slides

Investigation on PCE-based multi-domain optical networks

Abstract

The last decade has seen many advances in high-speed networking technologies. However, many issues are still open for the development of next generation optical transport networks in order to optimize the resources; this is especially true in the context of multi-domain optical networks. In this context, the IETF entity introduces the Path Computation Elements (PCE) module to improve the network resources occupation. In multi-domain networks, each network domain is usually owned by a different operator/administrator and it entails the reluctant behavior from some operators concerning the dissemination of intra-domain information. The purpose of this work is to present and compare different Traffic Engineering (TE) information dissemination strategies between PCEs in multi-domain optical networks. In such network context, recent studies have found that path computation only with local domain visibility yields poor network performance. Accordingly, certain visibility between domains seems necessary. Aiming to fit the confidentiality requirements of the composing domains and to improve the final network blocking probability, novel link aggregation techniques have been proposed. These techniques summarize the state of network domains resources efficiently. Besides, this aggregated link information is afterwards disseminated to all the remainder domains in the network. In order to fulfill this requirement, we introduce different update triggering policies to make a good trade-off between routing information scalability and inaccuracy. On the other hand, the IETF entity has defined several mechanisms (BRPC and H-PCE) for establishing inter-domain paths to compute routes through cooperation between PCEs. This master thesis proposes a hybrid path computation procedure based on the H-PCE and BRPC. It is important to highlight that the performance of all contributions has been supported by illustrative simulation results

    Similar works