique is computationally ex-
pensive as Cholesky factorization is required for the computation of the projection
matrix.
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This chapter, proposes a matrix interpolated PMOR method for multiconduc-
tor transmission lines (MTLs) with delays. The proposed technique approximates
the delays using an expansion series and uses higher-order Krylov subspace based
MOR as described in Chapter 3. Then the reduced state-space systems are in-
terpolated as in [11]. An adaptive truncation for the singular values of the com-
mon projection matrix is presented in this chapter in comparison to the truncation
described in Section 6.2.2. As the approach is based on matrix interpolation it
overcomes the oversize problem in input-output system level interpolation and the
technique uses higher-order Krylov MOR to compute the reduced order models
(ROMs) for TDS [6, 7]. This is more efficient in comparison to the augmented
MOR technique proposed for PMOR TDS in [9], as the augmentation generates an
equivalent first-order system which is larger than the size of the original model, and
the Gramian based MOR for PMOR of TDS [10], as the computation of Gramians
are expensive due to Cholesky factorization. The proposed approach computes a
set of reduced system matrices in a common subspace using higher-order Krylov
MOR and interpolates these ROM and the delays in order to generate PMOR for
TDSs. The design space is first divided into cells and for each vertex model of the
cell a Krylov subspace is computed. The Krylov subspaces are then merged and
compacted by truncating with respect to their singular values to generate a com-
mon projection matrix. Next, the reduced system matrices of the delayed system
are interpolated using positive interpolation for PMOR. The delays of the MTLs
are also interpolated in a similar manner to obtain the parameterized model, as the
delays are proportional to the length of the transmission lines (TLs), when modeled
using the Method of Characteristics (MoC) [3].

7.2 Overview of Model Order Reduction for TDSs
A TDS of degree n with p ports having k delays τj , present in both the state and
descriptor matrices, can be represented in general delayed state space form as:

k∑
j=0

Ejẋ(t− τj) =

k∑
j=0

Ajx(t− τj) + Bu(t)

y(t) = Cx(t). (7.1)

Here, x(t) ∈ Rn is the state vector; u(t) ∈ Rp is the control input with u(t) = 0

for t < 0; y(t) ∈ Rp is the output. Aj,Ej,B,C are constant sparse matrices with
appropriate dimensions. The time delay τ0 = 0 and τj > 0, j = 1, 2, . . . , k. From
(7.1) we obtain the transfer function as:

H(s) = C(s

k∑
j=0

Eje
−sτj −

k∑
j=0

Aje
−sτj )−1B. (7.2)
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In order to calculate the moments, the exponential terms of (7.2) are approximated
using a Taylor series [6] or Laguerre expansion [7] upto an order r. On substituting
the delay expansion in (7.2), a r-th order transfer function is obtained of the form:

H(s) = C
(
σrs

r + σr−1s
r−1 + ...+ σ1s+ σ0

)−1
B. (7.3)

The r-th order Krylov subspace is defined as in [12]

Kq(G1,G2, ...,Gr,L) = colspan [P0, P1, ..., Pq−1] (7.4)

where L = σ−10 B and Gi = σ−10 σi for i = 1, 2, ..., r, and

P0 = L; Pi = 0 for i < 0

Pj = G1Pj−1 + ...+ GrPj−r, j = 1, . . . , q − 1 (7.5)

where q is the reduced order that is estimated for the model.
This subspace is a generalization of Krylov subspaces for higher-order sys-

tems and eliminates the standard approach to model order reduction of large-scale
higher-order linear dynamical systems, which is to rewrite the system as an equiv-
alent first-order system and then employ Krylov-subspace techniques for model
order reduction of first-order systems. Note that, to match the moments of an r-th
order model, the matrix σ0 should be invertible.

The column-orthogonal projection matrix Q for congruence transformation is
found by means of the economy-size singular value decomposition (SVD):

UΣV′ = SVD(Kq(G1,G2, ...,Gr,L), 0). (7.6)

In other words Q is equal to the left SVD factor of dimension n×q associated with
the (r + 1)th Krylov subspace.

The reduced order state-space matrices are then obtained by the following clas-
sical congruence transformations:

Ajr = Q′AjQ , Ejr = Q′EjQ,

Br = Q′B , Cr = CQ. (7.7)

7.3 Parameterized Model Order Reduction

Considering the effect of N design parameters ~p = (p(1), ..., p(N)), the descriptor
state-space form (7.1) becomes:

E(~p, τ)ẋ(t, ~p) = A(~p, τ)x(t, ~p) + B(~p)u(t)

y(t, ~p) = C(~p)x(t, ~p). (7.8)
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Two design space grids are used in the modeling process, an estimation grid and a
validation grid [9]. The estimation grid is used for the construction of the PMOR
while the validation grid is used to study the accuracy of the parameterized model
at the points that were not used during construction. Once the design space is
sampled, the reduced order q has to be estimated for the samples on the estimation
grid that is used for the modeling of the PMOR. For this, we adopt the double-
strategy approach of [11]. The reduced order is first estimated at the corner points
of the design space using a bottom-up approach or from the Hankel singular values
(HSV), and afterwards any of these two strategies can be followed for the remain-
ing samples in the estimation grid. This yields:

1. worst-case reduced order: the highest estimated reduced order at the corner
points is extended over the entire design space. This approach can guarantee
an accurate reduction over the design space.

2. best-case reduced order: the lowest estimated reduced order is extended
over the design space. This approach can guarantee more compact models
with respect to the worst-case, but the reduced order may be increased for
some design space regions by a bottom-up approach to guarantee the desired
accuracy.

From a practical view point for better computation and accuracy it is advisable to
choose the worst-case reduced order strategy as the highest reduced order is used
for the entire design space and the reduced order need not be computed for each
sample point in the design space as in the case for best-case reduced order.

7.3.1 Common projection matrix computation

For each point in the estimation grid, a higher-order Krylov-based MOR method
for TDSs is applied to obtain a set of projection matrices. All the projection ma-
trices have the same dimension in the worst-case reduced order scenario, while
they may have different dimensions for the best-case reduced order scenario. Each
design space cell has M vertices and for every cell the projection matrices at the
vertices are merged by column stacking.

Qunion = [Q1,Q2, .....QM ]. (7.9)

Next, the economy-size SV D is computed for the merged projection matrices

UΣV′ = SV D(Qunion, 0). (7.10)

A common reduced order for a cell is defined based on the first qcomm signifi-
cant singular values of Qunion [11]. Thus a common projection matrix Qcomm is
obtained

Qcomm = U(:, 1 : qcomm). (7.11)
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Adaptive singular values truncation: In Chapter 3 the value of the threshold is set
on a trial and error base for a desired level of accuracy and compactness for the
PMOR. On truncating the singular values an approximated representation Q̂union
of (7.9) is obtained, and can be noted that the approximation error ∆ is dependent
on the truncation i.e.,

∆ = ||Qunion − Q̂union||2,

∆ = ||
n∑
i=1

UiΣiV
′
i −

qcomm∑
i=1

UiΣiV
′
i||2,

∆ = ||
n∑

i=qcomm+1

UiΣiV
′
i||2. (7.12)

which can be written as,

∆ =

n∑
i=qcomm+1

dΣ2
i . (7.13)

where, dΣ are the diagonal elements of Σ. The adaptive algorithm for truncating
the singular values of the common projection matrix Qunion is given in algorithm
7.1.

Data: dΣ = diag(Σ) from (7.10) and threshold
Result: qcomm for (7.11)
ds = length(dΣ);
qcomm = ds;
∆ = 0;
while ∆ ≤ threshold do

∆ = ∆ + dΣ(qcomm)2;
qcomm = qcomm − 1;

end

algorithm 7.1: Truncation of the singular values for Qunion

For this chapter a threshold equal to 0.01 was considered to produce accurate
ROMs. Then, with Qcomm the common projection matrix with dimension n ×
qcomm, the congruence transformations (7.7) are performed to obtain the ROMs
for the design space considered.

7.3.2 Multivariate Interpolation

After the computation of the reduced matrices, they are interpolated to build a
PMOR. Any interpolation scheme in the class of positive interpolation operators
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[9] can be used, e.g., multilinear and simplicial methods [13]. Here we consider
multilinear interpolation, where each interpolated matrix T(p(1), ..., p(N)) is

T(p(1), ..., p(N)) =
∑K1

k1=1 · · ·
∑KN

kN=1T(p
(1)
k1
,...,p

(N)
kN

)

lk1(p(1)) · · · lkN (p(N)). (7.14)

and K1 is the number of estimation points and the interpolation kernel lki(p
i)

satisfies the following constraints

0 ≤ lki(p(i)) ≤ 1,

lki(p
(i)) = δki,i∑N

i=1 lki(p
(i)) = 1. (7.15)

For MTLs consisting of lumped RLC components and lossless transmission line
(TLs) components, the MoC [3] technique is used to model the lossless TLs. The
delay for the k-th transmission line in MoC is the k-th eigenvalue of d

√
(CpulLpul)

(Lpul and Cpul are the per- unit- length (P.U.L.) parameter for the inductance and
capacitance respectively and d denotes the length of the TLs). The Lpul and Cpul
are symmetric and positive definite. Thus, as the delays are varying linearly with
respect to d of the TLs, we can obtain a good parameterized reduced order delay
model by interpolating all the delays using positive interpolating operators.

Data: Reduced order for M samples in the estimation grid.
Result: Parameterized ROM
Qunion = [ ] ;
for i← 1 to M do

Qi ;
Qunion = [Qunion Qi] ;

end
UΣV′ = SV D(Qunion, 0)(7.10);
Qcomm using Algorithm 1 (Table 7.1);
Perform congruence transformation to obtain the ROM of the TDSs ;
Matrix interpolate the ROM and τ to obtain the PMOR.
Validate the PMOR with the validation grid.

algorithm 7.2: Parameterized Model Order Reduction Algorithm

It should be noted that the interpolation kernel functions of these methods only
depend on the design space grid points and their computation does not require
the prior solution of a linear system to impose an interpolatory constraint. The
algorithmic steps of the proposed PMOR technique for TDSs is given in algorithm
7.2.
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7.3.3 Complexity

Concerning the complexity of the proposed PMOR technique, the most expensive
step is related to the computation of the higher-order Krylov subspaces for the
estimation grid. It has a complexity of O(4n2q) where q is the reduced order esti-
mated for the model. But it can be seen that the proposed technique is much more
efficient than the Gramian based PMOR for TDS [10] which has a complexity
of O(n3). Then we have the computation of the singular values for the common
projection matrix which uses an economy-size SVD to improve the computation.
After obtaining the common projection matrix, congruence transformation is per-
formed which has a complexity equivalent to that of matrix multiplication. Finally,
the complexity of the last step depends on the selected interpolation scheme. Even
though the most expensive step in the proposed PMOR technique is the MOR step
the PMOR makes it more efficient for repeated design evaluations under different
parameter settings in comparison to the conventional analysis techniques which
requires the solution of partial differential equations [2]. The complexity of the
proposed PMOR increases with the number of design parameters since the num-
ber of points on the estimation grid required for modeling increases and thereby
increase the dimension of the column stacked projection matrix Qunion, then the
SVD would become expensive. In order to make the algorithm more efficient it is
advised to perform adaptive sampling [14] of the design space and when the num-
ber of parameters is more than 5 then a dimension reduction technique [15] can be
performed.

7.4 Numerical Examples
A distributed system as explained in [8] is used to illustrate the efficiency of the
proposed technique as shown in Fig. 7.1. The RLC network is modeled using the

Figure 7.1: Schematic of RLC network including delay elements [8].

conventional lumped technique [2] and the lossless TLs which cause signal prop-
agation delays, is modeled using MoC. The general form of the modified nodal
analysis (MNA) matrices using the MoC and lumped elements is described in [3].
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Error criteria: The weighted RMS error between the original frequency response
Hij and the reduced order model Hr,(ij) is defined as:

Err =

√∑Ks
k=1

∑Pin
i=1

∑Pout
j=1

|Hr,(ij)(sk)−H(ij)(sk)|2
W(ij)(sk)

PinPoutKs

W(ij)(sk) = |H(ij)(sk)|2 (7.16)

Here Ks, Pin and Pout are the number of frequency samples, input and output
ports of the system, respectively. To illustrate the efficiency of the proposed PMOR
technique, it is compared with the Gramian-based PMOR [10] which is also based
on state-space interpolation.

7.4.1 CASE I: Variation in Length of the lossless TLs

A TDS of order 2115 is constructed using a 3 port linear interconnected network
connected with lossless 3 conductor TLs. In this case the total length d is varied
for the range [1 cm−1.5 cm] of the TLs for a frequency range of [1 kHz−4 GHz].

The state-space matrices is computed for 5 uniformly spaced values of d, for
which the estimation points are d = {1, 1.167, 1.33, 1.5} cm and the validation
points are d = {1.083, 1.25, 1.42} cm. We opt for the best-case scenario and
the higher-order Krylov subspaces are computed for the estimation points as de-
scribed in Section 7.3. Then a common projection matrix of dimension 360 is
computed for the entire design space as described in Algorithm 1. The singular
values of the merged Krylov subspaces is then truncated using Algorithm 2 to ob-
tain a compact common projection matrix of size 148. Fig.7.2 and Fig.7.3 plots
the magnitude and phase of input admittance parameter Y11(s, d) respectively for
d = {1.083, 1.25, 1.42} cm. As mentioned in Section 7.3.3, the most expensive
step in the PMOR technique is the MOR and as the number of estimation samples
increases the computation becomes more expensive. But once an accurate PMOR
is obtained, it becomes faster to predict the behavior of the system for different
parameter ranges. The frequency response time for the original model is 277s and
that for the ROM is 6.819s, obtaining about 39 times speed up.

7.4.2 CASE II: Variation in Length of the TLs and P.U.L. pa-
rameters

For this case a TDS of order 9307 is constructed using a 4 port linear intercon-
nected network connected with 40 lossless 4 conductor TLs. The total length d
and the P.U.L. parameters of the TLs are varied. The dependencies of P.U.L. pa-
rameters of the distributed network on temperature T is modeled using a first-order
relation. The parameters d varies from [1.5 cm−2 cm] and T from [−20oC−60oC]

for a frequency range of [1 kHz−6 GHz]. The state-space matrices with delays (as
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Figure 7.2: Magnitude of input admittance parameter Y11(s, d) for
d = {1.083, 1.25, 1.42} cm.

in (7.8)) are computed over an uniform grid of 9× 9 (d, T ). A 5× 5 (d, T ) estima-
tion grid, d = {1.5, 1.625, 1.75, 1.875, 2} cm and T = {−20, 0, 20, 40, 60}oC is
considered and a validation grid of 4× 4 (d,T ), d = {1.563, 1.687, 1.813, 1.937}
cm and T = {−10, 10, 30, 50}oC is considered. For this case the worst-case sce-
nario is used and the highest reduced order estimated is 252 for the models. The
higher-order Krylov subspaces are computed over the estimation grid by means
of the algorithm described in Section 7.3. Similar to the previous case by trun-
cating the singular values of the merged projection matrix, a common projection
matrix of size 324 is obtained. Fig.7.4 plots the PMOR for the magnitude of the
transfer admittance parameter Y13 for T = 30oC. The weighted RMS error (7.16)
of the ROM with respect to the original model is 0.037. The frequency response
time for the original model is 2967.1s and that for the ROM is 21.62s, obtain-
ing 138 times speed up. As in the general analysis, the TLs can be modeled by
many cascaded sections of RLC components. Nonetheless, the number of sections
required depends on the electrical length of TLs. TLs sometimes require many
sections to meet the reasonable accuracy. Thus, lumped RLC circuits extracted
from layouts usually contain large circuit matrices that make the high CPU cost in
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Figure 7.3: Phase of input admittance parameter Y11(s, d) for d = {1.083, 1.25, 1.42}
cm.

simulation [2]. The proposed PMOR technique thus helps to overcome this prob-
lem, as on obtention of an accurate PMOR, the repeated design evaluations under
different parameter settings become more efficient.

7.4.3 Computational complexity

The computational efficiency of the proposed technique in comparison to the Gramian-
based PMOR [10] is illustrated in Fig. 7.5. It plots the memory requirement
and the CPU time of the most computational expensive steps of the respective
PMOR for a 6 port TDSs with one parameter variation for systems of order=
{915, 2115, 5715, 9307}. The computational cost for the Gramian-based PMOR
[10] process is very high due to the Cholesky factorization and also due to the SVD
computed on an order n × n. While the computation complexity of the proposed
technique is lesser for obtaining the Krylov subspace and also an economical SVD
is performed on a matrix of size n × qM (where, qM < n) in order to obtain the
PMOR.
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7.5 Conclusion

A novel parameterized model order reduction technique for multiconductor trans-
mission lines with delay based on matrix interpolation is presented in this chapter.
Matrix interpolation preserves the same number of poles for parameterized model
order reduction over the design space while for input-output interpolation the order
of the parameterized macromodels, suffer from oversize due to the nature of the
input-output system level interpolation. The reduced order models are obtained
using a higher-order Krylov subspace decomposition. First, the design space is
divided into cells and for each vertex model of the cell a Krylov subspace is com-
puted and are then merged and adaptively truncated based on the singular values
to obtain a common projection matrix. The resulting reduced order models and
also the delays are interpolated using positive interpolation schemes such that the
parameterized dependence is preserved. This parameterized model order reduc-
tion approach makes multiple system evaluations under different design parameter
variations computationally cheap and still accurate. The numerical examples of
the RLC and MTL circuits with delays illustrates the efficiency and accuracy of
the proposed PMOR technique.
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8
Conclusion

“Everything should be as simple as possible, but not simpler.”

–Albert Einstein (1879 - 1955)

8.1 Contribution

8.1.1 Model order reduction

With roots dating back to many years in a wide variety of applications, reducing the
order or dimension of models of large systems, is paramount to enabling the sys-
tem simulations and verifications. Existing methods for LTI MOR can be broadly
characterized into two types: those that are based on Krylov methods, and those
based on balancing techniques as briefly discussed in Chapter 2. Krylov techniques
were proved to be very appealing because of their simplicity and performance in
terms of efficiency and accuracy. But still there are some short comings like strat-
egy for error control and order selection, an automated expansion point selection
for multipoint MOR. The alternative methods, those in the truncated balanced re-
alization (TBR) family, perform reduction based on the concept of controllability
and observability of the system states and are purported to produce nearly optimal
models and have well defined error bounds. However, they are complex to imple-
ment and expensive to apply, which limits their applicability to small and medium
sized problems. Hybrid techniques that combine some of the features of each type
of methods have also been presented [1–3].
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Contribution of this PhD thesis to MOR techniques:

1. MOR for TDSs using Laguerre expansion: The research contribution mainly
focuses on Krylov based MOR techniques. In Chapter 3 the MOR technique
is extended to systems with delays using higher-order Krylov. The delays are
approximated using Laguerre expansion and the approach is able to approx-
imate with lesser number of terms than in comparison with Taylor series.
This helps to reduce the computational complexity of the MOR technique
for systems with delay.

2. Adaptive frequency sampling: In Chapter 4, a new hybrid technique for
adaptive frequency sampling for multipoint expansion MOR is presented.
Reflective exploration is an effective technique when it is very expensive
to obtain the model from EM simulators. For the exploration a reflective
function is required to select a new expansion point. This helps to get an idea
of the frequency behavior of the system. In the second step, the binary search
is adopted. The binary search is a dichotomic divide and conquer search. At
each step to validate the model obtained through reflective exploration. The
ROM at the midpoint of two samples is computed by linear interpolation
and compared with the actual model simulated at that point using an EM
simulator. This is continued till all the sections are modeled with a user
specified accuracy. In this technique the reduced order per frequency sample
is also estimated in an iterative manner. Then as a last step SVD is performed
on the obtained projection matrix to see if the projection matrix can further
be compacted based on its singular values.

8.1.2 Parameterized modeling

The PhD thesis mainly contributes to research on state-space interpolation based
PMOR.

1. Sylvester realization: In Chapter 5, a novel state-space realization for the
system is proposed using a Sylvester technique. A judicious choice of
the state-space realization is required in order to account for the assumed
smoothness of the state-space matrices with respect to the design parame-
ters. The Sylvester technique is used in combination with a suitable interpo-
lation schemes to interpolate a set of state-space matrices. Hence the poles
and the residues indirectly, in order to build accurate parameterized macro-
models. The technique is compared with some of the existing techniques in
the literature and is illustrated to be an efficient technique.

2. PMOR using SVD and matrix interpolation: In Chapter 6, a PMOR based
on singular values and matrix interpolation is presented. Two strategies are
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presented for the order estimation. Also depending on the scenario the tech-
nique can be interpreted in two ways the local and the global. The design
space is first divided into cells and a Krylov subspace is computed for each
cell. Next the merged Krylov subspace is truncated with respect to its sin-
gular values to obtain a common projection matrix for the design space.
Finally, the reduced system matrices are interpolated using positive interpo-
lation schemes to obtain a guaranteed passive PROM. The PMOR technique
is applied to time-delay systems in Chapter 7 and an adaptive truncation of
the singular values for the common projection matrix is presented.

3. PMOR with sequential sampling: In Chapter 6, it is also shown that an
accurate PROM is obtained with sequential sampling, by avoiding potential
undersampling or oversampling of the parameter space. The approach is
illustrated with numerical results.

8.2 Future scope
A number of potential areas for further exploring MOR and PMOR based on the
work presented are:

1. Systems with large number of ports: Most of the modern devices and power
grids have a large number of ports and is an issue which is an ongoing re-
search for Krylov based MOR. As current approaches rely on block itera-
tions, where the size of the block equals the number of ports, each block
iteration increases the size of the model by an amount equal to the number
of ports. This leads to large models even for a moderate reduction order.
Balanced truncation MOR is somewhat less sensitive to the number of input
ports but systems with large number of ports are generally very large in size,
which makes reduction based on balancing techniques impractical.

Some work that has been carried out for MOR with large number of ports
are [4–6], and these techniques can be implemented for improving the MOR
techniques proposed. It can be useful in Chapter 4 for the order estimation
for hybrid adaptive sampling algorithm, where the initial estimate for the
order is equal to the number of ports, which is not practical for systems with
large ports.

2. Nonlinear Systems: Nonlinear MOR is very much desired for large scale
CAD and simulations, but a general stable and widely usable technique
is still an open challenge. Amongst the proposed techniques for nonlinear
MOR, proper orthogonal decomposition (POD) technique is most preferred.
It can be applied to very large systems and also a very efficient technique for
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Figure 8.1: Contribution (orange solid line boxes) and future scope (purple dotted line
boxes).
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obtaining the reduced order model for nonlinear systems. Adaptive snap-
shot selection for POD technique is a challenge on which research is going
on [7, 8].

3. Dimensionality reduction:

Parameterized modeling are now starting to be used as the basis for vari-
ability analysis models used in design. For high frequencies, at nano-scale
feature sizes, process variability effects, as well as dependence on operating
conditions become extremely important and has to be modeled [9]. Parame-
terized modeling techniques are very efficient but these techniques like other
modeling methods are limited by the curse of dimensionality. The curse of
dimensionality refers to various phenomena that arise when analyzing and
organizing data in high-dimensional spaces.

Adaptive Sampling of high dimensional design space is also an open chal-
lenge. In [10, 11], some of the recent works related to adaptive sampling of
the design space are proposed.

As a future scope some of the state-of-the-art dimensionality reduction tech-
niques like supervised principle component ananlysis (SPCA), Kernel PCA
[12] can be considered as a first step for parameterized modeling. High di-
mensional analysis will help determining the important parameters by prior-
itizing them based on their influences on the system response to be modeled.

The PhD thesis contributions and future scope is graphically represented in Fig.
8.1. The figure outlines the main steps in MOR techniques along with interpolation
approach for obtaining a parameterized reduced order model. The orange solid line
boxes represents the PhD thesis contribution and the purple dotted boxes represents
the future scope.
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