34 research outputs found

    Investigation on PCE-based multi-domain optical networks

    Get PDF
    The last decade has seen many advances in high-speed networking technologies. However, many issues are still open for the development of next generation optical transport networks in order to optimize the resources; this is especially true in the context of multi-domain optical networks. In this context, the IETF entity introduces the Path Computation Elements (PCE) module to improve the network resources occupation. In multi-domain networks, each network domain is usually owned by a different operator/administrator and it entails the reluctant behavior from some operators concerning the dissemination of intra-domain information. The purpose of this work is to present and compare different Traffic Engineering (TE) information dissemination strategies between PCEs in multi-domain optical networks. In such network context, recent studies have found that path computation only with local domain visibility yields poor network performance. Accordingly, certain visibility between domains seems necessary. Aiming to fit the confidentiality requirements of the composing domains and to improve the final network blocking probability, novel link aggregation techniques have been proposed. These techniques summarize the state of network domains resources efficiently. Besides, this aggregated link information is afterwards disseminated to all the remainder domains in the network. In order to fulfill this requirement, we introduce different update triggering policies to make a good trade-off between routing information scalability and inaccuracy. On the other hand, the IETF entity has defined several mechanisms (BRPC and H-PCE) for establishing inter-domain paths to compute routes through cooperation between PCEs. This master thesis proposes a hybrid path computation procedure based on the H-PCE and BRPC. It is important to highlight that the performance of all contributions has been supported by illustrative simulation results

    Mécanismes d'allocation de ressources et fiabilité dans les réseaux coeur de prochaines générations

    Get PDF
    DĂ©finitions et concepts de bases -- ÉlĂ©ments de problĂ©matique -- Objectifs de recherche -- Principales contributions -- Revue de littĂ©rature -- ModĂšles de services -- Routage avec QualitĂ© de Service -- IngĂ©nierie de traffic -- ContrĂŽle d'admission avec QualitĂ© de Service -- FiabilitĂ© des rĂ©seaux -- A novel admission control mechanism in GMPLS- BASED IP over optical networks -- Problem statement -- Numerical results -- Joint routing and admission control problem under statistical delay and jitter constraints in MPLS networks -- Simulation results -- A survivable multicast routing mechanism in WDM optical networks -- Survivable routing under SRLG constraints -- GR-SMRS : Greedy heuristic for survivable multicast routing under SRLG constraints -- simulation results

    End-to-End Path Computer Schemes for Traffic Engineering in Next Generation Multi-Domain Networks

    Get PDF
    RÉSUMÉ Avec la venue des rĂ©seaux de prochaine gĂ©nĂ©ration basĂ©s sur le paradigme tout-IP et la demande croissante en qualitĂ© de service (QdS) des nouvelles applications temps rĂ©el, il existe un besoin imminent pour des mĂ©canismes capables de soutenir le trac de bout-en-bout. Les requis de QdS sont souvent dĂ©crits par les paramĂštres de bande passante, dĂ©lai, gigue, perte de paquets et disponibilitĂ©. Ainsi, les opĂ©rateurs de rĂ©seaux ont un besoin imminent de techniques qui leur permettraient de satisfaire les exigences de QdS des nouvelles applications IP. Le consensus pour subvenir aux exigences de QdS est la pratique de l'ingĂ©nierie de trac. L'ingĂ©nierie de trac consiste Ă  acheminer le trac de façon optimale en utilisant les ressources disponibles, tout en satisfaisant les contraintes de QdS et celles du rĂ©seau. Cela est souvent rĂ©alisĂ© en calculant des chemins optimaux par l'ingĂ©nierie de trac, qui constitue l'aspect central de cette thĂšse. En effet, les paramĂštres de performances de QdS peuvent ĂȘtre satisfaits en choisissant avec soin un chemin qui a assez de bande passante disponible et qui offre un dĂ©lai et une gigue acceptable. Si la bande passante est rĂ©servĂ©e le long de ce chemin, la congestion peut ĂȘtre Ă©vitĂ©e et la perte de paquets peut ainsi ĂȘtre Ă©liminĂ©e. En outre, le calcul minutieux des chemins principaux et de recours permet une meilleure disponibilitĂ© en cas de panne de lien ou de noeud. De plus, Ă©tant donnĂ© que le trac est habituellement transportĂ© Ă  travers diffĂ©rents rĂ©seaux administratifs, l'aspect inter-domaine du problĂšme ne peut ĂȘtre nĂ©gligĂ©. Puis, il y a le fait que les rĂ©seaux sont de nature multi-couches. Donc, l'ingĂ©nierie de trac de bout-en-bout ne peut ĂȘtre atteint que si les aspects inter-domaine et inter-couche sont pris en compte. À cette fin, cette thĂšse propose un cadre complet pour l'aspect calcul de chemin bout-en-bout de l'ingĂ©nierie de trac, divisĂ© en trois volets. Ces volets suivent tous la technologie G/MPLS pour l'acheminement du trac et la rĂ©servation de ressources sur les chemins optimaux calculĂ©s.---------ABSTRACT With the advent of all-IP Next Generation Networks and the ever increasing Quality of Service (QoS) demands of new real time IP applications, there is a stringent need for mechanisms that allow the end-to-end sustainment of the trac. QoS requirements are usually a set of network performance indicators that need to be satised in order for the IP applications to function properly. Common QoS parameters are the bandwidth, delay, jitter, packet loss and availability. Thus, network operators urgently need to implement solutions enabling them to satisfy the QoS requirements of real time IP applications. The consensus for QoS provisioning is the application of well dened trac engineering mechanisms, which consists in optimally routing the trac using available resources while satisfying QoS and network constraints. This is often achieved by trac engineered path computation, which is the central focus of this thesis. Indeed, the QoS performance parameters can be met by carefully choosing a path that has the available bandwidth, offers the acceptable delay and jitter. If bandwidth is reserved along this path, congestion is avoided and the packet loss performance parameter can also be met. Moreover, careful calculation of primary and backup paths allows high availability in case of node or link failure. Moreover, there is the fact that trac is usually transported across different administrative networks. Then, there is the detail that networks are multi-layer in nature. Thus, true end-to-end trac engineering can only be achieved if inter-domain and inter-layer aspects are both considered. To this end, this thesis proposes an overall framework for the end-to-end trac engineered path computation problem. As discussed below, the framework is subdivided into three separate aspects, all relying on G/MPLS forwarding technology, which enables a controlled routing and the reservation of resources along trac engineered paths. The proposals for each aspect are the outcome of extensive literature review which identify existing solutions, if any, and the reasons of their shortcomings or non-existence. This review limits the direction to be taken to nd a solution, often by using existing standards and protocols. This is extremely important given the fact that the research topic of this thesis is closely tied to problems of near future generation networks. Thus, it is crucial to reuse existing methods and standards as much as possible in order to get the approval of the research community on the proposed solutions. Moreover, each aspect or sub-problem is carefully studied by dening the actual real world dilemmas surrounding it

    On the resource abstraction, partitioning and composition for virtual GMPLS-controlled multi-layer optical networks

    Get PDF
    Virtual optical networking supports the dynamic provisioning of dedicated networks over the same network infrastructure, which has received a lot of attention by network providers. The stringent network requirements (e.g., Quality of Service -QoS-, Service Level Agreement -SLA-, dynamicity) of the emerging high bandwidth and dynamic applications such as high-definition video streaming (e.g., telepresence, television, remote surgery, etc.), and cloud computing (e.g., real-time data backup, remote desktop, etc.) can be supported by the deployment of dynamic infrastructure services to build ad-hoc Virtual Optical Networks (VON), which is known as Infrastructure as a Service (IaaS). Future Internet should support two separate entities: infrastructure providers (who manage the physical infrastructure) and service providers (who deploy network protocols and offer end-to-end services). Thus, network service providers shall request, on a per-need basis, a dedicated and application-specific VON and have full control over it. Optical network virtualization technologies allow the partitioning/composition of the network infrastructure (i.e., physical optical nodes and links) into independent virtual resources, adopting the same functionality as the physical resource. The composition of these virtual resources (i.e., virtual optical nodes and links) allows the deployment of multiple VONs. A VON must be composed of not only a virtual transport plane but also of a virtual control plane, with the purpose of providing the required independent and full control functionalities (i.e., automated connection provisioning and recovery (protection/restauration), traffic engineering (e.g., QoS, SLA), etc.). This PhD Thesis focuses on optical network virtualization, with three main objectives. The first objective consists on the design, implementation and evaluation of an architecture and the necessary protocols and interfaces for the virtualization of a Generalized Multi-Protocol Label Switching (GMPLS) controlled Wavelength Switched Optical Network (WSON) and the introduction of a resource broker for dynamic virtual GMPLS-controlled WSON infrastructure services, whose task is to dynamically deploy VONs from service provider requests. The introduction of a resource broker implies the need for virtual resource management and allocation algorithms for optimal usage of the shared physical infrastructure. Also, the deployment of independent virtual GMPLS control plane on top of each VON shall be performed by the resource broker. This objective also includes the introduction of optical network virtualization for Elastic Optical Networks (EON). The second objective is to design, implement and experimentally evaluate a system architecture for deploying virtual GMPLS-controlled Multi-Protocol Label Switching Transport Profile (MPLS-TP) networks over a shared WSON. With this purpose, this PhD Thesis also focuses on the design and development of MPLS-TP nodes which are deployed on the WSON of the ADRENALINE Testbed at CTTC premises. Finally, the third objective is the composition of multiple virtual optical networks with heterogeneous control domains (e.g., GMPLS, OpenFlow). A multi-domain resource broker has been designed, implemented and evaluated.La gestiĂł de xarxes ĂČptiques virtuals permet la provisiĂł dinĂ mica de xarxes dedicades a sobre la mateixa infraestructura de xarxa i ha cridat molt l’atenciĂł als proveĂŻdors de xarxes. Els requisits de xarxa (per exemple la qualitat de servei, els acords de nivell de servei o la dinamicitat) sĂłn cada cop mĂ©s astringents per a les aplicacions emergents d'elevat ample de banda i dinĂ miques, que inclouen per exemple la reproducciĂł en temps real de vĂ­deo d'alta definiciĂł (telepresĂšncia, televisiĂł, telemedicina) i serveis d’informĂ tica en nĂșvol (cĂČpies de seguretat en temps real, escriptori remot). Aquests requisits poden ser assolits a travĂ©s del desplegament de serveis de infraestructura dinĂ mics per construir xarxes ĂČptiques virtuals (VON, en anglĂšs), fet que Ă©s conegut com a infraestructura com a servei (IaaS). La internet del futur hauria de suportar dos entitats diferenciades: els proveĂŻdors d'infraestructures (responsables de gestionar la infraestructura fĂ­sica), i els proveĂŻdors de serveis (responsables dels protocols de xarxa i d'oferir els serveis finals). D'aquesta forma els proveĂŻdors de serveis podrien sol‱licitar i gestionar en funciĂł de les necessitats xarxes ĂČptiques virtuals dedicades i especĂ­fiques per les aplicacions. Les tecnologies de virtualitzaciĂł de xarxes ĂČptiques virtuals permeten la particiĂł i composiciĂł de infraestructura de xarxa (nodes i enllaços ĂČptics) en recursos virtuals independents que adopten les mateixes funcionalitats que els recursos fĂ­sics. La composiciĂł d'aquests recursos virtuals (nodes i enllaços ĂČptics virtuals) permet el desplegament de mĂșltiples VONs. Una VON no sols estĂ  composada per un pla de transport virtual, sinĂł tambĂ© per un pla de control virtual, amb l'objectiu d'incorporar les funcionalitats necessĂ ries a la VON (provisiĂł de connexions automĂ tiques i recuperaciĂł (protecciĂł/restauraciĂł), enginyeria de trĂ fic, etc.). Aquesta tesis es centra en la virtualitzaciĂł de xarxes ĂČptiques amb tres objectius principals. El primer objectiu consisteix en el disseny, implementaciĂł i avaluaciĂł de l'arquitectura i els protocols i interfĂ­cies necessaris per la virtualitzaciĂł de xarxes encaminades a travĂ©s de la longitud d'ona i controlades per GMPLS. TambĂ© inclou la introducciĂł d'un gestor de recursos per desplegar xarxes ĂČptiques virtuals de forma dinĂ mica. La introducciĂł d'aquest gestor de recursos implica la necessitat d'una gestiĂł dels recursos virtuals i d’algoritmes d’assignaciĂł de recursos per a la utilitzaciĂł ĂČptima dels recursos fĂ­sics. A mĂ©s el gestor de recursos ha de ser capaç del desplegament dels recursos assignats, incloent un pla de control GMPLS virtual independent per a cada VON desplegada. Finalment, aquest objectiu inclou la introducciĂł de mecanismes de virtualitzaciĂł per a xarxes elĂ stiques ĂČptiques (EON, en anglĂšs). El segon objectiu Ă©s el disseny, la implementaciĂł i l’avaluaciĂł experimental d'una arquitectura de sistema per oferir xarxes MPLS-TP virtuals controlades per GMPLS sobre una infraestructura i WSON compartida. Per aixĂČ, aquesta tesis tambĂ© es centra en el disseny i desenvolupament d'un node MPLS-TP que ha estat desplegat al demostrador ADRENALINE, al CTTC. Finalment, el tercer objectiu Ă©s la composiciĂł de mĂșltiples xarxes ĂČptiques virtuals en dominis de control heterogenis (GMPLS i OpenFlow). Un gestor de recursos multi-domini ha estat dissenyat, implementat i avaluat.La gestiĂłn de redes Ăłpticas virtuales permite la provisiĂłn dinĂĄmica de redes dedicadas encima la misma infraestructura de red y ha llamado mucho la atenciĂłn a los proveedores de redes. Los requisitos de red (por ejemplo la calidad de servicio, los acuerdos de nivel de servicio o la dinamicidad) son cada vez mĂĄs estringentes para las aplicaciones emergentes de elevado ancho de banda y dinĂĄmicas, que incluyen por ejemplo la reproducciĂłn en tiempo real de vĂ­deo de alta definiciĂłn (telepresencia, televisiĂłn, telemedicina) y servicios de computaciĂłn en la nube (copias de seguridad en tiempo real, escritorio remoto). Estos requisitos pueden ser logrados a travĂ©s del despliegue de servicios de infraestructura dinĂĄmicos para construir redes Ăłpticas virtuales (VON, en inglĂ©s), hecho que es conocido como infraestructura como servicio (IaaS). La internet del futuro tendrĂĄ que soportar dos entidades diferenciadas: los proveedores de infraestructuras (responsables de gestionar la infraestructura fĂ­sica), y los proveedores de servicios (responsables de los protocolos de red y de ofrecer los servicios finales). De esta forma los proveedores de servicios podrĂĄn solicitar y gestionar en funciĂłn de las necesitados redes Ăłpticas virtuales dedicadas y especĂ­ficas por las aplicaciones. Las tecnologĂ­as de virtualizaciĂłn de redes Ăłpticas virtuales permiten la particiĂłn y composiciĂłn de infraestructura de red (nodos y enlaces Ăłpticos) en recursos virtuales independientes que adoptan las mismas funcionalidades que los recursos fĂ­sicos. La composiciĂłn de estos recursos virtuales (nodos y enlaces Ăłpticos virtuales) permite el despliegue de mĂșltiples VONs. Una VON no sĂłlo estĂĄ compuesta por un plan de transporte virtual, sino tambiĂ©n por un plan de control virtual, con el objetivo de incorporar las funcionalidades necesarias a la VON (provisiĂłn de conexiones automĂĄticas y recuperaciĂłn (protecciĂłn/restauraciĂłn), ingenierĂ­a de trĂĄfico, etc.). Esta tesis se centra en la virtualizaciĂłn de redes Ăłpticas con tres objetivos principales. El primer objetivo consiste en el diseño, implementaciĂłn y evaluaciĂłn de la arquitectura y los protocolos e interfaces necesarios por la virtualizaciĂłn de redes encaminadas a travĂ©s de la longitud de ola y controladas por GMPLS. TambiĂ©n incluye la introducciĂłn de un gestor de recursos para desplegar redes Ăłpticas virtuales de forma dinĂĄmica. La introducciĂłn de este gestor de recursos implica la necesidad de una gestiĂłn de los recursos virtuales y de algoritmos de asignaciĂłn de recursos para la utilizaciĂłn Ăłptima de los recursos fĂ­sicos. AdemĂĄs el gestor de recursos tiene que ser capaz del despliegue de los recursos asignados, incluyendo un plan de control GMPLS virtual independiente para cada VON desplegada. Finalmente, este objetivo incluye la introducciĂłn de mecanismos de virtualizaciĂłn para redes elĂĄsticas Ăłpticas (EON, en inglĂ©s). El segundo objetivo es el diseño, la implementaciĂłn y la evaluaciĂłn experimental de una arquitectura de sistema para ofrecer redes MPLS-TP virtuales controladas por GMPLS sobre una infraestructura WSON compartida. Por eso, esta tesis tambiĂ©n se centra en el diseño y desarrollo de un nodo MPLS-TP que ha sido desplegado al demostrador ADRENALINE, en el CTTC. Finalmente, el tercer objetivo es la composiciĂłn de mĂșltiples redes Ăłpticas virtuales en dominios de control heterogĂ©neos (GMPLS y OpenFlow). Un gestor de recursos multi-dominio ha sido diseñado, implementado y evaluado

    Traffic engineering in dynamic optical networks

    Get PDF
    Traffic Engineering (TE) refers to all the techniques a Service Provider employs to improve the efficiency and reliability of network operations. In IP over Optical (IPO) networks, traffic coming from upper layers is carried over the logical topology defined by the set of established lightpaths. Within this framework then, TE techniques allow to optimize the configuration of optical resources with respect to an highly dynamic traffic demand. TE can be performed with two main methods: if the demand is known only in terms of an aggregated traffic matrix, the problem of automatically updating the configuration of an optical network to accommodate traffic changes is called Virtual Topology Reconfiguration (VTR). If instead the traffic demand is known in terms of data-level connection requests with sub-wavelength granularity, arriving dynamically from some source node to any destination node, the problem is called Dynamic Traffic Grooming (DTG). In this dissertation new VTR algorithms for load balancing in optical networks based on Local Search (LS) techniques are presented. The main advantage of using LS is the minimization of network disruption, since the reconfiguration involves only a small part of the network. A comparison between the proposed schemes and the optimal solutions found via an ILP solver shows calculation time savings for comparable results of network congestion. A similar load balancing technique has been applied to alleviate congestion in an MPLS network, based on the efficient rerouting of Label-Switched Paths (LSP) from the most congested links to allow a better usage of network resources. Many algorithms have been developed to deal with DTG in IPO networks, where most of the attention is focused on optimizing the physical resources utilization by considering specific constraints on the optical node architecture, while very few attention has been put so far on the Quality of Service (QoS) guarantees for the carried traffic. In this thesis a novel Traffic Engineering scheme is proposed to guarantee QoS from both the viewpoint of service differentiation and transmission quality. Another contribution in this thesis is a formal framework for the definition of dynamic grooming policies in IPO networks. The framework is then specialized for an overlay architecture, where the control plane of the IP and optical level are separated, and no information is shared between the two. A family of grooming policies based on constraints on the number of hops and on the bandwidth sharing degree at the IP level is defined, and its performance analyzed in both regular and irregular topologies. While most of the literature on DTG problem implicitly considers the grooming of low-speed connections onto optical channels using a TDM approach, the proposed grooming policies are evaluated here by considering a realistic traffic model which consider a Dynamic Statistical Multiplexing (DSM) approach, i.e. a single wavelength channel is shared between multiple IP elastic traffic flows

    Dynamic grooming in IP over WDM networks: A study with realistic traffic based on GANCLES simulation package

    Get PDF
    Abstract — Dynamic grooming capabilities lies at the hearth of many envisaged scenarios for IP over Optical networks, but studies on its performance are still in their infancy. This work addresses two fundamental aspects of the problem. First of all it presents a novel tool for the study of IP over Optical networks. The tool, freely available on-line, is a network level simulator named GANCLES that includes several innovative features allowing the study of realistic scenarios in IP over Optical networking, making it an ideal tool for Traffic Engineering purposes. GANCLES architecture enables the simulation of dynamic traffic grooming on top of a realistic network model that correctly describes the logical interaction between the optical and the IP layer, i.e., the mutual relationship between routing algorithms and lightpath assignment procedures at the optical layer and routing at th

    Particle swarm optimization for routing and wavelength assignment in next generation WDM networks.

    Get PDF
    PhDAll-optical Wave Division Multiplexed (WDM) networking is a promising technology for long-haul backbone and large metropolitan optical networks in order to meet the non-diminishing bandwidth demands of future applications and services. Examples could include archival and recovery of data to/from Storage Area Networks (i.e. for banks), High bandwidth medical imaging (for remote operations), High Definition (HD) digital broadcast and streaming over the Internet, distributed orchestrated computing, and peak-demand short-term connectivity for Access Network providers and wireless network operators for backhaul surges. One desirable feature is fast and automatic provisioning. Connection (lightpath) provisioning in optically switched networks requires both route computation and a single wavelength to be assigned for the lightpath. This is called Routing and Wavelength Assignment (RWA). RWA can be classified as static RWA and dynamic RWA. Static RWA is an NP-hard (non-polynomial time hard) optimisation task. Dynamic RWA is even more challenging as connection requests arrive dynamically, on-the-fly and have random connection holding times. Traditionally, global-optimum mathematical search schemes like integer linear programming and graph colouring are used to find an optimal solution for NP-hard problems. However such schemes become unusable for connection provisioning in a dynamic environment, due to the computational complexity and time required to undertake the search. To perform dynamic provisioning, different heuristic and stochastic techniques are used. Particle Swarm Optimisation (PSO) is a population-based global optimisation scheme that belongs to the class of evolutionary search algorithms and has successfully been used to solve many NP-hard optimisation problems in both static and dynamic environments. In this thesis, a novel PSO based scheme is proposed to solve the static RWA case, which can achieve optimal/near-optimal solution. In order to reduce the risk of premature convergence of the swarm and to avoid selecting local optima, a search scheme is proposed to solve the static RWA, based on the position of swarm‘s global best particle and personal best position of each particle. To solve dynamic RWA problem, a PSO based scheme is proposed which can provision a connection within a fraction of a second. This feature is crucial to provisioning services like bandwidth on demand connectivity. To improve the convergence speed of the swarm towards an optimal/near-optimal solution, a novel chaotic factor is introduced into the PSO algorithm, i.e. CPSO, which helps the swarm reach a relatively good solution in fewer iterations. Experimental results for PSO/CPSO based dynamic RWA algorithms show that the proposed schemes perform better compared to other evolutionary techniques like genetic algorithms, ant colony optimization. This is both in terms of quality of solution and computation time. The proposed schemes also show significant improvements in blocking probability performance compared to traditional dynamic RWA schemes like SP-FF and SP-MU algorithms

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Design and optimization of optical grids and clouds

    Get PDF
    corecore